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UNIT -1

STRESS, STRAIN AND DEFORMATION OF SOLIDS

1.1 Rigid and deformable bodies

Rigid body motion theory is a fundamental and well-established part of physics. It is based
on the approximation that for stiff materials, any force applied to a body produces a
negligible deformation. Thus, the only change a force can produce is change in the center of
mass motion and change in the rotational motion. This means that simulation of even
complex bodies is relatively simple, and thus this method has become popular in the
computer simulation field.

Given the forces acting on the body, the motion can be determined using ?? ??for
translational motion, and a similar relation for rotational motion .

The rigid body motion model has traditionally been applied in range analysis in CAD and for
computer animation where deformation is not required. If the deformation is not negligible,
then the approximation does not hold, and we need to start over and come up with some
other model. There exists many different models, but the two models which have emerged to
become the most widely used in practice are: mass-spring models and statics models solved
using the Finite Element Method (FEM).

Mass-spring models represent bodies as discrete mass-elements, and the forces between them
are transmitted using explicit spring connections (“spring” is a historical term, and is not
limited to pure Hooke interactions). Given the forces acting on an element, we can determine
its motion using . The motion of the entire body is then implicitly described by the motion of
its elements.

Mass-spring models have traditionally been applied mostly for cloth simulation. Statics
models are based on equilibrium relations, and thus make the approximation that the effect of
dynamics are negligible. Relations between the strain and stress fields of a body are set up,
and through specifying known values of these fields, through for example specifying forces
acting on the body, the unknown parts can be determined. These relations form differential
equations, and the known values are boundary values. The FEM is an effective method for
solving boundary value problems, and has thus given its name to these types of problems.
Statics models have traditionally been applied in stress and displacement analysis systems in
CAD.
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1.2 General Concepts and Definitions
o Strength The ability to sustain load.
o Stiffness Push per move; the ratio of deformation to associated load level.

o Stability The ability of a structure to maintain position and geometry. Instability
involves collapse that is not initiated by material failure. External stability concerns
the ability of a structure's supports to keep the structure in place; internal stability
concerns a structure's ability to maintain its shape.

« Ductility The amount of inelastic deformation before failure, often expressed relative
to the amount of elastic deformation.

Strength Material strength is measured by a stress level at which there is a permanent and
significant change in the material's load carrying ability. For example, the yield stress, or the
ultimate stress.

Stiffness Material stiffness is most commonly expressed in terms of the modulus of
elasticity: the ratio of stress to strain in the linear elastic range of material behavior.

Stability As it is most commonly defined, the concept of stability applies to structural
elements and systems, but does not apply to materials, since instability is defined as a loss of
load carrying ability that is not initiated by material failure.

Ductility Material ductility can be measured by the amount of inelastic strain before failure
compared to the amount of elastic strain. It is commonly expressed as a ratio of the
maximum strain at failure divided by the yield strain.

1.3 Mechanical properties of materials

A tensile test is generally conducted on a standard specimen to obtain the relationship
between the stress and the strain which is an important characteristic of the material. In the
test, the uniaxial load is applied to the specimen and increased gradually. The corresponding
deformations are recorded throughout the loading. Stress-strain diagrams of materials vary
widely depending upon whether the material is ductile or brittle in nature. If the material
undergoes a large deformation before failure, it is referred to as ductile material or else
brittle material.Stress-strain diagram of a structural steel, which is a ductile material, is
given.

Initial part of the loading indicates a linear relationship between stress and strain, and the
deformation is completely recoverable in this region for both ductile and brittle materials.
This linear relationship, i.e., stress is directly proportional to strain, is popularly known as
Hooke's law.
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s=Ee
The co-efficient E is called the modulus of elasticity or Young's modulus.

Most of the engineering structures are designed to function within their linear elastic region
only.After the stress reaches a critical value, the deformation becomes irrecoverable. The
corresponding stress is called the yield stress or yield strength of the material beyond which
the material is said to start yielding.

In some of the ductile materials like low carbon steels, as the material reaches the yield
strength it starts yielding continuously even though there is no increment in external
load/stress. This flat curve in stress strain diagram is referred as perfectly plastic region.

The load required to yield the material beyond its yield strength increases appreciably and
this is referred to strain hardening of the material. In other ductile materials like aluminum
alloys, the strain hardening occurs immediately after the linear elastic region without
perfectly elastic region.

After the stress in the specimen reaches a maximum value, called ultimate strength, upon
further tretching, the diameter of the specimen starts decreasing fast due to local instability
and this p henomenon is called necking.

The load required for further elongation of the material in the necking region decreases with
decrease in diameter and the stress value at which the material fails is called the breaking
strength. In case of brittle materials like cast iron and concrete, the material experiences
smaller deformation before rupture and there is no necking.

1.4 True stress and true strain

In drawing the stress-strain diagram as shown in figure 1.13, the stress was calculated by
dividing the load P by the initial cross section of the specimen. But it is clear that as the
specimen elongates its diameter decreases and the decrease in cross section is apparent
during necking phase. Hence, the actual stress which is obtained by dividing the load by the
actual cross sectional area in the deformed specimen is different from that of the engineering
stress that is obtained using undeformed cross sectional area as in equation 1.1 Though the
difference between the true stress and the engineering stress is negligible for smaller loads,
the former is always higher than the latter for larger loads.

Similarly, if the initial length of the specimen is used to calculate the strain, it is called
engineering strain as obtained in equation 1.9

But some engineering applications like metal forming process involve large deformations
and they require actual or true strains that are obtained using the successive recorded lengths
to calculate the strain. True strain is also called as actual strain or natural strain and it plays
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1.5 TYPES OF STRESSES :

Only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other stresses
either are similar to these basic stresses or are a combination of these e.g. bending stress
is a combination tensile, compressive and shear stresses. Torsional stress, as encountered
in twisting of a shaft is a shearing stress.

Let us define the normal stresses and shear stresses in the following sections.

Normal stresses : We have defined stress as force per unit area. If the stresses are normal
to the areas concerned, then these are termed as normal stresses. The normal stresses are
generally denoted by a Greek letter (s)

This is also known as uniaxial state of stress, because the stresses acts only in one
direction however, such a state rarely exists, therefore we have biaxial and triaxial state
of stresses where either the two mutually perpendicular normal stresses acts or three
mutually perpendicular normal stresses acts as shown in the figures below :

Tensile or compressive stresses :

The normal stresses can be either tensile or compressive whether the stresses acts out of
the area or into the area

Bearing Stress : When one object presses against another, it is referred to a bearing
stress ( They are in fact the compressive stresses ).

Shear stresses :

Let us consider now the situation, where the cross — sectional area of a block of material
is subject to a distribution of forces which are parallel, rather than normal, to the area
concerned. Such forces are associated with a shearing of the material, and are referred to
as shear forces. The resulting force interistes are known as shear stresses.

The resulting force intensities are known as shear stresses, the mean shear stress being
equal to

Where P is the total force and A the area over which it acts.

Stress is defined as the force per unit area. Thus, the formula for calculating stress is:

s= FIA



Where s denotes stress, F is load and A is the cross sectional area. The most commonly
used units for stress are the Sl units, or Pascals (or N/m?), although other units like psi
(pounds per square inch) are sometimes used.

Forces may be applied in different directions such as:

. Tensile or stretching

. Compressive or squashing/crushing
. Shear or tearing/cutting
. Torsional or twisting

This gives rise to numerous corresponding types of stresses and hence measure/quoted
strengths. While data sheets often quote values for strength (e.g compressive strength),
these values are purely uniaxial, and it should be noted that in real life several different
stresses may be acting.

Tensile Strength
The tensile strength is defined as the maximum tensile load a body can withstand before

failure divided by its cross sectional area. This property is also sometimes referred to
Ultimate Tensile Stress or UTS.

Typically, ceramics perform poorly in tension, while metals are quite good. Fibres such
as glass, Kevlar and carbon fibre are often added polymeric materials in the direction of
the tensile force to reinforce or improve their tensile strength.

Compressive Strength
Compressive strength is defined as the maximum compressive load a body can bear prior

to failure, divided by its cross sectional area.

Ceramics typically have good tensile strengths and are used under compression e.g.
concrete.

Shear Strength
Shear strength is the maximum shear load a body can withstand before failure occurs

divided by its cross sectional area.

This property is relevant to adhesives and fasteners as well as in operations like the
guillotining of sheet metals.

Torsional Strength

Torsional strength is the maximum amount of torsional stress a body can withstand



before it fails, divided by its cross sectional area.
This property is relevant for components such as shafts.
Yield Strength

Yield strength is defined as the stress at which a material changes from elastic
deformation to plastic deformation. Once the this point, known as the yield point is
exceeded, the materials will no longer return to its original dimensions after the removal
of the stress.

Stress is defined as the force per unit area. Thus, the formula for calculating stress is:

Where s denotes stress, F is load and A is the cross sectional area. The most commonly
used units for stress are the Sl units, or Pascals (or N/m?), although other units like psi
(pounds per square inch) are sometimes used.

Forces may be applied in different directions such as:

. Tensile or stretching

. Compressive or squashing/crushing
. Shear or tearing/cutting

. Torsion or twisting

This gives rise to numerous corresponding types of stresses and hence measure/quoted
strengths. While data sheets often quote values for strength (e.g compressive strength),
these values are purely uni axial, and it should be noted that in real life several different
stresses may be acting

Deformation of simple bars under axial load Deformation of bodies

Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will
change in length. If the bar has an original length L and changes by an amount dL, the strain
produce is defined as follows:

Strain is thus, a measure of the deformation of the material and is a non dimensional
Quantity i.e. it has no units. It is simply a ratio of two quantities with the same unit.

Shear strain: As we know that the shear stresses acts along the surface. The action of the
stresses is to produce or being about the deformation in the body consider the distortion
produced b shear sheer stress on an element or rectangular block This shear strain or slide is
f and can be defined as the change in right angle. or The angle of deformation g is then
termed as the shear strain. Shear strain is measured in radians & hence is non — dimensional



I.e. it has no unit .So we have two types of strain i.e. normal stress & shear stresses.
Hook's Law :

A material is said to be elastic if it returns to its original, unloaded dimensions when load
IS removed.

Hook's law therefore states that Stress (s ) a strain( 1)

Modulus of elasticity : Within the elastic limits of materials i.e. within the limits in which
Hook's law applies, it has been shown that

Stress / strain = constant

This constant is given by the symbol E and is termed as the modulus of elasticity or Young's
modulus of elasticity Thus ,The value of Young's modulus E is generally assumed to be the
same in tension or compression and for most engineering material has high, numerical value
of the order of 200 GPa

Poisson’s ratio: If a bar is subjected to a longitudinal stress there will be a strain in this
direction equal to s/ E . There will also be a strain in all directions at right angles to s . The
final shape being shown by the dotted lines.

It has been observed that for an elastic materials, the lateral strain is proportional to the
longitudinal strain. The ratio of the lateral strain to longitudinal strain is known as the
poison's ratio

Poison's ratio ( m ) = - lateral strain / longitudinal strain

For most engineering materials the value of m his between 0.25 and 0.33.

Deformation of compound bars under axial load

For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can be
determined as Suppose the bar is loaded at one or more intermediate positions, then equation
(1) can be readily adapted to handle this situation, i.e. we can determine the axial force in
each part of the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each
part separately, finally, these changes in lengths can be added algebraically to obtain the
total charge in length of the entire bar.

When either the axial force or the cross — sectional area varies continuosly along the axis of
the bar, then equation (1) is no longer suitable. Instead, the elongation can be found by
considering a deferential element of a bar and then the equation (1) becomes i.e. the axial
force Pxand area of the cross — section Ax must be expressed as functions of x. If the
expressions for Pxand Ax are not too complicated, the integral can be evaluated analytically,
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otherwise Numerical methods or techniques can be used to evaluate these
integrals.

Relation between E, Gand u :

Let us establish a relation among the elastic constants E,G and u. Consider a cube of
material of side ,,a' subjected to the action of the shear and complementary shear stresses as
shown in the figure and producing the strained shape as shown in the figure below.

Assuming that the strains are small and the angle A C B may be taken as 450.
Therefore strain on the diagonal OA
= Change in length / original length

Since angle between OA and OB is very small hence OA @ OB therefore BC, is the change
in the length of the diagonal OA

Now this shear stress system is equivalent or can be replaced by a system of direct stresses
at 450 as shown below. One set will be compressive, the other tensile, and both will be
equal in value to the applied shear strain.

Thus, for the direct state of stress system which applies along the diagonals:

We have introduced a total of four elastic constants, i.e E, G, K and g. It turns out that not
all of these are independent of the others. Infact given any two of then, the other two can be
found.

irrespective of the stresses i.e, the material is incompressible.

When g = 0.5 Value of k is infinite, rather than a zero value of E and volumetric strain is
zero, or in other words, the material is incompressible.

Relation between E, Kand u :
Consider a cube subjected to three equal stresses s as shown in the figure below

The total strain in one direction or along one edge due to the application of hydrostatic
stress or volumetric stress s is given as

Relation between E, G and K :

The relationship between E, G and K can be easily determained by eliminating u from the
already derived relations



E=2G(l+u)andE=3K(1-u)

Thus, the following relationship may be obtained
Relation between E, Kand g :

From the already derived relations, E can be eliminated
Engineering Brief about the elastic constants :

We have introduced a total of four elastic constants i.e E, G, K and u. It may be seen that
not all of these are independent of the others. Infact given any two of them, the other two
can be determined. Further, it may be noted that

hence if u = 0.5, the value of K becomes infinite, rather than a zero value of E and the
volumetric strain is zero or in other words, the material becomes incompressible

Further, it may be noted that under condition of simple tension and simple shear, all real
materials tend to experience displacements in the directions of the applied forces and Under
hydrostatic loading they tend to increase in volume. In other words the value of the elastic
constants E, G and K cannot be negative

Therefore, the relations

E=2G(1+u)
E=3K(1l-u)
Yields

In actual practice no real material has value of Poisson's ratio negative . Thus, the value of u
cannot be greater than 0.5, if however u > 0.5 than Tv = -ve, which is physically unlikely
because when the material is stretched its volume would always increase.

Elastic constant - problems
1. The Young’s modulus and the Shear modulus of material are 120 GPa and 45 GPa
respectively. What is its Bulk modulus?

2. A 20 mm diameter bar was subjected to an axial pull of 40 KN and change in diameter
was found to be 0.003822 mm. Find the Poisson’s ratio, modulus of elasticity and Bulk
modulus if the shear modulus of material of the bar is 76.923 GPa.

3. A steel plate 300 mm long, 60 mm wide and 30 mm deep is acted upon by the forces
shown in Fig. Determine the change in volume Take E = 200 KN/mm? and Poisson’s ratio =
0.3.

4. A bar of 30 mm x 30 mm x 250 mm long was subjected to a pull of 90 KN in the direction
of its length. Then extension of the bar was found to be 0.125 mm, while the decrease in
each lateral dimension was found to be 0.00375 mm. Find the Young’s modulus, Poisson’s
ratio and rigidity modulus of the bar.



Unit 11

TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM
2.1 Beams- classification

Classification of Beams:

Beams are classified on the basis of their geometry and the manner in which they are
supported.

Classification 1: The classification based on the basis of geometry normally includes
features such as the shape of the X-section and whether the beam is straight or curved.

Classification 11: Beams are classified into several groups, depending primarily on the kind
of supports used. But it must be clearly understood why do we need supports. The supports
are required to provide constrainment to the movement of the beams or simply the supports
resists the movements either in particular direction or in rotational direction or both. As a
consequence of this, the reaction comes into picture whereas to resist rotational movements
the moment comes into picture. On the basis of the support, the beams may be classified as
follows:

Cantilever Beam: A beam which is supported on the fixed support is termed as a cantilever
beam: Now let us understand the meaning of a fixed support. Such a support is obtained by
building a beam into a brick wall, casting it into concrete or welding the end of the beam.
Such a support provides both the translational and rotational constrainment to the beam,
therefore the reaction as well as the moments appears, as shown in the figure below

Simply Supported Beam: The beams are said to be simply supported if their supports
creates only the translational constraints.

Some times the translational movement may be allowed in one direction with the help of
rollers and can be represented like this

Statically Determinate or Statically Indeterminate Beams:

The beams can also be categorized as statically determinate or else it can be referred as
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statically indeterminate. If all the external forces and moments acting on it can be
determined from the equilibrium conditions alone then. It would be referred as a statically
determinate beam, whereas in the statically indeterminate beams one has to consider
deformation i.e. deflections to solve the problem.

Supports and Loads
2.2 Types of beams: Supports and Loads

In many engineering structures members are required to resist forces that are applied
laterally or transversely to their axes. These type of members are termed as beam. There are
various ways to define the beams such as

Definition I: A beam is a laterally loaded member, whose cross-sectional dimensions are
small as compared to its length.

Definition I1: A beam is nothing simply a bar which is subjected to forces or couples that
lie in a plane containing the longitudnal axis of the bar. The forces are understood to act
perpendicular to the longitudnal axis of the bar.

Definition I11: A bar working under bending is generally termed as a beam.
2.3 Materials for Beam:

The beams may be made from several usable engineering materials such commonly among
them are as follows:

Metal

Wood

Concrete

Plastic

Issues Regarding Beam:

Designer would be interested to know the answers to following issues while dealing with
beams in practical engineering application

At what load will it fail

* How much deflection occurs under the application of loads.

Cantilever Beam: A beam which is supported on the fixed support is termed as a cantilever
beam: Now let us understand the meaning of a fixed support. Such a support is obtained by
building a beam into a brick wall, casting it into concrete or welding the end of the beam.
Such a support provides both the translational and rotational constrainment to the beam,



therefore the reaction as well as the moments appears, as shown in the figure below

Simply Supported Beam: The beams are said to be simply supported if their supports
creates only the translational constraints.

Some times the translational movement may be allowed in one direction with the help of
rollers and can be represented like this

Statically Determinate or Statically Indeterminate Beams:

The beams can also be categorized as statically determinate or else it can be referred as
statically indeterminate. If all the external forces and moments acting on it can be
determined from the equilibrium conditions alone then. It would be referred as a statically
determinate beam, whereas in the statically indeterminate beams one has to consider
deformation i.e. deflections to solve the problem.

Types of loads acting on beams:

A beam is normally horizontal where as the external loads acting on the beams is generally
in the vertical directions. In order to study the behaviors of beams under flexural loads. It
becomes pertinent that one must be familiar with the various types of loads acting on the
beams as well as their physical manifestations.

A. Concentrated Load: It is a kind of load which is considered to act at a point. By this we
mean that the length of beam over which the force acts is so small in comparison to its total
length that one can model the force as though applied at a point in two dimensional view of
beam. Here in this case, force or load may be made to act on a beam by a hanger or though
other means

B. Distributed Load: The distributed load is a kind of load which is made to spread over a
entire span of beam or over a particular portion of the beam in some specific manner

In the above figure, the rate of loading ,,q' is a function of x 1.e. span of the beam, hence this
is a non uniformly distributed load.

