Introduction to Engineering Graphics

Mr. Mohan S R
AP-Mechanical

What is an Engineering Drawing ?

"An Engineering Drawing is a technical (not artistic) drawing which clearly defines and communicates a design to other interested parties.

Other parties may have an interest in design collaboration, procurement
/ purchasing, costing, manufacturing, quality control, marketing, handling / packaging."

Drawing:

- The way of conveying the ideas through the systematic lines on the paper.
- The art of representation of an object by systematic lines on a paper.

Classification:

1. ArtisticDrawing(Free-handorModelDrawing):

The art of representation of an object by the artist by his imagination by keeping the object before him.
e.g. paintings, cinema posters, advertisement boards, etc.
2. EngineeringDrawing(InstrumentDrawing):

The art of representation of engineering objects.
e.g. buildings, roads, machines, etc.

1. Artistic Drawing

BESTUWHY PREDICT THE FUTURE CREPITE IT

The art of representation of an object by the artist by his imagination or by keeping the object before him.
e.g. paintings, cinema posters, advertisement boards, etc.

Typesof Engineering Drawing:

i. GeometricalDrawing:

e.g. geometrical objects - rectangle, square, cube, cone, cylinder, etc.

a. PlainGeometricalDrawing:

Two dimensional drawing having only length and breadth.
e.g. square, triangle, etc.
b. Solid GeometricalDrawing:

Three dimensional drawing having length, breadth and thickness.
e.g. cube, prism, etc.
ii. MechanicalEngineeringorMachineDrawing:
e.g. mechanical engineering objects - machines, machine parts, etc.
iii. Civil EngineeringDrawing:
e.g. civil engineering objects - roads, buildings, bridges, dams, etc.
iv. Electrical\&ElectronicsEngineeringDrawing:
e.g. electrical and electronics objects - transformers, wiring diagrams.

2. Engineering Drawing

The art of representation of engineering objects.
e.g. buildings, roads, machines, etc.

Role of Graphics

- Visualization
- Communication
- Documentation

Applications of Engineering Drawing

Ships

Applications of Engineering Drawing
Manufacturing of Automobiles

Applications of Engineering Drawing

Construction

Effectiveness of Graphics Language

1. Try to write a description of this object.
2. Test your written description by having someone attempt to make a sketch from your description.

You can easily understand that ...
The word languages are inadequate for describing the size, shape and features completely as well as concisely.

Composition of Graphic Language

Graphic language in "engineering application" use lines to represent the surfaces, edges and contours of objects.

- The language is known as "drawing" or "drafting" .
- A drawing can be done using freehand, instruments or computer methods.

Freehand drawing

The lines are sketched without using instruments other than pencils and erasers.

Example

Instrument drawing

Instruments are used to draw straight lines, circles, and curves concisely and accurately. Thus, the drawings are usually made to scale.

Example

Computer drawing

The drawings are usually made by commercial software such as AutoCAD, solid works , PRO - E, etc.

Examples

Simple CAD/CAE/CAM Product Lifecycle

Elements of Engineering Drawing

Engineering drawing are made up of graphics language and word language.

> Graphics language
> Describe a shape (mainly).

Word language

Describe size, location and specification of the object.

Basic Knowledge for Drafting

Drawing Instruments

1. Drawing Board
2. Drawing Sheet
3. Drawing Sheet Holder
4. Set-squares -45° and $30^{\circ}-60^{\circ}$
5. Large size Compass
6. Small bow Compass
7. Large size Divider
8. Small bow Divider
9. Scales -6 " and 12 "
10. Protractor
11. French Curve
12. Drawing Pencils $-\mathrm{H}, 2 \mathrm{H}, \mathrm{HB}$
13. Sand Paper
14. Eraser (Rubber)
15. Drawing Pins and Clips
16. Cello Tape
17. Duster or Handkerchief
18. Drafting Machine / Mini Drafter
19. Sketch Book (Medium size)
20. Roller Scale
21. Pencil Sharpener
22. Sheet Folder

TECHNICAL DRAWING BOARD

DRAWING TOOLS

DRAWING TOOLS

3. Adhesive Tape
4. Pencils

DRAWING TOOLS

5. Pencil Eraser
6. Compass

DRAWING TOOLS

9. Circle Template
10. Tissue paper

DRAWING TOOLS

11. Sharpener
12. Clean paper

Layout of Drawing Sheet

All the dimensions are in millimeters.

