Engineering Mechanics

Mr. Mohan S R
AP-Mechanical

Engineering Mechanics

Rigid-body Mechanics

- a basic requirement for the study of the mechanics of deformable bodies and the mechanics of fluids (advanced courses).
- essential for the design and analysis of many types of structural members, mechanical components, electrical devices, etc, encountered in engineering.

A rigid body does not deform under load!

Engineering Mechanics

Rigid-body Mechanics
Statics: deals with equilibrium of bodies under action of forces (bodies may be either at rest or move with a constant velocity).

Engineering Mechanics

Rigid-body Mechanics

- Dynamics: deals with motion of bodies
(accelerated motion)

Mechanics: Fundamental Concepts

Length (Space): needed to locate position of a point in space, \& describe size of the physical system $€$ Distances, Geometric Properties

Time: measure of succession of events $€$ basic quantity in Dynamics

Mass: quantity of matter in a body $€$ measure of inertia of a body (its resistance to change in velocity)

Force: represents the action of one body on another $€$ characterized by its magnitude, direction of its action, and its point of application
$€$ Force is a Vector quantity.

Mechanics: Fundamental Concepts

Newtonian Mechanics
Length, Time, and Mass are absolute concepts independent of each other

Force is a derived concept not independent of the other fundamental concepts. Force acting on a body is related to the mass of the body and the variation of its velocity with time.

Force can also occur between bodies that are physically separated (Ex: gravitational, electrical, and magnetic forces)

Mechanics: Fundamental Concepts

Remember:

- Mass is a property of matter that does not change from one location to another.
- Weight refers to the gravitational attraction of the earth on a body or quantity of mass. Its magnitude depends upon the elevation at which the mass is located
- Weight of a body is the gravitational force acting on it.

Mechanics: Idealizations

To simplify application of the theory
Particle: A body with mass but with dimensions that can be neglected

Size of earth is insignificant compared to the size of its orbit. Earth can be modeled as a particle when studying its orbital motion

Mechanics: Idealizations

Rigid Body: A combination of large number of particles in which all particles remain at a fixed distance (practically) from one another before and after applying a load.

Material properties of a rigid body are not required to be considered when analyzing the forces acting on the body.

In most cases, actual deformations occurring in structures, machines, mechanisms, etc. are relatively small, and rigid body assumption is suitable for analysis

Mechanics: Idealizations

Concentrated Force: Effect of a loading which is assumed to act at a point (CG) on a body.
-Provided the area over which the load is applied is very small compared to the overall size of the body.

Ex: Contact Force between a wheel and ground.

Mechanics: Newton's Three Laws of Motion

Basis of formulation of rigid body mechanics.
First Law: A particle originally at rest, or moving in a straight line with constant velocity, tends to remain in this state provided the particle is not subjected to an unbalanced force.

First law contains the principle of the equilibrium of forces $€$ main topic of concern in Statics

Equilibrium

Mechanics: Newton's Three Laws of Motion

Second Law: A particle of mass " m " acted upon by an unbalanced force " F " experiences an acceleration "a" that has the same direction as the force and a magnitude that is directly proportional to the force.

Accelerated motion

Second Law forms the basis for most of
the analysis in Dynamics

Mechanics: Newton's Three Laws of Motion

Third Law: The mutual forces of action and reaction between two particles are equal, opposite, and collinear.

Action - reaction

Third law is basic to our understanding of Force $€$ Forces always occur in pairs of equal and opposite forces.

Mechanics: Newton's Law of Gravitational Attraction

Weight of a body (gravitational force acting on a body) is required to be computed in Statics as well as Dynamics.
This law governs the gravitational attraction between any two particles.

$\boldsymbol{F}=$ mutual force of attraction between two particles
$\boldsymbol{G}=$ universal constant of gravitation

$$
\text { Experiments } € G=6.673 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} . \mathrm{s}^{2}\right)
$$

Rotation of Earth is not taken into account
$\boldsymbol{m}_{\boldsymbol{1}}, \boldsymbol{m}_{2}=$ masses of two particles
$r=$ distance between two particles

Gravitational Attraction of the Earth

Weight of a Body: If a particle is located at or near the surface of the earth, the only significant gravitational force is that between the earth and the particle
Weight of a particle having mass $\boldsymbol{m}_{\boldsymbol{I}}=\boldsymbol{m}$:
Assuming earth to be a nonrotating sphere of constant density and having mass $\boldsymbol{m}_{\boldsymbol{2}}=\boldsymbol{M}_{\boldsymbol{e}}$

$r=$ distance between the earth's center and the particle
$W=m g$
Let $\boldsymbol{g}=\boldsymbol{G} \boldsymbol{M}_{e} / \boldsymbol{r}^{2}=$ acceleration due to gravity ($9.81 \mathrm{~m} / \mathrm{s}^{2}$)