The rate of loading ,,q' over the length of the beam may be uniform over the entire span of
beam, then we cell this as a uniformly distributed load (U.D.L). The U.D.L may be
represented in either of the way on the beams

some times the load acting on the beams may be the uniformly varying as in the case of
dams or on inclind wall of a vessel containing liquid, then this may be represented on the

beam as below:

The U.D.L can be easily realized by making idealization of the ware house load, where the



bags of grains are placed over a beam.

2.3 Shear force and Bending Moment in beams
Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are
developed and the terms shear force and bending moments come into pictures which are
helpful to analyze the beams further. Let us define these terms

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2,
P3 and is simply supported at two points creating the reactions R1 and R2respectively. Now
let us assume that the beam is to divided into or imagined to be cut into two portions at a
section AA. Now let us assume that the resultant of loads and reactions to the left of AA is
,F' vertically upwards, and since the entire beam is to remain in equilibrium, thus the
resultant of forces to the right of AA must also be F, acting downwards. This forces ,,F' is as
a shear force. The shearing force at any x-section of a beam represents the tendency for the
portion of the beam to one side of the section to slide or shear laterally relative to the other
portion.

Therefore, now we are in a position to define the shear force ,,F' to as follows:

At any X-section of a beam, the shear force ,F' is the algebraic sum of all the lateral
components of the forces acting on either side of the x-section.

Sign Convention for Shear Force:

The usual sign conventions to be followed for the shear forces have been illustrated in
figures 2 and 3.

Bending Moment:

Let us again consider the beam which is simply supported at the two prints, carrying loads
P1, P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine
that the beam is cut into two potions at the x-section AA. In a similar manner, as done for
the case of shear force, if we say that the resultant moment about the section AA of all the
loads and reactions to the left of the x-section at AA is M in C.W direction, then moment of
forces to the right of x-section AA must be ,,M'in C.C.W. Then ,,M' is called as the Bending
moment and is abbreviated as B.M. Now one can define the bending moment to be simply as
the algebraic sum of the moments about an x-section of all the forces acting on either side of
the section

Sign Conventions for the Bending Moment:

For the bending moment, following sign conventions may be adopted as indicated in Fig 5
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and Fig 6.

Some times, the terms ,,Sagging' and Hogging are generally used for the positive and
negative bending moments respectively.

Bending Moment and Shear Force Diagrams:

The diagrams which illustrate the variations in B.M and S.F values along the length of the
beam for any fixed loading conditions would be helpful to analyze the beam further.

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force
,F' varies along the length of beam. If x dentotes the length of the beam, then F is function x
i.e. F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the internal
bending moment ,,M' varies along the length of the beam. Again M is a function x i.e. M(X).

Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly
simplified if the relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length.
Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ,,x'
from the origin ,,0".

Let us detach this portion of the beam and draw its free body diagram.

The forces acting on the free body diagram of the detached portion of this loaded beam are
the following

* The shearing force F and F+ dF at the section x and x + dx respectively.
* The bending moment at the sections x and x + dx be M and M + dM respectively.

* Force due to external loading, if ,,w' is the mean rate of loading per unit length then the
total loading on this slice of length dx is w. dx, which is approximately acting through the
centre ,,c'. If the loading is assumed to be uniformly distributed then it would pass exactly
through the centre ,,c'.

This small element must be in equilibrium under the action of these forces and couples.

Now let us take the moments at the point ,,c'. Such that
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Conclusions: From the above relations,the following important conclusions may be drawn

* From Equation (1), the area of the shear force diagram between any two points, from the
basic calculus is the bending moment diagram

* The slope of bending moment diagram is the shear force,thus

Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is
therefore constant.'

* The maximum or minimum Bending moment occurs where

The slope of the shear force diagram is equal to the magnitude of the intensity of the
distributed loading at any position along the beam. The —ve sign is as a consequence of our
particular choice of sign conventions

Procedure for drawing shear force and bending moment diagram:
Preamble:

The advantage of plotting a variation of shear force F and bending moment M in a beam as a
function of ,,x' measured from one end of the beam is that it becomes easier to determine the
maximum absolute value of shear force and bending moment.

Further, the determination of value of M as a function of ,x' becomes of paramount
importance so as to determine the value of deflection of beam subjected to a given loading.

Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In order to
draw this, first the reactions must be determined always. Then the vertical components of
forces and reactions are successively summed from the left end of the beam to preserve the
mathematical sign conventions adopted. The shear at a section is simply equal to the sum of
all the vertical forces to the left of the section.

When the successive summation process is used, the shear force diagram should end up with
the previously calculated shear (reaction at right end of the beam. No shear force acts
through the beam just beyond the last vertical force or reaction. If the shear force diagram
closes in this fashion, then it gives an important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of
beam from the left hand end and summing up the areas of shear force diagrams giving due
regard to sign. The process of obtaining the moment diagram from the shear force diagram
by summation is exactly the same as that for drawing shear force diagram from load


http://easyengineering.net
http://easyengineering.net

diagram.

It may also be observed that a constant shear force produces a uniform change in the bending
moment, resulting in straight line in the moment diagram. If no shear force exists along a
certain portion of a beam, then it indicates that there is no change in moment takes place. It
may also further observe that dm/dx= F therefore, from the fundamental theorem of calculus
the maximum or minimum moment occurs where the shear is zero. In order to check the
validity of the bending moment diagram, the terminal conditions for the moment must be
satisfied. If the end is free or pinned, the computed sum must be equal to zero. If the end is
built in, the moment computed by the summation must be equal to the one calculated
initially for the reaction. These conditions must always be satisfied.

Cantilever beams - problems
Cantilever with a point load at the free end:

My =-w.X

WKT M=ELd

dx?
El.d’y =-wx
dx?
on integrating we
get = awxl+cg
dx 2

Integrating again
ELy = - wx® + C1X + C;
6
Boundary conditions

)] when x = L, slope dy/dx =0
i) when x = L, deflectiony =0

Applying the first B.C to egn (1)
0=-wl+c¢ ¢ = wh

Applying the second B.C to egn (2)
0= ﬁ +cl+c
6
Co= -wl3
3
Sub ¢;,c; values in slope egn we get
Eldy = -wx?*+wl?

dx 2 2
Max. slope egn can be obtained by x =0
Eldy = 0+wl® 7% = wl?

dx 2 2El
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Sub cy,c; values in deflection eqn we get
ELy = -wx+ wl?x —wl®

2 2 6
Max. deflection can be obtained by x =0
Elys =0-0-wl® yg = wl
3 3El

Cantilever with a point load at a distance of ‘a’ from free end:

ys = w(l-a)* + w(l-a)%.a ye = w(l-a)®
3ElI 2El 3El

When the load acts at mid span:

VB = 5W|3
48EI

Cantilever with UDL:

2e=wlP yg = wl
2ET 8ET

Cantilever with UDL from fixed end:

% = 2.= w(l-a)®

6E+—
ys = w(l-a)*+ w(l-a)’.a ye = w(l-a)*
—8E—  —6EH BE—

When a =1/2 ie. UDL acting half of the
length

yg = Twl®

384El

Cantilever with UDL from free end:

B = W_|3 _ w(l-a)®
6El 6El
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ye= wli* _ w(l-a)" + w(l-a)® .a
8EI 8EI 6EI

Cantilever with UVL:

75 = 3
%= wl ys = wl*

24El 30El
A cantilever of length carries a concentrated load ‘W' at its free end.
Draw shear force and bending moment.

Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all
values of x) -ve sign means the shear force to the left of the x-section are in downward
direction and therefore negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as —ve according to the sign convention)

so that the maximum bending moment occurs at the fixed end i.e. M = -W |

Simplysupported beam -problems
Simply supported beam subjected to a central load (i.e. load acting at the mid-way)

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any
section X-X from the left end then, the beam is under the action of following forces.

.S0 the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2]
If we consider another section Y-Y which is beyond 1/2 then

for all values greater = 1/2

SSB with central point load:

%= -wl® yg = wl
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16EI 30ElI

SSB with eccentric point load:

% =-wab (b+2a) Ymax = -wa  (b? + 2ab)*?
6EIL 9v3 EIL
If a >b then
Ymax = -Wb (a2 + 2ab)*?
9v3 EIL
SSB with UDL.:
_ 3

?B - WI yB — 5W|4

24El 384El

Overhanging beams - problems

In the problem given below, the intensity of loading varies from g1 kN/m at one end
to the g2 kN/m at the other end.This problem can be treated by considering a U.d.i of
intensity g1 kN/m over the entire span and a uniformly varying load of 0 to ( g2- q1)kN/m
over the entire span and then super impose teh two loadings.

Point of Contraflexure:

Consider the loaded beam a shown below along with the shear force and Bending moment
diagrams for It may be observed that this case, the bending moment diagram is completely
positive so that the curvature of the beam varies along its length, but it is always concave
upwards or sagging.However if we consider a again a loaded beam as shown below along
with the S.F and B.M diagrams, then

It may be noticed that for the beam loaded as in this case,

The bending moment diagram is partly positive and partly negative.lf we plot the deflected
shape of the beam just below the bending moment

This diagram shows that L.H.S of the beam ,,sags' while the R.H.S of the beam ,,hogs'

The point C on the beam where the curvature changes from sagging to hogging is a point of
contraflexure.

OR

It corresponds to a point where the bending moment changes the sign, hence in order to find
the point of contraflexures obviously the B.M would change its sign when it cuts the X-axis
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therefore to get the points of contraflexure equate the bending moment equation equal to
zero.The fibre stress is zero at such sections

Note: there can be more than one point of contraflexure

2.4Stresses in beams
Preamble:

When a beam having an arbitrary cross section is subjected to a transverse loads the
beam will bend. In addition to bending the other effects such as twisting and buckling may
occur, and to investigate a problem that includes all the combined effects of bending,
twisting and buckling could become a complicated one. Thus we are interested to investigate
the bending effects alone, in order to do so, we have to put certain constraints on the
geometry of the beam and the manner of loading.

Assumptions:
The constraints put on the geometry would form the assumptions:
1. Beam is initially straight , and has a constant cross-section.

2. Beam is made of homogeneous material and the beam has a longitudinal plane of
symmetry.

3. Resultant of the applied loads lies in the plane of symmetry.

4. The geometry of the overall member is such that bending not buckling is the primary
cause of failure.

5. Elastic limit is nowhere exceeded and ‘E' is same in tension and compression.
6. Plane cross - sections remains plane before and after bending.

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is subjected
to a constant bending moment (i.e. ,,Zero Shearing Force') along its length as would be
obtained by applying equal couples at each end. The beam will bend to the radius R as
shown in Fig 1(b)

As a result of this bending, the top fibers of the beam will be subjected to tension and the
bottom to compression it is reasonable to suppose, therefore, that some here between the
two there are points at which the stress is zero. The locus of all such points is known as
neutral axis. The radius of curvature R is then measured to this axis. For symmetrical
sections the N. A. is the axis of symmetry but what ever the section N. A. will always pass
through the centre of the area or centroid.
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As we are aware of the fact internal reactions developed on any cross-section of a beam
may consists of a resultant normal force, a resultant shear force and a resultant couple. In
order to ensure that the bending effects alone are investigated, we shall put a constraint on
the loading such that the resultant normal and the resultant shear forces are zero on any
cross-section perpendicular to the longitudinal axis of the member, That means F = 0 since
or M = constant.

Thus, the zero shear force means that the bending moment is constant or the bending is same
at every cross-section of the beam. Such a situation may be visualized or envisaged when the
beam

or some portion of the beam, as been loaded only by pure couples at its ends. It must be
recalled that the couples are assumed to be loaded in the plane of symmetry.

When a member is loaded in such a fashion it is said to be in pure bending. The examples
of pure bending have been indicated in EX 1land EX 2 as shown below :

When a beam is subjected to pure bending are loaded by the couples at the ends, certain
cross-section gets deformed and we shall have to make out the conclusion that,

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and
perpendicular to the longitudinal axis even after bending , i.e. the cross-section A'E', B'F' (
refer Fig 1(a) ) do not get warped or curved.

2. In the deformed section, the planes of this cross-section have a common intersection i.e.
any time originally parallel to the longitudinal axis of the beam becomes an arc of circle.

We know that when a beam is under bending the fibres at the top will be lengthened while at
the bottom will be shortened provided the bending moment M acts at the ends. In between
these there are some fibres which remain unchanged in length that is they are not strained,
that is they do not carry any stress. The plane containing such fibres is called neutral surface.

The line of intersection between the neutral surface and the transverse exploratory section is
called the neutral axisNeutral axis (N A) .

Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us
consider the two cross-sections of a beam HE and GF , originally parallel as shown in fig
1(a).when the beam

is to bend it is assumed that these sections remain parallel i.e. H'E' and G'F", the final
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position of the sections, are still straight lines, they then subtend some angle g.

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends
this will stretch to A'B’

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis
zero. Therefore, there won't be any strain on the neutral axis

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a
distance ,,y' from the N.A, is given by the expression

Now the termis the property of the material and is called as a second moment of area of the
cross-section and is denoted by a symbol 1.

Therefore M/l =sigmaly = E/R

This equation is known as the Bending Theory Equation.The above proof has involved
the assumption of pure bending without any shear force being present. Therefore this termed
as the pure bending equation. This equation gives distribution of stresses which are normal
to cross-section i.e. in x-direction.

Stress variation along the length and in the beam section
Bending Stress and Deflection Equation

In this section, we consider the case of pure bending; i.e., where only bending stresses exist
as a result of applied bending moments. To develop the theory, we will take the
phenomenological approach to develop what is called the “Euler-Bernoulli theory of beam
bending.” Geometry: Consider a long slender straight beam of length L and cross-sectional
area A. We assume the beam is prismatic or nearly so. The length dimension is large
compared to the dimensions of the cross-section. While the cross-section may be any shape,
we will assume that it is symmetric about the y axis

Loading: For our purposes, we will consider shear forces or distributed loads that are applied
in the y direction only (on the surface of the beam) and moments about the z-axis. We have
consider examples of such loading in ENGR 211 previously and some examples are shown
below:

Kinematic Observations: In order to obtain a “feel” for the kinematics (deformation) of a
beam subjected to pure bending loads, it is informative to conduct an experiment. Consider a
rectangular lines have been scribed on the beam’s surface, which are parallel to the top and
bottom surfaces (and thus parallel to a centroidally placed x-axis along the length of the
beam). Lines are also scribed around the circumference of the beam so that they are
perpendicular to the longitudinals (these circumferential lines form flat planes as shown).
The longitudinal and circumferential lines form a square grid on the surface. The beam is
now bent by moments at each end as shown in the lower photograph. After loading, we note
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that the top line has stretched and the bottom line has shortened (implies that there is strain
exx). If measured carefully, we see that the longitudinal line at the center has not changed
length (implies that exx = 0 aty = 0). The longitudinal lines now appear to form concentric
circular lines.

We also note that the vertical lines originally perpendicular to the longitudinal lines
remain straight

and perpendicular to the longitudinal lines. If measured carefully, we will see that the
vertical lines remain approximately the same length (implies eyy = 0). Each of the vertical
lines (as well as the planes they form) has rotated and, if extended downward, they will pass
through a common point that forms the center of the concentric longitudinal lines (with some
radius ?). The flat planes originally normal to the longitudinal axis remain essentially flat
planes and remain normal to the deformed longitudinal lines. The squares on the surface are
now quadrilaterals and each appears to have tension (or compression) stress in the
longitudinal direction (since the horizontal lines of a square have changed length). However,
in pure bending we make the assumption that. If the x-axis is along the length of beam and
the y-axis is normal to the beam, this suggests that we have an axial normal stress sxx that is
tension above the x-axis and compression below the y-axis. The remaining normal
stresses syy and szz will generally be negligible for pure bending about the z-axis. For pure
bending, all shear stresses are assumed to be zero. Consequently, for pure bending, the stress
matrix reduces to zero

2.5 Effect of shape of beam section on stress induced
CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the following
manner

Consider any circular strip of thickness dr located at a radius 'r'.
Than the area of the circular strip would be dA = 2pr. dr

Thus

Parallel Axis Theorem:

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis
through the centroid plus the area times the square of the distance between the axes.

If ,,Z7' is any axis in the plane of cross-section and ,,XX' is a parallel axis through the
centroid G, of the cross-section, then

Rectangular Section:
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For a rectangular x-section of the beam, the second moment of area may be computed as
below :

Consider the rectangular beam cross-section as shown above and an element of area dA ,
thickness dy , breadth B located at a distance y from the neutral axis, which by symmetry
passes through the centre of section. The second moment of area | as defined earlier would
be

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an
axis through the centre is given by

Similarly, the second moment of area of the rectangular section about an axis through the
lower edge of the section would be found using the same procedure but with integral limits
of 0OtoD.

Therefore

These standards formulas prove very convenient in the determination of INA for build up
sections which can be conveniently divided into rectangles. For instance if we just want to
find out the Moment of Inertia of an | - section, then we can use the above relation.

Let us consider few examples to determaine the sheer stress distribution in a given X-
sections

Rectangular x-section:
Consider a rectangular x-section of dimension b and d

A is the area of the x-section cut off by a line parallel to the neutral axis. is the distance of
the centroid of A from the neutral axis

This shows that there is a parabolic distribution of shear stress with y.
The maximum value of shear stress would obviously beat the location y = 0.
Therefore the shear stress distribution is shown as below.

It may be noted that the shear stress is distributed parabolically over a rectangular cross-
section, it is maximum at y = 0 and is zero at the extreme ends.

| - section :

Consider an | - section of the dimension shown below.
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The shear stress distribution for any arbitrary shape is given as

Let us evaluate the quantity, thequantity for this case comprise the contribution due to flange
area and web area

Flange area

Web Area

To get the maximum and minimum values of t substitute in the above relation.
y=0at N. A. And y = d/2 at the tip.

The maximum shear stress is at the neutral axis. i.e. for the conditiony = 0 at N. A.

The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress is
given by the following expression

The distribution of shear stress may be drawn as below, which clearly indicates a parabolic
distribution

Note: from the above distribution we can see that the shear stress at the flanges is not zero,
but it has some value, this can be analyzed from equation (1). At the flange tip or flange or
web interface y = d/2.0bviously than this will have some constant value and than onwards
this will have parabolic distribution.

In practice it is usually found that most of shearing stress usually about 95% is carried by the
web, and hence the shear stress in the flange is neglible however if we have the concrete
analysis i.e. if we analyze the shearing stress in the flange i.e. writing down the expression
for shear stress for flange and web separately, we will have this type of variation.

This distribution is known as the "top — hat" distribution. Clearly the web bears the most of
the shear stress and bending theory we can say that the flange will bear most of the bending
stress.

Shear stress distribution in beams of circular cross-section:

Let us find the shear stress distribution in beams of circular cross-section. In a beam of
circular cross-section, the value of Z width depends on y.

Using the expression for the determination of shear stresses for any arbitrary shape or a
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arbitrary section.

Where oy dA is the area moment of the shaded portion or the first moment of area.

