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Course ODbjectives:

1. To understand the concepts of stress, strain, principal
stresses and principal planes.

2. To study the concept of shearing force and bending
moment due to external loads in determinate beams
and their effect on stresses.

3. To determine stresses and deformation in circular
shafts and helical spring due to torsion.

4. To compute slopes and deflections in determinate
beams by various methods.

5. To study the stresses and deformations induced in thin
and thick shells.
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Course outcomes

Students will be able to

1.

Understand the concepts of stress and strain in simple and
compound bars, the importance of principal stresses and
principal planes.

Understand the load transferring mechanism in beams and
stress distribution due to shearing force and bending
moment.

Apply basic equation of simple torsion in designing of shafts
and helical spring

Calculate the slope and deflection in beams using different
methods.

Analyze and design thin and thick shells for the applied
internal and external pressures.
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Syllabus Unit-1

UNIT | STRESS, STRAIN AND
DEFORMATION OF SOLIDS 9

 Rigid bodies and deformable solids —
Tension, Compression and Shear Stresses
— Deformation of simple and compound
bars — Thermal stresses — Elastic constants
— Volumetric strains —Stresses on inclined
planes — principal stresses and principal
planes — Mohr’s circle of stress.
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Mechanics

* Rigid body (Engineering mechanics)

« Deformable body (Strength of Materials or
mechanics of solids)

* Fluids (Fluid mechanics)



Introduction

 Various structures and machines (eg.
Bridges, cranes, airplanes, ships etc.,)
consists of numerous parts and members
connected together in such a way as to
perform a useful function and to withstand
externally applied loads

» Consider for example a simple press

* The function of the press is to test
specimens of various materials in
compression



Introduction
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Four basic types of loading

* Tension

« Compression
* Torsion

* Bending
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Introduction

« In all engineering construction the component
parts must be assigned definite physical sizes

« Such parts should resists the actual or
probable forces that may be imposed upon
them

 All the above requirements must be met with
minimum expenditure of a given material- not
only to reduce the cost but also weight

* This subject involves analytical methods for
determining 3S’s — strength, stiffness and
stability
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Introduction

» Tensile force — acts away from the section,
tends to elongate the member

« Compressive force — acts towards the bar
and tends to compress (shorten) it

« Shearing force — tends to slide or shear
the bar

» Twisting moment — tends to twist the bar
* Bending moment — tends to bend the bar
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Stress

* The external applied forces on a body tend
to deform it and causes it to develop equal
and opposite internal forces which resist
the deformation

* The resisting force per unit area of the
surface i1s known as stress

* Types of stresses
— normal stress (tensile and compressive)
— Shear stress
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Direct stress (or) normal stress (or) axial stress

* The resulting stress induced, when
external forces are applied along the axis

}R=P

W
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Shear stress

« Simple shear occurs when equal, parallel and
opposite forces tend to cause a surface to
slide relative to the adjacent surface
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Strain

« Strain — ratio of change in dimension to
the original dimension

* Types of strains
— Normal strain (tensile and compressive)
— Volumetric strain
— Shear strain

* Tensile Strain — elongation per unit length
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Shear strain

« Shear strain Is defined as the change In
the right angle measured in radians
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Elastic limit

* Elastic material
* Plastic material
* Rigid material

e Elastic limit — the maximum value of stress
up to which the material behaves as an
elastic material

 Hooke's law — within elastic limit, the
stress is proportional to strain




Elastic Constants

* Young’'s modulus

o)
E=—
3
« Shear modulus (modulus of rigidity)
T T
CNorG=—=—
& ¢
« Bulk modulus
normal stress oy

volumetric strain &,

Poisson’s ratio

lateral or transverse strain

1
U = : . = —
linear strain m

For most materials u lies in the range 0.25 to 0.35
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Some mechanical properties

» Elasticity - regain original shape
» Plasticity — permanent deformation

* Ductility — to be drawn out longitudinally into
thin wires

» Brittleness — lack of ductility

» Malleability — to be drawn into thin sheets
under compression

 Toughness — abllity to absorb energy
 Hardness — ability to resist indentation
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Stress-strain diagram

* For ductile materials (Eg. Mildsteel, aluminium,
copper, brass, bronze, nylon, Teflon)
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Stress-strain diagram

* Brittle materials (cast-iron, concrete,
stone, glass, ceramic )
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Factor of safety

« Ultimate stress - Ultimate load is defined as
maximum load which can be placed prior to the
breaking of the specimen. Stress corresponding to
the ultimate load is known as ultimate stress.

 Working stress - the maximum value of stress to
which an actual member is expected to be loaded
under working condition

* Factor of safety (F.S.)

ultimate stress (or)yield stress

e F.§5.=

working stress

* For ductile — ultimate stress and for brittle — yield
stress
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Constitutive relationship betwe
and strain

* One dimensional stress system

en stress
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Volumetric strain of a rectangular bar
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Volumetric strain of a cylindrical rod
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Volumetric strain of a rectangular bar subjected to
three mutually perpendicular forces
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Relation between elastic constants

* Four elastic constants — E, G, Kand u
Home work

1. Derive the relation between E, G and u
2. Derive the relation between E, K and L
3. Derive the relation between E, K and G
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Relation between elastic constants

* Four elastic constants — E, G, K and u
elation betweenE, G, K, 1 :

« Bansal, R.K., “Strength of Materials”,
Laxmi Publications (P) Ltd.,
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4. A steel bar of 40 mm X 40 mm square cross-section is subjected to an axial compressive load of

—

200 kN. If the length of the bar is 2 m and E = 200 GPa, the elongation of the bar will be:
il

(a) 1.25 mm PQ_{ O/_ P = 200 K060
(b) 2.70 mm CO-/Q-f - KE f OOA-XO:,)4-
(c) 4.05 mm 0 —SQ—' /'“
(d) 5.40 mm j__? 'LN/ A L g=-— = .

£ = 2060H10 N)m L =

Option (a) is correct _ O_:_
PL 200 * 1000 * 2 E =<
= — m = 1.25mm = |
A 0.04 % 0.04 % 200 = 10? —_ .

. B 2.60‘\(\0‘1 - —
28
oX =g 00125

_\;_gm'ﬂ'\’
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Problems 45“2',@ Y 45k
7 -

* Asteel rod of 25 mm in diameter and 4 long is
subjected to an axial pull of 45 kN. Find -(i)
intensity of stress, (ii) the strain, and (iii) the
elongation. Take E =2.1 x1078 KN/m"2. -
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Problem oLl gyt b7
= = =
 Asteel bar 150 mm wide and 12.5 mm
thick and 1 m long carries a pull of 180 kN.
Find the extension in length and the
contraction in width and thickness when

the load Is applied. Take E= 2x10"5 |

N/mm~2 and 1/m = 1/3.5 R
B |25 B - o 25 ko 0°3
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Problem

* A bar of certain material 50 mm square Is
subjected to an axial pull of 150 kN. The
extension over a length of 100 mm is 0.05
mm and decrease in each side is 0.00625
mm. calculate the Young’'s modulus,

Poisson’s ration, rigidity modulus and bulk
modulus
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Course ODbjectives:

1. To understand the concepts of stress, strain, principal
stresses and principal planes.

2. To study the concept of shearing force and bending
moment due to external loads in determinate beams
and their effect on stresses.

3. To determine stresses and deformation in circular
shafts and helical spring due to torsion.

4. To compute slopes and deflections in determinate
beams by various methods.

5. To study the stresses and deformations induced in thin
and thick shells.
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Course outcomes

Students will be able to

1.

Understand the concepts of stress and strain in simple and
compound bars, the importance of principal stresses and
principal planes.

Understand the load transferring mechanism in beams and
stress distribution due to shearing force and bending
moment.

Apply basic equation of simple torsion in designing of shafts
and helical spring

Calculate the slope and deflection in beams using different
methods.

Analyze and design thin and thick shells for the applied
internal and external pressures.
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Syllabus Unit-2

UNIT Il TRANSVERSE LOADING ON
BEAMS AND STRESSES IN BEAM

Beams - types transverse loading on
beams - Shear force and bending moment
in beams - Cantilevers - Simply supported
beams and over -hanging beams. Theory
of simple bending- bending stress
distribution - Load carrying capacity -
Proportioning of sections - Flitched beams
- Shear stress distribution.
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Types of beams

* Beams can be classified according to the
manner in which they supported

I (a) Cantilever (b) Sunply supported

mp———— & & & &

(d) continuous

]

() Cannlever, sumply supported

(¢) Overhanging

(e) Fixed ended

08-04-2021 Dr. B. Janarthanan



Types of supports

Roller support gs Z”S

Roller Support Reaction Force

Hinged support v :

Fixed support Fixed -9
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Types of loads

Loap Typre

ErrecTIVE FORCE
AT Loap CENTROID

Pomnt LoaD

| =

-

UNIFORMLY
DISTRIBUTED

LoaD

TRIANGULAR
DISTRIBUTED
Loap

TRAPEZOIDALLY
DISTRIBUTED

LoaDp

PoiNT
MoMENT
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Shear force and Bending Moment

e Shear force

— The shear force at any section is basically the
algebraic sum of the lateral forces acting on either
side of the section.

* Bending moment

— The algebraic sum of the moments about the
section of all forces acting on either side of the
section
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Bending moment —sagging and
hogging
* Asagging moment will make the beam

concave (positive) upwards at that section,

and vice versa for a hogging moment (i.e.
negative).

Clockwise Anti-Clockwise
(t j} Ant iCIock\'.rise\; Q}lmk\vise

Postitive Bending Moment Negitive Bending Moment
Sagging Moment Hogging Moment
(a) (b)
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Sign conventions

‘ M M
i M .

Positive axial force E N _
_ Positive bending moment
' Negative shear force
iy " iy I
—_—— i e ] |l ]
i
- - |
Negative axial force ' _ ” (¥

. Negative bending moment
Positive shear force g g
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Relation between load intensity, shear
force and bending moment

 The shear force is equal to the rate of change of

bending moment with respect to x.
dM

F:E

+ Slope of the moment curve = Shear Force

* The intensity of loading is equal to rate of change of
shear force with respect to x.

Slope of the shear diagram = - Value of applied
loading
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Cantilever with point load

X W
|
Beam B
L — x —
I
Fixed end X+ Feeeend
W + S.F.D JW

- B.ML.D
W.L
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Cantilever with udl

w*L ,/
W/////////////// -

SFD

A B
- -
-wl2f 7 0 % i
B.M.D
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2kN 3kN 3kN

26kN-m

8
l 6 kN
g (b) SFD.

l 6 kKN—m

(c) B.M.D.
Fig. 3.9.
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2 kN/m

4 Do A
J¢—1m—>j¢ 2m Me—1m—>]
(a) BEAM
A
4 kN B
'
* 4 kN
(b) S.F.D.
K
STRAIGHT
8 4kN-m
KN-m PARABOLIC
52
(c) B.M.D. le—1m—l
Fig. 3.13.
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1kN 3kN 2kN 2 kN

4 l 2kN/m | | l
D 7 C _ [MTTTISTTITS
F—1m—f—1m —=f—1m —f—1m—f—1m —
(a) BEAM
T |
Ll 4 kN
12 |
kN 6 |
4 T
12kN 11 :
. : (b) S.F.D. :
" SJRAIGHT | :
28 kN-m | |
| |
|
40 |
kN-m I
| STRAIGHT
2 ¥ O
(c) B.M.D.
Fig. 3.14.
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4 kN

1 - /2 kN/m l

i
}:—2m s JY)——

B

28kN-m (c)B.M.D.
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SFD and BMD for Simply supported beams

A o= S C B
|
K112
Ra k Rs
3 L 4
+W/2
C B
-W12
Shear force diagram
WL/4 C

Bending Moment diagram
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SFD and BMD for Simply supported
beams

w/UNIT LENGTH
A
. Cl— x —4

(a) BEAM ;N'-L
| + [ |2
wl[ - oy
2 (b) S.F.D.
| A| B
\KLLL | wi y
2
L
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SFD and BMD for Simply supported
beams
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SFD and BMD for Simply supported
beams == *‘**&ﬁﬁ;& o
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SFD and BMD for Simply supported
beams

|"""""1 13 |"=“"I
A O -

(il I:-_;'n —lh—i-rr-—hl-'l dm —*
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SFD and BMD for Simply supported
beams

The maximum bending moment occurs in a beam, when
the shear force at that section is zero or changes the sign

Lol = P
N I S . SFab Seckbimx

R e e F. = 50—40 — 10fc ) = 0
2= 80 e 10 m H;.H [0 — l,obc_;ﬁ -}
| jo(x-4) =10
- | : I 0
:} * :E?:I i i x=5m:
0k l "*th%nn*'wm" H BM ak Sec*lm X

¢
’ T — E":tu'........._.____]’; N\, = 5O — 40@1-—@ Io[x—:i)

‘fﬁ,,--':‘”ﬂT”"”"’hh ‘ _ 515 —40(5-4) -5 [5'4)

= 250 —40-5

A Pyl i]
L | ", = 205 kwm
Err it Mo st i i o B
C K 0
B Sapam
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Maximum Bending Moment

Draw the Shear Force Diagram and Bending Moment Diagram for a simply
supported beam of length 8m and carrying a uniformly distributed load of 10 kN/m
for a distance of 4m as shown in figure.

