
1

 GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING

SYLLABUS

OBJECTIVES:

 To know the basics of algorithmic problem solving

 To read and write simple Python programs.

 To develop Python programs with conditionals and loops.

 To define Python functions and call them.

 To use Python data structures –- lists, tuples, dictionaries.

 To do input/output with files in Python.

 UNIT I ALGORITHMIC PROBLEM SOLVING 9

Algorithms, building blocks of algorithms (statements, state, control flow, functions),

notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple

strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a

list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

 UNIT II DATA, EXPRESSIONS, STATEMENTS 9

Python interpreter and interactive mode; values and types: int, float, boolean, string, and

list; variables, expressions, statements, tuple assignment, precedence of operators, comments;

modules and functions, function definition and use, flow of execution, parameters and arguments;

Illustrative programs: exchange the values of two variables, circulate the values of n variables,

distance between two points.

UNIT III CONTROLFLOW ,FUNCTIONS 9

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained

conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return

values, parameters, local and global scope, function composition, recursion; Strings: string slices,

immutability, string functions and methods, string module; Lists as arrays. Illustrative programs:

square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS,TUPLES,DICTIONARIES 9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list

parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods;

advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort,

mergesort, histogram.

UNIT V FILES,MODULES,PACKAGES 9

 Files and exception: text files, reading and writing files, format operator; command line

arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs:

word count, copy file.

 TOTAL : 45 PERIODS

TEXT BOOKS

Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘, 2nd edition,

Updatedfor Python 3,Shroff/O‘Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)

Guido van Rossum and Fred L. Drake Jr, ―An Introduction to Python – Revised and updated for

Python 3.2, Network Theory Ltd., 2011.

REFERENCES:

John V Guttag, ―Introduction to Computation and Programming Using Python‘‘, Revised and

expanded Edition, MIT Press , 2013

Robert Sedgewick, Kevin Wayne, Robert Dondero, ―Introduction to Programming in Python: An

Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

http://greenteapress.com/wp/think-python/
http://greenteapress.com/wp/think-python/
http://greenteapress.com/wp/think-python/
http://greenteapress.com/wp/think-python/

2

UNIT I ALGORITHMIC PROBLEM SOLVING

INTRODUCTION

PROBLEM SOLVING

Problem solving is the systematic approach to define the problem and creating number of

solutions.

 The problem solving process starts with the problem specifications and ends with a

correct program.

PROBLEM SOLVING TECHNIQUES

Problem solving technique is a set of techniques that helps in providing logic for solving a

problem.

Problem solving can be expressed in the form of

1. Algorithms.

2. Flowcharts.

3. Pseudo codes.

4. Programs

1.ALGORITHM

 It is defined as a sequence of instructions that describe a method for solving a problem.

In other words it is a step by step procedure for solving a problem

 Should be written in simple English

 Each and every instruction should be precise and unambiguous.
 Instructions in an algorithm should not be repeated infinitely.

 Algorithm should conclude after a finite number of steps.

 Should have an end point

 Derived results should be obtained only after the algorithm terminates.

Qualities of a good algorithm

 The following are the primary factors that are often used to judge the quality of the

algorithms.
Time – To execute a program, the computer system takes some amount of time. The lesser

is the time required, the better is the algorithm.
Memory – To execute a program, computer system takes some amount of memory space.

The lesser is the memory required, the better is the algorithm.
Accuracy – Multiple algorithms may provide suitable or correct solutions to a given

problem, some of these may provide more accurate results than others, and such algorithms may be

suitable

Building Blocks of Algorithm

As algorithm is a part of the blue-print or plan for the computer program. An algorithm is

constructed using following blocks.

 Statements

 States

 Control flow

 Function

3

Statements

Statements are simple sentences written in algorithm for specific purpose. Statements may

consists of assignment statements, input/output statements, comment statements

Example:

 Read the value of ‘a’ //This is input statement

 Calculate c=a+b //This is assignment statement

 Print the value of c // This is output statement

Comment statements are given after // symbol, which is used to tell the purpose of the line.

States

An algorithm is deterministic automation for accomplishing a goal which, given an initial

state, will terminate in a defined end-state.

An algorithm will definitely have start state and end state.

Control Flow

Control flow which is also stated as flow of control, determines what section of code is to

run in program at a given time. There are three types of flows, they are

1. Sequential control flow

2. Selection or Conditional control flow

3. Looping or repetition control flow

Sequential control flow:

The name suggests the sequential control structure is used to perform the action one after

another. Only one step is executed once. The logic is top to bottom approach.

Example

Description: To find the sum of two numbers.

1. Start

2. Read the value of ‘a’

3. Read the value of ‘b’

4. Calculate sum=a+b

5. Print the sum of two number

6. Stop

Selection or Conditional control flow

Selection flow allows the program to make choice between two alternate paths based on

condition. It is also called as decision structure

Basic structure:

 IFCONDITION is TRUE then

 perform some action

 ELSE IF CONDITION is FALSE then

 perform some action

The conditional control flow is explained with the example of finding greatest of two

numbers.

 Example

 Description: finding the greater number

1. Start

2. Read a

3. Read b

4

4. If a>b then

4.1. Print a is greater

else

4.2. Print b is greater

5. Stop

Repetition control flow

Repetition control flow means that one or more steps are performed repeatedly until some

condition is reached. This logic is used for producing loops in program logic when one one more

instructions may need to be executed several times or depending on condition.

Basic Structure:

 Repeat untilCONDITIONis true

 Statements

Example

 Description: to print the values from 1 to n

1. Start

2. Read the value of ‘n’

3. Initialize i as 1

4. Repeat step 4.1 until i< n

4.1. Print i

5. Stop

Function

A function is a block of organized, reusable code that is used to perform a single, related

action. Function is also named as methods, sub-routines.

Elements of functions:

1. Name for declaration offunction

2. Body consisting local declaration and statements

3. Formal parameter

4. Optional result type.

Basic Syntax

 function_name(parameters)

 function statements

 end function

Algorithm for addition of two numbers using function

Main function()

Step 1: Start

Step 2: Call the function add()

Step 3: Stop

sub function add()

 Step 1: Function start

 Step 2: Get a, b Values

 Step 3: add c=a+b

5

 Step 4: Print c

 Step 5: Return

2.Notations of Algorithm

 Algorithm can be expressed in many different notations, including Natural Language,

Pseudo code, flowcharts and programming languages. Natural language tends to be verbose

and ambiguous. Pseudocode and flowcharts are represented through structured human language.

A notation is a system of characters, expressions, graphics or symbols designs used among

each others in problem solving to represent technical facts, created to facilitate the best result for a

program

Pseudocode

Pseudocode is an informal high-level description of the operating principle of a

computer program or algorithm. It uses the basic structure of a normal programming language,

but is intended for human reading rather than machine reading.

It is text based detail design tool. Pseudo means false and code refers to instructions

written in programming language.

Pseudocode cannot be compiled nor executed, and there are no real formatting or syntax

rules. The pseudocode is written in normal English language which cannot be understood by the

computer.

Example:

 Pseudocode: To find sum of two numbers

 READ num1,num2

 sum=num1+num2

 PRINT sum

Basic rules to write pseudocode:

1. Only one statement per line.

Statements represents single action is written on same line. For example to read the

input, all the inputs must be read using single statement.

2. Capitalized initial keywords

The keywords should be written in capital letters. Eg: READ, WRITE, IF, ELSE,

ENDIF, WHILE, REPEAT, UNTIL

Example:

 Pseudocode: Find the total and average of three subjects

RAED name, department, mark1, mark2, mark3

 Total=mark1+mark2+mark3

 Average=Total/3

 WRITE name, department,mark1, mark2, mark3

3. Indent to show hierarchy

Indentation is a process of showing the boundaries of the structure.

4. End multi-line structures

Each structure must be ended properly, which provides more clarity.

Example:

 Pseudocode: Find greatest of two numbers

 READ a, b

IF a>b then

6

 PRINT a is greater

 ELSE

 PRINT b is greater

 ENDIF

5. Keep statements language independent.

Pesudocode must never written or use any syntax of any programming language.

Advantages of Pseudocode

 Can be done easily on a word processor

 Easily modified

 Implements structured concepts well

 It can be written easily

 It can be read and understood easily

 Converting pseudocode to programming language is easy as compared with

flowchart

Disadvantages of Pseudocode

 It is not visual

 There is no standardized style or format

Flowchart

A graphical representation of an algorithm. Flowcharts is a diagram made up of boxes,

diamonds, and other shapes, connected by arrows.

Each shape represents a step in process and arrows show the order in which they occur.

Table 1: Flowchart Symbols

S.No Name of

symbol

Symbol Type Description

1. Terminal

Symbol

 Oval Represent the start and

stop of the program.

2. Input/ Output

symbol

 Parallelogram Denotes either input or

output operation.

3. Process symbol Rectangle Denotes the process to be

carried

4. Decision symbol Diamond Represents decision

making and branching

5. Flow lines Arrow lines Represents the sequence

of steps and direction of

flow. Used to connect

symbols.

7

6. Connector Circle A connector symbol is

represented by a circle

and a letter or digit is

placed in the circle to

specify the link. This

symbol is used to

connect flowcharts.

Rules for drawing flowchart

1. In drawing a proper flowchart, all necessary requirements should be listed out in logical

order.

2. The flow chart should be clear, neat and easy to follow. There should not be any room

for ambiguity in understanding the flowchart.

3. The usual directions of the flow of a procedure or system is from left to right or top to

bottom.

Only one flow line should come out from a process symbol.

4. Only one flow line should enter a decision symbol, but two or three flow lines, one for

each possible answer, cap leave the decision symbol.

5. Only one flow line is used in conjunction with terminal symbol.

6. If flowchart becomes complex, it is better to use connector symbols to reduce the

number of flow lines.

7. Ensure that flowchart has logical start and stop.

Advantages of Flowchart

Communication:

 Flowcharts are better way of communicating the logic of the system.

Effective Analysis

 With the help of flowchart, a problem can be analyzed in more effective way.

Proper Documentation

Flowcharts are used for good program documentation, which is needed for various

purposes.

Efficient Coding

The flowcharts act as a guide or blue print during the system analysis and program

development phase.

8

Systematic Testing and Debugging

 The flowchart helps in testing and debugging the program

Efficient Program Maintenance

The maintenance of operating program becomes easy with the help of flowchart. It

helps the programmer to put efforts more efficiently on that part.

Disadvantages of Flowchart

Complex Logic: Sometimes, the program logic is quite complicated. In that case flowchart

becomes complex and difficult to use.

Alteration and Modification: If alterations are required the flowchart may require re-

drawing completely.

Reproduction: As the flowchart symbols cannot be typed, reproduction becomes

problematic.

Control Structures using flowcharts and Pseudocode

Sequence Structure

 Pseudocode Flow Chart

General Structure

Process 1

….

Process 2

…

Process 3

Example

READ a

READ b

Result c=a+b

PRINT c

Process 1

Process 3

Process 2

Start

a=10,b=20

c=a+b

print c

Stop

9

Conditional Structure

 Conditional structure is used to check the condition. It will be having two outputs only (True or False)

 IF and IF…ELSE are the conditional structures used in Python language.

 CASE is the structure used to select multi way selection control. It is not supported in Python.

Pseudocode Flow Chart

General Structure

IF condition THEN

 Process 1

ENDIF

Example

READ a

READ b

IF a>b THEN

PRINT a is greater

IF… ELSE

 IF…THEN…ELSE is the structure used to specify, if the condition is true, then execute Process1, else,

that is condition is false then execute Process2

Pseudocode Flow Chart

General Structure

IF condition THEN

 Process 1

ELSE

 Process 2

ENDIF

Example

No Process 1

if(condition)
Yes

Start

a=10,b=20

Stop

Print a is greater

if (a>b) Yes

No

No Process 1

if(condition) Yes

Process 2

Process 2

10

READ a

READ b

IF a>b THEN

PRINT a is greater

Iteration or Looping Structure

 Looping is generally used with WHILE or DO...WHILE or FOR loop.

 WHILE and FOR is entry checked loop

 DO…WHILE is exit checked loop, so the loop will be executed at least once.

Pseudocode Flow Chart

General Structure

WHILE condition

 Body of the loop

ENDWHILE

Example

Start

a=10,b=20

Stop

Print a is greater

if (a>b) Yes

No

Print b is greater

Yes

if(condition)
No

Body of the loop

11

 In python DO…WHILE is not supported.

 If the loop condition is true then the loop gets into infinite loop, which may lead to system crash

Programming Language

 A programming language is a vocabulary and set of grammatical rules for instructing a computer

or computing device to perform specific tasks.In other word it is set of instructions for the

computer to solve the problem.

 Programming Language is a formal language with set of instruction, to the computer to solve a

problem. The program will accept the data to perform computation.

 Program=Algoirthm+Data

Need for Programming Languages

 Programming languagesare also used to organize the computation

 Using Programming language we can solve different problems

 To improve the efficiency of the programs.

Types of Programming Language

In general Programming languages are classified into three types. They are

 Low – level or Machine Language

 Intermediate or Assembly Language

 High – level Programming language

Machine Language:

 Machine language is the lowest-level programming language (except for computers that utilize

programmable microcode). Machine languages are the only languages understood by computers. It is also called

as low level language.

 Example code:100110011

 111001100

Assembly Language:

 An assembly language contains the same instructions as a machine language, but the instructions and

variables have names instead of being just numbers.An assembler language consists of mnemonics, mnemonics

that corresponds unique machine instruction.

Example code:start

 addx,y

 subx,y

INITLIZE a=1

WHILE a<10 THEN

 PRINT a

 a=a+1

ENDWHILE

Start

a=1

Stop

if (a<10)
No

Yes

Print a

a=a+1

12

High – level Language:

 A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that enables a

programmer to write programs that are more or less independent of a particular type of computer. Such languages

are considered high-level because they are closer to human languages and further from machine

languages.Ultimately, programs written in a high-level language must be translated into machine language by a

compiler or interpreter.

 Example code: print(“Hello World!”)

 High level programming languages are further divided as mentioned below.

Language Type Example

Interpreted Programming Language Python, BASIC, Lisp

Functional Programming Language Clean, Curry, F#

Compiled Programming Language C++,Java, Ada, ALGOL

Procedural Programming Language C,Matlab, CList

Scripting Programming Language PHP,Apple Script, Javascript

Markup Programming Language HTML,SGML,XML

Logical Programming Language Prolog, Fril

Concurrent Programming Language ABCL, Concurrent PASCAL

Object Oriented Programming Language C++,Ada, Java, Python

Interpreted Programing Language:

 Interpreter is a program that executes instructions written in a high-level language.

An interpreter reads the source code one instruction or one line at a time, converts this line into machine

codeand executes it.

Compiled Programming Languages

Compile is to transform a program written in a high-level programming language from source code into

object code. This can be done by using a tool called compiler.

A compiler reads the whole source code and translates it into a complete machine code program to

perform the required tasks which is output as a new file.

Figure : Interpreter

Figure: Compiler

13

Interpreted vs. Compiled Programming Language

Interpreted Programming Language Compile Programming Language

Translates one statement at a time Scans entire program and translates it as whole

into machine code

It takes less amount of time to analyze the

source code but the overall execution time is

slower

It takes large amount of time to analyze the

source code but the overall execution time is

comparatively faster

No intermediate object code is generated,

hence are memory efficient

Generates intermediate object code which

further requires linking, hence requires more

memory

Continues translating the program until first

error is met, in which case it stops. Hence

debugging is easy.

It generates the error message only after

scanning the whole program. Hence debugging

is comparatively hard.

Eg: Python, Ruby Eg: C,C++,Java

3.ALGORITHMIC PROBLEM SOLVING:
 Algorithmic problem solving is solving problem that require the formulation of an algorithm for the

solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.

 It is very important to specify exactly the set of inputs the algorithm needs to handle.
 A correct algorithm is not one that works most of the time, but one that works

14

Correctly for all legitimate inputs.