Here in this case ,,dA' is to be found out using the Pythagoras theorem

The distribution of shear stresses is shown below, which indicates a parabolic distribution
Principal Stresses in Beams

It becomes clear that the bending stress in beam sx is not a principal stress, since at any
distance y from the neutral axis; there is a shear stress t ( or txy we are assuming a plane
stress situation)

In general the state of stress at a distance y from the neutral axis will be as follows.
At some point ,,P' in the beam, the value of bending stresses is given as

After substituting the appropriate values in the above expression we may get the inclination
of the principal planes.

Ilustrative examples: Let us study some illustrative examples, pertaining to determination
of principal stresses in a beam

1. Find the principal stress at a point A in a uniform rectangular beam 200 mm deep and 100
mm wide, simply supported at each end over a span of 3 m and carrying a uniformly
distributed load of 15,000 N/m.

Solution: The reaction can be determined by symmetry
R1=R2=22,500 N

consider any cross-section X-X located at a distance x from the left end.
Hence,

S. Fat XX =22,500 — 15,000 x

B.M at XX = 22,500 x — 15,000 x (x/2) = 22,500 X — 15,000 . X2 / 2
Therefore,

SSFaaX=1m=7500N
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B.Mat X=1m=15,000N

Now substituting these values in the principal stress equation,
We get 51 = 11.27 MN/m2

s2 =-0.025 MN/m2

Bending Of Composite or Flitched Beams

A composite beam is defined as the one which is constructed from a combination of
materials. If such a beam is formed by rigidly bolting together two timber joists and a
reinforcing steel plate, then it is termed as a flitched beam.

The bending theory is valid when a constant value of Young's modulus applies across a
section it cannot be used directly to solve the composite-beam problems where two different
materials, and therefore different values of E, exists. The method of solution in such a case is
to replace one of the materials by an equivalent section of the other.

Consider, a beam as shown in figure in which a steel plate is held centrally in an appropriate
recess/pocket between two blocks of wood .Here it is convenient to replace the steel by an
equivalent area of wood, retaining the same bending strength. i.e. the moment at any section
must be the same in the equivalent section as in the original section so that the force at any
given dy in the equivalent beam must be equal to that at the strip it replaces.

Hence to replace a steel strip by an equivalent wooden strip the thickness must be multiplied
by the modular ratio E/E".

The equivalent section is then one of the same materials throughout and the simple bending
theory applies. The stress in the wooden part of the original beam is found directly and that
in the steel found from the value at the same point in the equivalent material as follows by
utilizing the given relations.

Stress in steel = modular ratio x stress in equivalent wood

The above procedure of course is not limited to the two materials treated above but applies
well for any material combination. The wood and steel flitched beam was nearly chosen as a
just for the sake of convenience.

Assumption

In order to analyze the behavior of composite beams, we first make the assumption that the
materials are bonded rigidly together so that there can be no relative axial movement
between them. This means that all the assumptions, which were valid for homogenous
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beams are valid except the one assumption that is no longer valid is that the Young's
Modulus is the same throughout the beam.

The composite beams need not be made up of horizontal layers of materials as in the earlier
example. For instance, a beam might have stiffening plates as shown in the figure below.

Again, the equivalent beam of the main beam material can be formed by scaling the breadth
of the plate material in proportion to modular ratio. Bearing in mind that the strain at any
level is same in both materials, the bending stresses in them are in proportion to the Young's
modulus.

Shear stresses in beams

When a beam is subjected to non uniform bending, both bending moments, M, and shear
forces, V, act on the cross section. The normal stresses, sx, associated with the bending
moments are obtained from the flexure formula. We will now consider the distribution of
shear stresses, t, associated with the shear force, V. Let us begin by examining a beam of
rectangular cross section. We can reasonably assume that the shear stresses t act parallel to
the shear force V. Let us also assume that the distribution of shear stresses is uniform across
the width of the beam.

Shear flow

One thing we might ask ourselves now is: Where does maximum shear stress occur? Well, it
can be

shown that this always occurs in the center of gravity of the cross-section. So if you want to
calculate the maximum shear stress, make a cut through the center of gravity of the cross-
section.
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CE8395 - STRENGTH OF MATERIALSFOR MECHANICAL ENGINEERS
PREVIOUSYEAR ANNA UNIVERSITY - TWO MARK QUESTION & ANSWERS
UNIT -1 - STRESS, STRAIN AND DEFORMATION OF SOLIDS

1 What you mean by thermal stress? (AM-2019, 2015)

When a materid is free to expand or contract due to change in temperature, no  stress and drain will be
developed in the materid. But when the materid is rigidly fixed at both the ends, the change in length is
prevented. Due to change in temperature, stress will be developed in the materid. Such stress is known as
thermal stress.

2. Define principle stresses and principle plane. (AM 2019)

Principle stress: The magnitude of normal stress, acting on a principal planeis known as principal
stresses. Principle plane: The planes which have no shear stress are known as principal planes.

3. Define modulus of elasticity. (ND-2016)
The ratio of tensile stress or compressive stress to the corresponding strain isknown as

modulus of easticity or young*s modulus and is denoted by E.

4. Define PoisonsRatio. (ND-2018)

When a body is stressed within its dagtic limit, theratio of lateral strainto the longitudina
grainiscongant for a given materid.

5. Give the relationship between Bulk Modulus and Young’s Modulus. (MJ 2016)
E=3K (1-24) V

Where, E - Young’s Modulus

K - Bulk Modulus p- Poisson’s ratio

6. Define Eladticity. (ND- 2015)

Eladicity isthe tendency of s0lid materidsto return to their origind shape after being deformed. Solid objects
will deform when forces are applied on them. If the materid iseadtic, the object will returnto itsinitid shape
and szewhen theseforces are removed.

7. What isprinciple of super position? (ND 2015)

The resultant deformation of the body is equal to the algebric sum of the deformation of the
individual section. Such principleis called as principle of super position.

8. State the relationship between Young’s Modulus and Modulus of Rigidity. (ND-2014)

E = 2G (1+p) Where, E - Young’s Modulus G — Modulus of rigidity p - Poisson’s ratio

9. What is Bulk Modulus of material? (MJ 2014)

The Ratio of direct stress to the corresponding volumetric strain is known as Bulk Modulus.



10. Define Resilience and Proof Resilience. (M J-2014)
The strain energy stored by the body within elastic limit, when loaded externally is called resilience.
The maximum strain energy stored in abody up to elastic limit is known as proof resilience.

11. Define shear strain and Volumetric strain. (ND-2013)

Thetwo equa and opposite forces act tangentially on any cross sectional plane of abody tending to
dlide one part of the body over the other part. The stressinduced in that section is called shear stress
and the corresponding strain is known as shear strain.

Voumdricstrainisdefined as theratio of changeinvolumeto the origind volumeof the body

12. What ismeant by grain energy? (ND-2013)

When an elastic material is deformed due to application of external force, interna resistanceis
developed inthe material of the body. Due to deformation, some work is done by theinternal
resistance developed in the body, which is stored in the form of energy. Thisenergy isknown
as strain energy. It is expressed in N-m.

13. Define Hooke’s law. (MJ -2013)

It states that when a material isloaded, within its eastic limit, the stressis directly proportional to the
strain.

Stress a strain

E =0/ eUnitis N/mm?

Where, E - Young‘s Modulus, o0 —Stress,
e- Strain.

14. Define the term modulus of Resilence. (M J-2013)
It isthe Proof resilience of the material per unit volume.
Modulus of resilience= Proof resilience
Volume of the body

15. Givetherdation for changein length of a bar hanging freely under its own weight.
(AM -05)

Changeinlength, dL
=PL/AE

Where, P - Axid load.

L — Length of the bar.
E - Young‘s Modulus of the bar.
A — Areaof the bar.



PRE-YEAR UNIV - PART-B QUESTION
UNIT-I STRESS STRAIN AND DEFORMATION OF SOLIDS

1. (i) A compound tube consist of a steel tube 140mm internal diameter and 160mm external
diameter and an outer brass tube 160mm internal diameter and 180mm external diameter. The
two tubes are of same length .The compound tube carries an axial compression load of
900K N. Find the stresses and the load carried by each tube and the amount of its shortens.
Take E for steel as 2x10° N/mm? and for a brass 1x10° N/mm?.

(it) Two members are connected to carry atensile force of 80 KN by alap joint with two
number of 20mm diameter bolt. Fine the shear induced in the bolt.
(ND-2016)

2. (i) A point in astrained materialsis subjected to the stress as shown in figure. Locate the
principle plane and find the principle stresses.
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(i) A stedl rod of 20mm diameter passes centrally through a copper tube of 50mm
external diameter and 40mm internal diameter. The tube is closed at each end by
rigid plates of negligible thickness. The nuts are tightened lightly on the projecting
parts of the rod. If the temperature of the assembly is raised by 50°C, caculate the

stress developed in copper and steel. Take E for steedd as 2x10°N/mm? and
copper as 1x10% N/mm? and a for steel and copper as 12 x 10°° per °C and 18 x
10 per °C. (ND-2016)

3. A metallic bar 300mmx100mmx40mm is subjected to aforce of 50KN (tensile), 6KN
(Tensile) and 4kN (tensile) along X,Y and Z direction respectively. Determine the
change in the volume of the block. Take E=2x10° N/mm? and poisson ratio =0.25.
(ND-2015, 2014)

4. A stedl rod of 3cm diameter is enclosed centrally in a hollow copper tube of external
diameter 5cm and internal diameter of 4cm as shown in fig. The composite bar is
then subjected to axial pull of 45000N. (i) The stresses in the rod and tube (ii) Load
carried by each bar. Take E for steel =2.1x10° N/mm? and for copper =1.1x10°
N/mm®©,
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EmvesiR (ND-2015)
5. (i) Derive an expression for change in length of a circular bar with uniformly varying
diameter and subjected to an axial tensile load ‘P’

(i) A member ABCD is subjected to point loads P1, P2, P3, P4 as shown in fig.
calculate the force P, necessary for equilibrium, if P, =45 KN, P; =450 KN and P,
= 130 KN. Determine the total elongation of the member, assuming the modulus of

elasticity to be E= 2.1x 105 N/mm2

(ND-

2014)

6. (i) A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured extension
on gauge length of 200 mm is 0.09 mm and the change in diameter is 0.0039 mm.
calculate the Poisson’s ratio and the values of the three moduli.

(i) A rectangular block 350mm long, 100mm wide and 80mm thick is subjected to axia
load as follows. S50kN tensile in the direction of length. 100KN compression in the
direction of thickness and 60KN tensile in the direction of breadth. Determine the

change in volume, bulk modulus, modulus of rigidity. Take, E=2x10° N/mm? and
Poission ratio =0.25. (M J-2014)

7. (i) A resultant tensile stress of 70Mpa.is action over as shown in figure. Another direct
tensile of 40Mpa is acting over plane, which is at right angle to the previous one.

Find the resultant stresses in the second plane, the principal planes and stresses and
the plan maximum shear intenisity.
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(i1) Determine the strain energy due to self weight of a bar of uniform C.S. ‘a’ having
length “L” which is hanging vertically down.
(MJ-2014)

8. A reinforced concrete column 500mmx500mm in section is reinforced with 4 stedl
bars 25mm diameter: one in each corner, the column is carring aload of 1000KN. find the
stresses in the concrete and steel bars. Take E steel = 2x10° N/mm? and E For Concrete
=14x10° N/mm?, (MJ-2013)



UNIT -1l - TRANSVERSE LOADING ON BEAMSAND STRESSESIN BEAM

1. Define point of contraflexure. (AM -2019, ND-2018,
AM-2013)
It isa point where the bending moment changesitssgnfrom +ve to —ve or —veto +ve.

At that point  bending momentisZero.

2. What arethe assumptions madein thetheory of bending? (ND-2018, ND-2015, M J-2014)
I) Thematerid isperfectly homogeneous and isotropic. It obeys hook’s law.

ii) Thevaueof young‘s modulusisthe saneintension as well as in compression.

i) Theradiusof curvature of the beam isvery large compared to the
cross section dimensions of the beam.
iv) Theresultant force on a transverse section of the beam iszero.

3. Define shear force and bending moment at a section? (AM-2015)

Shear force: SF at any cross section isthe agebraic sum of dl theforces acting either
sdesof abeam. Bendingmoment: BM at a cross section isthe algebraic sum of the
moment of al theforceswhich are placed ether sde from that point.

4. Mention thedifferent types of beams. (ND-2015)
i. Cantilever beam,

il. Smply supported beam, iii. Fixed beam,

iv. Continuous beam and v. Over hanging beam

5. Defineshear stressdistribution. (MJ - 2013)

The variation of shear stress along the depth of beam is called shear stress distribution.

6. Statethe assumptionswhile deriving the general formulafor shear stresses.

(MJ- 2011)
i. The material is homogenous, isotropic and elastic.
ii. The modulus of elasticity in tension and compression are
same and the shear stress is constant along the beam width.
7. Define bending moment in beam. (ND- 2012)

The bending moment of the beam may be defined as the al gebraic sum of the moments of the
forces, to the right or left of the section.

8. What isaflitched beam? (ND-2014)

A beam which is constructed by two different materialsis called flitched beam or composite
beam.

9. What isthevalue of bending moment correspondingto a point having a zero shear force?
(AM-2010)

Thevdueof bending moment ismaximum when the shear force changesitssSgnor zero. In a beam,
that point isconsidered as maximum bending moment.



10. What is meant by Neutral axis of the beam? (ND- 2012)

It isanimaginary plane, which divides the section of the beam into the tension and compression
zones on the opposite sides of the plane.

11. What is mean by compr essive and tensile for ce? (ND-2011)

The forces in the member will be compressive if the member pushes the joint to which it is
connected whereas the force in the member will be tensile if the member pulls the joint to which it is
connected.

12. What arethe benefits of method of sections compared with other methods? (AM- 2011)
1. Thismethod is very quick

2. When the forces in few members of the truss are to be determined, then the method of section
is mostly used.

13. Definethin cylinder? (ND-2010)

If the thickness of the wall of the cylinder vessdl islessthan /15 to 1/20 of its
internal diameter, the cylinder vessel is known as thin cylinder.

14. What aretypes of stressin a thin cylindrical vessel subjected to internal pressure? (AM-2010)

These stresses are tensile and are known as
Circumferential stress (or hoop stress)
Longitudinal stress

15. What are maximum shear stresses at any point in a cylinder ? (AM- 2010)

Maximum shear stresses at any point in a cylinder, subjected to internal fluid pressureis
givenby (f1-f2)/ 2=pd/ 8t



UNIT-II TRANSVERSE LOADING ON BEAMSAND STRESSESIN BEAM

1. (i) A ssimply supported beam AB of length 5m carries point loads of 8KN, 10KN and
15KN at 1.5m and 2.5m and 4m respectively from left hand support. Draw shear force
diagram and bending moment diagram

(i) A cantilever beam AB of length 2m carries a uniformly distributed load of 12KN/m

overentire length. Find the shear stress and bending stress. If the size of the beam is

230mmx300mm. (ND-2016)

2. Draw the shear force and B.M diagrams for a simply supported beam of length 8m and
carrying a uniformly distributed load of 10KN/m for a distance of 4m as shown in fig.
(ND-2015)
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3. A sted plate of width 120mm and of thickness 20mm is bent into a circular arc of radius
10m. Determine the maximum stress induced and the bending moment which will produce
the maximum stress, Take E=2x10° N/mm? (ND-2015)

4. Draw SFD and BMD and find the maximum bending moment for the beam given in Fig.
(ND-2014)
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5. Prove that the ratio of depth to width of the strongest beam that can be cut from a circular
log of diameter‘d’ is 1.414. Hence calculate the depth and width of the strongest beam that
can be cut out of acylindrical log of wood whose diameter is 300mm.

(ND-2014)

6. (i) Draw the shear force and bending moment diagram for a cantilever carrying load
whose intensity varies uniformly from zero at the fixed end to "W’ per unit run at the free
end.

(i1) Draw the S.F.D and B.M.D For the SSB as shown in fig.
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(M J-2014)

7. A T-section of a SSB has the width of flange =100mm, overall depth =100mm, thickness
of flange and stem= 20mm determine the maximum stress in beam when a bending
moment of 12KN-m is acting on the section. Also calculate the shear stress at neutral axis
and at the junction of web and flange when shear force of 50KN acting on beam.
(MJ-2014)

8. A simply supported beam of span 6m is carrying a UDL of 2KN/m over the entire span.
Calculate the magnitude of shear force and bending moment at every section, 2m from the
left support. Also draw shear force and bending moment diagrams. (MJ-2013)
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[FCognitive Level: KI- Remember, K2 — Understand, K3 — Apply, K4 — Analyze, K5 — Evaluate, K6- Creativity]

A simply supported beam AB of length 5m carries point loads (CO2) [K2]

of 8KN, 10KN and I5KN at 1.5m and 2.5m and 4m respectively

from left hand support. Outline shear force diagram and bending

moment diagram

A cantilever beam AB of length 2m carries a uniformly distributed (CO2) [K2] (ND-2016)
load of 12KN/m over entire length. Calculate the shear stress and

bending stress. If the size of the beam is 230mmx300mm.

Outline the shear force and B.M diagrams for a simply supported (CO2)[K2] (ND-2015)
beam of length 8m and carrying a uniformly distributed load of
10KN/m for a distance of 4m as shown in fig.

no

Tl
o i

A
L I P

A steel plate of width 120mm and of thickness 20mm is bent into (CO2) [K4] (ND-2015)
a circular arc of radius 10m. Determine the maximum stress

induced and the bending moment which will produce the

maximum stress, Take E=2x10° N/mm?

Sketch SFD and BMD and find the maximum bending moment ~ (CO2) [K3] (ND-2014)
for the beam given in Fig.
j'&= el 5.. ili"n."
A _l_ ﬂl Ui, E
| N .-‘..""_c..l_.:"‘."‘ —

Prove that the ratio of depth to width of the strongest beam that can (CO2) [K3] (ND-2014)
be cut from a circular log of diameter ‘d’ is 1.414. Hence calculate
the depth and width of the strongest beam that can be cut out of a
cylindrical log of wood whose diameter is 300mm.
Sketch the shear force and bending moment diagram for a (CO2)[K3]
cantilever carrying load whose intensity varies uniformly from
zero at the fixed end to "W’ per unit run at the free end.

Outline the S.F.D and B.M.D For the SSB as shown in fig. (CO2) [K2]
Ny pird ey & )
" ' - > e
E H”lﬂ -'_';"‘i{:'_“-‘"" |—-—\-—\--.-\1|" L'I Y I YE 'Ir Y TV

IL O e e VB b, ) :
A | &
A T-section of a SSB has the width of flange =100mm, overall (CO2)[K2] (MJ-2014)
depth =100mm, thickness of flange and stem= 20mm
determine the maximum stress in beam when a bending
moment of 12KN-m is acting on the section. Also calculate the
shear stress at neutral axis and at the junction of web and flange
when shear force of SOKN acting on beam.

A simply supported beam of span 6m is carrying a UDL of 2KN/m (CO2) [K2] (MJ-2013)
over the entire span. Calculate the magnitude of shear force and

bending moment at every section, 2m from the left support. Also

draw shear force and bending moment diagrams.



