
ME 8693 HEAT AND MASS TRANSFER ( L T P C – 3 2 0 4 ) 

OBJECTIVES:  

 To understand the mechanisms of heat transfer under steady and transient conditions.  

 To understand the concepts of heat transfer through extended surfaces.  

 To learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass 

transfer.  

(Use of standard HMT data book permitted) 
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UNIT I CONDUCTION 
 
1.1 Heat  

 ͞Heat is defiŶed as the tƌaŶsŵissioŶ of eŶeƌgǇ fƌoŵ oŶe ƌegioŶ to another as a result of 

teŵpeƌatuƌe gƌadieŶt.͟ 

 It is a vector quantity, flowing in the direction of decreasing temperature, with a 

negative temperature gradient. In the science of thermodynamics, the important parameter is the 

quantity of heat transferred during a process. Thermodynamics is concerned with the transition of a 

system from one equilibrium state to another, and is based principally on the two laws of nature, the 

first law of thermodynamics and second law of thermodynamics.  

The application of Heat transfer: 

i) Design of thermal and nuclear power plants including heat engines, steam generators , 

condensers and other heat exchange equipments , catalytic converters, heat shields for 

space vehicles ,furnaces, electronic equipments etc. 

ii) Internal combustion engines 

iii) Refrigeration and air conditioning units 

iv) Design of cooling systems for electric motors, generators and transformers. 

v) Heating and cooling of fluids. 

vi) Construction of dams and structures. 

vii) Heat treatment of metals. 

Modes of heat transfer: 

Heat transfer takes places by the following three modes 

i) Conduction   

ii) Convection 

iii) Radiation 

Conduction:- 
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Conduction is the transfer of heat from one part of a substance to another part of the same 

substance or from one substance to another in physical contact with it 

Heat is conducted by  

1. Atomic vibration  

2. By transport of free electrons 

Fourier’s law of heat conduction:- 

 The conduction heat transfer through a simple homogeneous solid is directly proportional to  

1. The area of section at right angle to the direction of heat flow. 

2. The change in temperature in between the two faces of the slab 

3. Inversely proportional to the thickness of the slab.  

Mathematically,  

Q α A 
dx

dT
 

Q  = Heat flow through a body per unit time(W) 

A  = surface area of heat flow (Perpendicular to the direction of flow)m2 

dT= Temperature difference of the faces of block (°C or K) 

dx = Thickness of body in the direction of flow (m) 

Q = - KA 
dx

dT
 

K = thermal conductivity 

-ve sign Kis to take care of the decreasing temperature along with the direction of increasing 

thickness or the direction of heat flow dT/dx always –ve so Qis positive  
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Thermal conductivity 

The amount of energy conducted through a body of unit area , and unit thickness in unit time 

when the difference in temperature between the faces causing heat flow is unit temperature difference. 

Unit of thermal conductivity  

K= 
A

Q
 
dT

dx
 

   = 
2m

W
 
K

m
 

   = 
mK

W
 

Thermal resistance(Rth) 

Q =  









KA

dx

dT
 

Q =  
thR

dT
 

The quantity 







KA

dx
is called thermal conduction resistance 

The reciprocal of the thermal resistance is called thermal conductance  

Heat flux 







A

Q
 

It is defined as heat transfer per unit area is directly proportional to the change in temperature and 

inversely proportional to the thickness of the slab. 

Unit is 
2m

W
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Heat transfer by Convection 

When fluid flows over a solid surface or inside a channel while temperature of the fluid and the 

solid surface are different. Heat transfer between the fluid and the solid surface takes place as a 

consequence of the motion of fluid relative to the surface. This mechanism of heat transfer is called 

convection 

 This convection is classified in to two types. They are, 

i) Free convection 

ii) Forced convection  

Newton’s law of cooling: 

The rate equation for the convective heat transfer between a surface and an adjacent fluid is 

pƌesĐƌiďed ďǇ NeǁtoŶ͛s laǁ of ĐooliŶg. 

Q =hA (Ts-Tf)  

A = Area of exposed to heat transfer 

Q =Rate of convective heat transfer  

Ts  =Surface Temperature. 

Tf  = Fluid Temperature  

h  = Convective heat transfer co-efficient  

Convective heat transfer coefficient  

 The amount of heat transmitted for a unit temperature difference between the fluid 

and unit area of surface in unit time 

Unit of heat transfer coefficient  

h  = Q/A(Ts-Tf) = 
mK

W
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Heat transfer coefficient depends on the following factors: 

i) Nature of fluid flow 

ii) Geometry of the surface 

iii) Viscosity of fluid 

iv) Density of fluid 

Thermal resistance 

Q= 

hA
1

Tf)-(Ts
    

Q= 
thR

Tf)-(Ts
    

Rth = Convective thermal resistance  

Heat transfer by Radiation: 

 The mode of heat transfer which continuously takes place without the necessity of 

intervening medium is called radiation. The most important example of thermal radiation is the 

transport of heat from the sun to the earth.  

Stefan-Boltzmann law : 

The states that the emissive power of a black body is directly proportional to fourth power of its 

absolute temperature. 

 Q α T4 

 Q =FσA;T1
4 – T2

4) 

F = A factor depending on geometry and surface properties  

σ =Stefan-Boltzmann constant = 5.67 x 10-8 W/m2K4 

A = Area m2 
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T1 ,T2 = higher temperature and lower temperature in K(or) C 

General heat conduction equation:- 

Let us consider a small volume element of sides dx,dy,and dz respectively three axes x,y,z. 

 

T = Temperature at the left face ABCD this temperature may be assumed uniform over the entire 

surface 

              
x

T




 =Temperature changes along x- direction 

          dx
x

T










=Change of temperature through distance dx 

                T+ dx
x

T










=temperature on the right EFGH 

Kx,Ky,Kz  = Thermal conductivities along x,y,z axis  

qg  = heat generated per unit volume per unit time. 

Energy balance for volume element 

Net heat accumulated in the element due to conduction of heat from all the co-ordinate direction (A) + 

heat generated with in the element (B) = Energy stored in the element (C) 

Heat flow Along x- direction:- 
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dt = time interval  

AĐĐoƌdiŶg to Fouƌieƌ͛s Laǁ 

At left face  

      Qx   = - Kx(dy dx) 
x

T




dt 

At right face  

 Q(x+dx)  = Qx + )(Qx
x


dx 

Heat accumulated in x- direction 

                            dQx = Qx - Q(x+dx) 

  = Qx - ( Qx + )(Qx
x


dx) 

  = - )(Qx
x


dx 

  = - 
x


(- Kx(dy dx) 
x

T




dt) dx 

                            dQx  = Kx dxdydx 
2

2

x

T




dt   ------------------- (1) 

Similarly along y- direction  

                            dQy  = Ky dxdydx 
2

2

y

T




dt   ------------------- (2) 

Similarly along z- direction  

         dQz  = Kz dxdydx 
2

2

z

T




dt                 ------------------- (3) 
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Net heat accumulated in the element due to conduction of heat from all the co-ordinates  

A)  (1)+(2)+(3) 

Kx dxdydx 
2

2

x

T




dt  +  Ky dxdydx 
2

2

y

T




dt  + Kz dxdydx 
2

2

z

T




dt          ---------(A) 

Heat generated with in the element (B) 

      Qg  =  qg dxdydz .dt    ----------(B) 

Energy stored in the element (C) 

      QE  = mCp (temperature difference) 

      QE  =ʌV Cp
t

T




dt 

      QE  =ʌ (dxdydx )Cp
t

T




dt    ----------(C) 

Energy balance equation  

(A) + (B) = (C) 

Kxdxdydx 
2

2

x

T




dt  + Kydxdydx 
2

2

y

T




dt +Kzdxdydx 
2

2

z

T




dt +qg dxdydz .dt = ʌ;dǆdǇdǆ ͿCp
t

T




dt 

Kx = Ky =Kz  (For isotropic material and homogeneous material ) 

           K ( 
2

2

x

T




 +  
2

2

y

T




 +
2

2

z

T




 +qg ) =  ʌCp
t

T




 

                
2

2

x

T




 +  
2

2

y

T




 +
2

2

z

T




 +
K

q g
 =  

K

Cp
t

T




   --------------------(4) 

                     =
Cp

K


  [  = Thermal Diffusivity =

Capacity  Thermal

ty conductivi Thermal
] 
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The aďoǀe eƋuatioŶ is Đalled ͞geŶeƌal heat ĐoŶduĐtioŶ eƋuatioŶ foƌ uŶsteadǇ state thƌee diŵeŶsioŶal 

ǁith iŶteƌŶal heat geŶeƌatioŶ͟ 

Steady state, 
t

T




 = 0 

1) Three dimensional steady state heat conduction  equation with out heat generation  

2

2

x

T




 +  
2

2

y

T




 +
2

2

z

T




  = 0 

This equation is called Laplace equation 

 

2) Three dimensional steady state heat conduction  equation with heat generation  

2

2

x

T




 +  
2

2

y

T




 +
2

2

z

T




+
K

q g
  = 0 

3) Three dimensional Unsteady state heat conduction  equation with out heat generation  

2

2

x

T




 +  
2

2

y

T




 +
2

2

z

T




  =  

1

t

T




 

This eƋuatioŶ is Đalled Fouƌieƌ͛s eƋuatioŶ 

4) Two dimensional steady state heat conduction  equation with out heat generation  

2

2

x

T




 +  
2

2

y

T




   = 0 

5) Two dimensional steady state heat conduction  equation with  heat generation  

2

2

x

T


  +  

2

2

y

T




 +
2

2

z

T




 +
K

q g
 =  


1

t

T



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2

2

x

T




 +  
2

2

y

T




   = 0 

6) Two dimensional steady state heat conduction  equation with heat generation  

2

2

x

T




 +  
2

2

y

T




 +
K

q g
  = 0 

7) One dimensional Unsteady state heat conduction  equation with heat generation  

2

2

x

T




 +
K

q g
  =  


1

t

T




 

8) One dimensional steady state heat conduction  equation with heat generation  

2

2

x

T




 +
K

q g
  = 0 

9) One dimensional steady state heat conduction  equation with out heat generation  

2

2

x

T




   = 0 

10) One dimensional Unsteady state heat conduction  equation with out heat generation  

2

2

x

T




   =  

1

t

T




 

General heat conduction in cylindrical co-ordinates:- 
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The volume of element = rd .dr.dz 

Energy balance equation  

Net heat accumulated in the element due to conduction of heat from all the co-ordinate direction (A) + 

heat generated with in the element (B) = Energy stored in the element (C) 

A) 

Heat flow in radial direction (x- plane) 

AĐĐoƌdiŶg to Fouƌieƌ͛s Laǁ 

At left face  

                               Qr  = - K (rd dz) 
r

T




dt 

At right face  

                           Q(r+dr)= Qr + )(Qr
r


dr 

Heat accumulated in r- direction 

                            dQr = Qr - Q(r+dr) 

  = Qr - ( Qr + )(Qr
r


dr ) 

  = - )(Qr
r


dr 

  = - 
r


(- K(rd dz) 
r

T




dt) dr 

  = K (dr d dz) 
r


(r
r

T




)dt 
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  = K(dr d dz) (r
2

2

r

T




+
r

T




)dt 

                             dQr = K(dr rd dz) (
2

2

r

T




+
r

1

r

T




)dt   --------------------(1) 

 

Heat flow in angular direction  

                            Q   = - K(dr.dz) 



r

T
dt 

                    Q ( +d )  = Q + 



r
 (Q ) r.d  

Heat accumulated  

                           dQ  = Q - Q ( +d ) 

  = - 



r
 (Q ) r.d  

  = - 



r
(- K(dr.dz) 



r

T
dt). r.d  

                           dQ  = K (dr. rd .dz) 
2

1

r 2

2


 T

dt    --------------------(2) 

Heat flow in Z direction  (r- ) plane  

                               Qz = - K(dr.rd ) 
z

T




dt 

                         Q(z+dz)  = Qz + )(Qz
z


dz 

Heat accumulated  
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                              dQz= Qz- Q (z+dz) 

  = - )( zQ
z


dz 

                              = - 
z


(- K(dr.rd ) 
z

T




dt )dz 

                             dQz = K(dr. rd .dz) 
2

2

z

T




dt    --------------------(3) 

 

Net heat accumulated in the element due to conduction of heat from all the co-ordinate direction  

A)  (1)+(2)+(3) 

K(dr rd dz) (
2

2

r

T




+
r

1

r

T




)dt +  K (dr. rd .dz) 
2

1

r 2

2


 T

dt + K(dr. rd .dz) 
2

2

z

T




dt  ---------(A) 

Heat generated with in the element (B) 

                              Qg  =  qg (dr.rd .dz) .dt                        ----------(B) 

 

Energy stored in the element (C) 

                               QE = mCp (temperature difference) 

                               QE =ʌV Cp
t

T




dt 

                               QE =ʌ (dr.rd .dz) Cp
t

T




dt                        ----------(C) 

Energy balance equation  

(A) + (B) = (C) 
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K(dr rd dz) (
2

2

r

T




+
r

1

r

T




)dt +K (dr. rd .dz) 
2

1

r 2

2


 T

dt + K(dr. rd .dz) 
2

2

z

T




dt  + qg (dr.rd .dz) .dt 

      = ʌ (dr.rd .dz) Cp
t

T




dt 

                   K (
2

2

r

T




+
r

1

r

T




) +
2

1

r 2

2


 T

+ 
2

2

z

T




)+ qg = ʌ Cp
t

T




 

                     
2

2

r

T




+
r

1

r

T




 +
2

1

r 2

2


 T

+ 
2

2

z

T




+ 
K

q g
  =  

K

Cp
t

T




 

                       

 

The aďoǀe eƋuatioŶ is Đalled ͞geŶeƌal heat ĐoŶduĐtioŶ eƋuatioŶ foƌ uŶsteadǇ state thƌee diŵeŶsioŶal 

ǁith iŶteƌŶal heat geŶeƌatioŶ͟ iŶ cylindrical coordinate system 

 General heat conduction in spherical coordinate system:- 

2

2

22 sin

1


 T

r 
+

 


sin

1
2r

;siŶθ. 

T

) +
2

1

r r


(r2 
r

T




)+ 
K

q g
 =  


1

t

T




 

One dimensional heat flow:- 

Heat conduction through a plane wall: 

 

2

2

r

T




+
r

1

r

T




 +
2

1

r 2

2


 T

+ 
2

2

z

T




+ 
K

q g
 =  


1

t

T



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Consider a plane wall of homogeneous material which heat is flowing only in x-direction  

L = thickness of the plane wall 

A = Cross sectional area of the wall 

K = thermal conductivity of the wall material  

T1, T2 = Temperature maintained at two faces. 

At   x = 0  T=T1  (Initial condition) 

At   x = L  T=T2  (Boundary Condition) 

One dimensional steady state without heat generation  

                            
2

2

x

T




 = 0 

 (Or) 

                           
2

2

dx

Td
  = 0 

By integrating the above equation twice  

                            
dx

dT
  = C1 

                                T  = C1 x +C2      --------------(a) 

Appling initial condition  

                              C2  = T1 

Appling boundary condition 

                              T2  = C1(L)+C2 
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                               C1 = 
L

TT 12 
 

C1&C2 values substitute in equation (a) 

                                T  =(
L

TT 12 
) x + T1 

AĐĐoƌdiŶg to Fouƌieƌ͛s Laǁ 

                                Q  = - KA
x

T




 

      

     = - KA
x


[(
L

TT 12 
) x + T1] 

      = - KA (
L

TT 12 
) 

                              Q = KA (
L

TT 21  ) 

                            Q =  
KA

L

TT 21 
 

                                 Q =  
condthR

TT 21   

Heat conduction through a plane wall: 

Consider A, Band C composite wall 

                  LA,LB,LC = thickness of slabs A,Band C respectively, 

                 KA,KB,KC = Thermal conductivities of the slabs A,BandC respectively, 
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                   T1,T4 = Temperature at the wall surface 1 and 4 respectively, 

                   T2,T3 = Temperature at the interface 2 and 3 respectively 

 

Perfect contact between layers so no temperature drop. 

Q = KA A(
AL

TT 21 
) = KB A(

BL

TT 32  ) = KC A(

CL

TT 43  ) 

                      T1-T2 = 
AK

QL

A

A
                ---------(i) 

                          T2-T3  = 
AK

QL

B

B                 ---------(ii) 

                          T3-T4  = 
AK

QL

C

C                 ---------(ii) 

By adding equation (i),(ii),(iii) 

                 T1-T4  = 
AK

QL

A

A
 + 

AK

QL

B

B + 
AK

QL

C

C  

                T1-T4  = Q[
AK

L

A

A  + 
AK

L

B

B + 
AK

L

C

C ] 
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                       Q =    

AK

L

AK

L

AK

L

TT

C

C

B

B

A

A 

 41  

                       Q =    
CBA RRR

TT


 41

 

Heat Flux(Q/A) 

                     
A

Q
  =    

C

C

B

B

A

A

K

L

K

L

K

L

TT



 41    (
2m

W
) 

Coŵposite ǁall ͚Ŷ͛ laǇeƌs, 

      Q   =    





n

n

n

KA

L

TT

1

11  

      Q   =    
 



R

T Overall
 

The overall heat transfer coefficient 

 While dealing with the problems of fluid to fluid heat transfer across a metal boundary, it is usual to 

adopt an overall heat transfer coefficient U which gives the heat transmitted per unit area per unit time 

per degree temperature different between the bulk fluids on each side of the metal.  

Q =hhf A(Thf-T1) = K A(
L

TT 21  )  = hcf A(T2-Tcf) 

                         Thf-T1  = 
Ah

Q

hf

                ---------(i) 

                         T1-T2  = 
AK

QL
                ---------(ii) 
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                          T2-Tcf = 
Ah

Q

Cf

                ---------(ii) 

By adding equation (i),(ii),(iii) 

              Thf-Tcf  = 
Ah

Q

hf

 + 
AK

QL
+ 

Ah

Q

Cf

 

              Thf-Tcf  = Q[
AhhfA

1
 + 

AK

L
+ 

AhCf

1
] 

                      Q  =    

AhKA

L

Ah

TT

Cfhf

cfhf

11



 

                     Q   =    

321 RRR

TT cfhf




 

                     Q   =    

Cfhf

cfhf

hK

L

h

TTA

11

)(




 

                     Q   =  U0 A (Thf-Tcf) 

                                 Uo= 

Cfhf hK

L

h

11

1


 

Uo   = Overall heat transfer coefficient  

Heat conduction through hollow cylinder:- 

Consider a hollow cylinder  of homogeneous material which heat is flowing only in radial direction  

L = length of the cylinder wall 

A = Cross sectional area of the cylinder 
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K = thermal conductivity of the wall material  

T1, T2 = Temperature maintained at two faces. 

 

At   r = r1  T=T1  (Initial condition) 

At   r = r2  T=T2  (Boundary Condition) 

One dimensional steady state without heat generation  

            
2

2

r

T




  +
r

T

r 
1

  = 0 

                   (Or) 

           
2

2

dr

Td
  +

dr

dT

r

1
  = 0 

By integrating the above equation twice  

        
r

1
 [

dr

d
 ( 

dr

dT
r )] = 0 

0
1


r
   

dr

d
 ( 

dr

dT
r ) = 0 

  
dr

dT
r  = C1 

    
dr

dT
 = 

r

C1  
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          T = C1ln(r) + C2       ------------------------(A) 

Appling initial condition  

                                T1 = C1ln (r1) + C2      ------------------------ (1) 

Appling boundary condition 

                                T2 = C1ln (r2) + C2      ------------------------ (2) 

 

By subtracting equation (1) and (2) 

                               C1  = 











2

1

21

ln
r

r

TT
 

Substitute C1 value in equation (1) 

                              T1 =











2

1

21

ln
r

r

TT
 ln (r1) + C2 

                             C2 = T1 - 











2

1

21

ln
r

r

TT
 ln (r1) 

Substitute C1 & C2 value in equation (A) 

                                T  = 











2

1

21

ln
r

r

TT
ln (r) +T1- 











2

1

21

ln
r

r

TT
 ln (r1)   

                                 T = 











2

1

21

ln
r

r

TT
[ln (r) - ln (r1)] +T1 www.C
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                                 T = 











2

1

21

ln
r

r

TT
[ln (

1r

r
) ] +T1 

AĐĐoƌdiŶg Fouƌieƌ͛s Laǁ 

                                Q = - KA
r

T




 

                                Q = - KA
r


[











2

1

21

ln
r

r

TT
[ln (

1r

r
) ] +T1] 

                                Q = -KA 











2

1

21

ln
r

r

TT
(

r

r1 )(
1

1

r
) 

                                Q =  KA 











1

2

21

ln
r

r

TT
 (

r

1
) 

A = Ϯʋ ƌ L ;“uƌfaĐe Aƌea of the CǇliŶdeƌͿ 

                                Q =  K;Ϯʋ ƌ LͿ 











1

2

21

ln
r

r

TT
 (

r

1
) 

                                Q =  Ϯʋ K L 











1

2

21

ln
r

r

TT
  

                           Q =  

KL
r

r

TT

2

ln
1

2

21










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                               Q =  
R

TT 21 
  

Thermal resistance   R  = 
KL

r

r

2

ln
1

2










 

Heat conduction thorough a composite cylinder:- 

Consider Inside and out side convection. 

Q  = hhf Ai(Thf -T1Ϳ =Ϯʋ KA L 











1

2

21

ln
r

r

TT
  =Ϯʋ KB L 











2

3

32

ln
r

r

TT
  =  hcf Ao(T3-Tcf) 

Ai and Ao are inside and outside surface area, 

Q  = hhf ;Ϯʋ ƌ1L) (Thf -T1Ϳ =Ϯʋ KA L 











1

2

21

ln
r

r

TT
  =Ϯʋ KB L 











2

3

32

ln
r

r

TT
  =  hcf ;Ϯʋ ƌ3L) (T3-Tcf) 

                         Thf-T1  = 
Lrh

Q

hf 12 
                ---------(i) 

                          T1-T2  = 
LK

r

r
Q

A2

ln
1

2










                ---------(ii) 

                           T2-T3 = 
LK

r

r
Q

B2

ln
2

3










                ---------(iii) 

                          T3-Tcf = 
Lrh

Q

Cf 32
                ---------(iv) 

By adding equations  
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                    (Thf - Tcf)  =  

Lrh

Q

hf 12 
+

LK

r

r
Q

A2

ln
1

2










+
LK

r

r
Q

B2

ln
2

3










+
Lrh

Q

Cf 32
 

                    (Thf - Tcf)  =  Q[
Lrhhf 12

1


+

LK

r

r

A2

ln
1

2










+
LK

r

r

B2

ln
2

3










+
LrhCf 32

1


] 

                           Q = (Thf - Tcf)  / [
Lrhhf 12

1


+

LK

r

r

A2

ln
1

2










+
LK

r

r

B2

ln
2

3










+
LrhCf 32

1


] 

                           Q  =   

LrhLK

r

r

LK

r

r

Lrh

TT

CfBAhf

cfhf

3

2

3

1

2

1 2

1

2

ln

2

ln

2

1





 

                                Q  =   

3

2

3

1

2

1

1
lnln

1

)(2

rhK

r

r

K

r

r

rh

TTL

CfBAhf

cfhf




 

Add  r1 in denominator and numerator  

                      Q  =    

3

12

3
1

1

2
1

1

lnln
1

)(2

rh

r

K

r

r
r

K

r

r
r

h

TTLr

CfBAhf

cfhf




 

                                Q  =    

3

12

3
1

1

2
1 lnln

1

)(

rh

r

K

r

r
r

K

r

r
r

h

TTA

CfBAhf

cfhfi




 

We know , 
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                             Q = Ui )( cfhfi TTA   

                        Ui = Over all heat transfer coefficient based on inner side  

                                   Ui = 

3

1

2

31

1

21 lnln
1

rh

r

r

r

K

r

r

r

K

r

h CfBAhf


















  

Add  r3 in denominator and numerator  

                                   Q =    

CfBAhf

cfhf

hK

r

r
r

K

r

r
r

h

r

TTLr

1
lnln

)(2

2

3
3

1

2
3

3

3




 

                                    Q =    

CfBAhf

cfhfo

hK

r

r
r

K

r

r
r

h

r

TTA

1
lnln

)(

2

3

3

1

2
3

3 


 

We know , 

                                    Q = Uo )( cfhfo TTA   

                                   Uo= Over all heat transfer coefficient based on outer side  

                                   Uo= 

CfBAhf hr

r

K

r

r

r

K

r

rh

r 1
lnln

2

33

1

23

1

3 
















  

Heat conduction through hollow sphere  

Consider a hollow sphere of homogeneous material which heat is flowing only in radial direction  

At r = r1  T = T1   (Initial condition) 

At r = r2  T = T2   (Boundary condition) 
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General heat conduction equation for One dimensional steady state heat conduction with out heat 

generation  

 

         
2

1

r dr

d
 ( 

dr

dT
r 2

) = 0 

               
dr

d
 ( 

dr

dT
r 2

) = 0 

                        
dr

dT
r 2

  = C1 

                             
dr

dT
 = 

2

1C

r
 

                                  T   = -
2

1C

r
+C2     ------------------------(A) 

Appling initial condition  

                                 T1  = -
2

1C

r
+C2     ------------------------(i) 

Appling Boundary condition  

                                T2   = -
2

1C

r
+C2     -----------------------(ii) 

By subtracting equations  
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                           T1- T2   = -
2

1C

r
+

2

1C

r
 

                                 C1 = 








 

21

21

21

.

T-T

rr

rr
  

                                 C2 = T1 + 
21

212 )T-(T 

rr

r


 

C1, C2Substitute in equation (A) 

                                  T  = - 








 

21

21

21

.

T-T

rr

rr
r

+T1 + 
21

212 )T-(T 

rr

r


 

AĐĐoƌdiŶg Fouƌieƌ͛s Laǁ 

                               Q  = - KA
r

T




 

                               Q = - KA 
r


[- 








 

21

21

21

.

T-T

rr

rr
r

+T1 + 
21

212 )T-(T 

rr

r


] 

                               Q = - KA [








 

21

212

21

.

T-T

rr

rr
r

] 

A = suƌfaĐe Aƌea of the spheƌe  = ϰʋ ƌ2 

                                Q = - Kϰʋ ƌ2 [








 

21

212

21

.

T-T

rr

rr
r
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                                Q = ϰʋ K  








 

21

12

21

.

)T-(T

rr

rr
 

                                Q =  








 

21

12

21

.4

)T-(T

rKr

rr



 

                                 Q =  
R

overall)T(
 

R= Thermal resistance = 
21

12

.4 rKr

rr




 

Heat conduction through Composite sphere:- 

                                Q =  

2

332

23

21

12

2

1

cfhf

4

1

.4.44

1

)T-(T

rhrrK

rr

rrK

rr

rh cfBAhf 











 


 

                               Q =  

2

332

23

21

12

2

1

cfhf

1

..

1

)T-(T4

rhrrK

rr

rrK

rr

rh cfBAhf










  ---------------------(B) 

Multiply r1 in denominator and numerator  

                                Q =  

2

3

2

1

32

123

2

112

cfhf

2

1

.

)(1

)T-(T4

rh

r

rrK

rrr

r

r

K

rr

h

r

cfBAhf















 

                                Q =  

2

3

2

1

32

123

2

112

cfhf

.

)(1

)T-(T

rh

r

rrK

rrr

r

r

K

rr

h

A

cfBAhf

i














 

We know 
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                                Q = Ui )T-(T cfhfiA  

                                Ui = Overall heat transfer coefficient based on inner side 

                                Ui = 

2

3

2

1

32

123

2

112

.

)(1

1

rh

r

rrK

rrr

r

r

K

rr

h
cfBAhf














 

Multiply r3 in denominator and numerator in eqn.(B) 

                                 Q =  

cfBAhf
hrK

rrr

rrK

rrr

rh

r

r

1)()(

)T-(T4

2

323

21

2

312

2

1

2

3

cfhf

2

3










 

                                 Q =  

cfBAhf
hrK

rrr

rrK

rrr

rh

r

A

1)()(

)T-(T

2

323

21

2

312

2

1

2

3

cfhfo









 

We know 

                                 Q = Uo )T-(T cfhfoA  

                                Uo= Overall heat transfer coefficient based on outer side 

                                Uo= 

cfBAhf
hrK

rrr

rrK

rrr

rh

r 1)()(

1

2

323

21

2

312

2

1

2

3 






 

Critical thickness of insulation  

Insulation  

Purpose of insulation is, 

1. it prevents the heat flow from the system to the surroundings 

2. it prevents the heat flow from the surroundings to the system 

Critical thickness of insulation 
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The thickness up to which heat flow increase and after which heat flow decrease is termed as critical 

thiĐkŶess. IŶĐase of ĐǇliŶdeƌs aŶd spheƌes is Đalled ͞ĐƌitiĐal ƌadius͟  

Application : 

1. Boilers and steam pipes 

2. Air-conditioning system 

3. Food preserving stores and refrigerators 

4. Insulating bricks 

5. Preservation of liquid gases etc, 

Critical thickness of insulation for cylinder:- 

Consider a solid cylinder of radius r1 insulated with an insulation of thickness (r2-r1) as shown in fig. 

               L = length of the cylinder 

              T1 = Surface temperature of the cylinder  

              Ta =Temperature of air 

               K = Thermal conductivity of insulating material  

                              Q = 

20

1

2

1

1
ln

)(2

rhK

r

r

TTL a




 

Q becomes maximum when denominator becomes minimum 

   























20

1

2

2

1
ln

rhK

r

r

r
= 0 

   
2

2012

1 111

rhrr

r

K
 = 0 

 
2

202

111

rhrK
   = 0 

  20rh   = K 

  
2r   =

0h

K
              2r =    rc     =

h

K
 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


In the physical sense we may arrived at the following conclusions:- 

 

1. For cylindrical bodies with r1<rc the heat transfer by adding insulation till 
2r =  rc. When r1 is 

small and rc is large, the thermal conductivity of insulation K is high (poor insulating material) 

and   0h  is low 

 Application: 

 Electric cables – Good insulating for current ,Poor insulating for heat 

2. For cylindrical bodies with r1>rc the heat transfer by adding insulation till 
2r =  rc. When r1 is large 

and rc is small, the thermal conductivity of insulation K is low and   0h  is high 

 Application: 

 Steam pipes – Good insulating for heat 

Critical thickness of insulation for sphere: 

 

        Q = 

2

2021

12

1

4

1

4

)(

)(

rhrKr

rr

TT a







 

Q becomes maximum when denominator becomes minimum 

 

















2

2021

12

2 4

1

4

)(

rhrKr

rr

r 
  = 0 
















2

20212 4

1

4

1

4

1

rhKrKrr 
 = 0 

  
2

24

1

Kr
 - 

3

204

2

rh
 = 0 

   
2

24

1

Kr
 =

3

204

2

rh
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2r  =

0

2

h

K
 

 

 

Problems:- 

1. Calculate the critical radius of insulation for asbestos (K=0.172
mK

W ) surrounding a pipe and 

exposed to room air at 300K with h = 2.8 
Km

W
2 . Calculate the heat loss from a 475K, 60 mm diameter 

pipe when covered with the critical radius of insulation and without insulation. 

Given: 

                  K =0.172
mK

W  

               h = 2.8 
Km

W
2  

              T1 = 475 K 

                   Ta  = 300 K 

Solution:- 

              rc  =
h

K
 =

8.2

172.0
=61.42mm 

Q (with insulation) =  

c

c

a

rhK

r

r

TTL

0

1

1

1
ln

)(2




 

  = 110.16 
m

W   

Q (with out insulation) = ho )(2 11 aTTLr   

2r =    rc      =
h

K2
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   = 92.36 
m

W  

 

2. A small electric heating application uses wire of 2mm diameter with 0.8 mm thick insulation 

(K=0.12 
mK

W ).the heat transfer coefficient of the insulated surface is 35  
Km

W
2 . Determine 

the critical thickness of insulation in this case and the percentage change in the heat transfer 

rate if the critical thickness is used. Assuming the temperature difference between the surface  

of the wire and surrounding air remains unchanged. 