Ascertaining the Capabilities of the Computational Device

 If the instructions are executed one after another, it is called sequential algorithm

Choosing between Exact and Approximate Problem Solving

 The next principal decision is to choose between solving the problem exactly or solving it

approximately.
 Based on this, the algorithms are classified as exact algorithm and approximation

 algorithm.

 Data structure plays a vital role in designing and analysis the algorithms.

 Some of the algorithm design techniques also depend on the structuring data specifying a

problem’s instance
 Algorithm+ Data structure=programs.

Algorithm Design Techniques
 An algorithm design technique (or “strategy” or “paradigm”) is a general approach to solving problems

algorithmically that is applicable to a variety of problems from different areas of computing.
 Learning these techniques is of utmost importance for the following reasons.

 First, they provide guidance for designing algorithms for new problems,

 Second, algorithms are the cornerstone of computer science.

Methods of Specifying an Algorithm
 Pseudocode is a mixture of a natural language and programming language-like constructs.

Pseudocode is usually more precise than natural language, and its usage often yields more succinct

algorithm descriptions.In the earlier days of computing, the dominant vehicle for specifying

algorithms was a flowchart, a method of expressing an algorithm by a collection of connected

geometric shapes containing descriptions of the algorithm’s steps.

 Programming language can be fed into an electronic computer directly. Instead, it needs to be

converted into a computer program written in a particular computer language. We can look at such

a program as yet another way of specifying the algorithm, although it is preferable to consider it as

the algorithm’s implementation.

 Once an algorithm has been specified, you have to prove its correctness. That is, you have to

prove that the algorithm yields a required result for every legitimate input in a finite amount of

time.

 A common technique for proving correctness is to use mathematical induction because an

algorithm’s iterations provide a natural sequence of steps needed for such proofs.

 It might be worth mentioning that although tracing the algorithm’s performance for a few specific

inputs can be a very worthwhile activity, it cannot prove the algorithm’s correctness conclusively.

But in order to show that an algorithm is incorrect, you need just one instance of its input for

which the algorithm fails.

Analyzing an Algorithm

1. Efficiency.

 Time efficiency: indicating how fast the algorithm runs,

 Space efficiency: indicating how much extra memory it uses

15

2. simplicity.

 An algorithm should be precisely defined and investigated with mathematical

expressions.
 Simpler algorithms are easier to understand and easier to program.

 Simple algorithms usually contain fewer bugs.

Coding an Algorithm
 Most algorithms are destined to be ultimately implemented as computer programs.

Programming an algorithm presents both a peril and an opportunity.
 A working program provides an additional opportunity in allowing an empirical analysis

of the underlying algorithm. Such an analysis is based on timing the program on several

inputs and then analyzing the results obtained.

4.Simple strategies for developing algorithm:

 They are two commonly used strategies used in developing algorithm

1. Iteration

2. Recursion

 Iteration

 The iteration is when a loop repeatedly executes till the controlling condition becomes false

 The iteration is applied to the set of instructions which we want to get repeatedly executed.

 Iteration includes initialization, condition, and execution of statement within loop and update

(increments and decrements) the control variable.

 A sequence of statements is executed until a specified condition is true is called iterations.

1. for loop

2. While loop

Syntax for For: Example: Print n natural numbers

FOR(start-value to end-value) DO

statement

... ENDFOR

BEGIN

GET n

INITIALIZE i=1

FOR (i<=n) DO

PRINT i

i=i+1

ENDFOR

END

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO

statement

...

ENDWHILE

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i

i=i+1

ENDWHILE

END

16

Recursions:

 A function that calls itself is known as recursion.

 Recursion is a process by which a function calls itself repeatedly until some specified condition has

been satisfied.

Algorithm for factorial of n numbers using recursion:

 Main function:

Step1: Start

Step2: Get n

Step3: call factorial(n)

Step4: print fact

Step5: Stop

Sub function factorial(n):

Step1: if(n==1) then fact=1 return fact

Step2: else fact=n*factorial(n-1) and return fact

17

FLOW CHART

Pseudo code for factorial using recursion:

 Main function:

BEGIN

GET n

CALL

factorial(n)

PRINT fact

BIN

Sub function factorial(n):

IF(n==1) THEN

fact=1

RETURN fact

ELSE

RETURN fact=n*factorial(n-1)

18

5.ILLUSTRATIVE PROBLEMS

1.Guess an integer in a range

Algorithm:

Step1: Start

Step 2: Declare n, guess

Step 3: Compute guess=input

Step 4: Read guess

Step 5: If guess>n, then

 Print your guess is too high

Else

Step6:If guess<n, then

 Print your guess is too low

 Else

Step 7:If guess==n,then

 Print Good job

Else

 Nope

Step 6: Stop

Pseudocode:

 BEGIN

COMPUTE guess=input

READ guess,

IF guess>n

PRINT Guess is high

ELSE

IF guess<n

PRINT Guess is low

ELSE

IF guess=n

 PRINT Good job

ELSE

Nope

END
Flowchart:

19

 Read n

Read

Guess number

 Guess=input

If Guess>n

If Guess<n

If Guess==n

 nope

Your guess is

too high

Your guess

is too lowr

Good job

 Stop

 Start

32

2. Find minimum in a list

Algorithm:

Step 1: Start

Step 2: Read n

Step 3:Initialize i=0

Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5

Step4.1: Read a[i]

Step 4.2: i=i+1 goto step 4

Step 5: Compute min=a[0]

Step 6: Initialize i=1

Step 7: If i<n, then go to step 8 else goto step 10

Step 8: If a[i]<min, then goto step 8.1,8.2 else goto 8.2

Step 8.1: min=a[i]

Step 8.2: i=i+1 goto 7

Step 9: Print min

Step 10: Stop

Pseudocode:

BEGIN

READ n

FOR i=0 to n, then

READ a[i]

INCREMENT i

END FOR

COMPUTE min=a[0]

FOR i=1 to n, then

IF a[i]<min, then

CALCULATE min=a[i]

INCREMENT i

ELSE

INCREMENT i

END IF-ELSE

END FOR

PRINT min

END

33

Flowchart:

34

3. Insert a card in a list of sorted cards

Algorithm:

Step 1: Start

Step 2: Read n

Step 3:Initialize i=0

Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5

Step4.1: Read a[i]

Step 4.2: i=i+1 goto step 4

Step 5: Read item

Step 6: Calculate i=n-1

Step 7: If i>=0 and item<a[i], then go to step 7.1, 7.2 else goto step 8

Step 7.1: a[i+1]=a[i]

Step 7.2: i=i-1 goto step 7

Step 8: Compute a[i+1]=item

Step 9: Compute n=n+1

Step 10: If i<n, then goto step 10.1, 10.2 else goto step 11

Step10.1: Print a[i]

Step10.2: i=i+1 goto step 10

Step 11: Stop

Pseudocode:

BEGIN

READ n

FOR i=0 to n, then

READ a[i]

INCREMENT i

END FOR

READ item

FOR i=n-1 to 0 and item<a[i], then

CALCULATE a[i+1]=a[i]

DECREMENT i

END FOR

COMPUTE a[i+1]=a[i]

COMPUTE n=n+1

FOR i=0 to n, then

PRINT a[i]

INCREMENT i

END FOR

END

35

Flowchart:

36

4.Tower of Hanoi

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than one rings.

Tower of Hanoi is one of the best example for recursive problem solving.

Pre-condition:

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one sits over the

larger one. There are other variations of the puzzle where the number of disks increase, but the tower count

remains the same.

Post-condition:

All the disk should be moved to the last pole and placed only in ascending order as shown below.

Rules

The mission is to move all the disks to some another tower without violating the sequence of

arrangement. A few rules to be followed for Tower of Hanoi are

 Only one disk can be moved among the towers at any given time.

 Only the "top" disk can be removed.

 No large disk can sit over a small disk.

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps. This presentation shows that a puzzle

with 3 disks has taken 23 - 1 = 7 steps.

Algorithm

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with lesser amount of

disks, say → 1 or 2. We mark three towers with name, source, aux (only to help moving the disks) and

destination.

Input: one disk

If we have only one disk, then it can easily be moved from source to destination peg.

Input: two disks

If we have 2 disks −

 First, we move the smaller (top) disk to aux peg.

 Then, we move the larger (bottom) disk to destination peg.

 And finally, we move the smaller disk from aux to destination peg.

Input: more than two disks

 So now, we are in a position to design an algorithm for Tower of Hanoi with more than two disks. We

divide the stack of disks in two parts. The largest disk (nth disk) is in one part and all other (n-1) disks are

in the second part.

37

 Our ultimate aim is to move disk n from source to destination and then put all other (n1) disks onto it. We

can imagine to apply the same in a recursive way for all given set of disks.

 The steps to follow are –

Step 1 − Move n-1 disks from source to aux

Step 2 − Move nth disk from source to dest

Step 3 − Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows –

START

Procedure Hanoi(disk, source, dest, aux)

IF disk == 1, THEN

move disk from source to dest

 ELSE

Hanoi(disk - 1, source, aux, dest) // Step 1

 move disk from source to dest // Step 2

 Hanoi(disk - 1, aux, dest, source) // Step 3

END IF

END Procedure

STOP

FLOW CHART

 Start

Enter disk i.e number

of disks

38

5.Draw a flow chart to find greatest among three numbers.(AU 2018)

 Call the function

Hanoi(n,A,C,B)

If disk==1?

Print move disk from

A to C

Call function Hanoi with

disk-1,A,B,C

Print move disk

from A to C

Call function Hanoi

with disk-1,C,A,B

 Return

 Stop

39

6.Draw a flow chart to find sum of n numbers(AU 2018)

2 MARKS

1. What is an algorithm?

40

 An algorithm is a finite number of clearly described, unambiguous do able steps that can be

systematically followed to produce a desired results for given input in the given amount of time. In other word,

an algorithm is a step by step procedure to solve a problem with finite number of steps.

2. What is Pseudo code?

Pseudocode is an informal high-level description of the operating principle of a computer program

or algorithm. Pseudo means false and code refers to instructions written in programming language.

3. What is Problem Solving?

Problem solving is the systematic approach to define the problem and creating number of solutions.

The problem solving process starts with the problem specifications and ends with a correct program.

4. Distinguish between algorithm and program.

 Algorithm Program

1. Systematic logical approach which is a

well-defined, step-by-step procedure that

allows a computer to solve a problem.

It is exact code written for

problem following all the rules of the

programming language.

2. An algorithm is a finite number of clearly

described, unambiguous do able steps that

can be systematically followed to produce

a desired results for given input in the

given amount of time.

 The program will accept the data to

perform computation.

Program=Algoirthm+Data

5. Define Flow chart.

A graphical representation of an algorithm. Flowcharts is a diagram made up of boxes,

diamonds, and other shapes, connected by arrows.

6. Write an algorithm to accept two numbers, compute the sum and print the result.

Step 1:Start

Step 2:Declare variables num1,num2 and sum,

Step 3:Read values num 1 and num2.

Step 4:Add and assign the result to sum.

 Sum←num1+num2

Step 5:Display sum

7. Differentiate between iteration and recursion.

S.No Iteration Recursion

41

1. Iteration is a process of executing

certain set of instructions

repeatedly,without calling the self

function.

Iteration is a process of

executing certain set of

instructions repeatedly,by calling

the self function repeatedly.

2. Iterative methods are more efficient

because of better execution speed.

Recursive methods are less

efficient.

3. It is simple to implement. Recursive methods are complex

to implement.

8.What is Programming language? With example.

Programming Language is a formal language with set of instruction, to the computer to solve a problem.

Java, C, C++, Python, PHP.

9.What are the steps for developing algorithms.

• Problem definition

• Development of a model

• Specification of Algorithm

• Designing an Algorithm

• Checking the correctness of Algorithm

• Analysis of Algorithm

• Implementation of Algorithm

• Program testing

• Documentation Preparation

10.What are the Guidelines for writing pseudo code?

 Write one statement per line

 Capitalize initial keyword

 Indent to hierarchy

 End multiline structure

 Keep statements language independent.



11.Draw a flow chart to find whether the given number is leap year or not.

 Start

Read year

42

UNIT II

DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables,

expressions, statements, tuple assignment, precedence of operators, comments; Modules and functions,

function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange

the values of two variables, circulate the values of n variables, distance between twopoints.

 If

(year%4==0)

Print ‘Leap year’ Print ‘Not Leap year’

 Stop

43

1.

Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language.

It was created by Guido van Rossum during 1985- 1990.

Python got its name from “Monty Python’s flying circus”. Python was released in the year 2000.

 Python is interpreted: Python is processed at runtime by the interpreter. You do not need to
compile your program before executingit.

 Python is Interactive: You can actually sit at a Python prompt and interact with the interpreter

directly to write yourprograms.

 Python is Object-Oriented: Python supports Object-Oriented style or technique of programming

that encapsulates code withinobjects.

 PythonisaBeginner'sLanguage:Pythonisagreatlanguageforthebeginner-

level programmers and supports the development of a wide range of

applications.

1 Python Features:

 Easy-to-learn: Python is clearly defined and easilyreadable.The structure of the program is very

simple. It uses fewkeywords.

 Easy-to-maintain: Python's source code is fairlyeasy-to-maintain.

 Portable: Python can run on a wide variety of hardware platforms and has the same interface on

allplatforms.

 Interpreted: Python is processed at runtime by the interpreter. So, there is no need to compile a

program before executing it. You can simply run theprogram.

 Extensible: Programmers can embed python within their C,C++,Javascript

,ActiveX, etc.

 Free and Open Source: Anyone can freely distribute it, read the source code, and edit it.

 High Level Language: When writing programs, programmers concentrate on solutions of the

current problem, no need to worry about the low leveldetails.

 Scalable: Python provides a better structure and support for large programs than shell scripting.

2 Applications:

 Bit Torrent file sharing

 Google search engine, YouTube

 Intel, Cisco, HP,IBM

 i–Robot

 NASA

INTRODUCTION TO
PYTHON:

44

 Facebook, Dropbox

3 Python interpreter:

Interpreter: To execute a program in a high-level language by translating it one line ata time.

Compiler: To translate a program written in a high-level language into a low-level language all at once, in

preparation for later execution.

Compiler Interpreter

Compiler Takes Entire program as input
Interpreter Takes Single instruction as input

Intermediate Object Code is Generated
No Intermediate is

Generated

Object Code

Conditional Control Statements are

Executes faster

Conditional Control

Executes slower

Statements are

Memory Requirement is More(Since Object

Code is Generated)
Memory Requirement is Less

Program need not be compiled every time
Every time higher level program is

converted into lower levelprogram

Errorsare displayed after entire program ischecked Errorsare displayed for every instruction

interpreted (ifany)

Example : C Compiler Example : PYTHON

4 MODES OF PYTHONINTERPRETER:

 Python Interpreter is a program that reads and executes Python code. It uses 2 modes of

Execution.

1. Interactive mode

2. Script mode

5 Interactive mode:

 Interactive Mode, as the name suggests, allows us to interact withOS.

 When we type Python statement, interpreter displays the result(s) immediately.

6 Advantages:

 Python, in interactive mode, is good enough to learn, experiment orexplore.

 Working in interactive mode is convenient for beginners and for testing small pieces ofcode.

7 Drawback:

 We cannot save the statements and have to retype all the statements once again to re-runthem.

In interactive mode, you type Python programs and the interpreter displays the result:

>>> 1 + 1

2

The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you to enter code. If you type 1

+ 1, the interpreter replies 2.

>>> print ('Hello, World!') Hello,

World!

45

This is an example of a print statement. It displays a result on the screen. In this case, the result is the words.

8 Script mode:

 In script mode, we type python program in a file and then use interpreter to execute the content of

thefile.

 Scripts can be saved to disk for future use. Python scripts have the

extension .py, meaning that the filename ends with.py

 Save the code with filename.py and run the interpreter in script mode to execute thescript.