10 KNm

ST ok Sechm X
F= 15 —w0(3)=©
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SFD and BMD for Simply supported
beams

4KN kN
a b ([T | s
I
F 5 E
o0 ClmD 4 a2l _F.._..'[
L Schemahc n
i B
T e - F B
a C D €3 " -
s FD - ik
" 1 -'_‘-—__h
.-'-.-'-Fﬂ -\--\--\'-\.
20ENM - 2OkNM s
24kNM -
16K i 1INM ™
A o (G E F B
BM.D
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EFFECT OF UNIFORMLY DISTRIBUTED LOAD

G T

g
E o F iC
RAI‘ = el J“’
: LOADED BEAM b——

'SHEAR FORCE DIAGRAM |

2280 kN.m |

'

| BENDING MOMENT bIKBRA:DA

08-04-2021 Dr. B. Janarthanan

Calculations

Reactions
Ra +RB=100=20x2 + 50 = 190
Ma,
Rex8=100x6+20x2x50x2
Ra=1125kN, RA=77.5kN

Shear Force

S.FatB=1125kN (+ ve)

SFatC= 112.5-100 = 12.5kN
S.FatD=1125-100 20 x 2= -27.5kN
SFalE=1125-100-20X2-50 =
775kN

S.F.atA =-77.5kN

SFalF=0
SFatF=1125-100-20(x~2)
X=2625m

Bending Moment

BMA=0,BMs=0

BMcC = 112.5X 2 = 225 kN.

BMD= 1125X4 -100X2-20X2X 2/2
= 210kN.m

BME=1125X6-100X4-20X2X3

BMr = 1125 X 2625~ 100 X 0.625-20 X
0.625 X 0.625/2 =228.9 kN.m
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Over hanging beam

« Draw the SFD and BMD for the overhanging beam carrying
UDL of 2 kN/m over the entire length and a point load of 2 kN
as shown in Fig Also locate the point of contraflexure

2 kN

’r_ —0 - _ 2 kN/m

f'__ oLy 24~

1 4K~ lox,-\'ul =0

ix LD \o(\l’l\')
9( L\j\L“D -

me

B.M. diagram
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Point of contraflexure

* POINT OF CONTRAFLEXURE

* [tis the point on a beam where bending

moment changes its sign and its
value is zero. This point is generally
found in over hanging beam.

08-04-2021 Dr. B. Janarthanan
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Overhanging beams

2 kN/m 2 kN
A |
1& B.n. C
4m s 2m ——

Ra Re

4 O ——P]

I EXFFTTFNAFENE]

2
ct

ErEFLE

+ 1.0 E B

NI FEFTD ITSFFFEE]
(f((Illllllll‘ll!l(I(IIIIIII{

B.M. diagram

08-04-2021 Dr. B. Janarthanan

29



Uniformly varying load

08-04-2021

— ‘

cantilever beam carrying a gradually varying load

Parabolic Curve

S.F.D

Base line

Dr. B. Janarthanan
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Uniformly varying load

08-04-2021

C
W.x/L
W = 2
. i ‘ B
A L DI‘__X__i
Rate of Loading
WL/2 W x72L

S.F. = Triangular Load area = % X DE X DB

wi/e
W x /6L

B.M = Force X Perpendicular
=% XDEXDB XDB /3 frompointD to
the centroid

&
<

DE/AC=DB/AB , DE =5000x/4 =1250x
l.e rate loading at any distance x

S.FatD = -1/2Xx 1250 x = - 625 2
SF. atB =0wherex=0 2
SFatA,atx=4 , -625X4 =10kN

B.M.atx =-1/2X DB X DE X DB/3

=-625 ¥Xx/3, atx=4,
B.M.atA = - 13.33kN.m

|

10 kN.m
Parabola Curve

13.33 kN.m
Cubic Parabola

Dr. B. Janarthanan
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Uniformly varying load

Draw S F. and B.M. diagrams for the loaded Beam

08-04-2021

Dr. B. Janarthanan

Calculations

Reactions

Ra + Re= 150 + 300

Ma,

Re X6=150X5+300(23X3+1)
Ra=275kN, Ra=175kN

Shear Force

S.FatB=275kN
SFatC=275-150=125kN
S.FatD =125kN
SFatE=275~150~300=-175kN
SFatA=-175kN

Rate of Loading at distance x

w=Wx/l= w=200x/3
SFatF=-175+%200x/3 X x
Xx=229m

Bending Moment

BMa = 0, BMs = 0,
BMc =275 X 1 =275kN.m
BMp = 275X 2~ 150 X 1 =400 kN.m

BMe =175 X1 =175kN.m WL X L2
BMr = 175X 329 - (200 X 2.29/3) ( 2.29/2)
2.29/3)

= 442 32 kN.m

32



Uniformly varying load

Problim—+ A Simbly Subborded Ruam of darth S Cami 2 o)
oo Nfw suun of eve 2rd o ) €oo N Xm0l ebhex 2-d. Do SF-D.

SoLuvTxon — DE = e
IKOOM
g

%MMI
260 €T i
” & T,

SFD
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Uniformly varying load

Draw S F. and B.M. diagrams for the loaded Beam Calculations

| 322218N

Reactions

Ma,

Rs X8=200X8X 4+ 12X 400 X8 X8/3
Re = 1333.33 N
Ra+Re=200X8+%X400X8

Ra= 1866.67 N

Rate of Loading at X-X = GH + GF

Rate of Loading at GH

DE/CD = GH/CG, GH =400x /8 =50x
Rate of Loading at GF = 200
Rate of Loading at X-X = GH + GF = 200 + 50x

Shear ForceatP =0

S.F. at F =1333.33 - (load BCGF + Load CGH
= 1333.33 -~ (200x + ¥2X 50 x X x)
X = 4.326 (quadratic equation +ve value)

Bending Moment

BMr = 1333.33x - 200x X x/2 = /2 X50x X x X
7 [ o et (GH = 50x)
We have x = 4326

Max. B.M at F = 3436.14 N/m

08-04-2021 Dr. B. Janarthanan
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Load Slope for Slope for bending
o shear force Moment
Constant Linear
Y
- 1| N
Uniformly , .
distributed load Linear Parabolic
1'_*_!_*_*_”_*_* I\.— /\
A A ~
Uniforml
va::i:;rn:d Parabolic Cubic

,.d:ﬂj:ﬂ:r

A

BN

N\
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Theory of simple bending

Compression Load

v

Tension
(a) Simply supported beam
A (5;
G
N-4-GL__¥___[d _23_
B D
Beam before bending
0
\
L’%
7 Ve
;R

M
£+ Neutral surface

L ==

Beam after bending

08-04-2021

(4

0'
Stress diagram

Dr. B. Janarthanan

Tension

— ——— —
——
—

Compression

(b) Cantilever beam

Load

36



Pure bending or simple bending

08-04-2021

'y "|
(a) A B
C A 7 § D
——a < L Fi—a—bl
RA=\N RB=\N
E o+ §w
C A 8 :“\\\\\\\\\\\\\L: i
(b) ? ARAARARARRARR AR R Y
3 3 S.F. diagram D
Wk - 3
i : \\\\\\\\\\\\\\§
|
C A B D

\\\\\\‘I\\\\\\\\\\\\\\\\\\\\:\\\\\

(e)

Wi B.M. diagram

wxa
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ASSUMPTIONS IN SIMPLE BENDING THEORY

» —~— T m— T =

« Beams are initially straight

« The material is homogenous and isotropic i.e. it has
a uniform composition and its mechanical
properties are the same in all directions.

» Young’s Modulus is the same in tension as in
compression.

« Sections are symmetrical about the plane of
bending.

« Sections which are plane before bending remain
plane after bending.

Dr. B. Janarthanan
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* Bending stress

— The stresses produced at the section to resist
bending moment

 Shear stress

— The stresses produced at the section to resist
the shear force
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v E = Young's modkds
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BEEAM BENDING

L = gverall length

W = point load, M = moment End Slope Max Deflection Max bending
w = lead per unit length moment
N ML M’
N Br M
N EI 251
N ' W w12 wi?
X WL
W 2El 3E]
§mm:&nma wiL’ wL! wi’
N 6 E7 SET 2
M, M ML M2 o
2E7 RET
W WL’ wi? WL
el 2 L 16E7 A8 L] a
Pmcnﬁ&:nmn:m% wi’ Swi’ wi?
24E7 384E7 8
2
A‘ *W l€—c —>B O — s Wac® Wab
coe— s | S |
as<b c= ‘/13- bH(L + a) O = Y & | (at position c) (under load)
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Cross-section shape Morment of inertia of area | Modulus of section Z
Rectangle b
I"—"I 3 2
[=-bh 7-bh
d_._. = 12 6
Square a
a’ a’
=72 I="g

Cross-section shape

Mornent of inertia of area

Modulus of section 2

Circle
. md’ o’ _nd _mr
il 1| Feaa | L5327
_n(d-d’) | 7_n(d-d’)
64 32d
Thin wall [ = gt-n::lm3 Thin wall 2= ::_i:l:..;j,.nE

08-04-2021
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« A cantilever 4 metres long is subjected to a UDL of 1 kN per
metre run over the entire span. The section of the cantilever is
40 mm wide and 60 mm deep. Determine the bending stress

produced. What point load may be applied at the free end to
produce the same bending stress?

WA L W0 R 4
AN e BTN e
R@MW@ Oﬁ/—"\’ CBRE N
f‘ﬁ. \ - b N rmm
— ])A - 40)( 6 - 72,‘“04 W\ml}
b
\6\.,: — -3 N
M %y [0? \333 3 WP
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« Acantilever 3 m long carries a UDL of 1 kN per metre run over the
whole span. The cross section of the beam is rectangular 60 mm
wide and 100 mm deep with a circular hole of 20 mm diameter at the
centre. Determine the maximum bending stress induced in the beam
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* Arectangular beam 120 mm deep and 60 mm wide is simply.
supported over a span of 4 m and carries a central load of 10 10 KkN.

Determine the maximum fibre stress in the beam. Also calculate the
stress at a fibre 15 mm from the top surface of the beam.
\0 ¥N -
\! ey

o ——2 Cosk- = TF
Nl\‘w = \wm\'&g/e/:w*‘“ NN / ] g
% .

P
> : A
W T grapet e &
1= 2 0
i T

08-04-2021 Dr. B. Janarthanan 47



A cast iron beam is of T-section as shown in Fig. the beam is simply
supported on a span of 8 m. the beam carries a UDL of 1.5 kKN/m

length on the entire span. Determine the max. tensile and max.
compressive stresses.

e

S N _;Li-*‘_




« A 100 mm x 200 mm rolled steel joist of I-section has flanges
12 mm thick and web 10 mm thick. Find the safe uniformly
distributed load that this section can carry over a span of 6 m
If the permissible skin stress is limited to 160 N/mm”2.



Flitched beam or composite beam

Let E, = Young’s modulus of steel plate Steol Wooden Steel

I, = Moment of inertia of steel about N.A. pl:f pieee p’af
M, = Moment of resistance of steel
E, = Young’s modulus of wood | |
I, = M.O.L of wood about N.A. y K1 5
M, = Moment of resistance of wood. *
Strain in steel at a distance y from N.A. d
_ Stress _ o, ﬁ!'_ AR VAR Al 77, BTy
- E E,
(- Stress in steel = 0))
Strain in wood at a distance y from N.A.
- J2
B | A4
But strain at the common surface is same
o o ' etole b rets
-5 ~(7.11) Fig. 7.27 (a)
1 5
E,
0, = E_z X U
=mox o, 1)
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Flitched beam or composite beam

T &

~where m = EJ}H and is known as modular ratio between steel and wood.
2 _ |

Using the relation % - -E— , we get

M = LY
Y
Hence moment of resistance of steel and wood are given by,
o] o
M1=—1:»:I1 and M2=-—-2-x12
Y Y
. Total moment of resistance of the composite section,
M=M,+M,
= —G-L o I 1 + % o I 9
Y Y

- "“_“z“_"l + O2 x I, (- 0, = Mo, from equation i)
y y

= 22 (I, +1,) .(7.12)
J} .
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Flitched beam or composite beam

In equation (7.12) 1, + mI can be treated as equivalent moment of inertia of the cross-
- section, asg if all made of materlal 2 (i.e., wood) which will give the same amount of resistance
as the composu;e beam. Let this be denoted by 1.