UNIT 111 TORSION

Torsion formulation stresses and deformation in circular and hollows shafts — Stepped
shafts— Deflection in shafts fixed at the both ends — Stresses in helical springs —
Deflection of helical springs, carriage springs.

OBJECTIVE :

To determine stresses and deformation in circular shafts and helical spring due to torsion.

OUTCOMES :

Students will be able to
Apply basic equation of simple torsion in designing of shafts and helical spring

Torsion

In solid mechanics, torsion is the twisting of an object due to an applied torque. In sections
perpendicular to the torque axis, the resultant shear stress in this section is perpendicular to
the radius.

For solid shafts of uniform circular cross-section or hollow circular shafts with constant wall
thickness, the torsion relations are:

T T_@

J R {

where:
o Risthe outer radius of the shaft i.e. m, ft.
t is the maximum shear stress at the outer surface.
f is the angle of twist in radians.
T is the torque (N-m or ft-1bf).
| is the length of the object the torque is being applied to or over.
G is the shear modulus or more commonly the modulus of rigidity and is usually
given in gigapascals (GPa), Ibf/in® (psi), or Ibf/ft>.
Jis the torsion constant for the section. It is identical to the polar moment of
inertia for a round shaft or concentric tube only. For other shapes J must be
determined by other means. For solid shafts the membrane analogy is useful, and for
thin walled tubes of arbitrary shape the shear flow approximation is fairly good, if
the section is not re-entrant. For thick walled tubes of arbitrary shape there is no
simple solution, and finite element analysis (FEA) may be the best method.
e The product GJ is called the torsion.
3.1 Beam shear
Beam shear is defined as the internal shear stress of a beam caused by the sheer force
applied to the beam.

_VQ
T = F.

V = total shear force at the location in question;
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Q = statical moment of area;
t = thickness in the material perpendicular to the shear;
I = Moment of Inertia of the entire cross sectional area.

This formula is also known as the Jourawski formula
Semi-monocoque shear

Shear stresses within a semi-monocoque structure may be calculated by idealizing the cross-
section of the structure into a set of stringers (carrying only axial loads) and webs (carrying
only shear flows). Dividing the shear flow by the thickness of a given portion of the semi-
monocoque structure yields the shear stress. Thus, the maximum shear stress will occur
either in the web of maximum shear flow or minimum thickness.

Also constructions in soil can fail due to shear;e.g., the weight of an earth-
filled dam or dike may cause the subsoil to collapse, like a small and slide.

Impact shear

The maximum shear stress created in a solid round bar subject to impact is given as the
equation:

1
UG\t
=9 .
" (1)

U = change in Kinetic energy;
G = shear modulus;
V = volume of rod;

U= L‘l,-ﬂmﬁng + L'Iu.pp{ied ;

fe

'E"Iz'crfu.fing = §I'-‘-" .
'E"rﬂ.pp{ied = ngisp{uced ;
3.2 Bars of Solid and hollow circular section

The stiffness, k, of a body is a measure of the resistance offered by an elastic body to
deformation. For an elastic body with a single Degree of Freedom (for example, stretching
or compression of a rod), the stiffness is defined as



http://en.wikipedia.org/wiki/First_moment_of_area#Statical_moment_of_area
http://en.wikipedia.org/wiki/Second_moment_of_area
http://en.wikipedia.org/wiki/Semi-monocoque
http://en.wikipedia.org/wiki/Shear_flow
http://en.wiktionary.org/wiki/e.g.
http://en.wikipedia.org/wiki/Dam
http://en.wikipedia.org/wiki/Dyke_(construction)
http://en.wikipedia.org/wiki/Landslide
http://en.wikipedia.org/wiki/Shear_modulus
http://Civildatas.com

F is the force applied on the body
d is the displacement produced by the force along the same degree of freedom (for
instance, the change in length of a stretched spring)

In the International System of Units, stiffness is typically measured in nektons per meter. In
English Units, stiffness is typically measured in pound force (Ibf) per inch.

Generally speaking, deflections (or motions) of an infinitesimal element (which is viewed
as a point) in an elastic body can occur along multiple degrees of freedom (maximum of six
DOF at a point). For example, a point on a horizontal beam can undergo both a
vertical displacement and a rotation relative to its undeformed axis. When there are M
degrees of freedom a M x M matrix must be used to describe the stiffness at the point. The
diagonal terms in the matrix are the direct-related stiffnesses (or simply stiffnesses) along
the same degree of freedom and the off-diagonal terms are the coupling stiffnesses between
two different degrees of freedom (either at the same or different points) or the same degree
of freedom at two different points. In industry, the term influence coefficient is sometimes
used to refer to the coupling stiffness.

It is noted that for a body with multiple DOF, the equation above generally does not apply
since the applied force generates not only the deflection along its own direction (or degree
of freedom), but also those along other directions.

For a body with multiple DOF, in order to calculate a particular direct-related stiffness (the
diagonal terms), the corresponding DOF is left free while the remaining should be
constrained. Under such a condition, the above equation can be used to obtain the direct-
related stiffness for the degree of freedom which is unconstrained. The ratios between the
reaction forces (or moments) and the produced deflection are the coupling stiffnesses.

The inverse of stiffness is compliance, typically measured in units of metres per newton. In
rheology it may be defined as the ratio of strain to stress and so take the units of reciprocal
stress, e.g. 1/Pa.

3.3 Stepped shaft ,Twist and torsion stiffness — Compound shafts — Fixed and
simply supported shafts
Shaft: The shafts are the machine elements which are used to transmit power in machines.

Twisting Moment: The twisting moment for any section along the bar / shaft is defined to
be the algebraic sum of the moments of the applied couples that lie to one side of the section




under consideration. The choice of the side in any case is of course arbitrary.

Shearing Strain: If a generator a ?? b is marked on the surface of the unloaded bar, then
after the twisting moment 'T' has been applied this line moves to ab'. The angle ???'
measured in radians, between the final and original positions of the generators is defined as
the shearing strain at the surface of the bar or shaft. The same definition will hold at any
interior point of the bar.

Modulus of Elasticity in shear: The ratio of the shear stress to the shear strain is called the
modulus of elasticity in shear OR Modulus of Rigidity and in represented by the symbol

Angle of Twist: If a shaft of length L is subjected to a constant twisting moment T along its
length, than the angle ? through which one end of the bar will twist relative to the other is
known is the angle of twist.

Despite the differences in the forms of loading, we see that there are number of similarities
between bending and torsion, including for example, a linear variation of stresses and strain
with position.

In torsion the members are subjected to moments (couples) in planes normal to their axes.

For the purpose of desiging a circular shaft to withstand a given torque, we must develop an
equation giving the relation between twisting moment, maximum shear stress produced, and
a quantity representing the size and shape of the cross-sectional area of the shaft.

Not all torsion problems, involve rotating machinery, however, for example some types of
vehicle suspension system employ torsional springs. Indeed, even coil springs are really
curved members in torsion as shown in figure.

Many torque carrying engineering members are cylindrical in shape. Examples are drive
shafts, bolts and screw drivers.

Simple Torsion Theory or Development of Torsion Formula : Here we are basically
interested to derive an equation between the relevant parameters

Relationship in Torsion:

1 st Term: It refers to applied loading ad a property of section, which in the instance is the
polar second moment of area.

2 nd Term: This refers to stress, and the stress increases as the distance from the axis
increases.

3 rd Term: it refers to the deformation and contains the terms modulus of rigidity &
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combined term ( ??? I) which is equivalent to strain for the purpose of designing a circular
shaft to with stand a given torque we must develop an equation giving the relation between
Twisting moments max m shear stain produced and a quantity representing the size and
shape of the cross ??sectional area of the shaft.

Refer to the figure shown above where a uniform circular shaft is subjected to a torque it can
be shown that every section of the shaft is subjected to a state of pure shear, the moment of
resistance developed by the shear stresses being every here equal to the magnitude, and
opposite in sense, to the applied torque. For the purpose of deriving a simple theory to
describe the behavior of shafts subjected to torque it is necessary make the following base
assumptions.

Assumption:

(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the
material.

(if) The material is elastic, follows Hook's law, with shear stress proportional to shear strain.
(iii) The stress does not exceed the elastic limit.

(iv) The circular section remains circular

(v) Cross section remain plane.

(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle.

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other
end being fixed Under the action of this torque a radial line at the free end of the shaft twists
through an angle , point A moves to B, and AB subtends an angle ' at the fixed end. This is
then the angle of distortion of the shaft i.e the shear strain.

Since angle in radius = arc / Radius

arc AB=R?

=L ? [since L and ? also constitute the arc AB]
Thus, ? =R? /L (1)

From the definition of Modulus of rigidity or Modulus of elasticity in shear

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to
shear stress??".
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The force set up on each element

= stress x area

= ?'x 2? r dr (approximately)

This force will produce a moment or torque about the center axis of the shaft.
=2.2%2rdr.r

=277 .r2.dr

The total torque T on the section, will be the sum of all the contributions.

Since ?" is a function of r, because it varies with radius so writing down??" in terms of r from
the equation (1).

Where

T = applied external Torque, which is constant over Length L;

J = Polar moment of Inertia

[ D = Qutside diameter ; d = inside diameter ]

G = Modules of rigidity (or Modulus of elasticity in shear)

? = Itis the angle of twist in radians on a length L.

Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twist

ie k=T/???7=GJ/L
Problem 1

A stepped solid circular shaft is built in at its ends and subjected to an externally applied
torque. TO at the shoulder as shown in the figure. Determine the angle of rotation ?0 of the
shoulder section where TO is applied ?

Solution: This is a statically indeterminate system because the shaft is built in at both ends.
All that we can find from the statics is that the sum of two reactive torque TA and TB at the
built ?? in ends of the shafts must be equal to the applied torque TO

Thus TA+ TB=TO0
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[from static principles]

Where TA , TB are the reactive torque at the built in ends A and B. wheeras TO is the applied
torque

From consideration of consistent deformation, we see that the angle of twist in each portion
of the shaft must be same.

.e?a=?b=?0

using the relation for angle of twist

N.B: Assuming modulus of rigidity G to be same for the two portions
So the defines the ratio of TA and TB

So by solving (1) & (2) we get

Non Uniform Torsion: The pure torsion refers to a torsion of a prismatic bar subjected to
torques acting only at the ends. While the non uniform torsion differs from pure torsion in a
sense that the bar / shaft need not to be prismatic and the applied torques may vary along the
length.

Here the shaft is made up of two different segments of different diameters and having
torques applied at several cross sections. Each region of the bar between the applied loads
between changes in cross section is in pure torsion, hence the formula's derived earlier may
be applied. Then form the internal torque, maximum shear stress and angle of rotation for
each region can be calculated from the relation

The total angle to twist of one end of the bar with respect to the other is obtained by
summation using the formula

If either the torque or the cross section changes continuously along the axis of the bar, then
the ? (summation can be replaced by an integral sign ( ? ). i.e We will have to consider a
differential element.

After considering the differential element, we can write

Substituting the expressions for Tx and Jx at a distance x from the end of the bar, and then
integrating between the limits 0 to L, find the value of angle of twist may be determined.

Application to close-coiled helical springs

Closed Coiled helical springs subjected to axial loads:
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Definition: A spring may be defined as an elastic member whose primary function is to
deflect or distort under the action of applied load; it recovers its original shape when load is
Berleased.

Springs are energy absorbing units whose function is to store energy and to restore it
slowly or rapidly depending on the particular application.

Important types of springs

are:

There are various types of springs

such as

(i) helical spring: They are made of wire coiled into a helical form, the load being applied

along the axis of the helix. In these type of springs the major stresses is torsional shear
stress due to twisting. They are

both used in tension and compression.

(i) Spiral springs: They are made of flat strip of metal wound in the form of spiral and
loaded in torsion.

In this the major stresses are tensile and compression due to

bending.
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(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as
to obtain greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever
types, In these type of springs the major stresses which come into picture are tensile &
compressive.

W

These type of springs are used in the automobile suspension system.
Uses of springs :

(@) To apply forces and to control motions as in brakes and clutches.
(b) To measure forces as in spring balance.

(c) To store energy as in clock springs.

(d) To reduce the effect of shock or impact loading as in carriage springs.

(e) To change the vibrating characteristics of a member as inflexible mounting of motors.

Derivation of the Formula :

In order to derive a necessary formula which governs the behaviour of springs, consider a
closed coiled
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spring subjected to an axial load W.

7 WIIIIIIIIVIIIIIII I LLLL

Let

W = axial load

D = mean coil diameter

d = diameter of spring wire

n = number of active coils

C =spring index = D / d For circular wires
| = length of spring wire

G = modulus of rigidity

x = deflection of spring

g = Angle of twist

when the spring is being subjected to an axial load to the wire of the spring gets be
twisted like a shaft.

If q is the total angle of twist along the wire and X is the deflection of spring under the
action of load W along the axis of the coil, so that

x=D/2.0

again | = [J D n [ consider ,one half turn of a close coiled helical spring ]
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w
Maximum shear stress in spring section including Wahl Factor

Wabhl's factor
Assumptions: (1) The Bending & shear effects may be neglected

(2) For the purpose of derivation of formula, the helix angle is considered to be so
small that it may be neglected.

Any one coil of a such a spring will be assumed to lie in a plane which is nearly ["to the
axis of the spring. This requires that adjoining coils be close together. With this limitation, a
section taken perpendicular to the axis the spring rod becomes nearly vertical. Hence to
maintain equilibrium of a segment of the spring, only a shearing force V = F and Torque T =
F. r are required at any X — section. In the analysis of springs it is customary to assume that
the shearing stresses caused by the direct shear force is uniformly distributed and is
negligible

so applying the torsion formula.

Using the torsion formula i.e

r

T_1_Gd
]

El
and substtituting J = H;T = '-.-'-.-'.E
32 2

2%
8=—":1=aD.
K alx

3.4 SPRING_ DEFLECTION

w2 : G.2x%fD
ad* nln
32
Thus,
- BwD¥ n

G.d*
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Spring striffness: The stiffness is defined as the load per unit deflection therefore

k = E = w

¥ BwD®n
Gd*

Therefore

_ G.d*
80%n

Shear stress

w.di2 _ T
ad* di2
32

_ BwD
arT__a s —
max ?Td3

3.5WAHL'S FACTOR :

In order to take into account the effect of direct shear and change in coil curvature a stress
factor is defined, which is known as Wahl's factor

o Aol DB15
K = Wahl' s factor and is defined as dc-4 o«

Where C = spring index
=D/d

if we take into account the Wahl's factor than the formula for the shear stress
_ 16Tk

m k]
becomes "

Strain Energy : The strain energy is defined as the energy which is stored within a material
when the work has been done on the material.

In the case of a spring the strain energy would be due to bending and the strain energy due
to bending is given by the expansion
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soafter substitutionwe geat
2
U= 32T Eln
Ed

Deflection of helical coil springs under axial loads
Deflection of springs

Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50
mm and a maximum shearing stress of 400 N/mm? .if the number of active turns or active
coils is 8.Estimate the following:

(i) wire diameter

(if) mean coil diameter

(iii) weight of the spring.

Assume G = 83,000 N/mm?; [J = 7700 kg/m®
solution :

(1) for wire diametre if W is the axial load, then

w2 T om

Tmdt di2

32
400 md* 2
S /2732w
_A00.md* 2
" RO00.1B

D=0.0314d

Futher, deflection is given as

_BwD® n
G.d*
on substituting the relevant parameters we get
_B.5000.0.0314d")° B
83,000 4%
d=13.32mm

a0
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Therefore,

D =.0314 x (13.317)°mm

=74.15mm

D =74.15 mm

Weight

massorweight = volume. density

= area.length of the spring. density of spring material

2

s
=™ D,
g e

On substituting the relevant parameters we get
Waight = 1.996 ki
=20kg

Design of helical coil springs
Helical spring design
Springs in Series: If two springs of different stiffness are joined endon and carry a common

load W, they are said to be connected in series and the combined stiffness and deflection are
given by the following equation.

Springs in parallel: If the two spring are joined in such a way that they have a common
deflection ‘x' ; then they are said to be connected in parallel.In this care the load carried is
shared between the two springs and total load W = W; + W,
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ML )
ko kK

Thus W = %

_ Wk,

Wy
Tk

Futher
W=W1 +W2

stresses in helical coil springs under torsion loads

Stresses under torsion
Shear Stress in the Shaft

When a shaft is subjected to a torque or twisting, a shearing stress is produced in the shaft.
The shear stress varies from zero in the axis to a maximum at the outside surface of the
shaft.

The shear stress in a solid circular shaft in a given position can be expressed as:
s=Trl/lp 1)

where

s = shear stress (MPa, psi)

T = twisting moment (Nmm, in Ib)

r = distance from center to stressed surface in the given position (mm, in)

I, = "polar moment of inertia™ of cross section (mm*, in%)

The "polar moment of inertia” is a measure of an object's ability to resist torsion.
Circular Shaft and Maximum Moment

Maximum moment in a circular shaft can be expressed as:

Trmax = Smax Ip / R )

where
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Tmax = maximum twisting moment (Nmm, in 1b)
Smax = Maximum shear stress (MPa, psi)

R = radius of shaft (mm, in)

Combining (2) and (3) for a solid shaft

Trax = (p/16) Spax D*  (2)

Combining (2) and (3b) for a hollow shaft
Tmax = (P/16) Smax (D*-d*) /D (20)
Circular Shaft and Polar Moment of Inertia
Polar moment of inertia of a circular solid shaft can be expressed as
I, =p RY2=p D32 (3)

where

D = shaft outside diameter (mm, in)

Polar moment of inertia of a circular hollow shaft can be expressed as

I, =p (D*-d*) /32 (3b)

where

d = shaft inside diameter (mm, in)

Diameter of a Solid Shaft

Diameter of a solid shaft can calculated by the formula

D =172 (Tna/Smax)”>  (4)

Torsional Deflection of Shaft

The angular deflection of a torsion shaft can be expressed as

2=LT/1,G  (5)
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where
? = angular shaft deflection (radians)
L = length of shaft (mm, in)
G = modulus of rigidity (Mpa, psi)
The angular deflection of a torsion solid shaft can be expressed as
?=32LT/(GpD% (5a)
The angular deflection of a torsion hollow shaft can be expressed as
?2=32LT/(Gp (D*dY) (5b)
The angle in degrees can be achieved by multiplying the angle ? in radians with 180/p
Solid shaft (p replaced)
2degrees 584 LT/ (G DY)  (6a)

Hollow shaft (p replaced)

Pdegrees ~584 L T/ (G (D*- d*) (6b)
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CE8395 - SOM

PART A
1. Define torsion (May 2014)
A shaft is said to be in torsion, when equal and opposite torques are applied at the two
ends of the shaft. The torque is equal to the product of the force applied (tangentially
to the ends of a shaft) and radius of the shaft.
2. What are the assumptions made in the theory of torsion? (May 2010)
The material of the shaft is uniform throughout.
The twist along the shaft is uniform.
Normal cross sections of the shaft, which were plane and circular before

Twist; remain plane and circular after twist.

