Engineering Graphics

 Lecture Notes

Content

Introduction to Engineering Drawing: Principles of Engineering Graphics and their Significance, Conic Sections including the Rectangular Hyperbola - General method only. Cycloid, Epicycloid and Hypocycloid, Scales - Plain \& Diagonal.
(:)

projectionline.

Divide a line into Number of erieal parts

$$
n=9
$$

Bisecting an angle:-

Construct an equilatued triangle of side 40 mm

Divide a circle of dianctes 70 mm into 12 equal Parts $h=12$ equal parts

$$
\frac{360^{\circ}}{12}=30^{\circ}
$$

Divide a circle of diameter 80 mm into 8 equal parts.

$$
n=\text { sequel pars }
$$

$$
\frac{360^{\circ}}{8}=45^{\circ}
$$

Construct a pentagon of side 40 mm

Pentagon
Construct attexagon of side 40 mm

Draw a regular Pentagon and regular Hexagon having 40 mm side length

Hexagon.
of circle method

\Rightarrow special method of construction of any polygon.

Hexagon

Construct a Hexagon of side 40 mm
a) side is vertical.
b) Side is Horizontal.
a)

b)

Unit-I

Conic Sections:

The section obtained by the intersection of a right circular cone by a plane in different positions relative to the axis of the cone are called conics.

Conic sections
(i) When the section plane is inclined to the axis and cuts all the generators onone side of the apex, the section is an ellipse
(ii) When the section plane is inclined to the axis and is parallel to one of thegenerators, the section is a parabola
(iii) A hyperbola is a plane curve having two separate parts or branches, formedwhen two cones that point towards one another are intersected by a planethat is parallel to the axes of the cones.
The conic may be defined as the locus of a point moving in a plane in such a waythat the ratio of its distances from a fixed point and a fixed straight line is alwaysconstant. The fixed point is called the focus and the fixed line, the directrix.

The ratio $\frac{\text { distance of the point from the focus }}{\text { distance of the point from the directrix }}$ is called eccentricity and isdenoted by e. It is always less than 1 for ellipse, equal to 1 for parabola and greaterthan 1 for hyperbola i.e.
(i) ellipse :e <1
(ii) parabola : $\mathrm{e}=1$
(iii) hyperbola : e>1.

The line passing through the focus and perpendicular to the directrix is calledthe axis. The point at which the conic cuts its axis is called the vertex.

Draw a ellipse when the distance of its focus from its directrix is 50 mm and eccentricity is $2 / 3$ also, draw a tangent and a normal to the ellipse at point 70 mm away from directrix.

1. Draw focus F an au's $A B$ such that $A F=50 \mathrm{~mm}$.
2. Divide. Af in 5 equal parts mark vertex v_{1} on $3^{\text {rd }}$ division from A. and Draw vertical line $V_{1} e$ equal to V, F. Join A to e and produce it to some distance.
3. Mark a point 1 anywhere on line $A B$ (less than 1 cm). Draw a perpendicular line through 1 and meet $A \in$ produced at pointi.
4. With centre F and radius $1-1^{\prime}$, draw arcs to intersect the perpendicular line $1-1$ at points P_{1} and P_{1}. These are the loci points of ellipse
5. similarly, mark other point. These gives some more loci points of ellipse like; P_{2} and P_{2}^{\prime}, P_{3} and P_{3}^{\prime}, P_{4} and P_{4}^{\prime}, etc.
6. Join all the bocci points of ellipse and obtain the required ellipse and the required ellipse

Tangent and normal to an ellipse.

1. mark a point P on allipse at 70 mm from directric and join $P F$.
2. Draw a line FT perpendicular to line PF to meet directrix $D D^{\prime}$ at point T.
3. Doin TP and produce to some point T^{\prime}. The line T^{\prime} is required tangent.
4. Through point P, draw a line $N N^{\prime}$ perpendicular to $T T^{\prime}$. The line $N N$ 'is the required normal.

Draw parabola when the distance between its focus and directrix is 55 mm also a tangent and a normal at a point 65 mm from directrix.

Draw a hyperbola when the arstance of its focus from its directrix is 58 mm and eccentricity is $3 / 2$ also draw a tangent and a normal to the hyperbola at a point 30 mm from the directrix.

Draw an ellipse having 120 mm long major axis and 80 mm minor axis.

Q:- Inscribe the largest possible ellipse in a rectangle with $160 \mathrm{~mm} \times 10 \mathrm{~mm}$ sides

Q: The sides of a Parallelogram are $120 \mathrm{~mm} \times 80 \mathrm{~mm}$. The Included angle between them is $75^{\prime \prime}$. Inscribe an ellipse. In the given llgram

Q: Draw a Parabola given the width and height of its enclosing rectangle as $105 \mathrm{~mm} x \rightarrow 5 \mathrm{~mm}$ respectively.

Q: Inscribe a Parabola in a Parallelogram of $110 \times 80 \mathrm{~mm}$ sides, The Included angle being 60°. Consider the langer side of the Parallelogram as base of the parabola.

A point P of the hyperbola is situated at a distance of 35 mm and 50 mm from the pair of asymtodes. The asymtodes are perpendicular to each other. Draw hyperbola using orthogonal asymtodes method.

1. Draw asymptotes $O A$ and $O B$ perpendicular to each other.
2. Mark P such that $O A=35 \mathrm{~mm}$ and $O B=50 \mathrm{~mm}$.
3. Draw $C D, G F$ parallel to $O A, O B$ respectively poss through P.
4. marie points $1,2,3$, etc..., on PD at equal distance.
5. Torn $01,02,03$ etc.., to intersect the line $\in P$ at $1^{\prime}, 2^{\prime}, 3^{\prime}$ etc.
6. Draw lines from points $1,2,3$, etc..., parallel to $O B$ to interest lines drawn from points $1^{\prime}, 2^{\prime}, 3^{\prime}$ parallel to $O A$ at points P_{1}, P_{2}, P_{3}-etc.
7. Marie point $5,6,7$ etc.., on $C P$ at equal distance.
8. Repeat step 5,6 with $5,6,7$.etc points. you will get
a. $P_{5}, P_{6}, P_{7} . .$, et $=c$
9. Draw a smooth curve passing through $P_{1}, P_{2}, P_{3}, P_{5}, P_{6}, P_{7} \ldots$ etc., to get required rectangular hyperbola.

Q:- Draw a hyperbola when its asymptotes are Inclined at 60° to eachother and it passes through a point ' P '. At a distance of 40 mm and 50 mm from the Asymptotes.

Hyperbola.

Draw a parabola of base 120 mm and axis 80 mm by rectangular method.

1. Draw a rectangle $A B C D$ talking $A=120 \mathrm{~mm}$ and $A D=80 \mathrm{~mm}$
2. Mark \in and F as the mid points of $A B$ and $C D$ respectively. Join EF to represent the axis.
3. Divide $F D$ and $D A$, into equal number of parts, say r. mark division of side $D A$ as $1,2,3$ and divisions of FD as 1, 2, 3^{\prime}. Now join F with points 1,2,3.
4. Through $i^{\prime}, 2^{\prime}, 3^{\prime}$ draw lines parallel to axis EF to meet $\mathrm{Fl}_{1}, \mathrm{FQ}_{2}, \mathrm{F3}$ at P_{1}, P_{2}, P_{3} respectively.
5. As the curve is symmetric about axis, obtain points $P_{1}{ }^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ of the curve by drawing horizontal lines through points P_{1}, P_{2}, P_{3} and making them equal on both side of axis EF.
6. Draw a smooth curve passing through $A, P_{3}, P_{2}, P_{1}, F, P_{1}, P_{2}$, P_{3}^{\prime} and B to get the required parabola.

Cycloids:

These curves are generated by a fixed point on the circumference of a circle, whichrolls without slipping along a fixed straight line or a circle. The rolling circle iscalled generating circle and the fixed straight line or circle is termed directing lineor directing circle. Cycloidal curves are used in tooth profile of gears of a dial gauge.
revolution also draw a tangent and a normal to the curve at a point 35 mm above base line,

1. Draw a circle of diameter 50 mm with centre c.
2. Draw the directing line $P Q=\pi D=157 \mathrm{~mm}$ long, horizontal and tangential to the circle.
3. Divide the circle into 12 equal parts and mark the divisions as 1,2,3 etc. Draw lines through points $1,2,3$, etc., parallel to $P Q$.
4. Divide $P Q$ into 12 equal parts and mark the divisions as $1^{\prime}, 2^{\prime}, 3^{\prime}, e b c$.
5. Erect vertical lines from points $1^{\prime}, 2^{\prime}, 3^{\prime}$ etc . to meet the centre line $C D$ at c_{1}, c_{2}, c_{3}, etc. When the circle rolls trough $1 / 12^{\text {th }}$ rotation, point 1 of the circle will coincide with 1 centre c will move to c_{1}. The point p will move to new position P_{1} lying on the horizontal line through point 1 at a distance of 25 mm from c_{1}.
6. Draw an arc with centre c_{1} and radius 25 mm to intersect the horizontal line through point 1 at point P_{1}.
7. Similarly, draw are with centre c_{2}, c_{3}, c_{4} etc.
8. Draw a smooth curve passing through $P_{1}, P_{2}, P_{3}, P_{4}$ et C. to get the required cycloid.
Tangent and normal to the cycloid:
9. mark a point M on the cycloid 35 mm above $P Q$.
10. Draw an arc with centre M and radius 25 mm , to in epersect the centre line at x.
11. Dow a vertical line from X to meet $P Q$ at N.
12. Join NM and produce to N^{\prime}. This line $N N^{1}$ is the required normal.
5- Through point M dow a line π^{\prime} perpendicular to $N N^{\prime}$. This line π^{l} is the required tangent

Draw an epicycloid of a circle of diameter 50 mm which rolls outside a circle of diameter 150 mm for one revolution also draw a tangent and normal to epicycloid at a point 110 mm from the centre of directrix circle.

Draw a hypocycloid of a circle of diameter 50 mm which rolls inside a circle of diameter on 50 mm for one revolution also draw a tangent and normal to hypocycloid of a point 40 mm from the centre of the directrix circle.

Draw an Involute for a triangular plane of side length 30 mm and also draw tangent and Normal at a Point 55 mm from the center of the triangle.

Construct an Involute curve for a square of side 30 mm and also draw tangent and Normal at a distance of 60 mm from the center of the square.

1. Draw a circle of arameror 50 mm anas curiae it "In is pasto and mark them as $1,2,3 \ldots$, etc.
2. Dock tine $P Q=\pi D=157 \mathrm{~mm}$. divide it into 12 equal parts. mark them as $1^{\prime}, 2^{\prime}, 3^{\prime} \ldots$, etc.
3. Dow tangents to circle at 1,2,3 etc.
4. Draw an arc with centre 1 and radius P ' to intersect the tangent. point \cdots at P_{1} :
5. Draw an arc with centre 2 and radius P_{2} to intersect the tangent tine through point 2 at P_{2}.
6. Similarly, draw are with centres $3,4,5$ otc and radii $\mathrm{P3}^{\prime}, \mathrm{Pu}^{\prime}, \mathrm{PS}^{1}$ etc... respectively to intersect the tangent line through points $3,4,5$ etc., at points P_{3}, p_{4}, p_{5} etc., respectively.
7. Dow a smooth curve to pass through P_{1}, P_{2}, P_{3}. ct, and obtain required involute.

Tangent and normal to involute:

1. Mark a point M on involute at radial distance 100 m from 0 .
2. Join $O M$ and mark O, as its mid point.
3. Draw a semi-circle in closewise direction with O, as centre and diameter om to intersect the base circle at N.
4. Join MN and produce it to N^{\prime}. The line $N N^{\prime}$ is the required normal.
5. Through point M, draw a line π^{\prime} perpendicular to NN^{\prime} The line π^{l} is required tangent.

Scales:

Drawings of small objects can be prepared of the same size as theobjects theyrepresent. A 150 mm long pencil may be shown by a drawing of 150 mm length.Drawings drawn of the same size as the objects, are called full-size drawings. Theordinary full-size scales are used for such drawings.

A scale is defined as the ratio of the linear dimensions of element of the objectas represented in a drawing to the actual dimensions of the same element of theobject itself.

