MOHAMED SATHAK A J COLLEGE OF ENGINEERING

ME 8691 -COMPUTER AIDED DESIGN AND MANUFACTURING

K.K.VINOTHKUMAR M.E (Ph.D)

Assistant Professor,
Department of Mechanical Engg., MSAJCE

CAD

Computer Aided

Design
 or
 Drafting

CADM-UNIT 1

Difference between Drafting

CADM-UNIT 1

DESIGN VERSUS DRAFTING

Design

Drafting

In architecture and engineering, design is the process of transforming ideas into life.

Design means creating sketches or basic drawings with technical data which is a pictorial representation of the building.

Design is the process which involves conception and 3^{D} modeling to bring ideas into life using computeraided drawings.

It provides detailed analysis to justify the selection of component sizes based on various factors.

Drafting is the techmique of creating techmical drawings, whether in 2D or 3D.

Drafting requires creating technical drawings that will provide the techmical specifications of the architectural project.

It's part of the design process that is done by hand or using computeraided programs and mechanical drawings.

Drafters use AutoCAD program to draft plans and create technical drawings.

Manual Vs Computer Aided

Unit -1 INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD system architecture- Computer graphics - coordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM CAD/CAM concepts -Types of production - Manufacturing models and Metrics - Mathematical models of Production Performance

CADM-UNIT 1

Product Life Cycle

downloaded from wurw.dineshbakshi.com interactive crosswords, quizzes, mindmaps, flash games.

The 4 Life Cycle Stages and their Marketing Implications

PRODUCT LIFE CYCLE

1898
Original Introduced

1964
Diet Pepsi Added

2016
1893 Pepsi Cola
Added

2016

Pepsi Zero Sugar

 Added
PLC

Typical Product Life Cycle

Unit -1 INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD system architecture- Computer graphics - coordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM CAD/CAM concepts - Types of production - Manufacturing models and Metrics - Mathematical models of Production Performance

Shighely Model

1 Recognition of need
2 Definition of Problem
3 Synthesis
4 Analysis and Optimization
5 Evaluation

6 Presentation

Unit -1 INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD system architecture- Computer graphics - coordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM CAD/CAM concepts - Types of production - Manufacturing models and Metrics - Mathematical models of Production Performance

Figure.1.8.Over the Wall Engineering (Sequential Engineering)

Sequential vs. Concurrent Engineering (CE)

Concurrent Engineering

Traditional Process $=$ Linear
Vs

Concurrent Engineering = Team collaboration

Synergy - Interesting Aspect

- Two horses can pull about 9,000 pounds.
- How many pounds can four horses pull?
- The arithmetical response is 18,000 .

Sounds reasonable - but it's wrong!

- Four horses can actually pull over 30,000 pounds.
- It's synergy that makes the difference!

Abraham Lincoln

If I had 8 hours to chop down a tree I would spend 6 hours sharpening my axe. Abraham Lincoln

(a) Sequential Engineering

Figure.1.9. Sequential and Concurrent Engineering

Concurrent Engineering

Partial processes

Concurrent Engineering Time Savings

Linear Model

Mentor Graphic Case Study

Design Changes vs Development Time

CADM-UNIT 1

CADM-UNIT 1

Table	Chair	Room	Scale	Pen	Train
Mobile	Card	Shirt	Projector	Stand	Bus
Book	Bed	Ring	Bat	Ball	Cycle
Apple	File	Paper	Subject	Bottle	Tap
Cap	Plastic	Tea	Charger	Watch	Water
Diary	Cloth	Shoe	Tie	Car	Juice

CADM-UNIT 1

Table	Chair	Room	Scale	Pen	Train
Mobile	Card	Shirt	Projector	Stand	Bus
Book	Bed	Ring	Bat	Ball	Cycle
Apple	File	Paper	Subject	Bottle	Tap
Cap	Plastic	Tea	Charger	Watch	Water
Diary	Cloth	Shoe	Tie	Car	Juice

Unit -1 INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD system architecture- Computer graphics - coordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM CAD/CAM concepts -Types of production - Manufacturing models and Metrics - Mathematical models of Production Performance