I=ml, +1, .{(7.13)

Then M=—%xI w(L14)
b 4
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Flitched beam or composite beam

A composite beam consists of a wooden joist /0 cm wide,
20 cm deep strengthened by two steel plates 8§ mm thick and
18 cm deep placed symmetrically one on either side of the
joist. If the stresses in wood and steel are not to exceed in
wood and steel are not to exceed 7.5 MPa and 140 MPa, find
the moment of resistance of the section of the beam. Take

the modulus ratio as 20. =
Eqmavalant Mo mant of Trevbia:
- M
i A fed 1= Tt B (180" \® m f
_ \oot 26" 20\ 2* =222\ mm
@ \ - \2>— T \ 2
® / Skol Mowmwznt AC Rosaa wea

) e % M = OLews T _15 422200
no
4

" wax o0
Lo

b
~ |(-b5S R (07 N-mO
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Flitched beam or composite beam

0 o
c{mm:m 2 WA *Oimm

2 \éi\(\m:

10 x15
10D

- 20%*

— \35 N/MY\'\’L

Wiweh 1s uns Yo tha ‘:nm\';szibﬁ_o. yodme (140 N/Mm?>
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Shear stresses

Ib Ib Ib
 Where |
 ForQ is shear force e— b — <”’

A = Area of shaded portion

y = distance from NA to the centroid of shaded area
I/ = Ay = moment of shaded area about NA

I = Moment of Inertia of the entire section about NA
b = width of the fibre
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Shear stresses

Ay
bxl
where A = Area of the section above y (i.e., shaded area ABFE)

d
(% _y|xb
[2 y]x

Ornax Y = Distance of the C.G. of area A from neutral axis

1(d d y_y d 1( d)
— + — | — = — + — - = — —
Y 2[2 :”) TT e T I T

Y — o G A b = Actual width of the section at the level EF
— b — # I = M.O.L of the whole section about N.A.

(a)
Substituting these values in the above equation, we get

=K.
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Shear stresses

Problem 8.1. A wooden beam 100 mm wide and 150 mm deep is simply supported over
a span of 4 metres. If shear force at a section of the beam is 4500 N, find the shear stress at a
distance of 25 mm above the N.A.

Sol. Given :

Width, b = 100 mm 1 7/% C/G/// STO‘
wn, IWL///A
¥y

Let T = Shear stress at a distance of 25 mm above ¢ mm
the neutral axis. N 1‘ A
Using equation (8.1), we get -
Ay ;
=F —
T )
where A = Area of the beam above y, : 4
= 100 x 50 = 5000 mm? [¢— 100 mm —>
(Shaded area of Fig. 8.2) Fig. 8.3
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Shear stresses

¥ = Distance of the C.G. of the area A from neutral axis

=25+% = 50 mm

I = M.O.IL of the total section

_ba?
C12
100 x 150°
12 |
b = Actual width of section at a distance y, from N.A. = 100 m
Substituting these values in the above equation (i), we get
_ 4500 x 5000 x 50
~ 28125000 x 100

= 28125000 mm*

= 0.4 N/'mm?2 Ans.
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Shear stresses

| F’roblem 8.9. The shear force acting on a section of a beam is 50 kN. The section of the
beam is of T-shaped of dimensions 100 mm x 100 mm x 20 mm as shown in Fig. 8.12. The
moment of inertia about the horizontal neutral axis is 314.221 x 10 mm?. Calculate the shear

stress at the neutral axis and at the junction of the web and the flange.

%
|¢———— 100,mm ~——»]
© ik
32.22
e, N *
€ s
oD
j 67.78
I 20 mm
— | |4
| *
(a) 'Y (b)
Fig. 8.12
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Shear stresses

B 15- LR o =]

Sol. Given :

Shear force, F =50 kN = 50000 N

Moment of inertia about N.A.,
I=314.221 x 10 mm*.

First calculate the position of neutral axis. This can be obtained if we know the position

of C.G. of given T-section. The given section is symmetrical about the axis Y-¥ and hence the
C.G. of the section will lie on Y-Y axis. |

Let y* = Distance of the C.G. of the section from the top of the ..
. Ay+4yy -
* - 1 /1 9
rI‘hEn Y (Al. + Aﬂ)
80
(100 x 20) x 10 + (20 x 80) x (20 + ——2—)
) (100 x 10) + (10 x 90)
20000 + 96000
= = 32.22.
2000 7 1600 ~°

Hence, neutral axis will be at a distance of 32.22 mm from the top of the flange as shown
in Fig. 8.12 (a).
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Shear stresses

Shear stress distribution in the flange
Now the shear stress at the top edge of the flange, and bottom of the web is zero.

Shear stress in the flange just at the junction of the flange and web is given by,
= I'x Ay
- Ixb

where A = 100 x 20 = 2000 mm?
7 = Distance of C.G. of the area of flange from N.A.

2
= 32.22 - *22 = 22.22 mm

b = Width of flange = 100 mm
‘50000 x 2000 x 22.22

= 7.07 N/mm?.
314.921 x 104 x 100 07 Nmm

T=
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Shear stresses

Shear stress distribution in the web
The shear stress in the web just at the junction of the web and flange will suddenly

100
increase from 7.07 N/mm? to 7.07 x o0

N.A. Hence shear stress at the N.A. is given by
| F x Ay
T=
Ixb
where Ay = Moment of the above N.A. about N.A.
~ Moment of area of flange about N.A. + Moment of area of web about N.A.

; 22.22
=20 x 100 x (32.22 — 10) + 20 x (32.22 - 10) x 2

— 35.35 N/mm?. The shear stress will be maximum at

= 44440 + 4937.28 = 49377.284 mm®
b =20 mm
- 50000 x 493747.284 _ 39.985 N/mm?
0 814.221x 10* x 20
Now the shear stress distribution diagram can be drawn as shown in Fig. 8.12 (b).
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Shear stresses

Problem 8.10. The shear force acting on a beam at an I-section with unequal flanges is
50 kN. The section is shown in Fig. 8.13. The moment of inertia of the section about N.A. is
2.849 x 10%. Calculate the shear stress at the N.A. and also draw the shear stress distribution

over the depth of the section.

0.952
je— 200 MM |
5 ¥
@ 50
m_Lm
133.49 T
83.49
| [ y 4
£ N A A F %
£
o
&
B0 i 116.51
‘g’ 166.51
..... th A=
¥
@ 50 mm
v -
li— 130 mm —»‘ k12_39,‘
Fig. 8.13
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Sol. Given :
Shear force, F=50kN =50,000 N
Moment of inertia about N.A.,

I = 2.849 x 108 mm*.

Let us first calculate the position of N.A. This is obtained if we know the position of the
C.G. of the given I-section. Let y* is the distance of the C.G. from the bottom face. Then

* o Ay, + Agys + Agys
(A + Ay + A3)
where A, = Area of bottom flange
=130 x 50 = 6500 mm?
A, = Area of web = 200 x 50 = 10000 mm?
A, = Area of top flange = 200 x 50 = 10000 mm?
¥, = Distance of C.G. of A, from bottom face

=%=25mm

¥, = Distance of C.G. of A, from bottom face

=50+%=150mm

y3 = Distance of C.G. of A; from bottom face

=50+200+-522=275mm

6500 x 25 x 10000 x 150 + 10000 x 275 _ 166.51 mm
= 6500 + 10000 + 10000

Hence N.A. is at a distance of 166.51 mm from the bottom face (or 300 — 166.51 = 133.49 mm
from upper top fibre).
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Shear stress distribution 5
(i) Shear stress at the extreme edges of the flanges is zero.

(ii) The shear stress in the upper flange just at the junction of upper flange and web is
given by,
F x Ay
VR Ixb

where Ay = Moment of the area of the upper flange about N.A.
= Area of upper flange x Distance of the C.G. of upper flange from N.A.
= (200 x 50) x (133.49 - 25) = 1084900
b = Width of upper flange = 200 mm
50000 x 1084900

~ 2.849 x 108 x 200
(iii) The shear stress in the web just at the junction of the web and upper flange will

= 0.9520 N/mm?,

T

200
suddenly increase from 0.952 to 0.952 x &= = 3.808 N/mm?.
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(iv) The shear stress will be maximum at the N.A. This is given by
F x Ay
Tmex = [ x b
where Ay = Moment of total area (about N.A.) about N.A.
— Moment of area of upper flange about N.A. + Moment of area of web about N.A.

- 200 x 50 x (133.49 - 25) + (13349 - 50) x 50 x o2 =20
- 1084900 + 174264.5 = 1259164.5
and b = 50 mm
5
6, = 000 x 1299152 - 4.4196 N/mm?.

Tmar T 9849 x 10% x 50

(v) The shear stress in the lower flange just at the junction of the lower flange and the
web is given by '

F x Ay
Ixb
where Ay = Moment of the area of the lower flange about N. A
=130 x 50 x (166.51 — 25) = 918125
b = Width of lower flange = 130 mm

50000 x 918125
2.849 x 10° x 130

T=

= 1.239 N/mm?.

T=

(vi) The shear stress in the web just at the junction of the web and lower flange will
1.239 x 130

suddenly increase from 1.239 to e 3.22 N/mm?2.

08-04-2021 Dr. B. Janarthanan
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Course ODbjectives:

1. To understand the concepts of stress, strain, principal
stresses and principal planes.

2. To study the concept of shearing force and bending
moment due to external loads in determinate beams
and their effect on stresses.

3. To determine stresses and deformation in circular
shafts and helical spring due to torsion.

4. To compute slopes and deflections in determinate
beams by various methods.

5. To study the stresses and deformations induced in thin
and thick shells.
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Course outcomes

Students will be able to

1.

Understand the concepts of stress and strain in simple and
compound bars, the importance of principal stresses and
principal planes.

Understand the load transferring mechanism in beams and
stress distribution due to shearing force and bending
moment.

Apply basic equation of simple torsion in designing of
shafts and helical spring

Calculate the slope and deflection in beams using different
methods.

Analyze and design thin and thick shells for the applied
internal and external pressures.
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Bloom’s Taxonomy - Cognitive

1 Remember 4 Analyze

Behavior: To recall, recognize, or Behavior: Interpret elements,
identify concepts structure relationships between
individual components

2 Understand . : Evaluate

Behavior: To comprehend meaning, Behavior: Assess effectiveness
explain data in own words 2 of whole concepts in relation to
other variables

3 Apply 6 Create

Behavior: Use or apply knowledge, Behavior: Display creative
in practice or real life situations thinking, develop new concepts
or approaches
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Syllabus Unit-3

UNIT lIl Torsion

Torsion  formulation  stresses and
deformation in circular and hollows shafts
— Stepped shafts— Deflection in shafts
fixed at the both ends

Stresses in helical springs — Deflection of
helical springs, carriage springs
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Torsion
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Torsion equation

General Torsion Equation (Shafts of circular cross-section)

TwZ..G60

J T L

1. For Solid Shaft

2. For Hollow Shaft

| .
J =-;-(I'14 - 1;)

_ U a4 44
_32(d1 dz)

27-04-2021

—

aroQ "™ A

= torque or twisting moment in newton metres
= polar second moment of area of cross-section
about shaft axis.

shear stress at outer fibres in pascals

radius of shaft in metres

modulus of rigidity in pascals

angle of twist in radians

length of shaft in metres

diameter of shaft in metres
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Strength of shafts

Maximum torque or power the shaft can transmit from one
pulley to another, is called strength of shaft.

(a) For solid circular shafts:
Maximum torque (T)is given by :

TzixrxD3

16

where, D = dia. of the shaft
t=shear stress in the shaft

27-04-2021 Dr. B. Janarthanan
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Power transmitted

16.5. POWER TRANSMITTED BY SHAFTS
Once the expression for torque (T) for a solid or a hollow shaft is obtained, power trans-
mitted by the shafts can be determined.
Let = r.p.m. of the shaft
T = Mean torque transmitted in N-m

o = Angular speed of shaft.
-+

Then Power = 60 watls .{16.7)
=wxT ( —56- - w]
=Txw -116.7 (A)]

If the torque fluctuates, the greatest torque must be used for
evaluating the maximum shear stress due to torsion

On the other hand, for calculating power, mean torque
should be used
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Torsional rigidity

Let a twisting moment T produces a twist of 0 radians in a shaft of length L.
Using equation (16.9), we have

PO o Tl T - &8
B J L .Ol' x = ‘é—' J L
ut C x J = Torsional rigidity - T
, . TxL — =
Torsional rigidity = e B 2
If L = one metre and 6 = one radian
Then torsional rigidity = Torque. Tovaumal | - T
stiffuns) O

- Torsional rigidity: It is defined as the

product of modulus of rigidity and polar Tovb\'mal =CJ
moment of inertia. YL%‘\A"'\:\&
K=GxJ

- S.I. unit of torsional rigidity is Nm2

- Nm/radian is the S.I. unit of torsional
stiffness. Torsional stiffness is defined
as the torque required to produce unit
angle of twist.
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Polar modulus

 Polar modulus is defined as the ratio of
the polar moment of inertia to the radius of

the shatft.

e |t Is also called
as torsional section modulus.

