

$\mathbf{3}$	Gauss Elimination method.	R 3	2	BB	L 1	CO 1	PO 2
$\mathbf{4}$	Gauss Elimination method, Gauss-Jordan methods	R 3	2	BB	L 1	CO 1	PO 3
$\mathbf{5}$	Iterative methods of Gauss-Jacobi and Gauss-Seidel and class test	R 3	1	BB	L 1	CO 1	$\mathrm{PO} 4 \&$ PO
$\mathbf{6}$	Iterative methods of Gauss-Jacobi and Gauss-Seidel and class test	R 3	1	BB	L 1	CO 1	PO 1
$\mathbf{7}$	Matrix Inversion by Gauss-Jordan method	R 3	1	BB	L 1	CO 1	PO 2
$\mathbf{8}$	Eigenvalues of a matrix by Power method Class test.	R 3	1	BB	L 1	CO 1	PO 3

Suggested Activity: Assignment given
Evaluation method: Evaluation of Assignment

UNIT II- INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION							
$\mathbf{9}$	Lagrange's and Newton's divided difference interpolations	R 3	2	BB	L 2	CO 2	PO 1
$\mathbf{1 0}$	Newton's forward and backward difference interpolation	R 3	2	BB	L 2	CO 2	PO 2
$\mathbf{1 1}$	Newton's forward and backward difference interpolation and class test	R 3	2	BB	L 2	CO 2	PO 3
$\mathbf{1 2}$	Approximation of derivates using interpolation polynomials	R 3	2	BB	L 2	CO 2	$\mathrm{PO} 4 \&$ PO 10
$\mathbf{1 3}$	cubic spline	R 3	1	BB	L 2	CO 2	PO 1
$\mathbf{1 4}$	cubic spline	R 3	1	BB	L 2	CO 2	PO 2
$\mathbf{1 5}$	Interpolation with equal intervals	R 3	1	BB	L 2	CO 2	PO 3

Suggested Activity: Assignment given
Evaluation method: Evaluation of Assignment
UNIT III-NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

$\mathbf{1 4}$	numerical integeration using trapezoidal	R 3	2	BB	L 3	CO 3	PO 1
$\mathbf{1 5}$	Romberg method	R 3	2	BB	L 3	CO 3	PO 2
$\mathbf{1 6}$	Two point \& three point gaussian quadrature formulae	R 3	2	BB	L 3	CO 3	PO 1
$\mathbf{1 7}$	Two point \& three point gaussian quadrature formulae	R 3	1	BB	L 3	CO 3	PO 2
$\mathbf{1 8}$	Numerical double integrations using Trapezoidal and Simpson's $1 / 3$ rules.	R 3	1	BB	L 3	CO 3	PO 3
$\mathbf{1 9}$	Evaluation of double integrals by Trapezoidal and Simpson's $1 / 3$ rules	R 3	1	BB	L 3	CO 3	PO 1

Suggested Activity: Assignment given
Evaluation method: Evaluation of Assignment
UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

$\mathbf{2 0}$	Taylor's series method	R 3	2	BB	L 3	CO 4	PO 2
21	Euler's method	R 3	2	BB	L 3	CO 4	PO 3
22	Modified Euler's method	R 3	2	BB	L 3	CO 4	PO 1
23	Fourth order Runge - Kutta method for solving first order equations	R 3	2	BB	L 3	CO 4	PO 2
24	Multi step methods - Milne's and Adams	R 3	2	BB	L 3	CO 4	PO 1
25	Bash forth predictor corrector methods for solving first order equations.	R 3	2	BB	L 3	CO 4	PO 3

Suggested Activity: Assignment given
Evaluation method: Evaluation of Assignment

UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

26	Finite difference methods for solving second order two	R 3	2	BB	L 3	CO	
27	point linear boundary value problems	R 3	2	BB	L 3	CO	
28	Finite difference technques tor the solution of two dimensional Laplace's and Poisson's equations on rectangular	R 3	2	BB	L 3	CO 5	
29	One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods	R 3	2	BB	L 3	CO	
30	One dimensional wave equation by explicit method.	R 3	2	BB	L 3	CO	

Blooms Level														
Level 1 (L1) : Remembering					Lower Order Thinkin g	Fixed Hour Exams	Level 4 (L4) : Analysing						Higher Order Thinkin g	Projects / Mini Projects
Level 2 (L2) : Understanding							Level 5 (L5) : Evaluating							
Level 3 (L3) : Applying							Level 6 (L6) : Creating							
Mapping syllabus with Bloom's Taxonomy LOT and HOT														
Unit No		Unit Name				L1	L2	L3	L4	L5	L6	LOT	HOT	Total
Unit 1		$\begin{aligned} & \hline \text { SOLUTION OF EQUATIONS } \\ & \text { AND EIGENVALUE } \\ & \text { PROBLEMS } \\ & \hline \end{aligned}$				6	0	0	0	0	0	6	0	6
Unit 2		INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION				0	0	0	0	7	0	0	7	7
Unit 3		NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS				0	8	0	0	0	0	8	0	8
Unit 4		FOR ORDINARY DIFFERENTIAL EQUATIONS				0	0	0	7	0	0	0	7	7
Uni		PROBLEMS IN ORDINARY AND PARTIAL				0	0	6	0	0	0	6	0	6
Total						6	8	6	7	7	0	20	14	34
Total Percentage						17.647	23.53	17.647	20.588	20.588	0	58.82	41.1765	100
CO PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	1									
CO2	2	1	1		1									
CO3	2	1												
CO4	2	1												
$\mathrm{CO5}$	2	1												
Avg	2	1		1	1									

Justification for CO-PO mapping

PO1 - Graduate attains highly basic knowledge about newton raphson method Equations, PO2 - Graduate will be able to
CO1 analyze the problems on guassseidal and gauss jacobi equation, PO3 - Graduate will be development of eigen value of power method.
$\mathbf{C O 2}$ polynomials , PO2 - Graduate will be able to analyze a Numerical single integrations using Trapezoidal and Simpson's $1 / 3$ rules. , PO3 - Graduate will be designed and development of newtons interpolation difference.
PO1 - Graduate attains highly basic knowledge about Taylor's series method ,Euler's method, , PO2 - Graduate will be
CO3 able to analyze fourth order runge kutta method , PO3 - Graduate will be able to develop the Finite difference methods for solving second order equations.
CO4 O1 - Graduate will be understanding knowledge on single step method, PO2 - Graduate will be able to analyze the problem by Modified Euler's method, PO3 - Graduate will be development of solutions by multi step metod PO1 - Graduate attains basic knowledge about Finite difference techniques for the solution of two dimensional Laplace's
CO5 and Poisson's equations on rectangular domain, PO2 - Graduate will be able to analyze the problem using one dimensional wave equation, PO3 - Graduate will be develop a formation crank nickelson method

High level					
					$\mathbf{2}$