Mechanics: Units

Four Fundamental Quantities

Quantity	Dimensional Symbol	SI UNIT	
		Unit	Symbol
Mass	M	Kilogram	Kg Basic Unit
Length	L	Meter	- Mi
Time	T	Second	s
Force	F	Newton	N
$F=m a$ $W=m g$	$€$		1 Newton is the force required to give a mass of 1 kg an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$

Mechanics: Units Prefixes

	Exponential Form	Prefix	SI Symbol
Multiple			
1000000000	10^{9}	giga	G
1000000	10^{6}	mega	M
1000	10^{3}	kilo	k
Submultiple			
0.001	10^{-3}	milli	m
0.000001	10^{-6}	micro	μ
0.000000001	10^{-9}	nano	n

Scalars and Vectors

Scalars: only magnitude is associated.
Ex: time, volume, density, speed, energy, mass
Vectors: possess direction as well as magnitude, and must obey the parallelogram law of addition (and the triangle law).

Ex: displacement, velocity, acceleration, force, moment, momentum

Equivalent Vector: $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}$ (Vector Sum)

Speed is the magnitude of velocity.

Vectors

A Vector V can be written as: $\mathrm{V}=\mathrm{V} \mathrm{n}$
$V=$ magnitude of V
$\mathrm{n}=$ unit vector whose magnitude is one and whose direction coincides with that of V

Unit vector can be formed by dividing any vector, such as the geometric position vector, by its length or magnitude

Vectors represented by Bold and Non-Italic letters (V)
Magnitude of vectors represented by Non-Bold, Italic letters (V)

N

k
$\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ - unit vectors

Vectors

Free Vector: whose action is not confined to or associated with a unique line in space Ex: Movement of a body without rotation.

Sliding Vector: has a unique line of action in space but not a unique point of application
Ex: External force on a rigid body
$€$ Principle of Transmissibility
€ Imp in Rigid Body Mechanics

Fixed Vector: for which a unique point of application is specified
Ex: Action of a force on deformable body

Vector Addition: Procedure for Analysis

Parallelogram Law (Graphical)

Resultant Force (diagonal)
Components (sides of parallelogram)

Algebraic Solution

Using the coordinate system
Cosine law:
$C=\sqrt{A^{2}+B^{2}-2 A B \cos c}$
Sine law:

$$
\frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c}
$$

Trigonometry (Geometry)
Resultant Force and Components from Law of Cosines and Law of Sines

Force Systems

Force: Magnitude (P), direction (arrow) and point of application (point A) is important

Change in any of the three specifications will alter the effect on the bracket.
Force is a Fixed Vector
In case of rigid bodies, line of action of force is important (not its point of application if we are interested in only the resultant external effects of the force), we will treat most forces as

External effect: Forces applied (applied force); Forces exerted by bracket, bolts, Foundation (reactive force)

Internal effect: Deformation, strain pattern - permanent strain; depends on material properties of bracket, bolts, etc.

Force Systems

Concurrent force:

Forces are said to be concurrent at a point if their lines of action intersect at that point
F_{1}, F_{2} are concurrent forces; R will be on same plane; $R=F_{1}+F_{2}$

Forces act at same point
Forces act at different point
Triangle Law
(Apply Principle of Transmissibility)

Components and Projections of Force

Components of a Force are not necessarily equal to the Projections of the Force unless the axes on which the forces are projected are orthogonal (perpendicular to each other).
F_{1} and F_{2} are components of R.

$$
R=F_{1}+F_{2}
$$

F_{a} and F_{b} are perpendicular projections on axes a and b, respectively.
$R \neq F_{a}+F_{b}$ unless a and b are perpendicular to each other

Components of Force

Examples

$F_{x}=F \sin \beta$
$F_{y}=F \cos \beta$

$$
\begin{aligned}
& F_{x}=-F \cos \beta \\
& F_{y}=-F \sin \beta
\end{aligned}
$$

Vector

$$
\boldsymbol{V}=V(\cos \theta \dot{i}+\sin \theta \dot{j})
$$

$$
\boldsymbol{V}=V\left(\frac{4 \tilde{i}+3 \boldsymbol{j}}{\sqrt{4^{2}+3^{2}}}\right)
$$

$$
\boldsymbol{V}=\bar{V}\left(\frac{(9-2) \dot{i}+(6-3) \boldsymbol{j}}{\sqrt{(9-2)^{2}+(6-3)^{2}}}\right)
$$

$(2,3)$

Components of Force

Example 1:
Determine the x and y scalar components of
F_{1}, F_{2}, and F_{3} acting
at point A of the bracket

Components of Force

$$
\begin{aligned}
& F_{2}=500 \mathrm{~N} \\
& F_{1_{x}}=600 \cos 35^{\circ}=491 \mathrm{~N} \\
& F_{1_{y}}=600 \sin 35^{\circ}=344 \mathrm{~N} \\
& \left.F_{2_{y}}=500\left(\frac{3}{5}\right)=300 \mathrm{~N}\right)=-400 \mathrm{~N} \\
& F_{2_{x}} \\
& \begin{array}{l}
\alpha=\tan ^{-1}\left[\frac{0.2}{0.4}\right]=26.6^{\circ} \\
F_{3_{x}}= \\
F_{3_{y}}=
\end{array} F_{3} \sin \alpha=800 \sin 26.6^{\circ}=358 \mathrm{~N}
\end{aligned}
$$