  Given: 

                           K =0.12
mK

W  

                      h = 35 
Km

W
2  

        r1 = 1mm = 1X10-3 m 

                    r2 = 1+0.8mm = 1.8X10-3 m 

 

Solution:- 

                rc =
h

K
   =

8.2

172.0
=61.42mm 

Case - I 

   Q1 (with critical insulation) =    

c

c

a

rhK

r

r

TTL

0

1

1

1
ln

)(2




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   =      aTT 1( ) 

Case - II 

              Q2 (with insulation) = 

20

1

2

1

1
ln

)(2

rhK

r

r

TTL a




 

    =       aTT 1( ) 

                         % increase  = 

1

21

Q

QQ 
x 100 

    = 11.6 % 

 

3. A wire of 6.5mm diameter at a temperature of 60ºC is to be insulated by a material having  

K=0.174
mK

W .convection heat transfer coefficient h= 8.722
Km

W
2 . The ambient 

temperature is 20 ºC. for maximum heat loss, what is the minimum thickness of insulation and 

heat loss per meter length? Also find percentage increase in the heat dissipation too. 

Given: 

                  K =0.174
mK

W  

               h = 8.722 
Km

W
2  

              T1 = 60 ºC 

                   Ta  = 20 ºC 

              r1 = 3.25 mm 
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Solution:- 

              rc  =
h

K
 =

722.8

174.0
=19.95 mm 

Q (with insulation) =  

c

c

a

rhK

r

r

TTL

0

1

1

1
ln

)(2




 

  = 15.537 
m

W   

Q (with out insulation) = ho )(2 11 aTTLr   

   = 7.124 
m

W  

                % increase  = 

1

21

Q

QQ 
x 100 

   = 118.09 % 

Heat conduction with internal heat generation: 
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Following are some of the cases where heat generation and heat conduction are encountered 

1. Fuel rod – Nuclear reactor  

2. Electrical conductors 

3. Chemical and combustion process 

4. Drying and settling of concrete  

Plane wall with uniform heat generation :- 

Heat conducted  

                  Qx  = - KA 
dx

dT
 

Heat generated in the element: 

        Qg = A.dx.qg 

qg = Heat generated per unit volume per unit time in the element 

Heat conducted x+dx distance   

                                 Q(x+dx)  = Qx + )(Qx
x


dx 

                                 Q(x+dx) = Qx + Qg 

                     Qx + )(Qx
x


dx = Qx + Qg 

        Qg = )(Qx
x


dx 

           A.dx.qg = 
x


(- K A 
x

T




) dx 

   = -KA
2

2

x

T




dx 
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         qg = -K
2

2

x

T




 

     
2

2

x

T




 = -
K

gq
 

        
2

2

x

T




+
K

gq
 = 0 

Integrating twice  

  
x

T




 = - x
K

gq
 +C1  

          T = -
2

2

q
x

K

g
 +C1x+C2 

Case -1 

Both the surface having the same temperature: 

At x = 0  T=Tw (initial condition) 

At x =L  T=Tw (Boundary condition) 

Appling initial condition  

       C2 = Tw  

Appling Boundary condition : 

         Tw = -
2

2

q
L

K

g
 +C1L+ Tw 

         C1 = L
K

g

2

q
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                    T = -
2

2

q
x

K

g
 + L

K

g

2

q
x+ Tw 

        T = xxL
K

g
)(

2

q
  + Tw 

The location of the maximum  temperature  

                                         
x

T




 = L
K

g

2

q
 - 2x

K

g

2

q
  

                                          
x

T




= )2(
2

q
xL

K

g    

                                          
x

T




= 0 

                           )2(
2

q
xL

K

g   = 0 

          x  =
2

L
 

        Tmax = 
2

)
2

(
2

q LL
L

K

g   + Tw 

  Tmax = )
4

(
2

q 2L

K

g
 + Tw 

  Tmax = 
2

8

q
L

K

g
 + Tw 

AĐĐoƌdiŶg to Fouƌieƌ͛s Laǁ  

                   Qx  = - KA 







   Tx)x-(L

2

q
w

g

Kdx

d
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 =- KA 







 2x)-(L

2

qg

K
 

At x=L 

     Q = gq
2

AL
 

When both surface are considered  

   Q = 2x gq
2

AL
 = ALqg 

Problems:- 

1. the rate of heat generation in a slab of thickness 160mm (K= 180
mK

W ) is 1.2x106

m
W .If the 

temperature   of each of the surface of the solid is 120 ºC determine. 

  i) The temperature at the mid and quarter planes, 

  ii) the heat flow rate  

Given data : 

                       Tw = 120 ºC 

        qg = 1.2x106

m
W  

          K = 180
mK

W  

          L = 160 mm = 0.16 m 

To find :- 

(i) T(x=L/2), & T(x=L/4) 

(ii) Q(x=L/2)  & Q(x=L/4)   

Solution :- 
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(i)         T = xxL
K

g
)(

2

q
  + Tw 

  T(x=L/2) = )4/(
2

q
2L

K

g
 + Tw    = 141.33 ºC 

  T(x=L/4) = )16/3(
2

q
2L

K

g
 + Tw = 136 ºC 

(ii)   Q(x=L/2) = Axqg = 96000 2
m

W  

   Q(x=L/4) = Axqg = 48000 2
m

W  

 

Extended Surface :- (Fins) 

  The fins enhance the heat transfer rate from a surface by exposing large surface area to 

convection. The fins are normally thin strips of highly conducting metals such aluminium, copper, brass 

etc.  

Types of fins:- 

i) uniform straight fin 

ii) Tapered straight fin 

iii) Splines  

iv) Annular fin 

v) Pin fins(spines) 

 

Heat flow through rectangular Fin:- 

           To = Temperature at the base of the fin 

           Ta = ambient temperature   
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Heat conducted into the element  

        Qx   = - K Acs

dx

dT
 

Heat conducted at distance (x+dx)  

                     Q(x+dx) = Qx + dxQx
dx

d
).(  

Heat convected out of the element between the planes x and (x+dx) 

  Qconv = hAdT 

  = hx(Pxdx).(T-Ta) 

Appling an energy balance on the element  

                         Qx = Q(x+dx)+Qconv 

                              Qx = Qx + dxQx
dx

d
).( + h(Pdx).(T-Ta) 

     - dxQx
dx

d
).(  = h(Pdx).(T-Ta) 

      - dx
dx

d

dx

d
).

T
AK  -(  = h(Pdx).(T-Ta) www.C
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2

2

AK 
dx

Td
 = hP.(T-Ta) 

                     
2

2

dx

Td
 = 

KA

hp
.(T-Ta) 

      (Or) 

   
2

2 )(

dx

TTd a
 = 

KA

hp
.(T-Ta) 

 
2

2 )(

dx

TTd a
-

KA

hp
.(T-Ta) = 0 

  T-Ta = θ 

                  
2

2

dx

d 
-

KA

hp
.( θͿ = 0 

       
KA

hp
 = m2  m = 

KA

hp
 

   
2

2

dx

d 
 -  m2.( θͿ = 0 

          θ  = C1emx+C2e-mx 

                                  T-Ta  = C1emx+C2e-mx
 

The following cases may be considered  

Case – 1 (Long fin) 

 The fin is infinitely long and the temperature a tend of the fin ,is equal to the ambient. 

Case – 2 (Short fin end is insulated) 

 The fin is short and the end of the fin is insulated. 
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Case – 3 (short fin end is not insulated) 

 The fin is short and the end of the fin is not insulated.(loses by convection) 

Heat dissipation from an infinitely long fin  

L = ∞ 

At x = 0 ,T=To       θ =  θ0, (Initial condition) 

At x = ∞ ,T=Ta     θ =  Ϭ ;ďouŶdaƌǇ ĐoŶditioŶͿ 

Applying initial condition  

           θ = C1emx+C2e-mx 

         θ0 = C1+C2 

applying boundary condition 

                θ = C1emx+C2e-mx 

                                             0 = C1em∞+C2e-m∞
 

           C1 = 0 

         C2 = θ0 

                                            θ  = C1emx+C2e-mx  

            θ  = θ0e-mx 

                                       T-Ta  = (T0-Ta)  e-mx
 

                                            T   = (T0-Ta)  e-mx +Ta   

AĐĐoƌdiŶg to Fouƌieƌ͛s laǁ 

                                        Qfin   = - K A
dx

dT
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   = - K A
dx

d
{(T0-Ta)  e-mx +Ta ) } 

   = - K A(-m)(T0-Ta)  e-mx  

   = K A m (T0-Ta)  e-mx 

          m = 
KA

hp
 

   At x = 0 

                    Qfin = K A 
KA

hp
 (T0-Ta)  e-m(0) 

        

 

Heat dissipation from a fin insulated at the tip :- (Short fin end insulated) 

 

At x = 0 ,T=To       θ =  θ0, (Initial condition) 

At x = L , 
dx

dT
 = 0  (boundary condition) 

                                            θ = C1emx+C2e-mx 

Appling initial condition  

                                           θ0 = C1+C2 

Appling boundary condition  

                             T-Ta  = C1emx+C2e-mx
 

Qfin  = hpKA (T0-Ta)   
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Differentiating both side  

    
dx

dT
 = mC1emx - mC2e-mx 

      mC1emL - mC2e-mL = 0 

 

         mC1emL - m ;θ0-C1)e-mL = 0 

                C1emL - ;θ0-C1)e-mL = 0 

                         C1 (emL +e-mL) = θ0 e-mL 

                      C1  = 












mL-mL e e

mle θ0  

         C2 = θ0(1 - 












mL-mL e e

mle
) 

Substitute C1, C2 Values  

 

                                      T-Ta   = 












mL-mL e e

mle θ0 emx+ [1 - 












mL-mL e e

mle ]θ0e-mx
 

                                      T-Ta   = 












mL-mL e e

mle
 (T0-Ta ) emx+ (T0-Ta ) (1- 













mL-mL e e

mle
 ] e-mx

 

                               








a0

a

T-T

  T-T
 = 













mL-mL e e

mle
 emx + 1 - 













mL-mL e e

mle
 e-mx

 

          








a0

a

T-T

  T-T
 = 













mL-mL

)(

e e

lxme
+ 













mL-mL

)(

e e

xlme
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          








a0

a

T-T

  T-T
 = 











 

mL-mL

)()(

e e

xlmlxm ee
 

          








a0

a

T-T

  T-T
 = 











 

mL-mL

)()(

e e

xlmxlm ee
 

          








a0

a

T-T

  T-T
 = 






 

coshml

)(cosh xlm
 

 

 

AĐĐoƌdiŶg to Fouƌieƌ͛s laǁ  

                                        Qfin   = - K A
dx

dT
 

   = - K A
dx

d
[ 






 

coshml

)(cosh xlm
(To-Ta)+Ta] 

   = K A m 





 

coshml

)(sinh xlm
(To-Ta) 

                          Qfin  = K A 
KA

hp
 






 

coshml

)(sinh xlm
(To-Ta) 

        

At x = 0 

             Qfin  = hpKA  







coshml

sinh ml
(To-Ta) 

             Qfin  = hpKA  (To-Ta) mltanh  

Qfin  = hpKA (T0-Ta) 





 

coshml

)(sinh xlm
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Heat dissipation from a fin losing heat at the tip (short fin end is not insulated ) 

Temperature distribution  

 

                             








a0

a

T-T

  T-T
 = 

ml
km

hml

xlm
km

hxlm

sinhcosh

)(sinh)(cosh




 

 

                                      Qfin = hpKA  (To-Ta) 


















ml

km
hml

tanh
km

k1

tanh

 

4.4.1. Fin Effectiveness, f: Fins are used to increase the heat transfer from a surface by increasing the 

effective surface area. When fins are not present, the heat convected by the base area is given by Ah(To – 

T∞), where A is the base area. When fins are used the heat transferred by the fins, qf, is calculated using 

equations. The ratio of these quantities is defined as fin effectiveness. 

 
Fin efficiency, f: This quantity is more often used to determine the heat flow when variable area fins are 

used. Fin efficiency is defined as the ratio of heat transfer by the fin to the heat transfer that will 

take place if the whole surface area of the fin is at the base temperature. 

 

CIRCUMFERENTIAL FINS AND PLATE FINS OF VARYING SECTIONS 

Circumferential fins and plate fins of varying sections are in common use. The preceding analysis has not 

taken this into account. As already mentioned the fin efficiency is correlated to the combination of 

parameters L, t, h and k (length, thickness, convection coefficient and thermal conductivity). Once these 

are specified, the chart can be entered by using the parameter to determine efficiency. The value of 

efficiency, the surface area, temperature and convection coefficient provide the means to calculate the 

heat dissipated. 

Q = fin efficiency. As h (Tb – T∞) 
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Charts are available for constant thickness circumferential fins, triangular section plate fins and pin fins of 

different types. The parameters used for these charts are given in the charts. 

 

The fin efficiency chart for circumferential fins is given below: 

 

 

 
 

TRANSIENT HEAT CONDUCTION 
 

Heat transfer equipments operating at steady state is only one phase of their functioning. These have to be 

started and shut down as well as their performance level may have to be altered as per external 

requirements. A heat exchanger will have to operate at different capacities. This changes the conditions at 

the boundary of heat transfer surfaces. Before a barrier begins to conduct heat at steady state the barrier 

has to be heated or cooled to the temperature levels that will exist at steady conditions. Thus the study of 

transient conduction situation is an important component of conduction studies. This study is a little more 

complicated due to the introduction of another variable namely time to the parameters affecting 

conduction. This means that temperature is not only a function of location but also a function of time, , 
i.e. T = T (x, y, z, ). In addition heat capacity and heat storage (as internal energy) become important 

parameters of the problem. The rate of temperature change at a location and the spatial temperature 

distribution at any time are the important parameters to be determined in this study. This automatically 

provides information about the heat conduction rate at any time or position through the application of 

Fourier law. 

 

LUMPED PARAMETER MODEL 

 

It is also known as lumped heat capacity system. This model is applicable when a body with a known or 

specified temperature level is exposed suddenly to surroundings at a different temperature level and when 

the temperature level in the body as a whole increases or decreases without any difference of temperature 
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within the body. i.e., T = T() only. Heat is received from or given to the surroundings at the surface and 

this causes a temperature change 

instantly all through the body. The model is shown in Fig. 

 
The body with surface area As, volume V, density , specific heat c and temperature T at the time instant 

zero is exposed suddenly to the surroundings at T∞with a convection coefficient h (may be radiation 

coefficient hr). This causes the body temperature T to change to T + dT in the time interval d. The 

relationship between dT and dcan be established by the application of the energy conservation principle. 

Heat convected over the boundary = Change in internal energyover a time period dduring this 

time 

If dT is the temperature change during the time period dthen the following relationship results: 

 (As-Surface area) 

h As (T – T∞) d= c VdT 

This equation can be integrated to obtain the value of T at any time. The integration is possible after 

introducing a new variable. 

= T- T∞ 

The equation now becomes 

hAsd=cVd ℎ���ܿ� ݀� = ݀� 

Separating the variables and integrating and using the initial conditions that at =0, =o and denoting 

V/As=L, we get  �� ��� = ℎ���ܿ� � 

Substituting for  and o and taking the antilog ܶ − ∞ܶ�ܶ − ∞ܶ = ݁−ℎ������ = ݁− ℎ����
 

Heat flow up to time  
 = cV ( T - Ti ) 

 

SEMI INFINITE SOLID 

 

Theoretically a solid which extends in both the positive and negative y and z directions to infinity 

and in the positive x direction to infinity is defined as a semi infinite body. There can be no such body in 

reality. If one surface of a solid with a particular temperature distribution is suddenly exposed to 

convection conditions or has its surface temperature changed suddenly, conduction will produce a change 

in the temperature distribution along the thickness of the body. If this change does not reach the other side 

or surface of the solid under the time under consideration, then the solid may be modeled as semi infinite 

solid. A thick slab with a low value of thermal diffusivity exposed to a different environment on its 

surface can be treated as semi infinite body, provided heat does not penetrate to the full depth in the time 
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under consideration. A road surface exposed to solar heat or chill winds can be cited as an example of a 

semi infinite body. There are a number of practical applications in engineering for the semi infinite 

medium conduction. 

The differential equation applicable is the simplified general heat conduction equation: in rectangular 

coordinates, (excluding heat generation) eqn.  

 

 
There are three types of boundary conditions for which solutions are available in a simple form. These are 

(i) at time = 0, the surface temperature is changed and maintained at a specified value, (ii) at time = 0, 

the surface exposed to convection at T∞and (iii) at time = 0, the surface is exposed to a constant heat 

flux q. 

at = 0, T(x, ) = Ti, or T(x, 0) = Ti 

For > 0, T(0, ) = Ts i.e. at x = 0, T = Ts at all times. 

The analytical solution for this case is given by derivation available in specialized texts on conduction 

 
where, erf indicates “error function of” and the definition of error function is generally available in 
mathematical texts. Usually tabulations of error function values are available in handbooks. (Refer 

appendix). 

The heat flow at the surface at any time is obtained using Fourier’s equation –kA (dT/dx). The surface 

heat flux at time is 

 
The total heat flow during a given period can be obtained by integrating qs() dbetween the limits of 0 

and 
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TRANSIENT HEAT CONDUCTION IN LARGE SLAB OF LIMITED THICKNESS, LONG 

CYLINDERS AND SPHERES 

This model is the one which has a large number of applications in heating and cooling processes a special 

case being heat treatment. The general solution process attempts to estimate the temperature at a specified 

location in a body (which was at a specified initial temperature) after exposure to a different temperature 

surroundings for a specified time. The other quantity of interest is the change in the internal energy of the 

body after such exposure. 

 

The differential equation applicable for a slab extending to ∞in the y and z directions and thickness 2L 

in the x direction with both surfaces suddenly exposed to the surroundings is equation 

 
The initial condition at time zero is 

T = Ti all through the solid. i.e. x = – L to x = L. 

The boundary condition is 

 
at x = L and x = – L 

The equation is solved using a set of new variables X and defining T = X.(X is a function of x only and 

is a function of only). The algebra is long and tedious. 
The solution obtained is given below : 

 
The temperature essentially is a function of Bi, Fo and x/L or T =f(Bi, Fo, x/L) 
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Where  Tx, = the temperature at x and  
Ti= initial temperature 

T∞= surrounding temperature 

Bi=hL/k=Biot number 

Fo= Fourier number = α/L2 

n= roots of the equation n tan n=Bi 

The solution using calculating devices is rather tedius and the results in a graphical form, was first 

published by  Heisler in 1947, using the parameters Biot number and Fourier number 

 
Heat Transfer during a given time period: The total heat transfer can be obtained by using 

 
and substituting for TL,from equation (6.21). As the resulting expression indicates that it is a function of 

h2α/k2 and hL/k these solutions have been presented by Heisler as shown in the skeleton form in Fig  as 

Q/Qo. where Q-heat transferred over the given period, and 
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Heat and mass Transfer 

Unit I  

November 2008 

1. Calculate the rate of heat loss through the vertical walls of a boiler furnace of size 4 

m by 3 m by 3 m high. The walls are constructed from an inner fire brick wall 25 cm 

thick of thermal conductivity 0.4 W/mK, a layer of ceramic blanket insulation of 

thermal conductivity 0.2 W/mK and 8 cm thick, and a steel protective layer of 

thermal conductivity 55 W/mK and 2 mm thick. The inside temperature of the fire 

brick layer was measured at 600
o
 C and the temperature of the outside of the 

insulation 60
0
 C. Also find the interface temperature of layers. 

Given: 

Composite Wall 

l= 4m     b= 3m  h= 3m 

Area of rectangular wall lb = 4x3 = 12m
2  

L1 = 25 cm  Fire brick 

kı  = 0.4 W/mK  

L2 =0.002m  Steel 

k2  = 54 W/mK  

L3 = 0.08 m  insulation 

kı  = 0.2 W/mK  

T1 = 600
0
 C 

T2  = 60
0
 C 

Find 

(i) Q  (ii) (T3 –T4) 

Solution 

We know that, ܳ =
௧௛ܴߑ௢௩௘௥௔௟௟(ܶ߂)  

Here 

(ΔT) overall = T1 – T4 

And  ΣR th  = Rth1 + Rth2 + Rth3 

  Rth1 =
௅భ௞భ஺ 

=  
଴.ଶହ଴.ସ௫ଵଶ =0.0521K/W 

Rth2 =
௅మ௞మ஺ 

=  
଴.଴଼଴.ଶ௫ଵଶ =0.0333K/W 

Rth3 =
௅య௞య஺ 

=  
଴.଴଴ଶହସ௫ଵଶ =0.0000031K/W 
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    ܳ = భ் – ర்ோ೟೓భାோ೟೓మାோ೟೓య 
 

=
600− 60

0.0521 + 0.0000031 + 0.0333 
 

Q = 6320.96  W 

(i) To find temperature drop across the steel layer (T2  - T3) ܳ =
ଶܶ – ଷܶ
 ܴ௧௛ଷ  

T3- T4  =  Q Rth2 

  =  6320.96 0.0000031 

T3- T4   =  0.0196 K . 

 

2. A spherical container of negligible thickness holding a hot fluid at 140
0
 and having 

an outer diameter of 0.4 m is insulated with three layers of each 50 mm thick 

insulation of k1 = 0.02: k2 = 0.06 and k3 = 0.16 W/mK. (Starting from inside). The 

outside surface temperature is 30
0
C. Determine (i) the heat loss, and (ii) Interface 

temperatures of insulating layers. 

Given: 

OD  =  0.4 m   

r1  =  0.2 m 

r2  =  r1 + thickness of 1
st
 insulation 

 =  0.2+0.05 

r2  =  0.25m 

r3  =  r2 + thickness of 2nd insulation 

 =  0.25+0.05 

r3  =  0.3m 

r4  =  r3 + thickness of 3
rd

 insulation 

 =  0.3+0.05 

r4  =  0.35m 

Thf  =  140o C,  Tcf = 30o C, 

k1 = 0.02 W/mK 

k2  = 0.06 W/mK 

k3  = 0.16 W/mK. 

Find (i) Q   (ii)  T2, T 3 
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 Solution  ܳ =
௧௛ܴߑ௢௩௘௥௔௟௟(ܶ߂)  

ΔT = Thf – Tcf 

ΣR th  = Rth1 + Rth2 + Rth3 

Rth1 =
௥మష௥భସగ௞భ௥మ௥భ 

=  
(଴.ଶହି଴.ଶ଴)ସగ ௫଴.଴ଶ௫଴.ଶହ௫଴.ଶ =3.978

o 
C/W 

Rth2 =
௥యష௥మସగ௞మ௥య௥మ 

=  
(଴.ଷ଴ି଴.ଶହ)ସగ ௫଴.଴଺௫଴.ଷ௫଴.ଶହ =0.8842

o 
C/W 

Rth1 =
௥రష௥యସగ௞య௥ర௥య 

=  
(଴.ଷହି଴.ଷ଴)ସగ ௫଴.ଵ଺௫଴.ଷହ௫଴.ଷ଴ =0.23684o C/W 

ܳ =
140− 30

0.0796 + 0.8842 + 0.23684 
 

Q = 21.57 W 

 To find interface temperature (T2 , T3 ) 

   ܳ = మ்  – య்
 ோ೟೓భ 

 

   T2  = T1 – [Q x ܴ௧௛ଵ] 

   = 140 – [91.620.0796] 

  T2  = 54.17
0
C 

  ܳ = మ்  – య்
 ோ೟೓భ  

      T3  = T2 – [Q  ܴ௧௛ଶ] 

     = 132.71- [91.620.8842] 

 T3  = 35.09
o
 C 

3. May 2008  

A steel tube with 5 cm ID, 7.6 cm OD and k=15W/m
 o
 C is covered with an insulative 

covering of thickness 2 cm and k 0.2 W/m
 o
C

. 
A hot gas at 330

o
 C with h = 400 W/m

2o
C 

flows inside the tube. The outer surface of the insulation is exposed to cooler air at 30
o
C 

with h = 60 W/m
2o

C. Calculate the heat loss from the tube to the air for 10 m of the tube 

and the temperature drops resulting from the thermal resistances of the hot gas flow, 

the steel tube, the insulation layer and the outside air. 

Given: 

Inner diameter of steel, d1 =  5 cm  =0.05 m 

Inner radius,r1 = 0.025m 

Outer diameter of steel, d2 = 7.6 cm = 0.076m 

Outer radius,r2 = 0.025m 

Radius, r3 = r2 + thickness of insulation 

      = 0.038+0.02 m 
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 r3 = 0.058 m 

Thermal conductivity of steel, k1=15W/m
 o
 C  

Thermal conductivity of insulation, k2 = 0.2 W/m oC.  

Hot gas temperature, Thf = 330o C + 273 = 603 K 

Heat transfer co-efficient at innear side,  hhf = 400 W/m
2o

C  

Ambient air temperature, Tcf = 30
o
C +273 = 303 K 

 Heat transfer co-efficient at outer side hcf = 60 W/m
2o

C.  

Length, L = 10 m 

To find: 

(i) Heat loss (Q)  

(ii) Temperature drops (Thf –T1), (T1 –T2), (T2 –T3), (T3 –Tcf), 

Solution: 

Heat flow  ܳ =  
∆்೚ೡ೐ೝೌ೗೗∑ோ೟೓  

Where  

ΔToverall = Thf –Tcf ܴ =
1

ܮߨ2 ቜ 1ℎ௛௙ݎଵ +
1݇ଵ ln ൤ݎଶݎଵ൨+

1݇ଶ ln ൤ݎଷݎଶ൨+
1݇ଷ ln ൤ݎସݎଷ൨ +

1ℎ௖௙ݎସቝ 
   

            ܳ =  
்೓೑ି்೎೑భమഏಽቜ భ೓೓೑ೝభା భೖభ ୪୬ቂೝమೝభቃା భೖమ ୪୬ቂೝయೝమቃା భ೓೎೑ೝయቝ ܳ =  

603− 303

1
ߨ2 × 10

ቒ 1
400 × 0.025

+
1

15
ln ቂ0.038

0.025
ቃ+

1
0.2

ln ቂ0.058
0.038

ቃ+
1

60 × 0.058
ቓ 

   Q = 7451.72 W 

We know that, 

      ܳ =  
்೓೑ି భ்ோ೟೓ ೎೚೙ೡ.

 

    =  
்೓೑ି భ்భమഏಽ×

భ೓೓೑ೝభ                                     
7451.72 =

௛ܶ௙ − ଵܶ
1

2 × ߨ × 10
×

1
400 × 0.025

 

௛ܶ௙ − ଵܶ =  ܭ11.859

1

21

thR

TT
Q


  

   =  భ்ି మ்భమഏಽ×ቂ భೖభ ୪୬ቂೝమೝభቃቃ                                        
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7451.72 =
ଵܶ − ଶܶ

1
2 × ߨ × 10

×
1

15
ln ቂ0.038

0.025
ቃ 

ଵܶ − ଶܶ =  ܭ 3.310

2

32

th
R

TT
Q


  

   =  మ்ି య்భమഏಽ×ቂ భೖమ ୪୬ቂೝయೝమቃቃ                                        
7451.72 =

ଶܶ − ଷܶ
1

2 × ߨ × 10
×

1
0.2

ln ቂ0.058
0.038

ቃ 
ଶܶ − ଷܶ =  ܭ 250.75

 ܳ =  
య்ି்೎೑ோ೟೓ ܿݒ݊݋.

 

   =  
య்ି்೎೑భమഏಽ×

భ೓೎೑ೝయ                                        
7451.72 =

ଷܶ − ௖ܶ௙
1

2 × ߨ × 10
× ቂ 1

60 × 0.058
ቃ 

ଷܶ − ௖ܶ௙ =  ܭ34.07

 

Nov 2009 

4. A long pipe of 0.6 m outside diameter is buried in earth with axis at a depth of 1.8 m. 

the surface temperature of pipe and earth are 95
0
 C and 25

0
 C respectively. Calculate 

the heat loss from the pipe per unit length. The conductivity of earth is 0.51W/mK. 

Given  

r= 
଴.଺ଶ  = 0.3 m 

L = 1 m  

Tp = 95
o
 C 

Te = 25o C 

D = 1.8 m 

k = 0.51W/mK 

  

Find  

Heat loss from the pipe (Q/L) 

Solution 

  We know that  

  
ொ௅  = ݇.ܵ( ௣ܶ −  ௘ܶ) 
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    Where  S = Conduction shape factor =  

ܮߨ2
ln ቀ2ݎܦ ቁ 

=
1 ݔߨ2

ln ቀ21.8 ݔ
0.3

ቁ 

S = 2.528m 

ܮܳ  = −95)2.528ݔ0.51 25) 

ܮܳ  = 90.25ܹ/݉ 

Nov.2010 

5. A steam pipe of 10 cm ID and 11 cm OD is covered with an insulating substance k = 1 

W/mK. The steam temperature is 200
0
 C and ambient temperature is 20

0
 C. If the 

convective heat transfer coefficient between insulating surface and air is 8 W/m
2
K, find 

the critical radius of insulation for this value of rc. Calculate the heat loss per m of pipe 

and the outer surface temperature. Neglect the resistance of the pipe material. 

Given: ݎ௜ୀ 2ܦܫ =  
10

2
= 5 ܿ݉ = 0.05݉ 

ܦ଴ୀܱݎ
2

=  
11

2
= 5.5 ܿ݉ = 0.055݉ 

k =1 W/mK 

Ti = 200
o
C   T∞  =20

o
 C 

h0  =8 W/m
2
K 

 Find  

(i) rc 

(ii) If  rc  =ro then  Q/L 

(iii) To 

Solution 

 To find critical radius of insulation (rc)  ݎ଴ୀ ℎ݇଴ =  
1

8
= 0.125݉ 

When   rc =ro 

 Kpipe, hhf   not given 

ܮܳ =  
)ߨ2 ଴ܶ − ஶܶ)

ln ቀݎ௖ݎ௢ቁ݇ + 
1ℎ௢ݎ௢  
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=  
−200)ߨ2 20)

lnቀ0.125
0.050

ቁ
1

+ 
1

0.125 ݔ 8

 

ܮܳ = 621 ܹ/݉ 

To Find To 

 

ܮܳ =
଴ܶ − ஶܴܶ௧௛௖௢௡௩  

଴ܶ = ஶܶ +  
ொ௅  (ܴ௧௛௖௢௡௩) 

= 20 +  621 × ቀ ଵ଼ × ଶగ×଴.ଵଶହ  
ቁ  

 T0  = 118.72
0
C 

November  2011. 

6.  The temperature at the inner and outer surfaces of a boiler wall made of 20 mm 

thick steel and covered with an insulating material of 5 mm thickness are 300
0
 C and 50

0
 

C respectively. If the thermal conductivities of steel and insulating material are 

58W/m
0
C and 0.116 W/m

0
C respectively, determine the rate of flow through the boiler 

wall. 

L1 = 20 x 10
-3

 m   

kı  = 58  W/m0C 

L2 = 5 x 10-3 m   

k2  = 0.116 W/m
0
C 

T1 = 300
0
 C 

T2  = 50
0
 C 

Find 

(i) Q   

Solution 

                              ܳ =
(௱்)௢௩௘௥௔௟௟ఀோ௧௛ 

  =  భ்ି య்ୖ౪౞భି ୖ౪౞మ 
  Rth1 =

௅ଵ௞ଵ஺ 
=  

଴.ଶ଴ ୶ ଵ଴షయହ଼×ଵ  =3.45 X 10-4   0 C /W 

Rth2 =
௅ଶ௞ଶ஺ 

=  
ହ୶ ଵ଴షయ଴.ଵଵ଺ ×ଵ =0.043 

0 
C /W  

 

    ܳ =
ଷ଴଴ି  ହ଴ଷ.ସହ ଡ଼ ଵ଴ିସା ଴.଴ସଷ  

 = 5767.8 W 

Q = 5767.8 W 
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7. A spherical shaped vessel of 1.2 m diameter is 100 mm thick. Find the rate of heat 

leakage, if the temperature difference between the inner and outer surfaces is 200
o
 C. 

Thermal conductivity of material is 0.3 kJ /mh
o
C. 

Given  

 d1 =1.2 m 

 r1 = 0.6 m 

 r2  = r1  + thick 

    = 0.6 + 0.1 

 r2 = 0.7 m 

 ∆ ܶ =200
0
C 

K = 0.3 kJ /mhr 
o
C   = 0.0833 W/m

o
 C 

Find  

 Q 

 

Solution: ܳ =
∆ܴܶ௧௛ =

ଵܶ – ଶܶ
 ܴ௧௛  

  ܴ௧௛ୀ 
௥మି ௥భସగ௥మ௥భ = 

(଴.଻ି଴.଺)ସగ×଴.଴଼ଷଷ×଴.଺×଴.଻ =  ܹ/ܭ 0.2275

ܳ =
∆ܴܶ௧௛ =

200

 0.2275 
= 879.132ܹ 

November 2011 (old regulation) 

8. A steel pipe (K = 45.0 W/m.K) having a 0.05m O.D is covered with a 0.042 m thick 

layer of magnesia (K = 0.07W/m.K) which in turn covered with a 0.024 m layer of 

fiberglass insulation (K = 0.048 W/m.K). The pipe wall outside temperature is 370 K 

and the outer surface temperature of the fiberglass is 305K. What is the interfacial 

temperature between the magnesia and fiberglass? Also calculate the steady state heat 

transfer. 