Interactive mode Script mode

A way of using the Python interpreter by

typing commands and expressions at the prompt.

A way of using the Python interpreter to read and

execute statements in a script.

Can’t save and edit the code Can save and edit the code

If we want to experiment with the code,

we can use interactive mode.

If we are very clear about the code, we can

use script mode.

we cannot save the statements for further use and we

have to retype all the statements to re-run them.

we can save the statements for further use and we no

need to retype all the statements to re-run them.

We can see the results immediately. We can’t see the code immediately.

9 Integrated Development Learning Environment(IDLE):

 Is a graphical user interface which is completely written in Python.

 It is bundled with the default implementation of the python language and also comes with optional

part of the Pythonpackaging.

10 Features of IDLE:

 Multi-window text editor with syntaxhighlighting.

https://en.wikipedia.org/wiki/Syntax_highlighting

46

 Auto completion with smart indentation.

 Python shell to display output with syntax highlighting.

11 2.VALUES AND DATATYPES

Value:

Value can be any letter, number or string.

Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different datatypes.)

12 Data type:

Every value in Python has a data type.

It is a set of values, and the allowable operations on those values.

13 Python has four standard data types:

Numbers:

 Number data type stores NumericalValues.

 This data type is immutable [i.e. values/items cannot be changed].

 Python supports integers, floating point numbers and complex numbers. They are definedas,

14 Sequence:

 A sequence is an ordered collection of items, indexed by positiveintegers.

 It is a combination of mutable (value can be changed) and immutable (values cannot be changed)

datatypes.

47

 There are three types of sequence data type available in Python, theyare

1. Strings

2. Lists

3. Tuples

Strings:

 A String in Python consists of a series or sequence of characters - letters, numbers, and special
characters.

 Strings are marked by quotes:

 Single quotes(' ') E.g., 'This a string in singlequotes'

 double quotes(" ") E.g., "'This a string in doublequotes'"

 triple quotes(""" """)E.g., """This is a paragraph. It is made up of multiple

lines andsentences."""

 Individual character in a string is accessed using a subscript(index).

 Characters can be accessed using indexing and slicing operations Strings are

Immutable i.e the contents of the string cannot be changed after it is created.

15 Indexing:

 Positive indexing helps in accessing the string from thebeginning

 Negative subscript helps in accessing the string from theend.

 Subscript 0 or –ven(where n is length of the string) displays the firstelement.

16 Example: A[0] or A[-5] will display “H”

 Subscript 1 or –ve (n-1) displays the secondelement.

17 Example: A[1] or A[-4] will display “E”

Operations on string:

i. Indexing

ii. Slicing

iii. Concatenation

iv. Repetitions

v. Membership

Creating a string >>> s="good morning" Creating the list with elements of different

data types.

Indexing >>>print(s[2])

o

>>>print(s[6])

O

 Accessing

position0

 Accessing

position2

the

the

item

item

in

in

the

the

Slicing(ending

position -1)

>>>print(s[2:])

od morning

- Displaying items from 2ndtill

last.

48

Slice operator isused

to extractpart of a data

type

>>>print(s[:4])

Good

- Displaying items from

 1stposition till 3rd.

Concatenation >>>print(s+"friends") good

morningfriends

-Adding and printing the

characters of twostrings.

Repetition >>>print(s*2)

good

 morninggoodmo

rning

Creates new strings,

concatenating multiple copiesof

the same string

in, not in (membership

operator)
>>> s="good morning"

>>>"m" in s True

>>> "a" not in s

True

Using membership operators to check a

particular character is in string or not.

Returns true if present.

18 Lists

 List is an ordered sequence of items. Values in the list are called elements /items.

 It can be written as a list of comma-separated items (values) between square brackets[].

 Items in the lists can be of different datatypes.

Operations on

list:Indexing

Slicing

Concatenation

Repetitions

Updation, Insertion, Deletion

Creating a list >>>list1=["python", 7.79, 101,

"hello”]

>>>list2=["god",6.78,9]

Creating the list with

elements of different data

types.

Indexing >>>print(list1[0]) python

>>>list1[2]

101

 Accessing the item in the

position0

 Accessing the item in the

position2

Slicing(ending

position -1)

Slice operator isused to

extractpart of a string,

orsome part of alist

Python

>>>print(list1[1:3])

[7.79, 101]

>>>print(list1[1:]) [7.79, 101,

'hello']

- Displaying items from 1st

till2nd.

- Displaying items from 1st

position tilllast.

Concatenation >>>print(list1+list2)

['python', 7.79, 101, 'hello', 'god',

-Adding and printing the

items of twolists.

49

 6.78, 9]

Repetition >>>list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',

6.78, 9]

Creates new strings, concatenating

 multiple

copies of the samestring

Updating the list >>>list1[2]=45

>>>print(list1)

[‘python’, 7.79, 45, ‘hello’]

Updating the list using index value

Inserting an

element
>>>list1.insert(2,"program")

>>> print(list1)

['python', 7.79, 'program', 45,

'hello']

Inserting an element in 2ndposition

Removing an

element
>>>list1.remove(45)

>>> print(list1)

['python', 7.79, 'program', 'hello']

Removing an element by
giving the elementdirectly

19 Tuple:

 A tuple is same as list, except that the set of elements is enclosed inparentheses

instead of square brackets.

 A tuple is an immutable list.i.e. once a tuple has been created, you can't add elements to a tuple or

remove elements from thetuple.

 Benefit ofTuple:

 Tuples are faster thanlists.

 If the user wants to protect the data from accidental changes, tuple can beused.

 Tuples can be used as keys in dictionaries, while listscan't.

20 Basic Operations:

Creating a tuple >>>t=("python", 7.79, 101,

"hello”)

Creating the tuple with elements

of different data types.

Indexing >>>print(t[0]) python

>>>t[2]

101

 Accessing the item inthe

position0

 Accessing the item inthe

position2

Slicing(ending

position -1)
>>>print(t[1:3])

(7.79, 101)

 Displaying items from1st

till2nd.

Concatenation >>>t+("ram", 67)

('python', 7.79, 101, 'hello', 'ram',

67)

 Adding tuple elementsat

the end of another tuple elements

Repetition >>>print(t*2)

('python', 7.79, 101, 'hello',

'python', 7.79, 101, 'hello')

 Creates newstrings,

concatenating multiple copies of the

same string

Altering the tuple data type leads to error. Following error occurs when user tries to do.

50

21 Mapping

-This data type is unordered and mutable.

-Dictionaries fall under Mappings.

22 Dictionaries:

 Lists are ordered sets of objects, whereas dictionaries are unorderedsets.

 Dictionary is created by using curly brackets. i,e.{}

 Dictionaries are accessed via keysand not via theirposition.

 A dictionary is an associative array (also known as hashes). Any key of the dictionary is associated

(or mapped) to avalue.

 The values of a dictionary can be any Python data type. So dictionaries areunordered key-value-

pairs(The association of a key and a value is called a key- value pair)

Dictionaries don't support the sequence operation of the sequence data types like strings, tuples and lists.

Creating a

dictionary
>>> food = {"ham":"yes", "egg" :

"yes", "rate":450 }

>>>print(food)

{'rate': 450, 'egg': 'yes', 'ham':

'yes'}

Creating

elements

types.

the

of

dictionary

different

with

data

Indexing >>>>print(food["rate"])

450

Accessing the item with keys.

Slicing(ending

position -1)
>>>print(t[1:3])

(7.79, 101)

Displaying items from 1st till 2nd.

If you try to access a key which doesn't exist, you will get an error message:

>>>words = {"house" : "Haus", "cat":"Katze"}

>>>words["car"]

Traceback (most recent call last): File "<stdin>",

line 1, in <module>KeyError: 'car'

 Data type Compile time Run time

int a=10 a=int(input(“enter a”))

float a=10.5 a=float(input(“enter a”))

string a=”panimalar” a=input(“enter a string”)

list a=[20,30,40,50] a=list(input(“enter a list”))

tuple a=(20,30,40,50) a=tuple(input(“enter a tuple”))

>>>t[0]="a"
Trace back (most recent call last):
File "<stdin>", line 1, in <module>

Type Error: 'tuple' object does not support item assignment

51

3.Variables,Keywords Expressions, Statements, Comments, Docstring ,Lines And Indentation,

Quotation In Python, Tuple Assignment:

VARIABLES:

 A variable allows us to store a value by assigning it to a name, which can be used later.

 Named memory locations to storevalues.

 Programmers generally choose names for their variables that aremeaningful.

 It can be of any length. No space isallowed.

 We don't need to declare a variable before using it. In Python, we simply assign a value to a variable

and it will exist.

23 Assigning value to variable:

Value should be given on the right side of assignment operator(=) and variable on left side.

Assigning a single value to several variables simultaneously:

>>> a=b=c=100

Assigning multiple values to multiple variables:

KEYWORDS:

 Keywords are the reserved words in Python.

 We cannot use a keyword as name, function name or any other identifier.

 They are used to define the syntax and structure of the Python language.

 Keywords are case sensitive.

IDENTIFIERS:

24 Identifier is the name given to entities like class, functions, variables etc. in Python.

 Identifiers can be a combination of letters in lowercase (a to z) or uppercase (Ato

Z) or digits (0 to 9) or an underscore (_).

>>>counter =45 print
(counter)

>>>a,b,c=2,4,"ram"

52

 all are validexample.

 An identifier cannot start with adigit.

 Keywords cannot be used asidentifiers.

 Cannot use special symbols like!, @, #, $, % etc. in ouridentifier.

 Identifier can be of anylength.

25 Example:

Names like myClass, var_1, and this_is_a_long_variable

Valid declarations Invalid declarations

Num Number 1

Num num1

Num1 addition of program

_NUM 1Num

NUM_temp2 Num.no

IF if

Else else

 STATEMENTS AND EXPRESSIONS:

26 Statements:

-Instructions that a Python interpreter can executes are called statements.

-A statement is a unit of code like creating a variable or displaying avalue.

>>> n = 17

>>>print (n)

Here, The first line is an assignment statement that gives a value to n. The second line is a

print statement that displays the value of n.

27 Expressions:

-An expression is a combination of values, variables, and operators.

- A value all by itself is considered an expression, and also avariable.

- So the following are all legalexpressions:

>>> 42

42

>>> a=2

>>>a+3+2 7

>>> z=("hi"+"friend")

>>>print(z) hifriend

 INPUT AND OUTPUT

INPUT: Input is data entered by user (end user) in the program. In

python, input () function is available for input.

Syntax for input() is:

variable = input (“data”)

53

28 Example:

#python accepts string as default data type. conversion is required for type.

OUTPUT: Output can be displayed to the user using Print statement .

29 Example:

COMMENTS:

 A hash sign (#) is the beginning of acomment.

 Anything written after # in a line is ignored byinterpreter.

Eg:percentage = (minute * 100)/60 # calculating percentage of anhour

 Python does not have multiple-line commenting feature.You have to comment each line

individually as follows:

30 Example:

This is acomment.

This is a comment,too. # I said

thatalready.

31 DOCSTRING:

 Docstring is short for documentationstring.

 It is a string that occurs as the first statement in a module, function, class, or method definition. We

must write what a function/class does in the docstring.

 Triple quotes are used while writing docstrings.

32 Syntax:

functionname__doc.__ Example:

 LINES AND INDENTATION:

 Most of the programming languages like C, C++, Java use braces { } to define a block of code. But,

python usesindentation.

 Blocks of code are denoted by lineindentation.

 It is a space given to the block of codes for class and function definitions or flow control.

defdouble(num):
"""Function to double thevalue"""

return2*num
>>>print(double.__doc__)

Function to double the value

>>> print ("Hello") Hello

Syntax:

print (expression/constant/variable)

>>>y=int(input("enter the number"))
enter the number 3

>>> x=input("enter the name:") enter
the name: george

54

33 Example:

 QUOTATION INPYTHON:

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals. Anything that is

represented using quotations are considered as string.

 Single quotes(' ') Eg, 'This a string in single quotes'

 double quotes(" ") Eg, "'This a string in doublequotes'"

 triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple lines

andsentences."""

 TUPLE ASSIGNMENT

 An assignment to all of the elements in a tuple using a single assignment statement.

 Python has a very powerful tuple assignment feature that allows a tuple of variables on the left of an

assignment to be assigned values from a tuple on the right of theassignment.

 The left side is a tuple of variables; the right side is a tuple ofvalues.

 Each value is assigned to its respectivevariable.

 All the expressions on the right side are evaluated before any of the assignments. This feature makes

tuple assignment quiteversatile.

 Naturally, the number of variables on the left and the number of values on the right have to be

thesame.

34 Example:

-It is useful to swap the values of two variables. With conventional assignment statements, we have to

use a temporary variable. For example, to swap a andb:

Swap two numbers Output:

a=2;b=3

print(a,b) (2, 3)

temp = a (3, 2)

a = b >>>

b = temp

print(a,b)

>>>(a, b, c, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

a=3
b=1

if a>b:
print("a is greater")

else:
print("b is greater")

55

-Tuple assignment solves this problem neatly:

35 -One way to think of tuple assignment is as tuple packing/unpacking.

In tuple packing, the values on the left are ‘packed’ together in a tuple:

36 -In tuple unpacking, the values in a tuple on the right are ‘unpacked’into thevariables/names on the

right:

-The right side can be any kind of sequence (string,list,tuple)

37 Example:

-To split an email address in to user name and a domain

>>>mailid='god@abc.org'

>>>name,domain=mailid.split('@')

>>>print name god

>>> print (domain) abc.org

4.OPERATORS:

 Operators are the constructs which can manipulate the value ofoperands.

 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator

 Types ofOperators:

-Python language supports the following types of operators

 Arithmetic Operators

 Comparison (Relational)Operators

 Assignment Operators

 Logical Operators

 BitwiseOperators

 MembershipOperators

 IdentityOperators

(a, b) = (b, a)

>>>b = ("George",25,"20000") #

tuplepacking

>>>(name, age, salary)=b #

tupleunpacking

>>>

name

'George'

>>>

age 25

>>>salary

'20000'

tuple

packing

>>>b = ("George", 25,

"20000")

56

38 Arithmetic operators:

They are used to perform mathematical operations like addition, subtraction, multiplication etc.

Assume, a=10 and b=5

Operator Description

Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts

operand.

right hand operand from left hand a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and

returnsremainder

b % a = 0

** Exponent Performs

operators

exponential (power) calculation on a**b =10 to the

power 20

// Floor Division - The division of operands where the result is the

quotient in which the digits after the decimal point are removed

5//2=2

39 Examples

a=10

b=5

print("a+b=",a+b) print("a-

b=",a-b)

print("a*b=",a*b)

print("a/b=",a/b)

print("a%b=",a%b)

print("a//b=",a//b)

print("a**b=",a**b)

40 Output:

a+b=15

a-b= 5

a*b= 50

a/b= 2.0

a%b=0

a//b=2

a**b= 100000

41 Comparison (Relational)Operators:

 Comparison operators are used to comparevalues.

 It either returns True or False according to the condition. Assume, a=10 andb=5

Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

57

becomes true. not true.

!= If values of two operands are not equal, then condition becomes true. (a!=b) is

true

> If the value of left operand is greater than the value of right operand, then

condition becomes true.

(a > b) is not

true.

< If the value of left operand is less than the value of right operand, then

condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right

operand, then condition becomes true.

(a >= b) is not

true.

<= If the value of left operand is less than or equal to the value of right

operand, then condition becomestrue.

(a <= b) is

true.

42 Example

a=10

b=5

print("a>b=>",a>b)

print("a>b=>",a<b)

print("a==b=>",a==b)

print("a!=b=>",a!=b)

print("a>=b=>",a<=b)

print("a>=b=>",a>=b)

Output: a>b=>

True a>b=>

False a==b=>

False a!=b=>

True a>=b=>

False a>=b=>

True

43 Assignment Operators:

-Assignment operators are used in Python to assign values to variables.