* Itis denoted by Z ..

* Polar Modulus (Z ) is a Direct Measure of
Torsional strength of a Shaft.

T _T -—_'cZ Z = B
Ty o C" ]
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Problem -1

Problem 16.1. A solid shaft of 150 mm diameter is used to transmit torque. Find the
maximum’torquctmnsmitudbythcahaftifthemaxbnumchearstrminducedtothe:haﬂis
45 N/mm?*.

Sol. Given :

Diameter of the shaft, D = 150 mm

Maximum shear stress, t = 45 N/mm?

Let T = Maximum torque transmitted by the shaft.

Using equation (16.4), T= l—’;— tD¥= -1:.6 x 45 x 150°

= 29820586 N-mm = 29820.586 N-m. Ans.
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Problem -2

Problem 16.2. The shearing stress is a solid shaft is not to exceed 40 N/mm? when the
torque transmitted is 20000 N-m. Determine the minimum diameter of the shaft.

Sol. Given :

Maximum shear stress, t =40 N/mm?®

Torque transmitted, T = 20000 N-m = 20000 x 10° N-mm

Let D = Minimum diameter of the shaft in mm.

Using equation (16.4),

n
T= 'lz « D3
167 (16 x 20000 x 10° )"
pr D= (—) - = 136.2 mm. Ans.
nr x40
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Problem -3

Problem 16.3. In a hollow circular shaft of outer and inner diameters of 20 cm and
10 em respectively, the shear stress is not to exceed 40 N/mm?. Find the maximum torque which
the shaft can safely transmit.

Sol. Given :

Outer diameter, D, =20 ¢m = 200 mm

Inner diameter, D,=10cm =100 mm

Maximum shear stress, ™ = 40 N'mm?*

Let T = Maximum torque transmitted by the shaft.

Using equation (16.6),

- Al 4 4
7| P =D | . X 40]200" -100
16 D, 16 200

16 200
= 58904.86 Nm. Ans.

8 8
> sl 16x10" -1x10 ]-68904860Nmm

27-04-2021 Dr. B. Janarthanan 14



Problem -4

Problem 2. A solid circular shaft is to be designed to transmit 22.5 kW power at 200 r.p.m. If the
maximum shear stress is not to exceed 80 N/mm’ and the angle of twist is not to exceed 1° per metre

length, determine the diameter of the shaft. Take modulus of rigidity 80 kN/mm?.
Solution: P = 225 kW =22.5 x 10° N-mm/sec.

N

200rpm 6=1°= I radians.
180

L = 1000mm g =80N/mm’* G =80x 10°N/mm’

P - 2T NT
60
275 % 106 = 2xmx200xT
60
or T = 107429586 N-mm
Let ‘d” be the diameter of the shaft.
J= L4
32

27-04-2021 Dr. B. Janarthanan 15



Problem —4 contd.

From the considerations of shear stress

T
J
1074295.86
T 4
32

27-04-2021

From the consideration of angle of twist

r _Ge
J L
3 T
107420586  S0X10"x 1o
nd* B 1000
32
d* = 1074295 .86 x Exix@
T 80 T
d = 52.9]1 mm

. Minimum diameter of the shaft to be used is 52.91 mm.

Dr. B. Janarthanan 16



Problem -5

Problem 3. A hollow circular shaft 12 m long is required to transmit 100 kW power when running at a
speed of 300 rpm. If the maximum shearing stress allowed in the shaft is 80 N/mm? and the ratio of inner
diameter to the outer diameter is 0.75, find the dimensions of the shaft and also the angle of twist of one

end of the shaft relative to the other end. Modulus of rigidity of the material is 85 kN/mm’.
Solution: L = 12m= 12000 mm
P = 100 kW = 100 x 10° N-mm/sec

N = 300 rpm
g, = 80 N/mm?
and G = 85 x 10° N/mm?

Let d, be the outer diameter and d, be the inner diameter
d, = 0.75d,, given

Now, P = 2RNT
60
e 1005108 = 22XINXT
60

T = 3183098.8 N-mm.

27-04-2021 Dr. B. Janarthanan
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Problem =5 contd.

From the torsion formula,

_ qs _ n 4 4
T = JE—E{{II ~(0.75d,)*}
_ x 4y 43
we get, 31830088 = —{1-(075)") di x80
d} = 296436.83
d, = 66.67 mm.

d, = 0.75 x 66.67 =50 mm

2
Again, from torsion formula,

Tr

J
3183098.86

T (66.67* —50%)
32

we get,

G

Ge
L

85x%10° 0
12000

0.3389 radians

27-04-2021 Dr. B. Janarthanan
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Problem —6

27-04-2021

Problem 16.7: A hollow shaft of external diameter 120 mm transmits 300 kW power at
200 r.p.m. Determine the maximum internal diameter if the maximum stress in the shaft is not

to exceed 60 N/mm?®. (AMIE, Summer 1990)

Sol. Given :

External dia., D, =120 mm

Power, P = 300 kW = 300,000 W

Speed, N = 200 r.p.m.

Max. shear stress, 1 = 60 N/mm?

Let D, = Internal dia. of shaft

Using equation (16.7),

P==g5— or 300,000 = E"—%‘%‘I
300,000 x 60
T= S e 14323.9 Nm
= 14323.9 x 1000 Nmm = 14323900 Nmm
Now using equation (16.6),
=_!_ XtX—L’““—(D ; -Di‘)
16 D,
x (120° - D)
or l4323900=—1—§ x 60 x 120
14323900 x 16 x 120
or ™% 60 =120"-D}
145902000 = 207360000 - D *

or D = 207360000 ~ 145902000 = 61458000
: D, = (61458000)* = 88.5 mm. Ans.

Dr. B. Janarthanan 19



Replacing of shatft

* When a solid shaft is to be replaced by a
hollow shaft or vice-versa, then the power
transmitted by the new shaft should

always be equal to the power transmitted
by the shaft to be replaced



Problem-7

« A solid steel shaft of 50 mm diameter is to be replaced by a
hollow steel shaft whose internal diameter is 0.5 times outer

diameter. Find the diameters of hollow shaft and percentage
saving of weight.

27-04-2021 Dr. B. Janarthanan
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Problem-8

A solid steel shaft in a rolling mill transmits 20 kW of power at 2
Hz. Determine the smallest safe diameter of the shaft if the shear

stress T , is not to exceed 40 MPa and the angle of twist € is
limited to 6°in a length of 3 m. Use G = 83 GPa.

Solution
Applying Eq. (3.6a) to determine the torque:
P 20x10°
T = =
27f  27(2)
To satisfy the strength condition, we apply the torsion formula,
Eq. (3.5¢):

=1591 .5N -m

T max :E Tmax = 16]; 4x106 - 16(159} 5)
J md wd
Which yields d = 58.7x10° m = 58.7 mm. - _

27-04-2021 Dr. B. Janarthanan



Problem-8 contd..

Apply the torque-twist relationship, Eq. (3.4b), to determine the
diameter necessary to satisfy the requirement of rigidity
(remembering to convert € from degrees to radians):

TL ( 1 ) 1591.5(3)
g=— 6= |-
GJ 180 )  (83x10° \md*/32)

From which we obtain d = 48.6x10- m = 48.6 mm.

To satisfy both strength and rigidity requirements, we must
choose the larger diameter-namely,

d=58.7 mm. Answer

27-04-2021 Dr. B. Janarthanan 23



Composite shafts

« When a shaft is having two different
diameters/sections it is referred as the
composite shaft and it is subjected to
torque at the different planes, then the
angle of twist in the shaft is to be
calculated by considering them in either
series or parallel.



Shafts In series

« When a shaft is having two different diameters cross
section then two equal torques (T) are applied in
opposite direction at both ends as shown in the figure.
Then the shafts are said to be in series.

B ExtruDesign.com T -
— = ) == ] /
n“- - A
‘_",'.::«\ .w = "

{a) Shaafts m series.

« The angle of twist is the sum of the angle of twist of the
two shafts connected in series

Tl Tl
1 2

6:91-|_92:C1]1 Cz J2
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Shafts in parallel

« When a shaft is having two different diameters
cross section then a torque (T) is applied at the
centre (Junction of the two different section) and
two opposite torques T, and T, as shown in the
figure. Then the shafts are said to be in parallel.

@ExtruDesign.com i

{(5) Shatts m parzllel.
Tyl4 T, 1,
Cl .]1 CZ jZ

27-04-2021 Dr. B. Janarthanan
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Problem-9

« The stepped shaft as shown in Fig. is subjected to a
torque of T at the free end and a torque of 2T in the
opposite direction at the junction of two sizes. What is
the total angle of twist at the free end, if the maximum
shear stress in the shatft is limited to 70 MN/m”2?
Assume the modulus of rigidity to e 84 GN/m”2.

) C
T

i 22N Y L
A [ 100 mm ( ( 50 {nrn (

&
« 12m 1.8m J

»le
T |
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Problem-10

« Atwisting moment of 2 kNm is applied to a shaft of 70
mm diameter and 1.5 m length at a distance of 400 mm
from one end. The shaft is fixed at both ends. Find the
fixing couples at the ends, maximum shear stress setup
and the angle of twist of that section where the twisting
moment is applied. Take G = 84000 N/mm”2.
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Springs

Any elastic member which can deform when loaded

and recover its original shape when the load Is
removed

Energy absorbing devices
Examples

— Ball point pen — compression helical (open coiled
helical springs)

— Spring balance — tensile helical (close colled
helical springs)

— Writing pad — torsion spring

— Shock absorber in automobiles, safety valves,
clutches



Springs

Close-coiled
helical spring

Tension Spring

Torsion Spring

27-04-2021

Open-
coiled
helical

spring
Compression
Spring
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Close coiled helical spring with axial load

|

e =

bt R - yadows ob Boocod T
B cond 1
_ ndie b Jond W

ne - o5 coths o5 Funs

27-04-2021 Dr. B. Janarthanan

33



:'N/rﬁ asfm‘u’

U= i—x'ﬂ&

_ 1L yWRY
A

———

T—-—‘ ':_'__4C-__.,_._..‘

27-04-2021 - ¥

34



) \_ﬂjm‘n WM, U= —é—x'ﬁ@—
= Jz-vax% (5: R@:)

Shilloss Sprivg ok e
) nl K oo W—W"‘“‘P,

[ St s didied wstfw
| bo cane_ et b debbes bm -

| 4
KW _ W :_C_i_s___
T8 T 4hweSn b4 R'n
cad4

‘95?’“’ﬂ mdmc,c_ Ratio D] 1 w&f«wlw'

'f‘) S_Pm}\ﬁé th Bened Cenw-eth :

WIPWQ_—W_'S

27-04-2021 Dr. B. Janarthanan

35



™ A hose. cerled helical »‘?»’n«rxa 8 mm dammdsr w:‘w__l
with (2 corls st mean damdir 165 MM corrres
an axwl lead 58 4oN - find B shoonr szo,_v.