Given: 

 OD = 0.05 m 

 d1= 0.05 m 

 r1 = 0.025 m 

 k1 = 45 W/mK 

 r2 = r1 + thick of insulation 1 

r2 = 0.025+0.042 

r2 = 0.067 m 

k2 = 0.07 W/mK 
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k3 = 0.048 W/mK 

r3 = r2 + thick of insulation 2 

   = 0.067+0.024 

r3 = 0.091 m 

T1 = 370
 
K 

T3  = 305 K 

To find  

(i) T2 

(ii) Q 

 

Solution 

 

Here thickness of pipe is not given; neglect the thermal resistance of pipe. 

                            ܳ =
 ℎݐܴߑ݈݈ܽݎ݁ݒ݋(ܶ߂)

 

 Here  

݈݈ܽݎ݁ݒ݋(ܶ߂) =  ଵܶ − ଷܶ = 370− 305 =  ܭ 65

ΣR th  = Rth1 + Rth2 

 ܴ௧௛ଵୀ 

୪୬ቀೝమೝభቁଶగ௞మಽ = ୪୬ቀబ.బలళబ.బమఱቁଶగ×଴.଴଻×ଵ  = 2.2414 K/W 

 ܴ௧௛ଶୀ 

୪୬ቀೝయೝమቁଶగ௞యಽ = ୪୬ቀబ.బవభబ.బలళቁଶగ×଴.ସ଼×ଵ  = 1.0152   K/W 

 Q = 
଺ହଶ.ଶସଵସାଵ.଴ଵହଶ = 19.959 W/m 

To find T2 

ܳ =
ଵܶ – ଶܶ

 ܴ௧௛ଵ 
 

      T2  = T1 – [Q x ܴ௧௛ଵ] 

     = 370- [19.959 x 2.2414] 

 T3  = 325.26K 
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9.  A motor body is 360 mm in diameter (outside) and 240 mm long. Its surface 

temperature should not exceed 55 
o
C when dissipating 340W. Longitudinal fins of 15 

mm thickness and 40 mm height are proposed. The convection coefficient is 40W/m
2 o

C. 

determine the number of fins required. Atmospheric temperature is 30
o
C. thermal 

conductivity = 40 W/m
o
C.  

Given: 

D  =  360x10
-3 

m 

L  =  240 x10-3 m 

Tb  =  55oC 

Q generating =  = 340W 

Longitudinal fin 

tfin    =  15 10
-3 

m 

hfin  =  40 10
-3 

m 

h  =  40W/m
2 o

C 

k  =   40 W/m 
o
C.  

T∞  =  30 oC 

To find:  

 No of fins required (N) 

Solution: 

 Here length (or) height of fin is given. It is short fin(assume end insulated) 

  N = 
ொ೒೐೙ொ೛೐ೝ ೑೔೙ 

From HMT Data book,  ܳ =  √ℎܲ݇ܣ  ( ௕ܶ − .(ஶݐ tan ℎ(݉ܮ) 

    ݉ =  ට௛௉௞஺   ݉ିଵ 

Perimeter (P) = 2L = 2 x 0.24 = 0.48 m 

( for longitudinal fin fitted on the cylinder) 

Area (A) = Lt = 0.24 x 0.015 

A = 0.0036m
2
 

݉ =  ඨ 40 × 0.48

40 × 0.0036
  = 11.55 ݉ିଵ 

ܳ௙௜௡ =  √40 × 0.48 × 40 × 0.0036  (55− 30). tan ℎ(11.55 × 0.04) 

Q fin = 4.718 W ܰ =
340

4.718
= 72.06 =  .ݏ݂݊݅ 72
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May 2012 

10. A mild steel tank of wall thickness 10 mm contains water at 90
o
 C. The thermal 

conductivity of mild steel is 50 W/m
o
C , and the heat transfer coefficient for inside and 

outside of the tank area are 2800 and 11 W/m
2 o

C, respectively. If the atmospheric 

temperature is 20
o
C , calculate  

(i) The rate of heat loss per m
2
 of the tank surface area. 

(ii) The temperature of the outside surface tank.  

Given  

L  =  10 x 10
-3

m 

Thf  =  90 
o
C 

k  =  50 W/m 
o
C  

hhf =  2800 W/m
2 o

C 

hcf  =  11 W/m2  oC 

Tcf  = 20 o C  

To find  

(i)  Q/m
2
 

(ii) T2 

Solution 

      ܳ =
(௱்)௢௩௘௥௔௟௟ఀோ௧௛ 

 

Here (ΔT)overall  = Thf – Tcf  = 90 – 20 = 70oC ෍ܴ௧௛ =  ܴ௧௛೎೚೙ೡ೓೑ + ܴ௧௛ଵ + ܴ௧௛೎೚೙ೡ೎೑  

   ܴ௧௛೎೚೙ೡ೓೑ =   
ଵ௛೓೑ .஺ =  

ଵଶ଼଴଴×ଵ 
  ܹ/ܭ 0.00036

ܴ௧௛ =
ܣܮ݇ =  

10 × 10ିଷ
50 × 1

=  ܹ/ܭ 0.0002

ܴ௧௛೎೚೙ೡ೎೑ =   
1ℎ௖௙.ܣ =  

1

11 × 1 
 ܹ/ܭ 0.09091

  ܳ =
70

0.091469  
= 765.29 ܹ/݉ଶ  

To find T2 

  ܳ =
௛ܶ௙ − ଶܴܶ௖௢௡௩೓೑  ା ோ೟೓ భ  

 

ଶܶୀ ௛ܶ௙ − ቂܳ × ܴ௖௢௡௩೓೑  ା ோ೟೓ భ ቃ 
   = 90 – [765x 0.00056] 

  T2 = 89.57 
0
C 
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11.  A 15 cm outer diameter steam pipe is covered with 5 cm high temperature 

insulation (k = 0.85 W/m 
o
C ) and 4 cm of low temperature (k = 0.72 W/m

o 
C). The 

steam is at 500 
o
C and ambient air is at 40 

o
C. Neglecting thermal resistance of steam 

and air sides and metal wall calculate the heat loss from 100 m length of the pipe. Also 

find temperature drop across the insulation. 

Given 

d1  =  15 cm 

r1  =  7.5 x10 -2 m 

r2  = r1 + thick of high temperature insulation 

r2  =  7.5 + 5 = 12.5 x 10
-2

 m 

r3  =  r2 + thick of low temperature insulation 

r3  =  12.5 +4 = 16.5 x 10
-2

 m 

k ins1   =  0.85 w/m
o 
C 

kins 2 =  0.72 w/mo C 

Thf   =  500 o C 

T cf  =  40
 o 

C 

To find  

(i) Q   if L = 1000mm = 1 m 

Solution: 

 ܳ =
(௱்)௢௩௘௥௔௟௟ఀோ௧௛ 

 

Here  

ΔT = T1 –T3 

ΣR th  = Rth1 + Rth2 

ܴ௧௛ଵୀ 

୪୬ቀೝమೝభቁଶగ௞భಽ = ୪୬ቀబ.భమఱబ.బళఱቁଶగ×଴.଼ହ×ଵ  = 0.09564 K/W or 
o
 C/W 

ܴ௧௛ଶୀ 

୪୬ቀೝయೝమቁଶగ௞మಽ = ୪୬ቀబ.భలఱబ.భమఱቁଶగ×଴.଻ଶ×ଵ  = 0.06137   K/W or  o C/W 

Q = 
ହ଴଴ିସ଴଴.଴ଽହ଺ସା଴.଴଺ଵଷ଻ = 2929.75W/m  
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12. Determine the heat transfer through the composite wall shown in the figure below. 

Take the conductives of A, B, C, D & E as 50, 10, 6.67, 20& 30 W/mK respectively and 

assume one dimensional heat transfer. Take of area of A =D= E = 1m
2
 and B=C=0.5 m

2
. 

Temperature entering at wall A is 800 
o
 C and leaving at wall E is 100

 o
 C. 

 

 

 

 

Given: 

 Ti = 800
o 
C 

 To = 100
o 

C 

 kA = 50 W/mK 

 kB = 10 W/mK 

 kc = 6.67 W/mK 

 kD = 20 W/mK 

 kE = 30 W/mK 

AA = AD= AE= 1m
2 

AB  =AC = 0.5 m
2
 

Find  

(i)    Q 

Solution 

 ܳ =
(௱்)௢௩௘௥௔௟௟ఀோ௧௛ 

 ܴ௧௛ଵୀ  ܴ௧௛஺ ୀ   

 ܣ  ஺݇஺ܮ

Parallel        
ଵோ೟೓మ =  

ଵோ೟೓ಳ +
ଵோ೟೓಴ =  

ோ೟೓ಳାோ೟೓಴ோ೟೓ಳோ೟೓಴  ܴ௧௛ଶ  =  
ܴ௧௛஻ܴ௧௛஼ܴ௧௛஻ + ܴ௧௛஼ 

ܴ௧௛஻ =  
 ஻ܣ஻݇஻ܮ

ܴ௧௛஼ =  
 ஼ܣ஼݇஼ܮ

ܴ௧௛ସ =  ܴ௧௛ா =  
 ாܣா݇ாܮ

ܴ௧௛ଷ =  ܴ௧௛஽ =  
 ஽ܣ஽݇஽ܮ

ܴ௧௛ଵୀ  ܴ௧௛஺ ୀ   

1

50 × 1 
=  ܹ/ܭ 0.02

 

A
B

C

D E 
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ܴ௧௛஻ ୀ   

1

10 × 0.5 
=  ܹ/ܭ 0.2

ܴ௧௛஼ ୀ   

1

6.67 × 0.5 
=  ܹ/ܭ 0.2969

ܴ௧௛ଶ  =  
ܴ௧௛஻ܴ௧௛஼ܴ௧௛஻ + ܴ௧௛஼ =

0.2 × 0.299

0.2 + 0.299
=  

0.0598

0.499
 ܴ௧௛ଶ  = ௧௛ଷܴ ܹ/ܭ 0.1198 =  ܴ௧௛஽ =  

஽ܣ஽ܭ஽ܮ =
1

20 × 1
=  ܹ/ܭ 0.05

ܴ௧௛ସ =  ܴ௧௛ா =  
ாܣாܭாܮ =  

1

30 × 1
=  ܹ/ܭ 0.0333

ܳ =  
௜ܶ  − ௢ܶ∑ܴ௧௛ =

800− 100

0.02 + 0.1198 + 0.05 + 0.0333
= 3137.61ܹ ܳ = 3137.61ܹ 

13.  A long carbon steel rod of length 40 cm and diameter 10 mm (k = 40 w/mK) is 

placed in such that one of its end is 400
o
 C and the ambient temperature is 30

o
 C. the 

flim co-efficient is 10 w/m
2
K. Determine  

(i)  Temperature at the mid length of the fin. 

(ii)  Fin efficiency 

(iii) Heat transfer rate from the fin 

(iv)      Fin effectiveness  

Given: 

l = 40x10 -2  m 

d = 10 x 10
 -3

 m 

k = 40 W/mK 

Tb = 400
o 

C 

T∞ = 30 o C 

H = 10 w/m2K 

To find  

(i) T ,   x = L/2 

(ii) Ș fin 

(iii) Q fin 

Solution  

 It is a short fin end is insulated 

From H.M.T Data book ܳ =  √ℎܲ݇ܣ  ( ௕ܶ − ஶܶ). tan ℎ(݉ܮ) 
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݉ =  ඨℎܲ݇ܣ   ݉ିଵ 

  Perimeter = πd = π x 10 x 10 -3  = 0.0314 m ܽ݁ݎܣ =  
ߨ
4

 ݀ଶ  =  
ߨ
4

 (10 × 10ିଷ)ଶ  = 0.0000785 ݉ଶ 
݉ =  ඨ 10 × 0.0314

40 × 0.0000785
  = 10 ݉ିଵ 

ܳ =  √10 × 0.0314 × 40 × 0.0000785  (400− 30). tan ℎ(10 × 40 × 10ିଶ) 

Q = 0.115 W 

From H.M.T Data book  ܶ − ஶܶ௕ܶ − ஶܶ =  
cosℎ݉ (ܮ − (ݔ

cos ℎ (݉ܮ)
 ܶ − 30

400− 30
=  

cosℎ 10 (0.4− 0.2)

cosℎ (10 × 0.4)
 ܶ − 30

400− 30
=  

3.762

27.308
 ܶ − 30

370
=  0.13776 

T = 50.97 + 30 

T = 80.97 
o
C 

14. A wall furnace is made up of inside layer of silica brick 120 mm thick covered with a 

layer of magnesite brick 240 mm thick. The temperatures at the inside surface of silica 

brick wall and outside the surface of magnesite brick wall are 725
o
C and 110

o
C 

respectively. The contact thermal resistance between the two walls at the interface is 

0.0035
o
C/w per unit wall area. If thermal conductivities of silica and magnesite bricks 

are 1.7 W/m
o
C and 5.8 W/m

o
C, calculate the rate of heat loss per unit area of walls.    

Given: 

L1 = 120 x 10
-3

 m   

kı  = 1.7  W/m0C 

L2 = 240 x 10-3 m   

k2  = 5.8  W/m
0
C 

T1 = 725 
0
 C 

T4  = 110
0
 C 

 (ܴ௧௛)௖௢௡௧௔௖௧ =  0.0035  ௢ܥ/ܹ 

Area = 1 m2 
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Find 

(i) Q   

Solution 

                              ܳ =
(௱்)௢௩௘௥௔௟௟ఀோ௧௛ 

  =  భ்ି ర்ୖ୲୦ଵା (ோ೟೓)೎೚೙೟ାୖ୲୦ଶ 
                        Here T1 – T4  = 725 – 110  = 615

o
 C 

  Rth1 =
௅ଵ௞ଵ஺ 

=  
ଵଶ଴ ୶ ଵ଴షయଵ.଻×ଵ  =0.07060 C /W 

Rth2 =
௅ଶ௞ଶ஺ 

=  
ଶସ଴୶ ଵ଴షయହ.଼ ×ଵ  =0.0414 

0 
C /W  

    ܳ =
଺ଵହ଴.଴଻଴଺ା଴.଴଴ଷହା଴.଴ସଵସ  

 = 5324.67 W/m
2 

Q = 5324.67 W/m 

15. A furnace walls made up of three layers , one of fire brick, one of insulating brick 

and one of red brick. The inner and outer surfaces are at 870
o
 C and 40

o
 C respectively. 

The respective co- efficient of thermal conduciveness of the layer are 1.0, 0.12 and 0.75 

W/mK and thicknesses are 22 cm, 7.5, and 11 cm. assuming close bonding of the layer at 

their interfaces, find the rate of heat loss per sq.meter per hour and the interface 

temperatures. 

Given  

Composite wall (without convection) 

L1 = 22 x10-2 m   

kı  = 1 W/mK  

L2 = 7.5 x10
-2

 m 

k2  = 0.12  W/mK  

L3 = 11x10
-2

 m 

k3  = 0.75 W/mK  

T1 = 870o C 

T4  = 40o C 

Find 

(i) Q / hr (ii)  T2, T3 

Solution 

We know that, ܳ =
 ℎݐܴߑ݈݈ܽݎ݁ݒ݋(ܶ߂)

 

Here 

(ΔT) overall = T1 – T4 

= 870 – 40 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


 

18 

= 830
 o 

C 

And  ΣR th  = Rth1 + Rth2 + Rth3 

                      (assume A = 1 m2 )   

  Rth1 =
௅ଵ௞ଵ஺ 

=  
ଶଶ ୶ଵ଴ିଶଵ ×ଵ  = 22 x10-2  K/W 

Rth2 =
௅ଶ௞ଶ஺ 

=  
଻.ହ ୶ଵ଴ିଶ ଴.ଵଶ×ଵ  =0.625 K/W 

Rth3 =
௅ଷ௞ଷ஺ 

=  
ଵଵ୶ଵ଴ିଶ ଴.଻ହ ×ଵ  =0.1467 K/W 

    ܳ =
்ଵ –்ସோ௧௛ଵାோ௧௛ଶା ோ௧௛ଷ 

 

=
870− 40

0.9917 
 

Q = 836.95   W/m
2
 

Q  = 3.01X 105  J/h  
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Nov 2010 

16. A 12 cm diameter long bar initially at a uniform temperature of 40
o
C is placed in a 

medium at 650
o
C with a convective co efficient of 22 W/m

2
K calculate the time required 

for the bar to reach255
0C. Take k = 20W/mK, ρ = 580 kg/m3 

 and c = 1050 J/kg K. 

Given : Unsteady state 

 D = 12 cm = 0.12 m 

 R = 0.06 m 

 To = 40 + 273 = 313 K 

 T∞ = 650 + 273 = 923 K 

 T = 255 + 273 =528 K 

 h = 22 W/m
2
K 

 k = 20 W/mK 

 ρ = η80 Kg/m
3 
  

c = 1050 J/kg K 

Find: 

 Time required to reach 255
oC (τ) 

Solution 

Characteristic length for cylinder = ܮ௖ =  ଶୖ 

   Lୡ =  
଴.଴଺ଶ = 0.03 m 

We know that 

௜ܤ  =
௛௅೎௞  =

ଶଶ ×଴.଴ଷଶ଴   

Bi  = 0.033 < 0.1 

Biot number is less than 0.1. Hence this is lumped heat analysis type problem. 

For lumped heat parameter, from HMT data book. 

    
்ି ಮ்೚்ି ಮ் = ݁ቂି 

೓ ಲ೎ ೇ  ಙ 
 ×தቃ

  

   We know that  

௖ܮ     =  
௏஺ 

    
்ି ಮ்೚்ି ಮ் = ݁ቂ ష೓ ೎ ಽ೎ಙ 

 ×தቃ
 

528− 923

313− 923
= ݁ቂ – ଶଶଵ଴ହ଴×଴.଴ଷ ×ହ଼଴ ×தቃ

 

                                      ln ቂହଶ଼ିଽଶଷଷଵଷିଽଶଷቃ =  
ଶଶଵ଴ହ଴ ×଴.଴ଷ×ହ଼଴ × τ  

    τ = 360.8 sec   
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17. A aluminium sphere mass of 5.5 kg and initially at a temperature of 290
o
Cis 

suddenly immersed in a fluid at 15
 o

C with heat transfer co efficient 58 W/m
2
 K. 

Estimate the time required to cool the aluminium to 95
o
 C for aluminium take ρ = 2700 

kg/m
3 

, c = 900 J /kg K, k = 205 W/mK. 

Given: 

 M = 5.5 kg 

 To = 290 + 273 = 563 K 

 T∞ = 15 + 273 = 288 K 

 T = 95 + 273 =368 K 

 h = 58 W/m
2
K 

 k = 205 W/mK 

 ρ = 2700 kg/m3 
  

c = 900 j/kg K 

To find: 

    Time required to cool at 95o C (τ) 

 

Solution  

  Density = ɏ =  
୫ୟୱୱ୴୭୪୳୫ୣ =  

୫୴  

   ܸ =  
௠௣ =  

ହ.ହଶ଻଴଴ 

   V = 2.037 X 10
 – 33

 

For sphere, 

 Characteristic length  ܮ௖ =
ோଷ 

           Volume of sphere  ܸ =  
ସଷ  ଷܴ ߨ

                       ܴ =  ටଷ௏ସగయ
 

                  =  ටଷ×ଶ.଴ଷ×ଵ଴షయସగయ
 

                   R = 0.0786 m 

௖ܮ                            =
଴.଴଻଼଺ଷ = 0.0262 ݉ 

                                 Biot number ܤ௜ =  
௛௅೎௞  

             

      =
ହ଼ ×଴.଴ଶ଺ଶଶ଴ହ  

    Bi = 7.41 X 10
 – 3 

< 0.1 

Bi  < 0.1 this is lumped heat analysis type problem. 
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UNIT II CONVECTION 
The process of heat transfer between a surface and a fluid flowing in contact with it is called convection. If the flow 

is caused by an external device like a pump or blower, it is termed as forced convection. If the flow is caused by the 

buoyant forces generated by heating or cooling of the fluid the process is called as natural or free convection. 

In the previous chapters the heat flux by convection was determined using equation 

q = h (Ts – T∞) 

q is the heat flux in W/m2, Ts is the surface temperature and T∞is the fluid temperature of the free stream, the unit 

being °C or K. Hence the unit of convective heat transfer coefficient h is W/m2 K or W/m2 °C both being identically 

the same. In this chapter the basic mechanism of convection and the method of analysis that leads to the correlations 

for convection coefficient are discussed. In this process the law of conservation of mass, First law of themodynamics 

and Newtons laws of motion are applied to the system. 

 

THE CONCEPT OF VELOCITY BOUNDARY LAYER 
We have seen that in the determination of the convective heat transfer coefficient the key is the determination of the 

temperature gradient in the fluid at the solid-fluid interface. The velocity gradient at the surface is also involved in 

the determinations. This is done using the boundary layer concept to solve for u = f(y), T = f’(y). The simplest 

situation is the flow over a flat plate. The fluid enters with a uniform velocity of u∞as shown in Fig. When fluid 

particles touch the surface of the plate the velocity of these particles is reduced to zero due to viscous forces. These 

particles in turn retard the velocity in the next layer, but as these two are fluid layers, the velocity is not reduced to 

zero in the next layer. This retardation process continues along the layers until at some distance y the scale of 

retardation becomes negligible and the velocity of the fluid is very nearly the same as free stream velocity u at this 

level. The retardation is due to shear stresses along planes parallel to the flow. 

The value of y where velocity u = 0.99 u∞is called hydrodynamic boundary layer thickness denoted by . The 

velocity profile in the boundary layer depicts the variation of u with y, through the boundary layer. This is shown in 

Fig. 

 
The model characterizes the flow as consisting of two distinct regions (i) a thin boundary layer in which the velocity 

gradients and shear stresses are large and (ii) the remaining region outside of the boundary layer where the velocity 

gradients and shear stresses are negligibly small. This is also called potential flow. The boundary layer thickness 

increases along the direction of flow over a flat plate as effects of viscous drag is felt farther into the free stream. 

This is called the velocity boundary layer model as this describes the variation of velocity in the boundary layer. 

The direct application of velocity boundary layer is in fluid mechanics for the determination of the wall shear stress 

and then the dimensionless drag coefficient. The net shear over the plate in flow is the wall shear and shear stress 

beyond the boundary layer is zero. 

The wall shear is given by the equation 
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It may be seen that the velocity gradient can be determined if a functional relationship such as u = f(y) is 

available. Such a relationship is obtained using the boundary layer model and applying the continuity and Newtons 

laws of motion to the flow. The friction coefficient Cf is defined as below. 

 

There are local and average values for both s and Cf denoted as s.x. �̅Cfx and �݂ ̅̅̅̅ . In heat transfer the 

friction coefficient by analogy is found to provide a value for Nusselt number and hence its importance. Measured 

values of Cf are also available for various values of an important parameter, namely Reynolds number. Curve fitted 

equations are also available for cf.. 

 

THERMAL BOUNDARY LAYER 
Velocity boundary layer automatically forms when a real fluid flows over a surface, but thermal boundary 

layer will develop only when the fluid temperature is different from the surface temperature. Considering the flow 

over a flat plate with fluid temperature of T∞and surface temperature Ts the temperature of the fluid is T∞all over the 

flow till the fluid reaches the leading edge of the surface. The fluid particles coming in contact with the surface is 

slowed down to zero velocity and the fluid layer reaches equilibrium with the surface and reaches temperature Ts. 

These particles in turn heat up the next layer and a tmperature gradient develops. At a distance y, the temperature 

gradient becomes negligibly small. The distance y at which the ratio [(Ts – T)/(Ts – T∞)] = 0.99 is defined as 

thermal boundary layer thickness t. The flow can now be considered to consist of two regions.  

A thin layer of thickness t in which the temperature gradient is large and the remaining flow where the 

temperature gradient is negligible. As the distance from the leading edge increases the effect of heat penetration, 

increases and the thermal boundary layer thickness increases. The heat flow from the surface to the fluid can be 

calculated using the temperature gradient at the surface. The temperature gradient is influenced by the nature of free 

stream flow. The development of the thermal boundary layer is shown in Fig. 

 
The thermal and velocity boundary layers will not be identical except in a case where Pr = 1. Additional 

influencing factors change the thickness of the thermal boundary layer as compared to the thickness of the velocity 

boundary layer at any location. Note that both boundary layers exist together. Similar development of boundary 

layer is encountered in convective mass transfer also. 

 

LAMINAR AND TURBULENT FLOW 
The formation of the boundary layer starts at the leading edge. In the starting region the flow is well 

ordered. The streamlines along which particles move is regular. The velocity at any point remains steady. This type 

of flow is defined as laminar flow. There is no macroscopic mixing between layers. The momentum or heat transfer 

is mainly at the molecular diffusion level. After some distance in the flow, macroscopic mixing is found to occur. 

Large particles of fluid is found to move from one layer to another. The motion of particles become irregular. The 

velocity at any location varies with respect to a mean value. The flow is said to be turbulent. Due to the mixing the 

boundary layer thickness is larger. The energy flow rate is also higher. The velocity and temperature profiles are 

flatter, but the gradient at the surface is steeper due to the same reason. This variation is shown in Fig. 
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The changeover does not occur at a sharp location. However for calculations some location has to be taken 

as the change over point. In the velocity boundary layer, this transition is determined by a dimensionless group, 

Reynolds number-defined for flow over a plate by the equation 

For flow in a tube or across a tube or sphere it is given by the equation. 

 
The grouping represents the ratio of inertia and viscous forces. Up to a point the inertia forces keep the 

flow in order and laminar flow exists. When the viscous forces begin to predominate, movement of particles begin 

to be more random and turbulence prevails. The transition Reynolds number for flow over a flat plate depends on 

many factors and may be anywhere from 105 to 3 × 106. Generally the value is taken as 5 × 105 unless otherwise 

specified.  

For flow through tubes the transition value is 2300, unless otherwise specified. In the quantitative 

estimation of heat flow, the correlation equations for the two regions are distinctly different and hence it becomes 

necessary first to establish whether the flow is laminar or turbulent. Turbulent flow is more complex and exact 

analytical solutions are difficult to obtain. Analogical model is used to obtain solutions. 

 

FORCED AND FREE CONVECTION 
When heat transfer occurs between a fluid and a surface, if the flow is caused by a fan, blower or pump or a 

forcing jet, the process is called forced convection. The boundary layer development is similar to the descripitions 

in the previous section. When the temperature of a surface immersed in a stagnant fluid is higher than that of the 

fluid, the layers near the surface get heated and the density decreases in these layers. 

The surrounding denser fluid exerts buoyant forces causing fluid to flow upwards near the surface. This 

process is called free convection flow and heating is limited to a layer, as shown in Fig.The heat transfer rate will be 

lower as the velocities and temperature gradients are lower. If the surface temperature is lower, the flow will be in 

the downward direction. 

 
FLOW OVER FLAT PLATES 
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In this chapter additional practical correlations are introduced. Though several types of boundary conditions may 

exist, these can be approximated to three basic types. These are (i) constant wall temperature, (as may be obtained in 

evaporation, condensation etc., phase change at a specified pressure) (ii) constant heat flux, as may be obtained by 

electrical strip type of heating and (iii) flow with neither of these quantities remaining constant, as when two fluids 

may be flowing on either side of the plate. 

Distinct correlations are available for constant wall temperature and constant heat flux. But for the third case it may 

be necessary to approximate to one of the above two cases 

Laminar flow: 

The condition is that the Reynolds number should be less than 5 × 105 or as may be stated otherwise. For 

the condition that the plate temperature is constant the following equations are valid with fluid property values taken 

at the film temperature. 

Hydrodynamic boundary layer thickness 

 
Thermal boundary layer thickness 

 
Displacement thickness and Momentum thickness are not directly used in heat transfer calculations. However, it is 

desirable to be aware of these concepts. 

Displacement thickness is the difference between the boundary layer thickness and the thickness with 

uniform velocity equal to free stream velocity in which the flow will be the same as in the boundary layer. For 

laminar flow displacement thickness is defined as 

 
Momentum thickness is the difference between the boundary layer thickness and the layer thickness which at 

the free stream velocity will have the same momentum as in the boundary layer. 

Momentum thickness m in the laminar region is defined by 

 
Friction coefficient defined as s/(u∞) is given by 

 
The average value of Cf in the laminar region for a length L from leading edge is given by 

 
The value of local Nusselt number is given by 

 
 

TURBULENT FLOW 
Rex > 5 × 105 are as specified. In flow over flat plate, the flow is initially laminar and after some distance 

turns turbulent, the value of Reynolds number at this point being near 5 × 105. However, there are circumstances 

under which the flow turns turbulent at a very short distance, due to higher velocities or due to disturbances, 

roughness etc. The critical Reynolds number in these cases is low and has to be specified. In the turbulent region the 

velocity boundary layer thickness is given by 
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The displacement and momentum thickness are much thinner. The displacement thickness is 

 
Momentum thickness is 

 
The local friction coefficient defined as w/(u∞2/2) is given for the range Rex from 5 × 105to 107 by 

 
For higher values of Re in the range 107 to 109 

 

The local Nusselt number is given by 

 
The average Nusselt number is given by

 


The assumption that the flow is turbulent althrough (from start) may not be acceptable in many situations. 

The average values are now found by integrating the local values up to the location where Re = 5 × 105 using 

laminar flow relationship and then integrating the local value beyond this point using the turbulent flow 

relationship and then taking the average. This leads to the following relationship for constant wall temperature 

 
A more general relationship can be used for other values of critical Reynolds number. 

 
FLOW ACROSS CYLINDERS 

The other type of flow over surfaces is flow across cylinders often met with in heat exchangers and hot or 

cold pipe lines in the open. An important difference is the velocity distribution along the flow. The obstruction by 

the cylinder causes a closing up of the streamlines and an increase in pressure at the stagnation point. The velocity 

distribution at various locations in the flow differs from the flow over a flat plate as shown in Fig. 

 
That the averaging out the convection coefficient is difficult. The experimental values measured by various 

researchers plotted using common parameters ReD and NuD (log log plot) is shown in Fig. 8.4. It can be seen that 

scatter is high at certain regions and several separate straight line correlations are possible for various ranges. Some 
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researchers have limited their correlations for specific ranges and specific fluids. Thus a number of correlations are 

available and are listed below. 

A very widely used correlation is of the form 

 
Where C and m are tabulated below. The applicability of this correlation for very low values of Prandtl number is 

doubtful. The length parameter in Nusselt number is diameter D and Nusselt number is referred as NuD. 

The properties are to be evaluated at the film temperature 

 
FLOW ACROSS SPHERES 

There are a number of applications for flow over spheres in industrial processes. As in the case of flow 

across cylinders, the flow development has a great influence on heat transfer. Various correlations have been 

obtained from experimental measurements and these are listed in the following paras. 

 

The following three relations are useful for air with Pr = 0.71 (1954) 

Nu = 0.37 Re0.6 17 < Re < 7000 

With Properties evaluated at film temperature. 

FLOW ACROSS BANK OF TUBES 
In most heat exchangers in use, tube bundles are used with one fluid flowing across tube bundles. First it is 

necessary to define certain terms before discussing heat transfer calculations. Two types of tube arrangement are 

possible. (i) in line and (ii) staggered. The distance between tube centers is known as pitch. The pitch along the flow 

is known as (Sn) and the pitch in the perpendicular direction is called (Sp). These are shown in Fig. 

 
Due to the obstruction caused by the tubes, the velocity near the tube increases and this increased value has to be 

used in the calculation of Reynolds number. In the case of in line the actual velocity near the tubes 

 
In the case of staggered arrangement the larger of the value given by 8.53 and 8.54 is to 

be used 
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where 

 
This is because of the larger obstruction possible in the staggered arrangement. 

