UNIT-I GROUPS AND RINGS

Groups: Definition and Properties-Homomorphism-Isomorphism-Cyclic groups-Cosets Lagrange's theorem.
Rings: Definition and examples-sub rings-Integral domain-Field-Integer modulo \mathbf{n}-Ring homomorphism.

UNIT I
 GROUPS AND RINGS
 PART-A

1. State any two properties of a group.

Closure property: $a^{*} b \in G$, for all $a, b \in G$
Associative property: (a*b)* $c=a^{*}\left(b^{*} c\right)$, for all $a, b, c \in G$
2. Define Homomorphism of groups.

Let ($\mathrm{G},{ }^{*}$) and (G, o) be two groups and f be a function from G into G 1 . Then f is called a homomorphism of G into G 1 if for all $\mathrm{a}, \mathrm{b} \in \mathrm{G}$,

$$
f(a * b)=f(a) \text { of(b). }
$$

3. Give an example of Homomorphism of groups.

Consider the group ($\mathrm{Z},+$). Define $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ by $\mathrm{f}(\mathrm{n})=3 \mathrm{n}$ for all $\mathrm{n} \in \mathrm{Z}$
Here the function f is from the group ($\mathrm{Z},+$) to ($\mathrm{Z},+$)
Let $n, m \in Z$ then we get $n+m \in Z$ and we have $f(n+m)=3(n+m)=3 n+3 m=f(n)+f(m)$
Hence the function f is a homomorphism.
4. Define Isomorphism.

Let ($\mathrm{G},{ }^{*}$) and ($\mathrm{G}^{\prime}, \mathrm{o}$) be two groups and $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a homomorphism of groups then f is called a isomorphism if f is a bijective(one-to-one and onto) function.
5. Give any two Example of Isomorphism.

Example:1

Consider the function $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ by $\mathrm{f}(\mathrm{x})=\mathrm{x}$, Now we have to show that f is a homomorphism.
Take any two elements x, y belongs to Z,Then $x+y$ belongs to Z, Hence $f(x+y)=x+y=f(x)+f(y)$ Hence f is homomorphism.
Since the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is bijective. f is an isomorphism.
Example :2
Consider the function $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ by $\mathrm{f}(\mathrm{x})=\mathrm{x}$. Take any two elements x, y belongs to Z , Then $\mathrm{x}+\mathrm{y}$ belongs to Z, Hence $f(x+y)=x+y=f(x)+f(y)$ Hence f is homomorphism.
Since the function $f(x)=x$ is bijective. f is an isomorphism.
6. Show that $\left(Z_{5,},+_{5}\right)$ is a cyclic group.

$+_{5}$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[0]$	0	1	2	3	4
$[1]$	1	2	3	4	0
$[2]$	2	3	4	0	1
$[3]$	3	4	0	1	2
$[4]$	4	0	1	2	3

$1^{1}=1$
$1^{2}=1+{ }_{5} 1=2$
$1^{3}=1+{ }_{5} 1^{2}=1+{ }_{5} 2=3$
$1^{4}=1+{ }_{5} 1^{3}=1+{ }_{5} 3=4$
$1^{5}=1+{ }_{5} 1^{4}=1+{ }_{5} 4=0$
Hence $\left(Z_{5,},+_{5}\right)$ is a cyclic group and 1 is a generator.
7. Prove that the group $H=\left(Z_{4},+\right)$ is cyclic.

Here the operation is addition, so we have multiplies instead of powers. We find that both [1] and [3] generate H. For the case of [3], we have

$$
\text { 1. }[3]=[3], \quad 2 .[3]=[2], \quad 3 .[3]=[1], \text { and } 4 .[3]=[0] .
$$

Hence $H=<[3]>=<[1]>$.Hence $H=\left(Z_{4},+\right)$ is cyclic
8. Prove that $U_{9}=\{1,2,4,5,7,8\}$ is cyclic group.

Here we find that $2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=7,2^{5}=5,2^{6}=1$,
So U_{9} is a cyclic group of order 6 and $U_{9}=\langle 2\rangle$ and also true that $U_{9}=\langle 5\rangle$
because $5^{1}=5,5^{2}=7,5^{3}=8,5^{4}=4,5^{5}=2,5^{6}=1$.
9. Define Left coset and Right coset of the group.