- Major classes :
- Main frame
- Mini computer
- Workstation
- Microcomputer
- Based
- Application areas :
- Mechanical
- Architectural
- Construction
- Circuit design
- Chip design
- Cost :
- High end
- Low end

Fig. 1.6.1 CAD system architecture

Unit -1 INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD system architecture- Computer graphics - coordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM CAD/CAM concepts -Types of production - Manufacturing models and Metrics - Mathematical models of Production Performance

Computer Graphics

Computer Graphics involves Creation, displays, manipulation and storage for proper visualization using computer

Fig. 1.7.1 A basic computer graphics layout

Unit -1 INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD system architecture- Computer graphics - coordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM CAD/CAM concepts -Types of production - Manufacturing models and Metrics - Mathematical models of Production Performance

Coordinate systems

(a) $X Y$ plane defines model top view

(b) $X Y$ plane defines model front view

Orientation

Coordinate systems

Model Co-ordinate System / World Co-ordinate System

Working Co-ordinate System / User Co-ordinate System

Screen Co-ordinate System / Device Co-ordinate System

Coordinate systems

(a) MCS

(b) WCS

(c) SCS

Example

CADM-UNIT 1

Unit -1 INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD system architecture- Computer graphics - coordinate systems- 2D and 3D transformations homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM CAD/CAM concepts - Types of production - Manufacturing models and Metrics - Mathematical models of Production Performance

Geometric Transformation

- It plays a major role in geometric modeling and viewing
- Used to express the locations of entities relative to others and to move them around in the modeling space.
- Used to generate different views of a model for visualization and drafting purposes.
- Used to create Animated files of geometric models.

Basic Geometric Transformations

- Translation
- Rotation
- Scaling
- Mirroring
- Shearing

2D TRANSFORMATION

Translate

Scale

Rotate

Shear

Rotation about arbitrary point

Line Drawing Algorithms

The lines of this object appear continuous

However, they are made of pixels

2D Drawing

In reality, photographs are arrays of pixels, not abstract mathematical continuous planes

Continuous line

Digital line

In graphics, the conversion from continuous to discrete 2D primitives is called scan conversion or rasterization

Rasterize $\mathrm{A}(2,3) \mathrm{B}(12,8)$

Xi	Yi	Xp	Yp
2	3	2	3
3	3.5	3	4
4	4	4	4
5	4.5	5	5
6	5	6	5
7	5.5	7	6
8	6	8	6
9	6.5	9	7
10	7	10	7
11	7.5	11	8
12	8	12	8

DDA line algorithm : Disadvantages

- Key disadvantage:
it relies on floating point operations to compute pixel positions.
- Implications:
\square Computationally inefficient because floatingpoint operations are slow.
\square Round-off errors accumulate, producing incorrect line drawings (e.g., if m is rounded to 0.9 even though it is equal to 0.99 , lines of length >10 will be drawn inaccurately)

Clipping

- Any Procedure that identifies those portions of a picture that are either inside or outside of a specified region of a space is referred to as a Clipping algorithm or simply Clipping.
- The region against which an object is to be clipped is known as Clipping Window.

CLIPPING

Types of Clipping

- Point Clipping
- Line Clipping
- Polygon Clipping
- Curve Clipping
- Text Clipping

Point Clipping

\mathbf{x} We have a point $\mathrm{P}=(\mathrm{xw}, \mathrm{yw})$ for display if the following inequalities are satisfied

$$
\begin{aligned}
& \mathrm{XW}_{\min } \leq \mathrm{xw} \leq \mathrm{XW}_{\max } \\
& \mathrm{yw}_{\min } \leq \mathrm{yw} \leq \mathrm{yw}_{\max }
\end{aligned}
$$

where the $\mathrm{xw}_{\text {min }}, \mathrm{y}_{\mathrm{wmin}}, \mathrm{xw}_{\text {max }}, \mathrm{yw}_{\text {max }}$ are the edge of the Clip Window.
\mathbf{X} If any one of these four inequalities is not satisfied, the point is clipped