SAMPLE OF DRAWING SHEET

SAMPLE OF ENGINEERING DRAWING

Title Block (Sample)

All the dimensions are in millimeters.

Basic Information Included in a Drawing

- Projected Views: show as many sides as needed for completeness.
- Cross Sections: A view that is good for showing interior features.
- Table: Lower right corner, with material information, part name, designer etc. and finally
- DIMENSIONS!!!: These are the most important and most complicated part of the drawing. There is more to it than just the numerical values!

LINES

Line Thickness:

Thickness varied according to the use of pen or pencil and the size \& type of the drawing.
For pencil, the lines can be divided into two line-groups:

Line-group $(\mathbf{m m})$	Thickness	Lines
0.2	Medium	Out lines, dotted lines, cutting plane lines
0.1	Thin	Centre lines, section lines, dimension lines, extension lines, construction lines, leader lines, short-break lines and long-break lines.

Important Notes:

In the finished drawing, all lines except construction lines should be dense, clean and uniform. Construction lines should be drawn very thin and faint and should be hardly visible.

Types of Lines

	Lines	Description	General Applications	
A	\qquad	Continuous thick	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 2 \end{aligned}$	Visible outlines Visible edges
B		Continuous thin (straight / curve)	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \\ & \text { B3 } \\ & \text { B4 } \\ & \text { B5 } \\ & \text { B6 } \\ & \text { B7 } \end{aligned}$	Imaginary lines of intersection Dimension lines Projection lines Leader lines Hatching or section lines Outlines of revolved sections in plane Short centre lines
C		Continuous thin (free-hand)	C1 C2	Limits of partial or interrupted views and sections Short-break lines
D	$-\sqrt{ }$	Continuous thin (straight with zigzags)	D1	Long-break lines

Lines		Description	General Applications	
E	－－－－－	Dashed thick	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{E} 2 \end{aligned}$	Hidden outlines Hidden edges
F	－－－－－－－－－－－－	Dashed thin	$\begin{aligned} & \text { F1 } \\ & \text { F2 } \end{aligned}$	Hidden outlines Hidden edges
G	－－－－－－－－－－－－－－－－－－	Chain thin	$\begin{aligned} & \text { G1 } \\ & \text { G2 } \\ & \text { G3 } \end{aligned}$	Centre lines Lines of symmetry Trajectories
H		Chain thin，thick at ends and changes of direction	H1	Cutting planes
J	ーーーーーーー	Chain thick	J1	Indication of lines or surfaces to which a special treatment applies
K	－－－－－－－－	Chain thin double－dashed	$\begin{aligned} & \text { K1 } \\ & \text { K2 } \\ & \text { K3 } \end{aligned}$	Outlines of adjacent parts Alternative and extreme positions of movable parts Centroidal lines

Application of various types of lines according to B.I.S.

LEADER LINE

Lettering

Writing of titles, dimensions, notes and other important particulars on a drawing is lettering

Classification:

1. Single-stroke Letters:

The thickness of the line of the letter is obtained in one stroke of the pencil.
Recommended by B.I.S.
It has two types:
i. Vertical
ii. Inclined (slope 75° with the horizontal)

- The ratio of height to width varies but in most of the cases it is 6:5.
- Lettering is generally done in capital letters.
- The lower-case letters are generally used in architectural drawings.
- The spacing between two letters should not be necessarily equal.
- The letters should be so placed that they do not appear too close together too much apart.
- The distance between the words must be uniform and at least equal to the height of the letters.
- Lettering, except the dimension figures, should be underlined to make them more prominent.