Components of Force

Alternative Solution

$$
\begin{aligned}
& \boldsymbol{F}_{1}=F_{1} \boldsymbol{n}_{1}=F_{1} \frac{\cos \left(35^{\circ}\right) \boldsymbol{i}+\sin \left(35^{\circ}\right) \boldsymbol{j}}{\sqrt{\left(\cos \left(35^{\circ}\right)\right)^{2}+\left(\sin \left(35^{\circ}\right)\right)^{2}}} \\
& =600[0.819 i-0.5735 j] \\
& =491 \mathbf{i}-344 j \\
& F_{1 x}=491 \bar{N} \\
& F_{1 y}=3 \angle \angle N \\
& F_{2}=F_{2} \boldsymbol{n}_{2}=F_{2} \frac{-\dot{\mathbf{i}}+3 \boldsymbol{j}}{\sqrt{(-L)^{2}+(3)^{2}}} \\
& =500[-0.8 \bar{i}+0.6 j]=400 i+300 j \\
& F_{2 x}=400 \mathrm{~N} \quad F_{2 y}=300 \mathrm{~N}
\end{aligned}
$$

Components of Force

Alternative Solution

$$
\begin{aligned}
\overrightarrow{A B} & =0.2 i-0.4 j \\
\overrightarrow{A B} & =\sqrt{(0.2)^{2}+(-0.4)^{2}} \\
\vec{F}_{3} & =F_{3} n_{3}
\end{aligned}=F_{3} \frac{\overrightarrow{A B}}{\overline{A B}}, ~(0.2 i-0.4 \tilde{j}]\left(\sqrt{(0.2)^{2}-(-0.4)^{2}}\right)
$$

$$
F_{3 x}=358 N \quad F_{3 y}=716 N
$$

Components of Force

Example 2: The two forces act on a bolt at A. Determine their resultant.

Graphical solution - construct a parallelogram with sides in the same direction as P and Q and lengths in proportion. Graphically evaluate the resultant which is equivalent in direction and proportional in magnitude to the diagonal.

Trigonometric solution - use the triangle rule for vector addition in conjunction with the law of cosines and law of sines to find the resultant.

Components of Force

$25^{\circ} \quad \mathrm{P}=40 \mathrm{~N}$ 120°

- Graphical solution - A parallelogram with sides equal to \mathbf{P} and \mathbf{Q} is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the parallelogram are measured,

$$
\mathbf{R}=98 \mathrm{~N} \quad \alpha=35^{\circ}
$$

- Graphical solution - A triangle is drawn with \mathbf{P} and \mathbf{Q} head-to-tail and to scale. The magnitude and direction of the resultant or of the third side of the triangle are measured,

$$
\mathbf{R}=98 \mathrm{~N} \quad \alpha=35^{\circ}
$$

Components of Force

Trigonometric Solution: Apply the triangle rule.

From the Law of Cosines,

$$
\begin{aligned}
R^{2} & =P^{2}+Q^{2}-2 P Q \cos B \\
& =(40 \mathrm{~N})^{2}+(60 \mathrm{~N})^{2}-2(40 \mathrm{~N})(60 \mathrm{~N}) \cos 155^{\circ} \\
& R=97.73 \mathrm{~N}
\end{aligned}
$$

From the Law of Sines,

$$
\begin{aligned}
\frac{\sin A}{Q} & =\frac{\sin B}{R} \\
\sin A & =\sin B \frac{Q}{R} \\
& =\sin 155^{\circ} \frac{60 \mathrm{~N}}{97.73 \mathrm{~N}} \\
A & =15.04^{\circ} \\
\alpha & =20^{\circ}+A \\
\alpha & =35.04^{\circ}
\end{aligned}
$$

Components of Force

$$
\begin{aligned}
R & =P-Q \\
P & \left.=\angle 0^{-} \cos (20) i+\sin (20) j\right] \\
& =37.58^{\circ}+23.68 \mathbf{j} \\
Q & \left.=60^{-} \cos (\angle 5) \boldsymbol{i}+\sin (\angle 5) j\right] \\
& =42.43 \pm+42.43 \mathbf{j} \\
R & =80.01 i-56.10 j \\
R & =57.72 \\
\alpha & =35.03^{\circ}
\end{aligned}
$$

Components of Force

Example 3:Tension in cable $B C$ is $725-\mathrm{N}$, determine the resultant of the three forces exerted at point B of beam $A B$.

Solution:

- Resolve each force into rectangular components.
- Determine the components of the resultant by adding the corresponding force components.
- Calculate the magnitude and direction of the resultant.