Operator Description Example

= Assigns values from right side operands to left side operand c = a + b

assigns value

of a + b into c

+= Add AND It adds right operand to the left operand and assign the result to

leftoperand

c += a is

equivalent to c

= c + a

-= Subtract

AND

It subtracts right operand from the left operand and assign the result

to left operand

c -= a is

equivalent to c

= c -a

58

*=

AND

Multiply It multiplies right operand with the left operand and assign the

result to left operand

c *= a is

equivalent to c

= c *a

/=

AND

Divide It divides left operand with the right operand and assign the result

to left operand

c /= a is

equivalent to c

= c /ac

/= a is

equivalent to c

= c /a

%=

AND

Modulus It takes modulus using two operands and assign the result to left

operand

c %= a is

equivalent to c

= c % a

**= Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the leftoperand

c **= a is

equivalent to c

= c ** a

//= Floor

Division

It performs floor division on operators and assign value to the left

operand

c //= a is

equivalent to c

= c // a

44 Example

a =21

b =10

c = 0

c = a + b

 print("Line 1 - Value of c is ",c)

c += a

print("Line 2 - Value of c is ", c)

c *= a

print("Line 3 - Value of c is ",c)

c /= a

print("Line 4 - Value of c is ", c)

c = 2

c %=a

print("Line 5 - Value of c is ",c)

c **= a

print("Line 6 - Value of c is ",c)

c //= a

print ("Line 7 - Value of c is ", c)

45 Output

Line 1 - Value of c is 31

Line 2 - Value of c is 52

Line 3 - Value of c is 1092

Line 4 - Value of c is 52.0

Line 5 - Value of c is2

Line 6 - Value of c is 2097152

Line 7 - Value of c is99864

59

46 Logical Operators:

-Logical operators are the and, or, not operators.

47 Example

a = True

b = False

print('a and b is',a and b) print('a

or b is',a or b) print('not a

is',not a)

48 Output

x and y is False

x or y is True

not x is False

49 Bitwise Operators:

 A bitwise operation operates on one or more bit patterns at the level of individual bits

Example: Let x = 10 (0000 1010 in binary)and

y = 4 (0000 0100 in binary)

Example

a = 60

60 = 0011 1100
Output

Line 1 - Value of c is 12

b = 13

c = 0

c = a & b;

13 = 0000 1101

12 = 0000 1100

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is-61

print "Line 1 - Value of c is ", c

c = a|b; # 61 = 00111101

print "Line 2 - Value of c is ", c

c = a^b; # 49 = 00110001

print "Line 3 - Value of c is ", c

 c =~a; # -61 = 11000011

Line 5 - Value of c is 240

 Line 6 - Value of c is 15

60

print "Line 4 - Value of c is ", c

c = a<<2; # 240 = 11110000

print "Line 5 - Value of c is ", c

c = a>>2; # 15 = 00001111

print "Line 6 - Value of c is ", c

50 Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list, tuple, dictionary

ornot.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators areused.

51 Example:

x=[5,3,6,4,1]

>>>5 in x

True

>>>5 not in x

False

52 Identity Operators:

• They are used to check if two values (or variables) are located on the same partof the

memory.

53 Example

x =5

y =5

x2 = 'Hello'

y2= 'Hello'

print(x1 is not y1)

print(x2 is y2)

Out

put False

Tru

e

61

5.OPERATOR PRECEDENCE:

When an expression contains more than one operator, the order of evaluation

depends on the order of operations.

Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method names for the

last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>><< Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= <>>= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

-For mathematical operators, Python follows mathematical convention.

-The acronym PEMDAS (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction) is a

useful way to remember the rules:

• Parentheses have the highest precedence and can be used to force an expression to evaluate in the

order you want. Since expressions in parentheses are evaluated first, 2 * (3-1)is 4, and (1+1)**(5-2)

is8.

• Youcanalsouseparenthesestomakeanexpressioneasiertoread,asin(minute

* 100) / 60, even if it doesn’t change the result.

• Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and2

*3**2 is 18, not 36.

• Multiplication and Division have higher precedence than Addition and Subtraction. So 2*3-1 is 5,

not 4, and 6+4/2 is 8, not5.

• Operators with the same precedence are evaluated from left to right (except exponentiation).

62

54 Example:

a=9-12/3+3*2-1

a=?

a=9-4+3*2-1

a=9-4+6-1

a=5+6-1 a=11-

1 a=10

A=2*3+4%5-3/2+6

A=6+4%5-3/2+6

A=6+4-3/2+6 A=6+4-

1+6

A=10-1+6

A=9+6 A=15

find m=?

m=-43||8&&0||-2 m=-

43||0||-2 m=1||-2

m=1

6.Functions, Function Definition And Use, Function call, Flow Of Execution, Function Prototypes,

Parameters And Arguments, Return statement, Arguments types, Modules

 FUNCTIONS:

 Function is a sub program which consists of set of instructions used to perform a specific task.

A large program is divided into basic building blocks calledfunction.

Need For Function:

• When the program is too complex and large they are divided into parts. Each part is separately coded

and combined into single program. Each subprogram is called asfunction.

• Debugging, Testing and maintenance becomes easy when the program is divided into subprograms.

• Functions are used to avoid rewriting same code again and again in aprogram.

• Function provides codere-usability

• The length of the program isreduced.

55 Types of function:

Functions can be classified into two categories:

i) user definedfunction

ii) Built infunction

i) Built infunctions

• Built in functions are the functions that are already created and stored inpython.

• These built in functions are always available for usage and accessed by a programmer. It cannot be

modified.

Built in function Description

63

>>>max(3,4) 4 # returns largest element

>>>min(3,4) 3 # returns smallest element

>>>len("hello") 5 #returns length of an object

>>>range(2,8,1) [2,

3, 4, 5, 6, 7]

#returns range of given values

>>>round(7.8) 8.0 #returns rounded integer of the given number

>>>chr(5)

\x05'

#returns a character (a string) from an integer

>>>float(5)

5.0

#returns float number from string or integer

>>>int(5.0) 5 # returns integer from string or float

>>>pow(3,5) 243 #returns power of given number

>>>type(5.6)

<type 'float'>

#returns data type of object to which it belongs

>>>t=tuple([4,6.0,7])

(4, 6.0, 7)

to create tuple of items from list

>>>print("good morning")

Good morning

displays the given object

>>>input("enter name:")

enter name : George

reads and returns the given string

ii) User DefinedFunctions:

• User defined functions are the functions that programmers create for their requirement anduse.

• These functions can then be combined to form modulewhich can be used in other programs by

importing them.

• Advantages of user defined functions:

 Programmers working on large project can divide the workload by making different functions.

 If repeated code occurs in a program, function can be used to include those codes and execute

when needed by calling thatfunction.

 Function definition: (Sub program)

• def keyword is used to define afunction.

• Give the function name after def keyword followed by parentheses in which arguments aregiven.

• End with colon(:)

• Inside the function add the program statements to beexecuted

• End with or without returnstatement

64

Syntax:

def fun_name(Parameter1,Parameter2…Parameter n): statement1

statement2…

statement n return[expression]

Example:

def my_add(a,b):

c=a+b

return c

Function Calling: (Main Function)

 Once we have defined a function, we can call it from another function, program or even the

Pythonprompt.

 To call a function we simply type the function name with appropriate arguments.

Example:

x=5 y=4

my_add(x,y)

 Flow of Execution:

• The order in which statements are executed is called the flow ofexecution

• Execution always begins at the first statement of theprogram.

• Statements are executed one at a time, in order, from top tobottom.

• Function definitions do not alter the flow of execution of the program, but remember that statements

inside the function are not executed until the function iscalled.

• Function calls are like a bypass in the flow of execution. Instead of going to the next statement, the

flow jumps to the first line of the called function, executes all the statements there, and then comes

back to pick up where it leftoff.

Note: When you read a program, don’t read from top to bottom. Instead, follow the flow of execution. This

means that you will read the def statements as you are scanning from top to bottom, but you should skip the

statements of the function definition until you reach a point where that function is called.

 FunctionPrototypes:

i. Function without arguments and without returntype

ii. Function with arguments and without return type

iii. Function without arguments and with returntype

iv. Function with arguments and with returntype

65

i) Function without arguments and without returntype

o In this type no argument is passed through the function call and no output is return to
mainfunction

o The sub function will read the input values perform the operation and print the result in the
sameblock

ii) Function with arguments and without returntype

o Arguments are passed through the function call but output is not return to the mainfunction

iii) Function without arguments and with returntype

o In this type no argument is passed through the function call but output is return to the
mainfunction.

iv) Function with arguments and with returntype

o In this type arguments are passed through the function call and output is return to the
mainfunction

Without Return Type

Withoutargument With argument

def add():

a=int(input("enter a"))

b=int(input("enter b"))

c=a+b

print(c)

add()

def add(a,b):

c=a+b

print(c)

a=int(input("enter a"))

b=int(input("enter b")) add(a,b)

OUTPUT: OUTPUT:

enter a5 enter a5

enter b 10 enter b 10

15 15

With return type

Withoutargument With argument

def add(): defadd(a,b):

c=a+b

returnc

a=int(input("enter a"))

b=int(input("enter b")) c=add(a,b)

print(c)

a=int(input("enter a"))

b=int(input("enterb"))

c=a+b

return c

c=add()

print(c)

OUTPUT: OUTPUT:

enter a5 enter a5

enter b 10 enter b 10

15 15

66

 Parameters And Arguments:

56 Parameters:

 Parameters are the value(s) provided in the parenthesis when we write function header.

 These are the values required by function towork.

 If there is more than one value required, all of them will be listed in parameter list separated

bycomma.

 Example: defmy_add(a,b):

57 Arguments :

 Arguments are the value(s) provided in function call/invokestatement.

 List of arguments should be supplied in same way as parameters arelisted.

 Bounding of parameters to arguments is done 1:1, and so there should be same number and type of

arguments as mentioned in parameterlist.

 Example:my_add(x,y)

 RETURN STATEMENT:

 The return statement is used to exit a function and go back to the place from where it wascalled.

 If the return statement has no arguments, then it will not return any values. But exits fromfunction.

Syntax:

return[expression]

Example:

defmy_add(a,b): c=a+b

return c x=5

y=4 print(my_add(x,y))

Output:

58 ARGUMENTSTYPES:

4. RequiredArguments

5. KeywordArguments

6. Default Arguments

7. Variable lengthArguments

 Required Arguments:Thenumberof arguments in the function call should match

exactly with the functiondefinition.

defmy_details(name, age): print("Name: ",

name)

print("Age ", age) return

my_details("george",56)

67

59 Output:

 Keyword Arguments:

Python interpreter is able to use the keywords provided to match the values with parameters even though if they are

arranged in out of order.

60 Output:

 DefaultArguments:

Assumes a default value if a value is not provided in the function call for that argument. defmy_details(

name, age=40):

print("Name: ", name)

print("Age ", age) return

my_details(name="george")

61 Output:

 Variable lengthArguments

If we want to specify more arguments than specified while defining the function, variable length arguments are

used. It is denoted by * symbol before parameter.

defmy_details(*name):

print(*name)

my_details("rajan","rahul","micheal", ärjun")

62 Output:

7.MODULES:

 A module is a file containing Python definitions ,functions, statements and instructions.

 Standard library of Python is extended asmodules.

 To use these modules in a program, programmer needs to import the module.

rajanrahulmichealärjun

Name:
georgeAge40

Name:
georgeAge56

Name:
georgeAge56

defmy_details(name, age):
print("Name: ", name)

print("Age ", age) return

my_details(age=56,name="george")

68

 Once we import a module, we can reference or use to any of its functions or variables in ourcode.

oThere is large number of standard modules also available in python. oStandard modules can be
imported the same way as we import our user- defined modules.

oEvery module contains many function.

oTo access one of the function , you have to specify the name of the module andthe
name of the function separated by dot .This format is called dot notation.

63 Syntax:

import

module_namemodule_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:

import math x=math.sqrt(25)

print(x)

import calx=cal.add(5,4)

print(x)

Built-in python modules are,

1.math– mathematical functions:

some of the functions in math module is,

math.ceil(x) - Return the ceiling of x, the smallest integer greater

69

than or equal to x

math.floor(x) - Return the floor of x, the largest integer less than or equal to x.

math.factorial(x)-Return x factorial.

math.gcd(x,y)-Return the greatest common divisor of the integers a andb

math.sqrt(x)- Return the square root of x

math.pi - The mathematical constant π = 3.141592

math.e – returns The mathematical constant e = 2.718281

2 .random-Generate pseudo-random numbers

random.randrange(stop) random.randrange(start, stop[,

step]) random.uniform(a, b)

-Return a random floating point number

Program for SWAPPING(Exchanging)of

values

Output

a = int(input("Enter a value ")) b =

int(input("Enter b value")) c = a

a = b

b =c

print("a=",a,"b=",b,)

Enter a value 5

Enter b value 8 a=8

b=5

Program to find distance between twopoints Output

import math x1=int(input("enter

x1")) y1=int(input("enter y1"))

x2=int(input("enter x2"))

y2=int(input("enter y2"))

distance =math.sqrt((x2-x1)**2)+((y2- y1)**2)

print(distance)

enter x17

enter y16

enter x25

enter y27

2.5

Program to circulate n numbers Output:

a=list(input("enter the list")) enter the list '1234'

print(a) ['1', '2', '3', '4']

for i in range(1,len(a),1): ['2', '3', '4', '1']

print(a[i:]+a[:i]) ['3', '4', '1', '2']

 ['4', '1', '2', '3']

8.ILLUSTRATIVE PROGRAMS

https://docs.python.org/3/library/random.html#module-random

70

 2marks:

1. What is Python?

 Python is a general-purpose interpreted, interactive, object-oriented, and high-

 level programming language.

2. Enlist some features of python.

 Easy-to-learn.

 Easy-to-maintain.

 Portable

 Interpreted

 Extensible

 Free and Open Source

 High Level Language

3. What is IDLE?

 Integrated Development Learning Environment (IDLE) is a graphical user

interface which is completely written in Python. It is bundled with the default implementation of the

python language and also comes with optional part of the Python packaging.

4. Differentiate between interactive and script mode.

Interactive mode Script mode

A way of using the Python interpreter by

typing commands and expressions at the prompt.

A way of using the Python interpreter to read and

execute statements in a script.

Cant save and edit the code Can save and edit the code

we cannot save the statements for further use and we

have to retype

all the statements to re-run them.

we can save the statements for further use and we no

need to retype

all the statements to re-run them.

We can see the results immediately. We cant see the code immediately.

5. What are keywords? Give examples.

 Keywords are the reserved words in Python.

 We cannot use a keyword as variable name, function name or any other identifier.

 They are used to define the syntax and structure of the Python language.

 Keywords are case sensitive.

6. What is a tuple?

 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.

 A tuple is an immutable list.i.e. once a tuple has been created, you can't add elements to a tuple or

remove elements from the tuple.

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function

71

7. Outline the logic to swap the contents of two identifiers without using third variable.

Swap two numbers Output:

a=2;b=3

print(a,b) (2, 3)

a = a+b (3, 2)

b= a-b >>>

a= a-b

print(a,b)

8. State about logical operators available in python with example.

Logical operators are the and, or, not operators.

64 Example Output

65

a = True a and b is False

b = False a or b is True

print('a and b is',a and b) not a is False

print('a or b is',a or b)

print('not a is',not a)

9. What are the needs used for Function?

• When the program is too complex and large they are divided into parts. Each part is separately coded

and combined into single program. Each subprogram is called as function.

• Debugging, Testing and maintenance becomes easy when the program is divided into subprograms.

• Functions are used to avoid rewriting same code again and again in a program.

• Function provides code re-usability

• The length of the program is reduced.

10. What is return statement?

 The return statement is used to exit a function and go back to the place from

 where it was called. If the return statement has no arguments, then it will

not return any

 values. But exits from function.