Cinduced and AdHachion comtsasl | hab 3 Bel
mbauin emq onovpy Blored . Take Nz gx1cb Wfemt
. - (APRIL149S)

Azgmm, N=12, Dzojsomm  w= 460N

R=~ 5omm
N or C = 8!106 N/cm“ - gxjol® N/ML
S - 16WR : ?
Luw 517:44 T = . - 1& x40 X 005 - (989 M"f’/m"

d T (s008)3

Ackliobion & = M Glpx4abx[oos)xll ST M
§x10"° «(pe08) |
hou'n Evarm ] :_?l:.,:w;cg - -}:xqo'oyo'll'?f = 23.4,3 Nm.
2% = > X Vol ok Wire. , :
4 - . 2

_ %x —E":dlx 2TR AN

= M -'-}F(aoos) x 2T (s05) 12
4# exmo'®
U 22343 /M S ——

27-04-2021 Dr. B. Janarthanan

36



T —_ —

$r a dblechom ok 125mm and B skreas not

g LB. Bomm . Take N = 30GPa COCEQS)
@ S - 25 Kknem = 7—-’5""-‘,%-3- =25 N-m
‘ 5‘_-_ )25 vmm = 0-1157!7:
= 34 MPA = 340 N/ 2~
i~ D - isoM™, R = y5mm = 0075 M
Noy ¢ = 30 GPa = 30x107 Nm*

Y

5 =73
-———————2"—w: i 0075
T Lrad dan ¥ DX .
‘ T = WWR_ 341!06 = M—;'_:;“"“—
i UK
A= o olbs ™
- [prE MM
3 Ty —
| (2 | b4 x o0 x(o-o'rs’)zye n
° _.__'_.______-___—-——-——‘-—"‘

(AWRSN e - “

lamgth 6b wive. 'jrxzwg(red = 2R N

-2 (o0 5') 257

Dr. B. Janarthanan

27-04-2021

wa.a_ﬂ\i‘ ), 34.MPa, D.o/humrwr\b a M\‘l:mub oL‘anwinr
and Aomgth sb wire given that maan w‘f.lol«hnwb/r

9 2 close ot desh Mc_ai 8.1331:\6. made ot corenlar .
. 3,‘72, 12 Tzﬂ,ﬁ“éa!, b abserk 25 kN-cm cfi—gmma}& :

| —an

37



& s sk 4rom A (A doad bo make o
| d@irimu haleeal Bpring with a 2kfng ob

has ko a J.oao\ ot 3coM -
20, N/mm m 821\!41,,1,1.. f/ﬁwt‘n H\A.wvre.— Lb

,&Q_%_J- A= emm = cvobm -

k - 20 N/mm = 20)‘/03 N/”" ) W=T 355 N
T -qgompa = 90xi0® Njm®—
6 - so KN/mm"“ - S‘QX}D;XWG Nht = &omoq N 2—
To ftnd weem ook
1w R . { Jbx3c0x R
e D I =
T4 -Tr'(o-a'oé)

RO pl27 mMm

= 12-7
'_.———-——_‘_’
To dmd ne o conlt ‘

k:'%l_ L 20x10° = _3_:2_9_) S- 6015 m
3
5= M . pol5 = 64)(3@)4/0-0127)7{”_14»
C&{4 / 90’(:'0‘,![0006>+ .

Nz 3vey Lok

27-04-2021 Dr. B. Janarthanan

38



Laminated or leaf springs
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Let us consider here the triangle AOD;

8]
/-d
g I AO?=0D?+ AD?
R‘/ IR-a
d ' R2=(R-8)2+(L12)?
” ]
e ! RZ=R*+3%2-2R. 8 +1%4

RZ=RZ2-2R.§6+12%4

- - -
(=]

We have neglected small term i.e. 8
2R.5=1%4
5 =L%/8R
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University question (Nov/Dec 2016)

13.
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(a

(1)

®) @

(1)

A solid shaft has to transmit the Power 105 kW at 2000 r.p.m. The
maximum torque transmitted in each revaluation exceeds the mean
by 36%. Find the suitable diameter of the shaft, if the shear stress

* 18 not to exceed 75 N/mm? and maximum angle of twist is 1.5° in a

length of 3.30 m and G = 0.80 x 105 N/mm?, (8)
A laminated spring carries a central load of 5200 N and it is made
of ‘n’ number of plates, 80 mm wide. 7 mm thick and length
500 mm. Find the numbers of plates, if the maximum deflection is
10 mm. Let E = 2.0 x 10° N/mm?2. (5)
Or
A stepped solid circular shaft is built in at its ends and subject to an
externally applied torque T at the shoulder as shown in
fig. Q.13(b)(i). Determine the angle of rotation & of the shoulder

section when T is applied. )
g G ¢
(f - d1,da d2, Js i)}'
Ta 3 a ¢ b =
Fig. Q.13(b)()

A closed coiled helical spring is to be made out of 5 mm diameter
wimZmbngsothatitdeﬂecubyzommunderanaxial
load of 50 N. Determine the mean diameter of the coil. Take

C=8.1x10* Nmm?. - (6)
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A solid circular shaft transmits 75 kW power at 200 rpm. Calculate the shaft
diameter, if the twist in the shaft is not to exceed 1° in 2 metres length of the shaft
and shear stress is limited to 50 N/mm?. Take C =1 x 10° N/mm?.

A solid steel shaft transmits a power 20 kW at 60 rpm. Determine the smallest safe
diameter of the shaft if the shear stress is not to exceed 40 N/m? and the angle of
twist is limited to 5° in a length of 3 m. Take G = 80 GPa

A hollow shaft of external diameter 120 mm transmits 300 kW power at 200 rpm.
Determine the maximum internal diameter if the maximum stress in the shaft is not
to exceed 60 N/mm?.

A closely coiled helical spring made from round steel rod is required to carry a load
of 1000 N for a maximum stress of 400 MN/m?. The spring stiffness is 20 N/mm.
The mean diameter of the helix is 100 mm and modulus of rigidity of the material is
80 GN/m?. Calculate (1) diameter of the wire and (2) the number of turns required
for the spring

A laminated spring carries a central load of 5200 N and 1t is made of ‘n’ number of
plates, 80 mm wide, 7 mm thick and length 500 mm. Find the number of plates, if
the maximum deflection is 10 mm. Let E = 2.0 x 10> N/mm?.



Contact

Dr. B. Janarthanan
Professor & Head (Research)
Department of Mechanical Engineering
Mohamed Sathak A.J. College of Engineering
Email : vbjana@gmail.com,
mech.janarthanan@msajce-edu.in

27-04-2021 Dr. B. Janarthanan 48


mailto:vbjana@gmail.com
mailto:mech.janarthanan@msajce-edu.in

{@ MOHAMED SATHAK s~ =™,

A. J. COLLEGE OF ENGINEERING § L=
«../" SIRUSERI IT PARK,OMR, CHENNAI 603 103 3

STRENGTH OF MATERIALS FOR
MECHANICAL ENGINEERS (CES395)

UNIT-4
DEFLECTION OF BEAMS
by
Dr. B. Janarthanan
Professor
Department of Mechanical Engineering



Syllabus

* Double Integration method — Macaulay’s method —
Area moment method for computation of slopes and
deflections in beams — Conjugate beam and strain
energy — Maxwell’s reciprocal theorems.

Course objective:

To compute slopes and deflections in determinate beams by
various methods.

Course outcome:

* After completion of this unit students should be able to:

Calculate the slope and deflection in beams using different
methods.
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Introduction

* The cross section of a beam has to be designed in
such a way that it is strong enough to limit the
bending moment and shear force that are
developed in the beam. This criterion is known as
“strength criterion”

* Another criterion for beam design is that the
maximum deflection must not exceed a certain
limit and the beam must be stiff enough to resist
the deflection caused due to loading. This criterion
is known as “stiffness criterion”

* It is therefore necessary to predict the deflection of
members under lateral or transverse loads
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Definitions

(i)DEFLECTION :-

* The vertical distance in transverse direction between positions of axis
before and after loading at the section of the beam, is defined as the
deflection of beam at that section.

(ii) ELASTIC CURVE(OR, DEFLECTION CURVE):-

* The neutral axis in its deflected position after loading of the beam is
known as its elastic curve or deflection curve

(iii) SLOPE:-

* The slope of the beam at any section is defined as the angle (in
radians) of inclination of the tangent drawn at that section to the axis
in its deflected position after loading, measured w. r. t. the
undeformed axis.

(iv) FLEXURAL RIGIDITY(EI):-

* The product of modulus of elasticity and Moment of Inertia is known
as Flexural rigidity.
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DIFFERENTIAL EQUATION OF ELASTIC
CURVE

* Radius of curvature (H(@TJ“
. 1 dzy RB= d'f
R dx?2 d—}
M E dx
O — T —
I R

2
M = EI% — differential egn. of flexure
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Relationship
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ASSUMPTIONS MADE IN THE DEFLECTION:-

(i) Axis of the beam is horizontal before loading.

(ii) Deflection due to S.F. is negligible. It can be shown
that the deflections due to shear deformations are
usually small and hence can be ignored.

(iii)  (a) Simple Bending equation M/I=0/y=E/R is
applicable and all the assumptions made in
simple bending theory are valid.

(b) Material of the beam is homogenous,
isotropic and obey Hook’s law ..

(c) The modulus of elasticity is same in
compression as well as in tension.

(d) Plane section remain plane before and after
bending



Methods

* Methods for finding slope and deflection of
beams:

(i) Double integration method / Direct
Integration

(ii)) Macaulay’s method
(iii) Moment area method
(iv) Conjugate beam method



Double integration method

 The beam differential equation is integrated
twice — deflection of beam at any c/s.

El % = IM .dx + C; from which slope can be calculated

El-y=[[(M- dx)+ Cx+ C, from which deflection 1s known

Where C1 and C2 are constants of integration to be
evaluated from the known conditions of slope and
deflections for the particular value of x.
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Cantilever with a point load at the free
SN W

end

22-06-2021



o = T 2
£1 (9 g b, B
W _,\L“L-:, /E——
C,="1 2 5
P Wl
_?;l“_&/ -
c, = C >

T:,-—\O = —t v 2 _ >
- :\énwz- _WN //

ZTIIELALE
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Cantilever with a point load at the free

end
1

I,

A t‘x—’i ,

|

Bending Moment at the section =— W(l—x),
d2
Or EI - = — W(I—x)
: dy _ %
Integrating, EI = = —W (lx —_ ?) Gy
Atx = O&% = 0, therefore C1 =0,

Thus EI% = —-W (lx — x?z)

orSlope, Q e (le — x%)
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Cantilever with a point load at the
free end

B2 = —w(x— Z)

W
2

6

3

Integrating again, Ely =—W ( ) +C,

Atx=0,y =0, therefore C, =0,

Thus Ely =-W (2~ ©)

or Deflection, y = — % (31x* — x7)

Atthe free end, x =1, the slope and deflection are maximum

and are given by
wi? wi3

Slope = — e and deflection = — P
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Concentrated load not at free end

* Between A and C at any distance x from A,

J M =-W (a-x)
yy
4 2 * Equations of slope and deflection can be
/ obtained as in previous case (replacing ¢ by a)
dy w 2
Slope, g —m(Zax— £*)
:§ NP 54,, Deﬂection,y:—()im 3ax® — x?)
Bl At C, x=a; hence Q= _W_az
9 @ dx 2EI
- C 2L _ wad
B _we =Y 8,5, and  y=-sg
Z g VC
21

.5 _ .
‘EO\“BC:' ’)_:__’0\ %1’$|' (Q’QB B-_wr,\l
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Concentrated load not at free end

* The beam will bend only between A andC

and between B and C it will remain straight (as
BM between B and C = 0)

wa?
* HenceslopeatB=slopeatC=dy/dx=GF/GE= = 2g1

* Now deflection at B = deflection at C + GF
» =deflection at C +( . )GE

2E1
w
s eliecilinatiln— e waz(la) ’ _.J
ie, DeflectionatB= — — - , SN
3EI 2E1 43
:<—x—>} C I 8
po ! >
: (a)
If Wis at the midpoint, deflection = [W(HZ) + wa/s2)y? 2 L]: swi? D H
3EI 2EI 2] 48EI !
Deflection e G
A B
(b)  Straight
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Cantilever with udl throughout the
length

w Y
A ATTILUT00000000000000000800) B

—a [ ‘(_x_‘:\

TTTTTEye—— T

At a section at a diste-mce x from the free end.

Yy
dx? 2
Integrating, EI%=‘WTx3+C1
Atx=], %:0, By =WTI3
Thus, EI%:-WT’Q.*.WTp:%(p_Q)
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Cantilever with udl throughout the
length

4 3
; . wXx wl
Integrating again, EI -y = — + x+C,
24 6
4 3
wl wl
At4, x=1,y=0,.. 0=— + I+ Cs
24 6
4
wl
or Cp =——
2 8
4 3 4
wX wl wl
Thus, EI-y=- + xX——
24 6 3
Therefore, slope and deflection are given by,
dy . WL 3 =} w 4 _ 4.3 4
E—a(l —x”) and y 24E1(x aHx+aA™)

22-06-2021 Dr. B. Janarthanan MSAJCE



Cantilever with udl throughout the
length

13
Maximum slope = L x=0
6EI

' : wi
Maximum deflection= ——— at x=(

If origin is taken at the fixed end, slope and deflection can be worked out to be

w
— B2x -3+ 2%);,  y=——a (612x% - 413 + x%)

y' =-
6EI 24EI
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2 marks questions

15) In a support beam of 3m span carrying uniformly distribution load throughout the length the slope at
the support is 1°. What is the max deflection in the beam? (Apr/May 2019)

el .. X
AT 24EL 0 180°
4
Max deflection (Yp..) = _J ot
384 EI

_off 5 m 5x3
= X = X

24E1 16 180° 16

Yo = 0.0164

16) Calculate the maximum deflection of a simply support beam carrying a point load of 100 KN at mid
span. Span = 6m; EI = 20,000 KN/m®

100 kN

A

Y

‘ri 3
Yo = 100X6_ 5335m
48EL 4820000

Yo = 22.5 mm
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17) A cantilever beam of span 2m is carrying a point load of 20 KN in the free end. Calculate the slope at
the free end. Assume EI =12 x 10° KNm’
20KN

I 2
o 0L
2EI
A é B 20x2°

 2x12x10°
}‘ 2m 8, = 0.0033 rad
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Macaulay’s method

While applying the double integration method, a separate expression
for the bending moment is needed to be written for each section of the
beam, each producing a different equation with its‘own constants of

integration.