For number of rows of tubes of 10 or more 

 
Reynolds number to be calculated based on Vmax. The property values should be at Tf . The value of C and n are 

tabulated below in Table 8.1. For larger values of Sp/D, tubes can be considered as individual tubes rather than tube 

bank 

 

 

FORCED CONVECTION 
The internal flow configuration is the most convenient and popularly used geometry for heating or cooling 

of fluids in various thermal and chemical processes. There are basic differences in the development of boundary 

layer between the external flow geometry and internal flow geometry. In the case of internal flow, the fluid is 

confined by a surface, and the boundary layer after some distance cannot develop further. This region is called 

entrance region. The region beyond this point is known as fully developed region. Another important difference is 

that the flow does not change over at a location from laminar to turbulent conditions, but is laminar or turbulent 

from the start, depending upon the value of Reynolds number (based on diameter) being greater or less than about 

2300. 

HYDRODYNAMIC BOUNDARY LAYER DEVELOPMENT 
The development of hydrodynamic boundary layer in a pipe, together with velocity distributions at various sections 

for laminar and turbulent flows are shown in Fig. for the shape of the profile in laminar flow given by  
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where umax is the velocity at the centreline. 

 

 
The velocity distribution beyond the entry region will remain invariant. But the actual distribution will be affected 

by the fluid property variation during heating or cooling. If heating or cooling causes reduction in the viscosity near 

the wall, the velocity profile flattens out as compared to isothermal flow. If viscosity increases, then the velocity 

near the wall will be reduced further and the velocity distribution will be more peaked. This is shown in Fig.Such 

distortion will affect the heat transfer correlations to some extent 

 

THERMAL BOUNDARY LAYER 
The development of thermal boundary layer is somewhat similar to the development of velocity profile. As shown in 

fig. 

 
 

i) As the temperature increases continuously the direct plot of temperature will vary with x location. However 

the plot of dimensionless temperature ratio will provide a constant profile in the fully developed region. 

The bulk mean temperature Tm varies along the length as heat is added/removed along the length. The ratio 

(Tw – Tr)/(Tw – Tm) remains constant along the x direction in the fully developed flow. Tr is the temperature 

at radius r and Tm is the bulk mean temperature. 

ii) The length of entry region will be different as compared to the velocity boundary development. 

iii)  Boundary conditions are also different–constant wall temperature and constant heat flux. 

iv) The development of both boundary layers may be from entry or heating may start after the hydrodynamic 

boundary layer is fully developed.  

These are in addition to the laminar and turbulent flow conditions. Thus it is not possible to arrive at a limited 

number of correlations for convection coefficient. 
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In the case of internal flow, there are four different regions of flow namely (i) Laminar entry region (ii) Laminar 

fully developed flow (iii) Turbulent entry region and (iv) Turbulent fully developed region. 

 

LAMINAR FLOW 
Constant Wall Temperature: (Red < 2300) Reynolds number is defined as below 

Re = Dum/= 4G/D
It is to be noted that for long tubes Nusselt number does not vary with length and is constant as given by equation 

Nu = 3.66 

TURBULENT FLOW 
The development of boundary layer is similar except that the entry region length is between 10 to 60 times the 

diameter. The convective heat transfer coefficient has a higher value as compared to laminar flow. 

The friction factor for smooth pipes is given by eqn. 

 
The more popular correlation for fully developed flow in smooth tubes is due to Dittus and Boelter (1930) 

(modified Colburn) 

Nu = 0.023 Re0.8 Prn 

n = 0.3 for cooling and 0.4 for heating of fluids 

NATURAL CONVECTION 
When a surface is maintained in still fluid at a temperature higher or lower than that of the fluid, a layer of 

fluid adjacent to the surface gets heated up or cooled. A density difference is created between this layer and the still 

fluid surrounding it. The density difference introduces a buoyant force causing flow of the fluid near the surface. 

Heat transfer under such conditions is known as natural or free convection. Usually a thin layer of flowing fluid 

forms over the surface. The fluid beyond this layer is essentially still, and is at a constant temperature of T. 

The flow velocities encountered in free convection is lower compared to flow velocities in forced 

convection. Consequently the value of convection coefficient is lower, generally by one order of magnitude. Hence 

for a given rate of heat transfer larger area will be required. As there is no need for additional devices to force the 

fluid, this mode is used for heat transfer in simple devices as well as for devices which have to be left unattended for 

long periods. 

The heat transfer rate is calculated using the general convection equation given below 

Q = h A(Tw – T) 

Q—heat transfer in W,  h—convection coefficient – W/m2K. 

A—area in m2,   Tw—surface temperature 

T—fluid temperature at distances well removed from the surface (here the stagnant fluid temperature) 

BASIC NATURE OF FLOW UNDER NATURAL CONVECTION CONDITIONS 
The layer of fluid near the surface gets heated or cooled depending on the temperature of the solid surface. 

A density difference is created between the fluid near the surface and the stagnant fluid. This causes as in a chimney 

a flow over the surface. Similar to forced convection a thin boundary layer is thus formed over the surface. Inertial, 

viscous and buoyant forces are predominant in this layer. Temperature and velocity gradients exist only in this layer. 

The velocity and temperature distributions in the boundary layer near a hot vertical surface are shown in Fig 
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The velocity is zero at the surface and also at the edge of the boundary layer. As in the case of forced convection the 

temperature gradient at the surface is used in the determination of heat flow (heat is transferred at the surface by 

conduction mode). 

 
The temperature gradient at the surface can be evaluated using either the solution of differential equations or by 

assumed velocity and temperature profiles in the case of integral method of analysis. This leads to the identification 

of Nusselt number and Prand the number as in the case of forced convection. These numbers have the same physical 

significance as in forced convection. 

The buoyant forces play an important role in this case, in addition to the viscous and inertia forces encountered in 

forced convection. This leads to the identification of a new dimensionless group called Grashof number 

 
where is the coefficient of cubical expansion having a dimension of 1/Temperature. For gases = 1/T where T is 

in K. For liquids can be calculated if variation of density with temperature at constant pressure is known. The 

other symbols carry the usual meaning. 

The physical significance of this number is given by 

 
The flow turns turbulent for value of Gr Pr > 109. As in forced convection the microscopic nature of flow and 

convection correlations are distinctly different in the laminar and turbulent regions.  

 

CONSTANT HEAT FLUX CONDITION—VERTICAL SURFACES 
Here the value of wall temperature is not known. So ∆T is unspecified for the calculation of Grashof 

number. Though a trial solution can be attempted, it is found easier to eliminate ∆T by q which is known in most 

cases. This is done by multiplying Grashof number by Nusselt number and equating q = h∆T. 

This product is known as modified Grashof number, Gr* 

 
The correlation for laminar range is given by 

Nux = 0.60 [Grx* Pr]0.2 

105 < Gr* < 1011 

Constant Heat Flux, Horizontal Surfaces 

For horizontal surfaces, the correlations are given in table 10.1 for constant wall temperature conditions. For 

constant heat flux conditions the following correlations are available. The property values except in these cases are 

to be evaluated at T. 

The characteristic length L = Area/ perimeter generally. For circle 0.9 D and for Rectangle (L + W)/2 

For heated face facting upwards or cooled face facing downwards: laminar conditions 

 
For heated surface facing downward 
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HORIZONTAL CYLINDERS 
A more general correlation as compared to the ones given in table for the laminar range, Gr Pr < 109 the correlation 

is  

 

For spheres:  

The general correlation is 

Nu = 2 + 0.43 (Gr Pr)0.25 
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ܶ − ஶܶ௢ܶ − ஶܶ = ݁൤ ି௛ ௖ ௅೎஡ 
 ×த൨

 

 368− 288

536− 288
= ݁ቂ ହ଼ଽ଴଴×଴.଴ଶ଺ଶ×ଶ଻଴଴  ×தቃ

 

                                             τ = 1355.4 sec  

Unit II 

 

May 2012 

1.  Air at 25
 o

C flows past a flat plate at 2.5 m/s. the plate measures 600 mm X 300 mm 

and is maintained at a uniform temperature at 95 
o
C. Calculate the heat loss from the 

plate, if the air flows parallel to the 600 mm side. How would this heat loss be affected if 

the flow of air is made parallel to the 300 mm side.  

Given: 

 Forced convection (air) 

 Flat plate 

 T∞ =25o C 

 U = 25 m/s 

 Tw = 95 
o
C 

 L = 600 mm = 600 X 10
 -3 

 m 

 W = 300 mm = 300 X 10
 -3

 m 

Find 

(i) Q if air flows parallel to 600 mm side 

(ii) Q if air flows parallel to 300 mm side and % of heat loss. 

Solution: 

                    ௙ܶ =  
்ೢ ି ಮ்ଶ =

ଽହିଶହଶ =
ଵଶ଴ଶ = 60௢ ܥ 

 Take properties of air at Tf = 60
o
 C from H.M.T data book (page no 34) 

   Pr = 0.696 

x 10 1897 = ߛ   
 -6 

m
2
/s 

   k = 0.02896 

   ܴ݁ =
௎௅ఊ =  

ଶ.ହ ×଴.଺ଵ଼.ଽ଻× ଵ଴షల  
   ܴ݁ = 7.91 × 10ସ < 5 × 10ହ 

  This flow is laminar. 

From H.M.T data book 

௫ݑܰ     =  0.332ܴ݁௫଴.ହ
 ଴.ଷଷଷݎ݌ 

(or)                 ܰݑ ௅ =  0.332ܴ݁௅଴.ହ ݎ݌଴.ଷଷଷ 
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                      = 0.332 X (7.91 X 10
 4
)

0.5
 (0.696)

0.333 

    NuL = 82.76 

   ௨ܰതതതത = ௅ݑ2ܰ = 2 × 82.76 

   ௨ܰതതതത = 165.52 

௨ܰതതതത =
ℎത݇ܮ

 

ℎ (ݎ݋)ℎത =
௨ܰതതതത݇ܮ =  

165.52 × 0.02896

0.6
 ℎ (ݎ݋)ℎത = 7.989 ܹ/݉ଶܭ ܳ =  ℎത(ݎ݋)(ܶ∆)ܣℎ(ܮ.ݓ)( ௪ܶ − ஶܶ) ܳଵ = 7.989 (0.6 × 0.3)(95− 25) 

    Q1 = 100.66 W 

(iii) If L = 0.3 m and W = 0.6 m (parallel to 300 mm side) ܴ௘ =
ߛܮܷ =

2.5 × 0.3

18.97 × 10ି଺ = 3.95 × 10ସ 

 ܴ௘ = 3.95 × 10ସ < 5 × 10ହ ݐℎ݁ ݂݈ݎ݈ܽ݊݅݉ܽ ݏ݅ ݓ݋ 

From H.M.T Data book ܰݑ௫ = ଴.ଷଷଷݎ଴.ହܲݔ0.332  

௅ݑܰ(ݎ݋) = 0.332ܴ݁௅଴.ହܲݎ଴.ଷଷଷ ܰݑ௅ = 0.332(3.95 × 10ସ)଴.ହ(0.696)଴.ଷଷଷ 

   NuL  = 58.48 ܰݑതതതത = ௅ݑ2ܰ = 2 × 58.48 = 116.96 

௨ܰതതതത =
ℎത݇ܮ

 

ℎത =
௨ܰതതതത݇ܮ =  

116.96 × 0.02896

0.3
 ℎ (ݎ݋)ℎത = 11.29 ܹ/݉ଶܭ ܳଶ = ℎ(ݎ݋)(ܶ∆)ܣℎ(ݓ. )(ܮ ௪ܶ − ஶܶ) ܳଶ = 11.29 (0.6 × 0.3)(95− 25) 

    Q2 = 142.25W 

%  heat loss =  
୕మି୕భ୕భ  × 100  

=  
ଵସଶ.ଶହିଵ଴଴.଺଺ଵ଴଴.଺଺  × 100  

%  heat loss =  41.32% 
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2. When 0.6 kg of water per minute is passed through a tube of 2 cm diameter, it is 

found to be heated from 20
o
C to 60

o
C. the heating is achieved by condensing steam on 

the surface of the tube and subsequently the surface temperature of the tube is 

maintained at 90
o
 C. Determine the length of the tube required for fully developed flow. 

Given: 

  Mass, m = 0.6kg/min   = 0.6/60 kg/s 

          = 0.01 kg/s 

  Diameter, D = 2 cm   = 0.02m 

  Inlet temperature, Tmi   = 20o C 

  Outlet temperature, Tmo  = 60
o
C 

Tube surface temperature , Tw= 90
o
C 

To find  

length of the tube,(L). 

Solution: 

  Bulk mean temperature = ௠ܶ =  
்೘೔ା ೘்೚ଶ 

 =  
ଶ଴ା଺଴ଶ = 40௢ܥ 

  Properties of water at 40oC: 

(From H.M.T Data book, page no 22, sixth edition) 

Ρ = λλη kg/m3
 

V = 0.657x10
-6

 m
2
/s 

Pr = 4.340 

K = 0.628W/mK 

Cp = 4178J/kgK 

Mass flow rate, ݉̇  =  ܷܣߩ 

U =  
ṁɏA

 

U =  
0.01

995 ×
Ɏ
4

(0.02)ଶ 

velocity, U = 0.031m/s 

Let us first determine the type of flow ܴ݁ =  
ݒܦܷ =

0.031 × 0.02

0.657x10ି଺  ܴ݁ =  943.6 

Since Re < 2300, the flow is laminar. 

For laminar flow, 

Nusselt Number, Nu = 3.66 
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We know that  ܰݑ =
ℎ݇ܦ

 

   

3.66 =
ℎ × 0.02

0.628
 ℎ = 114.9 ܹ/݉ଶܭ 

 

Heat transfer, ܳ = ݉ܿ௣∆ܶ ܳ = ݉ܿ௣( ௠ܶ௢ − ܶ௠௜) 

                                                  = 0.01 × 4178 × (60− 20) 

     Q = 1671.2 W 

We know that ܳ = ℎܣ∆ܶ 

                      ܳ = ℎ × ߨ × ܦ × ܮ × ( ௪ܶ − ௠ܶ) 

1671.2 = 114.9 × ߨ × 0.02 × ܮ × (90− 40) 

                                   Length of tube ,  L = 4.62m 

 

November 2012 

3. Water is to be boiled at atmospheric pressure in a polished copper pan by means of 

an electric heater. The diameter of the pan is 0.38 m and is kept at 115
o
 C. calculate the 

following 

1. Surface heat flux 

2. Power required to boil the water 

3. Rate of evaporation 

4. Critical heat flux 

Given: 

Diameter, d = 0.38 m 

Surface temperature, Tw = 115
o
C 

To find 

1.Q/A 

2. P 

3. ݉̇ 

4. (Q/A)max 

Solution: 

We know that, Saturation temperature of water is 100
o
 C 

i.e. Tsat = 100
o
C 
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  Properties of water at 100
o
C: 

(From H.M.T Data book, page no 22, sixth edition) 

Density, ߩ௟ = 961 kg/m3 

Kinematic viscosity, v = 0.293x10
-6

 m
2
/s 

Prandtl Number, Pr = 1.740 

Specific heat, Cpl = 4216 J/kgK 

Dynamic viscosity, ߤ௟ = ௟ߩ × ݒ = 961 × 0.293 × 10ି଺ 

      = 281.57 X 10 -6 Ns/m2 

 From Steam table      [R.S khurmi steam table] 

At 100
o
 C 

Enthalpy of evaporation, hfg = 2256.9 kJ/kg. 

    hfg = 2256.9 x 103 J/kg 

Specific volume of vapour, vg = 1.673 m3/kg 

Density of vapour,  ߩ௩ =  
ଵ௩೒ 

௩ߩ =  
1

1.673
௩ߩ  =  0.597 ݇݃/݉ଷ 

 ∆ܶ = ݁ݎݑݐܽݎ݁݌݉݁ݐ ݏݏ݁ܿݔ݁ =  ௪ܶ − ௦ܶ௔௧ = 115௢ − 100௢ = 15௢ܥ 

          ∆ܶ = 15௢ܥ < 50௢ܥ.  .ݏݏ݁ܿ݋ݎ݌ ݈݃݊݅݅݋ܾ ݈݋݋݌ ݁ݐ݈ܽ݁ܿݑܰ ݏ݅ ݏℎ݅ݐ ݋ܵ

Power required to boil the water,  

For ݈ܰ݃݊݅݅݋ܾ ݈݋݋݌ ݁ݐ݈ܽ݁ܿݑ 

Heat flux, 
ொ஺ = ௟ߤ  × ℎ௙௚ ቂ௚×(ఘ೗ିఘೡ)ఙ ቃ଴.ହ

× ൤ ஼௣௟×∆்஼ೞ೑×௛೑೒௉ೝ೙൨ଷ ….(1) 

(From H.M.T Data book) 

Where ߪ =  ݂݁ܿܽݎ݁ݐ݊݅ ݎݑ݋݌ܽݒ ݀݅ݑݍ݈݅ ݎ݋݂ ݊݋݅ݏ݊݁ݐ ݂݁ܿܽݎݑݏ

At 100oC   ߪ = 0.0588 ܰ/݉     (From H.M.T Data book) 

For water – copper → Csf = surface fluid constant = 0.013 

N = 1 for water     (From H.M.T Data book) 

Substitute ߤ௟ ,ℎ௙௚,ߩ௟ ௦௙ܥ,ܶ∆,݈݌ܥ,ߪ,௩ߩ, ,݊,ℎ௙௚,  ௥ values in eqn (1)݌

ܣܳ =  281.57 × 10ି଺ × 2256.9 × 10ଷ× ൤9.81 × (961− 0.597)

0.0588
൨଴.ହ

× ൤ 4216 × 15

0.013 × 2256.9 × 10ଷ × (1.74)ଵ൨ଷ 
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Surface ݔݑ݈݂ ݐܽ݁ܪ ,
ொ஺ = 4.83 × 10ହܹ/݉ଶ ݎ݂݁ݏ݊ܽݎݐ ݐܽ݁ܪ, ,ܳ = 4.83 × 10ହ ×  ܣ

= 4.83 × 10ହ ×
ߨ
4
݀ଶ 

= 4.83 × 10ହ ×
ߨ
4

(0.38)ଶ 

     Q = 54.7 x10
3
 W 

     Q = 54.7 x10
3
  =P 

    Power = 54.7 x103 W 

2. Rate of evaporation, (݉̇) 

 We know that, 

   Heat transferred, ܳ =  ݉̇ × h୤୥ ݉̇ =  
Q

h୤୥ =  
54.7 × 10ଷ

2256.9 × 10ଷ ݉̇ =  ݏ/݃݇ 0.024

3. Critical heat flux, (Q/A) ݈݃݊݅݅݋ܾ ݈݋݋݌ ݁ݐ݈ܽ݁ܿݑܰ ݎ݋ܨ,  ,ݔݑ݈݂ ݐℎ݁ܽ ݈ܽܿ݅ݐ݅ݎܿ

ܣܳ = 0.18ℎ௙௚ × ௩ߩ ൤ߪ × ݃ × ௟ߩ) − ௩ଶߩ(௩ߩ ൨଴.ଶହ
 

(From H.M.T Data book) 

= 0.18 × 2256.9 × 10ଷ × 0.597 × ൤0.0588 × 9.81 × (961− 0.597)

(0.597)ଶ ൨଴.ଶହ
 

ݍ, ݔݑ݈݂ ݐℎ݁ܽ ݈ܽܿ݅ݐ݅ݎܥ = ܣܳ = 1.52 × 10଺ܹ/݉ଶ  

May 2013 

4. A thin 80 cm long and 8 cm wide horizontal plate is maintained at a temperature of 

130
o
C in large tank full of water at 70

0
C. Estimate the rate of heat input into the plate 

necessary to maintain the temperature of 130
o
C. 

Given: 

 Horizontal plate length, L = 80 cm = 0.08m 

 Wide, W = 8 cm = 0.08 m,  

 Plate temperature, Tw = 130
o
C 

 Fluid temperature, T∞ = 70oC 

To find: 

Rate of heat input into the plate,Q. 

Solution: 
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 Flim temperature,                   ௙ܶ =  
்ೢ ି ಮ்ଶ =

ଵଷ଴ା଻଴ଶ = 100௢ ܥ 

  Properties of water at 100
o
C: 

(From H.M.T Data book, page no 22, sixth edition) 961 =ߩ kg/m3 

 v = 0.293x10-6 m2/s 

 Pr = 1.740 

k = 0.6804W/mK 

௪௔௧௘௥ߚ                  = 0.76 × 10ିଷିܭଵ 
(From H.M.T Data book, page no 30, sixth edition) 

We know that, 

ݎܩ,ݎܾ݁݉ݑ݊ ݂݋ℎݏܽݎܩ  =  
௚×ఉ×௅೎య×∆்௏మ  

 

 For horizontal plate: 

    Lୡ  = Characteristic length =  
ௐଶ  

Lୡ  =  
0.08

2
 

Lୡ  = ݎܩ,ݎܾ݁݉ݑ݊ ݂݋ℎݏܽݎܩ ݉ 0.04  =  
9.81 × 0.76 × 10ିଷ × (0.04)ଷ × (130− 70)

(0.293 × 10ି଺)ଶ ݎܩ  =  0.333 × 10ଽ ݎܲݎܩ =  0.333 × 10ଽ × ݎܲݎܩ 1.740 =  0.580 × 10ଽ 
GrPr value is in between 8x106 and 1011 

i.e.,
 
8x10

6
 < GrPr<10

11
 So, for horizontal plate, upper surface heated, 

 Nusselt number, Nu = 0.15(GrPr)
0.333 

(From H.M.T Data book, page no 136, sixth edition) 

    Nu = 0.15(0580 x 109)0.333 

    Nu = 124.25 

Nusselt number, Nu =  
h୳Lୡ

k
 

124.25 =  
h୳ × 0.04

0.6804
 

h୳ =  2113.49 W/mଶK 

Heat transfer coefficient for upper surface heated hu = 2113.49 W/mଶK 

For horizontal plate, Lower surface heated: 

Nusselt number, Nul = 0.27(GrPr)0.25 
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(From H.M.T Data book, page no 137, sixth edition) 

     = 0.27[0.580x10
9
]
0.25

 

     Nul =42.06 

We know that, 

Nusselt number, Nu୪ =  
h୪Lୡ

k
 

42.06 =  
h୪ × 0.04

0.6804
 

h୪ =  715.44 W/mଶK 

Heat transfer coefficient for lower surface heated hl = 715.44 W/mଶK 

 Total heat transfer, Q =  (h୳ + h ୪ )A ΔT  

 =  (h୳ + h ୪ ) × W × L × [T୵ − Tஶ] 

=  (2113.49 + 715.44 ) × (0.08 × 0.8) × [130− 70] 

Q =  10.86 × 10ଷW 

5. A vertical pipe 80 mm diameter and 2 m height is maintained at a constant 

temperature of 120
 o

 C. the pipe is surrounded by still atmospheric air at 30
o
 . Find heat 

loss by natural convection. 

Given:  

Vertical pipe diameter D = 80 mm = 0.080m 

Height (or) length L = 2 m 

Surface temperature TS = 120
 o

 C 

Air temperature T∞ = 30
 o
 C 

 To find  

heat loss (Q) 

Solution: 

   We know that 

 Flim temperature ,                   ௙ܶ =  
்ೢ ା ಮ்ଶ =

ଵଶ଴ାଷ଴ଶ = 75௢ ܥ 

Properties of water at 75 oC: 

kg/m 1.0145 =ߩ 
3
 

 v = 20.55 x10
-6

 m
2
/s 

 Pr = 0.693 

k = 30.06 x 10 – 3 W/mK 

We know  ߚ =
1௙ܶ݅݊ ܭ 
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ߚ =
1

75 + 273
= 2.87 × 10ିଷିܭଵ 

We know  ݏܽݎܩℎݎܩ,ݎܾ݁݉ݑ݊ ݂݋ =  
݃ × ߚ × ଷܮ × ∆ܸܶଶ  

=  
9.81 × 2.87 × 10ିଷ × (0.08)ଷ × (120− 30)

(20.55 × 10ି଺)ଶ  

ݎܩ                               = 4.80 × 10ଵ଴ ݎܲݎܩ = 4.80 × 10ଵ଴  × 0.693 

ݎܲݎܩ                              = 3.32 × 10ଵ଴ 
Since GrPr>109, flow is turbulent. 

For turbulent flow, from HMT data book ܰݑ = ଴.ଷଷଷ(ݎܲݎܩ)0.10 ݑܰ  = 0.10(3.32 × 10ଵ଴)଴.ଷଷଷ 

    Nu = 318.8 

We know that, ܰݑܰ,ݎܾ݁݉ݑ݊ ݐ݈݁ݏݏݑ =
ℎ݇ܮ

 

   

318.8 =
ℎ× 2

30.06 × 10ିଷ ݐ݂݂݊݁݅ܿ݅݋ܿ ݎ݂݁ݏ݊ܽݎݐ ݐܽ݁ܪ,ℎ = 4.79 ܹ/݉ଶܭ 

Heat loss, ܳ = ℎ × ܣ × ∆ܶ 

= ℎ × ߨ × ܦ × ܮ × ( ௦ܶ − ஶܶ) 

                                                  = 4.79 × ߨ × 0.080 × 2 × (120− 30) 

     Q = 216.7 W 

Heat loss Q = 216.7. 

November 2012 

6. Derive an equation for free convection by use of dimensional analysis. ܰݑ = ௡ݎܲ)ܥ  (௠ݎܩ.

Assume, h = f {ρ, ȝ, Cp, k, Σ,(β, ΔT)} 

 The heat transfer co efficient in case of natural or free convection, depends upon the 

variables, V, ρ, k,ȝ, Cp and L, or D. Since the fluid circulation in free convection is owing to 

difference in density between the various fluids layers due to temperature gradient and not by 

external agency.  

Thus heat transfer coefficient ‘h’ may be expressed as follows: 
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 ℎ =  ݂൫ɏ, L, Ɋ, c୮, k,β g ΔT൯     ……….(i) 

ଵ݂ ൫ɏ, L,Ɋ, k, h, c୮, β g ΔT൯   ……….(ii) 

[This parameter (β g ΔT) represents the buoyant force and has the dimensions of LT -2
.] 

Total number of variables, n = 7 

Fundamental dimensions in the problem are M,L,T, ș and hense m = 4 

Number of dimensionless π- terms = (n –m) = 7-4= 3 

The equation (ii) may be written as  ଵ݂ (ߨଵ, (ଷߨ,ଶߨ = 3 

We close ɏ, L, Ɋ and k as the core group (repeating variables) with unknown exponents. The 

groups to be formed are now represented as the following π groups. ߨଵ = .௔భߩ  .௕భܮ ௖భߤ .݇ௗభ . ℎ ߨଶ = .௕మܮ.௔మߩ  .௖మߤ ݇ௗమ .ܿ௣ ߨଷ = ௔యߩ  . .௕యܮ ௖యߤ .݇ௗయ ைߠ଴ܶ଴ܮைܯ :ଵ- termߨ ݐ∆ ݃ ߚ. = ௔భ(ଷିܮܯ) . .௕భ(ܮ) .௖భ(ଵܶିଵିܮܯ) ௗభ(ଵିߠଷିܶܮܯ) .  (ଵିߠଷିܮܯ)

Equating the exponents of M,L,T and ș respectively, we get  

For M: 0 =  aଵ + cଵ + dଵ + 1 

For L: 0 =  −3aଵ + bଵ − cଵ + dଵ 

For T: 0 =  −cଵ + 3dଵ − 3 

For T:  θ =  −dଵ − 1 

Solving the above equations, we get 

aଵ = 0, bଵ = 1, cଵ = 0, dଵ = ଵߨ 1−  =  ଵୀߨ (ݎ݋) ଵℎି݇ܮ

ℎ݇ܮ
ைߠ଴ܶ଴ܮைܯ :ଶ- Termߨ  = .௔మ(ଷିܮܯ) .௕మ(ܮ) .௖మ(ଵܶିଵିܮܯ) ௗమ(ଵିߠଷିܶܮܯ) .  (ଵିߠଶܶିଶܮ)

Equating the exponents of M, L, T and ș respectively, we get  

For M: 0 =  aଶ + cଶ + dଶ 

For L: 0 =  −3aଶ + bଶ − cଶ + dଶ + 2 

For T: 0 =  −cଶ − 3dଶ − 2 

For T:  θ =  −dଶ − 1 

Solving the above equations, we get 

aଶ = 0, bଶ = 0, cଶ = 1, dଶ = ଶߨ 1−  = ଵି݇.ߤ . ܿ௣ = ଶߨ(ݎ݋) 
௣݇ܿߤ  
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ைߠ଴ܶ଴ܮைܯ :ଷ- Termߨ = .௔య(ଷିܮܯ) .௕య(ܮ) ܮିܯ) ଵܶିଵ)௖య. ௗయ(ଵିߠଷିܶܮܯ) .  (ଶିܶܮ)

Equating the exponents of M, L, T and ș respectively, we get  

For M:    0 =  aଷ + cଷ + dଷଶ 

For L:     0 =  −3aଷ + bଷ − cଷ + dଷ + 1 

For T:    0 =  −cଷ − 3dଷ − 2 

For T:    θ =  −dଷ 
Solving the above equations, we get 

aଷ = 2, bଷ = 3, cଷ = −2, dଷ = ଷߨ 0  = .ଶିߤଷܮ.ଶߩ = ଷߨ                ݎ݋  (ݐ∆݃ߚ)
ଶߤଷܮ.ଶߩ(ݐ∆݃ߚ) =

ଶݒଷܮ(ݐ∆݃ߚ) ݑܰ                 ݎ݋  = ݑܰ                 ݎ݋ (ݎܩ)(ݎܲ)∅  = ݎܩ ݁ݎℎ݁ݓ)௠(ݎܩ)௡(ݎܲ)ܥ  =  .ݕ݈݈ܽݐ݊݁݉݅ݎexp݁ ݀݁ݐܽݑ݈ܽݒ݁ ܾ݁ ݕܽ݉ ݀݊ܽ ݏݐ݊ܽݐݏ݊݋ܿ ݁ݎܽ ݉ ݀݊ܽ ݊,ܥ ݁ݎ݁ܪ (ݎܾ݁݉ݑ݊ ݂݂݋ℎݏܽݎܩ
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 Unit – 3    Boiling and Condensation  

Boiling  

 Boiling is a convection process involving a change in phase from liquid to vapour. Boiling may occur 

when a liquid is in contact with a surface maintained at a temperature higher than the saturation 

temperature of the liquid  

 Heat is transferred from the solid surface to the liquid according to the law 

    q = h (Ts - Tsat) = h ∆Te 

             ∆Te= (Ts - Tsat) is known as the excess temperature 

Application:- 

Boiling process finds wide application as mentioned below 

i) steam production (steam and nuclear power plant ) 

ii) Heat absorption in refrigeration an air conditioning system. 

iii) Distillation, and refining of liquids 

iv) Concentration, dehydration and drying of foods and materials. 

v) Cooling of nuclear reactors and rocket motors. 

The boiling heat transfer phenomenon may occur in the following forms:- 

i) Pool boiling :- 

  In the case the liquid above the hot surface is essentially stagnant and its motion near 

the surface is due to free convection and mixing induced by bubble growth and detachment. 

  The pool boiling occurs in steam boilers involving natural convection. 

(values are for water boiling at 100°C) 

1. Purely convective region ∆T < 5°C 

2. Nucleate Boiling 5 < ∆T < 50°C 

3. Unstable (nucleate film) boiling 50°C < ∆T < 200°C 

4. Stable film boiling ∆T > 200°C. 
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Note that the temperature values are indicative only. 

Boiling regimes:- 

 

 Pool boiling process has following six regimes  

i) interface evaporation (free convection) – Region I 

ii) Nucleate boiling – Region II & III 

iii) Film boiling – Region IV,V&VI 

 The different regimes of boiling are indicated in figure. This specific curve has been obtained from 

an electrically heated platinum wire submerged and measuring the surface heat flux (qs). 

(i) Interface evaporation (Free convection) Region I 

 ‘egioŶ I Đalled the fƌee ĐoŶǀeĐtioŶ zoŶe, the eǆĐess teŵpeƌatuƌe ∆Te is very small (   5ºC). here 

the liquid near the surface is superheated and evaporation takes place at the liquid surface. 

 

(ii) Nucleate boiling – Region II & III 

   As the excess temperature is further increased bubbles are formed more rapidly and rise to the 

suƌfaĐe of the liƋuid ƌesultiŶg iŶ ƌapid eǀapoƌatioŶ.  NuĐleate ďoiliŶg eǆists up to ∆Te = 50 ºC. at the end 
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of the nucleate boiling the heat flux is  maximum. This heat flux, known as the critical heat flux (or ) 

Burnout point. 