If H is a subgroup of G,then for each $a \in G$, the set $a H=\{a h / h \in H\}$ is called al
eft coset of H in G and $H a=\{h a / h \in H\}$ is a right coset of H in G.
10. Consider the group $\mathrm{Z}_{4}=\{[0],[1],[2],[3]\}$ of integers modulo 4. Let $\mathrm{H}=\{[0],[2]\}$ be a subgroup of Z_{4} under $+_{4}$. Find the left cosets of H.

$$
\begin{aligned}
& {[0]+[\mathrm{H}]=\{[0],[2]\}=\mathrm{H}} \\
& {[1]+[\mathrm{H}]=\{[1],[3]\}} \\
& {[2]+[\mathrm{H}]=\{[2],[4]\}=\{[2],[0]\}=\{[0],[2]\}=\mathrm{H}} \\
& {[3]+[\mathrm{H}]=\{[3],[5]\}=\{[3],[1]\}=\{[1],[3]\}=[1]+\mathrm{H}}
\end{aligned}
$$

$\therefore[0]+\mathrm{H}=[2]+\mathrm{H}=\mathrm{H}$ and $[1]+\mathrm{H}=[3]+\mathrm{H}$ are the two distinct left cosets of H in Z_{4}
11. State Lagrange's theorem for finite groups. Is the converse true?

If G is a finite group and H is a sub group of G , then the order of H is a divisor of order of G . The converse of Lagrange's theorem is false.
12. Define ring and give an example of a ring with zero-divisors.

An algebraic system ($R,+$, .) is called a ring if the binary operation + and . satisfies the following conditions.
(i) $(a+b)+c=a+(b+c) \quad a, b, c \in R$
(ii) There exists an element $0 \in R$ called zero element such that $a+0=0+a=a$ for all $a \in R$
(iii) For all $a \in R, a+(-a)=(-a)+a=0,-a$ is the negative of a.
(iv) $a+b=b+a$ for all $a, b \in R$
(v) (a.b).c $=a .(b . c)$ for all $a, b, c \in R$

The operation * is distributive over + i.e.,for any $a, b, c \in R, \quad a .(b+c)=a . b+a . c$,
$(b+c) . a=b . a+c . a$ In otherwords, if R is an abelian group under addition with the properties
(iv) and (v) then R is a ring.

Example:The ring $\left(Z_{10},{ }_{10}, X_{10}\right)$ is not an integral domain.Since $5 X_{10} 2$,yet $5 \neq 0,2 \neq 0$ in Z_{10}.
13. Define unit and multiplicative inverse of a Ring.

Let R be a ring with unity u. If $a \in R$ and there exists $b \in R$ such that $a b=b a=u$, then b is called a multiplicative inverse of a and a is called a unit of R.
14. Define integral domain and give an example.

Let R be a commutative ring with unity. Then R is called an integral domain if R has no proper divisors of zero.
Example: $(\mathrm{Z},+, \bullet)$ is an integral domain and $\mathrm{Q}, \mathrm{R}, \mathrm{C}$ are integral domain under addition and multiplication
15. Define Field and give an example.

A commutative ring $(R,+, \bullet)$ with identity is called a field if every non-zero element has a multiplicative inverse. Thus ($\mathrm{R},+, \bullet$) is a field if
(i) $(R,+)$ is abelian group and
(ii) $(\mathrm{R}-\{0\}, \bullet)$ is also abelian group.

Example: ($\mathrm{R},+, \bullet$) is a field.
16. Give an example of a ring which is not a field.
$(\mathrm{Z},+, \bullet)$ is a ring but not a field, if every non-zero element need not a multiplicative inverse.
17. Define Integer modulo n.

Let $n \in Z^{+}, \mathrm{n}>1$. For $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$, we say that " a is congruent to b modulo n ", and we write $a \equiv b(\bmod n)$, if $n((a-b)$, or equivalently, $a=b+k n$ for some $k \in Z$.
18. Determine the values of the integer $n>1$ for the given congruence $401 \equiv 323(\bmod n)$ is true.
$401-323=78=2.3 .13$ there are five possible divisors ($n>1$), namely $2,3,6,26,39$.
19. Determine the values of the integer $n>1$ for the given congruence $57 \equiv 1(\bmod n)$ is true. $57-1=56=2^{3} .7$. So there are six divisors, namely $2,4,8,14,28,56$
20. Determine the values of the integer $n>1$ for the given congruence $68 \equiv 37(\bmod n)$ is true. $68-37=31$, prime, consequently $\mathrm{n}=31$.
21. Determine the values of the integer $n>1$ for the given congruence $49 \equiv 1(\bmod n)$ is true. $49-1=48=2^{4} .3$. So there are nine possible values for $n>1$, namely $2,4,8,16,3,6,12,24,48$.