All diameters of the normal cross section which were straight before twist, remain

straight with their magnitude unchanged, after twist.
3. Write the expression for power transmitted by a shaft in Watts
P=2TINT/60
Where
N--- Speed of the shaft in rpm
T—Mean torque transmitted in Nm
P---- Power
4. The torque transmitted by a hollow shaft is given by
T =I1/16 x T (D*-d*)/D
T -maximum shear stress induced at the outer surface.
D- External diameter
d-internal diameter
5. Define polar modulus.
Polar modulus is defined as the ratio of the polar moment of inertia to the radius of
the shaft. It is also called torsional section modulus and is denoted by Zp.

6. Define torsional rigidity (May 2012)

Let a twisting moment T produce a twist of radian in a length | then



http://www.LearnEngineering.in

CES8395 - SOM
T/J =Cel/L

Where C—modulus of rigidity of the material.
7. Why hollow circular shafts are preferred when compared to solid
circular shafts?
Comparison by strength;

The torque transmitted by the hollow shaft is greater than the solid shaft,
therebyhollow shaft is stronger than the solid shaft.
Comparison by weight:

For the same material, length and given torque, weight of a hollow shaft will be
less. So hollow shafts are economical when compared to solid shafts, when torque is
acting.

8. What is mean by spring? Name the two important types of springs.

Spring is a device which is used to absorb energy by taking very large change
in its form without permanent deformation and then release the same when its
required.
TYPES
Torsion spring
Bending spring
. Distinguish between close and open helical coil springs.

If the angle of the helix of the coil is so small that the bending effects can
be neglected, then the spring is called a closed —coiled spring. Close —coiled spring

is a torsion spring The pitch between two adjacent turns is small. If the slope of

the helix of the coil is quite appreciable then both the bending as well as torsional

shear stresses are introduced in the spring, then the spring is called open coiled
spring.
10. Define stiffness of a spring? In what unit it is measured?
Stiffness of a spring is defined as load per unit deflection. It is denoted by K and unit
IS N/mm.

11. Draw shear stress distribution of a circular section due to torque.

Torsion in shaft and combined stresses
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UNIT 111 TORSION
Torsion formulation stresses and deformation in circular and hollows shafts — Stepped shafts— Deflection in
shafts fixed at the both ends — Stresses in helical springs — Deflection of helical springs, carriage springs.

PART-A(2 Marks)

Questions BT Competence
Level

Define torsional rigidity of the solid circular shaft. (BT1) | Remember
Differentiate between closed coil helical spring and open coil helical spring. (BT2) | Understand
List out of the applications of helical springs. (BT1) | Remember
When the hollow circular shafts are more suitable than solid circular shafts? (BT1) | Remember
Describe the term polar modulus. (BT1) | Remember
Define torsion. (BT1) | Remember
Measure the torque which a shaft of 50 mm diameter can transmit safely, if | (BT5) | Evaluate

the allowable shear stress is 75 N/mm?.
Quote the expressions for polar modulus of solid and hollow circular shaft. (BT1) | Remember
Express the stiffness of a close coiled helical spring mathematically. (BT2) | Understand
Summarize the assumptions made in torsional equation. (BT2) | Understand
Give the expression for the angle of twist for a hollow circular shaft with (BT2) | Understand
external diameter D, internal diameter, length | and rigidity modulus G.
Calculate the minimum diameter of shaft required to transmit a torque of | (BT3) | Application
29820 Nm if the maximum shear stress is not to exceed 45 N/mm>.
Classify springs with example. (BT3) | Application
Show the difference in stiffness of two springs when they are connected in | (BT3) | Application
series and in parallel.
Explain the term spring index. (BT4) | Analyze
Point out any two applications of leaf spring. (BT4) | Analyze
Compare helical spring and carriage spring. (BT4) | Analyze

Evaluate the axial deformation, when a load of 50N is acting in the spring of | (BT5) | Evaluate
stiffness 10N/mm.
Combine the expressions for deflection and shear stress of close coiled | (BT6) | Create
spring.
Formulate the mathematical expression for deflection of an open coiled | (BT6) | Create
helical spring.

| PART-B(13 Marks)
Questions Marks|BT LevellCompetence

The internal and external diameter of a hollow shaft is in the ratio of | (13) | (BT4) | Analyze
2:3. The hollow shaft is to transmit a 400kW power at 120rpm. The
maximum expected torque is 15% greater than the mean value. If the
shear stress not to exceed 50MPa, find section of the shaft which
would satisfy the shear stress and twist condition. Take G=
0.85x10°MPa.
(a) What are the assumptions made in the torque equations? Remember
(b) Derive the expression for power transmitted by a shaft. Analyze
(a) A steel shaft is to require to transmit 75kW power at 100 rpm and Application
the maximum twisting moment is 13% greater than the mean. Find the
diameter of the steel shaft if the maximum stress is 70N/mm?. Also
determine the angle of twist in a length of 3m of the shaft. Assume the
modules of rigidity for steel as 90kN/mm?.




(b) Obtain a relation for the torque and power, a solid shaft can
transmit.

Evaluate

(a) Find the diameter of the solid shaft to transmit 90kW at 160 rpm
such that the shear stress is limited to 60N/mm?. The maximum torque
is likely to exceed the mean torque by 20%. Also find the permissible
length of the shaft, if the twist is not to exceed 1° over the entire
length. Take rigidity modulus as 0.8x10°N/mm?.

Evaluate

(b) What do you mean by the strength of the shaft? Compare the
strength of solid and hollow circular shafts.

Understand

(@) Determine the dimensions of a hollow circular shaft with a
diameter ratio of 3:4 which is to transmit 60kW at 200 rpm. The
maximum shear stress in the shaft is limited to 70 GPa and the angle of
twist to 3.8° in a length of 4m. For the shaft material, the modulus of
rigidity is 80 GPa.

Evaluate

(b) Derive the expression for the shear stress produced in a circular
solid shaft subjected to torsion.

Analyze

(a) Calculate the power that can be transmitted at 300 rpm by a hollow
steel shaft of 75mm external diameter and 50mm internal diameter
when the permissible shear stress for the steel is 7ON/mm? and the
maximum torque is 1.3 times the mean. Compare the strength of this

Evaluate

hollow shaft with that of a solid shaft. The same material, weight and
length of both the shafts are same.

(b) Derive the expression for angle of twist of two shafts when they are
connected in series.

Analyze

A steel shaft ABCD having a total length of 2400 mm is contributed by
three different sections as follows. The portion AB is hollow having
outside and inside diameters 80 mm and 50 mm respectively, BC is
solid and 80 mm diameter. CD is also solid and 70 mm diameter. If the
angle of twist is same for each section, determine the length of each
portion and the total angle of twist. Maximum permissible shear stress
is 50 Mpa and shear modulus 0.82 x 105 MPa

Analyze

(a) The stiffness of the closed coil helical spring at mean diameter 20
cm is made of 3 cm diameter rod and has 16 turns. A weight of 3 KN is
dropped on this spring. Find the height by which the weight should be
dropped before striking the spring so that the spring may be
compressed by 18 cm. Take C= 8x10* N/mm?.

Analyze

(b) Derive the expression for stiffness of two closed coil helical springs
when connected in series.

Application

(a) It is required to design a closed coiled helical spring which shall
deflect 1mm under an axial load of 100 N at a shear stress of 90 Mpa.
The spring is to be made of round wire having shear modulus of 0.8 x
105 MPa. The mean diameter of the coil is 10 times that of the coil
wire. Find the diameter and length of the wire.

Analyze

(b) Deduce the expression for strain energy stored in a closed coil
helical spring when subjected to axial loading.

Remember

(a) A helical spring of circular cross-section wire 18 mm in diameter is
loaded by a force of 500 N. The mean coil diameter of the spring is
125mm. The modulus of rigidity is 80 kN/mm2. Determine the
maximum shear stress in the material of the spring. What number of
coils must the spring have for its deflection to be 6 mm?

Evaluate




(@) A helical spring of circular cross-section wire 18 mm in diameter is Evaluate
loaded by a force of 500 N. The mean coil diameter of the spring is
125mm. The modulus of rigidity is 80 kN/mm2. Determine the
maximum shear stress in the material of the spring. What number of
coils must the spring have for its deflection to be 6 mm?

(b) Derive the expression for stiffness of two closed coil helical Application
springs when connected in parallel.
A close coiled helical spring is to have a stiffness of 1.5 N/mm of Application
compression under a maximum load of 60 N. the maximum
shearing stress produced in the wire of the spring is 125N/mm? .The
solid length of the spring is 50mm. Find the diameter of coil, diameter
of wire and number of coils .C = 4.5 xI04N/mm?.

A closely coiled helical spring of round steel wire 10 mm in diameter Analyze
having 10 complete turns with a mean diameter of 12 cm is subjected
to an axial load of 250 N. Determine
a) The deflection of the spring

b) Maximum shear stress in the wire
c) Stiffness of the spring and
d) Frequency of vibration. Take C = 0.8 x 105 N/mm?

A leaf spring of semi elliptical type has 10 plates, each 60mm wide Analyze
and 5 mm thick. The longest plate is 700 mm long. Find the greatest
central load on the spring so that the bending stress shall not exceed
150 N/mm? and the central deflection shall not exceed 10 mm. take
E=2x10° N/mm?.

A leaf spring is made of 12 steel plates of 50mm wide and 5mm thick. Application

It carries a load of 4 kN at the centre. If the bending stress is limited to
140 N/mm?, determine the following:

i) Length of the spring and

i) Deflection at the centre of the spring. Take E = 2 x 10° N/mm®.




PART-C(15 Marks)

Questions

Competence

A hollow shaft with diameter ratio 3/5 is required to transmit 450kW at
120rpm. The shearing stress in the shaft must not exceed 60N/mm? and the
twist in a length of 2.5m is not to exceed 1'. Calculate the maximum
external diameter of the shaft. C= 80 kN/mmZ.

Evaluate

A close coiled helical spring is required to absorb 2250 joules of energy.
Determine the diameter of the wire, the mean coil diameter of the wire, the
mean coil diameter of the spring and the number of coils necessary if i) the
maximum stress is not to exceed 400MPa, ii) the maximum compression of
the spring is limited to 250mm and iii) the mean diameter of the spring is
eight times the wire diameter. For the spring material, rigidity modulus is
70GPa.

Analyze

A solid shaft is to transmit 300kW at 100 rpm if the shear stress is not to
exceed 80N/mm2. Find diameter of the shaft. If this shaft was to be
replaced by hollow shaft of same material and length with an internal
diameter of 0.6 times the external diameter. What percentage saving in
weight is possible?

Create

A close coiled helical spring has stiffness of 10N/mm. Its length when fully
compressed with adjacent coils touching each other is 400mm. The
modulus of rigidity of the material of the spring is 80GPa.

i) Determine the wire diameter and mean coil diameter if their ratio is 1/10.

ii) If the gap between any two adjacent coils is 2mm, what maximum load
can be applied before the spring becomes solid.

iii) What is the corresponding maximum shear stress in the spring?

Evaluate




UNIT IV DEFLECTION OF BEAMS

Double Integration method — Macaulay’s method — Area moment method for computation of
slopes and deflections in beams - Conjugate beam and strain energy — Maxwell’s reciprocal
theorems.

OBJECTIVE :
To compute slopes and deflections in determinate beams by various methods.

OUTCOMES :
Students will be able to

Calculate the slope and deflection in beams using different methods

DEFLECTION OF BEAMS

Elastic curve of neutral axis

Assuming that the I-beam is symmetric, the neutral axis will be situated at the midsection of
the beam. The neutral axis is defined as the point in a beam where there is neither tension

nor compression forces. So if the beam is loaded uniformly from above, any point above the
neutral axis will be in compression, whereas any point below it will be in tension

However, if the beam is NOT symmetric, then you will have to use the following
methodology to calculate the position of the neutral axis.

1. Calculate the total cross-sectional area of the beam (we shall call this A). Let x denote the
position of the neutral axis from the topmost edge of the top flange of the beam .

2. Divide the I-beam into rectangles and find the area of these rectangles (we shall denote
these areas as Al, A2, and A3 for the top flange, web and bottom flange respectively).
Additionally, find the distance from the edge of the top flange to the midsection of these 3
rectangles  (these distances will be denoted as x1, x2 and x3)

3. Now, to find the position of the neutral axis, the following general formula must be used:
A*x = Al*x1 + A2*x2 + A3*x3

We know all the variables in the above formula, except for x (the position of the neutral axis
from the top edge of the top flange). So it is just a case of rearranging the formula to find x.

4.1 Evaluation of beam deflection and slope

Beam deflection
Static beam equation
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Bending of an Euler-Bernoulli beam. Each cross-section of the beam is at 90 degrees to the
neutral axis.

The Euler-Bernoulli equation describes the relationship between the beam's deflection and
the applied load

d? d?w

dx dx
The curve w(x) describes the deflection w of the beam at some position x (recall that the
beam is modeled as a one-dimensional object). g is a distributed load, in other words a force

per unit length (analogous to pressure being a force per area); it may be a function of x, w, or
other variables.

Note that E is the elastic modulus and that | is the second moment of area. | must be
calculated with respect to the centroidal axis perpendicular to the applied loading. For an
Euler-Bernoulli beam not under any axial loading this axis is called the neutral axis.

Often, w =w(x), q = q(x), and El is a constant, so that:

dtw
EIS— = g(z).

da?

This equation, describing the deflection of a uniform, static beam, is used widely in
engineering practice. Tabulated expressions for the deflection wfor common beam
configurations can be found in engineering handbooks. For more complicated situations the
deflection can be determined by solving the Euler-Bernoulli equation using techniques such
as the "slope deflection method"”, "moment distribution method", "moment area method,
"conjugate beam method”, “the principle of virtual work", "direct integration",

"Castigliano's method", "Macaulay's method" or the "direct stiffness method".
Successive derivatives of w have important meanings:

u! is the deflection.
dw _
dz — ¥ is the slope of the beam.

diw _ 3.
_EITEI =M is the bending moment in the beam.

_d Efdglﬂ) —
dz ( dz? C{:}is the shear force in the beam.

The stresses in a beam can be calculated from the above expressions after the deflection due
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to a given load has been determined.

A number of different sign conventions can be found in the literature on the bending of
beams and care should be taken to maintain consistency.®In this article, the sign convention
has been chosen so the coordinate system is right handed. Forces acting in the
positive x and z directions are assumed positive. The sign of the bending moment is chosen
so that a positive value leads to a tensile stress at the bottom cords. The sign of the shear
force has been chosen such that it matches the sign of the bending moment.

Double integration method

The double integration method is a powerful tool in solving deflection and slope of a beam
at any point because we will be able to get the equation of the elastic curve.

Thus, EI /M =1/y"

Macaulay Method

The starting point for Maucaulay's method is the relation between bending
moment and curvature from Euler-Bernoulli beam theory

d?w
:I:Ef@ =M

This equation'™ is simpler than the fourth-order beam equation and can be integrated twice
to find w if the value of M as a function of x is known. For general loadings, M can be
expressed in the form

M = My(z) + Pi{x — a1) + Polz — ao) + Py{x —aa) + ...

where the quantities R'{x - ﬂ*:'} represent the bending moments due to point loads and the
quantity (T —ai)isa Macaulay bracket defined as

( } 0 if ©< a;
T — ;) = ,
! r—a; 1if r>a;

Ordinarily, when integrating P(x - a) we get

2
/P(I—ﬁ} dr =P %—H-I +C
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However, when integrating expressions containing Macaulay brackets, we have

(z — a)?

fP{:t: —a) dr = PT—l— Chn

with the difference between the two expressions being contained in the constant Cp,. Using
these integration rules makes the calculation of the deflection of Euler-Bernoulli beams
simple in situations where there are multiple point loads and point moments. The Macaulay
method predates more sophisticated concepts such as Dirac delta functions and step
functions but achieves the same outcomes for beam problems.

Example: Simply supported beam with point load

Simply supported beam with a single eccentric concentrated load.

An illustration of the Macaulay method considers a simply supported beam with a single
eccentric concentrated load as shown in the adjacent figure. The first step is to find M. The
reactions at the supports A and C are determined from the balance of forces and moments as

R.-l‘l‘RC:P, LRCZPH-

Therefore Ry = Pb / L and the bending moment at a point D between A and B (0 <x<a) is
given by
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M =Rax=Pbx/L

Using the moment-curvature relation and the Euler-Bernoulli expression for the bending
moment, we have

d?w _ Pbx

El dax? L

Integrating the above equation we get, for 0 <x <a,

dw Pbx?
dr 2L

3
Elw — Phbx

ET

+ 4 (1)

(i)

3
Pa’  carc, ()

6L

For a point D in the region BC (a < x <L), the bending moment is
M =Rax-P(x-a)=Pbx/L-P(x-a)

In Macaulay's approach we use the Macaulay bracket form of the above expression to
represent the fact that a point load has been applied at location B, i.e.,

_Pb:t:
L

M — P{x —a)

Therefore the Euler-Bernoulli beam equation for this region has the form

d*w  Pbx
Efd:tzg =7 — P{x — a)

Integrating the above equation, we get fora<x <L
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Atx=a.

duw .
EI_(H-+) = QL

dr
3
Flw(ay) = ibLa + Dya+ D, (viii)

+ D, (vii)

Comparing equations (iii) & (vii) and (iv) & (viii) we notice that due to continuity at point
B, C; = Dy and C, = D,. The above observation implies that for the two regions considered,
though the equation for bending moment and hence for the curvature are different, the
constants of integration got during successive integration of the equation for curvature for
the two regions are the same.

The above argument holds true for any number/type of discontinuities in the equations for
curvature, provided that in each case the equation retains the term for the subsequent region

in the form (T — @), (x — )", (x — €)" etc. It should be remembered that for any Xx,
giving the quantities within the brackets, as in the above case, -ve should be neglected, and
the calculations should be made considering only the quantities which give +ve sign for the
terms within the brackets.

Reverting back to the problem, we have

d?w _ Pba

Bl dr? L

— Pz — a)

It is obvious that the first term only is to be considered for x <aand both the terms
for x > a and the solution is

EIS" =
dr | 2L

dw  [Pba® 61] _ Plz—a)?

2

[ Pba?
ElTw = _ 6L +C1I+CQ] —

P{x — a)®
6

Note that the constants are placed immediately after the first term to indicate that they go
with the first term when x < a and with both the terms when x > a. The Macaulay brackets
help as a reminder that the quantity on the right is zero when considering points with x < a.
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4.2 Moment area method

Theorems of Area-Moment Method
Theorem |

The change in slope between the tangents drawn to the elastic curve at any two points A and
B is equal to the product of 1/El multiplied by the area of the moment diagram between
these two points.

Theorem |1

The deviation of any point B relative to the tangent drawn to the elastic curve at any other
point A, in a direction perpendicular to the original position of the beam, is equal to the

product of 1/El multiplied by the moment of an area about B of that part of the moment
diagram between points A and B.

Rules of Sign

1. The deviation at any point is positive if the point lies above the tangent, negative if
the point is below the tangent.
Measured from left tangent, if ? is counterclockwise, the change of slope is positive,
negative if ? is clockwise.