Components of Force

Resolve each force into rectangular components

Magnitude (N)	X-component (N)	Y-component (N)
725	-525	500
500	-300	-400
780	720	-300
	$R_{x}=-105$	$R_{y}=-200$

$$
\mathbf{x}=R_{x} \dot{i}+R_{y} j \quad \mathbf{R}=(-105) i+(-200) j
$$

Calculate the magnitude and direction

$$
\begin{aligned}
& \tan \varphi=\frac{R_{x}}{R_{y}}=\frac{105}{200} \quad \varphi=623^{\circ} \\
& \mathbf{R}=\sqrt{R_{x}^{2}+R_{y}^{2}}=225.9 \mathrm{~N}
\end{aligned}
$$

Components of Force

Alternate solution

$$
\begin{aligned}
& R=F_{1}+F_{2}+F_{3} \\
& F_{1}=725\left[-0.724 i+0.689 j_{-}\right. \\
& F_{2}=500\left[-0.6 i-0.8 j_{-}^{-}\right. \\
& F_{2}=780\left[0.923 i-0.384 j_{-}^{-}\right. \\
& R=-25 i-200 j
\end{aligned}
$$

500 N

Calculate the magnitude and direction

$$
\begin{aligned}
& \tan \varphi=\frac{R_{x}}{R_{y}}=\frac{105}{200} \quad \varphi=623^{\circ} \\
& \mathbf{R}=\sqrt{R_{x}^{2}+R_{y}^{2}}=225.9 \mathrm{~N}
\end{aligned}
$$

Rectangular Components in Space

- The vector F is contained in the plane $O B A C$.
- Resolve F into horizontal and vertical components.

$$
\begin{aligned}
& F_{y}=F \cos \theta_{y} \\
& F_{h}=F \sin \theta_{y}
\end{aligned}
$$

- Resolve F_{h} into rectangular components

$$
\begin{aligned}
F_{x} & =F_{h} \cos \phi \\
& =F \sin \theta_{y} \cos \phi \\
F_{z} & =F_{h} \sin \phi \\
& =F \sin \theta_{y} \sin \phi
\end{aligned}
$$

Rectangular Components in Space

$$
\begin{aligned}
& \bar{F}=F_{x} i+F_{y} j+F_{z} k \\
& \bar{k}=F \cos \theta_{x} i+F \cos \theta_{y} j+F \cos \theta_{z} \bar{k} \\
& F=F\left(\cos \theta_{x} i+\cos \theta_{y} j+\cos \theta_{z} k\right) \\
& F=F \lambda \\
& \text { Where } \lambda=\cos \theta_{x} i+\cos \theta_{y} j+\cos \theta_{z} k
\end{aligned}
$$

λ is a unit vector alcong the line of acticn of \bar{F} and $\cos \theta_{x}, \cos \theta_{y}$ and $\cos \theta_{z}$ are the direction cosine for \vec{F}

Rectangular Components in Space

Direction of the force is defined by the location of two points $M\left(x_{2}, y_{-}, z_{-}\right)$and $N\left(x_{2}, y_{2}, z_{2}\right)$

d is the vector joining M and N

$$
\begin{aligned}
& d=d_{x} \bar{i}+d_{y} j+d_{z} \boldsymbol{k} \\
& \begin{array}{ll}
d_{x}=\left(x_{2}-x_{1}\right) & d_{y}=\left(y_{2}-y_{2}\right) \\
& d_{z}=\left(z_{2}-z_{z}\right) \\
F=F \lambda &
\end{array}
\end{aligned}
$$

$$
=F\left(\frac{d_{x} i-d_{y} j+d_{z} k}{d}\right)
$$

$$
F_{\chi}=F \frac{d_{\chi}}{d}
$$

$$
F_{y}=F \frac{d_{y}}{d}
$$

$$
F_{Z}=F \frac{d_{Z}}{d}
$$

Rectangular Components in Space

Example: The tension in the guy wire is 2500 N . Determine:
a)components F_{x}, F_{y}, F_{z} of the force acting on the bolt at A,
b)the angles $q_{x} q_{y}, q_{z}$ defining the direction of the force

SOLUTION:

- Based on the relative locations of the points A and B, determine the unit vector pointing from A towards B.
- Apply the unit vector to determine the components of the force acting on A.
- Noting that the components of the unit vector are the direction cosines for the vector, calculate the corresponding angles.

Rectangular Components in Space

Solution

Determine the unit vector pointing from A towards B.

$$
\begin{aligned}
& A B=-40 i-80 j-30 k \\
& A B=\sqrt{(-40)^{2}-(80)^{2}-(30)^{2}}=9 \angle .3 \\
& \lambda
\end{aligned} \begin{aligned}
& A B \\
& A B \frac{-40 i-80 j-30 k}{94.3} \\
&=-0.424 i-0.848 j-0.318 k
\end{aligned}
$$

Determine the components of the force.

$$
\begin{aligned}
F=F \lambda & =2500(-0.424 i-0.848 j-0.318 k) \\
& =-1060 i+2120 j+795 k
\end{aligned}
$$

$$
\begin{aligned}
& F_{x}=-1060 \mathrm{~N} \\
& F_{y}=2120 \mathrm{~N} \\
& F_{z}=795 \mathrm{~N}
\end{aligned}
$$