The method is convenient for simple cases

In Macaulay’s method, a single equation.
is written for the bending moment for all the portions of the beam. The
equation is formed in such a way that the same constants of integration

are applicable to all portions.
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Macaulay’s method

22-06-2021

W, W> Ws
D E
R e Y ‘LJ "
<« X
<a>R . .. TR
i o - 2
| e >|
. € / >|
Eld—z—y-z =—W,xl+R,(x-a)l—Wz(x—b)!—W3(x—c)
dx* '

In the above expression, there are separation lines. ' . . .
The portion to the left of the first separation line is valid for the portion AC.

The portion to the left of the second separation line is valid for the portion CD.
The portion to the left of the third separation line is valid for the portion DE.
The whole of the expression is valid for the portiqn EB. .

e o "

Dr. B. Janarthanan MSAJCE



Macaulay’s method

It may be noted that the same expression is applicable to all the portions of the beam if all negative terms
inside the brackets are omitted for a particular section: If x is less than ¢, then the last term is omitted. If x is

less than b, then the last two terms are omitted and so on. While integrating, the brackets are integrated as a
whole, i.e.,

2
E’%‘ = —Wix |+ Ry (x — a) | - Wy (x = b) | - Wy (x = )
dy x e 8l x M x—c)
EIE=_W1_2_+CI +—2——(x 2(

W
Ely=- W1—6-+Clx+C2|+—(x - a)’|- 2(x-b) |——-(x ¢y’
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Problem

A beam with a span of 4.5m carries a point load of 30kN at 3m from left
support. |, = 54.97x10° m* and E = 200GN/m?, Find,
(i) Deflection wnd.ex the Load

(ii) Position and amount of Maximum deflection.

30 KN

TQ -‘q\A RAA@\‘\W\A
Tk rrereants alieut A

Rer4's = 3ex 37 1¢
R, 2 20 KN
R:: o kN (30-36 J
M | LYY PRY OM% Mﬁ"”'ﬂ X v\ML\nl 24 rer A

L 210 |— 30(x-2)
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Problem

A beam is simply supported at its ends over a span of 10 m and
carries two concentrated loads of 100 kN and 60 kN at a distance of
2m and 5m respectively from the left support. Calculate

|.  Slope at the left support

Il. Slope and deflection under 100 kN load.

Assume El = 36x1074 kN-m~2

J5T RN bokn %

Ry +Rg = 10D HbO = Voo kv

DD Re A 1D = boxs DX
RB =Y ) }(N , Rf} -
Tﬂkk-l\la Mﬂ“\’»l\\f a‘T X
. T ax* A :
E l .
E‘I ad\x)_ = 1 39) T—‘;—-ID‘D(T—Q.) \I- LD(Y-—F
)

)

1o Knv -

Tt 'TD\{'N\B , § .
23\7’2 1hox™ | _joolxD 5‘_50(21»5)"“ 1
pr ol S T, 2— ,

A% | )

I
M_ - 5519}q’, - 5‘0(‘%—2)2' |—36(=5) N
€T gx ) ) :

:fn\\a—a'ra‘ma A
‘ 3

' ] 3 )z w
L BEX ok & 1—5o(2-) _ge(x-5)
R e R

ﬁl’%:b,g:@-r_—j) €y =0
Phoe=to, 420 =)= - 555 -

Shipe o

\ 2
El-‘i\fﬂ-~55:cgl95‘5!—50(x—9 —30(1~5) :
ax |




! )S\Jnﬁmakw SL

e, ab A, xz=0 "

36 ¥k éﬁ— 55(0) = 855

¥

-3
~B55 - 231X
% 2 T3byed yad <

Y ak \DOkN /ﬁbﬂA
DSy

3 Bsm‘ff_\ﬂ,- 55(2) - 855 — 5'0(2’9

3(7)(104._)1&-— - —b35

f _a,‘ﬂ, TSN > oad

AX
[

D,Q,\f\«_c\,-tm ak \D‘ka\/jﬂtﬂj

50
E.‘Da; 5_53———r€559[,+01—-,__—§—' ]

} '30(36‘—5)3
ab e =2 o '1)3
| 5a(2-
34xle ;«5 55[2)3 _psSl)- 3
| bvm
3‘,)@/0'[‘3 ._._‘ — 154333
g = —0004SHM
3 - .__4.34, mm



Problem

* In a beam shown in Fig. determine the slope at the left end
C and deflection at 1 m from the left end. Take El = 0.65 MN-

m"2 2okN

\4— %‘—%d\-lm———p‘ﬁ_—-——\Qm/{
TRl s

% gk —20%X0%
ng4 = zoXt2t 30 42 '
Rx 24 sp4 2l
Rg = g:;kNﬁ 14 = él;kN
Ry = (30%2) F20F20 7 —_—
" 30 (or-00) |
EI—&‘LZ ~ 20% +€‘7-(9‘“°')’ ' gz_d j ‘
d')ﬂi‘ |
. o
’——\‘S’D !
3 ¢k 30(1
] - 20 {x~ >E' — =
- S
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_20% 0%

\ SN\
(, E‘S.\a - ——\D‘IS —\-C,sc-PCQ.‘ 3'\’(33:&)
| \QL;'@« 5@
{ @x =0 Bmfﬂﬁo and
O(Dr’ ot) ® x=3m, Y=° ~
| ¢ = ~372, Cp =2
372
! -0
BO(I “SD ' d’)LC@:e )_’379__ _0_00572.
d @fﬁ) 2 b5 w0 -
15 (e-od)! '
| eTY(Rx=dw) = =347

| 3 | . T3h7-
_aolr-td +‘§g§@/ - e ") gEys
2
3

5 —0-06534 ™M -




* A simply supported beam of 8 m length carries two point loads
of 64 kN and 48 kN at 1 m and 4 m from the left hand end.
Find the deflection under each load and max. deflection E =
210 GPa and | = 180x10"6 mm~4



Moment area method

* Convenient for beams acted upon with
point loads where BMD consists of
triangles and rectangles.

* For the case of UDL, Macaulay’s method is
most uitable.
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Mohr’s first Moment area method

* From the above Mohr’s first moment-area
theorem can be stated as below:

* “The difference of slopes between any two
points on an elastic curve of a beam is equal
to the net area of the BMD between these

points divided by EI”.
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Mohr’s second Moment area method

* The above equation leads to the statement of
Mohr’s second theorem.

* “The intercepts on a given line between the
tangents to the elastic curve of a beam at any
two points is equal to the net moment taken
about the line of the area of the BMD
between the two points divided by EI”.
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Moment area theorems

* 1 -Theorem:

eam and notation of
slope by letier 1 (or) 6
diagram (A)

H
» Where El is called Flexural Rigidity
» E=Young'sModulus of the material,

» Slope is expressed in radians.
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Cantilever carrying a point load at

free end + ) W Lk B be b Poye ab B

\ - —
P'/ 93 N E1 ,
. 1w ND S
2 . AW -
= S1 — -0 £ 2£eX

D,Q)(\,_c\c\‘w ax B (\ab

Area o5 BMD y Dzt

33 = Ex

U UPE B b f/

Ne—

Ex - T
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Cantilever carrying a concentrated load at any point

@ . Concenritoated load ot any Po"’*‘ W
Ha»' Shows o C‘o\vrmng with & Corceirfrcded ;A i B
load Ko < aoﬁua_ at € ata diskne %c — - . >
@ Pov Roed end . —a—s
A

—_—

Heve, A= FTXxwa

(fmex)

Qas wa* (L1-a)

P+ fhe_ po‘ml~ of opplicoion; of e, loand, 8_= JWa* x 2?0'_
il SN

e

NC\3 i'p.»(fa'ﬂa-.?rwf o
J EEL | ocktins. 4o L point o
. }1”,lcro Henm of lood .
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Cantilever carrying a ud|

Cantilevey beans wilh UP lood over entive spon.

We bhowve Oy, =

et

Heve. cveon of Bm cl«'c\avaw-, A= -é—b")

:3-.'_)(.1)( w'lL

Z

2

Oy =

PN, 6ET
- Ao
%max_ ET
p= Ll
ow

= &
wl#
a”“* 2ET
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Simplv supported beam with a point load at mid span
W

U Y

D AR B
[ ) J 47“‘0?‘"4%8?49 befraaa, A and & =_‘_._8_.LN_&
F 2 7z
“ o

= Nf-
s

! 3 Ax _ (!/7_ %ﬂ_%\ (_7: Il/,_)
Gwn jmm - EL - EI
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DETERMINE THE SLOPE AT POINTS B AND C OF THE
BEAM SHOWN BELOW. TAKE E = 200 GPa AND
| = 360 x 106 mm#*

5m 10kN
- > l
50kNm 100kNm SOkNm
93293/,4 ( J(s )__[ E] ](5 ) AI G
B
375kNm* 10m

_ - -

B EI

2
_ A — _0.00521rad

[200(10%)&AN / m*1[360(10%)(10*)ym*]

The —ve sign indicates that the angle is
measured clockwise from A, Fig 8.15(c)



DETERMINE THE SLOPE AT POINTS B AND C OF THE
BEAM SHOWN BELOW. TAKE E = 200 GPa AND
| = 360 x 106 mm#*

500 kNm *
EI

1 [_ 100 kNm

QC :QC/A - A Fo7,

2 )(IOm) =

Substituti ng numerical values of EI, we have :

— 500 kNm *

6 5 - = = —0.00694 rad
[200(107)AN /m~][360(10°)(10 "~ )m ™ ]




A cantilever beam shown in Figure is subjected to a concentrated moment
at its free end. Using the moment-area method, determine the slope at the

free end of the beam and the deflection at the free end of the beam. EI =
constant.

20kN.m
A(ﬁB Original beam
El = constant
g
(a)
M
[
X
¥ diagram
20kN.m
(b)

Reference tangent

04 = — (57) (6)(20) = — 42

* Elastic
“ curve

Ag=—(£)(6)(20)(3) = -3 A, =30
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* A cantilever of length 2 m carries a point load of 20 kN at
the free end and another load of 20 kN at the centre. If E =
1075 N/mm”2 and 1= 108 mm”~4 then determine, the

slope and deflection of the cantilever at the free end.
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Conjugate beam method

* The slopes and deflections may be obtained from
various methods discussed earlier like double
integration method, Macaulay’s method, moment
area method etc.

e But these methods become laborious, when
applied to beams whose flexural rigidity (El) is not
uniform throughout the length of the beam

* The slopes and deflections of such beams may be
easily obtained by conjugate beam method

* Conjugate beam is an imaginary beam for which
: : M .
the load diagram is the o diagram
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Conjugate beam method

Conjugate Beam Theorem I :
“The slope at any section of a loaded beam relative to the original axis of the beam, is equs
to the shear in the conjugate beam at the corresponding section.”

We know that, loﬁ-w=%

M d’y _dy
But, IH —odxz-dx-slope
Conjugate Beam Theorem II :

“The deflection at any given section of a loaded beam, relative io the original position. is
equal to the bending moment at the corresponding section of the conjugate beam.”

We know that, shear S,=I%‘I-dx

Bendingmoment,ux_—.jsx.dx I ﬂ
° 00 El

. [IHe-ll2-i2,. e

mfollowingpoimsmwonhnonngforthewmm
@) ’nnsmhodmbed:ncdymdonlyformuplyupponedbem JJied
(i7) In this method for cantilevers and fixed beams, artificial constraints need 10 b€

wﬂumwsa!ebeamsomnhumppawdmamnermmm”w
oftheledbeam,
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Conjugate beam method

2

2
Wehave, EIQ=M or Q=£
e d®  El
. 37t &y dM
Differentiating it, E] - —= = —— =
g d®  dx
. g d'y dF
Differentiating it again, gy. £ _ ¢X _ _ w
: dx4 dx
d* y i d? [ d? y|l_o ow
— = —— or e
AT ey dx? \ ax? EI
2 2
d ( M ) W d°M
d2NEL)T B O T i,
22-06-2021
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Conjugate beam method

d2y M (i

dv? EI )
2 |

Y W (i)

dx

o Thus as indicated by (i), if w indicates the actua] loading, and a bendin

. . g moment diagram is drawn, it
provides the bending moment at any cross-section of the heamy d

¢ Ina .similgr way 1t may be said from (i) that if the bending moment diagram (M/E) s assumed as the
loading diagram on the beam (the beam is known as conjugate beam)

s : . and a new bending moment
diagram is constructed from this, the diagram will be a deflection curye, g
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Conjugate beam method

A similar-analogy for the slope can also be deduced

&y _M
A El
i(ﬂ) _M
“ B\ae) E
d
or =—(slope) = g (il
Also, ar =—w (iv)
dx

Thus shear force diagram drawn with M/EI as loading will provide the slope at any section.
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Conjugate beam method — Problem1

Find expressions for the central deflection and the slope at the

ends of a simply supported beam carrying a central load by conjugate
beam method. "

A A

maximum bending moment at the centre is W//4,

W2 |B.M./El diag. from actual loading diag Wi2
16€/| (loading diag. for conjugate beam) 16El

(b)

Now, in the conjugate beam method, this diagram is to be
considered as loading diagram
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Conjugate beam method — Problem1

first we need to find the reaction on the supports.

wi?