Columns — End conditions
Columns -end conditions
What is a Column or Strut?

Any machine member, subjected to the axial compressive loading is called a strut and the
vertical strut is called column
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Fig. 1.1 - Column

The columns are generally categorized in two types: short columns and long columns. The
one with length less than eight times the diameter (or approximate diameter) is called short
column and the one with length more than thirty times the diameter (or approximate
diameter) is called long column.

Ideally, the columns should fail by crushing or compressive
stress and it normally happens for the short columns, however, the long columns, most of
the times, failure occurs by buckling.

Euler’s Buckling Formula

To get the correct results, this formula should only be applied for the long columns. The
buckling load calculated by the Euler formula is given by:

Fbe = (C*?**E*1)/
Equivalent length of a column
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Strength Of Columns

A stick of timber, a bar of iron, etc., when used to sustain end loads which act lengthwise of
the pieces, are called columns, posts, or struts if they are so long that they would bend
before breaking. When they are so short that they would not bend before breaking, they are
called short blocks, and their compressive strengths are computed by means of equation 1.
The strengths of columns cannot, however, be so simply determined, and we now proceed to
explain the method of computing them.

77. End Conditions. The strength of a column depends in part on the way in which its ends
bear, or are joined to other parts of a structure, that is, on its " end conditions." There are
practically but three kinds of end conditions, namely:

1. "Hinge" or "pin" ends,
2. " Flat" or " square " ends, and
3. "Fixed" ends.

(1) When a column is fastened to its support at one end by means of a pin about which the

column could rotate if the other end were free, it is said to be "hinged" or "pinned" at the
former end. Bridge posts or columns are often hinged at the ends.

(2) A column either end of which is flat and perpendicular to its axis and bears on other
parts of the structure at that surface, is said to be "flat" or " square™ at that end.

(3) Columns are sometimes riveted near their ends directly to other parts of the structure and
do not bear directly on their ends; such are called " fixed ended.” A column which bears on
its flat ends is often fastened near the ends to other parts of the structure, and such an end is
also said to be " fixed." The fixing of an end of a column stiffens and therefore strengthens it
more or less, but the strength of a column with fixed ends is computed as though its ends
were flat. Accordingly we have, so far as strength is concerned, the following classes of
columns:

78. Classes of Columns. (1) Both ends hinged or pinned; (2) one end hinged and one flat; (3)
both ends flat.

Other things being the same, columns of these three classes are unequal in strength.
Columns of the first class are the weakest, and those of the third class are the strongest.
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Fig. 46.

70. Cross=sections of Columns. Wooden columns are usually solid, square, rectangular, or
round in section; but sometimes they are "built up” hollow. Cast-iron columns are
practically always made hollow, and rectangular or round in section. Steel columns are
made of single rolled shapes - angles, zees, channels, etc.; but the larger ones are usually
"built up™ of several shapes. Fig. 46, a, for example, represents a cross-section of a "Z-bar"
column; and Fig. 46, b, that of a "channel” column.

80. Radius of Gyration. There is a quantity appearing in almost all formulas for the strength
of columns, which is called "radius of gyration." It depends on the form and extent of the
cross-section of the column, and may be defined as follows:

The radius of gyration of any plane figure (as the section of a column) with respect to any
line, is such a length that the square of this length multiplied by the area of the figure equals
the moment of inertia of the figure with respect to the given line.

Thus, if A denotes the area of a figure; I, its moment of inertia with respect to some line; and
r, the radius: of gyration with respect to that line; then

©)

In the column formulas, the radius of gyration always refers to an axis through the center of
gravity of the cross-section, and usually to that axis with respect to which the radius of
gyration (and moment of inertia) is least. (For an exception, see example 3. Art. 83.) Hence
the radius of gyration in this connection is often called for brevity the "least radius of
gyration," or simply the "least radius."

Examples. 1. Show that the value of the radius of gyration given for the square in Table A,
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page 54, is correct.

The moment of inertia of the square with respect to the axis is 1/12 a4- Since A = a2, then,
by formula 9 above,

| 1
N4 ¢ =N =N\

2. Prove that the value of the radius of gyration given for the hollow square in Table A, page
54, is correct.

The value of the moment of inertia of the square with respect to the axis is 1/12 (a4 - al 4).
Since A=a2-al2,

4.3 Euler equation

A column under a concentric axial load exhibiting the characteristic deformation of buckling
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The eccentricity of the axial force results in a bending moment acting on the beam element.

The ratio of the effective length of a columnto the least radius of gyration of its cross
section is called the slenderness ratio (sometimes expressed with the Greek letter lambda,
?). This ratio affords a means of classifying columns. Slenderness ratio is important for
design considerations. All the following are approximate values used for convenience.

e A shortsteel column is one whose slenderness ratio does not exceed 50; an
intermediate length steel column has a slenderness ratio ranging from about 50 to
200, and are dominated by the strength limit of the material, while a long steel
column may be assumed to have a slenderness ratio greater than 200.

A short concrete column is one having a ratio of unsupported length to least
dimension of the cross section not greater than 10. If the ratio is greater than 10, it is
a long column (sometimes referred to as a slender column).

Timber columns may be classified as short columns if the ratio of the length to least
dimension of the cross section is equal to or less than 10. The dividing line between
intermediate and long timber columns cannot be readily evaluated. One way of
defining the lower limit of long timber columns would be to set it as the smallest
value of the ratio of length to least cross sectional area that would just exceed a
certain constant K of the material. Since K depends on the modulus of elasticity and
the allowable compressive stress parallel to the grain, it can be seen that this
arbitrary limit would vary with the species of the timber. The value of K is given in
most structural handbooks.

If the load on a column is applied through the center of gravity of its cross section, it is
called anaxial load. A load at any other point in the cross section is known as
an eccentric load. A short column under the action of an axial load will fail by direct
compression before it buckles, but a long column loaded in the same manner will fail by
buckling (bending), the buckling effect being so large that the effect of the direct load may
be neglected. The intermediate-length column will fail by a combination of direct
compressive stress and bending.

In 1757, mathematician Leonhard Euler derived a formula that gives the maximum axial
load that a long, slender, ideal column can carry without buckling. An ideal column is one
that is perfectly straight, homogeneous, and free from initial stress. The maximum load,
sometimes called the critical load, causes the column to be in a state of unstable equilibrium;
that is, the introduction of the slightest lateral force will cause the column to fail by
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buckling. The formula derived by Euler for columns with no consideration for lateral forces
Is given below. However, if lateral forces are taken into consideration the value of critical
load remains approximately the same.

F= ﬂ
(KL)?

F = maximum or critical force (vertical load on column),

E = modulus of elasticity,

| = area moment of inertia,

L = unsupported length of column,

K = column effective length factor, whose value depends on the conditions of end
support of the column, as follows.

For both ends pinned (hinged, free to rotate), K = 1.0.

For both ends fixed, K = 0.50.

For one end fixed and the other end pinned, K = 0.699....

For one end fixed and the other end free to move laterally, K = 2.0.
KL is the effective length of the column.

Examination of this formula reveals the following interesting facts with regard to the load-
bearing ability of slender columns.

1. Elasticity and not compressive strength of the materials of the column determines the
critical load.
The critical load is directly proportional to the second moment of area of the cross
section.
The boundary conditions have a considerable effect on the critical load of slender
columns. The boundary conditions determine the mode of bending and the distance
between inflection points on the deflected column. The closer together the inflection
points are, the higher the resulting capacity of the column.
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A demonstration model illustrating the different "Euler” buckling modes. The model shows
how the boundary conditions affect the critical load of a slender column. Notice that each of
the columns are identical, apart from the boundary conditions.

The strength of a column may therefore be increased by distributing the material so as to
increase the moment of inertia. This can be done without increasing the weight of the
column by distributing the material as far from the principal axis of the cross section as
possible, while keeping the material thick enough to prevent local buckling. This bears out
the well-known fact that a tubular section is much more efficient than a solid section for
column service.

Another bit of information that may be gleaned from this equation is the effect of length on
critical load. For a given size column, doubling the unsupported length quarters the
allowable load. The restraint offered by the end connections of a column also affects the
critical load. If the connections are perfectly rigid, the critical load will be four times that for
a similar column where there is no resistance to rotation (hinged at the ends).

Since the moment of inertia of a surface is its area multiplied by the square of a length called
the radius of gyration, the above formula may be rearranged as follows. Using the Euler
formula for hinged ends, and substituting A-r? for |, the following formula results.

F m2E
JFg= — = ——

A (/)
where F / A is the allowable stress of the column, and | / r is the slenderness ratio.

Since structural columns are commonly of intermediate length, and it is impossible to obtain
an ideal column, the Euler formula on its own has little practical application for ordinary
design. Issues that cause deviation from the pure Euler strut behaviour include imperfections
in geometry in combination with plasticity/non-linear stress strain behaviour of the column's
material. Consequently, a number of empirical column formulae have been developed to
agree with test data, all of which embody the slenderness ratio. For design,
appropriate safety factors are introduced into these formulae. One such formular is the Perry
Robertson formula which estimates of the critical buckling load based on an initial (small)
curvature. The Rankine Gordon fomular is also based on eperimental results and surgests
that a strut will buckle at a load Fmax given by:

1 B 1 1
Fmar Fe.+ Fe

where Fe is the euler maximum load and Fc is the maximum compresive load. This formular
typically produces a conservative estimate of Fmax.
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Self-buckling

A free-standing, vertical column, with density ?, Young's modulus E, and radius r, will
buckle under its own weight if its height exceeds a certain critical height; 2]

o2 EI \'*
h’r.':'if: -
4 pgmr?

where g is the acceleration due to gravity, I is the second moment of area of the beam cross
section, and B is the first zero of the Bessel function of the first kind of order -1/3, which is
equal to 1.86635...

Slenderness ratio

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the
following sections, different cases of the struts have been analyzed.

Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load ,,P' this load
,P' produces a deflection ,,y' at a distance ,,x' from one end. Assume that the ends are either
pin jointed or rounded so that there is no moment at either end.

Assumption:

The strut is assumed to be initially straight, the end load being applied axially through
centroid.

In this equation ,,M' is not a function ,x'. Therefore this equation can not be integrated
directly as has been done in the case of deflection of beams by integration method.

Though this equation is in ,,y' but we can't say at this stage where the deflection would be
maximum or minimum.

So the above differential equation can be arranged in the following form
Let us define a operator

D = d/dx

(D2 + n2) y =0 where n2 = P/EI

This is a second order differential equation which has a solution of the form consisting of
complimentary function and particular integral but for the time being we are interested in the
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complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0]
Thus y = A cos (nx) + B sin (nx)

Where A and B are some constants.

Therefore

In order to evaluate the constants A and B let us apply the boundary conditions,
(atx=0;y=0

(iatx=L;y=0

Applying the first boundary condition yields A = 0.

Applying the second boundary condition gives

From the above relationship the least value of P which will cause the strut to buckle, and it is
called the " Euler Crippling Load " Pe from which w obtain.

The interpretation of the above analysis is that for all the values of the load P, other than
those which make sin nL = 0; the strut will remain perfectly straight since

y=BsinnL=0

For the particular value of

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection
which it suffers will be maintained. This is subjected to the limitation that ,,L' remains
sensibly constant and in practice slight increase in load at the critical value will cause the
deflection to increase appreciably until the material fails by yielding.

Further it should be noted that the deflection is not proportional to load, and this applies to
all strut problems; like wise it will be found that the maximum stress is not proportional to
load.

The solution chosen of nL = p is just one particular solution; the solutions nL= 2p, 3p, 5p etc
are equally valid mathematically and they do, infact, produce values of ,Pe' which are
equally valid for modes of buckling of strut different from that of a simple bow.
Theoretically therefore, there are an infinite number of values of Pe , each corresponding
with a different mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest critical




load producing the single bow buckling condition.

The solution nL = 2p produces buckling in two half — waves, 3p in three half-waves etc.

If load is applied sufficiently quickly to the strut, then it is possible to pass through the
fundamental mode and to achieve at least one of the other modes which are theoretically
possible. In practical loading situations, however, this is rarely achieved since the high stress
associated with the first critical condition generally ensures immediate collapse.
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Unit - IV
BEAM DEFLECTION
PART A
. Write the maximum value of deflection for a cantilever beam of length L,
constant EIl and carrying concentrated load W at the end.
Maximum deflection at the end of a cantilever due to the load =WL3/3EI
. What are the different methods used for finding deflection and slope of
beams?
Double integration method
Mecaulay‘s method
Strain energy method
Moment area method
Unit load method
. State the two theorems in moment area method. (May 2014)
Mohr‘s Theorem-I: the angle between tangents at any two points A and B onThe
bend beam is equal to total area of the corresponding position of the bending

moment diagram divided by EI.

Mohr‘s Theorem-I11: The deviation of B from the tangent at A is equal to the

statically moment of the B.M.D. area between A and B with respect to B divided
by ELI.

What is meant by elastic curve?

The deflected shape of a beam under load is called elastic curve of the beam,
Within elastic limit.

When Macaulay‘s method is preferred?

This method is preferred for determining the deflections of a beam subjected
to several concentrated loads or a discontinuous load.

What are the boundary conditions for a cantilever beam?

The boundary conditions for a cantilever beam are:

(i) Deflection at the fixed end is zero.

(if)Slope is zero at the fixed end.

7. What is meant by Double-Integration method? (May 2013)
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Double-integration method is a method of finding deflection and slope of a
Bent beam. In this method the differential equation of curvature of bent beam, El
d’y/dx*=M
M is integrated once to get slope and twice to get deflection. Here the constants of
integration C1 and C2 are evaluated from known boundary condition.
8. What is Modulus of resilience? (May/Jun 2013)
It is the proof resilience of the material per unit volume.
Modulus of resilience= proof resilience / Volume of the body
9. What are the limitations of double integration method? (Dec 2014)
1. Double integration method can be used only for beams with uniform cross
section
2. Itis useful only in cases where there is no change in loading.
10. Define strain energy. (Dec 2014)
Strain energy is the energy absorbed or stored by a member when work is done on

it to deform it.
11. State Maxwell’s reciprocal theorem.

The work done by the first system of loads due to displacements caused by a
second system of loads equal the work done by the second system of loads due to
displacemrnts caused by the first system of loads.

12. Write down the equation for the maximum deflection of a cantilever beam

carring a central point load W.

w L3
DEFLECTION Yc = 28E]



http://easyengineering.net
http://easyengineering.net

ONIT-Ov
Def Lz cTlon OF BEAMS
PART B
A wveaw Of e ngth bm U Sim Pt"j U {”'pu/]{ ed akt the

oond Caruia €4 twoo pownk (@od s =k 48 KN owd

1 v cond 2 v

( L‘yy’\, e

',;lf‘(tu\.'/" &
e ac h ,:"‘pad A

unde 1

|

ﬂﬂ' bo KN

e —r
A ., 284
| T

<olu fion

i <2 ‘»)Y\ oM.

The Fnee bod y OFIQCJY‘:) %)
P ;\‘! A - O

~43(1) —4ol3) +Ralb)=zo0

Rp = 28 kN
4o+ Rg= O

— 6O K ~N
Adigstarmce

Le ctienm sz{wﬁ

= Yo o)



http://easyengineering.net
http://easyengineering.net

= A o
E - (({;5 --133. 232 )—<|\/‘ML
C é
/

2
1 < (Y000 KN ™M

) . dlj |
1700 € (g;—>( - -183%,33

Ay
A

-3
Qu3XxIo Hnadlans



http://easyengineering.net
http://easyengineering.net

s Tt X (o'%j*m d

o]
= =b; 086,

- O O:Sb)

=

~1ox 12 ~163.33x)

- -9. 02 X(6~mM

A, 62 mm,

11000 Yp ='0%2-163. 33X 3

- -0.016F M

5 = (6.7 o

Dsing  Conjugate e am mothod , detonming the

(idslop e ot each end Cond unden each

l O (.l&
e AT (F»cf[C,('['r(‘m undey each load . Jo the Jgiver

5

L2 aumn ";.L\c O ila) - QU Y@ ‘/TOJ(Q Fz- 2Z2xto0o N ['f‘ m?

[O 3 28 h’\kf

-4 (3) +rp(4$)-0

RPD> = 3.15 kN



http://easyengineering.net
http://easyengineering.net

Ra - 3-l. +rD

R A

<,)' )
2. X ilo Yl()\(’

[ 72
) x 10 2N m

\ %
x 16 NN

SEY) N R ) :
) J AR ¢ f\«,LJ,;}*L/»Lm and ((,\vﬂj (A ( ’(\( o
ET ‘ ’

oMe Sh econ N - j ")

4

~l.b2zs x1© M

4 _|
-l.2@1s5xIO M

fon

-Rp* 4 A ( //2 X1 x1 ,64S x10 *_) x(*’v/j_ﬂ)*<(~é’)€)ﬁbi/‘2>x&
4

fp xt x1.875 X o

X(5 ¥ '/5):, O

+ (2% 2x 0. 25 X(8 +) x (14 4/3)+<

Rp= 268175 167,

3 ftj -0

. B Ry +\Vg X1 x 1y 6as X (0 "4 . 462A5X (0 s>“$)—« Yo

) e o /;’\ 5
X2 X0 .25 x 10 xl/iytx;..?'(‘:-wo#;o

P~

R - 92.56325 y(o»%



http://easyengineering.net
http://easyengineering.net

L7

}-}l,«.\]"(;’ ak A - ‘:‘}v(go Al { ac onN OT}“JUCJ"{ <

o v

chear fonce ak © orn Conju Ca,a e blam

X 1O 4 na_d

Sheay HJonce at B on Cor’?}‘ﬁqfu

_ -4 :
- 2.66928 X (06 X' XIxXI].695x%x10

o - 4
-1, T5 X 10 Nod



http://easyengineering.net
http://easyengineering.net

~ ) | i
Al 0 c - Shoox fonce ak c Om (Dr\ju. qw €
f)[O”,)( <

. ~ 4 _
o . bg1sxi0 -l X X[,

,‘ 'f 6 X IO.' “\ - 5 | C)VG‘{

Deflechion Ok B ~ %Qno?f’r)ﬂ moment at B C)nCDQjLL‘ij@

bo amn
g = ~ 2.562S X168 Ty a1l x X628 16 Tx /g
-4
- -5 ., 2914 X o M
= -0.329mMm

Ygp= 0.239 mmy

Deflection  ar ¢ - Bé?hdma rMorne Nt at ¢ oM Ca@uc_jqw

bQ am

~ 4 ,
Yo = —-2. 6815 x© )(/>*Q/2X(X).8‘16x10'4>%’/3

9 «375 x 16~ %

A = - = \\/
Y =8-2875 rernsk

y Deotermre the sbrain €Ne¥3yYy due bo solf

‘ Ly o Cyoas Wetion N g
tthﬁh‘c of A ban OF (

\'\()\li mg ﬂpﬁﬁ{b \ X ! V\)h;Ch ‘(/3 %Ol’ﬁfjrh(j Ye 71 f,l.(‘f,\u_rj O'[OCOVL‘
f;’oluhlm'

Conaidey on celement at a distounce ot

o £ho oty oy ond o©of the Han as <hown w
o -

Ha



http://easyengineering.net
http://easyengineering.net

Let= dx! be the thickness of the olomont.

e =X ﬁ LFUﬁ | o — ¢ Lo { | QR tod L'P(;‘h L“(j

( h(? (,UQJ\%ht G‘( fh() ba 7 Of (()mﬁ("’) \')( '
[
oy iyt D . f T
Lok Wy = Waight of +the  ban Of (ength ‘n ' L_L_

7AS

- \/ (;y( wwme Cf)‘{ t pr b(M o {w (7{7) r/}(_{ F‘) . 5 toel /j})‘ af
) —j ([rly[_ Vv ('){ L(m[)

[
Pax .
As a =nesult & EhiS weight , the Po?’l(ffm el

Wil expenience A small elengation ‘ds’ ten

o h w F;O 7T oY) |, Al - (YIC) nja Hon e b

) ‘?m,‘j'( h Of %

At - i ij,{fg

o x

il A
YO 1 5 aAA ) ” - V) — ,
yr e e ~ = We “’jlﬂ( ac ¢ ’,"j orém > /’ﬁlf\'r,, Af-v 9%

Avrea of =se ki v

=z ()/\ p d //\
P

- S

\) ; R
/O S ”3 - yhﬁcjd L(u{j ’ L { 77*17& DD ) (\‘X

(45)

Stiiaun



http://easyengineering.net
http://easyengineering.net

Noew the stnaih enengy almzd 5 ‘rvc\yﬂ,(m »
s given by

Av = Avaxa,ﬁg Wéi%hﬁ X Honﬁa{‘m

1/ ds =[17, xPax ] x Pxc
L.) Y\AJX]V 5 L/AY /\XJ X xgéf(_

Uy xPPAax Ax
=

Total stman  eneigy stonad wiEhin the ban due to

SolH Luo,i(jhﬁ \\/\) / AS obtawm ed Latj f_[ thQ{j{Q(,iwg

S

albove Qgttta»f"(i% ﬁmﬁ O to L.
L L

7 2 .
A = jdv: J’/zxp A Jx/e
O

(o]

/I8

| By T
iy, BB f%zm 1/215/\\ /5>
E .