 Syntax:

return[expression]

72

11. What are the types of arguments?

 RequiredArguments

 KeywordArguments

 Default Arguments

 Variable lengthArguments

12. Define a module.

 A module is a file containing Python definitions, functions, statements and

 instructions. Standard library of Python is extended as modules. To use these

 modules in a program, programmer needs to import the module.

13. What is meant by interpreter?

An interpreter is a computer program that executes instructions written in a programming language. It

can either execute the source code directly or translate the source code in a first step into a more efficient

representation and executes this code.

14. What is a local variable?

A variable defined inside a function. A local variable can only be used inside its function.

15. What is meant by traceback?
A list of the functions that tells us what program file the error occurred in, and what line, and what

functions were executing at the time. It also shows the line of code that caused the error.

UNIT III
CONTROL FLOW, FUNCTIONS

73

Conditionals: Boolean values and operators, conditional (if), alternative (if-else),chained conditional

(if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters,

scope: local and global, composition ,recursion; Strings: string slices, immutability, string functions and

methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum the array

of numbers, linear search, binary search. \
1)Explain about conditional statements with suitable examples.

 Conditional if

 Alternative if… else

 Chained if…elif…else

 Nested if….else

Conditional (if):

conditional (if) is used to test a condition, if the condition is true the statements inside if will be

executed.
syntax:

Flowchart:

Program to provide bonus mark if the category is output

sports

m=eval(input(“enter ur mark out of 100”)) enter ur mark out of 100

c=input(“enter ur categery G/S”) 85

if(c==”S”): enter ur categery G/S

m=m+5 S

print(“mark is”,m) mark is 90

Alternative (if-else):
In the alternative the condition must be true or false. In this else statement can be combined with if

statement. The else statement contains the block of code that executes when the condition is false. If the

74

condition is true statements inside the if get executed otherwise else part gets executed. The alternatives are
called branches, because they are branches in the flow of execution.

syntax:

Flowchart:

Examples:
1. odd or even number
2. positive or negative number
3. leap year or not

Odd or even number Output

n=eval(input("enter a number")) enter a number4

if(n%2==0): even number

print("even number")

e

lse:

print("odd number")

positive or negative number Output

n=eval(input("enter a number")) enter a number8

if(n>=0): positive number

print("positive number")

e

lse:

print("negative number")

leap year or not Output

y=eval(input("enter a year")) enter a year2000

if(y%4==0): leap year

print("leap year")

e

lse:

print("not leap year")

75

Chained conditionals(if-elif-else)

 The elif is short for else if.

 This is used to check more than one condition.

 If the condition1 is False, it checks the condition2 of the elif block. If all the conditions are

False, then the else part is executed.

 Among the several if...elif...else part, only one part is executed according to the condition.

 The if block can have only one else block. But it can have multiple elif blocks.

 The way to express a computation like that is a chained conditional.

syntax:

Flowchart:

Example:

76

1. student mark system
2. traffic light system

student mark system Output

mark=eval(input("enter ur mark:")) enter ur mark:78

if(mark>=90): grade:B

print("grade:S")

elif(mark>=80):

print("grade:A")

elif(mark>=70):

print("grade:B")

elif(mark>=50):

print("grade:C")

else:

print("fail")

traffic light system Output

colour=input("enter colour of light:") enter colour of light:green

if(colour=="green"): GO

print("GO")

elif(colour=="yellow"):

print("GET READY")

else:

print("STOP")

Nested conditionals

One conditional can also be nested within another. Any number of condition can be nested inside

one another. In this, if the condition is true it checks another if condition1. If both the conditions are true

statement1 get executed otherwise statement2 get execute. if the condition is false statement3 gets

executed

Syntax

77

Flowchart:

Example:

1. greatest of three numbers
2. positive negative or zero

greatest of three numbers output

a=eval(input(“enter the value of a”)) enter the value of a 9

b=eval(input(“enter the value of b”)) enter the value of a 1

c=eval(input(“enter the value of c”)) enter the value of a 8

if(a>b): the greatest no is 9

if(a>c):

print(“the greatest no is”,a)

else:

print(“the greatest no is”,c)

 else:

if(b>c):

print(“the greatest no is”,b)

else:

print(“the greatest no is”,c)

positive negative or zero output

n=eval(input("enter the value of n:")) enter the value of n:-9

if(n==0): the number is negative

print("the number is zero")

else:

if(n>0):

print("the number is positive")

else:

print("the number is negative")

78

2)Explain about iteration or control

statements.

  state

  while

  for

  break

  continue

  pass

State:

Transition from one process to another process under specified condition with in a time is called

state.
While loop:

While loop statement in Python is used to repeatedly executes set of statement as long as a
given condition is true.

In while loop, test expression is checked first. The body of the loop is entered only if the test

expression is True. After one iteration, the test expression is checked again. This process continues

until the test expression evaluates to False.
In Python, the body of the while loop is determined through indentation.

The statements inside the while start with indentation and the first unintended line marks the

end.

Syntax:

Flow chart:

79

Examples:
1. program to find sum of n numbers:
2. program to find factorial of a number
3. program to find sum of digits of a number:
4. Program to Reverse the given number:
5. Program to find number is Armstrong number or not
6. Program to check the number is palindrome or not

Sum of n numbers: output

n=eval(input("enter n")) enter n

i=1 10

sum=0 55

while(i<=n):

sum=sum+i

i=i+1

print(sum)

Factorial of a numbers: output

n=eval(input("enter n")) enter n

i=1 5

fact=1 120

while(i<=n):

fact=fact*i

i=i+1

print(fact)

Sum of digits of a number: output

n=eval(input("enter a number")) enter a number

sum=0 123

while(n>0): 6

a=n%10

sum=sum+a

n=n//10

print(sum)

80

Reverse the given number: output

n=eval(input("enter a number")) enter a number

sum=0 123

while(n>0): 321

a=n%10

sum=sum*10+a

n=n//10

print(sum)

Armstrong number or not output

n=eval(input("enter a number")) enter a number153

org=n The given number is Armstrong number

sum=0

while(n>0):

a=n%10

sum=sum+a*a*a

n=n//10

if(sum==org):

print("The given number is Armstrong

number")

else:

print("The given number is not

Armstrong number")

Palindrome or not output

n=eval(input("enter a number")) enter a number121

org=n The given no is palindrome

sum=0

while(n>0):

a=n%10

sum=sum*10+a

n=n//10

if(sum==org):

print("The given no is palindrome")

else:

print("The given no is not palindrome")

81

For loop:

 for in range:

 We can generate a sequence of numbers using range() function. range(10)
will generate numbers from 0 to 9 (10 numbers).

 In range function have to define the start, stop and step size

as range(start,stop,step size). step size defaults to 1 if not provided.

syntax

Flowchart:

For in sequence

 The for loop in Python is used to iterate over a sequence (list, tuple, string). Iterating over a

sequence is called traversal. Loop continues until we reach the last element in the sequence.
 The body of for loop is separated from the rest of the code using indentation.

Sequence can be a list, strings or tuples

s

.no sequences example output

 R

1

. For loop in string for i in "Ramu": A

 print(i) M

 U

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/string

82

 2

2

. For loop in list for i in [2,3,5,6,9]: 3

 print(i) 5

 6

 9

 for i in (2,3,1): 2

3

. For loop in tuple print(i) 3

 1

Exam

ples:

1. Program to print fibonacci series.
2. check the no is prime or not

Fibonacci series output

a=0 Enter the number of terms: 6

b=1 Fibonacci Series:

n=eval(input("Enter the number of terms: ")) 0 1

print("Fibonacci Series: ") 1

print(a,b) 2

for i in range(1,n,1): 3

c=a+b 5

print(c) 8

a=b

b=c

check the no is prime or not output

n=eval(input("enter a number")) enter a no:7

for i in range(2,n): The num is a prime number.

if(n%i==0):

print("The num is not a prime")

break

else:

print("The num is a prime number.")

83

3.Loop Control Structures
BREAK

 Break statements can alter the flow of a loop.

 It terminates the current

 loop and executes the remaining statement outside the loop.

 If the loop has else statement, that will also gets terminated and come out of the loop completely.

Syntax:

break

Flowchart

example Output

for i in "welcome": w

if(i=="c"): e

break l

print(i)

84

CONTINUE

It terminates the current iteration and transfer the control to the next iteration in the loop.
Syntax: Continue

Flowchart

Example: Output

for i in "welcome": w

if(i=="c"): e

continue l

print(i) o

 m

 e
PASS

 It is used when a statement is required syntactically but you don’t want any code to execute.

 It is a null statement, nothing happens when it is executed.

85

Syntax:

pass
 break

 Example Output

 for i in “welcome”: w

 if (i == “c”): e

 pass l

 print(i) c

 o

 m

 e

 Difference between break and continue

 break continue

 It terminates the current loop and It terminates the current iteration and

 executes the remaining statement outside transfer the control to the next iteration in

 the loop. the loop.

 syntax: syntax:

 break continue

 for i in "welcome": for i in "welcome":

if(i=="c"

): if(i=="c"):

 break continue

 print(i) print(i)

 w w

 e e

 l l

 o

 m

 e

 else statement in loops:

 else in for loop:
 If else statement is used in for loop, the else statement is executed when the loop has reached the

limit.

 The statements inside for loop and statements inside else will also execute.

86

example output

for i in range(1,6): 1

print(i) 2

else: 3

print("the number greater than 6") 4

 5 the number greater than 6

else in while loop:

 If else statement is used within while loop , the else part will be executed when the condition
become false.

 The statements inside for loop and statements inside else will also execute.

Program output

i=1 1

while(i<=5): 2

print(i) 3

i=i+1 4

else: 5

print("the number greater than 5") the number greater than 5

4)Explain about Fruitful Function


 Fruitful function

 Void function

 Return values

 Parameters

 Local and global scope

 Function composition

 Recursion

A function that returns a value is called fruitful function.
Example:

Root=sqrt (25)
Example:
def add():

a=10
b=20
c=a+b
return c

c=add()
print(c)

87

Void Function
A function that perform action but don’t return any value.

Example:
print(“Hello”)

Example:
def add():

a=10
b=20

 c=a+b
print(c)

add()

Return values:
return keywords are used to return the values from the function.
example:
return a – return 1 variable
return a,b– return 2 variables
return a+b– return expression
return 8– return value
PARAMETERS / ARGUMENTS(refer 2nd unit)

Local and Global Scope

Global Scope

 The scope of a variable refers to the places that you can see or access a variable.

 A variable with global scope can be used anywhere in the program.

 It can be created by defining a variable outside the function.

 Example output

a=50

def add():

Global

Variable

b=20

70

 c=a+b

 print©

Local

Variable

def sub():

 b=30

 c=a-b 20

 print©

print(a) 50

88

Local Scope A variable with local scope can be used only within the function .

 Example output

 def add():

 b=20

c=a+b

70

 Local

Variable

print©

 def sub():

 b=30 20

c=a-b

 Local

Variable

print©

 print(a) error

 print(b) error

 Function Composition:

 Function Composition is the ability to call one function from within another function

 It is a way of combining functions such that the result of each function is passed as the argument
of the next function.

 In other words the output of one function is given as the input of another function is known as
function composition.

find sum and average using function output

composition

def sum(a,b): enter a:4

sum=a+b enter b:8

return sum the avg is 6.0

def avg(sum):

avg=sum/2

return avg

a=eval(input("enter a:"))

b=eval(input("enter b:"))

sum=sum(a,b)

avg=avg(sum)

print("the avg is",avg)

Recursion

A function calling itself till it reaches the base value - stop point of function call. Example:

factorial of a given number using recursion

89

Factorial of n Output

def fact(n): enter no. to find fact:5

 if(n==1): Fact is 120

 return 1

 else:

 return n*fact(n-1)

n=eval(input("enter no.

to

find

fact:"))

fact=fact(n)

print("Fact is",fact)

Explan

ation

Examples:
1. sum of n numbers using recursion
2. exponential of a number using recursion

Sum of n numbers Output

def sum(n): enter no. to find sum:10

if(n==1): Fact is 55

return 1

else:

return n*sum(n-1)

n=eval(input("enter no.

t

o

find

sum:"))

sum=sum(n)

print("Fact is",sum)

90

5)Explain about Strings and its operation:

 String is defined as sequence of characters represented in quotation marks

(either single quotes (‘) or double quotes (“).
 An individual character in a string is accessed using a index.

 The index should always be an integer (positive or negative).

 A index starts from 0 to n-1.

 Strings are immutable i.e. the contents of the string cannot be changed after it is created.

 Python will get the input at run time by default as a string.

 Python does not support character data type. A string of size 1 can be treated as characters.

1. single quotes (' ')
2. double quotes (" ")
3. triple quotes(“”” “”””)

Operations on string:

1. Indexing
2. Slicing
3. Concatenation
4. Repetitions
5. Member ship

 >>>a=”HELLO” Positive indexing helps in accessing

indexing >>>print(a[0]) the string from the beginning

 >>>H Negative subscript helps in accessing

 >>>print(a[-1]) the string from the end.

 >>>O

 Print[0:4] – HELL The Slice[start : stop] operator extracts

Slicing: Print[:3] – HEL sub string from the strings.

 Print[0:]- HELLO A segment of a string is called a slice.

 a=”save” The + operator joins the text on both

Concatenatio

n b=”earth” sides of the operator.

 >>>print(a+b)

 Save earth

 a=”panimalar ” The * operator repeats the string on the

Repetitions: >>>print(3*a) left hand side times the value on right

91

 panimalarpanimalar hand side.

 panimalar

Membership: >>> s="good morning" Using membership operators to check a

 >>>"m" in s particular character is in string or not.

 True Returns true if present

 >>> "a" not in s

 True

 String slices:

 A part of a string is called string slices.

 The process of extracting a sub string from a string is called slicing.

 Print[0:4] – HELL The Slice[n : m] operator extracts sub

Slicing:

Print[:3] – HEL string from the strings.

a=”HELLO

” Print[0:]- HELLO A segment of a string is called a slice.

Immutability:

 Python strings are “immutable” as they cannot be changed after they are created.

 Therefore [] operator cannot be used on the left side of an assignment.

operations Example

ou

tput

element assignment a="PYTHON" TypeError: 'str' object does

 a[0]='x'

no

t

suppor

t

elem

ent

assignme

nt

element deletion a=”PYTHON”

TypeError

:

'

str'

obje

ct

 del a[0]

do

esn't

supp

ort

elem

ent

de

letion

delete a string a=”PYTHON” NameError: name 'my_string'

del a

print(a)

is not

defined

92

string built in functions and methods:
A method is a function that “belongs to” an object.

Syntax to access the method

Stringname.method()

a=”happy birthday”
here, a is the string name.

 syntax example

descripti

on

1 a.capitalize() >>> a.capitalize() capitalize only the first letter

 ' Happy birthday’

in a

string

2 a.upper() >>> a.upper() change string to upper case

 'HAPPY BIRTHDAY’

3 a.lower() >>> a.lower() change string to lower case

 ' happy birthday’

4 a.title() >>> a.title() change string to title case i.e.

 ' Happy Birthday ' first characters of all the

 words are capitalized.

5 a.swapcase() >>> a.swapcase() change lowercase characters

 'HAPPY BIRTHDAY' to uppercase and vice versa

6 a.split() >>> a.split() returns a list of words

 ['happy', 'birthday'] separated by space

7

a.center(width,”fillcha

r >>>a.center(19,”*”) pads the string with the

 ”) '***happy birthday***'

spe

cified

“fillchar”

till

t

he

length is equal to

“width”

8 a.count(substring) >>> a.count('happy')

ret

urns

t

he

nu

mber

o

f

 1 occurences of substring

9 a.replace(old,new) >>>a.replace('happy',

rep

lace

a

ll

o

ld

substrin

gs

 'wishyou happy') with new substrings

 'wishyou happy

 birthday'

1

0 a.join(b) >>> b="happy" returns a string concatenated

 >>> a="-" with the elements of an

 >>> a.join(b) iterable. (Here “a” is the

 'h-a-p-p-y'

iter

able)

1

1 a.isupper() >>> a.isupper() checks whether all the case-

 False based characters (letters) of

93

 the string are uppercase.