Line Clipping

Cohen - Sutherland Algorithm

ABRL coding

1. TRIVIALLY ACCEPT
 2. TRIVIALLY REJECT

Sutherland-hodgman area clipping algorithm

A technique for clipping areas developed by Sutherland \& Hodgman
Put simply the polygon is clipped by comparing it against each boundary in turn

```
Sutherland
turns up
again. This
time with
Gary Hodgman with
whom he worked at
the first ever
graphics company
Evans & Sutherland
```


Original Area

alin_left

Clip Right

Clip Top

Clip Bottom

2.Curve clipping

After Clipping

Clipping a filled circle.

TEXT CLIPPING

After Clipping

Text clipping using a bounding rectangle about the entire string.

After Clipping

Text clipping using a bounding rectangle about individual characters.

2D Viewing Transformation

- Transform 2D geometric primitives from application's world coordinate system to device's screen coordinate system

Window and Viewport

Viewport:

Area on screen to be used for drawing.
Unit: pixels (screen coordinates)
Note: y-axis often points down

Window:

Virtual area to be used by application
Unit: km, mm,... (world coordinates)

$(2,1)$

Viewing in 2D - Viewport

Window -to-Viewport Transformation

- Window-to-Viewport mapping is the process of mapping or transforming a two-dimensional, worldcoordinate scene to device coordinates.
- In particular, objects inside the world or clipping window are mapped to the viewport.
- The viewport is displayed in the interface window on the screen.

2D viewing transformation pipeline

2D Viewing Transformation Representation

Example:

Unit -2 Geometric Modeling

Representation of curves- Hermite curve- Bezier curve-B-spline curves-rational curves-Techniques for surface modeling - surface patch- Coons and bicubic patchesBezier and B-spline surfaces. Solid modeling techniques- CSG andB-rep

Unit -2 Geometric Modeling

$>$ Curves
$>$ Surfaces
>Solid

Introduction to curves

Curve Entities

All CAD/CAM systems provide users with curve

 entitiesCurve entities are divided into two categories, Analytic

The Curves Which are defined as those that can be expressed by analytic equation.
Points, lines, arcs, fillets, chamfers, and conics (ellipses, parabolas, and hyperbolas)

Synthetic

The curves which are described by a set of data points or the control points such as spline; Cubic spline, B-spline and Bezier curve

Conic Curves - Parabolas

Conic curves or conics are the curves formed by the intersection of a plane with a right circular cone (parabola, hyperbola and sphere).
A parabola is the curve created when a plane intersects a right circular cone parallel to the side (elements) of the cone

Conic Curves - Parabolas

Light source

Searchlight mirror

Eye piece

Parabola

Load
Beam of uniform strength

> Beam of uniform strength

Weightless flight trajectory

A parabola revolved about its axis creates a surface called paraboloid. An auditorium ceiling in shape of paraboloid reduces reverberations if the speaker stands near the focus

Conic Curves - Hyperbolas

A hyperbola is the curve created when a plane parallel to the axis and perpendicular to the base intersects a right circular cone.

Element

 (side)
Conic Curves - Hyperbolas

Cooling Towers of Nuclear Reactors
The hyperboloid is the design standard for all nuclear cooling towers. It is structurally sound and can be built with straight steel beams.

For a given diameter and height of a tower and a given strength, this shape requires less material than any other form.

Dulles Airport - shape of a hyperbolic paraboloid

Conic Curves - Ellipse

An ellipse is the curve created when a plane cuts all the elements (sides) of the cone but its not perpendicular to the axis.

Conic Curves - Ellipse

In New York's Grand Central Station, underneath the main concourse there's a special place known as The Whispering Gallery.

The Statuary Hall in the Rotunda
(Washington) has a ceiling curved as an ellipse.

Conic Curves - Ellipse

Some tanks are in fact elliptical (not circular) in cross section. This gives them a high capacity, but with a lower center-of-gravity. They're shorter, so that they can pass under a low bridge. You might see these tanks transporting heating oil or gasoline on the highway

Ellipses (or half-ellipses) are sometimes used as fins, or airfoils in structures that move through the air. The elliptical shape reduces drag.

