3D Printing & Design

COURSE SYLLABUS

COURSE OBJECTIVES

The student will be able to

•To gain knowledge and skills related to 3D printing technologies.

•To learn the selection of material, equipment and development of a product for Industry 4.0 environment.

•To understand the various software tools, process and techniques for digital manufacturing.

•To apply these techniques into various applications.

COURSE OUTCOMES

After completion of this course, the students will be able to:

- •Develop CAD models for 3D printing.
- •Import and Export CAD data and generate .stl file.
- •Select a specific material for the given application.
- •Select a 3D printing process for an application.
- •Produce a product using 3D Printing or Additive Manufacturing (AM).

PRE-REQUISITES

Computer Aided Design & Drafting **Engineering Materials**

DETAIL CONTENTS

•3D Printing (Additive Manufacturing)

Introduction, Process, Classifications, Advantages, Additive v/s Conventional Manufacturing processes, Applications.

•CAD for Additive Manufacturing

CAD Data formats, Data translation, Data loss, STL format.

•Additive Manufacturing Techniques

- •Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology.
- •Process, Process parameter, Process Selection for various applications.
- •Additive Manufacturing Application Domains: Aerospace, Electronics, Health Care,
- Defence, Automotive, Construction, Food Processing, Machine Tools

4. Materials

•Polymers, Metals, Non-Metals, Ceramics Process, Process parameter, Process Selection for various applications.

- Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties.
- 4.3 Support Materials

(6 Hours)

TOTAL: 30 HOURS

(4 Hours)

(10 Hours)

(4 Hours)

5. Additive Manufacturing Equipment	(4 Hours)
5.1 Process Equipment- Design and process parameters	
5.2 Governing Bonding Mechanism	
5.3 Common faults and troubleshooting	
5.4 Process Design	
6. Post Processing: Requirement and Techniques	(1 Hour)
Support Removal, Sanding, Acetone treatment, polishing,	
7. Product Quality	(1 Hour)
7.1 Inspection and testing	
7.2 Defects and their causes	
LIST OFPRACTICALS	
•3D Modelling of a single component.	

- •Assembly of CAD modelled Components
- •Exercise on CAD Data Exchange.

•Generation of .stl files.

- •Identification of a product for Additive Manufacturing and its process plan.
- •Printing of identified product on an available AM machine.
- •Post processing of additively manufactured product.
- •Inspection and defect analysis of the additively manufactured product.

•Comparison of Additively manufactured product with conventional manufactured counterpart.

LIST OF SUGGESTED BOOKS

•Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.

- •Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011.
- •Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.
- •CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017.

•J.D. Majumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Series in Material Science, 2013.

•L. Lu, J. Fuh and Y.S. Wong, "Laser-Induced Materials and Processes for Rapid Prototyping", Kulwer Academic Press, 2001.

•Zhiqiang Fan And Frank Liou, "Numerical Modelling of the Additive Manufacturing (AM) Processes of Titanium Alloy", InTech, 2012