Rectangular Components in Space

Solution

Noting that the components of the unit vector are the direction cosines for the vector, calculate the corresponding angles.

$$
\begin{aligned}
\lambda & =\cos \theta_{x} i+\cos \theta_{y} j+\cos \theta_{z} \boldsymbol{k} \\
& =-0.424 i+0.848 j+0.3 _8 k
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{x}=115.1^{0} \\
& \theta_{y}=32.0^{\circ} \\
& \theta_{z}=71.5^{\circ}
\end{aligned}
$$

Vector Products

Dot Product
$A \cdot E=A B \cos \theta$

Applications:
to determine the angle between two vectors
to determine the projection of a vector in a specified direction
$A . B=B . A$ (commutative)
$A .(B+C)=A \cdot B+A . C$ (distributive operation)

$$
\begin{aligned}
A . B & =\left(A_{x} i+A_{y} j+A_{z} k\right) \cdot\left(B_{x} i+B_{y} j+B_{z} i\right) & & i i=1 \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} & & i . j=0
\end{aligned}
$$

Vector Products

Cross Product: $\quad \boldsymbol{A} \times \boldsymbol{B}=\boldsymbol{\varepsilon}=A B \sin \theta$

$$
A \times B=-(B \times A)
$$

$\boldsymbol{A} \times \boldsymbol{B}=\left(A_{x} i-A_{y} \boldsymbol{j}-A_{z} k\right) \times\left(B_{x} i-B_{y} \boldsymbol{j}-B_{z} \boldsymbol{k}\right)$

$$
=\left|\begin{array}{ccc}
i & \boldsymbol{j} & \boldsymbol{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|\left(A_{y} B_{z}-A_{z} B_{y}\right) i+\left(A_{z} B_{x}-A_{x} B_{z}\right) j+\left(A_{x} B_{y}-A_{y} B_{x}\right) k
$$

Cartesian Vector

$$
\begin{array}{rlrlrl}
\mathbf{i} \times \mathbf{j} & =\mathbf{k} & \mathbf{i} \times \mathbf{k} & =-\mathbf{j} & \mathbf{i} \times \mathbf{i}=\mathbf{0} \\
\mathbf{j} \times \mathbf{k} & =\mathbf{i} & \mathbf{j} \times \mathbf{i} & =-\mathbf{k} & \mathbf{j} \times \mathbf{j}= & =\mathbf{0} \\
\mathbf{k} \times \mathbf{i} & =\mathbf{j} & \mathbf{k} \times \mathbf{j} & =-\mathbf{i} & \mathbf{k} \times \mathbf{k}=\mathbf{0}
\end{array}
$$

Moment of a Force (Torque)

Mement abcat axis $\mathrm{C}-\mathrm{C}$ is $\operatorname{MA}_{o}=F d$
Magnitude of M_{g} measures tendency of \mathbf{F} to cause rotation of the body about an axis along $\boldsymbol{M}_{\boldsymbol{g}}$.

Morent about axis O-D s $B I_{o}=F r \sin \alpha$

$$
M_{0}=r \times \bar{F}
$$

Sense of the moment may be determined by the right-hand rule

Moment of a Force

Principle of Transmissibility
Any force that has the same magnitude and direction as \mathbf{F}, is equivalent if it also has the same line of action and therefore, produces the same moment.

Varignon's Theorem (Principle of Moments)

Moment of a Force about a point is equal to the sum of the moments of the force's components about the point.

Rectangular Components of a Moment

The moment of \boldsymbol{F} about O,

$$
\begin{aligned}
& M_{o}=\boldsymbol{r} \times \bar{F} \\
& \boldsymbol{F}=F_{x} \tilde{\boldsymbol{i}}+F_{y} \boldsymbol{j}+F_{z} \boldsymbol{k} \\
& \boldsymbol{r}=x \bar{i}+y \boldsymbol{j}+z \boldsymbol{k}
\end{aligned}
$$

$$
M_{o}=M_{x} \dot{i}+M_{y} j+M_{z} k
$$

$$
=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
x & y & z \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

$$
=\left(y F_{z}-z F_{y}\right) i+\left(z F_{x}-x F_{z}\right) j+\left(x F_{y}-y F_{x}\right) \boldsymbol{k}
$$

Rectangular Components of the Moment

The moment of \boldsymbol{F} about B,

$$
\mathscr{I}_{B}=\boldsymbol{r}_{A B} \times \vec{F}
$$

$$
\boldsymbol{r}_{A B}=\left(x_{A}-x_{B}\right) \boldsymbol{i}+\left(y_{A}-y_{B}\right) \boldsymbol{j}+\left(z_{A}-z_{B}\right) \boldsymbol{k}
$$

$$
F=F_{x} i+F_{y} \boldsymbol{j}+F_{z} \boldsymbol{k}
$$

$M_{B}=M_{x} \bar{i}+M_{y} j+M_{z} k$

$$
=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
x_{A}-x_{\bar{B}} & y_{A}-y_{\bar{B}} & z_{A}-z_{B} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Moment of a Force About a Given Axis