Elliptical gears are used for certain applications

Conic Curves

Curve Entities - Synthetic Curves

Analytical curves are usually not sufficient to meet the design requirements of complex mechanical parts, car bodies, ship hulls, airplane fuselages and wings, shoe insoles, propeller blades, bottles, plastic enclosures for household appliances and power tools,

Types of curve equations

1. Parametric equation:

Example: circle equation:
$X=R \cos \theta \quad Y=R \sin \theta \quad z=0 \quad 0 \leq \theta \leq 2 \pi$
(the coordinates are defined with the help of the extra parameter θ).
2. Non-parametric equation

1. Implicit form: $x^{2}+y^{2}-R^{2}=0 \quad z=0$.
2. Explicit form $\quad y= \pm \sqrt{ }\left(R^{2}-x^{2}\right) \quad z=0$.
(these equations defined the x, y and z coordinates without the assistance of extra parameters)

The parametric equation is the most popular form for representing curves and surfaces in CAD systems.

Conic Sections

The curves or portion of curves obtained by cutting a cone with a plane are referred to as conic sections.

Circle or Circular Arc

A circle or its portion on the xy plane with radius R and center at $\left(X_{c}\right.$, Y_{c}) can be represented by the equations:

$$
x=R \cos \theta+x_{c} \quad y=R \sin \theta+Y_{c} \quad(0 \leq \theta \leq 2 \pi \text { for a }
$$ circle)

Ellipse or Elliptic Arc

The parametric equation on an ellipse centered at the origin and located in the xy plane. The major axis is in the x direction with length a and the minor axis is in the y direction with length b :

Hyperbola

Implicit equation:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
The parametric equations: $x=a \cosh u$
$y=b \sinh u$

Parabola

A reference parabola that is symmetric about the x axis and passes through the origin can be represented by the following explicit equation:
$\mathrm{x}=\mathrm{cy}^{2}$
This equation can be converted to the following parametric equations:
$x=c u^{2}$
$y=u$

Types of curves

1. Analytical curves

The curves which are having rigid form of equation with out any flexibility to modify its original shapes after display. Example:

1. Point
2. Line, Line segment
3. Conic sections - Circle, Ellipse, parabola, hyperbola.
4. Fillet
5. Chamfer

2. Synthetic curves

- The curves which are usually described by a polynomial equation having flexibility to modify its original shape after display.
- A parameter (u) is used to control its shape and degrees-of-curves.

Examples:

1. Hermite cubic spline curve
2. Bezier curve
3. B-spline curve
4. Rational curve
a) Rational Hermite cubic spline
b) Rational Bezier curve
c) Rational B-spline curve

Synthetic Curves

- Analytic curves are usually not sufficient to meet geometric design requirements of mechanical parts. Example: Car bodies, ship hulls, airplane wings, propeller blades, shoe insoles, and bottles etc.

Need for synthetic curves

- When a curve is represented by a collection of measured data points.
- When an existing curve must change to meet new design requirements.

Continuity

The smoothness of the connection of two curves or surfaces at the connection points or edges.

- C^{0} : simple connection of two curves
$\cdot \mathrm{C}^{1}$: the geometric slopes at the joint must be same
- C^{2} : curvature continuity that not only the gradients but also the center of curvature is the same

1. Hermite cubic spline curve

- Parametric spline curves are defined as piecewise polynomial curves with certain order of continuity.
- The parametric cubic spline curve curves connects two data (end) points and utilizes a cubic equation.
General condition required:

1. Two end points
2. Two end slopes

- The parametric equation of a cubic spline segment is given by:

$$
P(u)=\sum_{i=0}^{3} C_{i} u^{i} \quad 0 \leq u \leq 1
$$

where,
u-parameter
C_{i} - Polynomial coefficients
The scalar form of equation:

$$
\begin{aligned}
& X(u)=C_{3 x} u^{3}+C_{2 x} u^{2}+C_{1 x} u+C_{0 x} \\
& y(u)=C_{3 y} u^{3}+C_{2 y} u^{2}+C_{1 y} u+C_{0 y} \\
& z(u)=C_{3 z} u^{3}+C_{2 z} u^{2}+C_{1 z} u+C_{0 z}
\end{aligned}
$$