Representative fraction:The ratio of the length of the object representedon drawing to the actual length of the object represented is called the RepresentativeFraction (i.e. R.F.).

$$
\text { R.F. }=\frac{\text { Length of the drawing }}{\text { Actual length of object }}
$$

Types of scales

The scales used in practice are classified as under:
(1) Plain scales
(2) Diagonal scales
(3) Vernier scales
plain scale

1. A 1 cm length of the drawing represents 5 m length of the object. Then find R.F value.

Salt

$$
R \cdot F=\frac{\text { Length of the object in drawing }}{}
$$

Actual length of object

$$
\begin{aligned}
& R \cdot F=\frac{1 \mathrm{~cm}}{5 \mathrm{~m}} \\
&=\frac{1 \mathrm{ch}}{500 \mathrm{cos}} \\
& \therefore R \cdot F=\frac{1}{500}=1: 500
\end{aligned}
$$

2. A 5 cm lang line repretents 3 km length of a Road find the $R . f$ value.

Sol: P.F $=\frac{\text { length of the object in drawing }}{\text { Actual length of object }} \quad \because \quad 1 \mathrm{~km}=10 \mathrm{hm}$
3. Find the $P \cdot F$ value of $a 1 \mathrm{~cm}=1 \mathrm{~m}$

$$
\begin{aligned}
R \cdot F= & \frac{\text { Length of the object in draining }}{\text { Actual length of object. }} \\
& =\frac{1 \mathrm{~cm}}{1 \mathrm{~m}} \\
R \cdot F & =\frac{1 \mathrm{ch}}{1 \times 100 \mathrm{~cm}} \\
\therefore R \cdot F & =\frac{1}{100}=1: 100
\end{aligned}
$$

$$
\begin{aligned}
& \text { Actual length of object } \\
& =\frac{5 \mathrm{~cm}}{3 \mathrm{~km}} \\
& R \cdot f=\frac{5 \mathrm{~cm}}{3 \times 10^{5} \mathrm{~cm}} \\
& \therefore R \cdot F=\frac{5}{3 \times 10^{5}} \\
& =10 \times 100 \mathrm{~m} \\
& =10 \times 10 \times 10 \mathrm{~m} \\
& =10 \times 10 \times 10 \times 10 \mathrm{dm} \\
& =10 \times 10 \times 10 \times 10 \times 10 \mathrm{~cm} \\
& \therefore \mathrm{~cm}=10^{5} \mathrm{~cm} \text {). }
\end{aligned}
$$

4. In a map of India, a distance of 36 km between two Localities is shown by a line of 45 cm lang calculate its R.F.
$R \cdot F=\frac{\text { Length of the object in drawing }}{\text { Actual Length of the object. }}$

$$
\begin{aligned}
R \cdot F & =\frac{45 \mathrm{~cm}}{36 \mathrm{~cm}} \\
R \cdot F & =\frac{55 \mathrm{~cm}}{36 \times 10^{5} \mathrm{cms}} \\
\therefore R \cdot F & =\frac{5}{4 \times 10^{5}}
\end{aligned}
$$

5. A. Rectangular plot of $100 \mathrm{~km}^{2}$ is represented by a rectangular alee of $48 q \mathrm{~cm}$. Find the R.F.
Rectangular plot $=100 \mathrm{~km}^{2}$
Area of Drawing $=4 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
& R \cdot F=\sqrt{\frac{L-O \cdot I \cdot D}{A \cdot L \cdot O}} \\
& R \cdot F=\sqrt{\frac{\text { Area of O.I.D }}{\text { Actual Arc of } O}} \\
& R \cdot F=\sqrt{\frac{4 \mathrm{~cm}^{2}}{100 \mathrm{~km}^{2}}} \\
& R \cdot F=\frac{2 \mathrm{~cm}}{10 \mathrm{~km}^{2}}=\frac{\$ \mathrm{ch}}{104105 \mathrm{~cm}}=\frac{1}{5 \times 10^{5}} .
\end{aligned}
$$

6. A cube of 5 cm side represents a tank of 8000 cum volume -Find the R.f
cube side length $=5 \mathrm{~cm}$
Tank volume $=8000 \mathrm{~m}^{3}$

$$
R \cdot F=\sqrt[3]{\frac{\text { volume of O.I.D }}{\text { actual vol. of } \cdot O}}
$$

$$
\begin{aligned}
& =\sqrt[3]{\frac{5^{3} \mathrm{~cm}^{3}}{8000 \mathrm{~m}^{3}}}=\frac{5 \mathrm{~cm}}{20 \mathrm{~m}}=\frac{8 \mathrm{cng}}{20 \times 100 \mathrm{cms}} \\
\therefore R \cdot F & =\frac{1}{400} .
\end{aligned}
$$

7.. The area of a field is $50,000 \mathrm{~m}^{2}$ the length and breadth of the field on the map is 15 cm and 8 cm respectively. Find the value of R.F.

$$
\begin{aligned}
& R \cdot F=\sqrt{\frac{15^{2} \times 8^{2} \mathrm{~cm}^{2}}{50,000 \mathrm{~m}^{2}}} \\
& R \cdot F=\sqrt{\frac{3}{1250} \times \frac{\mathrm{cm}}{\mathrm{~m}}} \\
& R \cdot F=\frac{1}{5} \sqrt{\frac{3}{50}} \times \frac{\mathrm{c} / \mathrm{m}}{100 \mathrm{cmo}}=\frac{1}{500} \sqrt{3 / 50} \\
& \therefore R \cdot F=\frac{1}{500} \sqrt{3 / 50} .
\end{aligned}
$$

8. A Room of $1728 \mathrm{~m}^{3}$ volume is shown by a curse of 4 cm side.

Find the R.f.
A.

$$
\begin{aligned}
R \cdot f & =\sqrt[3]{\frac{4^{3} \mathrm{~cm}^{3}}{1728 \mathrm{~m}^{3}}} \\
& =\sqrt[3]{\frac{4^{3} \mathrm{~cm}^{3}}{3^{3} \times 4^{3} \mathrm{~m}^{3}}} \\
& =\frac{1 \mathrm{~cm}}{3 \mathrm{~m}} \\
& =\frac{1 \mathrm{~cm}}{3 \times 100 \mathrm{~cm}} \\
\therefore R \cdot F & =\frac{1}{300} \\
\therefore R \cdot F & =1: 300
\end{aligned}
$$

PLAIN SCALES
Plain scale:
(1). Construct a scale of 1:60 to show meters and decimeters and lang enough to measure unto 6 m . Mark an it a distance of $4.7 \mathrm{~m}, 3.6 \mathrm{~m}$.

Ans $R \cdot F=1 / 60$
Lang enough to measure unto 6 m
Mack a distance $=4.7 \mathrm{~m}, 3.6 \mathrm{~m}$.

$$
\begin{aligned}
& R \cdot F= \frac{L \cdot O \cdot I \cdot D}{A \cdot L \cdot(I) \text { Max length } C} \\
& \frac{1}{60}= \frac{L \cdot O \cdot I \cdot D}{6 \mathrm{~m}} \\
& \frac{6 m}{60}=L \cdot O \cdot I \cdot D \\
& L / 10=L \cdot D \cdot I \cdot D \\
& L \cdot O \cdot I \cdot D=1 / 10 \mathrm{~m}=10 \mathrm{~cm} \\
& L \cdot O \cdot I \cdot D=100 \mathrm{~mm}
\end{aligned}
$$

2. Construct a scale of $1 \mathrm{~cm}=1 \mathrm{~m}$ to read meters and decimeters and long enough to measure upto 14 m . Show adistance of 12.4 m .

A:-

$$
\begin{aligned}
& 1 \mathrm{~cm}=1 \text { meter. } \\
& \text { Man length }=14 \mathrm{~m} \\
& \text { Maelving distance }=12.4 \mathrm{~m} \\
& \text { l.F }=\frac{\text { Length of the object in drawing }}{\text { Actiecl length of object }} \\
& R \cdot F=\frac{1 c_{m}}{\lim }=\frac{1 c_{m}}{100 \mathrm{cos}}=\frac{1}{100} \\
& \frac{1}{100}=\frac{L \cdot O \cdot I \cdot D}{14 \mathrm{~m}} \\
& \frac{14 \mathrm{~m}}{100}=L \cdot O \cdot I \cdot O \\
& L \cdot O \cdot I \cdot D=\frac{14 \times 100 \mathrm{~cm}}{100}=14 \mathrm{~cm} \\
& \text { L.O.I. } D=140 \mathrm{~mm} \text {. }
\end{aligned}
$$

3. Alength of 1 decameter (Om_{m}) is Represented by 5 cm . Find the R-F and construct a plainscate to measure upto 2.5 Dm and mark a distance of 19 m on it:
A: $\quad R-f=$?

$$
\begin{aligned}
& 1 \mathrm{Om}=5 \mathrm{~cm} \\
& R \cdot F=\frac{\text { length of object in drawing }}{\text { Actual length of obiect. }}
\end{aligned}
$$

$$
\begin{aligned}
& R \cdot F=\frac{5 \mathrm{~cm}}{210 \mathrm{~m}}=\frac{5}{1000} \\
& R \cdot F=\frac{1}{200} \\
& \frac{1}{200}=\frac{L \cdot O \cdot I \cdot D}{2.5 D m} \\
& \text { L.O.I.D }=\frac{2.5 \mathrm{Dm}}{200} \\
& =\frac{2.5 \times 10^{5} \phi \phi \mathrm{~cm}}{206} \\
& \text { L.O.I.D }=12.5 \mathrm{~cm} \text { (OY) } 125 \mathrm{~mm} \\
& \text { maxlength }=2.5 \mathrm{Dm} \\
& \text { maeling distance }=19 \mathrm{~m} \text {. }
\end{aligned}
$$

4. A rectangular plot of $100 \mathrm{~km}^{2}$ is represented by a rectangular area of $4 \mathrm{~cm}^{2}$. Draw a scale to shaw 50 km and mask adistance of 41 km on it.

A:

$$
\begin{aligned}
R \cdot F & =\sqrt{\frac{4 \mathrm{~cm}^{2}}{100 \mathrm{~km}^{2}}} \\
R \cdot F & =\frac{2 \mathrm{~cm}}{10 \mathrm{~km}} \\
& =\frac{2 \mathrm{cos}}{10 \times 10^{5} \mathrm{ca}}=\frac{1}{5 \times 10^{5}}
\end{aligned}
$$

Max length $=50 \mathrm{~km}$
malang distance $=41 \mathrm{~km}$.
P.F $=\frac{\text { length of object in drawing }}{\text { actual length of object }}$

$$
\frac{1}{5 \times 10^{5}}=\frac{L \cdot O \cdot I \cdot D}{50 \mathrm{~cm}}
$$

$$
\begin{aligned}
L \cdot O \cdot I \cdot D & =\frac{5 \times 0^{10} \times 10^{5} \mathrm{~cm}}{5 \times 105} \\
& =10 \mathrm{~cm} \\
L \cdot O \cdot I \cdot D & =100 \mathrm{~mm}
\end{aligned}
$$

5-
construct a scale of 1:14. to read feet and inches and long enough to measure 7 feet. Show a distance of 5 ft and 10 inches on it.
$A: \quad R \cdot F=\frac{1}{14}$
' $R \cdot F=$ Length of object in drawing Actual length of object

$$
\frac{1}{14}=\frac{L \cdot 0 \cdot I \cdot D}{7 \text { feet }}
$$

$$
\frac{7 \times 12^{6} \times 2.54 \mathrm{~cm}}{1 \times 2}=L \cdot O \cdot I \cdot D
$$

$$
\begin{aligned}
L \cdot O \cdot I \cdot D & =15.24 \mathrm{~cm} \\
& \cong 15.3 \mathrm{~cm} \\
L \cdot O \cdot I \cdot D & =153 \mathrm{~mm}
\end{aligned}
$$

marking distance $=5$ feet 10 inches

$$
\text { Moulength }=\text { Fret }
$$

6. Construct a scale of 1:54 to show yards and feet and lang enough to measure 9 yards. Mack a distance of 6 yard 2 feet.
Q:-

$$
\begin{aligned}
& R \cdot F=\frac{1}{54} \\
& R \cdot E=\frac{\text { Length of object in drawing }}{\text { Actual Length of object }}
\end{aligned}
$$

$$
\frac{1}{54}=\frac{L-O \cdot I \cdot D}{9 \text { yaeds }}
$$

$$
\frac{9 \text { yards }}{5 u}=L \cdot O \cdot I \cdot D
$$

$$
\frac{9 \times 3 \times 12 \times 2.54 \mathrm{~cm}}{\frac{54}{6 \%}}=L \cdot 0 . \mathrm{J} \cdot D
$$

$$
L \cdot O \cdot I \cdot D=15.24 \mathrm{~cm}
$$

$$
\simeq 15.3 \mathrm{~cm}
$$

$$
L \cdot O \cdot I \cdot D=153 \mathrm{~mm}
$$

\therefore max length $=9$ yards
\therefore masking distance $=6$ yard and 2 feet .