Moment $\mathbf{M}_{\mathbf{O}}$ of a force \mathbf{F} applied at the point \mathbf{A} about a point \mathbf{O}

$$
\bar{M}_{o}=r \times \bar{F}
$$

Scalar moment $M_{O L}$ about an axis OL is the projection of the moment vector $\mathbf{M}_{\mathbf{O}}$ onto the axis,

$$
M_{O_{i}}=\lambda \cdot M_{o}=\lambda .(r \times \bar{F})
$$

$$
M_{x}=\left(y F_{z}-z F_{y}\right)
$$

Moments of \mathbf{F} about the coordinate axes (using previous slide)

$$
\begin{aligned}
& M_{y}=\left(z F_{x}-x F_{z}\right) \\
& M_{\mathrm{z}}=\left(x F_{y}-y F_{x}\right)
\end{aligned}
$$

Moment of a Force About a Given Axis

Moment of a force about an arbitrary axis

$$
\begin{aligned}
& H M_{B}=r_{A B} \times F \\
& \Gamma M_{B L}=\lambda \cdot M_{B}=\lambda \cdot\left(r_{A B} \times \bar{F}\right) \\
& r_{A B}=r_{A}-r_{B}
\end{aligned}
$$

If we take point C in place of point B

$$
\begin{aligned}
M_{B L} & =\text { fi. }\left[\left(r_{A}-r_{C}\right) \times F\right] \\
& =\text { fi. }\left[\left(r_{A}-r_{B}\right) \times F\right]+\text { fi. }\left[\left(r_{B} / r_{C}\right) \times F\right]
\end{aligned}
$$

$\left(r_{B}-r_{C}\right)$ and fi are in the same line

Moment: Example

Calculate the magnitude of the moment about the base point O of the 600 N force in different ways

Solution 1.

Moment about O is

$$
\begin{aligned}
& M_{o}=d F \quad d=4 \cos 40^{\circ}+2 \sin 40^{\circ}=4.35 \mathrm{~m} \\
& M_{0}=600(4.35)=26.0 \mathrm{~N} \cdot \mathrm{~m} \mathrm{Ans}
\end{aligned}
$$

Solution 2.

$$
\begin{aligned}
& F_{\chi}=600 \cos \angle 0^{\circ}=560 \mathrm{~N} \\
& F_{\chi}=600 \sin \angle 0^{\circ}=386 \mathrm{~N} \\
& M_{o}=560(\angle .00)+386(2.00)=2610 \mathrm{~N} \cdot i \mathrm{~m} \text { Ans }
\end{aligned}
$$

Moment: Example

Solution 3.

$$
\begin{aligned}
& d_{-}=4+2 \tan 40^{\circ}=5.68 \mathrm{~m} \\
& M_{o}=460(5.68)=2610 \mathrm{~N} . \mathrm{m} \text { Ans }
\end{aligned}
$$

Solution 4.

$$
\begin{aligned}
& d_{2}=2+4 \cot 40^{\circ}=6.77 \mathrm{~m} \\
& M_{c}=386(6.77)=2610 \mathrm{~N} . \mathrm{m} \quad \text { Ans }
\end{aligned}
$$

Solution 5.

$$
M_{\hat{E}}=\boldsymbol{r} \times F=\left(2 \overline{\boldsymbol{i}}+\frac{4}{\boldsymbol{j}}\right) \times 600\left(\cos 40^{\circ} \overline{\boldsymbol{i}}-\sin 40^{\circ} \boldsymbol{j}\right)
$$

$$
M_{0}=-26.0 \mathrm{~N} . \mathrm{m} \text { Ans }
$$

The minus sign indicates that the vector is in the negative z -direction

Moment of a Couple

Moment produced by two equal, opposite and non-collinear forces is called a couple.

Magnitude of the combined moment of the two forces about O :

$$
\begin{aligned}
M & =F(a+d)-F a=F d \\
M & =r_{A} \times F+r_{B} \times(-F) \\
& =\left(r_{A}-r_{B}\right) \times F \\
& =r \times F
\end{aligned}
$$

$\mathrm{M}=\mathrm{rFsin} 8=\mathrm{Fd}$
The moment vector of the couple is independent of the choice of the origin of the coordinate axes, i.e., it is a free vector that can be applied at any
 point with the same effect.

Moment of a Couple

Two couples will have equal moments if $\mathrm{F}_{1} \mathrm{~d}_{1}=\mathrm{F}_{2} \mathrm{~d}_{2}$
The two couples lie in parallel planes
The two couples have the same sense or the tendency to cause rotation in the same direction.