. W

R .l_ X l
@ "t 4EI" 272 16EI
Deflections

Deflection y at any point at a distance x from A

= bending moment due to load on the conjugate beam

Wi>  WII4EL  x x_ WP W 5

= w W 3 W s 3
16E1° 12 2 3 16ES 1281 T agpp Ol X 4%)

3 3
W
Maximum deflection at the centre = ——[31" f—— 4(1) ] = —VL
2 48E]

48EI

Slopes

Slope at any point at a distance x from A

= Shearing force at the point due to load on the conjugate beam

_ WP WI4EL &
1661 12 2

2
Slope at the ends = l—Wl— (X =0)

6EIl
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|2E1

W2 |B.M./El diag. from actual loading diag WE |
16E/| (loading diag. for conjugate beam) 16El




Problem 14.1. A simply supported beam of length 5 m carries

a poing load of 5 kN at a distance of 3 m from the left end. If E=2x10"
N/mm. and 1=10° mm®, determine the slope at the left support and
deflection under the point load using conjugate beam method.

and

and

Sol. Given :

Length, L=5m

Point load, W=S5 kN

Distance AC, a=3 m

Distance BC, b=5-3=2 m

Value of E=2x10° N/mm?=2x10°x10% N/m?
=2x%105x10*> kN/m?
=2x 108 kN/m?

Value of J=1%108 mm?=10"% m*

Let R ,=Reaction at A
R,=Reaction at B.

Taking moments about A, we get

R, x5=5x3
RB=—5—>§<-§*=3 kN

R,=Total load—R;



NOW D.IVl. Usapgsserss - —
ISKN

A

E = a‘l Sm i
R, (a) ==

(b) B8.M.DIAGRAM

3Im
R: (c) CONJUGATE BEAM 4. 22
Fig. 14.3 R
f




The BM.atA=0
BM. atB=0
BMatC=R,x3=2x3=6kNm.

Now B.M. diagram is drawn as shown in Fig. 14.3 (b).

Now construct the conjugate beam as shown in Fig. 14.3 (¢). The vertical load at C* on
conjugate beam

-

B.M.atC _6kNm
ElI EI
Now calculate the reaction at A* and B* for conjugate beam
Let R,* = Reaction at A* for conjugate beam
Ry* = Reaction at B* for conjugate beam.
Taking moments about A*, we get
Rg* x 5 = Load on A*C*D* x distance of C.G. of A*C*D* from A*
+ Load on B*C*D* x Distance of C.G. of B*C*D* from A*

p—. ¢ 1 6 1
(z"a"m)x(a"8)*(5"2"1?1)"(3*5"2)
18 6 11_8 22 40
“EITEI S TR EICE

Ry =40 1 8
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R,* = Total load (i.e,, load A*B*D*) - R*
(1 6 ) 8
By eV P RS

2 ElI) EI
_ 15 4 8 - 7
" EI EI EI
Let 0, = Slope at A for the given beam i.e., (%) at A

¥c = Deflection at C for the given beam
Then according to conjugate beam method,
8, = Shear force at A* for conjugate beam = R,*
7 7

=B~ 2x10° %10+  E=2x10°kN/m? and I = 104 m*)
= 0,00035 radians. Ans.

Yo = B.M. at C* for conjugate beam
=R,* x 3 - Load A*C*D* x Distance of C.G. of A*C*D* from C*

7 1 6 1
:—E—I-X3-(§X3X-E—I)X(§X3)
21 9 12
“El EI EI
12 _ 6 6 x 1000
T 2x10°x10°  10° ™= 10000 "™ =06 mm. Ans.
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Conjugate beam method — Problem?2

=F <O
- 0O
Ry Re jN\?\ -
80 kN 60 kN
A e B
T<2m><—5m———><—3 m—bT
R Reg
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Conjugate beam method — Problem?

A 10 m long simply supported beam AB carries loads of 80 kN and 60 kN at 2 m and 7 m respec-

tively from A. E = 200 GPa and | = 150 X 106 mm®*. Determine the deflection and slope under
the loads using conjugate beam method.

80 kN 60 kN
A l e lD B

' A
Fz m>'<—5 m ——>'<— 3 m—>
Taking moments about A,

IORb=80X2+6OX7 174 kN.m

or R,=58kN 164 kN.m \
R,=80+60-58=82kN

Bending moment at C =82 X 2 = 164 kN-m
Bending moment at D = 58 X 3 =174 kN'm
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Conjugate beam method — Problem?

80 kN 60 kN
2 m>|<-—5 m —»‘4—3 m
(a)
174 KN.m
164 kN.m

Conjugate beam
. D, ..
Conjugate beam

Bending moment (conjugate beam) diagram is shown in Fig. 7.69b.
Taking moments about B to find the reaction at A from conjugate loads,

12 5 1 5 1
=[164%x2X—||—+8 +164x5(3+—) - —(3+—)+174x3x—x2
10R, ( xz)(3 ) > + (174 164)x5x2 - >

10R, =14213+4510+116.7+522  or R, =657
R, = 164 X (2/2) + 164 X 5+ (174 - 164) X (5/2) + 174 X (3/2) - 657= 613

For conjugate beam

Shearing force at C = 657 — 164 X (2/2) = 493

Shearing force at D =613 + 174 X (3/2) =-352

Bending moment at C = 657 X 2 — 164 X (2/3) = 1204.7
Bending moment at D = 613 X 3 —174 X (3/2) X 1=1578
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Conjugate beam method — Problem?

Slope and deflection
EI=200 X 106 X (150 X 1075) = 30 000 kN-m’

Slope at C =493/30 000 = 0.0164 rad
Slope at D =1352/30 000 =0.0117 rad

Deflection at C = 1204.7/30 000 = 0.04016 m = 40.16 mm
Deflection at D = 1578/30 000 = 0.0526 m = 52.26 mm
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Strain energy in bending
Castigliano’s first theorem

* Castigliano’s theorem provides a means for finding
the deflections of a structure from the straln

energy of the structure
-2 A

* If a structure is subjected to a number of point
loads (or couples) the partial derivative of the total
strain energy with respect to any load (or couple)
provides the deflection in the direction of that load D

(or couple) N
oU \ |

* Mathematically 6; = ap, | -

2 dx \J = oF
e Strain energy }u,,=j“’2’5;w %1%\ S; 2
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* Find the deflection at the free end of a cantilever

which carries a point load at the free end P
Sksaun EMY%W— \ *. = _gi\gl
W W <———=F
8 -’-:a_—‘P/ — /—B W P =\\ E |

2 0 : 5

Q M?—A')L L _BL_VL\__,'
U = & —Z—E:J,: A=o x= L

L 3 14 2U

'6 U W LE_] 8 - = .

M= NC TR {3 | 3\’\’\'\)11; B
BNCE AX £ = W \bES
U- RS 2F1 2F J_ ( > , wi’
O - BF E—T
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* Determine the strain energy of a cantilever with
uniformly distributed load . Also find the deflection

at free end. - i\N
%’FD}’_\) \J—_&% A%?’: wimetre | VT/ Bl >
- . 2 b 1
fb \N—I?’ ﬁ" 1 : -

VMLS_ L\ W
U = (\N')ﬁ—\-— — A oc &; -’Eji 2 & 8
== ! \’l'ﬁ + Wﬁ
° R L - X 3 %
WX \ aX- )
\ %Q\N'LA’ > _ = \/\I =0
07 =R R 5 %N oy
D & -
o)/ \N)LL*\IQ&{A % - ?C__’:Y_
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* Determine the maximum deflection of a simply
supported beam of span | carrying a load of w per
unit length using strain energy method W

W \N_ﬂx/ 1""-/ \/ wf{mitlcnﬂth .'
. & : ‘ B
N\ Ry C - Wi ]
Re.
) «rvc
C\]*w \f\lsc\:\’f5L \ \'\*I'*/z,
1\
C I } S0 ox Qé
U= S X&
287

ak/.,/ “%_1_ %\x :
_ (5=
B
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Syllabus

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS 9
Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses
and deformation in thin and thick cylinders — spherical shells subjected to internal pressure —
Deformation in spherical shells — Lame’s theorem.

Course objective:
To study the stresses and deformations induced in thin
and thick shells

Course outcome:

After completion of this unit students should be able to:
Analyze and design thin and thick shells for the applied
internal and external pressures
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Thin cylinders and spheres

 If the thickness to internal diameter ratio is
less than 1/20, then it is thin cylinder
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Stresses acting on thin cylinder

* When a cylinder is subjected to internal
pressure, three mutually perpendicular
principal stresses will be set up within the
walls of the cylinder

* Hoop or circumferential stress- tensile in
nature, tends to increase the diameter

* Longitudinal or axial stress — tensile in nature,
tends to increase the length

* Radial stress (radial pressure)— compressive in
nature, its magnitude is equal to fluid pressure
on the inside wall and zero on the outside wall if
it is open to atmosphere
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Stresses developed in thin cylinders

Cylindrical
co-ordinate
system
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Stresses developed in thin cylinders

oy
‘ S

(b) ()
9.1.1.1F- (a) Circumferential stress (b) Longitudinal stress and (c) Radial
stress developed in thin cylinders.
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Thin cylinder

* In case of thin cylinders subjected to low internal
pressures, the radial stress is uniform over the
thickness and hence ignored

* So the stresses considered here
* Hoop or circumferential
* Longitudinal or axial stress

Haap Strass

B — &
,-'ﬁ'i' .:-""'-_ll --""-
a P -I-'| Longitudinal = -5“"!!1‘:-5]
; f

W .

™ e
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Hoop or circumferential stress

Pd
]

oy — cylinder hoop stress in Pa

P — internal pressure in Pa

d — cylinder inside diameter inm
t —wall thickness inm

Force due to internal fluid pressure = Resisting force due to circumferential stress
PaxdxL=oyx2 Lt

oy=Pxd/(21)

Pd

R
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Longitudinal or axial stress

RIS TSVAREE I
= A o2

- p — N
FrLLLLL LT ‘4

[ I — —'M‘—-d—*l!}‘—

N

Force due to internal fluid pressure = Resisting force due to longitudinal stress
Px (m/4) dZ=Gan dt
op =Pxd/(4¢t)

Pd
o T
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Stresses in cylindrical shell

e Circumferential or hoop stress

pd
O = —
€ 2t
* Longitudinal or axial stress
pd
O] — —
' 4

(Longitudinal stress = half of circumferential stress)

* Maximum shear stress
| pd pd
01— 02 _ 2t 4t _ b4

tmax =7 2 St
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Efficiency of the joint

* In the longitudinal joint circumferential
stress is developed, whereas in
circumferential joint longitudinal stress is
developed

eq. = P9

O-C o Ztnl
Where n,; - efficiency of longitudinal joint

. s — PO

oL = 4tn,

Where 1. - efficiency of circumferential joint
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Strains in cylindrical shell

* Circumferential strain

O¢ )
€Ec—F= U —F=
E
__pd (-8
¢ 2tE 2
* Longitudinal strain
) O¢
€L = — U—
E
__pd (1
L= 2te\2  #
* Volumetric strain
ol od
Ey =—+2—=¢ + 2¢,
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Effect of internal pressure on the
dimensions of a thin cylindrical shell

* Change in diameter

_pd u _ pd? u
6d_2tE(1 z)Xd_ (1 )

* Change in Iength

ot=eg(z#) *1 =g (3 )

* Change in volume

av—pd > 2 xv—pd > 2 xndzl
~2te\2  “H ~ 2tE H
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Problem-1

* A cylindrical shell 3 meters long has 1 metre internal diameter and 15
mm metal thickness. Calculate the circumferential and longitudinal
stresses induced and also changes in the dimensions of the shell, if it is
subjected to an internal pressure of 150 N/cm?. Take E = 200x10° N/cm?
and Poisson's ratio = 0.3.