1

2 a.islower() >>> a.islower() checks whether all the case-

 True based characters (letters) of

 the string are lowercase.

1

3 a.isalpha() >>> a.isalpha()

checks

whether

the

string

 False

con

sists

o

f

alphabe

tic

characters

only.

94

String modules:
 A module is a file containing Python definitions, functions, statements.

 Standard library of Python is extended as modules.

 To use these modules in a program, programmer needs to import the module.

 Once we import a module, we can reference or use to any of its functions or variables in our code.

 There is large number of standard modules also available in python.

 Standard modules can be imported the same way as we import our user-defined modules.

Syntax:
import module_name

Example output

import string

print(string.punctuation) !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

print(string.digits) 0123456789

print(string.printable) 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJ

print(string.capwords("happ KLMNOPQRSTUVWXYZ!"#$%&'()*+,-

y birthday")) ./:;<=>?@[\]^_`{|}~

print(string.hexdigits) Happy Birthday

print(string.octdigits) 0123456789abcdefABCDEF

 01234567

Escape sequences in string

Escape Description example

Seque

nce

\n new line >>> print("hai \nhello")

 hai

 hello

\\ prints Backslash (\) >>> print("hai\\hello")

 hai\hello

\'

prints Single quote

(') >>> print("'")

 '

\" prints Double quote >>>print("\"")

 (") "

\t prints tab sapace >>>print(“hai\thello”)

 hai hello

\a ASCII Bell (BEL) >>>print(“\a”)

95

6) Explain about Array:

Array is a collection of similar elements. Elements in the array can be accessed by index. Index
starts with 0. Array can be handled in python by module named array.

To create array have to import array module in the program.
Syntax :

import array

Syntax to create array:
Array_name = module_name.function_name(‘datatype’,[elements])

example:
a=array.array(‘i’,[1,2,3,4])

a- array name

array- module name
i- integer datatype

Example

Program to find sum of Output

array elements

import array 10

sum=0

a=array.array('i',[1,2,3,4])

for i in a:

sum=sum+i

print(sum)

Convert list into array:
fromlist() function is used to append list to array. Here the list is act like a array.

Syntax:

arrayname.fromlist(list_name)

Example
program to convert list Output
into array

import array 35

sum=0

l=[6,7,8,9,5]

a=array.array('i',

[])

a.fromlist(l)

for i in a:

 sum=sum+i

print(sum)

96

Methods in

array

 a=[2,3,4,5]

 Syntax example

Descri

ption

1 array(data

t

ype,

array(‘i’,[2,3,4,

5]) This function is used to create

 value list) an array with data type and

 value list specified in its

argum

ents.

2 append() >>>a.append(6) This method is used to add the

 [2,3,4,5,6]

at the end of the

array.

3

insert(index,eleme

nt

>>>a.insert(2,1

0) This method is used to add the

) [2,3,10,5,6] value at the position specified in

its

argument.

4 pop(index) >>>a.pop(1)

T

his

fun

ction

remov

es

t

he

 [2,10,5,6]

eleme

nt

a

t

t

he

posit

ion

 mentioned in its argument, and

returns

it.

5

index(elem

ent) >>>a.index(2) This function returns the index

 0

of

value

6 reverse() >>>a.reverse()

T

his

fun

ction

revers

es

t

he

 [6,5,10,2]

a

rray.

7 count() a.count() This is used to count number of

97

7.ILLUSTRATIVE

PROGRAMS:

 Square root using newtons method: Output:

 def newtonsqrt(n): enter number to find Sqrt: 9

 root=n/2 3.0

 for i in range(10):

 root=(root+n/root)/2

 print(root)

 n=eval(input("enter number to find Sqrt: "))

 newtonsqrt(n)

 GCD of two numbers output

 n1=int(input("Enter a number1:")) Enter a number1:8

 n2=int(input("Enter a number2:")) Enter a number2:24

 for i in range(1,n1+1): 8

 if(n1%i==0 and n2%i==0):

 gcd=i

 print(gcd)

 Exponent of number Output:

 def power(base,exp): Enter base: 2

 if(exp==1): Enter exponential value:3

 return(base) Result: 8

 else:

 return(base*power(base,exp-1))

 base=int(input("Enter base: "))

 exp=int(input("Enter exponential value:"))

 result=power(base,exp)

 print("Result:",result)

 sum of array elements: output:

 a=[2,3,4,5,6,7,8] the sum is 35

 sum=0

 for i in a:

 sum=sum+i

 print("the sum is",sum)

 Linear search output

 a=[20,30,40,50,60,70,89] [20, 30, 40, 50, 60, 70, 89]

 print(a) enter a element to search:30

 search=eval(input("enter a element to search:")) element found at 2

 for i in range(0,len(a),1):

 if(search==a[i]):

 print("element found at",i+1)

 break

 else:

 print("not found")

98

Binary search

 output

a=[20, 30, 40, 50, 60, 70, 89]

[20, 30, 40, 50, 60,

70, 89]

print(a)

enter a element to

search:30

search=eval(input("enter a element to search:")) element found at 2

start=0

stop=len(a)-1

while(start<=stop):

mid=(start+stop)//2

if(search==a[mid]):

print("elemrnt found at",mid+1)

break

elif(search<a[mid]):

stop=mid-1

else:

start=mid+1

else:

print("not found")

99

2 marks:

1. What is a Boolean value?
 Boolean data type have two values. They are 0 and 1.

 0 represents False

 1 represents True

 True and False are keyword.

Example:
>>> 3==5

False
>>> 6==6

True
>>> True+True

2

>>> False+True

1
>>> False*True

0

2. Difference between break and continue.

break continue

It terminates the current loop and It terminates the current iteration and

executes the remaining statement outside transfer the control to the next iteration in

the loop. the loop.

syntax: syntax:

break continue

for i in "welcome": for i in "welcome":

if(i=="c"

): if(i=="c"):

break continue

print(i) print(i)

w w

e e

l l

 o

 m

 e

100

3. Write a Python program to accept two numbers, multiply them and print the result.

number1 = int(input("Enter first number: "))

number2 = int(input("Enter second number: "))

mul = number1 * number2

print("Multiplication of given two numbers is: ", mul)

4. Write a Python program to accept two numbers, find the greatest and print the result.

 number1 = int(input("Enter first number: "))

number2 = int(input("Enter second number: "))

if(number1>number2):

 print('number1 is greater',number1)

else:

 print('number2 is greater',number2)

5. Define recursive function.

 Recursion is a way of programming or coding a problem, in which a function calls

itself one or more times in its body. Usually, it is returning the return value of this function call. If a

function definition fulfils the condition of recursion, we call this function a recursive function.

Example:

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n-1)

6. Write a program to find sum of n numbers:

 n=eval(input("enter n")) enter n

 i=1 10

 sum=0 55

 while(i<=n):

 sum=sum+i

 i=i+1

 print(sum)

7. What is the purpose of pass statement?
Using a pass statement is an explicit way of telling the interpreter to do nothing.

 It is used when a statement is required syntactically but you don’t want any code to execute.

 It is a null statement, nothing happens when it is executed.

88

Syntax:
pass

 break

 Example Output

 for i in “welcome”: w

 if (i == “c”): e

 pass l

 print(i) c

 o

 m

 e

8. Compare string and string slices.
A string is a sequence of character.

 Eg: fruit = ‘banana’

String Slices :

A segment of a string is called string slice, selecting a slice is similar to selecting a character.

Eg: >>> s ='Monty Python'
>>> print s[0:5]
Monty
>>> print s[6:12]
Python

9. Explain global and local scope.
The scope of a variable refers to the places that we can see or access a variable. If we define a

variable on the top of the script or module, the variable is called global variable. The variables that are

defined inside a class or function is called local variable.
Eg:

def my_local():

a=10

print(“This is local variable”)

Eg:

a=10

def my_global():

print(“This is global variable”)

10. Mention a few string functions.
s.captilize() – Capitalizes first character of

string

s.count(sub) – Count number of occurrences

of string

s.lower() – converts a string to lower case

s.split() – returns a list of words in string

89

89

UNIT IV LISTS, TUPLES, DICTIONARIES

1. Insertion sort

Insertion sort is an elementary sorting algorithm that sorts one element at a

time. Most humans, when sorting a deck of cards, will use a strategy similar to

insertion sort. The algorithm takes an element from the list and places it in the

correct location in the list. This process is repeated until there are no more

unsorted items in the list.

Example:

66

67 Program:

a=list()

n=int(input("Enter

size of list")) for i in

range(n):

a.append(int(input("Enter list

elements"))) print("Before sorting",a)

for i in

range(1,n):

key=a[i]

j=i-1

while j>=0 and

key<a[j]:

a[j+1]=a[j]

j-=1

a[j+1]=key

print("After sorting(using insertion sort)",a)

90

Output

Enter size

of list7 Enter

listelements4

Enter

listelements33 Enter

list elements6 Enter

listelements22 Enter

list elements6 Enter

list elements-9

Enter list

elements-2

Before sorting [4, 33, 6, 22, 6, -9, -2]

After sorting(using insertion sort) [-9, -2, 4, 6, 6, 22, 33]

2. Selection Sort

The selection sort algorithm starts by finding the minimum value in the

array and moving it to the first position. This step is then repeated for the second
lowest value, then the third, and so on until the array is sorted.

Example

Program

a=list()

n=int(input("Enter

size of list")) for i in

range(n):

a.append(int(input("Enter list

elements"))) print("List before

sorting",a)

91

for i in

range(0,n):

j=i+1

for j in range(j,

n): if a[i]>

a[j]:

temp=a[i

]

a[i]=a[j]

a[j]=tem

p

print("Sorted list(using Selection Sort)=",a)

Output:

Enter size

of list5 Enter list

elements12 Enter

list elements-5

Enter list

elements4 Enter

list elements48

Enter list

elements98

List before sorting [12, -5, 4, 48, 98]

Sorted list(using Selection Sort)= [-5, 4, 12, 48, 98]

92

3. Quadratic Equation:

Formula :

ax2+bx+c = -b±√b2 – 4ac

Program 2a

import cmath

a = int(input("Enter the

coefficients a:"))

b=int(input("Enter the

coefficients b: "))

c = int(input("Enter the

coefficients c: "))

d = b**2-4*a*c # discriminant

x1 = (-b+cmath.sqrt((b**2)-(4*(a*c))))/(2*a)

x2 = (-b-cmath.sqrt((b**2)-(4*(a*c))))/(2*a)

print ("This equation has two solutions: ", x1, " or", x2)

Output

Enter the

coefficients a: 5

Enter the

coefficients b: 1 Enter the

coefficients c: 2

This equation has two solutions: (-0.1+0.6244997998398398j) or (-0.1-0.6244997998398398j)

Enter the

coefficients a: 1 Enter the

coefficients b: -5 Enter the

coefficients c: 6

This equation has two solutions: (3+0j) or (2+0j)

4. Merge sort

Merge sort works as follows:

a. Divide the unsorted list into n sublists, each containing 1 element (a list of 1 element

is considered sorted).

b. Repeatedly merge sublists to produce new sorted sublists until there is only 1 sublist

remaining. This will be the sorted list.

https://en.wikipedia.org/wiki/Merge_algorithm

93

Example

94

Program:

def merge(left,

right): result = []

i, j = 0, 0

while (i < len(left) and

j<len(right)): if left[i] <

right[j]:

result.append(left[i

]) i+= 1

else:

result.append(right[j

]) j+= 1

result=result+

left[i:]

result=result+right[j:]

return result

def

mergesort(list): if

len(list) < 2:

return list

middle = len(list)//2

left =

mergesort(list[:middle])

right =

mergesort(list[middle:])

return merge(left, right)

a=list()

n=int(input("Enter

size of list")) for i in

range(n):

a.append(int(input("Enter list

elements"))) print("Unsorted list is")

print(a);

print("Sorted list

is")

print(mergesort(a))

Output

Enter size

of list5 Enter list

elements21 Enter

list elements1

Enter list elements-

8 Enter list

elements14 Enter

list elements18

Unsorted list is [21, 1, -8, 14, 18]

Sorted list is [-8, 1, 14, 18, 21]

95

5. LIST

a. List is a sequence of values, which can be of different types. The values in list are called

"elements" or ''items''

b. Each elements in list is assigned a number called "position" or "index"

c. A list that contains no elements is called an empty list. They are created with empty

brackets[]

d. A list within another list is nested list

68 Creating a list :

The simplest way to create a new list is to enclose the elements in

square brackets ([]) [10,20,30,40]

[100, "python" , 8.02]

1. LIST OPERATIONS:

1. Concatenation of list

2. Repetition of list

Concatenation: the '+' operator concatenate list

>>> a = [1,2,3]

>>> b = [4,5,6]

>>> c = a+b

>>> Print (a*2) => [1,2,3,1,2,3]

Repetition: the '*' operator repeats a list a given number of times

>>> a = [1,2,3]

>>> b = [4,5,6]

>>> print (a*2)= [1,2,3,1,2,3]

96

2. List looping: (traversing a list)

1. Looping in a list is used to access every element in list

2."for loop" is used to traverse the

elements in list eg: mylist =

["python","problem",100,6.28]

for i in range (len

(mylist)): print

(mylist [i])

3. List Slices:

A subset of elements of list is called a

slice of list. Eq: n =

[1,2,3,4,5,6,7,8,9,10]

print (n[2:5])

print (n[-5])

print (n[5:])

print (n[:])

4. Aliasing and cloning:

 when more than one variables refers to the same objects or list, then it is called aliasing.

a= [5,10,50,100]

b=a

b[0] = 80

print ("original list", a) =

[5,10,50,100] print ("Aliasing

list", b) = [80,5,10,50,100]
 Here both a & b refers to the same list. Thus, any change made with one object will affect other,

since they are mutable objects.

 in general, it is safer to avoid aliasing when we are working with mutable objects

5. Cloning:

 Cloning creates a new list with same values under another name. Taking any slice of list create

new list.

 Any change made with one object will not affect others. the easiest way to clone a new list is to

use "slice operators"

a = [5,10,50,100]

b= a[:]

b[0] =

80

Print (" original list", a) =

[5,10,50,100] Print (" cloning

list", b) = [5,10,50,100]

97

69 List parameter:

 List can be passed as arguments to functions the list arguments are always passed by reference

only.

 Hence, if the functions modifies the list the caller also changes.

Eq: def head ():

del t[0]

>>> letters = ['a','b','c']

>>> head (letters)

>>> letters

['b','c']

In above,

The parameters 't' and the variable 'letters' or aliases for

the same objects An alternative way to write a function

that creates and return a new list Eq: def tail (t):

return t [1:]

>>> letters = ['a','b','c']

>>> result = tail (letters)

>>> result

['b','c']

In above,

The function leaves the original list unmodified and return all element in list except
first element

98

70

71

72

6. TUPLES:

A tuple is a sequence of value which can be of any type and they are indexed by
integers.

Values in tuple are enclosed in parentheses and separated by comma. The elements

in the tuple cannot be modified as in list (i.e) tuple are immutable objects

73 Creating tuple:

Tuple can be created by enclosing the element in parentheses

separated by comma t = ('a','b','c','d')

To create a tuple with a single element we have to include a final comma

>>> t = 'a',

>>> type (t)

< class 'tuple'>

Alternative way to create a tuple is the built-in function tuple which mean, it creates
an empty tuple

>>> t = tuple ()

>>> t

>>> ()
74 Accessing element in tuple:

If the argument in sequence, the result is a tuple with the elements of sequence.