The vector form of equation:

$$
P(u)=C_{3} u^{3}+C_{2} u^{2}+C_{1} u+C_{0}
$$

P_{0} - Starting point
P_{1} - End point
P_{0}^{\prime} - Starting slope
P_{1}^{\prime} - Starting slope

The matrix form of equation:

$$
P(u)=U^{\top} C
$$

where,

$$
\begin{aligned}
& \mathrm{U}=\left[\begin{array}{llll}
u^{3} & u^{2} & u^{1} & 1
\end{array}\right]^{\top} \\
& \mathrm{C}=\left[\begin{array}{llll}
\mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0}
\end{array}\right]^{\top} \quad \text { (coefficient vector) }
\end{aligned}
$$

Tangent Vector

$$
P^{\prime}(u)=\sum_{i=0}^{3} C_{i} i u^{i-1} \quad 0 \leq u \leq 1
$$

To find the coefficients C_{i}
Apply the known boundary conditions
$\mathrm{P}_{0}, \mathrm{P}_{0}^{\prime}$ at $\mathrm{u}=0$
$\mathrm{P}_{1}, \mathrm{P}_{1}^{\prime}$ at $\mathrm{u}=1$
Position and slope equation are:
$P(u)=C_{3} u^{3}+C_{2} u^{2}+C_{1} u+C_{0}$
$P^{\prime}(u)=3 C_{3} u^{2}+2 C_{2} u+C_{1}$

When applying $\mathrm{u}=0$ and $\mathrm{u}=1$ on the position and slope equations:

- $\mathrm{P}_{0}=\mathrm{C}_{0}$
- $\mathrm{P}_{0}^{\prime}=\mathrm{C}_{1}$
- $\mathrm{P}_{1}=\mathrm{C}_{3}+\mathrm{C}_{2}+\mathrm{C}_{1}+\mathrm{C}_{0}$
- $\mathrm{P}_{1}^{\prime}=3 \mathrm{C}_{3}+2 \mathrm{C}_{2}+\mathrm{C}_{1}$

After solving the above four equations by simultaneous solution method the coefficients are:

$$
\begin{aligned}
& C_{0}=P_{0} \\
& C_{1}=P_{0}^{\prime} \\
& C_{2}=3\left(P_{1}-P_{0}\right)-2\left(P_{0}^{\prime}-P_{1}^{\prime}\right) \\
& C_{3}=2\left(P_{0}-P_{1}\right)+P_{0}^{\prime}+P_{1}^{\prime}
\end{aligned}
$$

After substituting all four coefficient, the final blending functions are:

$$
\begin{aligned}
& P(u)=\left(2 u^{3}-3 u^{2}+1\right) P_{0}+\left(-2 u^{3}+3 u^{2}\right) P_{1} \\
& +\left(u^{3}-2 u^{2}+u\right) P_{0}^{\prime}+\left(u^{3}-u^{2}\right) P_{1}^{\prime}
\end{aligned}
$$

$P^{\prime}(u)=\left(6 u^{3}-6 u\right) P_{0}+\left(-6 u^{2}+6 u\right) P_{1}+$ $\left(3 u^{2}-4 u+1\right) P_{0}^{\prime}+\left(3 u^{2}-2 u\right) P_{1}^{\prime}$
$\mathrm{P}(\mathrm{u})=\mathrm{U}^{\top}\left[\mathrm{M}_{\mathrm{H}}\right] \mathrm{V}$
Where,
[M_{H}] = Hermite matrix
$\mathrm{V}=$ Geometry (Boundary) vector
$\left[M_{H}\right]=\left[\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$

$$
V=\left[\begin{array}{llll}
P_{0} & \left.P_{1} P_{0}^{\prime} P_{1}^{\prime}\right]_{1}^{\top}
\end{array}\right]^{\top}
$$