3 e g
= = //\PZ = .

3 é [:‘__

Q’ N
Ve HP L

GF

Dovtle dntegnation hethod
A A 2w ,P,ong Canrtilevoy Pl up of i
tube Se chron 150 mmM T —— .

and Lo mm thick (S A oo ded as abown w

= (j ‘



http://easyengineering.net
http://easyengineering.net

Talke € - 200 GPA. Colculate

) The value of wu, So that Eha mon( bo n.-~,!.‘r>3
:j'( YO0 55 Tu_,) 1(%]‘ ™~ Pa .
U,")(]VP\(.J mnT”’ﬂle Cipf(p(“l[m —r(v ( h@ (.()C](—s(ir)tj
Aol Hen
7
Lase(),

f\‘APV\}Y )5(}("’)"(’\!)(@(,6@

= 5000 W

" W/éz, (Ddﬁ oY)

= Tey ( st ~130%)

6 o
T -to. 36X 10 mm4

oL /

\/' . F}/C‘,\l . l”)_D/@J - 15 mm .

Thevyofore,

[
f,,i L-4 =lseomm | 4 = y00mn |
o -1

Double C‘“‘nhgcjwr@{ﬁcm Method.-

(1) De [ [O & {,l. o ak Cr Q0 erioh

e to the {oa d 4, 33 KN alone



http://easyengineering.net
http://easyengineering.net

, = =t 5 Load
() Me locfionm at oo end e to N

olone

-a)®  w, (L-a)?

3 2
A, 23 x 10" X2 000

gin

2.33 X (62 X (500

) i o 2} N § () B
2x0 00 X 16°X (0,86X (0 3X200 X(02x(0.86 x (0

2

9.3 y02 x(500
S SNSRI Y,

7_ ) 2 2
D XROGO X 10X 10,86 X110

+

i.}wa Cé?n Z (/[/QL' an be[«m 5% own In /L"j
Fhe Aeflecleon Ond Srope at 4. free oncdf.

EL = (0000 (N L



http://easyengineering.net
http://easyengineering.net

My =142 ~ 5
3 3’1 =54

Slope ¢ = A tA2 tAx

2 [
) {/ELWL /El HféL’

Beticctron a& ¢’
= B A P ¥pg ’73

-~

~ l . ’
L A

ll-s0

25-Sul’T
Slope - = = 5K LEHW((
0.8

Jec (‘I‘O{\ =
E d% 30,000

=3 82xlo'm,

PART C ,
A kenSion banis maecte @ fwo Panke . fhe Lengih !
Fask pank 19 300Cm and Gua s 20cm* While Fhe Second
Pank g longth 200Cm  Gmal anegd  3oem An Gxeal  Loeco !
Qo \§  Gradlualy Copptied . Fudd the  bokel  Shraw enongy
@)tcﬁucj d p rhe ban and (ompme the Value  toeth



http://easyengineering.net
http://easyengineering.net

i}\dé ()bkd,ﬁr) [h & (jf); j«CYN‘) [’)5{,1 ‘-a Scm e ,(jQ"fLS Eh a,\Of

haveng  Same volume Uneten  Same toad . [cice

E2 2% Nimpl,
i [
(hiven Adata | EEN

lf = i.?OOC’() e BQCCh’)f()
&
A, = ‘?Oc,r\r} — Qo00MM

v, = Pied, =2000x3000

-

= E'X'wémm‘?.

Ly = Q@oem = 2000 MWV)
L ) 2

Ay = 30¢m =3000 MM

N = A2 ¥y = 30oDH2rooO

2 bx wémmg

P> Goen = 9 ox Lo

i S

[6 fend
(OL&) St‘f&u‘n gn@\rg% @m&uad [0 kEbhe bm

(o (oopane Skvatn erengy  Preclued [ Eh s
ban and  Un )fcrm bdfl
(?8}[0& bE\Dh

Qox¢. gt

20e0

2 2
y EY G 2N i O] - N
Skyaiwn €nengy U, <V, = 45 xé»@é
2E 222 xS

- 30335 N-MM = 20.3Nm).

U, = 3¢-3IN-mM,



http://easyengineering.net
http://easyengineering.net

Skvain entngy  Skoved 0a Unikeed ban
V= Vi4Va
é“@é46ka.:izxw€nm%

= kadlp
30004+ 2000 = Soooc Om,

V=axL

| 2000000 =0 % 5000

2
A = 2hooMmm
4000 o

St) é/)/j (f) UD}"OYI‘/) M’( O‘, /F)E\ = Q.L\CO

= 3?5 M/nﬂom%

= 2
Skvaen €nengy Stoved n Usitoym ban O = O
| 2E
2
-— » f 75
= o A 12000000

2 X2 xlo®
— b 25 §FN —0nm

O = 42-\§3N-m

Shratn eneyy (n Given ban

SEkvawn ¢enengy (n Oniform hen

fLenutkE
) = Hd-8f=H)

SEvzun enetgy =1-03

Rato Y



http://easyengineering.net
http://easyengineering.net

UNIT V - THIN CYLINDERS, SPHERES AND
THICK CYLINDERS

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal
stresses and deformation in thin and thick cylinders — spherical shells subjected to internal
pressure —Deformation in spherical shells — Lame’s theorem.

OBJECTIVE:

To study the stresses and deformations induced in thin and thick shells.

OUTCOMES:
Students will be able to
Analyze and design thin and thick shells for the applied internal and external pressures

5.1 Triaxial Stress, Biaxial Stress, and Uniaxial Stress

Triaxial stress refers to a condition where only normal stresses act on an element and all
shear stresses (tyy, ty;, andty,) are zero. An example of a triaxial stress state is hydrostatic
pressure acting on a small element submerged in a liquid.

A two-dimensional state of stress in which only two normal stresses are present is
called biaxial stress. Likewise, a one-dimensional state of stress in which normal stresses act
along one direction only is called a uniaxial stress state. Y

Pure Shear T Tyx

—

) . ) T
Pure shear refers to a stress state in which an element is J r Xy

subjected to plane shearing stresses only, as shown in
Figure 3. Pure shear occurs in elements of a circular shaft T —» X

- XY  ge——
under a torsion load. Tyx

Figure 3. Element in pure shear
Thin cylindrical and spherical shells

Thin-walled assumption

For the thin-walled assumption to be valid the vessel must have a wall thickness of no more
than about one-tenth (often cited as one twentieth) of its radius. This allows for treating the
wall as a surface, and subsequently using the Young-Laplace equation for estimating the
hoop stress created by an internal pressure on a thin wall cylindrical pressure vessel:

Pr
Ty

f_. (for a cylinder)
Pr

g (for a sphere)
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OUTCOMES:

SHARVEN M P
Typewritten text
Analyze and design thin and thick shells for the applied internal and external pressures

MECH-CAT
Line


o Pisthe internal pressure

o tisthe wall thickness

e risthe inside radius of the cylinder.
e g isthe hoop stress.

The hoop stress equation for thin shells is also approximately valid for spherical vessels,
including plant cells and bacteria in which the internalturgor pressure may reach several
atmospheres.

Inch-pound-second system (IPS) units for P are pounds-force per square inch (psi). Units
for t, and d are inches (in). Sl units for P are pascals (Pa), while t and d=2r are in meters (m).

When the vessel has closed ends the internal pressure acts on them to develop a force along

the axis of the cylinder. This is known as the axial stress and is usually less than the hoop
stress.

7. =

F Pd?
4

(d+2t)? — &2
Though this may be approximated to

J_Pr
9

Also in this situation a radial stress @+ is developed and may be estimated in thin walled
cylinders as:

e

O, = 5

5.2 Deformation in thin cylindrical and spherical shells
Thick cylinders and shells

Thick Walled Cylinders

Under the action of radial Pressures at the surfaces, the three Principal Stresses will be . These Stresses
may be expected to vary over any cross-section and equations will be found which give their variation
with the radius r.

It is assumed that the longitudinal Strain e is constant. This implies that the cross-section remains plain
after straining and that this will be true for sections remote from any end fixing.

Let u be the radial shift at a radius r. i.e. After Straining the radius r becomes (r + u). and it should be
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noted that u is small compared to r.

T I

Unstrained

(p+3p)(r+dr)dé

Internal Pressure Only
Pressure Vessels are found in all sorts of engineering applications. If it assumed that the Internal

Pressure is  at a diameter of  and that the external pressure is zero ( Atmospheric) at a diameter
then using equation (22)

The Error In The ""thin Cylinder" Formula
If the thickness of the cylinder walls is t then and this can be substituted into equation
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5.4 Principal planes and stresses
Principal stresses and planes
Principal Directions, Principal Stress

The normal stresses ([Jy and [Jy) and the shear stress (Cyy) vary smoothly with respect to the rotation angle
accordance with the coordinate transformation equations. There exist a couple of particular angles where the stresses
take on special values.

First, there exists an angle [, where the shear stress [y, becomes zero. That angle is found by setting [1,y to zero in
the above shear transformation equation and solving for (1 (set equal to (). The result is,

The angle [, defines the principal directions where the only stresses are normal stresses. These stresses are
called principal stresses and are found from the original stresses (expressed in the X,y,z directions) via,

Ty Ty Ox ~0p 2 2
017 = ; == : t gy

The transformation to the principal directions can be illustrated as:

2

\

(W] JU

] ff /
up
o) /

Principal stresses

o,

Stresses in given
coordinate system

Maximum Shear Stress Direction
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Another important angle, s, is[where the maximum shear stress occurs. This is found by finding the maximum of the
shear stress transformation equation, and solving for :
q Y 1. The result is,

O — O
tan 268, =———
211},

=8, =8, £45

The maximum shear stress is equal to one-half the difference between the two principal stresses,

2
O — 7 —
Timax =\/[ x 5 }’] +TI_}’2 =61 252

The transformation to the maximum shear stress direction can be illustrated as:

¥ ¥ /

o, a ‘--./ { X
Call O /* U}}_Jj(:
Txy : —

Stresses in given
coordinate system

Maximum shear stress

5.5 Mohr’s circle for biaxial stresses

p find the maximum and minimum normal stresses throughout the entire range of angles,

e can easily take the first derivative of (3) with respect to theta, set it to zero, and solve for
the angle. This will give what is called the principal plane on which the principal
sresses act. If this all sounds overly complicated... you're right! Why not just use the tried
ahd true terminology "maximizing and minimizing the function” instead of inventing these
tyvo new terms with unrelated and unclear meaning? Well.... that's civil engineers for you.

90X 4 thetay = ~(OX - Oy)sin(2theta) + 2Txy cos(2theta) = 0
tan 2theta, = (2txy)/(Ox - Oy) (5)




Where theta, defines the orientation of the principal planes, and its two values, differing by
180°, are called the principal angles.

Now is where we begin to get into the unnecessary jargon. All the excess baggage some engineer created to
make it so that utilizing these relationships would not require higher math. This (and many other examples
of engineer idioticy) most likely stems from the fact that most engineers slept through their higher level
math classes, and suffer from acute mathematical insecurities (and probably rightly so.) It's these abstract
constructions which attempt to simplify the work, yet ultimately make it more difficult for those of us more
mathematically inclined, that really piss me off. If you represent

equation (5) geometrically with a 90° triangle, (left), we can obtain

general formulas for the principal stresses. First, we note that the

hypotenuse of the triangle is,

R = SQR{ [(Ox - Oy)/2]* + Txy’} (6)

The quantity R is defined as a positive number, and, like
the other two sides of the triangle, has the completely
meaningless units of "stress". From the triangle we obtain two additional relations:

cos(2theta,) = (Ox - Oy)/(2R) sin(2theta,) = Txy/R (7, 8)

Which is all very well and good, because it actually leads to the USEFUL equation for the
general formula for the principal stresses:

0., = (Ox + 0y)/2 *I-R 9)

But such usefulness is short lived as we approach MOHR'S CIRCLE..... Actually, Mohr's
circle isn't all that bad in many cases. It supplies its practitioners a clever and easy way to
compute otherwise hairy moments of inertia, allows strain analyses to be handled quickly.
However, in this case, its application seems to me a bit of a stretch, and what you wind up
with is this hopelessly complicated graphical representation that seems so much more
difficult than the original equations (3) and (4) that it's hardly worth the effort to learn at all.
HOWEVER.... because certain bastich elements in the civil engineering department here at
the U of A are requiring their students (many of whom, myself included, will NEVER use
these relationships again after the class has ended) to use this technique in spite of the fact
that we know of a perfectly valid and correct alternative.

The equations of Mohr's circle can be derived from the transformation equations (3) and (4).
By simply rearranging the first equation, we find that the two expressions comprise the
equation of a circle in parametric form.
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0x; - (Ox + Oy)/2 = [(Ox - Oy)/2]cos(2theta) + Txy sin(2theta) (20)
Txuy: = - {(Ox - Oy)/2}sin(2theta) + Txy cos(2theta) (12)

To eliminate the 2theta parameter, we square each relationship and add the two equations together. This
ultimately leads to (after simplification),

(Oxq - {Ox + Oy}2)? + Txyi® = {(Ox - Oy)/2}? + Txy? (12)

However, by resubstitution of equation (6) and by recognizing that the average stress value between the X
and Y axis, Oave, is,

Oave = (Ox + Qy)/2 (12.a)
equation (12) can be simplified into the semi friendly equation of a circle in standard algebraic form,

(Ox, - Oave)? + Txyy;? = R? (13)

However, don't let this nice looking equation for a circle fool you. Hidden in this simple equation are some
of the most hairy, complicated, and down-right nasty relationships I think I have ever encountered. This
makes my studies in the Frobenious theorem for solving differential equations with non-constant singular
coefficients seem tame.

< 0y

Oy | Ble=90")

With Ox, Oy, and Txy known, the procedure for constructing Mohr's circle is as follows:




. Draw a set of coordinate axis with Ox; and Tx;y; (with T positive downwards. From
now on, for simplicity, O and T will represent their respective axis.)

. The center of the circle, by equation (13) is located at T=0 and O=0ave. Oave is
nothing more than (12.a), so the center of the circle is located at:

C =(Ox + Oy)/2

. Locate point A, representing the stress conditions on the X face of the normal oriented
element (Figure 1, extreme top left, non-rotated section). Plot coordinates O = Ox, T =
Txy. Here, it is important to note that at point A, the inclination angle, theta, is zero.

. Locate point B, representing the stress conditions on the Y face of the normal oriented
element (Figure 1, again, extreme top left, non-rotated section). Again, plot
coordinates O = Oy, T = Txy. Note that this point, B, will be diametrically opposite
from point A. Also note, that the angle of inclination at B, theta, will be 90°, as it
could also be achieved on the X face by rotating it by 90°.

. Draw a line from point A to point B through the center C. This line is a diameter of
the circle.

6. Using point C as the center, draw Mohr's circle through points A and B. The
circle will have a radius of R, which is the same R as in equation (6).

Now that you have Mohr's circle drawn, you can use it to analyze the problem.
(Remember, that this method is every bit as valid as simply using equations (3) and (4)
above, except it requires less mathematical skill, and many more memorized
relationships.)

01 ,, representing the maximum and minimum normal stresses and their respective angles
away from point A (where theta = 0°) can be found by simply looking at the O values when
T = 0. In the drawing above, O; represents the maximum, and O, the minimum.
Furthermore, Taumin, representing the maximum and minimum shear stresses and their
respected angles can be found by locating the T values when O = Oave. At this point, T is
simply equal to the radius, R, or equation (6).

In addition to these helpful points, all other possible points for the shear and normal stresses
can be found on this circle. In order to find another value of Ox, Oy for a given rotation,
one must simply start at the A and B points (A representing the Ox value and B, the Oy
value), and rotate in a positive theta direction (by the orientation shown above, thisis in a
counterclockwise direction, in keeping with the right hand rule) for 2theta (from equations
(3) and (4) above). The resulting points, D and D', will yield the Ox, Txy, and Oy, Txy
(respectively) for that rotation.

As | have likely mentioned before (likely because, | can't really recall) to me this seems all
very abstract and difficult to use. However, the aforementioned bastiches will be requiring
this on my upcoming test, so | felt a need to more fully understand it. Granted, | still don't
understand it as fully as | would hope, but it ought to be enough to get me through this one,
insignificant little test.




P.S.: I apologize for my editorializing and opinionated presentation of this topic. | rarely
do this when | analyze problems | don't understand (even when | do not like the method,
such as the Lewis Dot structure). This time, however, | have some very strong feelings
about my predicament. Also, in all fairness, if you were given the problem where O1 =
02 and Tmax = 0, i.e. the Mohr's circle was simply a little dot with R = 0, using the
Mohr's circle method would arrive you at any and all answers much quicker than using
equations (3) and (4). However, | don't think this extreme simplification of one special
case warrants the abstraction being a required bit of knowledge for civil engineers.
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UNIT IV DEFLECTION OF BEAMS

Double Integration method — Macaulay’s method — Area moment method for computation of slopes and
deflections in beams - Conjugate beam and strain energy — Maxwell’s reciprocal theorems.