Examples:

Addition of Couples

Consider two intersecting planes P_{1} and P_{2} with each containing a couple $\mathrm{M}_{1}=\mathrm{r} \times \mathrm{F}_{1} \quad$ in plane P_{1}
$M_{2}=r \times F_{2} \quad$ in plane P_{2}

Resultants of the vectors also form a couple
$M=r \times R=r \times\left(F_{1}+F_{2}\right)$
By Varigon's theorem

$$
\begin{aligned}
M & =r \times F_{1}+r \times F_{2} \\
& =M_{1}+M_{2}
\end{aligned}
$$

Sum of two couples is also a couple that is equal to the vector sum of the two couples

Couples Vectors

A couple can be represented by a vector with magnitude and direction equal to the moment of the couple.

Couple vectors obey the law of addition of vectors.
Couple vectors are free vectors, i.e., the point of application is not significant.

Couple vectors may be resolved into component vectors.

Couple: Example

Moment required to turn the shaft connected at center of the wheel $=12 \mathrm{Nm}$

Case I: Couple Moment produced by 40 N forces $=12 \mathrm{Nm}$

Case II: Couple Moment produced by 30 N
 forces $=12 \mathrm{Nm}$

If only one hand is used?
Force required for case I is 80 N
Force required for case II is 60 N
What if the shaft is not connected at the center of the wheel?
Is it a Free Vector?

Equivalent Systems

At support O $\mathrm{W}_{\mathrm{r}}=\mathrm{W}_{1}+\mathrm{W}_{2}$
$M_{o}=W_{1} d_{1}+W_{2} d_{2}$

Equivalent Systems: Resultants

$$
F_{R}=F_{1}+F_{2}+F_{3}
$$

What is the value of d ?
Moment of the Resultant force about the grip must be equal to the moment of the forces about the grip

$$
\mathrm{F}_{\mathrm{R}} \mathrm{~d}=\mathrm{F}_{1} \mathrm{~d}_{1}+\mathrm{F}_{2} \mathrm{~d}_{2}+\mathrm{F}_{3} \mathrm{~d}_{3}
$$

Equivalent Systems: Resultants

Equilibrium

Equilibrium of a body is a condition in which the resultants of all forces acting on the body is zero.

Condition studied in Statics

Equivalent Systems: Resultants

Vector Approach: Principle of Transmissibility can be used

Magnitude and direction of the resultant force R is obtained by forming the force polygon where the forces are added head to tail in any sequence

$$
\begin{gathered}
\mathbf{R}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots=\Sigma \mathbf{F} \\
R_{x}=\Sigma F_{x} \quad R_{y}=\Sigma F_{y} \quad R=\sqrt{\left(\Sigma F_{x}\right)^{2}+\left(\Sigma F_{y}\right)^{2}} \\
\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}=\tan ^{-1} \frac{\Sigma F_{y}}{\Sigma F_{x}}
\end{gathered}
$$

Equivalent Systems: Example

For the beam, reduce the system of forces shown to (a) an equivalent force-couple system at A, (b) an equivalent force couple system at B, and (c) a single force or resultant.

Note: Since the support reactions are not included, the given system will not maintain the beam in equilibrium.

Solution:
a) Compute the resultant force for the forces shown and the resultant couple for the moments of the forces about A.
b) Find an equivalent force-couple system at B based on the forcecouple system at A.
c) Determine the point of application for the resultant force such that its moment about A is equal to the resultant couple at A.

Equivalent Systems: Example

SOLUTION

(a) Compute the resultant force and the resultant couple at A.

$$
\begin{aligned}
& R=\Sigma \quad F=150 j-600 j+100 j-250 j \\
& R=-(600 N) j
\end{aligned}
$$

$$
M_{A}^{R}=\Sigma r \times F
$$

$$
=1.6 i \times(-600 j)+2.8 i \times(100 j)+4.8 i \times(-250 j)
$$

$$
M_{A}^{R}=-(1880 N . n) k
$$

Equivalent Systems: Example

b) Find an equivalent force-couple system at B based on the force-couple system at A.

The force is unchanged by the movement of the force-couple system from A to B.

$$
R=-(600 N) j
$$

The couple at B is equal to the moment about B of the force-couple system found at A.

$$
\begin{aligned}
M_{B}^{R} & =M_{A}^{R}+r_{B A} \times R \\
& =-1800 k+(-4.8 i) \times(-600 j) \\
& =(1000 N . n) k
\end{aligned}
$$

Equivalent Systems: Example

Rigid Body Equilibrium

A rigid body will remain in equilibrium provided

- sum of all the external forces acting on the body is equal to zero, and
- Sum of the moments of the external forces about a point is equal to zero

$$
\begin{aligned}
& \Sigma F_{x}=0 \\
& \Sigma F_{y}=0 \\
& \Sigma F_{z}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma M_{x}=0 \\
& \Sigma M_{y}=0 \\
& \Sigma M_{z}=0
\end{aligned}
$$

Rigid Body Equilibrium

Free-Body Diagrams

Space Diagram: A sketch showing the physical conditions of the problem.

Free-Body Diagram: A sketch showing only the forces on the selected particle.