7. A cube of 5 cm side represents a tank of $8000 \mathrm{~m}^{3}$. Find R-f and Construct a scale to measure unto 60 m and mack a distance of 47 m
A.

$$
\begin{aligned}
R \cdot F & =\sqrt[3]{\frac{5^{3} \mathrm{~cm}^{3}}{8000 \mathrm{~m}^{3}}} \\
R \cdot F & =\frac{5 \mathrm{~cm}}{20 \mathrm{~m}} \\
& =\frac{1 \mathrm{~cm}}{400 \mathrm{~cm}} \\
R \cdot F & =\frac{1}{400}
\end{aligned}
$$

$$
R \cdot F=\frac{\text { length of object in drawing }}{\text { Actual length of object }}
$$

$$
\frac{1}{400}=\frac{L \cdot O \cdot I \cdot D}{60 \mathrm{~m}}
$$

$$
\frac{60 m}{400}=L \cdot O \cdot I \cdot D
$$

$$
L \cdot O \cdot I \cdot D=\frac{15}{4000} \mathrm{~cm}
$$

$$
L \cdot O \cdot I \cdot D=15 \mathrm{~cm}
$$

$$
=150 \mathrm{~mm}
$$

mailing distance $=47 \mathrm{~m}$

Diagonal scale

1. A map is to be drawn with P.F 1:40 construct a sole to read in meters, dm and cm and lang enough to measure upto 6 m . show on it a distance of 3.8 um

A: Scale $\rightarrow m, d m, c m$

$$
R \cdot f=\frac{1}{40}
$$

max length of object $=6 \mathrm{~m}$
Masking distance $=3.84 \mathrm{~m}$
$R . f=\frac{\text { Length of object in drawing }}{}$
Actual length of object.

$$
\begin{aligned}
& \frac{1}{40}=\frac{L \cdot O \cdot I \cdot D}{6 \mathrm{~m}} \\
& L \cdot O \cdot I \cdot D=\frac{6 \mathrm{~m}}{40}=\frac{6^{3} \times 10 \mathrm{~d} \mathrm{~cm}}{410}=15 \mathrm{~cm} \\
& L \cdot O \cdot I \cdot D=150 \mathrm{~mm}
\end{aligned}
$$

150
2. Construct a diagonal scale showing $\mathrm{km}, \mathrm{Hm}, \mathrm{Om}$ in which 2 cm lang Line represents 1 km , and the scale is long enough to measure up to 7 km . Find the R.f and marking distance of 4.53 km on it.
A: \quad Scale $\rightarrow \mathrm{km}, \mathrm{hm}, \mathrm{dm}$

$$
\begin{aligned}
& R \cdot f=\frac{2 \mathrm{~cm}}{1 \times 10^{5} \mathrm{ch}} \\
& R \cdot f=\frac{1}{5 \times 10^{4}}
\end{aligned}
$$

$R \cdot F=\frac{\text { Length of }}{\text { Actual Len }}$
$\frac{1}{5 \times 10^{4}}=\frac{L \cdot O \cdot I \cdot D}{7 \mathrm{~km}}$

$$
\frac{7 \times 10^{8} \mathrm{~cm}}{5 \times 10^{4}}=L \cdot O \cdot I \cdot D
$$

$$
\text { L.O.I.D }=4 \mathrm{~cm} \text { (or) } 140 \mathrm{~mm}
$$

mar length $=7 \mathrm{~km}$ malting distance $=4.53 \mathrm{~km}$.
$d m$

3. Draw a cliagonal scale of R.F 3:100 showing in meters, dm and cm and measure upton 5 m . Dark a length of 3.69 m .
(4:)

$$
\begin{aligned}
& R \cdot F=\frac{3}{100} \text { scale ammeters, dmicm } \\
& R \cdot F= \frac{\text { Length of object in drawing }}{\text { Actual length of object }} \\
& \frac{3}{100}=\frac{L . O \cdot I \cdot D}{5 \mathrm{~m}} \\
& \frac{3 \times 5 \times 100 \mathrm{~cm}}{100}=L \cdot 0 \cdot \mathrm{I} \cdot \mathrm{D} \\
& \text { L.O.I.D }=15 \mathrm{~cm} . \\
& \text { L.O.I.D }=150 \mathrm{~mm} .
\end{aligned}
$$

max length $=5 \mathrm{~m}$
making distance $=3 \mathrm{~m}$ adm and $9 \mathrm{~cm}(3.69 \mathrm{~m})$.

4. The distance between two cities ' A ' and ' B ' is 300 km . It' equivalent distance on the map measures only 6 cm . What is R-F? Draw a diagonal scale show $100^{\circ} 1$ of km , Teri cm and km Indicate on the scale the following distances.
(i) 525 km , (ii) 313 km and 258 km .

A: Distance blu two cities $=300 \mathrm{~km}(A \cdot L)$ clistance on the map $=6 \mathrm{~cm}(L, O \cdot I \cdot D)$.

$$
R \cdot F=\frac{6 \mathrm{~cm}}{300 \mathrm{~km}}=\frac{6 \mathrm{~cm}}{300 \times 10^{5} \mathrm{~cm}}=\frac{1}{5 \times 10^{6}}
$$

max length $=600 \mathrm{~km}$ (\because max marking distance is 525 km).

$$
R \cdot f=\frac{\text { Length of object in drawing }}{\text { Acted length of object }}=\frac{1}{5 \times 10^{6}}=\frac{1.0 \cdot I \cdot D}{600 \mathrm{~km}}
$$

$$
\begin{aligned}
\text { L.O.I.D } & =\frac{600 \times 10^{5} \mathrm{~cm}}{5 \times 10^{6}}=12 \mathrm{~cm} \\
L \cdot O \cdot I \cdot D & =120 \mathrm{~mm} .
\end{aligned}
$$

120
5. On a map the actual distance of 5 m is represented by a line of 25 mm tang. Calculate the $12-f$. construct a diagonal scale lang enough to measure 42 to 25 m and make a distance of 19 m and 11 m .

A: Max length $=25 \mathrm{~m}$

$$
\begin{aligned}
& R \cdot F=\frac{\text { Length of object in Drawing }}{\text { Actual Length of object }} \\
&=\frac{25 \mathrm{~mm}}{5 \mathrm{~m}}=\frac{25 \mathrm{~mm}}{5 \times 10^{3} \mathrm{~mm}}=\frac{1}{200} \\
& R \cdot F=\frac{1}{200} \\
& \frac{1}{200}=\frac{L .0 . I . D}{25 \mathrm{~m}} \\
& \frac{12.5}{25} \times 190 \mathrm{~cm} \\
& 200=1 . O . I . D \\
& \text { L.O.I.D }=12.5 \mathrm{~cm} \mathrm{or} 125 \mathrm{~mm} .
\end{aligned}
$$

125
6. Construct a diagonal scale showing yards, feets and inches. in which 2 inches lang line represents 1.25 yards and it is long enough to measure upton 5 yards marking distance as 3 yards 2 Feet and 10 inches.
Sol: 2 inches $=1.25$ yards

$$
\begin{aligned}
& \text { R.F }= \frac{\text { inches }}{1.25 \text { yards }}=\frac{2 \text { inches }}{1.25 \times 3 \times 12 \text { inches }} \\
& \text { R.F }=\frac{1062}{24+x}=\frac{2}{45} \\
& \text { max length }=5 \text { yards }
\end{aligned}
$$

R.f. Length of object in drawing

Actual length of object

$$
\begin{aligned}
\frac{2}{45}=\frac{L \cdot 0 \cdot I \cdot D}{5 \text { yards }} & =5 \times 3 \times 12 \times 2.54 \mathrm{~cm} \frac{\times 2}{45}=1-0 . I \cdot D . \\
1 \cdot 0 \cdot I \cdot D & =20.32 \mathrm{~cm} \simeq 20.3 \mathrm{~cm} \text { (rI) } 203 \mathrm{~m}
\end{aligned}
$$

392 F 10 inches.

7. A rectangular plots of land measuring 1.28 hectares is showing on a map by a similar rectangle of $8 \mathrm{~cm}^{2}$ calculate R.F of the scale. Draw a diagonal scale two read. Am and long enough to measure 600 m . Show a distance of 438 m on it.

Sol:

$$
\begin{aligned}
& R \cdot F=\frac{8 \mathrm{~cm}^{2}}{1.28 \times 10^{4} \mathrm{~m}^{2}} \\
& =\sqrt{\frac{8 \mathrm{~cm}^{2}}{1.28 \times 10^{4} \mathrm{~m}^{2}}}=\sqrt{\frac{18}{1 \frac{8}{16} \times 10^{2}}} \times \frac{\mathrm{cm}}{\mathrm{~m}} \\
& \therefore R . F=\frac{1}{4 \sqrt{10}} \times \frac{\cos }{100 \mathrm{cos}}=\frac{1}{4000} \\
& \text { Ref }=\frac{\text { Length of the object in growing }}{\text { Actual length of object }} \\
& \frac{1}{4000}=\frac{L \cdot O \cdot I \cdot D}{600 \mathrm{~m}}=\frac{800 \times 10 \phi}{2006}=15 \mathrm{~cm}(0 \pi) 150 \mathrm{~mm} \\
& \therefore \text { maklength }=600 \mathrm{~m} \\
& \text { making distance }=438 \mathrm{~m} \text {. }
\end{aligned}
$$

150.
8. The distance between two stations is 100 km and on amp It is shown by 30 cm . Draw a diagonal scale and indicate 46.8 km and 32.4 km .

Sol:

$$
R . f=\frac{30 \mathrm{~cm}}{100 \mathrm{~km}}=\frac{3 \phi \mathrm{~cm}}{100 \times 10^{5} \mathrm{cms}}=\frac{3}{10^{6}}
$$

$R \cdot F=\frac{\text { Length of object in drawing }}{\text { Actual Length of object. }}$
Mon length $=50 \mathrm{~km}(\because$ max mailing is 46.8 km$)$.

$$
\begin{aligned}
& \frac{3}{10^{6}}=\frac{1 \cdot 0 \cdot 3 \cdot D}{50 \mathrm{~km}} \\
& \quad L \cdot O \cdot I \cdot D=\frac{5 \phi \times 10^{8} \times 3 \mathrm{~cm}}{166}=15 \mathrm{~cm} \text { or } 150 \mathrm{~mm}
\end{aligned}
$$

marking distance $=46.8 \mathrm{~km}$ and 32.4 km

9. Construct a scale to measure $k m, 1 / 8 \mathrm{~km}$ and $\frac{1}{40} \mathrm{~km}$, in which 1 km is showing by 4 cm . Mark on the scale at a distance. of 2.775 km .
Sol. $\quad R \cdot F=\frac{4 \mathrm{~cm}}{1 \mathrm{~km}}=\frac{4 \mathrm{cod}}{1 \times 10^{5} \mathrm{cos}}=\frac{1}{25 \times 10^{3}}$

$$
\begin{aligned}
\therefore & R \cdot F=\frac{1}{25 \times w^{3}} \\
R \cdot f= & \frac{\text { length of the object in drawing }}{\text { Actual length of object }}
\end{aligned}
$$

: max length = $3 \mathrm{~km}(\because$ max marking is $2.7+5 \mathrm{~km})$.

$$
\begin{aligned}
& \frac{1}{25 \times 10^{3}}=\frac{L \cdot O \cdot I \cdot D}{3 \mathrm{~km}} \\
& \text { L.O.I.D }=\frac{3 \times 10^{2} \mathrm{~cm}^{2}}{25 \times 10^{3}}=3 \times 4 \mathrm{~cm}=12 \mathrm{~cm} \\
& \therefore L . O . I \cdot D=120 \mathrm{~mm}
\end{aligned}
$$

$$
\text { Marking distance }=2.775 \mathrm{~km} \text {. }
$$

1-Q:- construct a scale of R-f $=2.5$ to show $\mathrm{m}, \mathrm{dm}, \mathrm{cm}$ and lang enough to measure unto 4 m .