(iii)  Film boiling  

  Region –IV 

 Further increase of heat flux with increase in excess temperature up to region III.  After region III 

heat flux decrease.This region the bubbles formation is very rapid , and the bubbles collapses and 

form a vapour film which covers the surface completely. With in the temperature range 50 ºC< ∆Te < 

150 ºC, condition oscillate between nucleate and film boiling this region is called unstable film 

boiling. 

  Region – V 

 With fuƌtheƌ iŶĐƌease iŶ ∆Te the vapour film is stabilized and the heating surface is completely 

covered by a vapour blanket and the heat flux is the lowest as shown in region V 

  Region – VI 

 This region heat flux slowly increases with the increase in excess temperature. The surface 

temperature required to maintained a stable film are high and under these conditions a sizeable 

amount of heat is lost by the surface due to radiation. 

 

Flow boiling:- 

 Flow or forced convection boiling may occur when a liquid is forced through a pipe or over a 

surface which is maintained at a temperature higher than the saturation temperature of the liquid 

Application :- 

 Design of steam generators for nuclear power plants and space power plants. 

Boiling correlations:- 

Nucleate pool boiling:- 
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Heat flux qs = 
A

Q
 = 

3

7.1

2/1
)(










 






 

rfgsf

plvl
fgl

PhC

TCg
h




  

 l   = Liquid viscosity (Dynamic ) Ns/m2 

 hfg = enthalpy of vaporization (J/kg) 

 l  =Density of saturated liquid (kg/m3) 

 v  =Density of saturated vapour (kg/m3) 

   = surface tension of the liquid vapour interface (N/m) 

 Cpl = Specific heat capacity at constant pressure  

 Csf = Surface fluid constant 

 T  = (Ts - Tsat) 

 Ts = surface temperature ºC 

 Tsat = saturation temperature  

 g = acceleration due to gravity (9.81) 

Critical heat flux :- 

A

Q
 = 

4/1

2

)(
18.0 







 



 vl

vfg

g
h  

 T  = (Ts - Tsat) ) <50 ºC for nucleate pool boiling  

Film pool boiling  

  T  = (Ts - Tsat) ) > 50 ºC for film boiling  

                   h = hconv+0.75hrad 
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                      hconv = 

4/1
3

)4.0()(
62.0



















TD

TChgK

v

vpfgvlvv




 

where , 

 VK   = Thermal conductivity of vapour W/mK 

 hfg = Enthalpy of vaporization (J/kg) 

 l  = Density of saturated liquid (kg/m3) 

 v  = Density of saturated vapour (kg/m3) 

 v  = Dynamic viscosity of vapour Ns/m2 

 Cpv = Specific heat of vapour  at constant pressure (kJ/kgK) 

 D = Diameter ,m 

 T  = (Ts - Tsat) 

 Ts = surface temperature ºC 

 Tsat = saturation temperature  

 g = acceleration due to gravity (9.81) 

 

                      hrad = 











sats

sats

TT

TT
44

  

Where, 

          = Stefan boltzmann constant  = 5.67x10-8 W/m2K4 

          = Emissivity 
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        Ts = surface temperature ºC 

      Tsat = saturation temperature  

Condensation heat transfer:- 

 

 The condensation process is the reverse of boiling process. Whenever a saturation vapour 

comes in contact with a surface whose temperature is lower than the saturation temperature 

corresponding to the vapour pressure 

 The change of phase from vapour to liquid state is known as condensation. 

Types of condensation  

 There are two types of condensation  

i) Film wise condensation  

ii) Drop wise condensation  

 Film wise condensation:- 

  In which the condensate wets the surface forming a continuous film which covers the entire 

surface. 

 Drop wise condensation:- 

  In which the vapour condenses into small liquid droplets of vapours sizes which fall down the 

surface in a random fashion.  
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 Nusselt͛s aŶalǇsis of filŵ ĐoŶdeŶsatioŶ :- 

i) the plate is maintained at a uniform temperature (Ts ), which is less than the saturation 

temperature (Tsat) of the vapour 

ii) the condensate flow is laminar 

iii) the fluid properties are constant 

iv) the shear stress at the liqid vapour interface is negligible. 

v) The acceleration of fluid with in the condensate layer is negligible  

vi) The heat transfer across the condensate layer is by pure conduction and the 

temperature distribution is linear 

 Correlation for film wise condensing process:- 

i) Film thickness for laminar flow vertical surface  

                    x  = 

4/1

2

)(4










 

lfg

ssatll

gh

TTxK




 

 x  = Boundary layer thickness (m) 

 lK   = Thermal conductivity of fluid ( W/mK) 

 hfg = Enthalpy of vaporization (J/kg) 

 l  = Density of fluid(kg/m3) 

 l  = Dynamic viscosity of fluid  (Ns/m2) 

 Cpv = Specific heat of vapour  at constant pressure (kJ/kgK) 

 x = Distance along the surface,(m) 

 Ts = surface temperature ºC 

 Tsat = saturation temperature ºC 

 g = acceleration due to gravity (9.81) 
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ii) Local heat transfer co-efficient (hx) for vertical surface ,laminar flow 

                hx =  
x

K


 

iii) Average heat transfer coefficient (h) for vertical surface , laminar flow 

   hL =0.943

4/1
3

)(

)(















ssat

fgvll

TTL

ghK




 

 Since the experimental values of hL are usually 20% (or) higher than those predicted by hL, it has 

been suggested by Mc Adams that the constant 0.943 be replaced by 1.13 hence 

                              hL =1.13

4/1
3

)(

)(
















ssatl

fgvlll

TTL

ghK




 

iv) Film temperature Tf  = 
2

)( ssat TT 
 

  hfg should be taken at Tsat 

v) Film wise condensation on horizontal tubes:- 

                               hD =0.725

4/1
3

)(

)(
















ssatl

fgvlll

TTD

ghK




 

  

vi) Average heat transfer coefficient for the bank of tubes :- 

                                     hD =0.725

4/1
3

)(

)(
















ssatl

fgvlll

TTDN

ghK




 

vii)    For laminar flow Re <1800 

viii) For turbulent flow Re >1800 

ix) Re = 
P

m


4
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x) Average heat transfer coefficient for vertical surface , turbulent flow 

    h = 0.0077 (Re)0.4 

333.0

2

23










l

ll gK




 

  

 Solved problems on Boiling:- 

1. Water is boiled at the rate of 25kg/hr in a polished copper pan, 280mm in diameter at 

atmospheric pressure. Assuming nucleate boiling condition, calculate the temperature of the 

bottom surface of the pan  

  Given data: 

           m  = 25 kg/hr = 25/3600 

           m  = 6.6x10-3 kg/hr 

   d = 300mm = 0.3 m 

 To find :- 

  Surface temperature (Ts) 

 Solution:- 

  We know saturation temperature (Ts) 

        Tsat = 100 ºC 

 Saturated water Properties at 100 ºC 

      [ From HMT data book Page No: 21 – 6th edition ] 

           = 0.293x10-6 m2/s 

            
l  = 961 kg/m3 
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       Cpl = 4216 J/kg 

        Pr = 1.74 

        l  = l x  

        l  = 281.57x10-6 Ns/m2 

 From steam table, Fro 100 ºC 

        hfg = 2256.9 kJ/kg 

        vg = 1.673 m3/kg 

        v = 

gv

1
 

       v  = 0.597 kg/m3 

At 100 ºC  

  = 0.0588 N/m    (From HMT data book page no 144) 

Csf = 0.013    (From HMT data book page no 145) 

         Q = m x hfg 

       
A

Q
  = 

A

fgh x m
 

       
A

Q
 = 

2

fg

4

h x m

d
  

      
A

Q
  = 

2

3

)28(.
4

102257 x 3-6.6x10



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A

Q
 = 254.52x103 

Heat flux qs = 
A

Q
 = 

3

7.1

2/1
)(










 






 

rfgsf

plvl
fgl

PhC

TCg
h




  

     254.52x103 = 

3

3

2/1

36

74.1102257013.0

4216

0588.0

)597.0961(81.9
1022571057.281 

















 

  T
 

        254.52x103 = 44.7678 x T 3 

       T  = 12.08 ºC 

       T  = (Ts - Tsat) =12.08 

                         Ts  = 12.08 + Tsat 

                         Ts  = 12.08 + 100 

                         Ts  = 112.08 ºC 

Result :  

  Surface temperature (Ts)= 112.08 ºC 

2. water at atmospheric pressure is to be boiled in polished copper pan. The diameter of the pan is 

350mm.and is kept at 115 ºC calculate the following. 

i) power of the burner  

ii) Rate of evaporation in kg/hr 

iii) Critical heat flow for this condition. 

Given data: 

           D  = 350 mm = 0.35 m 

          Ts  = 115 ºC 
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 To find :- 

i) power of the burner  

ii) Rate of evaporation in kg/hr 

iii) Critical heat flow for this condition. 

 Solution:- 

  We know saturation temperature (Ts) 

        Tsat = 100 ºC 

 Saturated water Properties at 100 ºC 

      [ From HMT data book Page No: 21 – 6th edition ] 

           = 0.293x10-6 m2/s 

            
l  = 961 kg/m3 

       Cpl = 4216 J/kg 

        Pr = 1.74 

        l  = l x  

        l  = 281.57x10-6 Ns/m2 

 From steam table, Fro 100 ºC 

        hfg = 2256.9 kJ/kg 

        vg = 1.673 m3/kg 

        v = 

gv

1
 

       v  = 0.597 kg/m3 
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            T = Ts - Tsat  

       T = 115 – 100 = 15 

 

At 100 ºC  

  = 0.0588 N/m    (From HMT data book page no 144) 

Csf = 0.013    (From HMT data book page no 145) 

1) Power required : 

Heat flux qs = 
A

Q
 = 

3

7.1

2/1
)(










 






 

rfgsf

plvl
fgl

PhC

TCg
h


  

          
A

Q
  = 

3

3

2/1

36

74.1102257013.0

154216

0588.0

)597.0961(81.9
1022571057.281 

















 

 
 

      
A

Q
 = 4.8x105 

         Q  = 4.8x105 x
2)35.0(

4


 

         Q  = 46.181 kW 

ii) Rate of evaporation( m) 

         Q = m x hfg 

         m = 
hfg

Q
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              m = 
3

3

102257

10181.46




 

         m = 0.0204 kg/s 

         m = 73.66 kg/hr 

iii) Critical heat flux: 

      
A

Q
 = 

4/1

2

)(
18.0 







 



 vl

vfg

g
h  

         
A

Q
 = 

4/1

2

3

597.0

)597.0961(81.90588.0
597.010225718.0 






 

  

      
A

Q
 = 1.522 x 106 W/m2 

Result :  

i) Power (P)    = 46.181 kW 

ii) Rate of evaporation (m)  =73.66 kg/hr 

iii) Critical heat flux   = 1.522 x 106 W/m2 

     

 

3. It is desired to generate 100 kg/hr of saturated steam at 100 ºC using a heating element of 

copper of surface are 5m2. Calculate the convective heat transfer coefficient and the 

temperature of the heating surface. 

 Given data: 

           m  = 100 kg/hr = 100/3600 

           m  = 0.0277 kg/s 

   A = 5m2  
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Saturation temperature (Ts) = 100 ºC 

To find:- 

i) heat transfer coefficient  

ii) surface temperature (Ts) 

 Solution:- 

 Saturated water Properties at 100 ºC 

      [ From HMT data book Page No: 21 – 6th edition ] 

           = 0.293x10-6 m2/s 

            
l  = 961 kg/m3 

       Cpl = 4216 J/kg 

        Pr = 1.74 

        l  = l x  

        l  = 281.57x10-6 Ns/m2 

 From steam table, Fro 100 ºC 

        hfg = 2256.9 kJ/kg 

        vg = 1.673 m3/kg 

        v = 

gv

1
 

       v  = 0.597 kg/m3 

At 100 ºC  

  = 0.0588 N/m    (From HMT data book page no 144) 
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Csf = 0.013    (From HMT data book page no 145) 

  i) Surface temperature (Ts )       

 Q = m x hfg 

       
A

Q
  = 

A

fgh x m
 

       
A

Q
 = 

2

fg

4

h x m

d


 

      
A

Q
  = 

5

2257x10 x 0.0277 3

 

           
A

Q
 = 12.538x103 W/m2 

Heat flux qs = 
A

Q
 = 

3

7.1

2/1
)(










 






 

rfgsf

plvl
fgl

PhC

TCg
h




  

           12.538x103 = 

3

3

2/1

36

74.1102257013.0

4216

0588.0

)597.0961(81.9
1022571057.281 

















 

  T
 

        12.538x103 = 44.7678 x T 3 

       T  = 4.5 ºC 

       T  = (Ts - Tsat) =4.5 

                         Ts  = 4.5 + Tsat 

                         Ts  = 4.5 + 100 

                         Ts  = 104.5 ºC 
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ii) Heat transfer coefficient (h): 

       Q = h A dT 

       h    = 
TA

Q


 

       h = 
5.4

10538.12 3
 

 

       h  = 2786 W/m2K 

Result :  

i) the surface Temperature (Ts)  = 104.5 ºC 

ii) Heat transfer coefficient (h) = 2786 W/m2K 

4. A metal –clad heating element of 10mm diameter and of emissivity 0.92 is submerged in a water 

bath horizontally. If the surface temperature of the metal is 260  

 

 

      Heat exchanger 

Heat exchanger may be defined as an equipment which transfer the energy from a hot fluid to cold fluid. 

Examples of heat exchanger: 

i) refrigerating and air-conditioning systems 

ii) power systems 

iii) food processing systems 

iv) chemical reactors 

v) space or aeronautical application  

vi) steam power plants 

vii) radiators in cars 
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Types of heat exchangers:- 

Heat exchangers are classified on the basis of  

i) Nature of heat exchange process 

ii) Relative direction of fluid motion 

iii) Design and constructional features  

iv) Physical state of fluids 

 

i)  Nature of heat exchange process 

a) Direct contact heat exchangers  

b) Indirect contact heat exchangers 

a) Direct contact heat exchangers  

 In a direct contact (or) open heat exchanger the exchange of heat takes place by 

direct mixing of hot and mass take place simultaneously. 

Examples:- 

i) Cooling towers 

ii) Jet condensers  

b) Indirect contact heat exchanger:- 

 In this type of heat exchanger the heat transfer between two fluids could be 

carried out by transmission through wall which separates the two fluids. 

Examples : 

i) Automobile radiators  

ii) Oil coolers, intercoolers, air preheater, economizers ,super heaters   

 

ii) Relative direction of fluid motion:- 

  According to the relative directions of two fluid streams the heat exchange are classified 

in to the following three categories 
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a) Parallel flow  (or) unidirectional flow 

b) Counter flow 

c) Cross flow 

a) Parallel flow heat exchanger : 

Two fluid streams (hot and cold) travel in same direction. 

b) Counter flow heat exchanger : 

 The two fluids flow in opposite direction. The hot and cold fluids enter at the 

opposite ends. 

c) Cross flow heat exchanger: 

 The two fluids (hot and cold) cross one another in space. usually at right angle. 

i) One fluid mixed other un mixed 

ii) Both fluid unmixed  

 

1. Design and construction :- 

i) concentric tubes : 

 in this type two concentric tubes are used each carrying one of the fluids the direction 

of flow may be parallel or counter.   

ii) Shell and tube 

 One of the fluids flows through a bundle of tubes enclosed by a shell. 

a) Two tube pass one shell pass type 

b) Four tube pass , two shell pass 

iii)  Multiple shell and tube pass 

iv) Compact heat exchanger  

 These are special purpose heat exchanger and have a very large transfer surface area 

per unit volume of the exchanger. They are generally employed when convective heat 

transfer coefficient associated with one of the fluids is much smaller than that associated 

with the other fluid. 
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 Example: Plate fin, flattened fin tube exchanger etc.. 

2. Physical state of fluids: 

 Depending upon the physical state of fluids the heat exchangers are classified as follows 

i) Condensers 

ii) Evaporators 

 Condensers:- 

  In a condenser, the condensing fluid (hot fluid) remains at constant temperature 

throughout the exchanger while the temperature of the colder fluid gradually increases from inlet to 

outlet. 

Heat exchanger Analysis:- 

 For designing (or) predicting the performance of a heat exchanger it is necessary that the total heat 

transfer may be related with its governing parameters. 

i) U (overall heat transfer coefficient) 

ii) A total surface area of the heat transfer  

iii) Inlet and outlet fluid temperature. 

       m = mass flow rate , kg/s 

      Cp = Specific heat of fluid at constant pressure J/kgK.   

       T = Temperature of fluid ºC 

      T = Temperature drop (or) rise of the fluid across the heat exchanger 

 

Heat lost by the hot fluid  

         Q = mhCph(Th1-Th2) 

Heat gain by the cold fluid  

         Q = mcCpc(Tc2-Tc1) 
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Total heat transfer rate in the heat exchanger 

         Q = U A mT  

 mT  = Logarithmic Mean Temperature Difference (LMDT)  

  

 Logarithmic Mean Temperature Difference (LMDT) 

The following assumptions are made :- 

1. the overall heat transfer coefficient U is constant  

2. the flow conditions are steady 

3. the specific heats and mass flow rates of both fluids are constant 

4. There is no change of phase either of the fluid during the heat transfer. 

5. there is no loss of heat to the surroundings ,due to the heat exchanger being perfectly insulated. 

6. The changes in potential and kinetic energies are negligible. 

7. Axial condition along the tubes of the heat exchanger is negligible. 

 

 LogaƌithŵiĐ MeaŶ Teŵpeƌatuƌe DiffeƌeŶĐe ;LMDTͿ foƌ ͞Paƌallel floǁ͟ 

Let us consider an elementary area dA of the heat exchanger. The rate of flow of heat through this 

elementary are, 
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        dQ = U dA (Th-Tc) 

        dQ = U dA mT  

in a Parallel flow system , the temperature of hot fluid decrease in the direction of heat exchanger 

length, hence the – Ve sign  

Heat lost by the hot fluid  

                   dQ = mhCph(Th1-Th2) 

                                    dQ  = - mhCph(Th2-Th1) 

                                    dQ = - mhCph dTh 

                                    dQ = - mhCph dTh 

       dTh = - 

phhCm

dQ
 

       dTh = - 
hC

dQ
 

Ch = Heat capacity of hot fluid 

Heat gain by the cold fluid  

                    dQ = mcCpc(Tc2-Tc1) 

                                    dQ  = mcCpc(Tc2-Tc1) 

                                    dQ = mcCpc dTc 

                                    dQ = mcCpc dTc 

       dTc =  

pccCm

dQ
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       dTc =  
cC

dQ
 

Cc = Heat capacity of cold fluid 

 

            dTh-dTc = -
hC

dQ
-

cC

dQ
 

     = - dQ 









ch CC

11
 

     = - UdA(Th-Tc) 









ch CC

11
 

        dQ = - U dA θ 









ch CC

11
 

                 

d

 = - U dA 









ch CC

11
 

Integrating between inlet and outlet conditions 

Area  A= 0 to A = A 

                               
2

1

d

 = 
A

0

- U dA 









ch CC

11
 

            2
1)ln(  = - U 










ch CC

11  AA 0  

  lŶ;θ2) – lŶ;θ1) = - U A 









ch CC

11
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          








1

2ln



 = - U A 









ch CC

11
 

             Q =  Ch(Th1-Th2) 

          
hC

1
 =

Q

h2h1 T-T
 

             Q =  Cc(Tc2-Tc1) 

          
cC

1
 =

Q

c1c2 T-T
 

Substitute 1/Ch,1/Cc Value in equation -1 

          








1

2ln



 = - U A 






 



Q

TT

Q

TT cchh 1221  

          








1

2ln



 = - U A 






 
Q

TTTT chch )()( 2211  

          








1

2ln



 = - U A 






 
Q

21 
 

                  Q = - U A































1

2

21

ln




 

                  Q =  U A











2

1

21

ln




 

     

  Q =  U A θm 
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      θm = 











2

1

21

ln




 = mT = Logarithmic Mean Temperature Difference (LMDT)  

                                 θm = 














22

11

2211

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

LogaƌithŵiĐ MeaŶ Teŵpeƌatuƌe DiffeƌeŶĐe ;LMDTͿ foƌ ͞Counter floǁ͟ 

Let us consider an elementary area dA of the heat exchanger. The rate of flow of heat through this 

elementary are, 

 

        dQ = U dA (Th-Tc) 

        dQ = U dA mT  

in a counter flow system , the temperature of both the fluids decrease in the direction of heat exchanger 

length, hence the – Ve sign  

Heat lost by the hot fluid  

                   dQ =   mhCph(Th1-Th2) 

                                    dQ  = - mhCph(Th2-Th1) 
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                                    dQ = - mhCph dTh 

                                    dQ = - mhCph dTh 

       dTh = - 

phhCm

dQ
 

       dTh = - 
hC

dQ
 

Ch = Heat capacity of hot fluid 

Heat gain by the cold fluid  

                    dQ = - mcCpc(Tc2-Tc1) 

                                    dQ  = - mcCpc(Tc2-Tc1) 

                                    dQ = - mcCpc dTc 

                                    dQ = - mcCpc dTc 

       dTc =  -

pccCm

dQ
 

       dTc =  -
cC

dQ
 

Cc = Heat capacity of cold fluid 

 

            dTh-dTc = -
hC

dQ
+

cC

dQ
 

     = - dQ 









ch CC

11
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     = - UdA(Th-Tc) 









ch CC

11
 

        dQ = - U dA θ 









ch CC

11
 

                 

d

 = - U dA 









ch CC

11
 

Integrating between inlet and outlet conditions 

Area  A= 0 to A = A 

                               
2

1

d

 = 
A

0

- U dA 









ch CC

11
 

            2
1)ln(  = - U 










ch CC

11  AA 0  

  lŶ;θ2) – lŶ;θ1) = - U A 









ch CC

11
 

          








1

2ln



 = - U A 









ch CC

11
 

             Q =  Ch(Th1-Th2) 

          
hC

1
 =

Q

h2h1 T-T
 

             Q =  Cc(Tc2-Tc1) 

          
cC

1
 =

Q

c1c2 T-T
 

Substitute 1/Ch,1/Cc Value in equation -1 
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          








1

2ln



 = - U A 






 



Q

TT

Q

TT cchh )()( 1221  

          








1

2ln



 = - U A 






 
Q

TTTT chch )()( 1221  

          








1

2ln



 = - U A 






 
Q

21 
 

                  Q = - U A































1

2

21

ln




 

                  Q =  U A











2

1

21

ln




 

     

      θm = 











2

1

21

ln




 = mT = Logarithmic Mean Temperature Difference (LMDT)  

                                 θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

Overall heat transfer co-efficient:- 

 If the fluids are separated by a tube wall as shown in fig. the overall heat transfer coefficient is given 

by , 

Considering inner surface : 

  Q =  U A θm 
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           Ui = 




















oo

i

i

oi

i hr

r

r

r

K

r

h

1
ln

1

1
 

Considering Outer surface : 

           Uo = 

oi

o

ii hr

r

K

r

r

r

h

1
ln

1

1

00 
















 

The heat exchanger ,considering the thermal resistance due to scale formation is given by, 

  Considering inner surface  

           Ui = 




















oo

i
f

o

i

i

oi
fi

i hr

r
R

r

r

r

r

K

r
R

h

1
ln

1

1

0

 

Considering Outer surface : 

           Uo = 

o

f

i

o
fi

iii h
R

r

r

K

r
R

r

r

r

r

h

1
ln

1

1

0
000 

















 

Incase of thin walled surface  

           Uo = 

oi hh

11

1


  

When only, fouling factors are neglected  

           Uo = 

oi

o

ii hr

r

K

r

r

r

h

1
ln

1

1

00 
















 

Problems on Parallel flow 
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1. the flow rate of hot and cold water streams running through a parallel flow heat exchanger are 

0.2kg/s and 0.5kg/s respectively. The inlet temperatures on the hot and cold sides are 75 ºC and 

20 ºC respectively. The exit temperature of hot water is 45 ºC. if the overall heat transfer co-

efficient is    350 W/m2K. Calculate the area of the heat exchanger. 

  Given : 

         mh = 0.2 kg/s 

         mc = 0.5 kg/s 

       Th1 = 75 ºC 

       Tc1 = 20 ºC 

       Th2 = 45 ºC 

         U = 350 W/m2K 

    Cph = 4187 J/kgK = Cpc 

  To find : 

   Area of the heat exchanger, 

  Solution:  

  Heat lost by the hot fluid  

                    Q = mhCph(Th1-Th2) 

    = 0.2x4187 x(75-45) 

    = 25,122 W 

Heat lost by the hot fluid  = Heat gain by the cold fluid 

                    Q = mcCpc(Tc2-Tc1) 
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  25,122 = 0.5 x 4187x(Tc2-20) 

     Tc2 = 20
41875.0

122,25



 

         Tc2 = 32 ºC 

                                     θm = 














22

11

2211

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














3245

2075
ln

)3245()2075(
 

       θm  = 29.12 ºC 

Heat transfer rate  

         Q = UA θm 

            A = 
mU

Q


 

        A = 
12.29350

122,25


 

       A   = 2.46 m2 

Result :  

  Heat transfer area A = 2.46 m2 

 

2. in a double pipe counter flow heat exchanger 10,000kg/hr of an oil having a specific heat of 

2095 J/kgK is cooled from 80 ºC to 50 ºC by 8000 kg/hr of water entering at 25 ºC. Determine 

the heat exchanger area for an overall heat transfer coefficient of 300 W/m2K. take Cp for water 

as 4180 J/kgK. 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


 Given : 

         Hot fluid = Oil 

        Cold fluid = Water 

         mh = 10,000 kg/hr  

     =10,000 / 3600 = 2.78 kg/s 

         mc = 8000 kg/hr     

     = 8000 / 3600   = 2.22 kg/s 

       Th1 = 80 ºC 

       Th2 = 50 ºC    

         Tc1 = 25 ºC 

         U = 300 W/m2K 

    Cph = 2095 J/kgK  

    Cpc = 4180 J/kgK 

  To find : 

   Area of the heat exchanger, 

  Solution:  

  Heat lost by the hot fluid  

                    Q = mhCph(Th1-Th2) 

    = 2.78 x 2095 x(80 – 50) 

    = 174583 W 
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Heat lost by the hot fluid  = Heat gain by the cold fluid 

                    Q = mcCpc(Tc2-Tc1) 

  174583= 2.22 x 4180x (Tc2-25) 

     Tc2 = 25
418022.2

174583



 

         Tc2 = 43.8 ºC 

Foƌ ĐouŶteƌ Floǁ,        θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














2550

5.4380
ln

)2550()8.4380(
 

       θm  = 29.6 ºC 

Heat transfer rate  

         Q = UA θm 

            A = 
mU

Q


 

        A = 
6.29300

174583


 

       A   = 19.66 m2 

Result :  

  Heat transfer area A = 19.66 m2 
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3. Hot oil with a capacity rate of 2500 W/K flows through a double pipe heat exchanger. It enters 

at 360 ºC and leaves at 300 ºC cold fluid enters at 30 ºC and leaves at 200 ºC. If the overall heat 

transfer coefficient is 800 W/m2K, Determine the heat exchanger area required for a) Parallel 

Flow b) Counter Flow. 

Given : 

         Hot fluid = Oil 

        Cold fluid = Water 

       Th1 = 360 ºC 

       Th2 = 300 ºC    

         Tc1 = 30 ºC 

         Tc2 = 200 ºC 

         U = 800 W/m2K 

     Heat Capacity    Ch = 2095 J/kgK = mhCph 

  To find : 

   Area of the heat exchanger, for   a) Parallel flow 

         b) Counter flow    

 Solution:  

  Heat lost by the hot fluid  

                    Q = mhCph(Th1-Th2) 

    = 2500 x (360 – 300) 

    = 150000 W 

a) For parallel flow : 
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                                     θm = 














22

11

2211

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














200300

30360
ln

)200300()30360(
 

       θm  = 192.64 ºC 

Heat transfer rate  

         Q = UA θm 

            A = 
mU

Q


 

        A = 
64.192800

15000


 

       A   = 0.973 m2 

 

ďͿ Foƌ ĐouŶteƌ Floǁ,    θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














30300

200360
ln

)30300()200360(
 

       θm  = 210.22 ºC 

Heat transfer rate  

         Q = UA θm 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


            A = 
mU

Q


 

        A = 
22.210800

150000


 

       A   = 0.892 m2 

Result :  

 The surface area required for a counter flow arrangement is less than that in a parallel 

flow arrangement 

4. A counter flow concentric tube heat exchanger is used to cool engine oil (Cp =2130 J/kgK) from 

160 ºC to 60 ºC with water available at 25 ºC as the cooling medium. The flow rate of cooling 

water through the inner tube of 0.5m diameter is 2 kg/s while the flow rate of oil through the 

outer tube is 2 kg/s. If the value of the overall heat transfer coefficient is 250 W/m2K,What  

length must the heat exchanger be to meet its cooling requirement? 

 Given:  

        Hot fluid = Engine Oil 

        Cold fluid = Water 

         mh = 2 kg/s 

         mc = 2 kg/s 

       Th1 = 160 ºC 

       Th2 = 60 ºC    

         Tc1 = 25 ºC 

         U = 250 W/m2K 

       Cph = 2130 J/kgK  
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       Cpc = 4187 J/kgK 

        d = 0.5 m  

  To find : 

   Length of  heat exchanger, 

  Solution:  

  Heat lost by the hot fluid  

                    Q = mhCph(Th1-Th2) 

    = 2 x 2130 x (160 – 60) 

    = 426000 W 

Heat lost by the hot fluid  = Heat gain by the cold fluid 

                    Q = mcCpc(Tc2-Tc1) 

  426000= 2 x 4187 x (Tc2-25) 

     Tc2 = 25
41872

426000



 

         Tc2 = 75.87 ºC 

Foƌ ĐouŶteƌ Floǁ,        θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














2560

87.75160
ln

)2560()87.75160(
 

       θm  = 56.02 ºC 
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Heat transfer rate  

         Q = UA θm 

            A = 
mU

Q


 

        A = 
02.56250

426000


 

       A   = 30.417 m2 

      A = ʋ ǆ d ǆ L 

           L = 
d

A


 

                    L = 
5.0

417.30


 

          L =19.36 m  

Result :  

  Length of heat exchanger  L = 19.36 m 

 

5.  Saturated steam at 120 ºC is condensing on the outer tube surface of a single pass heat 

exchanger. The heat transfer co-efficient is U0 =1800 W/m2K. Determine the surface area of a 

heat exchanger capable of heating 1000 kg /hr of water 20 ºC to 90 ºC. Also compute the rate of 

condensation of steam. Take  hfg = 2200 kJ/kg 

 Given : 

         Hot fluid = Steam 

        Cold fluid = Water 
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       Th1 = 120 ºC =  Th2   (For condenser) 

         Tc1 = 20 ºC 

         Tc2 = 90 ºC 

         mc = 1000 kg/hr     

     = 1000 / 3600   = 0.278 kg/s 

        Uo = 1800 W/m2K 

         Cpc = 4187 J/kgK  

                                    hfg  = 2200 kJ/kg 

  To find : 

i)    Heat transfer Area  

ii) The rate of condensation of steam     

  Solution:  

  Heat lost by the hot fluid  

                    Q = mcCpc(Tc2-Tc1) 

    = 0.278 x 4187 x (90 – 20) 

    = 81413.89 W 

 For parallel flow : 

                                     θm = 














22

11

2211

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














90120

20120
ln

)90120()20120(
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       θm  = 58.14 ºC 

Heat transfer rate  

         Q = UA θm 

            A = 
mU

Q


 

        A = 
14.581800

89.81413


 

       A   = 0.78 m2
 

                                    Q = m x hfg 

               m  = 

fgh

 Q
 

                m  = 
310 x 2200

 81413.89
 

        m = 0.037 kg/s     (or) 133.22 kg/hr 

Result : 

i) Heat transfer area A = 0.78  m2 

ii) The rate of condensation of steam  m = 133.22 kg/hr  

 

 

 

6. in a counter flow double pipe heat exchanger , water is heated from 25 ºC to 65 ºC by an oil with 

a specific heat of 1.45 kJ/kgK and mass flow rate of 0.9 kg/s. the oil is cooled from 230 ºC to 160 

ºC. if the overall heat transfer coefficient is 420 W/m2K, Calculate the following  

i. The rate of heat transfer 
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ii. The mass flow rate of water 

iii. The surface area of the Heat exchanger  

Given:  

        Hot fluid = Engine Oil 

        Cold fluid = Water 

         Th1 = 230 ºC 

       Th2 = 160 ºC    

         Tc1 = 25 ºC 

         Tc2 = 65 ºC 

         mh = 0.9 kg/s 

         U = 420 W/m2K 

       Cph = 1.450 kJ/kgK = 1450 J/kgK 

       Cpc = 4187 J/kgK 

 To find : 

i. The rate of heat transfer 

ii. The mass flow rate of water 

iii. The surface area of the Heat exchanger  

 

 Solution:  

   i) The rate of heat transfer: 

  Heat lost by the hot fluid  

                    Q = mhCph(Th1-Th2) 
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    = 0.9 x 1450 x (230 – 160) 

    = 91350 W 

ii) The mass flow rate of water: 

Heat lost by the hot fluid  = Heat gain by the cold fluid 

                    Q = mcCpc(Tc2 - Tc1) 

  91350  =  mc x 4187 x (65 - 25) 

      mc = 
25)-(65 x 4187

 91350
 

      mc  = 0.545 kg/s 

iii) surface area of heat exchanger: 

 Foƌ ĐouŶteƌ Floǁ,   θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














25160

65230
ln

)25160()65230(
 

       θm  = 149.5 ºC 

Heat transfer rate  

         Q = UA θm 

            A = 
mU

Q


 

        A = 
5.149420

91350


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       A   = 1.45 m2 

      

Result :  

i.  The rate of heat transfer Q = 91350 W  

ii. The mass flow rate of water mc = 0.545 kg/s 

iii. The surface area of heat exchanger  A   = 1.45 m2 

 

7. An oil cooler for a lubrication system has to cool 1000 kg/hr of oil (Cp = 2.09 kJ/kgK) from 80 ºC 

to 40 ºC by using a cooling water flow of 1000 kg/hr at 30 ºC. Give your choice for a parallel flow 

or counter flow heat exchanger with reasons. Calculate the surface area of the heat exchanger, 

if the overall heat transfer coefficient is 24 W/m2K. 