Rigid Body Equilibrium

Support Reactions

Translation or
Rotation of a body

Restraints

Rigid Body Equilibrium

Various Supports
2-D Force
Systems

| MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS | |
| :---: | :---: | :---: |
| Type of Contact and Force Origin
 Flexible cable, belt,
 weight of cable
 negligible
 Weight of cable
 not negligible | Force exerted by
 a flexible cable is
 always a tension away
 from the body in the
 direction of the cable. |
| 2. Smooth surfaces | |

Rigid Body Equilibrium

Various Supports
 2-D Force

Systems

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)	
Type of Contact and Force Origin	Action on Body to Be Isolated
6. Pin connection	Pin not free to turn A freely hinged pin connection is capable of supporting a force in any direction in the plane normal to the pin axis. We may either show two components R_{x} and R_{y} or a magnitude R and direction θ. A pin not free to turn also supports a couple M.
7. Built-in or fixed support or	A built-in or fixed support is capable of supporting an axial force F, a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.
8. Gravitational attraction	\quadThe resultant of gravitational attraction on all elements of a body of mass m is the weight $W=m g$ and actstoward the center ofthe earth through thecenter mass G.
9. Spring action	

Rigid Body Equilibrium

Various Supports
3-D Force

Systems
MODELING THE ACTION OF FORCES IN THREE-DIMENSIONAL ANALYSIS

Free body diagram

Cantilever beam

Rigid Body Equilibrium	CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS		
	Force System	Free-Body Diagram	Independent Equations
	1. Collinear		$\Sigma F_{x}=0$
Categoriesin 2-D	2. Concurrent at a point		$\begin{aligned} & \Sigma F_{x}=0 \\ & \Sigma F_{y}=0 \end{aligned}$
	3. Parallel		$\Sigma F_{x}=0 \quad \Sigma M_{z}=0$
	4. General		$\begin{array}{ll} \Sigma F_{x}=0 & \Sigma M_{z}=0 \\ \Sigma F_{y}=0 \end{array}$

Rigid Body Equilibrium

Categories in 3-D

CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS			
Force System	Free-Body Diagram	Indepen	Equations
1. Concurrent at a point		$\begin{aligned} & \Sigma F_{x}=0 \\ & \Sigma F_{y}=0 \\ & \Sigma F_{z}=0 \end{aligned}$	
2. Concurrent with a line		$\begin{aligned} & \Sigma F_{x}=0 \\ & \Sigma F_{y}=0 \\ & \Sigma F_{z}=0 \end{aligned}$	$\begin{aligned} & \Sigma M_{y}=0 \\ & \Sigma M_{z}=0 \end{aligned}$
3. Parallel		$\Sigma F_{x}=0$	$\begin{aligned} & \Sigma M_{y}=0 \\ & \Sigma M_{z}=0 \end{aligned}$
4. General		$\begin{aligned} & \Sigma F_{x}=0 \\ & \Sigma F_{y}=0 \\ & \Sigma F_{z}=0 \end{aligned}$	$\begin{aligned} \Sigma M_{x} & =0 \\ \Sigma M_{y} & =0 \\ \Sigma M_{z} & =0 \end{aligned}$

Rigid Body Equilibrium: Example

A man raises a 10 kg joist, of length 4 m , by pulling on a rope.

Find the tension in the rope and the reaction at A .

Solution:

- Create a free-body diagram of the joist. Note that the joist is a 3 force body acted upon by the rope, its weight, and the reaction at A .
- The three forces must be concurrent for static equilibrium. Therefore, the reaction \boldsymbol{R} must pass through the intersection of the lines of action of the weight and rope forces. Determine the direction of the reaction force \boldsymbol{R}.
- Utilize a force triangle to determine the magnitude of the reaction force \boldsymbol{R}.

Rigid Body Equilibrium: Example

- Create a free-body diagram of the joist.
- Determine the direction of the reaction force R .

$$
\begin{aligned}
& A F=A B \cos 45=(4 \mathrm{~m}) \cos 45=2.828 \mathrm{~m} \\
& C D=A E=\frac{1}{2} A F=1.414 \mathrm{~m} \\
& B D=C D \cot (45+20)=(1.414 \mathrm{~m}) \tan 20=0.515 \mathrm{~m} \\
& C E=B F-B D=(2.828-0.515) \mathrm{m}=2.313 \mathrm{~m} \\
& \tan \alpha=\frac{C E}{A E}=\frac{2.313}{1.414}=1.636 \\
& \alpha=58.6^{\circ}
\end{aligned}
$$

Rigid Body Equilibrium: Example

- Determine the magnitude of the reaction force R.

$$
\begin{aligned}
& \frac{T}{\sin 31.4^{\circ}}=\frac{R}{\sin 110^{\circ}}=\frac{98.1 \mathrm{~N}}{\sin 38.6^{\circ}} \\
& T=81.9 \mathrm{~N} \\
& R=147.8 \mathrm{~N}
\end{aligned}
$$