Sol:

$$
\begin{aligned}
& R \cdot F=2.5 \\
& R \cdot F=\frac{25}{10}=\frac{5}{2} \\
& R-F^{2}=\frac{\text { Length of object in drawing }}{\text { Acheal length of object }} \\
& \therefore \text { max length }=4 \mathrm{~m} \\
& \frac{5}{2}=\frac{\text { L.O.I.D }}{4 \mathrm{~m}} \\
& \frac{5}{2} \times{ }^{2} \times 100=\text { L.O.I.D } \\
& \text { L.O.I.D }=1000 \mathrm{~cm} \text { (us) } 10,000 \mathrm{~mm} .
\end{aligned}
$$

100

Scale $=1: 100$
2. Q:- Draw a diagonal scale of $R-F=4$ to read $\mathrm{cm}, \frac{1}{5} \mathrm{~cm}, \frac{1}{25} \mathrm{~cm}$ and to measure unto 5 cm . Mack on the scale distance of 3.36 cm .
Sol: \quad P. $f=4$
$R \cdot f=\frac{\text { Length of object in drawing }}{\text { Actual Length of object }}$
max length $=5 \mathrm{~cm}$

$$
\begin{gathered}
\frac{4}{1}=\frac{L \cdot O \cdot I \cdot D}{5 \mathrm{~cm}} \\
4 \times 5 \mathrm{~cm}=L \cdot O \cdot I \cdot D \\
L \cdot O \cdot I \cdot B=20 \mathrm{~cm}(u \mathrm{ur}) \\
200 \mathrm{~mm}
\end{gathered}
$$

Marking distance.

$$
=3.36 \mathrm{~cm}
$$

3. Q:- a) Draw a regular hexagon of 40 mm side using general method.

Hexagon
b) The distance between tux points on a map is 15 cm . The real distance bow them is 20 km . Draw a diagonal scale to measure unto 25 km and show a distance of 18.6 km on it.
Sol.

$$
\begin{aligned}
& R \cdot F=\frac{15 \mathrm{ch}}{20 \times 10^{5} \mathrm{~cm}}=\frac{3}{4 \times 105} \\
& R \cdot f=\frac{\text { Length of object in drawing }}{\text { Actual Length of object }}
\end{aligned}
$$

max Length $=25 \mathrm{~km}$

$$
\begin{aligned}
\frac{3}{4 \times 10^{5}} & =\frac{L \cdot O \cdot I \cdot D}{25 \mathrm{~km}} \\
L \cdot O \cdot I \cdot D & =\frac{25 \times 10^{5} \times 3 \mathrm{~cm}}{4 \times 105}
\end{aligned}
$$

1. Construct a vernier scale of 1:40 to read metes, $d m$ and $c m$ and long enough to measure unto $6 m$ and mack distance of 5.76 m on it.

Sol: $\quad R \cdot F=\frac{1}{40}$
$R \cdot F=\frac{\text { Length of object in drawing }}{\text { Actual length of object. }}$
\therefore max length $=6 \mathrm{~m}$

$$
\begin{aligned}
& \frac{1}{40}=\frac{L \cdot O \cdot I \cdot D}{A \cdot L \cdot O} \\
& \frac{1}{40}=\frac{L \cdot O \cdot I \cdot D}{6 \mathrm{~m}} \\
& \frac{6 \times 10 b \mathrm{~cm}}{4 \Phi}=L \cdot O \cdot I \cdot D \\
& \therefore L \cdot O \cdot I \cdot D=15 \mathrm{~cm} \text { (O) } 150 \mathrm{~mm} \\
& \therefore \text { Mocking distance }=5.76 \mathrm{~m}
\end{aligned}
$$

2. If 1 cm tang line on a map represents a reel distance of 4 m . Coluclate the R.F. Draw a vernier scale lang enough to measure upto 50 m . Show a distance of 44.5 m on it
Sole

$$
\begin{aligned}
& R \cdot f=\frac{1 \mathrm{~cm}}{4 \mathrm{~m}}=\frac{1 \mathrm{crp}}{4 \times 100 \mathrm{~cm}} \\
& R \cdot f=\frac{1}{400} \\
& \therefore \text { max length }=50 \mathrm{~m} \\
& R \cdot f=\frac{\text { Length of object in drawing }}{\text { Acted length of object }} \\
& \frac{1}{400}=\frac{L .0 . I \cdot D}{50 \mathrm{~m}} \\
& \frac{50 \times 100 \mathrm{~cm}}{406}=L .0 . I . D \\
& L .0 . I .0=12.5 \mathrm{~cm} \text { os } 125 \mathrm{~mm} \\
& \text { marking distance }=44.5 \mathrm{~m} .
\end{aligned}
$$

Vernier Scale
3. A real length of 10 m is represented by aline of 5 cm on a drawing. Find the P.F and constrict a verniel scale such that Least count is 2 dm and measure upto 25 m mack a distance of 19.4 m on it

$$
\begin{aligned}
& R \cdot F=\frac{5 \mathrm{~cm}}{10 \mathrm{~m}} \\
& R \cdot F=\frac{5 \mathrm{ch}}{10 \times 100 \mathrm{~cm}}=\frac{1}{200} \\
& \text { max length }=25 \mathrm{~m} \\
& R \cdot F=\frac{\text { Length of object in drawing }}{\text { Actual length of object }} \\
& \frac{1}{200}=\frac{L \cdot 0 \cdot I \cdot D}{25 \mathrm{~m}} \\
& \frac{25 \times 1 \phi 0 \mathrm{~cm}}{260}=1.0 . I \cdot D \\
& \therefore \text { L.0.ID }=12.5 \mathrm{~cm} \text { os } 125 \mathrm{~mm} \\
& \therefore \text { making distance }=19.4 \mathrm{~m} .
\end{aligned}
$$

Vernierscale
4. On a map rectangle of $125 \mathrm{~cm} \times 200 \mathrm{~cm}$ represents area of $6250 \mathrm{~km}^{2}$. Draw a vernier scale to show Dm, and long enough to measure unto 7 km . Show a distance of 6.43 kmonit .
sol:

$$
\begin{aligned}
\text { R.F } & =\sqrt{\frac{125 \times 200 \mathrm{~cm}^{2}}{6250 \mathrm{~km}^{2}}} \\
& =\sqrt{\frac{2500 \phi}{6256}} \times \frac{\mathrm{cm}}{\mathrm{~km}}=\sqrt{\frac{2500}{625} \times \frac{\mathrm{cm}}{10^{5} \mathrm{~cm}}} \\
& =\frac{50}{25 \times 10^{5}}=\frac{2}{10^{5}}=\frac{1}{5 \times 10^{4}} \\
& \therefore \quad \text { P. } F=\frac{1}{5 \times 10^{4}}
\end{aligned}
$$

$$
\text { l. - mar length }=7 \mathrm{~km}
$$

$$
\therefore R \cdot F=\frac{\text { Leorgth of object in drawing }}{\text { theheel length of obieed }}
$$

$$
\frac{1}{5 \times 10^{4}}=\frac{1 \cdot 0 \cdot I \cdot D}{7 \mathrm{~km}}
$$

$$
\text { L.O.I. }=\frac{7 \times 10^{5} \mathrm{~cm}}{5 \times 10^{4}}=148 \mathrm{~cm} \text { or } 140 \mathrm{~mm}
$$

marking distance $=6.43 \mathrm{~km}$

5. Construct a full size veenies scale of inches and shaw on it.
length of 4.6 A inches.
sur Full site scale ratio $=1$:1

$$
R-F=\frac{1}{1}
$$

marlungth. 5 inches (tox marking isu.Gt).
RAf. Length of object in drawing
Acted length of object

$$
\begin{aligned}
& \frac{1}{1}=\frac{L \cdot O . I \cdot I)}{\text { finches }} \\
& \begin{aligned}
L \cdot O . I \cdot D & =5 \times 2.54 \mathrm{~cm} \\
& =12.7 \mathrm{~cm} \\
& =127 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

malting distance $=4.67$ inches.

Content

Orthographic Projections: Principles of Orthographic Projections - Conventions Projections of Points and Lines, Projections of Plane regular geometric figures.-Auxiliary Planes.

Unit-II

Orthographic Projections:When the projectors are parallel to each other and also perpendicular to the plane,the projection is called orthographic projection.

Planes of Projection:The two planes employed for the purpose of orthographic projections are calledreference planes or principal planes of projection. They intersect each other at rightangles. The vertical plane of projection (in front of the observer) is usually denotedby the letters V.P. It is often called the frontal plane and denoted by the letters F.P.The other plane is the horizontal plane of projection known as the H.P.

The linein which they intersect is termed the reference line and is denoted by the letters xy. The projection on the V.P. is called the front view or the elevation of the object.The projection on the H.P. is called the top view or the plan.

First-Angle Projection:We have assumed the object to be situated in front of the V.P. and above the H.P.i.e. in the first quadrant and then projected it on these planes. This method of projection is known as first-angle projection method. The object lies between the observer and the plane of projection. In this method, when the views are drawn in their relative positions, the top view comes below the front view. In other words, the view seen from above is placed on the other side of (i.e. below) the front view. Each projection shows the view of that surface (of the object) which is remote from the plane on which it is projected and which is nearest to the observer.

FIRST ANGLE PROJECTION

RELATION BETWEEN OBSERVER, OBJECT ANO P.P.

F.V.

LH.S.V.
IDENTIFYING GRAPHICAL SYMBOL OF FIRST ANGLE PROJECTION

Third-Angle Projection:In this method of projection, the object is assumed to be situated in the third quadrant The planes of projection are assumed to be transparent. They lie between the object and the observer. When the observer views the object from the front, the rays of sight intersect the V.P.
The figure formed by joining the points of intersection in correct sequence is the front view of the object. The topview is obtained in a similar manner by looking from above. When the two planes are brought in line with each other, the views will be seen as shown in fig. The top view in this case comes above the front view.

THIRD ANGLEPROJECTION

RELATION BETWEEN OBSERVER, OBJECT ANDP.P.

LH.S.V.
F.V.

Projections of Points:

A point may be situated, in space, in any one of the four quadrants formed by the two principal planes of projection or may lie in any one or both of them. Its projections are obtained by extending projectors perpendicular to the planes.

One of the planes is then rotated so that the first and third quadrants are opened out. The projections are shown on a flat surface in their respective positions either above or below or in xy.

ORTHOGRAPHIC PROJECTIONS
Projection of points:
I. The Point A is 15 mm above $H \cdot P, 35 \mathrm{~mm}$ intront of $V \cdot P$

$$
A \rightarrow 15 \mathrm{~mm} \text { above } H-P
$$

$$
35 \mathrm{~mm} \text { infront } V \cdot P
$$

1I) The point $1 \hat{B}$ is 40 mm above $H \cdot P, 25 \mathrm{~mm}$ behind $V \cdot P$.

$$
B \rightarrow 40 \mathrm{~mm} \text { above } H \cdot P
$$ 25 mm behind V.P

(VI) The point ' F ' is on the H.P and 20 mm in front of V.P.
$F \rightarrow \quad$ F on the $H \cdot P$
Rom infront $V \cdot P$

III The point ' c ' is 35 mm below H.P, 55 mm behind V-P.
$C \longrightarrow 35 \mathrm{~mm}$ below H.P
55 mm behind $V-P$

(IV) The point ' D ' is 15 mm below H.P, 36 mm infront of $V-P$ $D \longrightarrow 15 \mathrm{~mm}$ below $H \cdot P$

36 mm in front $v-p$.