>>>t= tuple('python')

>>> t

('p','y','t','h','o'

,'n') t =

('a','b',100,8.0

2)

print (t[0]) = 'a'

print (t[1:3]) = ('b', 100 , 8.02)
75 Deleting and updating tuple:

Tuple are immutable, hence the elements in tuple cannot be

updated / modified But we can delete the entire tuple by

using keyword 'del'

Eg 1: a = (' programming', 200, 16.54, 'c',

'd') #Try changing an element.

a[0] = 'python' <-------- Error,modifying not

possible print (a [0])

Eg: # Deletion of

tuple a =

('a','b','c','d')
del (a) :-------- delete entire tuple

99

del a [1] <--------- error,deleting one element in

tuple not possible Eg: # replacing one tuple with

another

a =

('a','b','c','d'

) t = ('A',) +

a[1:]

print (t) <------ ('a','b','c','d')

100

76 Tuple Assignment:

 Tuple assignment is often useful to swap any number of values

 the number of variables in left and right of assignment operators must be equal

 A single assignment to paralleling assign value to all elements of tuple is the major benefit of

tuple assignment

Eg: Tuple swapping in python
A= 100
B= 345
C= 450
print (" A & B:", A,"&",B)

Tuple assignments for two

variables A,B = B,A

print (" A&B after tuple assignment : ",A,"&",B)
Tuple assignment can be done for no of

variables A,B,C = C,A,B

print (" Tuple assignment for more variables:",

A,"&",B,"&",C) Output

A & B: 100 & 345
A&B after tuple assignment : 345 & 100
Tuple assignment for more variables: 450 & 345 & 100

77 Tuple as return value:

 Generally, function can only return one value but if the value is tuple the same as returning the

multiple value

 Function can return tuple as return value

Eg: # the value of quotient & remainder are returned as tuple
def mod_div

(x,y): quotient

= x/y remainder

= x%y

return quotient, remainder
Input the seconds & get the hours

minutes & second sec = 4234

minutes,seconds=

mod_div (sec,60)

hours,minutes=mod_div(minutes,

60)

print("%d seconds=%d hrs:: %d min:: %d

sec"%(sec,hours,minutes,seconds)) Output:

4234 seconds=1 hrs:: 10 min:: 34 sec

7. Histogram

def histogram(items): Output

 for n in items: **

 output = '' ***

 times = n ******

 while(times > 0): *****

 output += '*'

 times = times - 1

 print(output)

101

histogram([2, 3, 6, 5])

Two marks:

1. Write a program to create list with n values

a=list()

n=int(input("Enter the size of
list”))

for i in range (n):

a.append(int(input("Enter the list element")))

print("Created List=",a)

Output
Enter the size of list

5 Enter the list of

element20

Enter the list of

element30 Enter the list of

element78

Enter the list of

element12

Enter the list of

element65
Created List= [20, 30, 78, 12, 65]

2. What is dictionary?

A dictionary is an unordered set of key: value pair. In a list, the indices have to
be integers; in a dictionary they can be any type. A dictionary contains a
collection of indices, which are called keys, and a collection of values. Each key is
associated with a single value. The association of a key and a value is called a key-
value pair. Dictionary is created by enclosing with curly braces {}.

78 Eg:

>>>

dictionary={"RollNo":101,2:(1,2,3),"Name":"Ramesh",20:20.50,Loc":['Chenna

i']}

>>> dictionary

{'Name':'Ramesh', 'Loc':['Chennai'], 2:(1,2.3), 20: 20.0, 'RollNo': 101}

3. Write program to rotate values in the list.(counter-clock wise)

a=list()

n=int(input("Enter the number of list

elements")) for i in range (n):

a.append(int(input("Enter list element")))

rotate=int(input("Enter the rotation value(Give negative value

for counter cock-wise)"))

print("Created List=",a)

102

print("List rotated is",a[rotate:]+a[:rotate])

Output

Enter the number of list

elements 5 Enter list element 30

Enter list

element 98 Enter list

element 45 Enter list

element 49

Created List= [30, 98, 45, 49]

Enter the rotation value(Give negative value for counter cock-

wise)-2 List rotated in counter clockwise [45, 49, 30, 98]

4. What is data structure? List out the data structures used in Python

A data structure is a particular way of organizing and storing data in a computer so

that it can be accessed and modified efficiently.

Python data structures:-
1. List

2. Tuples

3. Dictionary

5. Compare all the three data structures in Python

6. Difference between list append and list extend

1. append() is a function adds a new element to the end of a list.

2. extend() is a function takes a list as an argument and appends all of the elements.

append() extend()

 List Tuples Dictionary

Mutable List is mutable Tuples are immutable Keys must be

 immutable. Values

may mutable

Indexing A positive integer is

used for indexing and

always starts with zero.

Reverse index is

supported.

A positive integer is

used for indexing and

always starts with zero.

Reverse index is

supported.

Indexing is done with

‘key’. Index may be of any

type. Values can be

accessed only through key

Declaratio
n

List=[05,’Ashok’,450] Tuple=(‘Sun’,’Mon’) Dictionary={“Key”:”value”
}

103

>>>a=[10,20,30]

>>>b=[40,50]

>>>a.append(b)

>>>print(a)

[10,20,30,[40,

50]]

>>>a=[10,20,30]

>>>b=[40,50]

>>>a.extend(b)

>>>print(a)

[10,20,30,40,

50]

104

7. What is mutability? Is tuple is mutable

In object-oriented and functional programming, an immutable

object (unchangeable object) is an object whose state cannot be modified

after it is created. This is in contrast to a mutable object (changeable

object), which can be modified after it is created.
Tuple is immutable.

8. Write a program to add or change elements in a dictionary.

>>> dictionary={"Roll No":101,2:(20.00,30),"Name":"Ramesh",20:200.00,
"Loc":['Chennai']}

>>> dictionary

{'Name': 'Ramesh', 'Loc': ['Chennai'], 2: (20.0, 30), 20: 200.0, 'Roll No': 101}

>>> dictionary['Roll No']=105
>>> dictionary

{'Name': 'Ramesh', 'Loc': ['Chennai'], 2: (20.0, 30), 20: 200.0, 'Roll No': 105}

9. How to convert a string to list of characters and words.

>>> str1=”Hello”

>>> list1=list(str1)

>>> list1

['H', 'e', 'l', 'l', 'o']

10. What is zip operation in tuples. Give an example.

Zip is a built-in function that takes two or more sequences and

returns a list of tuples where each tuple contains one element from each

sequence. This example zips a string and a list:
>>> s = 'abc'
>>> t = [0, 1, 2]

>>> zip(s, t)

<zip object at 0x7f7d0a9e7c48>

The result is a zip object that knows how to iterate through the

pairs. The most common use of zip is in a for loop:

>>> for pair in

zip(s, t):

print(pair)

('a', 0)

('b', 1)

('c', 2)

105

79 Unit - 5

1. File and its operation.

 File is a collection of record.

 A file stores related data, information, settings or commands in secondary storage

device like magnetic disk, magnetic tape, optical disk, flash memory.

80 File Type

1. Text file

2. Binary file

Text
file

Binary
file

Text file is a sequence of characters that

can be sequentially processed by a
computer in forward direction

Each line is terminated with a special

character called the E0L or end of line

character

A binary files store the data in the

binary format(i.e .0’s and 1’s)

It contains any type of data

(pdf,images,word
doc,spreadsheet,zip files,etc)

81 Mode in File

Modul
e

Descripti
on

r

w

a

r+

Read only

mode Write

only

Appending

only

Read and write only
Differentiate write and append mode:

Write mode Append mode

 It is used to write a string in a file

 If file is not exist it creates a new

file

 If file is exit in the specified
name, the existing content will
overwrite in
a file by the given string

 It is used to append (add) a
string into a file

 If file is not exist it creates a new

file

 It will add the string at the end of
the old file

File Operation:

 Open a file

106

 Reading a file

 Writing a file

 Closing a file

107

1. Open () function:

 Pythons built in open function to get a file object.

 The open function opens a file.

 It returns a something called a file object.

 File objects can turn methods and attributes that can be used to collect

82 Syntax:

file_object=open(“file_name” , ”mode”)

83 Example:

fp=open(“a.txt”,”r”)

84 Create a text file

fp=open (“text.txt”,”w”)

2. Read () function

Read functions contains different methods

 read() – return one big string

 readline() – return one line at a time

 readlines() – return a list of lines

85 Syntax:

file_name.read ()

86 Example:

fp=open(“a.txt”,”

w”)

print(fp.read())

print(fp.read(6

)) print

(fp.readline())

print

(fp.readline(3))

print

(fp.readlines())

87 a.txt

108

A file stores related data,

information, settings or commands

in secondary storage device like

magnetic disk, magnetic tape,

optical disk, flash memory.

Output

109

A file stores related data,

information, settings or

commands in secondary

storage device like magnetic

disk, magnetic tape, optical

disk, flash memory.

this file is a.txt

to add more
lines

Reading file using looping:

 Reading a line one by one in given file

fp=open(“a.txt”,”r”)

for line in fp:

print(line)

3. Write () function

This method is used to add information or content to existing file.

88 Syntax:

file_name.write()

89 Example:

fp=open(“a.txt”,”w”)

fp.write(“this file is

a.txt”) fp.write(“to

add more lines”)

fp.close()

90 Output: a.txt

4. Close () function

It is used to close the file.

91 Syntax:

filename.close()

92 Example:

fp=open(“a.txt”,”w”)

fp.write(“this file is

110

a.txt”) fp.write(“to

add more lines”)

fp.close()

111

Splitting line in a text line:

fp=open(“a.txt”,”w”)

for line in fp:

words=line.s

plit() print(words)

2. Write a program for one file content copy into another file:

source=open(“a.txt”,”r”)

destination=open(“b.t

xt”,”w”) for line in

source:

destination.writ

e(line) source.close()

destination.close()

93 Output:

Input a.txt Output b.txt
A file stores related data, information,
settings or commands in secondary
storage device like magnetic disk,
magnetic tape,
optical disk, flash memory

A file stores related data, information,
settings or commands in secondary
storage device like magnetic disk,
magnetic tape,
optical disk, flash memory

3. Write a program to count number of lines, words and characters in a text file:

fp =

open(“a.txt”,”r”)

line =0

word = 0

character = 0

for line in

fp:

words = line . split (

) line = line + 1

word = word + len(words)

character = character

+len(line)

112

print(“Number of line”, line)

print(“Number of words”,

word) print(“Number of

character”, character)
94 Output:

Number of line=5
Number of
words=15
Number of
character=47

113

4. What is errors and its type? Explain the details about Exception handling?

Errors

 Error is a mistake in python also referred as bugs .they are almost always the fault of

the programmer.

 The process of finding and eliminating errors is called debugging

95 Types of errors

o Syntax error or compile time error

o Run time error

o Logical error
96 Syntax errors

 Syntax errors are the errors which are displayed when the programmer do mistakes

when writing a program, when a program has syntax errors it will not get executed

 Leaving out a keyword

 Leaving out a symbol, such as colon, comma, brackets

 Misspelling a keyword

 Incorrect indentation

97 Runtime errors

 If a program is syntactically correct-that is ,free of syntax errors-it will be run by

the python interpreter

 However, the program may exit unexpectedly during execution if it encounters a

runtime error.

 When a program has runtime error it will get executed but it will not produce output

 Division by zero
 Performing an operation on incompatible types

 Using an identifier which has not been defined

 Trying to access a file which doesn’t exit

98 Logical errors

 Logical errors are the most difficult to fix

 They occur when the program runs without crashing but produces incorrect result

 Using the wrong variable name
 Indenting a blocks to the wrong level

 Using integer division instead of floating point division

 Getting operator precedence wrong

99 Exception

handling

Exceptions

 An exception is an error that happens during execution of a program. When that Error

occurs

100 Errors in python

 IOError-If the file cannot be opened.

 ImportError -If python cannot find the module

 ValueError -Raised when a built-in operation or function receives an argument that has

the right type but an inappropriate value

 KeyboardInterrupt -Raised when the user hits the interrupt

 EOFError -Raised when one of the built-in functions (input() or raw_input()) hits an

end-of-file condition (EOF) without reading any data

114

101 Exception Handling Mechanism

1. try –except

2. try –multiple except

3. try –except-else

4. raise exception

5. try –except-finally

1. Try –Except Statements

 The try and except statements are used to handle runtime errors

102 Syntax:

try :
stateme

nts except :
statements

The try statement works as follows:-
 First, the try clause (the statement(s) between the try and except keywords) is

executed.

 If no exception occurs, the except clause is skipped and execution of

the try statement is finished.

 If an exception occurs during execution of the try clause, the rest of the clause is

skipped. Then if its type matches the exception named after the except keyword,

the except clause is executed, and then execution continues after the try statement.

103 Example:
X=int(input(“Enter the value

of X”)) Y=int(input(“Enter
the value of Y”)) try:

result = X / (X – Y
)
print(“result=”.r
esult)

104 except ZeroDivisionError:

print(“Division by Zero”)

Output:1
Enter the value of X = 10
Enter the value of Y = 5
Result = 2

Output : 2
Enter the value of X =
10 Enter the value of Y
= 10 Division by Zero

2. Try – Multiple except Statements

o Exception type must be different for except statements
105 Syntax:

try:
stateme

nts except
errors1:

stateme

https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try

115

nts except
errors2:

stateme
nts except
errors3:

statements

116

106 Example
X=int(input(“Enter the value

of X”)) Y=int(input(“Enter
the value of y”)) try:

sum = X + Y
divide = X
/ Y

print (“ Sum of %d and %d = %d”, %(X,Y,sum))
print (“ Division of %d and %d = %d”, %(X,Y,divide))

107 except NameError:

print(“ The input must be number”)
108 except ZeroDivisionError:

print(“Division by Zero”)

Output:1
Enter the value of X = 10
Enter the value of Y = 5
Sum of 10 and 5 = 15
Division of 10 and 5 = 2

Output 2:
Enter the value of X = 10
Enter the value of Y = 0
Sum of 10 and 0 = 10
Division by Zero

Output 3:
Enter the value of X =
10 Enter the value of Y
= a The input must be
number

3. Try –Except-Else

o The else part will be executed only if the try block does not raise the exception.

o Python will try to process all the statements inside try block. If value error occur,

the flow of control will immediately pass to the except block and remaining
statements in try block will be skipped.

109 Syntax:

try:

110 Example

except:

else:

statements

stateme

nts

stateme

nts

X=int(input(“Enter the value
of X”)) Y=int(input(“Enter
the value of Y”)) try:

result = X / (X – Y)
111 except ZeroDivisionError:

print(“Division by Zero”)
112 else:

print(“result=”.result)

117

Output:1
Enter the value of X = 10
Enter the value of Y = 5
Result = 2

Output : 2
Enter the value of X =
10 Enter the value of Y
= 10

Division by
Zero

118

4. Raise statement

 The raise statement allows the programmer to force a specified exception to occur.

113 Example:

>>> raise

NameError('HiThere') Output:

Traceback (most recent call
last): File "<stdin>", line 1,
in <module> NameError:
HiThere

 If you need to determine whether an exception was raised but don’t intend to handle

it, a simpler form of the raise statement allows you to re-raise the exception:

114 Example

try:
... raise NameError('HiThere')

... except NameError:

... print('An exception flew by!')
115 ... raise

Output:

An exception flew by!
Traceback (most recent call
last):
File "<stdin>", line 2, in

<module> NameError:
HiThere

5. Try –Except-Finally

 A finally clause is always executed before leaving the try statement, whether an

exception has occurred or not.

 The finally clause is also executed “on the way out” when any other clause of the

try statement is left via a break, continue or return statement.

116 Syntax

try:

excep

t:

finall

y:

117 Example

statements

stateme

nts

stateme

nts

X=int(input(“Enter the value
of X”)) Y=int(input(“Enter
the value of Y”)) try:

result = X / (X – Y)

https://docs.python.org/3/reference/simple_stmts.html#raise
https://docs.python.org/3/reference/simple_stmts.html#raise
https://docs.python.org/3/reference/simple_stmts.html#raise

119

118 except ZeroDivisionError:

print(“Division by Zero”)
119 else:

print(“result=”.result)
120 finally:

print (“executing finally clause”)
Output:1
Enter the value of X = 10
Enter the value of Y = 5
Result = 2
executing finally clause

Output : 2
Enter the value of X =
10 Enter the value of Y
= 10 Division by Zero
executing finally clause

120

5. Explain the details about Modules in python

Modules

 A python module is a file that consists of python definition and statements. A module

can define functions, classes and variables.