()

A z3m = 30w M- Then also find the following
s Vi 21000 WM S U0ER Change in diameter
E=ISmm = wscm Change in length

= 200% (0 N/cw" '
E = 200 : /L Change in volume
P = 150 N/em

V:_\K: 6:'S-

Cay C\u\:\"‘?e venhal. gtrend

PA . 150 100
O/c.: 2t 215
5000 M/em:
LMU\‘M\MASW
bd  _ \sox 109
Cg="4t ~ 4x\'5 -
= 2500 M/cm

22-06-2021 Dr. B. Janarthanan MSAIJCE



Problem-2

* A cylindrical shell 800 mm inner diameter, 3 m long is
having 10 mm metal thickness. If the shell is subjected
to an internal pressure of 2.5 N/mm? , find (i) the
change in diameter (ii) the change in length and (iii) the
change in volume. Assume the modulus of elasticity and
Poisson’s ratio of the material of the shell as 200
kN/mm? and 0.25 respectively.



d=gcomm , =3
E= lomm- Tz 3000 YOO ¢

-

P- 25 N/mm™
E= 200 kN/ml\ -20”’0 N/mm
Yz 2025

> CLAnaL N ol,taml;u’

E ZEE( 2.m
( Lxo zs)
}T 2: loxzoow’
Sd = 0-35 ™wm
u) Ckﬂ\aﬂ. n }M\Q“\
£-9
&y = T 2EE Q
31 _25%60 (Lo 25>
Booo 2.$10¥2oo$|o
slz o- 375 mm
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W) ckowaq ' vobume

oy ek !
Ev: = 2te '“

. 25y 8 KS _2xo° Z'b

21(0121»”0
=5t (2)
A% = I(m); 3ee

-\507%4474
3
_ 1-507 %107 mm

3
SN = 1.56% % 1D° wom

\<

Nz

“’*H <\°‘ <
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Problem-3

A thin cylinder 60mm internal diameter, 225mm long with walls 2.7mm thick is subjected to an
internal pressure of 6MN/m?. You may assume that E = 200GN /m? and v = 0.3. Calculate:

i. The hoop stress

ii. The longitudinal stress
iii. The change in length

iv. The change in diameter

Hoop stress:

pd (6% 10%)(60 x 107%)
e — 2t 2% 2.7 %103

= 66.7MN /m?*

Longitudinal stress:

; Zp,-dz(ax 10%)(60 x 10™%)
L 4 4% (2.7x 1073

— 33.3MN /m?
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Change in length:

_ pd B (6 x 10%)(60 x 1077) .
SL=gr -l =73 (27 x 10-%) x (200 x 109) (1 ~ 0:0)(225 x 107

SL=15x10"%m
Change in diameter:

pd? (6 x 10%)(60 x 10™%)*
2E 2V =% (2.7 % 10-7) x (200 x 109) 2~ 03)

dd =

dd = 17 x 107%m
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Problem-4

A 1m long thin cylinder has an internal diameter of 200mm with a wall thickness of 3mm. If it
found to undergo a change to its internal volume of 9 x 10~®m?*® when subject to an internal
pressure p. You may assume that E = 210GN/m? and v = 0.3. Calculate the hoop and
longitudinal stresses.

We have:

sv =P s _anyy
4tE
Original volume, V:

T .
% =E(2(}{] x1073)2x1=314x10"3m

_ SVME (9% 107%) x4 x (3 x107%) x (210 x 10%)
Pi=qG—an)V (200 x 10-3)(5 - 1.2)(31.4 x 10-9)

p; = 0.95MN /m?

Hoop stress:
- pid - (0.95 x 109)(200 x 107%)
e — 2t 2(3x1073)

= 31.66MN /m?

Longitudinal stress:
_ p;d B (0.95 x 10%)(200 x 107%)
T4t 4(3 x 1073)

o, = 15.83MN /m?

22-06-2021 Dr. B. Janarthanan MSAIJCE



Thin spherical shell

Resisting area
t mdt
P = Internal fluid pressure
o d = Internal diameter of thin spherical shell

t = Thickness of the wall of thin spherical shell

o = Circumferential stress or hoop stress developed in the wall

Force due to internal fluid pressure = Resisting force due to longitudinal stress
Px(m/4)d?=ocxmndt
c=Pxd/4¥)
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Thin spherical shell

* Hoop or circumferential stress

pd
° O-C — 4._t
 Strain in any direction

TR
.8___4’(]3(1_“)
* Change in diameter
. pd? . _

d6d = zr(1—-w
e Volumetric strain

__sv _ 3pd
Ey = v —4tE(1—H)
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Problem (Thin spherical shell)

* A spherical shell of 2 m diameter is made up of 10 mm thick
plates. Calculate the change in diameter and volume of the
shell, when it is subjected to an internal pressure of 1.6

MPa. Take E = 200 GPa and 1/m = 0.3.

a = 2m
t “lowmwW
b [

22-06-2021

= o byrce® N’/{lcp\/‘mmﬂ
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Sd e Q-o.?)

2000 4;10!2001@
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S 3 bd
e, -8 - %)

SV=13- sl"a‘ﬁ\D(’W‘W\
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Thick cylinders and spheres

 Earlier we have analysed thin cylinders, which are
basically used for low internal pressure

* The internal pressure was considered to be
negligible in comparison to the circumferential
stress and longitudinal stress

* Thick cylinders are designed to carry high internal
pressure

* Hence radial compressive stress can not be
neglected

* |n addition, circumferential stress which was
assumed to be constant, is no longer constant, but
varies along the thickness

22-06-2021 Dr. B. Janarthanan MSAIJCE



Thick cylinders and spheres

* The problem of thick cylinders is some what
complex in nature

* |t was first solved by French scientist Gabriel Lame
in 1833

* His analysis is commonly known as Lame’s theory
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Thick cylinders — Lame’s theory

e Radial pressure

* Hoop stress

* Where a and b are constants

| -

(i) Theek eyhindneal shell,
22-06-2021

b
Pr=7"2"4
Lame’s
b equations
O,y =— T+ a
X xz
o
Unjuu L_;'_,.‘l Bl + |.“;ff;-r“L
o i o 1 Er
bok - ] iy
R

() Tangential stress distribution. (1 Fadial stress distribatian
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Thick cylinders — Lame’s theory

- a.
/% a g, [tensile)

T o h Birt a s A=B/r
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Thick sphere — Lame’s theory

* Radial pressure

2b
Px =55~ ¢
* Hoop stress
b
o, = F +a

Where a and b are constants
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Thick cylinder — Problem-1

* A cast iron pipe has 20 mm internal radius and 50 mm metal
thickness, and carries water under pressure of 5 N/mm?.
Calculate the maximum and minimum intensities of
circumferential stress and sketch the distribution of
circumferential stress and radial pressure across the section.

Formula:
Radial pressure

(max. at inner radius and zero at outer radius)

b

=—-—a
Px = 23

Hoop stress
(max. at inner radius and min. at outer radius)

\

b
ax:p+a
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Thick cylinder — Problem-1 contd..

$) Y,z 20 MM
L’: 50 mm
¥, =tk = VoMW
P= 5 N/mm*

Radial pressure

70
o = b — A @
4900
ab x=v, , Px = 5 N/am"
= bzbz. =2
b _q —
5 ="2¢0
so\m-uaa) ad(®
D-0= 5245~ w0
5_ 5(4'1“"@L
T 4e0x 4900
DEIVTITS
az= o444 4

22-06-2021

Civeumtere nhial shress

b 217778 .

= Ya = L Fo44dd
L - ™ T
= 5"8888 N/mm

63‘"71 _-_3-_‘-,'%4—8; +0°4444

- 5888 N/im™

Stress distribution

Il/um"
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Thick cylinder problem-2

* Find the thickness of metal necessary for a cylindrical shell of
internal diameter 16 m to withstand an internal pressure of 8
N/mm?”2. The maximum hoop stress in the section is not to
exceed 35 N/mmA~2.

Formula used:

Radial pressure
(max. at inner radius and zero

at outer radius)

b
Px = F -
Hoop stress
(max. at inner radius and min.

at outer radius)

b
O'x=p+a
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Thick sphere — Problem-3

* A spherical shell of 60 mm inside diameter has to withstand an
internal pressure of 25 MPa. Find the thickness of the shell if the

maximum tensile stress is to be 75 MPa.

Formula used:

Radial pressure
(max. at inner radius and zero at

outer radius)

Hoop stress
(max. at inner radius and min. at

outer radius)
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Thick sphere — Problem-3 contd..

D Thick sphomeal shLL
Ty -‘—:_- — 3D'M'ﬂ/ F: 25 MPo
=25 N/mm’"

abxz=v, , b = 25 Nlwn™
2b

25 Z—— —-Aa

302

. 2b - A
e 27000

Dr. B. Janarthanan
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coyenmAoren hal 3brm Us modXimam
at vy vadkus akx:=y, o3 - 75

A
(S‘Jc:'b;i:?“""t o
5= %.3'4'4
2o
75=5_b.;;§; A

ab ., b
O@‘-"—; 0D = 27000 27000

b= 900000
4= 4167
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Thick sphere — Problem-3 contd..
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Thick cylinder — Problem-4

7) Determine the maximum and minimum hoop stress across the section of a pipe of 400 mm
internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of 8 N/mm®. Also
sketch the radial pressure distribution and hoop stress distribution across the section.

(May 2017) (Nov/Dec 2017)

Formula used:

Radial pressure
(max. at inner radius and zero

at outer radius)

b

Px 2
Hoop stress
(max. at inner radius and min.

at outer radius)

b
ax=;+a
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Thick cylinder — Problem-4

= = -3 2
1. At x =r; =200 mm, p, =8 N/mm " 5760000_a N a—5760000 :

90000 90000

6.4
2. Atx=r,=300mm, p,=0

Substituting these boundary conditions in equation(i), we get The values of ‘a” and ‘b’ are substituted in the hoop stress.

g b b (i) Now hoop stress at any radius x is given by equation (18.2) as
—~ =3 S —a (1
d 200° 40000
an b b b 576000
0=——-a= -a (i) o, =—Z+ta=——7—+64
300° 90000 X X
: : : e 576000 3
subtracting equation (iii) from equation (ii), we get At x =200 mm, o, = 00 , 6.4=14.4+64=208N/mm®. Ans.
- 200"
b b 9%-4b_ 5b
40000 90000 360000 360000 At x =300 mm, o, =200 | 64-64+6.4=12.8N/mm>. Ans.
B 360000x 8 — 5760000

Substituting this value in equation (iii), we get

c Radial
= pressure (p,)

B

12.8 N/mm?
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Revision problem-1

A thin cylinder of internal diameter 1.25 m contains a fluid at an internal
pressure of 2 N/mm?. Determine the maximum thickness of the cylinder if:
i) The longitudinal stress is not to exceed 30 N/mm?

ii) The circumferential stress is not to exceed 45 N/mm?

Hints:

e Circumferential or hoop stress

O, = g—‘: (calculate t)

* Longitudinal or axial stress

o] = Z—:‘ (calculate t)

Take the larger of two values of t
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Revision problem-2

A cylindrical thin drum 80 cm in diameter and 3 m long has a shell thickness of 1

cm. if the drum is subjected to an internal pressure of 2.5 N/mm?2, determine
1) Change in diameter

1) Change in length
1) Change in volume

Take E = 2 x 10° N/mm? and Poisson’s ratio = 0.25
Hints:

* Change in diameter

* Change in length

e Change in volume
6V—pd > 2 xv—pd > 2 xndzl
~2¢e\2 ~ “H ~2te\2 " “H] 7
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Revision problem-3

A spherical vessel 1.5 m diameter is subjected to an internal pressure of 2 N/mm?2.

Find the thickness of the plate required if maximum stress is not to exceed 150
N/mm? and joint efficiency is 75%.

Hints:

pd
g, = —
© 4tn
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Revision problem-4

A spherical shell of internal diameter 0.9 m and thickness 10 mm is subjected to an
internal pressure of 1.4 N/mm?2. Determine the increase in diameter and increase in
volume. Take E =2 x 10° N/mm?and m = 3

Hints:
* Change in diameter

cod =% 1 —

— 4tE
* Volumetric strain
sv  3pd
cey, =5 =2 1= 1)
3pd
: 5V:E (1 —wx Volume of sphere

. . 1
* Note: Poisson’s ratio u = —
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Revision problem-5

Find the thickness of metal necessary for a cylindrical shell of internal diameter 150
mm to withstand an internal pressure of 50 N/mm?2. The maximum hoop stress in
the section is not to exceed 150 N/mm?>.

Hints
e Radial pressure
b
Px = F —a
* Hoop stress
b
Oy = F + a

* Where a and b are constants

22-06-2021 Dr. B. Janarthanan MSAIJCE