(Ix) The point 's' both on the H.P and V.P.

$$
S \longrightarrow \begin{aligned}
& \text { On the H.P } \\
& \text { on the V.P } \\
& X
\end{aligned}
$$

I
The point ' E ' on the $V \cdot P$ and 45 mm above H-P
$E \rightarrow$ point on the V-P
45 mm above $H-P$.

(WIT)
The point G ' is on the V.P and 35 mm below H.P $G \rightarrow$ on the V.P 35 mm below H.P.

(III) The point J on the H.P and 55 mm behind V.P.
$J \rightarrow$ point is on $H \cdot P$ 55 mm behind $V \cdot P$

1. State the quadrants in which the following points are situated.
a) ' ρ ' its top-view is 40 mm above $x y$.
frontricw 20 mm below the top-view.
b) The point ' Q ' its projections coincide with eachothes Ho mm below ky.

Ans.
a) $P \longrightarrow$ TV 40 mm above $x y$ F.V 20 mm below $t \cdot V$.

'p i lies in second quadrant.
b) $Q \rightarrow$ coincide with each other.

40 mm below $\times 4$

21 A point ' P^{\prime} ' is 15 mm above H.P and 20 mm infront of V.P. Another Point ' Q ' is 25 mm behind V.P and 40 mm below +1.P. Draw the. projections of ' P ' and ' Q ' keeping the distance between their projectors. equal to 90 mm braw st -lines Joining.
(i) The ir top-views
(ii) Their front views.
$P \longrightarrow 15 \mathrm{~mm}$ above $H-P$
20 mm infront V.P
$Q \longrightarrow 25 \mathrm{~mm}$ behind $V-P$
40 mm below H.P.
distance blu their projections is 90 mm .

3.
projection of various points are given in the figure state the. position of each point with respect to reference planes giving. the distance in cm .

(i)

(ii) $\mathrm{B} \longrightarrow$ on the $v-P$
nom $\downarrow H \cdot P$

(iii)

(iv) $D \rightarrow$ on the H.P.
$30 \mathrm{~mm} \longleftarrow$ V. P .

(v)
$E \longrightarrow 40 \mathrm{~mm} \uparrow+1 \cdot \mathrm{P}$

Q: Two Points ' A ' and ' B ' are in the $H \cdot 1 P$. The Point \bar{A} ' is 30 mm infront of V-P. while A^{\prime} is behind the V-P. The distance blu their projectors is 75 mm and their line Joining their top views makes an angle of 45° with $x y$. Find the. distance of the point ' B ' from $V \cdot P$
Ans: $\quad A \rightarrow 30 \mathrm{~mm}$ intront of $V \cdot P$
$B \rightarrow$ behind the $v \cdot p=$?
Distance blu their Projectors $=75 \mathrm{~mm}$.

Q:- The point ' Q ' is situated in first quadrant - It is 40 mm above H.P and 30 mm infront of V.P. Draw its projections and find its shortest distance from the intersection of H.P,V.P and aurillaky plane.

Ans: $Q \rightarrow$ in first quadeont
comm 小 HP
$30 \mathrm{~mm} \longrightarrow V, P$.
aurillay plane = ?

Q.: A point 30 mm above ky line is the Plan view (top view) of two Points P and Q. The elevation of ' P ' is 45 mm above H.P, while that of the point Q^{\prime} is 35 mm below the H.p Draw the projections of point and state their Positions with reference to the Principle planes and the quadeent in which they lie.
Ami: Both P and Q TiV $=30 \mathrm{~mm}$

Projections of Straight Lines:

A straight line is the shortest distance between two points. Hence, the projectionsof a straight line may be drawn by joining the respective projections of its endswhich are points.

The position of a straight line may also be described with respect to the tworeference planes. It may be:

1. Parallel to one or both the planes.
2. Contained by one or both the planes.
3. Perpendicular to one of the planes.
4. Inclined to one plane and parallel to the other.
5. Inclined to both the planes.
6. Projections of lines inclined to both the planes.
7. Line contained by a plane perpendicular to both the reference planes.
8. True length of a straight line and its inclinations with the reference planes.
9. Traces of a line.
10. Methods of determining traces of a line.
11. Traces of a line, the projections of which are perpendicular to xy .
12. Positions of traces of a line.

7, 10707 pus rusypaland 41 moid. d.n jo fualjur when puo d.H

- moll 41 rumergrop pino rusyoarad

Fi mola. d.t ango wwog purs d.^ to quallu, whes

3. AGomm long line. $A B$ has its end A ' is 20 mm infront of $V-P$. The line is ter to V.P and 40 mm above the H-P. Draw its projections and Locate its traces. $v^{\prime} b^{\prime}\left(a^{\prime}\right)$
$A n!$

$$
\begin{aligned}
A B & =60 \mathrm{~mm} \\
A \rightarrow & 20 \mathrm{~mm} \text { introntV} \cdot P \\
& =40 \mathrm{~mm} \uparrow H \cdot P
\end{aligned}
$$

line ter to V.P.

4. Asomm long line $A B$ has end 'A' at distance of 20 mm above H.P and 40 mm intront of $V-P$. The line is Inclined at $30 \% 10 \mathrm{H}-\mathrm{P}$ and is parallel to $v-p$ Draw the Projections of the line and determine it traces
An.

$$
\begin{aligned}
& \theta \rightarrow H \cdot P \\
& \phi \rightarrow V \cdot P \\
& A B=80 \mathrm{~mm}(T \cdot L) . \\
& \theta=30^{\circ} \\
& a^{\prime} b^{\prime}=F \cdot V \\
& a b=T \cdot V
\end{aligned}
$$

5. A 80 mm Long line $A B$ is Inclined at 30° to V.P and Parallel to H.P - The end 'A' of the line is 20 mm above the H-P and 40 mm intront of the V.P. Draw the projections of the line and determine it traces.

$$
\begin{aligned}
& A B=80 \mathrm{~mm} \\
& A \rightarrow 20 \uparrow H \cdot P \quad B \rightarrow 40 \rightarrow V \cdot P \quad \phi=30^{\circ}
\end{aligned}
$$

6. A 60 mm long line $P Q$ is situated in H.P and is inclined at 30° to V-P. The end ' P ' of the line is situated 20 mm infront of V.P. Draw the projections of the line and determine it trace.

$$
\begin{aligned}
& P Q=60 \mathrm{~mm} \\
& P \rightarrow 20 \mathrm{~mm} \rightarrow V \cdot P \\
& \phi=30^{\circ}
\end{aligned}
$$

7. Draw the projections of a 60 mm longline 'PQ' is in the. V.P and inclined at 30° to H.P. The end ' D ' of the. Line is 25 mm above the H.P. Also determine the traces of the line.
Ans

$$
\begin{aligned}
p^{\prime} q^{\prime} & =60 \mathrm{~mm} \\
p \rightarrow & 25 \mathrm{~mm} \uparrow H \cdot p \\
\theta & =30^{\circ}
\end{aligned}
$$

8. Draw the projections of a 60 mm long line $P Q$. which is situated in H.P and V.P both. Also determine the traces of the line.
Ans

$$
P Q=60 \mathrm{~mm} .
$$

9. A 70 mm langline $P Q$ has its end ' P ' is 20 mm above $H \cdot P$ and 30 mm infront of $V . P$ - The line is inclined at 45^{\prime} Lotta and 30° to V.P. Draw its projections.
An:-

104 A straight Line ' $P Q$ ' as its end ' P ' is 20 mm above $H \cdot P$ and 30 mm infront of V.P and The end ' Q ' is sum above H.P and 70 mm infront of $r-P$. It the end projectors are 60 mm a part draw the projections of the line determine the truelength (7.L) and True inclinations with refeunce planed.

1. A 90 mm lang line is parallel to and 25 mm infront of V.P. Its one end is in the H-P while the other is 50 mm above the H.P. Draw its Projections and finds its inclination with the H-P.
Ans.- $A B=90 \mathrm{~mm}$ (TIL).

2. The top view of 75 mm long line measures 55 mm . The line in the w. . Its one end is being 25 mm above H.p. Draw its projections.
Am

$$
\begin{aligned}
& P Q=70 \mathrm{~mm}(T . L) \\
& T . V=55 \mathrm{~mm} \\
& P 5 \mathrm{~mm} \uparrow+1 . P .
\end{aligned}
$$

3. The frontriew of alongline Inclined at $30^{\circ} 10 \mathrm{v} . \mathrm{P}$ is 65 mm long. Draw the projections of the line when it is parallel to and 40 mm above the $t-p$. its one end being 30 mm infront of $V-P$.

Ans

$$
\begin{gathered}
A \rightarrow 40 \mathrm{~mm} \text { AH-P } \\
30 \mathrm{~mm} \rightarrow V \cdot P \\
\phi=30^{\circ} \\
A B=60 \mathrm{~mm}
\end{gathered}
$$

5. Two pegs fixed on awol are 415 m a part The distance blu the pegs measured Parallel to the floor is 3.6 m tone peg. is 1.5 m above the floor, find the height of second Peg and the inclination of the line. joining the loo pegs with the floor,
Ans: Distance blu the two pegs $=3.6 \mathrm{~m}=\tau . \mathrm{V}$.
with respect to floor
Scale In $=2 \mathrm{~cm}$ Ac heal distance the

$$
\text { them }=4.5 \mathrm{~m}
$$

4. A vertical line $A B$, 75 mm lang has its end A in the $H-P$ and 25 mm infont of $V-P$. Aline $A C, 100 \mathrm{~mm}$ Long is in the H-P and. Parallel to the V.P. Draw the projections of the line Joining B ' and ' \bar{C} ', determine inclination with the $H-p$ $A B \rightarrow$ Vertical line.
$A \rightarrow$ in the $H-P$
$25 \mathrm{~mm} \rightarrow V-\mathrm{P}$
$A C \rightarrow 100 \mathrm{~mm} \rightarrow$ in the H.P Hel lov-P.
13 C length $=$?

1. A line CD rom long is Inclined at 45° to H.P and $30^{\circ} \mathrm{LOV} \cdot \mathrm{P}$ its on ' C ' is in the $H-P$ and rom infront of V-P. Draw the projections-Lolate Traces.
An:

$$
\begin{aligned}
C D & =T \cdot L=80 \mathrm{~mm} \\
\theta & =45^{\circ} \\
\phi & =30^{\circ}
\end{aligned}
$$

on the HP and nom \rightarrow V.P

$$
\begin{aligned}
& c^{\prime} d^{\prime}=F \cdot V, c d=t \cdot V \\
& c^{\prime} d_{1}^{\prime}=\tau \cdot L=c d_{2} .
\end{aligned}
$$

2. A 100 mm long line $P Q$ is inclined at 30° to H-P and $45^{\circ} 10$ $V-P$ its midpoint is 35 mm above $H-1$ and 50 mm infront of $V \cdot P$. Draw its projections Locate traces.
An

$$
\begin{gathered}
P Q=T \cdot L=100 \mathrm{~mm} \\
\theta=30^{\circ} \\
\phi=45^{\circ}
\end{gathered}
$$

$35 \mathrm{~mm} \uparrow H-p$ and $50 \mathrm{~mm}+\gamma v-p$

$$
p q^{\prime}=f \cdot V \quad \& \quad p q=T \cdot V \text {. }
$$

3. Draw the projections and find out true length of a line $A B$ with end B^{\prime}. on the $H \cdot P$ and 40 mm in front of $V-P, A B$ is Inclined at 30° to H-P and 45° to V-P and its Plonview. measures 50 mm . Locate Tracer.

$$
T-L=?
$$

$$
B \rightarrow \text { in the } H \cdot P
$$

$$
40 \mathrm{~mm} \rightarrow v-p
$$

$$
\theta=30^{\circ} \& \phi=45^{\circ}
$$

$T \cdot V=50 \mathrm{~mm}$
$a^{\prime} b_{1}^{\prime}=\pi \cdot L=a b_{L}$
$a^{\prime} b=F \cdot v, a b=T \cdot V$
$a^{\prime} b^{\prime}=a^{\prime} b_{2}^{\prime}$ \qquad
4. The topricu of a 80 mm langline $P Q$ measures 05 mm while the length of its frontricu is 55 mm its are end \ddot{A}. is in the $H-P$ and 12 mm in front of V-P. Draw the projections of A, B and determine its Inclination with the H.P and V-P Locate Traces.
th: $T \cdot V=65 \mathrm{~mm}$

$$
\begin{aligned}
& F_{\cdot V}=55 \mathrm{~mm} \\
& T \cdot L=80 \mathrm{~mm}
\end{aligned}
$$

$A \rightarrow$ in the $H-P$ \& $12 \mathrm{~mm} \rightarrow V-P$

$$
\begin{aligned}
& p l q_{1}^{\prime}=T-L=p q_{2} \\
& p l q^{\prime}=F-V, p q=T \cdot V \\
& p l q^{\prime}=p l q_{2}^{\prime}
\end{aligned}
$$

5.