Comparing the above two equations:

$$
\begin{aligned}
& U^{\top} \mathrm{C}=\mathrm{U}^{\top}\left[\mathrm{M}_{H}\right] \mathrm{V} \\
& \mathrm{C}=\left[\mathrm{M}_{H}\right] \mathrm{V}
\end{aligned}
$$

Final position and slope equation in the matrix are:

$$
\begin{aligned}
& P(u)=U^{\top}\left[M_{H}\right] V \\
& P^{\prime}(u)=U^{\top}\left[M_{H}\right]^{u} V
\end{aligned}
$$

Modification of resultant curve shape

1.By changing control point(s)
2.By changing end slope(s)

1. By changing control point(s)

2. By changing end slope(s)

By changing one slope

By changing two slopes

Hermite Cubic Spline curve using AutoCAD software

Characteristics of Hermite cubic spline

curve

1. The resultant shape will pass through all the given data or control points.
2. It uses interpolation technique for curve general.
3. The resultant curve has tangential property with start and end slopes.
4. When reversing the parametric direction, the shape of the resultant curve not be altered.
5. It has only global control.
6. The resultant curve has always cubic curve.

Limitations

1. It has only global control (or) Lack of local.
2. Always it is a cubic curves.
3. It is not possible to apply, when higher degree of curves required.

UNIT - III

- CAD STANDARDS

Standardization in

 Graphics- GKS (Graphical Kernel System)
- PHIGS (Programmer's Hierarchical Interface for Graphics)
- CORE (ACM-SIGGRAPH)
- GKS-3D
, IGES (Initial Graphics Exchange Specification)
, DXF (Drawing Exchange Format)
- STEP (Standard for the Exchange of Product Model Data)
, DMIS (Dimensional Measurement Interface Specification)
, VDI (Virtual Device Interface)
, VDM (Virtual Device Metafile)
- GKSM (GKS Metafile)
- NAPLPS (North American Presentation Level Protocol Syntax)

Various standards in graphics programming

objectives

$>$ The main objectives that were put forward for GKS are:
> -To provide the complete range of graphical facilities in 2D, including the interactive capabilities,
$>$ To control all types of graphic devices such as plotters and display devices in a consistent manner,
$>$ To be small enough for a variety of programs

Layer model of Graphics Kernel System

Application program	
Application oriented layer	
	Language-independent layer
	Graphic Kernel System
Operating system	
Other resources	S Graphical resources

Graphics primitives in IBM GKS

BAR

PIE SLICE

CIRCLE

Primitives in GKS

polyline:. The GKS function for drawing line segments is called polyline.

POLYLINE(N, XPTS, YPTS)

* The polyline function takes an array of $X-Y$ coordinates and draws line segments connecting them

POLY MARKER: which marks a sequence of points with the same symbol.

POLYMARKER(N, XPTS, YPTS)

* FILL AREA: which displays a specified area. FILL AREA(N, XPTS, YPTS)
* TEXT: which draws a string of characters.

TEXT(X, Y, STRING)
An example of the text primitive is:
TEXT(6, 3, 'A Character String')

Drawing duck using gks primitives

$$
K B
$$

GKS 3D

* the three-dimensional extension of GKS.
* allows the production of 3-D objects.
* handle 3D primitives, 3D input, and 3D viewing.

The Drawing Primitives

* Polyline 3DCALL GPL3(N, PXA, PYA, PZA)
* Polymarker

3DCALL GPM3(N, PXA, PYA, PZA)

* Fill Area

3DCALL GFA3(N, PXA, PYA, PZA)

EXCHANGE OF MODELING DATA

* Necessity to translate drawings created in one drafting package to another often arises.

MNSYS

* One method is to write direct translators from one software to another, which has to be produced by system developer.