 Given:  

        Hot fluid = Engine Oil 

        Cold fluid = Water 

       Cph = 2.09 kJ/kgK = 2090 J/kgK 

         mh = 1000 kg/hr     

     = 1000 / 3600   = 0.278 kg/s 

         Th1 = 80 ºC 

       Th2 = 40 ºC    

         Tc1 = 30 ºC 

         mc = 1000 kg/hr     

     = 1000 / 3600   = 0.278 kg/s 

         U = 24 W/m2K 
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       Cpc = 4187 J/kgK 

 To find : 

The surface area of the Heat exchanger  

 Solution:  

 Heat lost by the hot fluid  

                    Q = mhCph(Th1-Th2) 

    = 0.278 x 2090 x (80 – 40) 

    = 23222 W 

ii) The mass flow rate of water: 

Heat lost by the hot fluid  = Heat gain by the cold fluid 

                    Q = mcCpc(Tc2 - Tc1) 

  23222  =  0.278 x 4187 x (Tc2 - 40) 

      Tc2 = 
 4187 x 0.278

 23222
+ 30 

      Tc2  = 50 ºC  

      Tc2 > Th2 

 So, counter flow arrangement must be used  

Surface area of heat exchanger: 

 Foƌ ĐouŶteƌ Floǁ,   θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
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                                     θm = 














3040

5080
ln

)3040()5080(
 

       θm  = 18.2 ºC 

Heat transfer rate  

         Q = UA θm 

            A = 
mU

Q


 

        A = 
2.1824

23222


 

       A   = 53.15 m2 

      

Result :  

 Surface area of the heat exchanger   A = 53.15 m2 

8. A counter flow double pipe heat exchanger using superheated steam is used to hot water at the 

rate of 10500 kg/hr. the steam enter the heat exchanger at 200 ºC and leaves at 130 ºC. The 

inlet and exit temperature of water are 30 ºC and 80 ºC respectively. If overall heat transfer 

coefficient from steam t water is 814 W/m2K, calculate the heat transfer area. What would be 

the increase in area in the fluid flows were in parallel? 

Given:  

        Hot fluid = steam  

        Cold fluid = Water 

         mc = 10500 kg/hr     

     = 10500 / 3600   = 2.917 kg/s 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


         Th1 = 200 ºC 

       Th2 = 130 ºC    

         Tc1 = 30 ºC 

         Tc2 = 80 ºC 

         U = 814 W/m2K 

       Cpc = 4187 J/kgK 

 To find : 

% of increase in area if the fluid flows were in parallel  

 Solution:  

 Heat gain by the hot fluid  

                    Q = mcCpc(Tc2 - Tc1) 

    = 2.917 x 4187 x (80 – 30) 

    = 610670 W 

 Foƌ ĐouŶteƌ Floǁ,   θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














30130

80200
ln

)30130()80200(
 

       θm  = 109.7 ºC 

Heat transfer rate  

         Q = UA1 θm 
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            A1 = 
mU

Q


 

        A1 = 
7.109814

610670


 

       A1  = 6.8 m2 

 For parallel flow : 

                                     θm = 














22

11

2211

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














80130

30200
ln

)80130()30200(
 

       θm  = 98.05 ºC 

Heat transfer rate  

         Q = UA1 θm 

            A2 = 
mU

Q


 

        A2 = 
05.98814

610670


 

        A2 = 7.65 m2
 

% of increase in area =
2

12

A

AA 
 x 100 

     =
65.7

8.665.7 
 x 100 
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     = 11.11 % 

Result :  

 % of increase in area = 11.11% 

9. Determine the overall heat transfer coefficient U0 based on the outer surface of a 2.54 cm O.D 

2.286 cm I.D. heat exchanger tube (K= 102 W/mK).If the heat transfer co-efficients at the inside 

and out side of the tube are hi = 5500 W/m2K and ho = 3800 W/ m2K respectively and the fouling 

factors are Rfo = Rfi = 0.0002 m2WK. 

 Given : 

        r1 = 
2

286.2
= 1.143 cm = 1.143 x 10-2 m   

        r2 = 
2

54.2
  = 1.27 cm   = 1.27 x 10-2 m 

         ho = 3800 W/ m2K 

       hi  = 5500 W/m2K  

       Rfo = Rfi = 0.0002 m2WK 

        K = 102 W/mK 

 To find  

  Overall heat transfer co-efficient  

 Solution: 

  Over all heat transfer co-efficient based on outer surface  
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           Uo = 

o

f

i

o
fi

iii h
R

r

r

K

r
R

r

r

r

r

h

1
ln

1

1

0
000 

















 

    = 

 
3800

1
0002.0

10143.1

1027.1
ln

102

1027.1
0002.0

10143.1

1027.1

10143.1

1027.1

5500

1

1

2

22

2

2

2

2






































 

    = 1110.47 W/m2K 

Result :  

 Overall heat transfer coefficient Uo = 1110.47 W/m2K 

10. Steam enters a counter flow heat exchanger dry saturated at 10 bar and leaves at 350 ºC. The 

mass flow of steam is 800 kg/min. the gas enters the heat exchanger at 650 ºC and mass flow 

rate is 1350 kg/min. if the tubes are 30mm diameter and 3m long. Determine the number of 

tubes required. Neglect the resistance offered by metallic tubes use following data  

 For steam:          Tsat  = 180 ºC (at 10 bar) 

         Cps  = 2.71 kJ/kgK, 

           hs  = 600 W/m2K 

 For Gas :      Cpg =1 kJ/kgK  

           hg  = 250 W/m2K 

 Given : 

             Hot fluid = Gas  

        Cold fluid = Steam 

         mc = 800 kg/min     

     = 800 / 60   = 13.33 kg/s 
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        mh = 1350 kg/min     

     = 1350 / 60   = 22.5 kg/s 

         Th1 = 650 ºC 

       Tc1 = 180 ºC (at 10 bar, take saturation temperature from steam table)    

         Tc2 = 350 ºC 

       Cpc = 2.71 kJ/kgK  = 2710 J/kgK 

       Cph = 1 kJ/kgK  = 1000  J/kgK 

         ho = 600 W/m2K 

              hi = 250 W/m2K 

 To find : 

No of tubes required  

 Solution:  

 Heat gain by the hot fluid  

                    Q = mcCpc(Tc2 - Tc1) 

    = 13.33 x 2710 x (350 – 180) 

    = 6141131 W 

Heat lost by the hot fluid  = Heat gain by the cold fluid 

                    Q = mhCph(Th1 – Th2) 

         6141131  =  22.5 x 1000 x (650 - Th2) 

      Th2 = 650 - 
 1000 x 22.5

 6141131
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      Tc2  = 377 ºC  

 Foƌ ĐouŶteƌ Floǁ,   θm = 














12

21

1221

ln

)()(

ch

ch

chch

TT

TT

TTTT
 

                                     θm = 














180377

350650
ln

)180377()350650(
 

       θm  = 245 ºC 

 Overall heat transfer coefficient  

         Uo = 

oi hh

11

1


 

         Uo = 

250

1

600

1

1


 

       Uo = 176.47 W/m2K 

Heat transfer rate  

         Q = UA θm 

             A = 
mU

Q


 

         A = 
24547.176

6141131


 

         A  = 142.04 m2 

         A = N ʋ d L 
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           N = 
Ld

A


 

                    N = 
303.0

04.142


 

         N = 502 tubes   

 Result : 

   No of tubes required  N =  502  

 

11. In a shell and tube counter flow heat exchanger water flows through a copper tube 20mm I.D 

and 23mm O.D, while oil flows through the shell. Water enters at 20 ºC and comes out at 30 ºC. 

While oil enters at 75 ºC and comes out at 60 ºC. The water and oil side film coefficients are 

4500 and 1250 W/m2K. Respectively. The thermal conductivity of the tube wall is 355 W/mK. 

The fouling factors on the water and oil sides may be taken to be 0.0004 and .001 respectively if 

the length of the tube is 2.4m. Calculate the following  

(i) overall heat transfer coefficient  

(ii) heat transfer rate. 

 Given : 

             Hot fluid = oil  

        Cold fluid = water  

        ri = 20/2 = 10mm = 0.01 

        r0 = 23/2 = 11.5mm = 0.0115 

         Th1 = 75 ºC 

         Th2 = 60 ºC 

       Tc1 = 20 ºC  
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         Tc2 = 30 ºC 

        ho = 1250 W/m2K 

              hi = 4500 W/m2K 

       K = 355 W/mK 

       Rfi = 0.0004 

             Rfo = 0.001 

         L = 2.4 m  

 To find : 

(i) overall heat transfer coefficient  

(ii) Heat transfer rate. 

 Solution:  

                                        Uo = 
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    = 1110.47 W/m2K 
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       θm  = 245 ºC 

 Overall heat transfer coefficient  

         Uo = 

oi hh

11

1


 

         Uo = 

250

1

600

1

1


 

       Uo = 176.47 W/m2K 

Heat transfer rate  

         Q = UA θm 

             A = 
mU

Q


 

         A = 
24547.176

6141131


 

         A  = 142.04 m2 

         A = N ʋ d L 

           N = 
Ld

A


 

                    N = 
303.0

04.142


 

         N = 502 tubes   

 Result : 

   No of tubes required  N =  502  
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VI: RADIATION 

Introduction 

Radiation heat transfer is defined as the transfer of energy across a system boundary by means 

of an electromagnetic mechanism which is caused solely by a temperature difference. Radiation heat 

transfer does not require a medium. 

Application:- 

(i). In furnaces, combustion chambers, nuclear explosion and in space applications. 

(ii). Solar energy incident upon the earth. 

 

Surface Emission Properties 

The rate of emission of radiation by a body depends upon the following factors: 

(i). The temperature of the surface 

(ii). The nature of the surface and 

(iii). The wavelength or frequency of radiation. 

 

Total emissive power (Eb): 

The emissive power is defined as the total amount of radiation emitted by a body per unit area 

and unit time. 

 

Monochromatic emissive power (Eʄ)  

At any Given Data temperature the amount of radiation emitted per unit wave length varies at 

different wavelength. It is defined as the rate of energy radiated per unit area of the surface per unit 

wavelength. 

 

Emissivity:- 

It is defined as the ability of the surface of a body to radiate heat. It is also defined as the ratio of 

the emissive power of any body to the emissive power of a block body of equal temperature.  

                                                   Є =   E 

  
        E

b
 

 Its value ranging from 0 to 1 
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 Incident  

radiation 

(Q) 

Reflected 

radiation (Qr) 

Transmitted 

radiation (Qt) 

Absorbed 

radiation (Qa) 

 For a black body Є = ϭ 

 For a white body  Є = Ϭ 

 For a gray body  Є = Ϭ to ϭ 

 

AďsoƌptiǀitǇ ;αͿ :-  

It is defined as the ratio of the radiation absorbed to the incident radiation 

 α  =   radiation absorbed
 

                          incident radiation  

Reflectivity ;ʌͿ:- 

It is defined as the ratio of the radiation reflected to the incident radiation. 

  ʌ  =  radiation reflected (Q
r
)
 

                        Incident radiation  (Q) 

TƌaŶsŵissiǀitǇ ;τͿ :- 

It is defined as the ratio of the radiation transmitted to the incident. 

  τ  =  radiation transmitted (Q
t
)
 

                        Incident radiation (Q) 
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By the conservation of energy principle 

  

Qa + Qr + Qt = Q 

 

Dividing both sides by Q , we get  

 

Qa  
+
 Qr  

+
  Qt  

=
  Q 

Q       Q       Q        Q 

α   +    ʌ   +   τ   =  1 

For black body: -    α = 1,   ʌ = Ϭ, τ = Ϭ 

(i.e.) a black body is one which neither reflects nor transmits any part of the incident radiation 

but absorbs all of it. In practice, a perfect black body (α = 1) does not exists 

 

For opaque body:- 

When no incident radiation is transmitted through the body it is called an opaque body. 

               τ = Ϭ 

.
·
.    α + ʌ = 1 

Example: gasses and liquids. 

 

White body:- 

If all the iŶĐideŶt ƌadiatioŶ falliŶg oŶ the ďodǇ aƌe ƌefleĐted it is Đalled a ͞ǁhite ďodǇ͟. 

For a white body, ʌ = 1, α = 0,   τ = Ϭ 

 

Example: gasses such as hydrogen, oxygen nitrogen. 
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(Eʄ)b   =     

Gray body:- 

A gray body is defined as one whose absorptive of surface does not vary with temperature and 

ǁaǀeleŶgth of the iŶĐideŶt ƌadiatioŶ ;α = αʄ = constant) 

Concept of a black body:- 

A black body has the following properties:- 

(i). It absorbs all the incident radiation falling on it and does not transmit (or) reflect 

regardless of wave length and direction 

(ii). It emits maximum amount of thermal radiation at all wavelength at any specified 

temperature. 

(iii). It is a perfect emitter (i.e. the radiation emitted by a black body is independent of 

direction). 

The STEFAN BOLTZMANN LAW:- 

 The law states that the emissive power of a black body is directly proportional to the fourth 

power of its absolute temperature. 

  

(i.e.)    Eb =  σ T4 

  Eb = Emissive power of a black body 

  σ  = “tefaŶ BoltzŵaŶŶ ĐoŶstaŶt = ϱ.ϲϳ x 10-8   w/m
2
k

4 

  T  = absolute temperature. 

 

PlaŶk͛s laǁ:- 

The monochromatic distribution of the radiation intensity of a black body is Given Data by 

 

  C1 ʄ-5 

          e
(C

2/ʄT
)
 – 1 

    (Eʄ)b = Monochromatic emissive power 
w

/m
2

 

 

  C1 = 3.742 x 108 ʅǁŵ2 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


 

 C2 = 1.4388 x 104 ʅŵk 

 

WieŶ͛s DisplaĐeŵeŶt laǁ:- 

A relationship between the temperature of a black body and the wave length at which the 

maximum valve of monochromatic emissive power, occurs. 

Wien͛s displaĐeŵeŶt laǁ states that the pƌoduĐt of   ʄmax and T is constant,  

(i.e.) 

  ʄmax T = constant 

ʄmax T = Ϯϴϵϴ ʅŵk 

AŶotheƌ foƌŵ of ǁieŶ͛s laǁ, 

   

Ebʄmax 

    T
5   

           C4  = 1.307 x 10-5 
w

/m
2
 K

5 

KƌiĐhoff͛s laǁ:- 

 The law states that at any temperature the ratio of total emissive power E to the total 

aďsoƌptiǀitǇ α is a ĐoŶstaŶt foƌ all suďstaŶĐe ǁhiĐh aƌe iŶ theƌŵal eƋuiliďƌiuŵ ǁith theiƌ eŶǀiƌoŶŵeŶt. 

 KiƌĐhoff͛s laǁ also states that the eŵissiǀity of a body is equal to its absorptivity when the body 

remains in thermal equilibrium with its surroundings 

    Є = α 

Intensity of radiation:-  ( I ) 

 The intensity of radiation (I) is defined as the rate of energy leaving a surface in a Given Data 

direction per unit solid angle per unit area of the emitting surface normal to the mean direction in 

space. 

 The total eŵissiǀe poǁeƌ of a diffuseƌ suƌfaĐe is eƋual to ʋ tiŵes its iŶteŶsitǇ of ƌadiatioŶ. 

    E = ʋ I 

= C4T
5
 = constant (or)      Ebʄmax  
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Laŵďeƌt͛s ĐosiŶe laǁ:- 

 The law states that the total emissive power (Eb) form a radiating plane surface in any direction 

is directly proportional to the cosine of the angle of emission 

  Eb α Đosθ 

Eb = En Đosθ 

 

Problems  
1) The effective temperature of a body having an area of  0.12m2 is 527ºC. calculate the following. 

(i). The total rate of energy emission. 

(ii). The intensity of normal radiation, and  

(iii). The wavelength of maximum monochromatic emissive power. 

 

Given Data:- 

 A = 0.12m2 

 T = 527ºC + 273 = 800K 

To find :- 

(i). The total rate of energy emission.( Eb) 

(ii). The intensity of normal radiation, and (Ibn) 

(iii). The wavelength of maximum monochromatic emissive power.( ʄmax) 

Soln.:- 

 

(i). Eb  = σ A T4 

 

        = 5.67 x 10-8 X 0.12 X 8004 

    

= 2786.9 W 

 

(ii). Ibn = Eb 

      ʋ 
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   = σT4    = 7392.5 
w/m2sr 

    ʋ 

 

(iii). ʄmax , fƌoŵ ǁieŶ͛s displacement Law. 

 

ʄmax  = Ϯϴϵϴ ʅŵk 

 

ʄmax = 2898 

     800 

 

 = ϯ.ϲϮϮ ʅŵ 

 

2) Assuming the sun to be a black body emitting radiation with maximum intensity at ʄ = Ϭ.ϰϵʅŵ, 
calculate the following. 

(i). The surface temperature of the sun and. 

(ii). The heat flux at surface of the sun. 

 

Given Data:- 

 ʄmax  = Ϭ.ϰϵʅŵ. 

 

To find:- 

(i). The surface temperature of the sun and. 

(ii). The heat flux at surface of the sun. 

 

Soln.:- 

(i). The surface temperature of the sun (T): 

 

AĐĐoƌdiŶg to WieŶ͛s displaĐeŵeŶt Laǁ. 
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  ʄmax T = Ϯϴϵϴʅŵk. 

  

  T = 2898    

         ʄmax    

 

   =  2898 

            0.49 

 

      = 5914k 

 

(ii). The heat flux at surface of the sun (E)sun: 

 

(E)sun = σT4 

  

= 5.67 X 10-8  X  (5914)4 

  

  (E)sun = 6.936 X 107   
w/m2 

 

 

 

3) Calculate the following for an industrial furnace in the form of a black body and emitting radiation at 

2500ºC. 

 

(i). MoŶoĐhƌoŵatiĐ eŵissiǀe poǁeƌ at ϭ.Ϯ ʅŵ leŶgth. 
(ii). Wavelength at which the emission is maximum  

(iii). Maximum emissive power, 

(iv). Total emissive power , 

(v). Total emissive power of the furnace if it is assumed as a real surface with emissivity 

equal to 0.9. 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


 

Give Data:- 

   T  = 2500 + 273 = 2773k 

  ʄ = ϭ.Ϯʅŵ 

  Є =  0.9 

To find:- 

(i). MoŶoĐhƌoŵatiĐ eŵissiǀe poǁeƌ at ϭ.Ϯ ʅŵ leŶgth. 
(ii). Wavelength at which the emission is maximum  

(iii). Maximum emissive power, 

(iv). Total emissive power , 

(v). Total emissive power of the furnace if it is assumed as a real surface with emissivity 

equal to 0.9. 

Soln.: 

(i). MoŶoĐhƌoŵatiĐ eŵissiǀe poǁeƌ at ϭ.Ϯ ʅŵ leŶgth ;Eʄ)b: 

 

AĐĐoƌdiŶg to plaŶk͛s laǁ. 

 

(Eʄ)b =   C1 ʄ-5 

          e
(C

2/ʄT
)
 – 1 

=  (3.742 X 102) (1.2 X 10-6)-5 

         e(1.4388 X 10-2/2773 X 1.2 X 10-6) – 1 

 

   = 1.5038 X 1038   

         
74.4776 

  (Eʄ)b = 2.014 X 1012 w/m2 

 

C1 = 3.742 X 102  
w/m2 

.·. 
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(ii). Wavelength at which the emission is maximum (ʄmax) 

 

AĐĐoƌdiŶg to WieŶ͛s displaĐeŵeŶt Laǁ. 

 

ʄmax =   2898         =     2898  = ϭ.Ϭϰϱ ʅŵ 

   T     2773 

 

(iii). Maximum emissive power (Eʄ)b max 

 

(Eʄ)b max = 1.285 X 10-5  T5 

 

  = 1.285 X 10-5 X (2773)5 

 

  = 2.1 X 1012 w/m2 per m length  

 

(iv). Total emissive power (Eb) 

 

Eb  = σ T4  

 = 5.67 X 10-8 (2773)4 

 = 3.352 X 106 w/m2 

 

(v). Total eŵissiǀe poǁeƌ ;E ǁith eŵissiǀitǇ  ;ЄͿ = Ϭ.ϵ 

 

E = Є σ T4 

   = 0.9 X 5.67 X 10-8 X 27734  
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  = 3.017 X 106 
w/m2 

 

 

 

4) Assuming the sun (diameter = 1.4 X 109m) as a black body having a surface temperature of 5750k 

and at a mean distance of 15 X 1010m from the earth (diameter = 12.8 x 106m) estimate the 

following. 

(i). The total energy emitted by the sun. 

(ii). The emission received per m2 just outside the atmosphere of the earth. 

(iii). The total energy received by the earth if no radiation is blocked by the atmosphere of 

the earth and, 

(iv). The energy received by a 1.6m X 1.6m solar collector whose normal is inclined at 50ºC 

to the sun. the energy loss through the atmosphere is 42% and diffuse radiation is 

22% of direct radiation :- 

  

Given Data:- 

Diameter of sun = 1.4 X 109m 

Radius of sun  = 0.7 X 109m 

Mean distance of  

    the sun from the   R = 15 X 1010m 

 earth  

  Radius of the earth re = 12.8 X 106/2 = 6.4 X 106m 

  Surface temp. of the  

sun   T = 5750k 

 

To find:- 

 

(i). The total energy emitted by the sun  

(ii). The emission received per m2 

(iii). The total energy received by the earth  

(iv). The energy received by the solar collector. 
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Soln.:- 

 

(i). The total energy emitted by the sun: 

 

Eb  = σA T4  

 = 5.67 X 10-8 X 4ʋ rs
2 X (5750)4 

 

 = 5.67 X 10-8 X 4ʋX (0.7 X 109)2 X (5750)4 

 

  = 3.816 X 1026 w. 

 

 

(ii). The emission received per m2 

 

Eb = 3.816 X 1026 

A       4ʋ R
2 

 

 =   3.816 X 1026 

     4ʋ(15 X 10
10

)
2 

  

= 1349.6 
w/m2 

 

(iii). The total energy received by the earth : 
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Assume the earth a spherical body, the energy received by it will be proportional to the 

perpendicular projected area, 

 Energy recived by the earth  = 1349.6 X ʋ re
2 

 

     = 1349.6 X ʋ X (6.4 X 106)2 

 

     = 1.736 X 1017 w 

 

(iv). The energy received by  the solar collector: 

 

% of the direct energy reading  

the earth  = (1- 0.42) X 100 

 

       = 58% 

The direct energy reading  

    the earth  = 0.58 X 1349.6 

 

      = 782.77
 w/m2 

 

 % of diffuse radiation    = 0.22 X 782.77 

 

      = 172.21 
w/m2 

 Total radiation reaching the  

Collector = 782.77 + 172.21 
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  = 955 
w/m2 

 

 Projected area     = A cos  

 

      = 1.6 X 1.6cos50 

 

      = 1.961 m2 

 

Energy received by the  

Solar Collector = 955 x 1.961 

 

   = 1872.7 w 

 

5) A ďlaĐk ďodǇ is kept at a teŵpeƌatuƌe of ϳϮϳ˚ C. Estiŵate the fƌaĐtioŶ of the thermal radiation 

eŵitted ďǇ the suƌfaĐe iŶ the ǁaǀeleŶgth ďaŶd ϭ aŶd ϱ ʅ 

  

 Given Data:- 

  ϳϮϳ˚ C + Ϯϳϯ = ϭϬϬϬ K 

  ʄ1 = ϭ ʅ 

  ʄ2 = ϱ ʅ 

 To find:- 

  The fraction of thermal radiation. 

 Solution:- 

   

  ʄ1 T = ϭ ǆ ϭϬϬϬ = ϭϬϬϬ ʅk 

  ʄ2 T = ϱ ǆ ϭϬϬϬ =  ϱϬϬϬ ʅk 
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[From table HMT data book pg] 

 

 ĐoƌƌespoŶdiŶg ϭϬϬϬ ʅk 

 

   Fo – ʄ1T  = Ebo – ʄ1T 

           σT4 

    

   = 0.3 X 10-3 

 

   = 0.0003. 

 

 CoƌƌespoŶdiŶg to ϱϱϬϬʅk, 

  

 Fo – ʄ2T       =          Ebo – ʄ2T 

    

          σT4  

   = 0.6337 

   

  σT4  = (5067 X10-8)(10000)4 

   = 56.7kw/m2 

 

 Fʄ1T – ʄ2T  =  (Fo – ʄ2T) – (Fo – ʄ1T) 

    

   = 0.6337 – 0.0003 
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   = 0.6334 

 

 Eb;ʄ1 – ʄ2)     =   0.6334  X  56.7 

 

    =  35.9 kw/m2 

 

6) It is observed that the intensity of the radiation emitted by the sun is maximum at a wavelength of 

Ϭ.ϱʅ. AssuŵiŶg the suŶ to ďe a ďlaĐk ďodǇ, estiŵate the suƌfaĐe teŵpeƌatuƌe aŶd eŵissiǀe poǁeƌ. 

 

Given Data:- 

  ʄ =Ϭ.ϱʅ 

To find 

(i). Temperature of surface 

(ii). Emissive power 

Solution 

 

  AĐĐoƌdiŶg to WieŶ͛s DisplaĐeŵeŶt laǁ 

    

   ʄmax T  =     0.289  X 10-2mk 

     

    T =     0.289 X 10-2   

     ʄmax   

     

    T =   0.289 X 10-2 

                                                                 0.5 X 10-6 

 

    T = 5780 k 
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 Using Stefan Boltzman law 

    (Eb) sun = σT4 

      = 5.67 X 10-8 X (5780)4 

      =63.3Mw/m2
 

 

7) A GƌaǇ suƌfaĐe is ŵaiŶtaiŶed at a teŵpeƌatuƌe of ϴϮϳ˚C. If the ŵaǆiŵuŵ speĐtƌal eŵissiǀe poǁeƌ at 
a temperature is 1.37 X 1010 W/m3 determine the emissivity of the body and the wavelength 

corresponding to the maximum spectral intensity of radiation. 

 

Given Data:- 

   `T = ϴϮϳ˚C + Ϯϳϯ = ϭϭϬϬK 

   Eʄŵaǆ = 1.37 X 1010 W/m3 

To find 

(i) Emissivity 

(ii) ʄmax  

Soln.:-  

 

AĐĐoƌdiŶg to WeiŶ͛s laǁ, 

 

 Eď ʄmax  

        = 1.307 X 10-5 

                  T5 

Eď ʄŵaǆ      = 1.307 X 10-5 X (1100)5 

 

        = 2.1 X 1010W/m3 

 

Emissivity   =     E ʄmax  

            Eb ʄmax  
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               =   1.37 X1010  

        2.1 X 1010 

   

  = 0.65 

 

According to Wein law 

 

 ʄmax T = 0.289 X 10-2mk 

 

 ʄmax     = 0.289 X 10-2 

   T 

 

   = 0.289 X 10-2 

   1100 

   = Ϯ.ϲϮϳʅ 

 

Result:- 

(i) E = 0.65 

(ii) ʄmax  = Ϯ.ϲϳʅ 

 

8) A PǇƌoŵeteƌ ƌeĐoƌds the teŵpeƌatuƌe of the ďodǇ as ϭϰϬϬ˚C ǁith a ƌed light filteƌ ;ʄ = Ϭ.ϲϱ ʅͿ. FiŶd 
the tƌue teŵpeƌatuƌe of the ďodǇ .If it eŵissiǀitǇ at Ϭ.ϲϱʅ is Ϭ.ϲ. 

 

Given Data:- 

  T = ϭϰϬϬ˚C 

  ʄ = Ϭ.ϲϱ ʅ 
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  E = 0.6 

To find:- 

  True temperature of the body 

Soln.:- 

  

AĐĐoƌdiŶg to the plaŶk͛s laǁ 

  

(Eʄ)b =   C1 ʄ-5 

          e
 (C

2/ʄTb
)
 – 1 

For gray body  

 (Eʄ)b =   C1Єʄ ʄ-5 

          e
 (c

2/ʄT)
 – 1 

  

      (Eʄ)b    =     Eʄ 

 

   C1 ʄ-5          =                    C1 Єʄ-5 

e
 (C

2/ʄTb

)
 – 1            e

 (C
2/ʄT)

 – 1 

 

   C1 ʄ-5           =                     C1 ʄ-5 

e
 (C

2/ʄTb
)
 – 1           1   [e

 (C
2/ʄT)

 – 1] 

     Єʄ 
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e
 (C

2/ʄTb
)
 – 1         =   1   [e

 (C
2/ʄT)

 – 1] 

     Єʄ 

 

  Єʄ [e
 (C

2/ʄTb
)
 – 1]            =    e

 (C
2/ʄT) – 1 

       

Єʄ [e
 (C

2/ʄTb
)
 – 1]  + 1    =    e

 (C
2/ʄT)

  

 

  In[Єʄ (e
 (C

2/ʄTb
)
 – 1)  + 1]    =    

 C
2/ʄT  

 

InЄʄ + In e
 (C

2/ʄTb
)
 – In(1)  + In(1)    =    

 C
2/ʄT  

 

 

InЄʄ + C
2/ʄTb       =    

 C
2/ʄT  

 

C
2/ʄT       =    

 C
2/ʄTb  + IŶЄʄ 

 

1/T           =    
 1/Tb  +   ʄ/C2  IŶЄʄ 

 

   T       =   
1 

    
1/Tb  +   ʄ/C2  IŶЄʄ 
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T      =       
1 

            
1/1673  +   [0.65 X 10

-6/1.439 X 10-2  In(0.6)] 

 

         = 1740 K 

 

         = 1467ºC 

     

Result: 

 The temperature of the body = 1467ºC 

 

 

9) A metallic bar at 37ºCis placed inside an oven whose interior is maintained at a temperature of 

1100K the absorptivity of the bar (at 37ºC) a function of the temperature of incident radiation and a 

few representative values are Given Data below. 

   Temp (k) 310 700 1100 

        α    0.8  0.68  0.52 

Estimate the rate of absorption and emission by the metallic bar. 

 

Given Data:- 

  Temp of metallic bar  =  37ºC 

   Temp at oven = 1100K 

   α ;at ϭϭϬϬKͿ      =  Ϭ.ϱϮ 

   α ;at ϯϭϬKͿ     =  Ϭ.ϴ 

To find:- 
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(i) rate of absorption 

(ii) rate of emission 

Soln.:- 

  

(i). Rate of absorption 

(ii).  