A line $A B 90 \mathrm{~mm}$ lang is inclined at 45° to H-P and its topriew males an angle of 60° with the viP - The end ' A ' is in the H.P and 12 mm in front of $V \cdot P$ Drowits f. V and find its true. Inclination with $v-p$-also Locate Traces.
An:

$$
\begin{aligned}
A B & =90 \mathrm{~mm}=T \cdot L \\
\theta & =45^{\circ} \quad \phi=? \\
\beta & =60^{\circ} \quad
\end{aligned}
$$

$A \rightarrow O n$ the $H \cdot P$ and $12 \mathrm{~mm} \rightarrow V \cdot P$

$$
a^{\prime} b^{\prime}=F \cdot V \quad \& a b=T \cdot V
$$

6. A 80 mm lang line $P Q$ as its end ' P ' 10 mm above $H .1$ and 25 mm intort $V . P$ the line inclined at $30^{\circ} 10 \mathrm{H}, \mathrm{P}$ and 60° to V.P. Brawits projections.
this:-

$$
\begin{aligned}
& P Q=80 \mathrm{~mm} \\
& P \rightarrow 10 \mathrm{~mm} \uparrow \mathrm{H} \cdot \mathrm{P} \\
& \quad 25 \mathrm{~mm} \rightarrow V \cdot P \\
& \theta=30^{\circ}, \phi=60^{\circ}
\end{aligned}
$$

8. The frontricw of line $A B^{\prime}$ makes an angle of 30° with $x y$ line. The HTT of the line is 45 mm intort of $V \cdot 10$, while its $V . T$ is 30 mm below the $H \cdot P$ the end A is 12 mm above the $t . P$ and end ' B^{\prime} ' is 105 mm infront of V.P. Prow the Projections of line and find it tree length inclination with $H-p$ and $v \cdot p$.
Ans:

$$
\begin{aligned}
& a^{\prime} b^{\prime}=30^{\circ} \text { with } x y \\
& H \cdot T=45 \mathrm{~mm} \rightarrow \text { of } V \cdot p \\
& V-T=30 \mathrm{~mm} \downarrow H \cdot P \\
& A \rightarrow 12 \mathrm{~mm} \uparrow H \cdot P .
\end{aligned}
$$

and 40 mm in front of the V.P. The other end Q is 60 mm above the H.P and 10 mm in front of the V.P. Draw the projections of $P Q$ and determine its inclinations with the reference planes.

$$
0-T 24
$$

$P Q=70 \mathrm{~mm}$ line
End P is 40 mm qnfoont of Y.P
and 20 mm above H.P
end q is 60 mm above, the H.P and 10 mm infront of Y.P

1. On a projector, mark point ' p ' 20 mm above $x y$ and p 40 mm below $x y$.
2. Draw a line $a b$ parallel to and 60 mm above $x y$ as the locus of q^{\prime}.
3. Draw another line cd parallel to and 10 mm below $x y$ as locus of a.
4. Draw an arc with centre P^{\prime} and radius 70 mm to mot ab at point q_{1}^{\prime}. join $p^{\prime} q_{1}^{\prime}$ to represent true inclination of line with the $H \cdot P$. Here $\theta=35^{\circ}$.
5. Draw an arc with centre p and radius 70 mm to meet $c d$ at point q_{2}. Join $p q_{2}$ to represent trove inclination of line with the V.P. Here $\phi=25^{\circ}$.
6. Project q_{1} to meet horizontal line from point p at point q_{1}. Draw an are with centre p and radius $p q$, to meet $c d$ at point q. Join $p q$ to represent the top view.
7. Project q_{2} to meet honzontal line from point, p^{\prime} at point q_{2}^{\prime}. Draw an arc with centre p^{\prime} and radius $p^{\prime} q_{2}^{\prime}$ to meet ab at point q^{\prime}. Join $p^{\prime} q^{\prime}$ to represent the front view.
8. Join $q^{\prime} q$ and ensure that it is perpendicular to $x y$, representing projector of the end Q.

The front and top views of 75 mm long line $P Q$ measures 50 mm and 60 mm , respectively. If the end P of the line is 35 mm above the H.P and 15 in front of the V.P. draw its projections and locate the traces Determine the true inclinations of the line $P Q$ with the H.P and the V.P.
his
$P Q$ is ${ }^{2 \pi} 75 \mathrm{~mm}$ " long front view measures
Top view measures End P is 35 mm above H.P End P is 15 mm in front of $V \cdot P$

1. Draw reference line, mark $P^{\prime} 35 \mathrm{~mm}$ above and 15 mm below it is P.
2. Draw a 50 mm long line $p^{\prime} q_{2}^{\prime}$ parallel to $x y$. Draw another 60 mm long line $p q$, parallel to wy.
3. Draw an are with centre p^{\prime} and radius 75 mm to meet projector of q_{1} at point q_{i} Join $p^{\prime} q_{1}^{\prime}$ to represent true inclination of line with the H.P. Here $\theta=37^{\circ}$.
4. Repeat above step same with V.P. Here $\phi=48^{\circ}$.
5. Draw an arc with centre P^{\prime} and radius $P^{\prime} q_{2}^{\prime}(50 \mathrm{~mm}$) to meet horizontal line from point q_{i}^{\prime} at point q^{\prime}. Join $p^{\prime} q^{\prime}$ to represent the front view.
6. Repeat above with centre p and radius 60 mm . Join $p q$ it is top view.
7. Join $g^{\prime} q$ and ensure that it is perpendicular to $x y$, representing projector of end Q.
8. Produce $p^{\prime} q^{\prime}$ to meet $x y$ at a point h^{\prime}. Draw vertical projector through point h^{\prime} to moet the $p q$ produced at point h. The point h represents the H.T. Here h is 28 mm above $x y$.
9. Produce eq to meet $x y$ at a point v. Draw a vertical projector through point v to meet $p^{\prime} q^{\prime}$, produced at point v^{\prime}. Point u^{\prime} represents the $V \cdot T$. Here, point v^{\prime} is 23 mm above $x y$.

Its mid-point is 35 above the H.P and 50 mm in Pront of V.p Drow its projects.
$P_{Q}=100 \mathrm{~mm}$ line
M is midpoint
M is 35 above H.P
and 50 infront of V.P
line inclined 30° to H.P
45° to V.P

1. Draw a reference line by. On a vertical projector mark point m^{\prime} 35 mm above ky and point $m 50 \mathrm{~mm}$ below $x y$.
2. Draw a 50 mm long line $m^{\prime} q^{\prime}$, inclined at 30° to $x y$. Produce it such that $p_{i}^{\prime} q_{1}^{\prime}=100 \mathrm{~mm}$.
3. Draw another 50 mm line mal_{2} inclined at 45° to gey. Produce it such that $P_{2} q_{2}=100 \mathrm{~mm}$.
4. Project points P_{1}^{\prime} and Q_{1}^{\prime} to meet horizontal line through point m at points P_{1} and q_{1} respectively. Draw an arc with centre m and radios $m p$, or $m a$, to moet the horizontal lines from points P_{2} and q_{2} at points p and q. Tospectively. Join $p m q$ to represent the top view.
5- Project remaining to represent front view ($p^{\prime} m^{\prime} q^{\prime}$)
5. Join p / p and $q^{\prime} q$ to ensure that they represent projector of the ends P and Q respectively.
P_{Q} is 70 mm long line
line "inclined at' 45° to the iv.P. End P is on HiP

6. Draw the reference line $x i y$. mark p^{\prime} an $x y$ and $p 15 \mathrm{~mm}$ below $x y$.
7. Draw a 70 mm long line P_{2} inclined at, $\phi=45^{\circ}$ to $2 y$.
8. Draw an are with centre P and radius 60 mm to meet the horizontal line through point q_{2} at point q. Join $p q$ to represent top view.
9. Draw an are with centre p and radous $p q$ to meet the horizontal line from point p at point q_{1}. Draw another are with p^{\prime} and radius 10 mm to meet projector of q_{1} at q_{1}^{\prime}. Join $p^{\prime} q_{i}^{\prime}$ to represent the tree inclination of line with $1+P$. Here $\theta=31^{\circ}$.
10. Draw a vertical line from point q_{2} to meet horizontal line from p^{\prime} at q_{2}^{\prime}. Draw an arc with centre p^{\prime} and radius $P^{\prime} q_{2}$ 'to meet horizontal line from point q_{i} at q^{\prime} - Join Plat to represent the front view.
11. Join $q^{\prime} q$ and ensure that it is perpendicular to $x y$, representing projector of end Q.
rrojeclions ut Line where $0+\psi=40$

12. Draw a reference tine $x y$. Mark $p^{\prime} 10 \mathrm{~mm}$ above $x y$ and P sm below
13. Draw an 80 mm long line $p^{\prime} q_{1}^{\prime}$ inclined at 30° to $x y$.
14. Draw another 80 mm long line $p q_{2}$ inclined at 60° to $x y$.
15. Project q : to meet horizontal line from q at q. Draw an are with centre p and radius $p q$, to meet horizontal line from q_{2} at. 9 . Foin $P q$ to represent to P view.
16. Project q_{2} to meet horizontal line from p^{\prime} at point q_{2}^{\prime}. Draw an arc with centre p and radius $p q_{2}^{\prime}$ to meet horizontal line from q_{1}^{\prime} at q^{\prime}. Join $p^{\prime} q^{\prime}$ to present the front view.
17. Join 9 ' 9 and ensure that it this perpendicular to $x y$.
18. It mays be noted that when $\theta+\phi=90^{\circ}$, both frond and top views are perpendicular to $x y$. In other words, apparent inclinations of line with H.P and V.P are $90^{\circ}, 1.0, \alpha=\beta=90^{\circ}$.

Line inclined to both reference planes where $\theta+\phi<90^{\circ}$.

Line $P Q=70 \mathrm{~mm}$

$$
\begin{aligned}
& \theta=45^{\circ} \\
& \phi=30^{\circ}
\end{aligned}
$$

P end 20 mm above the H.P and 30 mm ifront of V.P.

1. mark 0 and 0 , an line such that they 60 mm apart
2. On vortical projector through 0 , mark $P^{\prime} .20 \mathrm{~mm}$ above $l y$ and $p 30$ blow $x y$.
3. On the vertical projector through 0, mark $q^{\prime} 80 \mathrm{~mm}$ above $x y$ and $q 70 \mathrm{~mm}$ below $x y$.
4. Join plqi and $p q$ to represent front and top view of line. respectively. Find the IL and (θ) of line with H.P
5. Draw an arc with centre p and radus $p q$ to meet horizontal line from p at q_{1}.
6. Project a, to meet horizontal line $a b$ through q^{\prime} at q_{1}^{\prime}
z. Tom $p^{\prime} q_{1}^{\prime}$. The length $p^{\prime} q_{i}$ represents the twi length of $P P$. The inclination of pa with $x y$ represents trove inclination of PQ with $H P$ Hare, $T L=94 \mathrm{~mm}$ and $\theta=40^{\circ}$.
find $x L$ and θ of line with vip.
7. Draw an are with centre p^{\prime} and radius $p^{\prime} q^{\prime}$ to meet the horizontal line from p^{\prime} at $q_{2}{ }^{\prime}$.
a. Project q_{2} ' to meet horizontal line ed though point a at q_{2}.
8. Join $P q_{2}$. The length $P q_{2}$ represents the true length of $P Q$ The inclination of $P q_{2}$ with $x y$ represents. True inclination of $D Q$ with V.P. Here, $\phi=25^{\circ}$. Ensure that the length $p q_{2}$ is equal to length $p^{\prime} q_{1}^{\prime}$

Traces of line $\theta+\phi<90^{\circ}$

1. Draw a reference line xu. Mark 0 and 0 , on $x y$ such that they are 60 mm apart.
2. On vertical projector through 0 , mark p^{\prime} and p as the front and top views of p.
3. similarly, on vertical projector through 0 ., marie q^{\prime} and 9 as the front and the top viols of 2 .
4. Join ${ }^{\prime} q^{\prime}$ and $P q$ to represent the front and top views of the line $P Q$.
5. Produce the front view $p l a^{\prime}$ to meet wy at h^{r}. Dow a vortical projector through h^{\prime} to moet top view $p q$, produced If required, at point V. The point h represents the H.T
6. Produce the top view PG to meet $x y$ at a point v. Draw a vertical projector through point v to meet the front view $p^{\prime} q^{\prime}$., produced if necessary, at point v^{\prime}. The v^{\prime} represents the V.T.
7. Measure the distance of h and V^{\prime} from $x y$.