Size of Alphabets for Drawing:

Main titles ---8 mm
Sub titles ---3 mm
Notes, dimension figures, etc. --------------3-5 mm
Drawing no. -------------------------------------10-12 mm

: ABCDEFGHIJKLMN OPQRSTUVWXYZ 1234567890

abcdefghijkImnopqrstuvwxy
Z

Dimensioning

The art of writing the various sizes or measurement on the finished drawing of an object.

Iypes of Dimensioning:

i. Size or Functional Dimensions (S):

It indicates sizes.
e.g. length, breadth, height, diameter, etc.

ii. Location or Datum Dimensions (L):

It shows location or exact position of various constructional details within the object.

Notations of Dimensioning

1. Dimension line:

Thin continuous line used to indicate the measurement.

2. Extension line:

Thin continuous line extending beyond the outline of the object.

3. Arrow-head:

Used to terminate the dimension line. Length : width ratio is $3: 1$.
Space filled up.

4. Note:

Gives information regarding specific operation relating to a feature.

5. Leader:

Thin continuous line connecting a note or a dimension figure with the feature to which it is applied. Terminated by arrow-head or dot.

6. Symbol:

The representation of any object by some mark on the drawing.

Units of Dimensioning

As for as possible all dimensions should be given in millimeters omitting the abbreviation mm .

If another unit is used, only the dimension figures should be written. But a foot note such as 'All the dimensions are in centimeters' is inserted in a prominent place near the title box.
e.g. 15.50
0.75 (Zero must precede the decimal point.)
$15.50 \pm .75$ (Zero is omitted.)

The ways of Placing the Dimensions in a Series

Chain
Parallel

The ways of Placing the Dimensions in a Series

The ways of Placing the Dimensions in a Series

1. Chain Dimensioning:

Dimensions are arranged in a straight line.

2. Paralle/Dimensioning:

All the dimensions are shown from a common base line.
The smaller dimension is placed nearer the view.

3. Combined Dimensioning:

Chain and parallel dimensioning used simultaneously.

4. Progressive Dimensioning:

One datum or surface is selected which reads as zero. All the dimensions are referred to that point or surface.

Types of Dimensioning

1. Aligned System

In the aligned system the dimensions are placed perpendicular to the dimension line in such a way that it may be read from bottom edge or right hand edge of the drawing sheet.

2. Unidirectional System

In the unidirectional system, the dimensions are so oriented such that they can be read from the bottom of the

(a) Aligned system

(b) Unidirectional system
 drawing.

Some Important Rules for Dimensioning

1. All the dimensions necessary for the correct functioning of the part should be expressed directly on the drawing.
2. Every dimension should be given, but none should be given more than once.
3. A dimension should be placed on the view where its use is shown more clearly.
4. Dimensions should be placed outside the view, as for as possible.
5. Mutual crossing of dimension lines and dimensioning between hidden lines should be avoided. Also it should not cross any other line of the drawing.
6. An outline or a centre line should never be used as a dimension line. A centre line may be extended to serve as an extension line.
7. Aligned system of dimensioning is recommended.
8. Dimension lines should be drawn at least 8 mm away from the outlines and from each other.
9. The extension line should be extended by about 3 mm beyond the dimension line.
10. When the space is too narrow, the arrow-head may be placed outside. Also a dot may be used to replace an arrow-head.

11. The various methods of dimensioning different sizes of circles are as follows:

12. Arcs of circles should be dimensioned by their respective radii.
13. Radii of a spherical surface and square cross section of a rod is shown

14. Angular dimension may be given as follows:

Length of Chord

15. Method of dimensioning of Chamfer:

16. Dimensioning of Tapered Surface:

Slope or Taper $=(\mathrm{H}-\mathrm{h}) / \mathrm{L}$