PART-A(2Marks)

Q.No

Questions

BT Level

Competence

List the important methods used to find slope and deflection.

(BT1)

Remember

Where does the maximum deflection occur in cantilever beam?

(BT1)

Remember

Where does the maximum deflection occur for simply supported beam
loaded symmetrically about mid-point and having same cross- section
through their length?

(BT1)

Remember

Tensile load = 30 kN; length = 1m; width = 25 mm; thickness = 20 mm.
calculate the stored stain energy. Take E = 200 GPa.

(BT3)

Application

Classify the types of loading on a body.

(BT3)

Application

Define modulus of resilience.

(BT1)

Remember

Define proof resilience.

(BT1)

Remember

Discuss the advantages of macaulay’s method.

(BT2)

Understand

Give the disadvantage of double integration method.

(BT2)

Understand

Explain the conjugate beam method.

(BT4)

Analyze

Define strain energy.

(BT1)

Remember

Express the units of slope and deflection?

(BT2)

Understand

Express the value of slope at the free end of a cantilever beam of constant
El

(BT2)

Understand

Formulate the expression for the stress induced in a body when impact load
is applied.

(BT6)

Create

Calculate the maximum deflection of a simply supported beam carrying a
point load of 100 KN at mid span. Span = 6 m, E= 20000 kN/m?.

(BT3)

Application

Modify the cantilever beam with a point load at free end into conjugate
beam.

(BT6)

Create

Compare the moment area method with conjugate beam method for finding
the deflection of a simply supported beam with UDL over the entire span.

(BTS5)

Evaluate

Explain Mohr’s first theorem.

(BT4)

Analyze

Analyze the strain energy method.

(BT4)

Analyze

A cantilever beam of spring 2 m is carrying a point load of 20 kN at its free
end. Measure the slope at the free end. Assume El = 12 x 103 kN-m?.

(BT5)

Evaluate




PART-B(13 Marks)

Questions

A beam AB of length 8 m is simply supported at its ends and carries
two point loads of 50 kN and 40 kN at a distance of 2 m and 5 m
respectively from left support A. Determine, deflection under each
load, maximum deflection and the position at which maximum
deflection occurs. Take E = 2 x 10° N/mm? and | = 8.5 X10° mm”.

Explain the Macaulay’s method for finding the slope and deflection
of beams with example.

(@) A beam is simply supported at its ends over a span of 10 m and
carries two concentrated loads of 100 kN and 60 kN at a distance of 2
m and 5 m respectively from the left support. Calculate (i) slope at
the left support (ii) slope and deflection under the 100 kN load.
Assume El = 36 x 104 kN-m°,

(b) Explain the moment area method for finding the deflection and
slope of beams with example.

(a) Explain the conjugate beam method for finding the deflection of
beams with example.

(b) A horizontal beam is freely supported at its ends 8m apart and
carries a UDL of 15 kN/m over the entire span. Find the maximum
deflection. Take E = 2 x 10° N/mm?and | = 2 x 10° mm*.

Explain double integration method for finding deflection of beams
with example.

Simply supported beam of length 8m is loaded as shown in fig.
Calculate the slope and deflection at each point using Moment area
method. Take E = 2.1 x 10° N/mm?and | = 78 x 10° mm®.

(@) A simply supported beam of uniform flexural rigidity EI and span
I, carries two symmetrically placed loads P at one—third of the span
from each end. Find the slope at the supports and the deflection at
mid—span. Use moment area theorems.

(b) Derive the expression for strain energy stored in a body when load
is applied with impact.

Unde
rstand

A circular bar of 60mm diameter and 7m long subjected to gradually
applied load of 80 kN. Calculate i) Stretch in the rod, ii) Stress in the
rod and iii) Strain energy absorbed by the rod. E = 2x10° N/mm?.

Appli
cation

A unknown weight falls through a height of 1cm on a collar rigidly
attached to lower end of a vertical bar 5000mm long and 600mm? in
section. If the maximum extension of the rod is to be 0.002m, what is
the corresponding stress and magnitude of the unknown weight?
Take E = 2x10° N/mm?.

Analy
ze

(@) A cantilever AB, 2m long, is carrying a load of 20 kN at free end
and 30 kN at a distance 1m from the free end. Find the slope and
deflection at free end. Take E = 200 GPa and | = 150 x 10° mm®*.

Evalu
ate

(b) Derive the expression for strain energy stored in a body when load
is applied suddenly.

Unde
rstand




A simply supported beam AB of span 4m, carrying a load of 100 kN Appli
at the mid span C has cross sectional moment of inertia 24 x 10° mm?* cation
over the left half of the span and 48 x 10° mm* over the right half.
Find the slope at two supports and the deflection under the load. Take
E =200 GPa.

(a) A simply supported beam of length 4m is loaded with a point load
of 10kN and 20kN at a distance of 1m and 2m respectively from the
left support. The beam is 200mm wide and 400mm deep. Find the
slopes at the supports, deflections under the loads and location and
magnitude of the maximum deflections using Macualay’s method..
Take E=2x10* N/mm?,

(b) State and explain Maxwell’s reciprocal theorem. Reme
mber
(a) A simply supported beam subjected to uniformly distributed load Evalu
of w kN/m for the entire span. Calculate the maximum deflection by ate
double integration method.
(b) Derive the expression for strain energy stored in a body due to Unde
shear stress. rstand
A simply supported beam AB of span 5m carries a point load of 40 Appli
kN at its centre. The value of moment of inertia for the left half is 2 x cation
10® mm* and for the right half portion is 4 x 108 mm®*. Find the slopes
at the two supports and deflection under the load. Take E =
200GN/m’,

y PART-C(15 Marks)
Questions BT Level| Competence

(@) A 3 m long cantilever of uniform rectangular cross—section 150 (BT3) | Applicatio
mm wide and 300 mm deep is loaded with a point load of 3 kN at n
the free end and a UDL of 2 kKN/m over the entire length. Find the
maximum deflection. E = 210 kN/mm2. Use Macaulay’s method.
(b) Describe the terms Resilience, Proof resilience and modulus of Remembe
resilience. r
(@) A simply supported beam of span 6 m is subjected to a udl of 2 Analyze
kN/m over the entire span and a point load of 3 kN at 4 m from the
left support. Find the deflection under the point load in terms of ELl.
Use strain energy method.

(b) Explain any one theorem in the moment area method. Remembe
r

A tension bar is made of two parts. The length of first part is Evaluate
3000mm and area is 2000mm?, while the second part is of length
2000mm and area 3000mm?. An axial load of 90kN is gradually
applied. Find the total strain energy produced in the bar and
compare this value with that obtained in a uniform bar of same
length and having same volume under same load. Take E = 2 x 10°
N/mm?.

A simply supported beam of length 5m carries a point load of 5kN
at a distance of 3m from the left end. If E = 2 x 10° N/mm?and | =
10 mm?®, determine the slope at the left support and deflection
under the point load using conjugate beam method.




UNIT -V
THIN CYLINDER, SPHERES AND THICK CYLINDER

1. Distinguish between thin walled cylinder and thick walled cylinder?

In thin walled cylinder, thickness of the wall of the cylindrical vessel is less
than1/15 to 1/20 of its internal diameter. Stress distribution is uniform over thethickness
of the wall. If the ratio of thickness to its internal diameter is more than 1/20, then
cylindrical shell is known as thick cylinders. The stress distribution is not uniform over
the thickness of the wall.

2. What are the two type of stress developed in thin cylinder subjected to internal
pressure. (Dec 2011,May 2012)

1. Hoop stress

2. Longitudinal stress
3. Define hoop and longitudinal stress (May 2013,Dec 2014)

Hoop stress:

The stress acting along the circumference of the cylinder is called circumference

or hoop stress
Longitudinal stress:
The stress acting along the length of the cylinder is known as longitudinal stress
4. For what purpose are the cylindrical and spherical shells used?
The cylindrical and spherical shells are used generally as containers for storage of
liquids and gases under pressure.
5. What are assumptions made in the analysis of thin cylinders?
Radial stress is negligible.
Hoop stress is constant along the thickness of theshell.
Material obeys Hooke‘s law.
Material is homogeneous and isotropic.
6. Write the change in diameter and change in length of a thin cylindrical shell due
to internal pressure, P.
Change in diameter 6d=PD? /2tE(1-1/2m)
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Change in length 8l= PDI /2tE(1/2-1/m)
Where P=internal pressure of fluid D= diameter of the
cylindrical shell
t = thickness of the cylindrical shell L= length of
cylindrical
1/m = Poisson ratio

7. What are the assumptions in lames theorem?

1) The material is homogeneous and isotropic
i) The material is stressed within elastic limit
8. How many stresses are developed in thick cylinders? Name them.( May/Jun 2012)

Three types of stresses are developed in thick cylinders.
I)Radial stress
ii)Hoop stress
i) Longitudinal stress
9. Write lames equation to find out stress in thick cylinder(Dec 2014)

Radial stress 5, =b/r’ -a

Hoop stress o, = b/r* +a

10. In a thick cylinder will the radial stress vary over the thickness of wall?

Yes, in the thick cylinder radial stress is maximum at inner and minimum at the
outer radius
11. Define radial pressure in thin cylinder.

The radial stress for a thick-walled cylinder is equal and opposite to the gauge
pressure on the inside surface, and zero on the outside surface. The circumferential stress
and longitudinal stresses are usually much larger for pressure vessels, and so for thin-
walled instances, radial stress is usually neglected.

12. How does a thin cylinder fail due to internal fluid pressure?

Failure of materials under combined tensile and shear stresses is not simple to predict.
Maximum Principal Stress Theory

Component fails when one of the principal stresses exceeds the value that causes failure
in simple tension

Maximum Shear Stress Theory

Component fails when maximum shear stress exceeds the shear stress that causes failure
in simple tension

Maximum Strain Energy Theory

Component fails when strain energy per unit volume exceeds the value that causes failure
in simple tension
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UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation
in thin and thick cylinders — spherical shells subjected to internal pressure —Deformation in spherical shells —
Lame’s theorem.

PART-A(2 Marks)

Q.No

Questions

BT Level

Competence

1

A cylindrical pipe of diameter 1.5 m and thickness 1.5 cm is subjected to an
internal fluid pressure of 1.2 N/mm? Calculate the longitudinal stress
developed in the pipe.

(BT3)

Application

Estimate the thickness of the pipe due to an internal pressure of 10 N/mm? if
the permissible stress is 120 N/mm?. The diameter of pipe is 750 mm.

(BT2)

Understand

Define circumferential stress.

(BT1)

Remember

A spherical shell of 1 m diameter is subjected to an internal pressure
0.5N/mm?. Discover the thickness of the shell, if the allowable stress in the
material of the shell is 75 N/mm?.

(BT3)

Application

Describe longitudinal stress.

(BT1)

Remember

Deduce the expression for longitudinal stress in a thin cylinder subjected to a
uniform internal fluid pressure.

(BT5)

Evaluate

A cylinder of diameter 1.3m and thickness 12mm is subjected to an internal
pressure of 1 N/mm?. Identify the type of cylinder.

(BT1)

Remember

Where the hoop stresses and longitudinal stresses are acting in a thin
cylindrical shell?

(BT1)

Remember

Name the various methods of reducing the hoop stresses.

(BT1)

Remember

Formulate the mathematical expressions of Lame’s theorem.

(BT6)

Create

Formulate an expression for the longitudinal stress in a thin cylinder subjected
to an uniform internal fluid pressure.

(BT6)

Create

When is the longitudinal stress in a thin cylinder is zero?

(BT1)

Remember

Discuss about wire wounded thin cylinder.

(BT2)

Understand

Compare the cylindrical shell and spherical shell.

(BT4)

Analyze

Differentiate the thick cylinder from thin cylinder.

(BT4)

Analyze

List out the formulae for finding change in diameter, change in length and
change in volume of a thin cylindrical shell subjected to internal fluid pressure

p?

(BTL)

Remember

Distinguish between Circumferential stress and longitudinal stress?

(BT2)

Understand

Assess the thickness of the pipe due to an internal pressure of 10 N/mm? if the
permissible stress is 120 N/mmz2. The diameter of pipe is 750 mm.

(BTS)

Evaluate

Explain briefly about thick compound cylinder.

(BT4)

Analyze

Give the expression for hoop stress for thin spherical shells.

(BT2)

Understand

PART-B(13 Marks)

Questions

Compete
nce

Derive the expressions for change in dimensions of a thin cylinder due to
internal pressure.

Underst
and

A cylindrical thin drum 80cm in diameter and 3m long has a shell
thickness of 1cm. If the drum is subjected to an internal pressure of 2.5
N/mm2, determine: 1. Change in diameter, 2. Change in length and 3.

Analyze




Change in volume. Take E =2 x 105 N/mm?2 and Poisson’s ratio = 0.25.

A thin cylindrical shell 3 m long has 1m internal diameter and 15 mm
metal thickness. Calculate the circumferential and longitudinal stresses
induced and also the change in the dimensions of the shell, if it is
subjected to an internal pressure of 1.5 N/mm? Take E = 2x10°> N/mm?
and poison’s ratio =0.3. Also calculate change in volume.

Evaluate

(@) A closed cylindrical vessel made of steel plates 4 mm thick with plane
ends, carries fluid under pressure of 3 N/mm? The diameter of the
cylinder is 25cm and length is75 cm. Calculate the longitudinal and hoop
stresses in the cylinder wall and determine the change in diameter, length
and VVolume of the cylinder. Take E=2.1x10° N/mm? and 1/m = 0.286.

Analyze

(b) Explain briefly about thin spherical shell and derive the expression for
hoop stress in thin spherical shell.

Evaluate

(@) A cylindrical shell 3 m long, 1 m internal diameter and 10 mm thick is
subjected to an internal pressure of 1.5 N/mm?. Calculate the changes in
length, diameter and volume of the cylinder. E = 200 kN/mm?, Poisson’s
ratio = 0.3.

Applicat
ion

(b) Derive the expressions for change in dimensions of spherical shell due
to internal pressure.

Underst
and

(@) A steel cylindrical shell 3 m long which is closed at its ends, had an
internal diameter of 1.5 m and a wall thickness of 20 mm. Calculate the
circumferential and longitudinal stress induced.

Applicat
ion

(b) For the given cylindrical shell determine the change in dimensions of
the shell if it is subjected to an internal pressure of 1.0N/mm?. Assume the
modulus of elasticity and Poisson's ratio for steel as 200kN/mm? and 0.3
respectively.

Analyze

A thin cylindrical shell 3m long, 1.2m diameter is subjected to an internal
pressure of 1.67N/mm?. If the thickness of the shell is 13mm, E = 2 x 10°
N/mm? and 1/m = 0.28

(@) Find the circumferential and longitudinal stresses.

(b) Find the maximum shear stress and change in dimensions of the shaft.

Applicat
ion

(@) A cylindrical shell 3 m long which is closed at the ends has an internal
diameter 1m and wall thickness of 15 mm. Calculate the change in
dimensions and change in volume if the internal pressure is 1.5 N/mm?E
=2 x 10° N/mm?, p=0.3.

Analyze

(b) List out the assumptions made on Lame’s theory.

Applicat
ion

A cylindrical vessel 2m long and 500mm in diameter with 10mm thick
plates is subjected to an internal pressure of 3 MPa. Calculate the change
in volume of the vessel. Take E = 200 GPa and Poisson’s ratio = 0.3 for
the vessel material.

Applicat
ion

A spherical shell of 2m diameter is made up of 10mm thick plates.
Calculate the change in diameter and volume of the shell, when it is
subjected to an internal pressure of 1.6 MPa. Take E = 200 GPa and 1/m =
0.3.

Applicat
ion

(a) Determine the maximum hoop stress across the section of a pipe of
external diameter 600mm and internal diameter 440mm. when the pipe is
subjected to an internal fluid pressure of 50N/mm?.

Evaluate




(b) Explain the concept of thick cylinder and deduce the expressions for
various stresses induced in thick cylinders.

Applicatio
n

(a) A steel cylinder of 300mm external diameter is to be shrunk to another
steel cylinder of 150mm internal diameter. After shrinking the diameter at
the junction is 250mm and radial pressure at the common junction is 40
N/mm?. Find the original difference in radii at the junction. Take E = 2 x
10° N/mm?.

Analyze

(b) A spherical shell of 1.5m internal diameter and 12mm shell thickness is
subjected to pressure of 2 N/mm?. Determine the stress induced in the
material of the shell.

Applicat
ion

(@) Find the thickness of metal necessary for a cylindrical shell of internal
diameter 150mm to withstand an internal pressure of 25N/mm?. The
maximum hoop stress in the section is not to exceed 125 N/mm?.

Analyze

(b) Describe the stresses in compound thick cylinder.

Remem
ber

(a) Determine the maximum and minimum hoop stress across the section
of a pipe of 400mm internal diameter and 100mm thick, when the pipe
contains a fluid at a pressure of 8 N/mm?.

Applicat
ion

(b) Sketch the radial pressure distribution and hoop stress distribution
across the section of the given pipe.

Evaluate

PART-C(15 Marks)

Questions

Competence

(@) A thin cylinder 1.5 m internal diameter and 5 m long is subjected
to an internal pressure of 2 N/mmz2. If the maximum stress is limited
to 160 N/mmz2 find the thickness of the cylinder. E= 200 kN/mm2 and
Poisson’s ratio = 0.3. Also find the changes in diameter, length and
volume of the cylinder.

Application

(b) Explain and derive the hoop stress and longitudinal stress in thin
cylinders.

Analyze

(@) A cylinder has an internal diameter of 230 mm, wall thickness 5
mm and is 1 m long. It is found to change in internal volume by 12 x
10-6 m3 when filled with a liquid at a pressure ‘p’. Taking E = 200
GPa and 1/m = 0.25, determine the stresses in the cylinder, the
changes in its length and internal diameter.

Evaluate

(b) A spherical shell of internal diameter 1.2m and of thickness 12mm
is subjected to an internal pressure of 4 N/mm2. Determine the
increase in diameter and increase in volume. Take E = 2 x 105 N/mm?2
and p=0.33

Analyze

A Dboiler is subjected to an internal steam pressure of 2 N/mm2. The
thickness of boiler plate is 2.6cm and permissible tensile stress is 120
N/mm2. Find the maximum diameter, when efficiency of longitudinal
joint is 90% and that of circumferential joint is 40%.

Evaluate




(@) A thin spherical shell 1m in diameter with its wall of 1.2cm
thickness is filled with a fluid at atmospheric pressure. What intensity
of pressure will be developed in it if 175cm3 more of fluid is pumped
into it? Also calculate the circumferential stress at the pressure and the
increase in diameter. Take E = 200GN/mm2 and 1/m = 0.3.

(b) A thin seamless spherical shell of diameter 1.5m and thickness
8mm. It is filled with a liquid so that the internal pressure is
1.5N/mm2. Determine the increase in diameter and capacity of the
shell. Take E =2 x 105 N/mm2 and p=0.3.

Create
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