Projections of Planes:

Plane figures or surfaces have only two dimensions, viz. length and breadth. They do not have thickness. A plane figure may be assumed to be contained by a plane, and its projections can be drawn, if the position of that plane with respect to the principal planes of projection is known.

1. A triangular plane is in the form of Isosceles triangle of 30 mm side base and 40 mm long altitude. It is kept in the tint quadeant such that the suetace is ter to both H.P and $V . P$. Draw its projections when the base is pacellel to $v \cdot p$.
So!' Base $=30 \mathrm{~mm}$
altitude $=40 \mathrm{~mm}$.

(2) A square plane $A, B, C, D 30 \mathrm{~mm}$ side as its surface parallel 10 $H \cdot P$ and 20 mm away from it. Draw its projections of the plane when two of its sides ace
(i) Parallel tovip
(ii) Inclined at 30° to v.p
(lii) all sides are equally Inclined to V.P

Sol: side $=30 \mathrm{~mm}$
2 mm away from it of 30°
and $\phi=45^{\circ}$

3. A hexagonal plane of 25 mm side as its suctace leet to and 20 mm infront of $V \cdot P$. Draw the projections. of the plane when a side (i) Parallel to H.P (ii) Der to H.P 'iii) Inclined $\theta=45^{\prime \prime}$
Sol: side $=25 \mathrm{~mm}$

4. A hexagonal plane of 25 mm side as one sidle on the ground. The surface of the Plane is Inclined at 45° to $\mathrm{H} \cdot \mathrm{P}$ and ter to V.P . Draw it Projections

Sol $\theta=45^{\circ}$
one of the side on the ground side $=25 \mathrm{~mm}$.
5. A hexagonal plate of 30 mm side resting an one of its cones on the H.P. The plate is ter to V.P and inclined at u5" to H.P. Draw side $=30 \mathrm{~mm}$
one of the corner on the H.P $\theta=45^{-1}$
Hexagonal.
$Q:$
Draw the projections of a circle of 40 mm diameter resting on the $H-P$ on a point on the circumference, its Plane is inclined at 30° to H.P and ter to V.P. its center is 35 mm intront of V.P.
diameter $d=40 \mathrm{~mm}$
canter 35 mm infinntrip

$$
\theta=30^{\circ}
$$

Q:- Ateragenal Plate of 25 mm side and negligible thickener have ore of its edges in the V.P. The surface of the plate is ter to H.P end Inclined at us' V.P. Draw its projections.

Henegonal
$\phi=45^{\circ}$

Q: The top view of a lamina whose suetace is ter tor P and anclined at 45° is H.P. appears as aregular heregen of 3 cmm side, Hong a side parallel to the eeteenceline. Draw the projections of the plane and obtain its tire shape.
Hekogon

Q: A semi-circular Plate of 80 mm diameter hasits straight edge on the $V . \mathrm{P}$ and Inclined at 30° to H.P. While the suetace of the Plate is Inclined at us' to V.P. Draw the projections of the plate.

Qi f Acircular plane of sim diameter base ane of the ends of the diameter in the H.P. while the other end in the V.P. The Plane is anctined 30° to the H.P and out tor.P orawits projections.

Q: Draw the projections of a circle of 50 mm diameter resting in the $H \cdot p$ an a point 'A' on the circumference its P 'lone is inclined at 45° to HP and. a) The lop-view of the diameter AG making 30° angle with the vip b) The diameter A'Gimating $30^{\circ} \mathrm{an}$ 保 with the $v \cdot p$

Q: An elevation of a rectangular Lamina $A B C D$ at 25 mm y sim sides of is a sauce of 25 mm when its side $A B$ is in the V.P and the side A'D' is making con angle of 30° to the $H \cdot p$
Rectangular $A B C D$ Side $=25 \times 50 \mathrm{~mm}$
square $=25 \mathrm{~mm}$
$\theta=20^{\circ}$

Q: A circular plate of negligible thictenees and 50 mm diameter appears as an ellipse in the frontriew, having major axis 50 mm and minus axis 3 mm long. Draw its Top view when the major axis of the ellipse is horizontal.

Auxiliary plane method

A heaaganal plane side 3 cmm has an edge on H.P. The suetace is Inclined at U5'10 H.P and ter to V.P. Draw its Projections.
Hereganal plane.

side $=3 \mathrm{cmm}$
 $\theta=45^{\circ}$

A hexagonal Plane of side 3 mm has on edge on the H.P. It suetace is Inclined at 45° to H.P and the edge on which the Plane rest is Inclined at 30 to vip. Draw its projections. terogonal ilene.
Side $=3 \mathrm{cmm}$.
$\phi=30, \theta=45^{\circ}$

A hexagonal plane of side 30 mm has a corner in the v.P. The suetace of the Plane is inclined at $45^{\circ} \%$ V.P and ter to H.P. Draw its projections.
Hexagonal Plane
side $=3 \mathrm{cmm}$
$\phi=45^{\circ}$

F. V
4. A heraganal plane of side 3 cmm has acoiner in the $v . p$. The sueface of the plane is inclined at 45° to vP and ter to $H \cdot P$. The $F \cdot V$ of the diagonal paving through that ceres is inclined at G0' to H.P. Draw its Projections.
Heregand plane

UNIT-II

Content

Projections of Regular Solids - Auxiliary Views Sections or Sectional views of Right Regular Solids - Prism, Cylinder, Pyramid, Cone - Auxiliary views - Sections of Sphere

Unit-III

Projections of Solids:

A solid has three dimensions, viz. length, breadth and thickness. Torepresent a solid on a flat surface having only length and breadth, at least two orthographic views are necessary. Sometimes, additional views projected on auxiliary planes become necessary to make the description of a solid complete.

This chapter deals with the following topics:

1. Types of solids.
2. Projections of solids in simple positions.
(a) Axis perpendicular to the H.P.
(b) Axis perpendicular to the V.P.
(c) Axis parallel to both the H.P. and the V.P.
3. Projections of solids with axes inclined to one of the reference planes and parallel to the other.
(a) Axis inclined to the V.P. and parallel to the H.P.
(b) Axis inclined to the H.P. and parallel to the V.P.
4. Projections of solids with axes inclined to both the H.P. and the V.P.
5. Projections of spheres.

A square pyramid side of base 40 mm and axis 60 mm is resting on its base क the H-P Draw its Projections when
a) Aside of the base is parallel to v.p
b) Aside of the base is Inclined at 30° to rep
c) All sides of the base are equally inclined tov-p.
square Pyramid

2. Asquare prism of 40 mm above edges and 6 omm lang axis is resting on its base on the ground. Draw its Projections when
a) A face is perpendicular to v.p
b) Aface is Inclined at $30^{\circ} \mathrm{lov} \mathrm{r} . \mathrm{p}$
c) All the faces ale equally inclined.

An: square prism.
Base $=40 \mathrm{~mm}$
Axis $=60 \mathrm{~mm}$
$d=30^{\circ}$

3. A Pentagonal prism of 30 mm base edges and 60 mm hong avis has one of its bases in the v.p. Draw its Projections when
a) A rectangular face is parallel 10 and 15 mm above $H \cdot p$
b) A face is ter to H.P
c) Aface is Inclined at 45° to H.P.

Sol:- pentagonal prism.

* Pentagonal Prism Inclined to H.P

* Pentagmal Prism Suclined to V.P

* Peutagonal Prism Axis cucliked rom ins pare V寝H.P

* Pentagonal Pyramid Anis inelined both the Plave H.\& E. V.P

2. Atriongular prism of base 3 cmm and axis 55 mm lang lies an its rectangular face in H.P. with its ane's Parallel to V.P. Draw the three views of the prism.
Triangular prism

Q:- A Hexagonal Pyramid with sam base edge and form Long axis as a triangular tace on the ground and the avis parallel to the v.p. brow its projections
Hexagonal Pyramid

$$
\begin{aligned}
\text { Base } & =30 \mathrm{~mm} \\
\text { Ax's } & =70 \mathrm{~mm} .
\end{aligned}
$$

Q: Draw the projections of cylinder of yam diameter and Game lang avis. when it is lying on the H.P. With avis Inclined at U5' to H.P and parallel 10 rip
cylinder
diameter $(\phi)=4 \mathrm{cmm}$
AX's $=6 \mathrm{cmm}$
$\theta=45^{\circ}$ / wet to vp

a: A right circular cone with 50 mm diameter base and 65 mm lang axis rest on its base rim on the H.P. with its axis Parallel to V.P and one of the generator ter to H.P. Draw the Projections of the cone. cone
diameter $=\$ 50 \mathrm{~mm}$ Axis $=65 \mathrm{~mm}$.

* ConeAnstuclined the bothe plane V.P \& H.P

Q: A pentagonal Pyramid base side 30 mm and axis 55 mm long, has a miongular face in the vip and amis poeallel to HP . Draw its projections Pentagonal Pyramid

$$
\begin{aligned}
& \text { HBase }=3 \mathrm{cmro} \\
& \text { Axis }=55 \mathrm{~mm}
\end{aligned}
$$

Q: A tetrahedron of fromm lang edge on the ground and the faces containing that edge aec equally inclined to the H.P. Draw its projection when the edge lying an the ground ter tovip
Te frahedeon

$$
\begin{aligned}
& \text { side }=\text { som } \\
& \text { Long edge on Hep } \\
& \theta=y .55^{\circ}
\end{aligned}
$$

Q: A square Prism 25 mm edge base and 45 mm lang avis has its ares Inclined at us to HP and edge of its base an which the prism rest is inclined at 30° to vip. Draw its projections
square prism
$B a r e=25 \mathrm{~mm}$
AxiS 24 smm
$\phi=30^{\circ}, \theta=45^{\circ}$

Q: A square pyramid of yam base side and 7 mmm long avis has a cere of its bate on the V.P. The slant edge contained by that cones is inclined at us to V.P. and the plane containing the slant edge and the axis is Inclined at 60° to $H P$ - Draw its proicetions

A Pentagonal Pyramid of 3 cmm bate side and 6 cmm long axis rest on an edge of its base on the ground so that the highest point on the trave is 20 mm afore the 9 round. Draw its Projections if the vertical Plane containing the axis is inclined at 30° to V.P

Pentagonal Pyramid

$B=30 \mathrm{~mm}$
$A=6 \mathrm{~cm}$
$d=30^{\circ}$

* cylinder Ruclined both the plave V.p \&H.P

* Cube Diagorel Parallel to the H.P. (Xuclived bothe A-P \&, V.P)

A teragonal Pyromid of bare side samm and amis 6 cmm hax one of it slont edger on the H.P and znclined at 20° to the v.p. Drow its proicctions when the bare is niuble.

$$
B=3 \mathrm{cmm} \quad \text { Hexceqend Pyrarid. }
$$

Axii $=6 \mathrm{cmm}$

0

1. A Heacagonal Pyramid bax side 3 cmm and aus 6 cmm as a trionguley face on the ground and the axis paldlel to Vip. Braw it prosecutions

Pyramid
$B=3 \mathrm{cmm}$
$A=6 \mathrm{cmm}$

Sections of solids:

Invisible features of an object are shown by dotted lines in their projected views. But when such features are too many, these lines make the views more complicated and difficult to interpret. In such cases, it is customary to imagine the object as being cut through or sectioned by planes. The part of the object between the cutting plane and the observer is assumed to be removed and the view is then shown in section.