EXCHANGE OF MODELING DATA

Fig. 17.3 Direct Data Translation

* If we have three software packages we may require six translators among them.
* This will necessitate a large number of translators
* IGES - INITIAL GRAPHICS EXCHANGE SPECIFICATION
* IGES version 1.0 was released in 1980
* IGES converts the CAD model into neutral file.
* Conversion is done by preprocessors inbuilt in the software.

IGES

IGES

Fig. 17.4 CAD Data Exchange Using Neutral Files

Entities

101: circular arc
108: plane
110: line
116: point
120: tabulated cylinder
134: node
158: sphere
184: solid assembly
190: plane surface

IGES
 IGES FILE

Contains only two POINT (Type 116), two CIRCULAR ARC (Type 100), and two LINE (Type 110) entities.

Data exchange between various systems

Developments in the drawing data

exchange formats

CAD - UNIT-V - AJM

Initial Graphics Exchange Specification (IGES)

- IGES is the most comprehensive standard and is designed to transmit the entire product definition including that of manufacturing and any other associated information

Data interchnage method between two different CAD systems using neutral data format such as IGES or STEP

Component drawing and part of IGES file generated


```
ETC IGES file: impart.igs S
1H,,1Hi,1H1,10Hinpart.igz,
49HDro/ENGINEER by Daramerric Technology Corporation, 4H9741,32,38, 7, 38,
15,1H1,1.,1,4HINCH, 32768,0.5,13H970430.104743,0.000396166,3.96182,
6Fmj1ang, 7HUnknown,10,0,133970430.104743;
M001000000D
100 1-1 1 1 1 0
100 0 0 1 1 ARC 1D
110 5 1 1 0
110 0 0 1 1 ONNE 1D
126 133 1-1 1 1 0
B_SPLINE 1D
SPLSRE 1D
001010000D
CCURVE 1D
001010500D
UV_BND 1D
OMRMSRF

SUBSECTIONS OF IGES FILE
* START SECTION: Contains man readable prologue file.
* GLOBAL SECTION: Contains details about the product, organization, software, date etc.
* DIRECTORY ENTRY SECTION: Contains attribute information such as color, line type, etc.
* PARAMETER DATA SECTION: Contains data associated with entities.
* TERMINATE SECTION: This contains sub-totals of records present in each of the earlier sections.

\section*{Sub-sections in IGES}
1. Flag section - Optional ASCII/binary/compressed ASCII
2. Start section(S) - Man readable prologue
3. Global section(G) - Details of product, person originating the product, name of the company originating it, date, details of system which generated it, drafting standard used etc.
4. Directory section(D) - Index for the file and attribute information like colour, line type etc.

\section*{Sub-sections in IGES}
5. Parameter Entry section(P)

Geometric entities- Point, line, arc, different surfaces, curves, solid primitives etc.
Annotation entities - Angular dimension, diameter dimension, label, note, etc. Structure entities - Associativity definition, text font definition, color definition, units data etc.
6. Terminate section - Sub-totals of record in each of earlier sections


\section*{IGES OUTPUT OF WIRE FRAME MODEL}


ENTITIES
POINTS-8
LINES-12
CIRCLES-2

Table 17.2 IGES-Wire frame edges
PTC IGES file: Wireframe_Edges.igs
1H, \(1 \mathrm{H} ;\), \(4 \mathrm{HSTEP}, 6 \mathrm{Hi1}\).igs,
49HPro/ENGINEER by Parametric Technology Corporation,7H1999390,32,38,7, 38,15,4HSTEP,1.,2,2HMM,32768,0.5,13H000104.164438,0.00187075,18.708, 5Hstaff,7HUnknown, 10,0,13H000104.164438;
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 110 & 1 & 1 & 1 & 0 & 0 & 0 & 000000000D & 1 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 1D & & 2 \\
\hline 110 & 2 & 1 & 1 & 0 & 0 & 0 & 000000000D & 3 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 2D & & 4 \\
\hline 110 & 3 & 1 & 1 & 0 & 0 & 0 & 000000000D & 5 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 3D & & 6 \\
\hline 110 & 4 & 1 & 1 & 0 & 0 & 0 & 000000000D & 7 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 4D & & 8 \\
\hline 124 & 5 & 1 & 1 & 0 & 0 & 0 & 001000000D & 9 \\
\hline 124 & 0 & 0 & 1 & 0 & XFORM & 1D & & 10 \\
\hline 100 & 6 & 1 & 1 & 0 & 0 & 9 & 000000000D & 11 \\
\hline 100 & 0 & 0 & 1 & 0 & ARC & 1D & & 12 \\
\hline 110 & 7 & 1 & 1 & 0 & 0 & 0 & 000000000D & 13 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 5D & & 14 \\
\hline 110 & 8 & 1 & 1 & 0 & 0 & 0 & 000000000D & 15 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 6D & & 16 \\
\hline 110 & 9 & 1 & 1 & 0 & 0 & 0 & 000000000D & 17 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 7D & & 18 \\
\hline 110 & 10 & 1 & 1 & 0 & 0 & 0 & 000000000D & 19 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 8D & & 20 \\
\hline 110 & 11 & 1 & 1 & 0 & 0 & 0 & 000000000D & 21 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 9D & & 22 \\
\hline 110 & 12 & 1 & 1 & 0 & 0 & 0 & 000000000D & 23 \\
\hline 110 & 0 & 0 & 1 & 0 & LINE & 10D & & 24 \\
\hline 110 & 13 & 1 & 1 & 0 & 0 & 0 & 000000000D & 25 \\
\hline
\end{tabular}


\title{
Standard for the Exchange
} of Product model Data (STEP)
- The broad scope of STEP is as follows:
- The standard method of representing the information necessary to completely define a product throughout its entire life, i.e., from the product conception to the end of useful life.
- Standard methods for exchanging the data electronically between two different systems.

\section*{STEP Application Protocol AP 203 Explicit Draughting}


AP 201: Explicit Draughting

\title{
STEP Application Protocol AP 207 Configuration Controlled Design
}
\begin{tabular}{|l|}
\hline Configuration Management \\
Authorisation \\
Control (Version/revision) \\
Effectivity \\
Release Status \\
Secunity Classification \\
Supplier \\
\hline
\end{tabular}
```