 It allows us to logically arrange related code and makes the code easier to understand

and use.

1. Import statement:

 An import statement is used to import python module in some python source file.

Syntax: import module1 [, module2 […module]]
121 Example:

>>>import math
>>>print (math.pi)

3.14159265

2. Import with renaming:

The import a module by renaming it as follows,
>>>import math as a

>>>print(“The value of pi is
“,a.pi) The value of pi
is 3.14159265

122 Writing modules:

 Any python source code file can be imported as a module into another python source
file. For example, consider the following code named as support.py, which is python

source file defining two function add(), display().

123 Support.py:

def add(a,b):

print(“The result is

“,a+b) return

def display(p):

print(“welcome

“,p) return

The support.py file can be imported as a module into another

python source file and its functions can be called from the new files as
shown in the following code:

3. Import file name

import support #import module support

support.add(3,4) #calling add() of support module with two

integers support.add (3.5,4.7) #calling add() of support module

121

with two real values support.add (‘a’,’b’) #calling add() of

support module with two character values support.add

(“yona”,”alex”)#calling add() of support module with two string

values support.display (‘fleming’) #calling display() of

support module with a string value

122

124 Output:

The result is 7
The result
is 8.2 The
result is ab

The result is
yonaalex
Welcome,
fleming

4. from……import statement:

 It allows us to import specific attributes from a module into the current

namespace.

Syntax: from modulename import name1 [,

name2[,……nameN]] from support import add

 #import module

support

support.add(3,4) #calling add() of support module with two

integers support.add(3.5,4.7) #calling add() of support

module with two real values support.add(‘a’,’b’) #calling add()

of support module with two character values support.add

(“yona”,”alex”)#calling add() of support module with two string

values support.display (‘fleming’) #calling display() of

support module with a string value

125 Output:

The result is 7
The result
is 8.2 The
result is ab

The result is
yonaalex
Welcome,
fleming

5. OS Module

 The OS module in python provide function for interacting with operating

system

123

 To access the OS module have to import the OS module in our program

126 import os

method example description
name Osname ‘nt’ This function gives the

name
of the operating system

getcwd() Os,getcwd()
,C;\\Python34’

Return the current
working
directory(CWD)of the
file
used to execute the code

mkdir(folder) Os.mkdir(“python”) Create a directory(folder)
with the given name

rename(oldname,newna
me)

Os.rename(“python”,”pspp
”)

Rename the directory or
folder

remove(“folder”) Os.remove(“pspp”) Remove (delete)the
directory
or folder

124

getuid() Os.getuid() Return the current
process’s
user id

environ Os.nviron Get the users environment

6. Sys Module

 Sys module provides information about constant, function and methods

 It provides access to some variables used or maintained by the interpreter

127 import sys

methods example description
sys.argv sys.argv

sys.argv(0

)

sys.argv(1

)

Provides the list of
command line
arguments passed to a
python script Provides
to access the file name
Provides to access the
first input

sys.path sys.path It provide the search path
for module

sys.path.append() sys.path.append() Provide the access to
specific path to our
program

sys.platform sys.platform
‘win32’

Provide information about
the operating
system platform

sys.exit sys.exit
<built.in function exit>

Exit from python

Steps to Create the Own Module

 Here we are going to create a calc module ; our module contains four functions

i.e add(),sub(),mul(),div()

Program for calculator module output
Module name
;calc.py def
add(a,b); print(a+b)

def
sub(a,b);
print(a-b)

def
mul(a,b);
print(a*b)

def

import
calculator
calculator.add(2,
3)

Outcome
>>>5

125

div(a,b);
print(a/b)

126

6. Explain the details about Package in python

Package

 A package is a collection of python module. Module is a single python file containing

function definitions

 A package is a directory(folder)of python module containing an additional init py

file, to differentiate a package from a directory

 Packages can be nested to any depth, provided that the corresponding directories

contain their own init py file.

 init py file is a directory indicates to the python interpreter that the directory

should be treated like a python package init py is used to initialize the python

package

128 Steps to Create a Package

Step1: create the package

directory

 Create the directory (folder)and give it your packages name

 Here the package name is calculator

Name Data modified Type

1. pycache 05-12-2017 File folder
2.calculater 08-12-2017 File folder
3. DLLs 10-12-2017 File folder

129 Step2: write module for calculator directory add save the module in calculator

directory

 Here four module have create for calculator directory

Local Disk (C)>Python34>Calculator

add.py div.py mul.py sub.py
def

add(a,b);
print(a+
b)

def div(a,b);
print(a/b)

def
mul(a,b)
;
print(a*
b)

def
sub(a,b)
;
print(a-
b)

Name Data modified Type Size

1. add 08-12-2017 File folder 1KB
2. div 08-12-2017 File folder 1KB
3. mul 08-12-2017 File folder 1KB
4. sub 08-12-2017 File folder 1KB

127

130 Step3: add the init .py file in the calculator directory

 A directory must contain the file named init__.py in order for python to consider it

as a package

128

from * add import
add from * sub
import sub from *
mul import mul
from * div import
div

Add the following code in the init .py file

Local Disk (C):/Python34>Calculator

Name Data modified Type Size
1. init 08-12-2017 File folder 1KB
2. add 08-12-2017 File folder 1KB
3. div 08-12-2017 File folder 1KB
4. mul 08-12-2017 File folder 1KB
5. sub 08-12-2017 File folder 1KB

131 Step4: To test your package

 Import calculator package in your program and add the path of your package in your

program by using sys.path.append()

Example

import calculator
importsys

sys.path.append(“C:/Python34”)
print (calculator.add(10,5))
print (calculator.sub(10,5))
print (calculator.mul(10,5))
 print (calculator.div(10,5))

132 Output :

>>> 15

5

50

2

129

Two marks:

1. Why do we go for file?

File can a persistent object in a computer. When an object or state is

created and needs to be persistent, it is saved in a non-volatile storage

location, like a hard drive.
2. What are the three different mode of operations of a file?

The three mode of operations of a file are,
i. Open – to open a file to perform file operations

ii. Read – to open a file in read mode

iii. Write – to open a file in write mode

3. State difference between read and write in file operations.

Read Write
A "Read" operation occurs when a
computer program reads information
from a computer file/table (e.g. to be
displayed on a screen). The "read"
operation gets
information out of a file.

A "Write" operation occurs when a
computer program adds new information,
or changes existing information in a
computer file/table.

After a "read", the information from the
file/table is available to the computer
program but none of the information that
was read from the file/table is changed in
any way.

After a "write", the information from the
file/table is available to the computer
program but the information that was
read from the file/table can be changed in
any
way.

4. Differentiate error and exception.

Errors

 Error is a mistake in python also referred as bugs .they are almost always the fault of the

programmer.

 The process of finding and eliminating errors is called debugging

 Types of errors

 Syntax error or compile time error

 Run time error

 Logical error

133 Exceptions

An exception is an error that happens during execution of a program. When
that Error occurs

5. Give the methods of exception handling.

1. try –except

2. try –multiple except

3. try –except-else

4. raise exception

5. try –except-finally

130

6. State the syntax for try…except block

The try and except statements are used to handle runtime errors
134 Syntax:

try :

statements
except:
 statements

7. Write a program to add some content to existing file without effecting the existing content

20

file=open(“newfile.txt”,’a)

file.write(“hello”)

newfile.txt
Hello!!World!!!

newfile.txt(after updating)
Hello!!!World!!!hello

8. What is package?

 A package is a collection of python module. Module is a single python file containing

function definitions

 A package is a directory(folder)of python module containing an additional init py file,

to differentiate a package from a directory

 Packages can be nested to any depth, provided that the corresponding directories contain

their own __init py file

9. What is module?

A python module is a file that consists of python definition and

statements. A module can define functions, classes and variables.

It allows us to logically arrange related code and makes the code

easier to understand and use.
10. Give the use of format operator

The argument of write has to be a string, so if we want to put other

values in a file, we have to convert them to strings. The easiest way to

do that is with str:

>>> x = 52

>>> fout.write(str(x))

An alternative is to use the format operator, %. When applied to

integers, % is the modulus operator. But when the first operand is a

string, % is the format operator. The first operand is the format

string, which contains one or more format sequences, which specify

how the second operand is formatted. The result is a string. For

example, the format sequence '%d' means that the second operand

should be formatted as an integer (d stands for “decimal”):

 >>> camels = 42
 >>>'%d' % camels '42'

The result is the string '42', which is not to be confused with the integer
value 42.

11. Write the snippet to find the current working directory.

 Import os

 print(os.getcwd))

Output:

C:\\Users\\Mano\\Deskt

op
12. Write the snippet to find the absolute path of a file.

import os

os.path.abspath

('write.py')

Output:
'C:\\Users\\Mano\\Desktop\\write.py'

13. What is the use of os.path.isdir() function.

21

os.path.isdir() is a function defined in the package os. The main function

of isdir(“some input”) function is to check whether the passed

parameter is directory or not. isdir() function will only return only

true or false.

14. What is the use of os.path.isfile() function.

os.path. isfile () is a function defined in the package os. The main function

of isfile (“some input”) function is to check whether the passed

parameter is file or not. isfile () function will only return only true or

false.

15. What is command line argument?
sys.argv is the list of command line arguments passed to the Python program.

Argv represents all the items that come along via the command line input, it's basically an array

holding the command line arguments of our program

	Building Blocks of Algorithm
	Statements
	States
	Control Flow
	Sequential control flow:
	Selection or Conditional control flow
	Repetition control flow

	Function

	2.Notations of Algorithm
	Pseudocode
	Basic rules to write pseudocode:
	Advantages of Pseudocode
	Disadvantages of Pseudocode

	Flowchart
	Rules for drawing flowchart
	Advantages of Flowchart
	Disadvantages of Flowchart

	Control Structures using flowcharts and Pseudocode
	Sequence Structure
	Conditional Structure

	Programming Language
	Need for Programming Languages
	Types of Programming Language

	Interpreted Programing Language:
	Compiled Programming Languages
	Interpreted vs. Compiled Programming Language

	4.Simple strategies for developing algorithm:
	Iteration

	Recursions:
	Algorithm for factorial of n numbers using recursion:
	Main function:
	Sub function factorial(n):
	Pseudo code for factorial using recursion:
	Main function: (1)
	Sub function factorial(n): (1)
	10.What are the Guidelines for writing pseudo code?
	1 Python Features:
	2 Applications:
	3 Python interpreter:
	4 MODES OF PYTHONINTERPRETER:
	5 Interactive mode:
	6 Advantages:
	7 Drawback:
	8 Script mode:
	9 Integrated Development Learning Environment(IDLE):
	10 Features of IDLE:
	11 2.VALUES AND DATATYPES
	12 Data type:
	13 Python has four standard data types:
	14 Sequence:
	1. Strings
	15 Indexing:
	16 Example: A[0] or A[-5] will display “H”
	17 Example: A[1] or A[-4] will display “E” Operations on string:
	18 Lists
	19 Tuple:
	20 Basic Operations:
	21 Mapping
	22 Dictionaries:
	23 Assigning value to variable:
	24 Identifier is the name given to entities like class, functions, variables etc. in Python.
	25 Example:
	26 Statements:
	27 Expressions:
	28 Example:
	29 Example:
	30 Example:
	31 DOCSTRING:
	32 Syntax:
	33 Example:
	34 Example:
	35 -One way to think of tuple assignment is as tuple packing/unpacking.
	36 -In tuple unpacking, the values in a tuple on the right are ‘unpacked’into thevariables/names on the right:
	37 Example:
	38 Arithmetic operators:
	39 Examples
	40 Output:
	41 Comparison (Relational)Operators:
	42 Example
	43 Assignment Operators:
	44 Example
	45 Output
	46 Logical Operators:
	47 Example
	48 Output
	49 Bitwise Operators:
	50 Membership Operators:
	51 Example:
	52 Identity Operators:
	53 Example
	54 Example:
	55 Types of function:
	i) Built infunctions
	ii) User DefinedFunctions:
	i) Function without arguments and without returntype
	ii) Function with arguments and without returntype
	iii) Function without arguments and with returntype
	iv) Function with arguments and with returntype
	56 Parameters:
	57 Arguments :
	58 ARGUMENTSTYPES:
	59 Output:
	60 Output:
	61 Output:
	62 Output:
	 To use these modules in a program, programmer needs to import the module.
	63 Syntax:
	64 Example Output
	65
	66
	67 Program:
	5. LIST
	68 Creating a list :
	1. LIST OPERATIONS:
	2. List looping: (traversing a list)
	3. List Slices:
	4. Aliasing and cloning:
	5. Cloning:
	69 List parameter:
	70
	71
	72
	6. TUPLES:
	73 Creating tuple:
	74 Accessing element in tuple:
	75 Deleting and updating tuple:
	76 Tuple Assignment:
	77 Tuple as return value:
	2. What is dictionary?
	78 Eg:
	3. Write program to rotate values in the list.(counter-clock wise)
	4. What is data structure? List out the data structures used in Python
	5. Compare all the three data structures in Python
	7. What is mutability? Is tuple is mutable
	8. Write a program to add or change elements in a dictionary.
	9. How to convert a string to list of characters and words.
	10. What is zip operation in tuples. Give an example.
	79 Unit - 5
	80 File Type
	81 Mode in File
	1. Open () function:
	82 Syntax:
	83 Example:
	84 Create a text file
	2. Read () function
	85 Syntax:
	86 Example:
	87 a.txt
	3. Write () function
	88 Syntax:
	89 Example:
	90 Output: a.txt
	91 Syntax:
	92 Example:
	2. Write a program for one file content copy into another file:
	93 Output:
	94 Output:
	4. What is errors and its type? Explain the details about Exception handling?
	95 Types of errors
	96 Syntax errors
	97 Runtime errors
	98 Logical errors
	99 Exception handling Exceptions
	100 Errors in python
	101 Exception Handling Mechanism
	1. Try –Except Statements
	102 Syntax:
	103 Example:
	104 except ZeroDivisionError:
	2. Try – Multiple except Statements
	105 Syntax:
	106 Example
	107 except NameError:
	108 except ZeroDivisionError:
	3. Try –Except-Else
	109 Syntax:
	110 Example
	111 except ZeroDivisionError:
	112 else:
	4. Raise statement
	113 Example:
	114 Example
	115 ... raise Output:
	5. Try –Except-Finally
	116 Syntax
	117 Example
	118 except ZeroDivisionError:
	119 else:
	120 finally:
	5. Explain the details about Modules in python Modules
	1. Import statement:
	121 Example:
	2. Import with renaming:
	122 Writing modules:
	123 Support.py:
	3. Import file name
	124 Output:
	4. from……import statement:
	125 Output:
	5. OS Module
	126 import os
	127 import sys
	6. Explain the details about Package in python Package
	128 Steps to Create a Package Step1: create the package directory
	129 Step2: write module for calculator directory add save the module in calculator directory
	130 Step3: add the init .py file in the calculator directory
	131 Step4: To test your package
	132 Output :
	2. What are the three different mode of operations of a file?
	3. State difference between read and write in file operations.
	133 Exceptions
	5. Give the methods of exception handling.
	6. State the syntax for try…except block
	134 Syntax:
	7. Write a program to add some content to existing file without effecting the existing content
	8. What is package?
	9. What is module?
	10. Give the use of format operator
	11. Write the snippet to find the current working directory.
	12. Write the snippet to find the absolute path of a file.
	13. What is the use of os.path.isdir() function.
	14. What is the use of os.path.isfile() function.