Qa  = α.σ T4 

 

       = 0.52 X (5.67  X 10-8)11004 

 

       = 43.15 k W/m2 

 

(iii). Rate of emission 

(iv).  

    Qe  = E σ T4 

  

AĐĐoƌdiŶg to KiƌĐhoff͛s laǁ  

 

    Є = α 

    Є = Ϭ.ϴ  ;at ϯϳ˚CͿ oƌ ϯϭϬ K 

 

    Qe  = E σT4 

 

           = 0.8 X 5.67 X 10-8 X (310)4 

 

           = 418.9 
w/m2 

 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


 

Radiation exchange between Surfaces: 

  The radiation heat transfer between different types of surfaces both in non participating 

and participating media and the following assumptions made. 

(i) All surfaces have uniform properties over their whole extent  

(ii) Each surface is considered to be either gray or black. 

(iii) The absorptivity of surface is independent of the temperature of the source of the 

incident radiation and equals is emissivity and 

(iv) Radiation and reflection process is diffuse. 

 

Radiation exchange between two black bodies separated by a non absorbing medium: 

 

 Lets us consider heat exchange between elementary between dA1 and dA2 of two black radiating 

bodies, separated by a non absorbing medium, and having area A1 and A2 and temperature T1 and T2 

respectively. 

 The eleŵeŶtaƌǇ aƌeas at a distaŶĐes ƌ apaƌt aŶd the Ŷoƌŵal to these aƌeas ŵake aŶgles θ1 aŶd θ2 

with the line joining them. 

 Projected area dA1 Đos θ. 

 Energy leaving dA1 iŶ diƌeĐtioŶ θ1 

  = In1dA1 Đos θ1 

  In1 = Intensity of radiation at surface A1 

  In1 =    Eb1 

               ʋ 

 

Let dW1 be subtended at dA1 by dA2, and dW2 subtended at dA2  

by dA1, 

 So,  

  dW1 = dA2 Đosθ2 

                   r2 
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  dW2 = dA1 Đosθ1 

        r2 

 

The rate of radiant energy leaving dA1 and striking on dA2 is Given Data by, 

  

 dQ1-2   = In 1 dA1 Đosθ1 x dW1 

 

  = In1 dA1 Đosθ1 x dA2 Đosθ2 

     r2 

 

 dQ1-2 = In1 Đosθ1 Đosθ2 dA1 dA2  

    r2 

 

The rate of energy radiated by dA2 and absorbed by dA1 is Given Data by, 

  

   

 dQ2-1   = In2 dA2 Đosθ2 x dW2 

 

  = In2 dA2 Đosθ2 x dA1 Đosθ1 

     r2 

 

 dQ2-1 = In1 Đosθ1 Đosθ2 dA1 dA2  

    r2 

 

The net rate of heat transfer between dA1 and dA2 is, 
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 dQ1-2 = dQ1-2 – dQ2-1  

 

  = In1 Đosθ1 Đosθ2dA1 dA2                              In2 Đosθ1 Đosθ2 dA1 dA2 

        r2                                                                        r2  

 dQ1-2 = (In1 – In2Ϳ Đosθ1 Đosθ2 dA1 dA2 

    r2  

 

 dQ1-2 = (Eb1-Eb2Ϳ Đosθ1 Đosθ2 dA1 dA2 

         ʋ                     ƌ2 

the net flow is the difference between the quantities 

 
This is also equal to (Eb1-Eb2)A1F12 

 

Shape factor relationships 

As the shape factor values are available for limited geometric situations only, it becomes necessary to use 

some basic relationships between shape factors to evaluate the shape factor for other connected geometries. For 

example shape factor value are available for perpendicular surfaces with a common edge. But shape factor values 

for perpendicular surfaces will meet only if extended, is needed. The shape factor relationship together with the 

reciprocity theorem are used to evaluate shape of factor value in such situations. 

Consider surfaces A1, A2 and A3 shown in Fig. The first of such rules is 

 

F3–1, 2 = F3–1 + F3–2 

This is an obvious relation as the energy reaching an area is the sum of energies reaching individual parts of the 

area. Generally 

Fi–j, k, l, m, n..... = Fi–j + Fi–k + Fi–j + Fi–m + .... 
Multiplying the RHS and LHS of equation, by the area 

A3F3–1, 2 = A3F3–1 + A3F2–3 
Then using the reciprocity theorem, 

(A1 + A2) F1,2–3 = A1 F1–3 + A2 F2–3 

RADIANT HEAT EXCHANGE BETWEEN BLACK SURFACES 

To determine radiant heat exchange between black surfaces 
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Q1–2 = A1 F1–2 (Eb1 – Eb2) 

This can be represented by electrical analogue shown in 

 

The temperatures and geometric parameters should be specified for solution 

HEAT EXCHANGE BY RADIATION BETWEEN GRAY SURFACES 
The calculation of heat exchange involves the summation of the energy absorbed on each incidence on the 

surface. Additional resistance to heat absoption is introduced by the emissivity/absorptivity of the surface. In order 

to simplify the process of calculation two new terms called “radiosity” and “irradiation” are introduced. 

Irradiation (G) is the total radiation incident upon a surface per unit time and unit area (W/m2).  

This quantity consists of the radiation from other surfaces and the reflected radiation from other surfaces. 

Radiosity (J) is defined as the total radiation that leaves a surface per unit time and unit area (W/m2). This 

quantity consists of the emissive power of the surface and the reflections by the surface. From these definitions we 

get 

 

In the calculation of heat transfer between gray surfaces an important assumption is that radiosity and 

irradiation are uniform over the surface. Considering a heat balance over the surface, the net energy leaving the 

surface is the  difference between radiosity and irradiation. 

 

After simplifying 

 

Radiation Shields:  

Any surface placed in between two surfaces introduces additional surface resistance reducing heat transfer. 

This is known as radiation shield and is extensively used in practice. 
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UNIT - III 

1. Two large plates are maintained at a temperature of 900 K and 500 K respectively. 

Each plate has area of 6
2
. Compare the net heat exchange between the plates for the 

following cases. 

(i) Both plates are black 

(ii) Plates have an emissivity of 0.5 

Given: 

 T1 =900 K 

 T2 = 500 K 

 A = 6 m
2
 

To find: 

(i) (Q12) net     Both plates are black   Є = 1 

(ii) (Q12) net     Plates have an emissivity of Є= 0.η 

Solution 

Case (i)      Є1 = Є2 = 1 

(ܳଵଶ)௡௘௧  =
൫ߪܣ ଵܶସ − ଶܶସ൯

1∈ଵ +
1∈ଶ − 1

 

(ܳଵଶ)௡௘௧  =
ܣ × 5.67 ൤ቀ ଵܶ

100
ቁସ − ቀ ଶܶ

100
ቁସ൨

1∈ଵ +
1∈ଶ − 1

 

(ܳଵଶ)௡௘௧ =

6 × 5.67 ቈቀ900
100

ቁସ − ቀ500
100

ቁସ቉
1
1

+
1
1
− 1

 

(ܳଵଶ)௡௘௧  = 201.9 × 10ଷܹ 

Case (ii)      Є1 = Є2 = 0.5 

(ܳଵଶ)௡௘௧  =
൫ߪܣ ଵܶସ − ଶܶସ൯

1∈ଵ +
1∈ଶ − 1

 

(ܳଵଶ)௡௘௧ =

6 × 5.67 ቈቀ900
100

ቁସ − ቀ500
100

ቁସ቉
1

0.5
+

1
0.5

− 1
 

(ܳଵଶ)௡௘௧  = 67300 ܹ 
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2. The sun emits maximum radiation at Ȝ = 0.52 ȝ. Assuming the sun to be a black 

body, calculate the surface temperature of the sun. Also calculate the 

monochromatic emissive power of the sun’s surface. 

Given: 

 Ȝ max = 0.η2 ȝ = 0.η2  x 10 -6
 m 

To find: 

(i)  Surface temperature, T. 

(ii) Monochromatic emissive power, EbȜ 

(iii) Total emissive power, E 

(iv) Maximum emissive power, Emax  

Solution: 

1. From Wien’s law,  

Ȝ max  T = 2.9  x 10
 -3

 mK 

[From HMT Data book, page no 82, sixth editions] ܶ =
2.9  x 10 − 3

0.52  x 10 − 6
 ܶ =  ܭ 5576

2. Monochromatic emissive power, ( EbȜ) 

From Planck’s law, 

Eୠ஛ =  
cଵɉିହቂeቀୡమ஛୘ቁ − 1ቃ 

[From HMT Data book, page no 82, sixth editions] 

Where 

  ܿଵ = 0.374 × 10ିଵହ ܹ݉ଶ 

                        ܿଶ = 14.4 × 10ିଷ ݉ܭ 

 ɉ  =      0.52 x 10 ି଺ m 

T = 5576 K 

Eୠ஛ =  
0.374 × 10ିଵହ[0.52 x 10 ି଺]ିହቈe൬ ଵସ.ସ×ଵ଴షయ଴.ହଶ ୶ ଵ଴ షల ×ହହ଻଺൰ − 1቉  

                                   Eୠ஛ = 6.9 × 10ଵଷ W mଶ⁄  

3. Total emissive power  

464 )5576(1067.5  TE      W/m
2
 

4. Maximum emissive power 

Emax = 1.28510
-5

  T
5
 = 1.285 10

-5
(5576)

5
 W/m

2
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3. A 70 mm thick metal plate with a circular hole of 35 mm diameter along the thickness 

is maintained at a uniform temperature 250
 o

 C. Find the loss of energy to the 

surroundings at 27
 o

, assuming the two ends of the hole to be as parallel discs and the 

metallic surfaces and surroundings have black body characteristics. 

Given: 

ଶݎ  = (ଷݎ) =  
ଷହଶ = 17.5 ݉݉ = 0.0175 ݉ 

 L = 70 mm =0.07 m 

T1 = 250 +273 = 523 K  

Tsurr  = 27 +273 = 300 K  

 

Let suffix 1 designate the cavity and the suffices 2 and 3 denote the two ends of 35 

mm dia. Hole which are behaving as discs. Thus, ݎܮଶ =  
0.07

0.0175
= ܮଷݎ 4 =  

0.0175

0.07
= 0.25 

 

The configuration factor, F 2-3 is 0.065 

Now,    F 2-1 + F 2-2 + F 2-3 = 1   …….By summation rule 

But,    F 2-2  = 0 

  F 2-1 = 1 - F 2-3 = 1 – 0.065 = 0.935 

Also, 

 A1 F1-2 = A2 F2 – 1    …..By reciprocating theorem 

ଵିଶܨ  =
ଵܣଶିଵܨଶܣ =  

× ߨ (0.0175)ଶ × × ߨ0.935 0.035 × 0.07
= ଵିଷܨ 0.1168 = ଵିଶܨ = 0.1168                                 ………. By symmetry 

࢟ࢍ࢘ࢋ࢔ࢋ ࢌ࢕ ࢙࢙࢕࢒ ࢒ࢇ࢚࢕࢚ ࢋࢎࢀ  =  ࢙ࢊ࢔ࢋ ࢎ࢚࢕࢈ ࢟࢈ ࢚ࢇࢋࢎ ࢌ࢕ ࢙࢙࢕࢒

=  Aଵ Fଵିଶ σ ൫Tଵସ − Tୱ୳୰୰ସ൯ +  Aଵ Fଵିଷ σ ൫Tଵସ − Tୱ୳୰୰ସ൯  

therefore ( Fଵିଶ =   Fଵିଷ ) 

= 2 Aଵ Fଵିଶ σ ൫Tଵସ − Tୱ୳୰୰ସ൯ 
= 2 (Ɏ × 0.035 × 0.07) × 0.1168 × 5.6 ቈ൬523

100
൰ସ − ൬300

100
൰ସ቉ = 6.8 W 
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November 2011 

4. The filament of a 75 W light bulb may be considered as a black body radiating into a 

black enclosure at 70
0
 C. the filament diameter is 0.10 mm and length is 5 cm. 

considering the radiation, determine the filament temperature . 

Given: 

  Q = 75W = 75 J/s 

  T2 = 70 +273 = 343 K 

  d = 0.1 mm 

  l = 5 cm 

Area =  π dl 

Solution: 

   Є = 1 for black body 

                                    ܳ = ൫ ܣ߳ߪ  ଵܶସ − ଶܶସ൯  
75 = 5.67 × 10ି଼ × 1 × ߨ × 0.1 × 10ିଷ × 5 × 10ିଶ൫ ଵܶସ −  (343)ସ൯ 

ଵܶସ =
75

8.906 × 10ିଵଷ + (343)ସ 
ଵܶ =  ܭ 3029

ଵܶ = 3029− 273 = 2756଴ܥ 

 

November 2011 (old regulation) 

5. Two parallel plates of size 1.0 m by 1.0 m spaced 0.5 m apart are located in a very 

large room, the walls of which are maintained at a temperature of 27
0
 C. one p[late 

is maintained at a temperature of 900
0
 C and other at 400

0
C. their emissivities are 

0.2 and 0.5 respectively. If the plates exchange heat between themselves and the 

surroundings, find the net heat transfer to each plate and to the room. Consider only 

the plate surface facing each other. 

Given: 

 Three surfaces (2 plates and wall) 

ଵܶ = 900଴ܥ =  ܭ 1173

ଶܶ = 400଴ܥ =  ܭ 673

ଷܶ = 27଴ܥ = ଵܣ ܭ 300 = ଶܣ = 1.0 ݉ଶ ∈ଵ=  0.2 ∈ଶ=  0.2 

Room size is much larger than the plate size 
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 ݁ܿ݊ܽݐݏ݅ݏ݁ݎ ݂݁ܿܽݎݑܵ
1− ∈ଷ∈ଷ ଷܣ = ௕ଷܧ ℎ݁݊ݐ ݀݊ܽ 0 =  ଷܬ 

 

 

1. To find the shape factor F1-2. 

Ratio of smaller side to distance between plane. 

=
1

0.5
= 2 

Corresponding to 2 and curve 2 in HMT Data book 

F1-2 = 0.4 

By summation rule 

   F1-2 + F1-3 = 1 

F1-3 = 1 - F1-2 

F1-3 = 1 – 0.4 = 0.6 

F1-3 = 0.6 

F2-1 + F2-3 = 1 

F2-3 = 1 - F2-1 

F2-3 = 1 – 0.4 

F2-3 = 0.6 

The resistances are ܴଵ =
1 −∈ଵ∈ଵ ଵܣ =  

1− 0.2

0.2 × 1
=  4.0 

ܴଶ =
1 −∈ଶ∈ଶ ଶܣ =  

1− 0.5

0.5 × 1
=  1.0 

ܴଵିଶ =
ଵିଶܨଵܣ1 =  

1

1 × 0.4
=  1.0 

ܴଵିଷ =
ଵିଷܨଵܣ1 =  

1

1 × 0.6
=  1.67 

ܴଶିଷ =
ଶିଷܨଶܣ1 =  

1

1 × 0.6
=  1.67 

To find radiosities J1J2 and J3, find total emissive power (Eb)  
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௕ଵܧ = ߪ ଵܶସ = 5.67 ቀଵଵ଻ଷଵ଴଴ ቁସ = 107.4 ܹ݇/݉ଶ ௕ଶܧ   = ߪ ଶܶସ = 5.67 ቀ଺଻ଷଵ଴଴ቁସ = 11.7 ܹ݇/݉ଶ   

௕ଷܧ = ߪ ଷܶସ = 5.67 ൬300

100
൰ସ = 0.46 ܹ݇/݉ଶ  

Node J1 : ா್భି௃భభష∈భ∈భಲభ +
௃మି௃భభಲభಷభషమ +

ா್యି௃భభషചభಲభಷభషయ =  
ଵ଴଻.ସ ି௃భସ.଴ +

௃మି௃భଶ.ହ +
଴.ସ଺ି௃భଵ.଺଻   

J1 in terms of J2 

Node J2 ܬଵ − ଶܴଵିଶܬ +
௕ଷܧ − ଶܴଶିଷܬ +

௕ଶܧ − ଶܴଶܬ  

Here J1  in terms of J2  

    J2 = 11.6kW/m2 

   And   J1 = 25.0kW/m2 

The total heat loss by plate (1) is ܳଵ =  
௕ଵܧ − ଵܬ
1−∈ଵ∈ଵ ଵܣ =  

107.4− 25

4.00
= 20.6 ܹ݇ 

The total heat loss by plate (2) is ܳଵ =  
௕ଶܧ − ଶܬ
1−∈ଶ∈ଶ ଶܣ =  

11.7− 11.6

1.00
= 0.1 ܹ݇ 

The total heat received by the room is  ܳଷ = ܳଵ + ܳଶ ܳଷ = 20.6 + 0.1 ܳଷ = 20.7 ܹ݇ 

Net energy lost by the plates = Absorbed by the room. 

6.  Two large parallel planes with emissivities of 0.3 and 0.5 are maintained at 

temperatures of 527
0
 C and 127

0
C respectively. A radiation shield having 

emissivities of 0.05 on both sides is placed between them. Calculate  

(i) Heat transfer rate between them without shield. 

(ii) Heat transfer rate between them with shield. 

Given: 

  Є 1 = 0.3   

Є2 = 0.5 

Є = 0.0η 

T1  = 527 +273 = 800 K 
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T2 = 127+ 273 = 400 K 

Find: 

 Q w/o shield and Q  with shield 

 

 Solution: 

(ܳଵଶ)௡௘௧  ௪௜௧௛௢௨௧  ௦௛௜௘௟ௗ =
൫ߪ ଵܶସ − ଶܶସ൯

1∈ଵ +
1∈ଶ − 1

 

=
5.67 ൬ቀ800

100
ቁସ − ቀ400

100
ቁସ൰

1
0.3

+
1

0.5
− 1

 

(ܳଵଶ)௡௘௧ ௪௜௧௛௢௨௧  ௦௛௜௘௟ௗ = 5024.5 ܹ/݉ଶ 

(ܳଵଶ) ௪௜௧௛ ௦௛௜௘௟ௗ =
൫ߪ ଵܶସ − ଶܶସ൯ቀ 1∈ଵ +

1∈ଷ − 1ቁ + ቀ 1∈ଷ +
1∈ଶ − 1ቁ 

=
5.67(8ସ − 4ସ)ቀ 1

0.3
+

1
0.05

− 1ቁ+ ቀ 1
0.05

+
1

0.5
− 1ቁ 

(ܳଵଶ) ௪௜௧௛ ௦௛௜௘௟ௗ = 859.45 ܹ/݉ଶ 

November 2012 

7. Emissivities of two large parallel plates maintained at 800
o
 C and 300

0
 C are 0.3 and 

0.5 respectively. Find the net radiant heat exchange per square meter of the plates. If a 

polished aluminium shield (Є = 0.05) is placed between them. Find the percentage of 

reduction in heat transfer. 

Given: 

 T1 = 800
o
 C +273 = 1073 K 

T2 = 300
o
 C +273 = 573 K 

ε1  = 0.3 

ε2  = 0.3 

Radiation shield emissivity ε3= 0.05 
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39 

 

To find: 

(i) Net radiant heat exchange per square meter ቂொభమ஺ ቃ 
(ii) Percentage of reduction in heat transfer due to radiation shield. 

Solution: 

Case I: Heat transfer without radiation shield: 

 Heat exchange between two large parallel plates without radiation shield is given by  ܳଵଶ = ൣܣ ߪߝ⃗  ଵܶସ − ଶܶସ൧ 
Where  ⃗ߝ =  

1

ଵߝ1 +
ଶߝ1 −  1

 

=  
1

1
0.3

+
1

0.5
−  1

 

ߝ⃗ = 0.230 ܳଵଶ =  0.230 × 5.67 × 10ି଼ × ܣ × [(1073)ସ − (573)ସ] 

Heat transfer without radiation shieldቂࡽ૚૛࡭ ቃ  = 15.8 X10
3
W/m

2 

Case II: Heat transfer with radiation shield: 

Heat exchange between plate I and radiation shield 3 is given by  ܳଵଷ = ൣܣ ߪߝ⃗  ଵܶସ − ଷܶସ൧ 
Where  ⃗ߝ =  

1

ଵߝ1 +
ଷߝ1 −  1

 

ܳଵଷ =  
ൣܣ ߪ ଵܶସ − ଷܶସ൧

ଵߝ1 +
ଷߝ1 −  1

                 … … … … . . (1) 

Heat exchange between radiation shield 3 and plate 2 is given by  
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ܳଷଶ = ൣܣ ߪߝ⃗  ଷܶସ − ଶܶସ൧ 
Where  ⃗ߝ =  

1

ଷߝ1 +
ଶߝ1 −  1

 

ܳଷଶ =  
ൣܣ ߪ ଷܶସ − ଶܶସ൧

ଷߝ1 +
ଶߝ1 −  1

                 … … … … . . (2) 

We know that,  

   ܳଵଷ = ܳଷଶ ൣܣ ߪ ଵܶସ − ଷܶସ൧
ଵߝ1 +

ଷߝ1 −  1
=  
ൣܣ ߪ ଷܶସ − ଶܶସ൧

ଷߝ1 +
ଶߝ1 −  1

 

 

=
(1073)ସ − ଷܶସ
1

0.3
+

1
0.05

−  1
=  

ଷܶସ − (573)ସ
1

0.05
+

1
0.5

−  1
 

=
(1073)ସ − ଷܶସ

22.3
=  

ଷܶସ − (573)ସ
21

 

=  2.78 × 10ଵଷ − 21 ଷܶସ = 22.3 ଷܶସ −  2.4 × 10ଵଶ  

=  3.02 × 10ଵଷ = 43.3 ଷܶସ 

Shield temperature  ଷܶ =  ܭ 913.8 

Heat transfer with radiation shield Q 13 =  ܳଵଷ =  
ൣܣ ߪ ଵܶସ − ଷܶସ൧

ଵߝ1 +
ଷߝ1 −  1

 

ܳଵଷ =  
5.67 × 10ି଼ × ܣ  × [(1073)ସ − (913.8)ସ]

1
0.3

+
1

0.05
−  1

 

 

                         
ொభయ஺ =  1594.6 ܹ ݉ଶ⁄  …………….(3) 

=  ݎ݂݁ݏ݊ܽݎݐ ݐℎ݁ܽ ݊݅ ݊݋݅ݐܿݑ݀݁ݎ ݂݋ %  
ܳ௪௜௧௛௢௨௧ ௦௛௜௘௟ௗ ℎ݈݅݁݀ܳ௪௜௧௛௢௨௧ ௦௛௜௘௟ௗݏ ℎݐ݅ݓ ܳ−  

    ℎ݈݅݁݀ݏ ݊݋݅ݐܽ݅݀ܽݎ ݋ݐ ݁ݑ݀        

 

=  
ܳଵଶ −ܳଵଷܳଵଶ  

=  
15.8 × 10ଷ − 1594.6

15.8 × 10ଷ  

    = 0.899 = 89.9 % 
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8. Two rectangular surfaces are perpendicular to each other with a common edge of 2 

m. the horizontal plane is 2 m long and vertical plane is 3 m long. Vertical plane is at 

1200 K and has an emissivity of 0.4. the horizontal plane is 18
0
 C and has a 

emissivity of 0.3. Determine the net heat exchange between the planes. 

 

Solution: 

   Q 12 = ? ܳଵଶ = ൫ߪଵܣଵିଶ(݃ܨ)  ଵܶସ − ଶܶସ൯ 
 ࢋ࢘ࢋࡴ 

ଵିଶ(݃ܨ) =  
1

1−∈ଵ∈ଵ +  
ଵିଶܨ1 + ቀ1 −∈ଶ∈ଶ ቁ  ଶܣଵܣ

A1 = Area of horizontal plane = XY = 2x2 = 4 m
2 

A2 = Area of vertical plane = ZX = 3x2 = 6 m
2
  

Both surfaces have common edge for which ܼܺ
=  

3

2
 = 1.5   ܽ݊݀ 

ܻܺ
=  

2

2
 = 1     

From HMT data book the shape factor F 1-2 = 0.22 

ܳଵଶୀ 

4 × 5.67 ൬ቀ1200
100

ቁସ − ቀ18 + 273
100

ቁସ൰
1− 0.4

0.4
+

1
0.22

+ ቀ1− 0.3
0.3

ቁ4
6

 

ܳଵଶୀ  61657.7 ܹ 

9. Determine the view factor (F14) for the figure shown below. 

From Fig. We know that 

 A5 = A1+A2 

 A6 = A3+A4 

Further, 

 A5 F5 = A1 F1-6 + A2 F2-6 

   [A5 = A1 + A2; F5-6 = F 1 – 6 + F 2 – 6] 
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= A1 F1-3 +  A1 F1-4 + A2 F2 – 6  

 [A5 = A1 + A2; F5-6 = F 1 – 6 + F 2 – 6] 

A5 F5-6 = A5 F5-3 – A2 F2-3 + A1 F1-4 + A2 F2-6 

 [A1 = A5 + A2; F1-3 = F 5 – 3 - F 2 – 3] 

 A1 F1-4 = A5 F5-6 – A5 F5-3 + A2 F2-3 - A2 F2-6 

 F1 – 4 = ][][
6232

1

2

3565

1

5

  FF
A

A
FF

A

A
    ......(1) 

     [Refer HMT Data book, page No.94 (sixth Edition) 

 

 

Shape factor for the area A5 and A6 

 

Z = 2
1

2
2 

B

L
 

Y = 2
1

21 
B

L
 

Z value is 2, Y value is 2. From that, we can find corresponding shape factor value is 

0.14930.        (From tables) 

 F5-6 = 0.14930 

Shape factor for the area A5 and A3  

 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


 

43 

Z = 1
1

12 
B

L
 

Y = 2
1

21 
B

L
 

F5-3 = 0.11643 

Shape factor for the area A2 and A3  

 

Z = 1
1

1
2 

B

L
 

Y = 1
1

11 
B

L
 

F2 - 3 = 0.20004 

 

Shape factor for the area A2 and A6  

 

Z = 1
1

22 
B

L
 

Y = 1
1

11 
B

L
 

 

F2 - 6 = 0.23285 

Substitute F5-6, F5-3, F2-3, and F2-6 values in equation (1), 

 F1 – 4 = ]23285.020004.0[]11643.014930.0[
1

2

1

5 
A

A

A

A
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  = ]03281.0[]03287.0[
1

2

1

5

A

A

A

A
  

F1 – 4 = 0.03293 

Result :  

 View factor, F1-4 = 0.03293 

 

10.  Calculate the net radiant heat exchange per m
2
 area for two large parallel plates at 

temperatures of 427
0
 C and 27

0C. Є (hot plate) = 0.λ and Є (cold plate) = 0.6.If a polished 

aluminium shield is placed between them, find the % reduction in the heat transfer 

Є (shield) = 0.4 

 

Net radiation heat transfer (Q 12)net = ? 

Given: 

T1  = 427 +273 = 700 K 

T2 = 27+ 273 = 300 K 

Є 1 = 0.9   

Є2 = 0.6 

Є = 0.4 

Solution: 

(ܳଵଶ)௡௘௧  ௪௜௧௛௢௨௧  ௦௛௜௘௟ௗ =
൫ߪ ଵܶସ − ଶܶସ൯

1∈ଵ +
1∈ଶ − 1

 

=
5.67 ൬ቀ700

100
ቁସ − ቀ300

100
ቁସ൰

1
0.9

+
1

0.6
− 1

 

(ܳଵଶ)௡௘௧   = 7399.35 ܹ/݉ଶ 

Percentage reduction in the heat transfer flow  

=
ݓ݋݈݂ ݐℎ݁ܽ ݐℎ݈݅݁݀ܰ݁ݏ ݋ݐ ݁ݑ݀ ݓ݋݈݂ ݐℎ݁ܽ ݊݅ ݊݋݅ݐܿݑܴ݀݁  × ℎ݈݅݁݀ݏ ݋ݐ ݁ݑ݀ ݓ݋݈݂ ݐℎ݁ܽ ݊݅ ݊݋݅ݐܿݑܴ݀݁ 100 =  (ܳଵଶ)௡௘௧ − (ܳଵଷ)௡௘௧ 
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(ܳଵଷ)௡௘௧ ௪௜௧௛ ௦௛௜௘௟ௗ =
൫ߪܣ ଵܶସ − ଷܶସ൯

1∈ଵ +
1∈ଷ − 1

 

To find T3 shield temperature (ܳଵଷ)௡௘௧ =  (ܳଷଶ)௡௘௧  
൫ߪܣ  ଵܶସ − ଷܶସ൯

1∈ଵ +
1∈ଷ − 1

=  
൫ߪܣ ଷܶସ − ଶܶସ൯

1∈ଷ +
1∈ଶ − 1

 

Let య்ଵ଴଴ =  ݔ

൬ቀ700
100

ቁସ − ቀ ଷܶ
100

ቁସ൰
1

0.9
+

1
0.4

− 1
=  
൬ቀ ଷܶ

100
ቁସ − ቀ300

100
ቁସ൰

1
0.4

+
1

0.6
− 1

 

2401− ସݔ
1.11 + 25− 1

=
ସݔ −  81

25 + 1.67 − 1
 

ସݔ = 1253.8 

ଷܶ
100

= (1253.8)
ଵ ସ ൗ =  (ݎ݋)           5.95

ଷܶ =  ܭ 595

(ܳଵଷ)௡௘௧  =
൫ߪ ଵܶସ − ଷܶସ൯

1∈ଵ +
1∈ଷ − 1

 

=

5.67ቆቀ700
100

ቁସ − ቀ595
100

ቁସቇ
1

0.9
+

1
0.4

− 1
 

(ܳଵଷ)௡௘௧ = 2492.14 ܹ/݉ଶ ܴ݁݀݊݋݅ݐܿݑ ݅݊ ℎ݁ܽݏ ݋ݐ ݁ݑ݀ ݓ݋݈݂ ݐℎ݈݅݁݀ =  (ܳଵଶ)௡௘௧ − (ܳଵଷ)௡௘௧ 
         = 7399.35 -2492.14 

        = 4907.21 ܹ/݉ଶ 

Percentage reduction = 
ସଽ଴଻.ଶଵ଻ଷଽଽ.ଷହ 100 ݔ  = 66.32% 
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11. There are two large parallel plane with emissivities 0.3 and 0.8 exchange heat. Find 

the percentage reduction when an aluminium shield of emissivity 0.04 is p[laced 

between them. Use the method of electrical analogy. 

Solution: 

Given: 

Є 1 = 0.3   

Є2 = 0.8 

Є = 0.04 

Percentage reduction in heat transfer  

=
݁ݐܽݎ ݎ݂݁ݏ݊ܽݎݐ ݐℎ݁ܽ ݐℎ݈݅݁݀ܰ݁ݏ ݋ݐ ݁ݑ݀ ݎ݂݁ݏ݊ܽݎݐ ݐℎ݁ܽ ݊݅ ݊݋݅ݐܿݑܴ݀݁  × 100 

ℎ݈݅݁݀ݏ ݋ݐ ݁ݑ݀ ݓ݋݈݂ ݐℎ݁ܽ ݊݅ ݊݋݅ݐܿݑܴ݀݁ =  
(ܳଵଶ)௡௘௧ − (ܳଵଷ)௡௘௧

(ܳଵଶ)௡௘௧  

(ܳଵଶ)௡௘௧  ௪/௢ ௦௛௜௘௟ௗ =
൫ߪ ଵܶସ − ଶܶସ൯

1∈ଵ +
1∈ଶ − 1

=
൫ߪ ଵܶସ − ଶܶସ൯
1

0.3
+

1
0.8

− 1
=  
൫ߪ ଵܶସ − ଶܶସ൯

3.58
 

(ܳଵଷ)௡௘௧ ௪௜௧௛ ௦௛௜௘௟ௗ =
൫ߪ ଵܶସ − ଷܶସ൯

1∈ଵ +
1∈ଷ − 1

=
൫ߪ ଵܶସ − ଷܶସ൯
1

0.3
+

1
0.04

− 1
=  
൫ߪ ଵܶସ − ଷܶସ൯

27.33
 

Percentage reduction in heat transfer  

= 1 − (ܳଵଷ)

(ܳଵଶ)
 

Here T3 = in terms of T1 and T2 

To find the values of T3 

(ܳଵଷ)௡௘௧ =  (ܳଷଶ)௡௘௧  ଵܶସ − ଷܶସ
1∈ଵ +

1∈ଷ − 1
=  

ଷܶସ − ଶܶସ
1∈ଷ +

1∈ଶ − 1
 

ଵܶସ − ଷܶସ
27.33

=  
ଷܶସ − ଶܶସ
25.25

 

ଵܶସ − ଷܶସ =  
27.33

25.25
 ( ଷܶସ − ଶܶସ) 

ଷܶସ = 0.48 ( ଵܶସ + 1.08 ଶܶସ) 

Percentage reduction in heat transfer  

= 1 − (ܳଵଷ)

(ܳଵଶ)
 

= 1− ൫ߪ ଵܶସ − ଷܶସ൯ ߪ⁄27.33 ൫ ଵܶସ − ଶܶସ൯ 27.33⁄  
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= 1 − 3.58

27.33
ቈ൫ ଵܶସ − ଷܶସ൯൫ ଵܶସ − ଶܶସ൯቉ 

= 1 − 0.131 ቈ ଵܶସ − 0.48 ൫ ଵܶସ + 1.08 ଶܶସ൯൫ ଵܶସ − ଶܶସ൯ ቉ 
= 1− 0.131 ቈ0.52 ൫ ଵܶସ −  ଶܶସ൯൫ ଵܶସ − ଶܶସ൯ ቉ 

= 1 − 0.131(0.52) 

= 0.932 

= 93.2%  
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V: MASS TRANSFER 

 
Mass transfer is different from the flow of fluid which was discussed in previous chapters. Mass transfer is 

the flow of molecules from one body to another when these bodies are in contact or within a system consisting of 

two components when the distribution of materials is not uniform. When a copper plate is placed on a steel plate, 

some molecules from either side will diffuse into the other side Usually mass transfer takes place from a location 

where the particular component is proportionately high to a location where the component is proportionately 

low. Mass transfer may also take place due to potentials other than concentration difference. But in this chapter only 

transfer due to concentration gradient is discussed 

 

PROPERTIES OF MIXTURE 
In a mixture consisting of two or more materials the mass per unit volume of any component is called mass 

concentration of that component. If there are two components A and B, then the mass concentration of A is 

Ma  =  mass of in the mixture 

volume of the mixture 

and concentration of B, 

mb  =  mass of in the mixture 

volume of the mixture 

The total mass concentration is ma + mb, which is also the density of the mixture. 