The imaginary plane is called a section plane or a cutting plane. The surface produced by cutting the object by the section plane is called the section. It is indicated by thin section lines uniformly spaced and inclined at 45°.

The projection of the section along with the remaining portion of the object is called a sectional view. Sometimes, only the word section is also used to denote a sectional view.
Section planes: Section planes are generally perpendicular planes. They may be perpendicular to one of thereference planes and either perpendicular, parallel or inclined to the other plane. They are usually described by their traces. It is important to remember that the projection of a section plane, on the plane to which it is perpendicular, is a straight line. This line will be parallel, perpendicular or inclined to xy , depending upon the section plane being parallel, per-pendicular or inclined respectively to the other reference plane.
Sections: The projection of the section on the reference plane to which the section plane is perpendicular, will be a straight line coinciding with the trace of the section plane on it. Its projection on the other plane to which it is inclined is called apparent section. This is obtained by
(i) Projecting on the other plane, the points at which the trace of the section plane intersects the edges of the solid and
(ii) Drawing lines joining these points in roper sequence.

True shape of a section: The projection of the section on a planeparallelto the section plane will show the true shape of the section. Thus, when the sectionplane is parallel to the H.P. or the ground, the true shape of the section will beseen in sectional top view. When it is parallel to the V.P., the true shape will bevisible in the sectional front view.But when the section plane is inclined, the section has to be projected on anauxiliary plane parallel to the section plane, to obtain its true shape. When thesection plane is perpendicular to both the reference planes, the sectional side viewwill show the true shape of the section.

Section of solids.

1. Aheragonal Pyramid of 3 cmm base side and 6 cmm Long axis rest with its base on H.P and one of the edges of the base is leet to V.P. It is cut by a horizontal section ilene at a distance of 3 cmm abare the bale. Draw the Eva and sectional TiV Hexagonal pyramid.

$$
\begin{aligned}
& B=3 \mathrm{cmm} \\
& A=6 \mathrm{cmm}
\end{aligned}
$$

A cube of 3 cmm lang edges is resting on the H.P on one of its faces with a vertical face Inclined at 30° to the vip. It is wet by a sectional plane parallel to the Vip and lam away from the axis and fresher away from the $V . p$. Draw the sectional front view and top-vew of the cube.
cube

$$
\begin{aligned}
& \text { bale }=3 \mathrm{cmm} \\
& \phi=30^{\circ}
\end{aligned}
$$

3. A triangular prism of 3 cmm base side and 50 mm long axis is lying on the H.P on one of its rectenquelar faces, with its are's Inclined at 30° to v.P. It is cut by a trorizontal section plane at a distance of 12 mm obore the ground. Dr aw its f vend. sectional Tu view.

Triangular prim

$$
\begin{aligned}
& \text { Base }=3 \mathrm{cmm} \\
& \text { Axis }=50 \mathrm{~mm} \\
& d=30^{\circ}
\end{aligned}
$$

Horizontal sectional plene $=12 \mathrm{mp} 9$ round.

Q: A teragonal prism of 20 mm base and Gam height is resting on one of its coins on the ground. with the base making 60° with the 9 round. The axis is Pcuallet to V.P. A sectional plane parallel to H.P and ter to v.P uts the objects such that it is 15 mm from the base as meaveed along the avis. Braw its sectional view from the above and the view from the front.
Heraganal Prism
$\theta=G 0^{\circ}$
Height $=6 \mathrm{cmm}$
BAse $=2 \mathrm{cmm}$
H.O.S.P $=15 \mathrm{~mm}$

5. A right circular cone of the 45 mm base diameter and 5 smm axis lang is lying on the ane of its generator on the tip. It is wet by a baritontal sectional plane paving through the midpoint of a is. Draw the projections of the cone and its true section.
cone
$d=45 \mathrm{~mm}$
exp's $=55 \mathrm{~mm}$
H.U.S.P palling through mid point

Qi- A square pyrarnid base side 4 omm and axis 6 cmm is resting on the base on the H.P with a side of base llel to V.P. Draw its sectional view and the sphere of the section, if it is cut by a Sectional ploneter to v.P, bisecting the avis
a) lies to H.P
b) inclined at $45^{\circ} 10$ HP
c) Inclined at 60° to Hip
(a) Pacdiel to H.P squall Pyramid
Bate $=40 \mathrm{~mm}$
Axis $=6 \mathrm{cmm}$

2. A Pentagonal Pyrarrid bare side 3 cmm and axis 6 cmm is resting a it base on the H.P with an edge of its base pacaller to v.P. It is cut by a sectional ploneter to $v \cdot p$. Inclined at 60° to HAp and bisecting the axis. Draw its front view and sectional 7.V and True stope of the section.

Pentagonal Pyramid
Base $=3 \mathrm{cmm}$
Axis $=6 \mathrm{am}$
$\theta=60^{\circ}$

Alone of base dicurneter 50 mm and axis 6 cmm is rating on its bake on the H.P. at is cut by an A.I.P Inclined at 45° to $H-P$ and paving through a point on the avis, 2 cmm above the bax Draw its sectional T.V and obtain the True shape of the section.
diarnetce $\phi=50 \mathrm{~mm}$
Anis $=6 \mathrm{cmm}$

A square prim of bave side 4 cmm and akis 6 cmm rett an ith bak on the H.P. such that cre of the V-T inclined at 30° to V.P. A sectional Plane ter to V.P, enclined at 45° to $H-1$. Powing throush the awis at a point 2 cmm from its topend wh the Prism Drow in t.v sectional T.V and True share of the rection

A Hexagonal Prism of base side Sam and axis form is resting on atace on the H-p. with the avis le to the V-p it is cut by a phone whale $V \cdot T$. is Inclined at 30° to the refeunce line and power though a point on the axis 2 mm from one of its ends Draw its sectional Tu p view and obtain the mueshope of the section.

* Cylinder Sectional View-

12

UNIT-IV

Content
Development of Surfaces of Right Regular Solids

- Prism, Cylinder, Pyramid and Cone

Intersection of Solids: Intersection of - Prism vs Prism- Cylinder Vs Cylinder

Unit-IV

Development of Surfaces of Right Regular Solids:

Imagine that a solid is enclosed in a wrapper of thin material, such as paper. If this covering is opened out and laid on a flat plane, the flattened-out paper is the development of the solid. Thus, when surfaces of a solid are laid out on a plane, the figure obtained is called its development.

Intersection of Solids:

The intersecting surfaces may be two plane surfaces or two curved surfaces of solids. The lateral surface of every solid taken as a whole is a curved surface. This surface may be made of only curved surface as in case of cylinders, cones etc. or of plane surfaces as in case of prisms, pyramids etc. In the former case, the problem is said to be on the intersection of surfaces and in the latter case, it is commonly known as the problem on interpenetration of solids. It may, however, be noted that when two solids meet or join or interpenetrate, it is the curved surfaces of the two that intersect each other. The latter problem also is, therefore, on the intersection of surfaces.

1. A square Prism of base side 30 mm and axis 60 mm is resting on its base on the H.P. With a rectangular facellel to V.P derelape the suetace of the prism. Base $=30 \mathrm{~mm}$, square prism
Axis $=6 \mathrm{cmm}$.

a: A Pentagonal Prism base side 30 mm and axis 70 mm is resting an its base on the H.P. With rectangular face llel to the viP it is cut by a A.I.P. whose $V \cdot \tau$ is Inclined at 45° to the sefeeme line and passes through the midpoint of the axis. Drown the develop--mint of Lateral sueface of Truncated Prism.

2. A cylinder of Base diameter 50 mm and axis form is resting on the ground with its axis vertical. brow the development of Lateral suetace of cylinder.

Q:- The figure shows the fir of a truncated Hexagonal Prism of base Side 3 cmm and axis 90 mm . The Prism is resting on the H.P with the base side Parallel to v.p. Dervelape the Lateeal Suptace of the, Prism.

- notms porsto 4ito

Q:- Figure shows the For of a truncated cylinder of diameter 50 mm resting on its base on the H.P. Draw the development of its Lateral surfaces.

Q. A cone of base diameter 50 mm and axis 60 mm is retting on its base on the HP. Draw the development of its lateral sueface. Base diameter $\phi=50 \mathrm{~mm}$

Axis $=6 \mathrm{Bmm}$
$\theta=138^{\circ}$

A cone of base diameter 50 mm and axis 6 cmm is renting on its base on the H.P. a sectional Plane ter to V.P and Inclined at 45° to H.P bisecting the axis of the cone deaur the developement cone
base diameter $\phi=50 \mathrm{~mm}$
Axis 26 cmm

$$
\theta=138^{\circ}
$$

Q: A cone of base diameter sym end axis 6 cmm is resting an its base on the H.P - qsectional Plane ter to v.P and Inclined at 60° to H.P. bisecting the axis of the cone draw the development of Lateral suetace of cone
cone
base diameter $=\$ 50 \mathrm{~mm}$

$$
\text { Axis }=6 \mathrm{cmm}
$$

Q: The frustrem of the cone of base diameter 6 cmm TUP diameter 2 amm and height of the 50 mm is rating on the base typ. It is ut by. A.I.P and inclined at 30° to the H-P. The $\mathrm{H}-T$ of which is tangential to the base circle. Draw the development of the Latceal suetace of the retained frustum.
cone
bale diameter $(\phi)=6 \mathrm{cmm}$
Top diameter $(\phi)=20 \mathrm{~mm}$
height $=50 \mathrm{~mm}$

Q:- Draw the development of lateral siltace of square pyramid of base side 4 cmm and axis 6 mm is resting onits bate on the H-P. such that
a) all sides of the base are equally Inclined to the v.p
b) Aside of the base is parallel to v.p
(a) squall pyramid backside $=4 \mathrm{cmm}$
$A x i s=6 \mathrm{cmm}$ $\phi=145^{\circ}$
(b) Base is parallel tovip

Q. A Pentagonal Pyramid Base side 3 cmm and axis 6 cmm -res ton its bare on the H-P. with the side of the base is 161 to V.P. It is cut by two sectional Planes mut at a height of 2 cm from the bare ore of the sectional plane is horizontal while the other is an auxiliary inclined Plane. who U-T at U5 to $H \cdot P$. Draw the. development of Latuelsuetace of solid when Apex is removed.

on its bake on the H-P with the side of the base parallel to vip. It is cut by a planes ter to V.P. To obtain the frontricu as shaw in figures. Draw the development of Lateeal sultace of the retained solid.

4. INTERSECTION OF SOLIDS

1. Acylinder of base diameter 70 mm is resting wits base on the $H P$ It is penetrated by another cylinder of base diameter 6 cmm such that their avis intersect eachother at right angles. Draw the projections of the combination and show the curves of Pitusection.
Sol. Alum e both cylinder height $=100 \mathrm{~mm}$

A square prism base side 50 mm , is resting on its bake on the H.P. It is completely penetrated by another square prism of bare side 40 mm . such that the axis of both prisms pritesect eachothes at rightangles and faces of both prisms are equally Inclined to vip. Draw the projections of the combination and shaw the lines of intersection,

UNIT-V

Content

Isometric Projections: Principles of Isometric Projection - Isometric Scale - Isometric Views Conventions - Isometric Views of Lines, Plane Figures, Simple and Compound Solids - Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts.

Conversion of Isometric Views to Orthographic Views and Vice-versa -Conventions

Isometric Projections and isornetric views-

1) Draw on isometric view of asqueale prism, backside uam and axis Gam long recon on the H ip
a) on its bake with am's ter to the $H \cdot P$

c) ∞ its rectongular face with axis vel iv v.r

in v.p

* Isometric View (Hexagonal Prism)

Isometric view (Cylinder)

* Isometric view (Pentagonal Frustum)

Isometric drawing
How to draw an object containing rounded parts

ISOMETRIC PROJECTION

Isometric View

Draw the orthographic projections of Fig 1

- Identify surfaces perpendicular or inclined to the view
- Surfaces parallel to the view would not be visible in that view.
- First draw horizontal and vertical reference planes (easily identifiable on drawing)
- Start drawing from the reference planes.

Fig. 1

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT BY FIRST ANGLE PROJECTION METHOD

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD

* Orthographies Views (First Angle Projection)

* Orthographic Views (First- Angle Projection)

τL