Geometric Shapes
Advanced BREP solids
Faceted BREP Solids

```
Manifold Surfaces with topology
Wireframe with Topology
Surfaces and wireframe
without Topology
    AP 203: Configuration
    Controlled 3D desisgns
        of Mechanical
        Parts and
        Assemblies
    Product Structure
    Assemblies
    Bill of materials
    Part
    Substitute Part
    Alternate Part
    Specifications
    Surface Finish
    Material
    Design
    Process
    CAD Filename

AP 203: Configuration Controlled 3D designs

\section*{Example for STEP file generation Sheet Metal Die Planning and Design}

\author{
Shape Definition Representation Advanced BREP Solids \\ Elementary BREP Solids \\ Facetted BREP Solids \\ Manifold Surfaces \\ with Topology \\ Surfaces and Wireframe without Topology \\ Constructive Solid \\ Geometry \\ Part Shape Relationship \\ to Die Shape \\ Physical Model \\ Identification \\ Tolerances
}


AP 203: Configuration Controlled 3D designs

\section*{Open GL}

\section*{Why do we need Data Exchange?}
- Why do we need Data Exchange?
- Design projects require data to be shared between suppliers
- Different companies often used different CAD systems
- All CAD systems have their own database formats
- They are mostly proprietary and often confidential
- Data is stored in different ways e.g. 1.0,2.0,3.0 or X1.0,Y2.0,Z3.0, etc.
- Data conversion between systems becomes necessary

\section*{Introduction}
- Open Graphics Library (OpenGL) is a crosslanguage, cross-platform application programming interface (API) for rendering2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit (GPU), to achieve hardwareaccelerated rendering.
- Silicon Graphics Inc., (SGI) started developing OpenGL in 1991 and released it in January 1992; applications use it extensively in the fields of computer-aided design (CAD), virtual reality, scientific visualization, information visualization, flight simulation, and video games. OpenGL is managed by the nonprofit technology consortium Khronos Group.
```