Mass concentration can also be expressed in terms of individual and total densities of the mixture i.e., 

ma  =  ρa 

     ρ

where ρa is the density of A in the mixture and is the density of the mixture. 

It is more convenient to express the concentration in terms of the molecular weight of the component. 

Mole fraction Na can be expressed as 

Na  =  Number of moles of component A 

Total number of moles in the mixture 

Number of Mole  =  mass / molecular weight 

For gases as  ρi  = P 

            RiT 

Or   Ni  =  P 

            RT i 

where Ris universal gas constant. 

At the temperature T of the mixture then 

Ni ∝ Pi 

where    


where Pa is the partial pressure of A in the mixture and PT is the total pressure of the mixture. Ca is the mole 

concentration of A in the mixture. 

Also Ca + Cb = 1 for a two component mixture. 

 

DIFFUSION MASS TRANSFER 
Consider a chamber in which two different gases at the same pressure and temperature are kept separated 

by a thin barrier. When the barrier is removed, the gases will begin to diffuse into each other’s, volume. After some 

time, a steady condition of uniform mixture would be reached. This type of diffusion can occur in solids also. The 

rate in solids will be extremely slow. Diffusion in these situations occurs at the molecular level and the governing 

equations are similar to those in heat conduction where energy transfer occurs at the molecular level 

 

FICK’S LAW OF DIFFUSION 
 

The Fick’s law can be stated as 
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Where     Na— > number of moles of ‘a’ diffusing perpendicular to area A, moles/m2 sec 

Dab— > Diffusion coefficient or mass diffusivity, m2/s, a into b 

Ca — > mole concentration of ‘a’ moles/m3 

x — > diffusion direction 

The diffusion coefficient is similar to thermal diffusivity, and momentum diffusivity v. Number of moles 

multiplied by the molecular mass (or more popularly known as molecular weight) will provide the value of mass 

transfer in kg/s. 

Equation above can also be written as 

 
The value of Dab for certain combinations of components are available in literature. It can be proved that 

Dab= Dba. When one molecule of ‘A’ moves in the x direction, one molecule of ‘B’ has to move in the opposite 
direction. Otherwise a macroscopic density gradient will develop, which is not sustainable 

 

 
 

EQUIMOLAL COUNTER DIFFUSION 

 
The total pressure is constant all through the mixture. Hence the difference in partial pressures will be equal. The 

Fick’s equation when integrated for a larger plane volume of thickness L will give 

 

 
 

Dab equals Dba Where Ca1 and Cb1 are the mole concentrations at face 1 and Ca2 and Cb2 are mole concentrations 

at face 2 which is at a distance L from the first face. When applied to gases, 

 

 
 

Where Pa1 and Pa2 are partial pressures of component ‘A’ at x1 and x2 and Ris the universal gas constant in J/kg mol 

K. T is the temperature in absolute units. The distance should be expressed in metre. 

The partial pressure variation and diffusion directions are shown in Fig 
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DIFFUSION OF ONE COMPONENT INTO A STATIONARYCOMPONENT OR 

UNIDIRECTIONAL DIFFUSION 
In this case one of the components diffuses while the other is stationary. For steady conditions the mass 

diffused should be absorbed continuously at the boundary. In certain cases this is not possible. The popular example 

is water evaporating into air. In this case, as mentioned earlier, a bulk motion replaces the air tending to accumulate 

at the interface without being absorbed, causing an increase in the diffusion rate. The diffusion equation for gases 

can be derived as (with ‘a’ as the diffusing medium and P = total pressure) 

 
CONVECTIVE MASS TRANSFER 

When a medium deficient in a component flows over a medium having an abundance of the component, 

then the component will diffuse into the flowing medium. Diffusion in the opposite direction will occur if the mass 

concentration levels of the component are interchanged. In this case a boundary layer develops and at the interface 

mass transfer occurs by molecular diffusion (In heat flow at the interface, heat transfer is by conduction). 

Velocity boundary layer is used to determine wall friction. Thermal boundary layer is used to determine 

convective heat transfer. Similarly concentration boundary layer is used to determine convective mass transfer. The 

Fig. shows the flow of a mixture of components A and B with a specified constant concentration over a surface rich 

in component A. A concentration boundary layer develops. The concentration gradient varies from the surface to the 

free stream. At the surface the mass transfer is by diffusion. Convective mass transfer coefficient hm is defined by 

the equation, where hm has a unit of m/s. 

 
Mole flow = hm(Cas – Ca) 

By similarity the solutions for boundary layer thickness for connective mass transfer can be obtained. This is similar 

to the heat transfer by analogy. In this case, in the place of Prandtl number Schmidt number defined by 

Sc = v/Dab ... 

Nondimensionalising the equation leads to the condition as below: 

m = f(Re, Sc)  

Sh = f(Re, Sc)  
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where Sherwood number Sh is defined as 

Sh = hmx/Dab 

In the laminar region flow over plate : 

mx =   5x      Sc-1/3 

               Rex1/2 

    Shx =  hmx      =  0..332 Re1/2Sc1/3 

                         D
ab 

In turbulent region Re > 5x105 

m=v 

Shx = 0.0296 Rex0.8Sc1/3 ܵℎ�̅̅ ̅̅ ̅=0.037ReL
0.8Sc1/3 

 

SIMILARITY BETWEEN HEAT AND MASS TRANSFER 
It is possible from similarity between the heat convection equation and mass convection equation to obtain value of 

hm. (i.e., called as Lewis number) 

 
Where 

 
Many of the correlation in heat transfer can be applied to mass transfer under similar condition, by replacing Nusselt 

number by Sherwood number and Prandtl number by Schmidt number 
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UNIT-V 

1. Water flows at the rate of 65 kg/min through a double pipe counter flow heat 

exchanger. Water is heated from 50
o 

C to75
o
C by an oil flowing through the tube. 

The specific heat  of the oil is 1.780 kj/kg.K. The oil enters at 115
o
C and leaves at 

70
o
C.the overall heat transfer co-efficient is 340 W/m2K.calcualte the following  

1. Heat exchanger area 

2. Rate of heat transfer 

Given: 

 Hot fluid – oil,   Cold fluid – water 

 (T1 , T2)   (t1 , t2) 

 

 Mass flow rate of water (cold fluid), mc  = 65 kg/min 

      = 65/60 kg/s 

            mc = 1.08 kg/s 

 Entry temperature of water, t1 =50o C 

 Exit temperature of water, t2 =75
o
 C 

 Specific heat of oil (Hot fluid), Cph = 1.780 KJ/kg K 

          = 1.780 x 10
3 

J/kg K 

 Entry temperature of oil, T1 =115
o
 C 

 Exit temperature of water, T2 =70o C 

 Overall heat transfer co-efficient, U = 340 w/m2 K 

To find: 

 1. Heat exchanger area, (A) 

2. Rate of heat transfer, (Q) 

Solution: 

 We know that, 

  Heat transfer, Q = mc cpc (t2 – t1) (or) mh cph (T1 - T2) 

  Q = mc Cpc (t2 – t1) 

  Q = 1.08 x 4186 x (75 – 50) 

    [Specific heat of water, cpc = 4186 J/kg K] 

  Q = 113 x 10
3
 W 

We know that, 

 Heat transfer, Q = U x A (ΔT)m …….. (1) 

    [From HMT data book page no:152(sixth edition)] 
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Where 

 ΔTm – Logarithmic Mean Temperature Difference. (LMTD) 

 For counter flow, 

 ΔT୪୫ =
[( ଵܶ − (ଶݐ −  ( ଶܶ − ݈݊(ଵݐ ቂ ଵܶ − ଶଶܶݐ − ଵቃݐ  

    ΔT୪୫ = ૛ૡ.ૡ۱ܗ 

 

Substitute (ΔT)lm , Q and U values in Equn (1) 

 

(1)           Q = UA (ΔT)lm 

113 x 10
3 
= 340 x A x 28.8 

 A = 11.54 m
2
  

2. A parallel flow heat exchanger is used to cool 4.2 kg/min of hot liquid of specific 

heat 3.5 kJ/kg K at 130
o
 C. A cooling water of specific heat 4.18 kJ/kg K is used 

for cooling purpose of a temperature of 15
o
 C. The mass flow rate of cooling 

water is 17 kg/min. calculate the following. 

1. Outlet temperature of liquid 

2. Outlet temperature of water 

3. Effectiveness of heat exchanger 

Take 

 Overall heat transfer co-efficient is 1100 W/m
2
 K. 

 Heat exchanger area is 0.30m
2
 

Given: 

 Mass flow rate of hot liquid,  mh = 4.2 kg/min 

     mh = 0.07 kg/s 

 Specific heat of hot liquid,  cph = 3.5 kJ/kg K 

     cph = 3.5 x 10
3
 J/kg K 

 

 Inlet temperature of hot liquid, T1 = 130
0 

C 

  

 Specific heat of hot water, Cpc = 4.18 kJ/kg K 

 

     Cpc = 4.18 x 10
3 
J/kg K  
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 Inlet temperature of hot water, t1 = 150 C 

 

 Mass flow rate of cooling water, mc = 17 kg/min 

 

     mc =  0.28 kg/s  

  Overall heat transfer co – efficient, U = 1100 w/m2 K 

  Area, A = 0.03 m2 

To find : 

1. Outlet temperature of liquid, (T2) 

2. Outlet temperature of water, (t2) 

3. Effectiveness of heat exchanger, (ε) 

Solution : 

 Capacity rate of hot liquid,  Ch = mh x Cph 

       = 0.07 x 3.5 x 10
3
  

     Ch = 245 W/K ……… (1)  

 Capacity rate of water,   Cc = mc x Cpc 

         = 0.28 x 4.18 x 103  

      Cc = 1170.4 W/K ……… (2) 

 From (1) and (2),  

  Cmin  = 245 W/K 

  Cmax  = 1170.4 W/K 

= > 
େౣ౟౤େౣ౗౮ = 

ଶସହଵଵ଻଴.ସ = 0.209 

 
  (3) .………… 0.209 = ܠ܉ܕ۱ܖܑܕ۱

Number of transfer units, NTU = 
୙୅େౣ౟౤ 

     [From HMT data book page no. 152] 

  = >  NTU = 
ଵଵ଴଴ ୶ ଴.ଷ଴ଶସହ  

    NTU = 1.34 ……………(4) 

  To find effectiveness ε, refer HMT data book page no 163 

      (Parallel flow heat exchanger) 

From graph,  

 Xaxis  NTU = 1.34 

 Curve  
େౣ౟౤େౣ౗౮ = 0.209 

Corresponding Yaxis value is 64 % 

 i.e., ε = 0.64 
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from HMT data Book 

  
)(

)(

11min

21

tTC

TTcpm
hh




  

  0.64 = 
15130

130
2


T

 

  T2 = 56.4 oC 

To find t2 

 mh cph(T1-T2) = mcCpc (t2-t1) 

 0.07 3.510
3
 (130-56.4) = 0.284186 (t2-15) 

  t2 = 30.4oC 

 

Maximum possible heat transfer 

 Qmax   = Cmin (T1 – t1) 

   = 245 (130 - 15) 

 Qmax  = 28.175 W 

Actual heat transfer rate 

  Q = ε x Qmax 

    = 0.64 x 28.175 

  Q = 18.032 W 

We know that, 

 Heat transfer, Q = mc Cpc(t2 – t1) 

 = > 18.032 = 0.28 x 4.18 x 103 (t2 – 15) 

 = > 18.032 =  1170.4 t2  - 17556 

 = >         t2    = 30.40
o
C 

 Outlet temperature of cold water, t2 = 30.40
o
C 

We know that, 

 Heat transfer, Q = mh Cph(T1 – T2) 

 = > 18.032 = 0.07 x 3.5 x 10
3
 (130 – T2) 

 = > 18.032 =  31850  - 245 T2 

 = >         T2    = 56.4
o
C 

 Outlet temperature of hot liguid, T2 = 56.4
o
C 
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3.Hot chemical products (Cph = 2.5 kJ/kg K) at 600
o
 C and at a flow rate of 30 kg/s are 

used to heat cold chemical products (Cp = 4.2 kJ/kg K) at 200
o 
C  and at a flow rate 20 

kg/s in a parallel flow heat exchanger. The total heat transfer is 50 m
2 

and the overall 

heat transfer coefficient may be taken as 1500 W/m
2
 K. calculate the outlet 

temperatures of the hot and cold chemical products. 

Given: Parallel flow heat exchanger 

   Th1 = 600
o
 C ; mh = 30 kg/s 

   Cph = 2.5 kJ/kg K 

   Tc1 = 100oC ; mc 28 kg/s 

   Cpc = 4.2kJ/kg K 

   A = 50m
2
 

   U = 1500 W/m
2
K 

Find: 

(i) Th2 (ii) Tc2  ? 

Solution 

The heat capacities of the two fluids 

   Ch = mhcph = 30 x 2.5 =75 kW/K 

   Cc = mccpc = 28 x 4.2 =  117.6 kW/K 

  The ratio 
஼೘೔೙஼೘ೌೣ =  

଻ହଵଵ଻.଺ = 0.64 

  NTU = 
௎஺஼௠௜௡ =  

ଵହ଴଴ ௫ ହ଴଻ହ ௫ ଵ଴య  = 1.0 

For a parallel flow heat exchanger, the effectiveness from Fig. 13.15 corresponding to 
஼೘೔೙஼೘ೌೣ 

and NTU 

                                  ∈ = 0.48 

We know that  

   ∈ = 
஺௖௧௨௔௟ ௛௘௔௧ ௧௥௔௡௦௙௘௥ெ௔௫.௣௢௦௦௜௕௟௘ ௛௘௔௧ ௧௥௔௡௦௙௘௥ 

      = 
௠೓஼೛೓ ൫೅೓భష ೅೓మ൯஼೘೔೙ ൫೅೓భష ೅೎భ൯  

   ∈ = 
(்೓భି ்೓మ)

(்೓భି ೎்భ)
 

          0.48 = 
଺଴଴ି  ் ೓మ଺଴଴ିଵ଴଴   
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  Th2 = 360
o
C 

We know that 

  Heat lost by the hot product = Heat gained by the cold product 

   mhcph ( ௛ܶଵ− ௛ܶଶ) = mccph ( ௖ܶଶ− ௖ܶଵ) 

   75(600 – 360) = 117.6 ( ௖ܶଶ − 100) 

૛ࢉࢀ       = ૛૞૜.૙૟࡯ ࢕  

4. Estimate the diffusion rate of water from the bottom of a tube of 10mm diameter and 

15cm long into dry air 25
o
C. Take the diffusion coefficient of water through air as 0.235 

x 10
-4

m
2
/s  

 Given: 

  D = 0.255 x 10
-4

m
2
/s 

 Area (A) = 
஠ସ  ݀ଶ =  

஠ସ  (0.01)ଶ =  10ିହ m2 ݔ 7.85

  Ro = 8314 J/kg – mole K 

  T = 25 + 273 = 298 K 

  Mw = molecular weight of water = 18 

  P = Total pressure = 1.01325 x 105 N/m2 

 X2 – X1 = 0.15m 

  Pw1 = partial pressure at 25
o
 C = 0.03166 x 10

5
 N/m

2
 

  Pw2 = 0 

 Find: 

  Diffusion rate of water (or) Mass transfer rate of water. 

Solution 

 We know that 

  Molar rate of water (Ma) 

     

  Ma = 
ୈ୅ୖ౥୘ .

୔୶మି ୶భ  In ቀ୔౗మ୔౗భቁ 
        = 

଴.ଶହହ ୶ ଵ଴ିସ ୶ ଻.଼ହ ୶ ଵ଴ିହ ୶ ଵ.଴ଵଷଶହ ୶ ଵ଴ହ଼ଷଵସ ୶ ଶଽ଼ ୶଴.ଵହ  x ቀ ଵ.଴ଵଷଶହି଴ଵ.଴ଵଷଶହି଴.଴ଷଵ଺଺ቁ 

  Here  Pa2 = P – Pw2 , Pa1 = P – Pw1 

   Ma = 1.72 x 10
-11 

kg-mole/s 

Mass transfer rate of water 

 (or) = Molar rate of water X molecular weight of steam 

Diffusion rate of water 

   Mw = 1.72 x 10
-11

 x 18 

 Diffusion rate of water (Mw) = 3.1 x 10
-10

 kg/s 
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5. A vessel contains a binary mixture of O2 and N2 with partial pressure in the ratio of 

0.21 and 0.79 at 15
o
C. The total pressure of the mixture is 1.1 bar. Calculate the 

following 

 1. Molar concentration 

 2. Mass densities 

 3. Mass fractions 

 4. Molar fractions. 

Given: 

  T = 15 + 273 = 288 K 

  P = 1.1bar = 1.1 x 10
5
 N/m

2 

  
P୭మ  = 0.21 bar 

  P୒మ = 0.21 bar 

Solution 

1. To find Molar concentration (C୭మ  and C୭మ  )  

 

 C୓మ  = 
୔౥మୖ౥୘ =

଴.ଶଵ ୶ ଵ.ଵ ୶ ଵ଴ ఱ଼ଷଵସ ୶ ଶ଼଼  

૛۽۱                                = ૙.૙૙ૢ૟૞ ܕ/܍ܔܗܕ ܏ܓ૜ 

          C୒మ = 
୔ొమୖ౥୘ =

଴.଻ଽ ୶ ଵ.ଵ୶ ଵ଴ ర଼ଷଵସ ୶ ଶ଼଼  

૛ۼ۱                                = ૙.૙૜૟૜ ܕ/܍ܔܗܕ ܏ܓ૜ 

2. To find mass densities (݌௢మ  and ݌ேమ ) 
  P = MC 

Where, M: Molecular weight 

  P୭మ =  M୭మ  x C୭మ = 32 x 0.00965 

૛ܗ۾    = ૙.૜૙ૢ ܕ/܏ܓ૜ 

 

  P୒మ =  M୒మ  x C୒మ = 28 x 0.0363
 

૛ۼ۾    = ૚.૙૚૟ ܕ/܏ܓ૜ 

3. To find mass fractions (ܯ௢మ  and ܯேమ  ) 

We know that  

   ρ =  ߩ௢మ  ேమ= 0.309 + 1.016ߩ  +

 ρ = 1.375 kg/࢓૜ 

=௢మܯ 
 ఘ೚మ

 ఘ  = 
଴.ଷ଴ଽଵ.ଷଶହ 

૛࢕ࡹ  = ૙.૛૜૜ 
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ேమ= ఘಿమܯ                                        
 ఘ  = 

ଵ.଴ଵ଺ଵ.ଷଶହ 
૛ࡺࡹ  = ૙.ૠ૟ૠ 

4. To find molar fraction (݊௢మ  and ݊ேమ ) 
We know that 

 C =  ܥ௢మ +  ேమ= 0.00965 + 0.0363ܥ  

 C = 1.375 kg mole/࢓૜ 

 ݊௢మ=
 ஼೚మ

 ஼  = 
଴.଴଴ଽ଺ହ଴.଴ସ଺  

૛࢕࢔  = ૙.૛૚ 

                                        ݊ேమ= ஼ಿమ
 ஼  = 

଴.଴ଷ଺ଷ଴.଴ସ଺  

૛ࡺ࢔  = ૙.ૠૢ 

6. A counter flow heat exchanger is employed to cool 0.55 kg/s (Cp = 2.45 kj/kg
o
C) of oil 

from 115
o
C to 40

o
C by the use of water. The inlet and outlet temperature of cooling 

water are 15
o
C and 75

o
C respectively. The overall heat transfer coefficient is expected to 

be 1450 W/m
2o

C.        

Using NTU method, calculate the following:   

(i) The mass flow rate of water. 

(ii) The effectiveness of heat exchanger.  

(iii) The surface area required. 

Given: 

 Counter flow HE 

 Mh = 0.55 kg/s 

 ௣೓= 2.45kj/kgoCܥ 

              T1 = 115
o
C 

 T2 = 40
o
C 

 t 1 = 15oC 

 t 2 = 75oC 

 U = 1450 W/m
2o

C 

To find: 

1.The mass flow rate of water. (mc) 

2.The effectiveness of heat exchanger. (∈) 

3.The surface area required.(A) 

Solution: 

 For ∈  −ܷܰܶ method from HMT date book 

                                   Q = ∈ ૚܂) ܖܑܕ۱  −   (૚ܜ
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To find mc 

 Use energy balance equation. 

Heat lost by hot fluid = Heat gained by cold fluid 

 m୦C୮౞(Tଵ−Tଶ) = mୡC୮ౙ(tଶ−tଵ) 

              0.55 x 2450 (115 - 40) = mc x 4186 (75 - 15) 

   mc = 0.40kg/s 

Heat capacity rate of hot fluid = Ch = mh - C୮౞  

    = 0.55 x 2.45 

            Ch = 1.35 kw/K  

Heat capacity rate of cold fluid = Cc = mc - C୮ౙ 
    = 0.40 x 4.186 

            Cc = 1.67kw/K 

 Ch  < Cc 

 Ch = Cmin 

                           ∈ = 
௠೓஼೛೓(೅భష೅మ)஼೘೔೙  ( భ்ି మ்)

 

      = 
ଵଵହିସ଴ଵଵହିଵହ  

                        ∈= 0.75 = 75% 

Q = 0.75 x 1350 (115 – 15) 

Q = 101.250W 

Q = UA (ΔT)lm 

A = ܃/ۿ(ઢ܂) ܕܔ 

(ΔT)lm = 
( భ்ష௧మ)ି ( మ்ష௧భ)௟௡ቂ(೅భష೟మ)

(೅మష೟భ)
ቃ  

             = 
(ଵଵହି଻ହ)ି(ସ଴ିଵହ)௟௡ቂభభఱషళఱరబషభఱ ቃ  

     (ΔT)lm = 31.9
o
C 

A = 
ଵ଴ଵ.ଶହ଴ଵସହ଴ ௫ ଷଵ.ଽ 

 A = 2.19 m
2 

7. A pan of 40 mm deep, is filled with water to a level of 20 mm and is exposed to dry air 

at  30
0
  C. Calculate the time required for all the water to evaporate. Take, mass 

diffusivity is 0.25X10
 -4 

 m
 2

/s. 

Given: 

Deep, (x 2 – x1 ) = 40 – 20 = 20 mm = 0.020 m 

Temperature, T = 300 C + 273 = 303 K 

Diffusion co- efficient , Dab =0.25X10 -4  m 2/s. 
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To find:  

 Time required for all the water to evaporate, t. 

Solution: 

We know that, for isothermal evaporation 

Molar flux,
௠ೌ஺ 

=  
஽ೌ್ீ்  

௣
(௫మି௫భ)

 × ln ቂ௣ି௣ೢమ௣ି௣ೢభቃ ………….(1) 

Where, 

 G – Universal gas constant = 8314 j/kg – mole-K 

 P – Total pressure = 1 atm = 1.013 bar = 1.013 X 105  

N/m
2
 

 

 pw1 - Partial pressure at the bottom of the pan 

   Corresponding to saturation temperature 30oC 

At 30oC 

  pw1 = 0.04242 bar    (From steal table page no.2) 

  pw1 = 0.4242105 N/m2  

Pw2 – partial pressure at the top of the pan, which is zero. 

  Pw2 = 0 

(1)   





















55

554

1004242.010013.1

010013.1

020.0

10013.1

3038314

1025.0

A

m
a  

 
s

molekg

A

m
a 

 61015.2  

For unit Area, A = 1m
2
 

Molar rate of water, ma=2.15  10-6 
2sm

molekg 
 

We know that, 

Mass Rate of 
= 

Molar Rate of 
 

Molecular weight 

water vapour water vapour of steam 

     

           =   2.1510-618.016 

Molar rate of water vapour        = 3.8710
-5

  kg/s-m
2
 

The total amount of water to be evaporated per m
2
 area 

         = (0.201) 1000 

        =20 kg/m
2
 Area 

Time required, 
our water vapof rate Mass

20
t  
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      = 
s

3
1087.3

20


 

Result : 

 Time required for all the water to evaporate, t=516.7910
3
S 

    

8. A heat exchanger is to be designed to condense an organic vapour at a rate of 500 

kg/min. Which is available at its saturation temperature of 355 K. Cooling water at 286 

K is available at a flow rate of 60 kg/s. The overall heat transfer coefficient is 475 

W/m
2
C Latent heat of condensation of the organic vapour is 600 kJ/kg. Calculate 

1. The number of tubes required, if tubes of 25 mm otuer diameter, 2mm thick and 4.87m 

long are available, and 

2. The number of tube passes, if cooling water velocity (tube side) should not exceed 2m/s. 

Given: 

  do = 25 mm = 0.025 

  di = 25-(22)= 21 mm = 0.21 m 

  L = 4.87 m 

  V = 2 m/s 

  Tc1 = 286-273 = 13
o
C 

  Tsat = Th1 = Th2 = 355-273 = 82
o
C 

  U = 475 /m
2
 K 

  hfg = 600 kj/kg 

  mh = 
60

500
= 8.33 kg/s 

  mc = 60 kg/s 

Find  

(i) Number of tubes (N) 

(ii) Number of tube passes (P) 

Solution 

 

Q = UAm=U(doLN)m 

Q = mhhfg  = mcCpc (Tc2 – Tc1) 

i.e. Heat lost by vapour = heat gained by ater 
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31060033.8 Q  

)(
12 ccpvc

TTcmQ   

8.33600103   = 604.18 (Tc2 – 13) 

  Tc2 = 32.9
o
C  

   













2

1

21

ln




m
 















)(

)(
ln

)()(

22

11

2211

ch

ch

chch

m

TT

TT

TTTT
  















)9.3282(

)1382(
ln

)9.3282()1382(
 

Co

m
5.58  

Heat transfer rate is given by 

   mfgh
UAhmQ   

 8.33 600103    =  475 (0.0254.87N58.5) 

    N=  470 Tubes  

To find N. of tube passes (P) 

   N = PNp 

Where 

 N : No. of tubes 

 P : No. of tube passes 

 Np : No. of tubes in each pass  

i.e. The cold water flow passing through each pass. 

  ppc
NAVm   

  60 = 
pNVdi 

 2

4
 

  60=
pN 10002)021.0(

4

2
       

  Np=95.5 

We know that  

  N = P  Np 
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 No. of passes (P) = 
pN

N
 

       = 91.4
5.95

470   

   P = 5 

 Number of passes (P) = 5 

9. An Open pan 20 cm in diameter and 8 cm deep contains water at 25
o
C and is exposed 

to dry atmospheric air. If the rate of diffusion of water vapour is 8.5410
-4

 kg/h, 

estimate the diffusion co-efficient of water in air. 

Given 

 Diameter d = 20 cm  = 0.20 m 

 Length (x2-x1) = 8cm  = 0.08 m 

 Temperature ,T= 25oC+273 = 298 K 

Diffusion rate (or) 

Mass rate of water vapour  = 8.5410
-4

 kg/h 

     = 
s

kg

3600

1054.8
4

 

     = 2.3710
-7

 kg/s 

To find 

 Diffusion co-efficient, Dab 

Solution 

 We know that 

 Molar rate of water vapour 

  














1

2

12

ln
)(

w

waba

pp

pp

xx

p

GT

D

A

m
 
















1

2

12

ln
)(

w

wab

a
pp

pp

xx

p

GT

D
m  

 We know that,  

Mass rate of water vapour  = Molar rate of water vapour + Molecular weight of steam  

2.37 x 10-7  = 016.18ln
)(

1

2

12















w

wab

pp

pp

xx

p

GT

D
 ......... (1)  

where,  

 Area,  A  =  
2

4
d


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   = 
2)20.0(

4


 

  A = 0.0314 m2 

 G - Universal gas constant = 8314 
Kmolekg

J


 

 p - Total pressure = 1 atm = 1.013 bar  

  = 1.013 x 10
5
 N/m

2
 

 pwl = Partial pressure at the bottom of the test tube corresponding to 

     saturation temperature 25
o
C 

At 25
o
C 

 pwl = 0.03166 bar   [From (R.S. Khurami) Steam table, Page no.2] 

 pwl  = 0.03166 x 10
5
 N/m

2
 

pw2 - Partial pressure at the top of the pan. Here, air is dry and there is no 

    water vapour. So, pw2 – 0. 

 pw2 = 0 

(1) 2.37 x 10
-7

 = 

016.18
1003166.010013.1

010013.1

08.0

10013.1

2988314

0314.0
55

55




















in
D

ab  

 

 Dab = 2.58 x 10-5
  m

2/s 

Result:  

 Diffusion co-efficient, Dab = 2.58 x 10
-5

 m
2
/s.  

 

10. A counter flow double pipe heat exchanger using super heated steam is used to heat 

water at the rate of 10500 kg/hr. The steam enters the heat exchanger at 180
o
C and 

leaves at 130
o
C. The inlet and exit temperature of water are 30

o
C and 80

o
C respectively. 

If the overall heat transfer coefficient from steam to water is 814 W/m
2
 K, calculate the 

heat transfer area. What would be the increase in area if the fluid flow were parallel? 

Given 

 Counter flow heat exchanger 

 skgmm
cw

/917.2
3600

10500
   

 T1 = 180
o
C   t1=30

o
C 

 T2 = 130
o
C  t2 = 80

o
C 

U = 814 W/m
2
 K 
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Find 

(i) Area of heat transfer (A) 

(ii) Increase in area 

 

Solution 

 (i) When the flow is counter: 

  
)/(ln

21

21


 


m

 

  CtT o10080180
211

  

  CtT o10030130
122

  

LMTD = 0 oC 

If LMTD = 0 
o
C use AMTD 

So, AMTD  = 
2

21
 

  [AMTD: Arithmetic mean temperature difference] 

     AMTD = 
2

100100 
 

   AMTD = 100oC 

m = 100
o
C 

Here Tlm = AMTD 

 To find heat transfer rate 

Q = U A Tlm 

 

Q = )(
12

ttcm
pcc

  

 

     Q = 2.9174.187 10
3
 (80-90) 

2.9174.187 10
3
 50 = 814  A 100 

A = 7.5 m
2
  

    

ii) When the flow is parallel 

   
   
     

2211

2211

/ln tTtT

tTtT
T

lm 


  

     = 
 
    80130/30180ln

)80130(30180




 

www.C
ivi

lda
tas

.co
m

.

. .

http://Civildatas.com


 

69 

     =   C
o

91
50/150ln

50150



 

  Q = U A Tlm 

or 2.917 (4.18710
3
) (80-30) = 814 A 91 

  A = 
224.8 m  

Increase in Area = %87.90987.0
5.7

5.724.8
or


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