Polynomial rings-Irreducible polynomial over finite fields-Factorization of polynomials over finite fields

1. Define polynomial.

Given a ring ($\mathrm{R},+,$.), an expression of the form
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots \ldots+a_{1} x^{1}+a_{0} x^{0}$, where $a_{i} \in R \quad$ for $0 \leq i \leq n$, is called a polynomial in the indeterminate x with coefficients from R.

2. Define Field.

A field is a nonempty set F of elements with two operations ' + ' (called addition) and ' \because ' (called multiplication) satisfying the following axioms. For all $a, b, c \in F$:
(i) F is closed under + and \cdot; i.e., $\mathrm{a}+\mathrm{b}$ and $\mathrm{a} \cdot \mathrm{b}$ are in F .
(ii) Commutative laws: $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}, \mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$.
(iii) Associative laws: $(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c}), \mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})=(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{c}$.
(iv) Distributive law: $\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})=\mathrm{a} \cdot \mathrm{b}+\mathrm{a} \cdot \mathrm{c}$.

3. What is meant by a finite field?

A field containing only finitely many elements is called a finite field, A finite field is simply a field Whose underlying set is finite. Eg: F_{2}, whose element 0 and 1.

4. What is meant by polynomial ring?

If R is a ring , then under the operations of addition and multiplication + and.,$(\mathrm{R}[\mathrm{x}],+,$.$) is$ a ring ,called the polynomial ring, or ring of polynomials over R.

5. Define root of the polynomial.

Let R be a ring with unity u and let $\mathrm{f}(\mathrm{x}) \in R(x)$, with degree $\mathrm{f}(\mathrm{x}) \geq 1$. If $\mathrm{r} \quad$ and $\mathrm{f}(\mathrm{r})=\mathrm{z}$, then r is called a root of the polynomial $f(x)$

6. When do you you say that $f(x)$ is a divisor of $g(x)$?

Let F be a field. For $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \in F(x)$, where $\mathrm{f}(\mathrm{x})$ is not a zero a polynomial, we all $\mathrm{f}(\mathrm{x})$ a divisor of $\mathrm{g}(\mathrm{x})$ if there exists $\mathrm{h}(\mathrm{x}) \in F(x)$ with $\mathrm{f}(\mathrm{x}) \mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x})$. In this situation we also say that $\mathrm{f}(\mathrm{x})$ divides $\mathrm{g}(\mathrm{x})$ and that $\mathrm{g}(\mathrm{x})$ is a multiple of $\mathrm{f}(\mathrm{x})$
7. Find the roots of $f(x)=x 2-2 Q x$.
$f(x)=x^{2}-2=(x+\sqrt{2})(x-\sqrt{2})$
Since $\sqrt{2}$ and $-\sqrt{2}$ are irrational numbers, $f(x)$ has no roots.

8. Find all roots of $f(x)=x 2+4 x$ if $f(x) \quad z x$

$\mathrm{Z}_{12}=\{0,1,2,3,4,5,6,7,8,9,10,11\}$
$\mathrm{f}(0)=0+0=0 \quad \therefore 0$ is a root of f$) \mathrm{x}$)
$\mathrm{f}(1) 1+4=5$
$\mathrm{f}(2)=4+8=12=0$
So 2 is a root.
$\mathrm{f}(3)=21, f(4) 32$
$\mathrm{f}(5)=45, \mathrm{f}(6)=60=0$
So 6 is a root
$\mathrm{f}(7)=77, f(8)=96=0$
So 8 is aroot
$\mathrm{f}(9)=81+36=117 . \mathrm{f}(10) 100+40=140$
$\mathrm{f}(11)=121+44=165$
Thus $x=0,2,6,8$ are the roots of $f(x)$

9. State division algorithm

Let $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \in F(x)$ with $\mathrm{f}(\mathrm{x})$ not the zero polynomial. There exists unique polynomials $\mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x})$ $\in F(x)$ such that $\mathrm{g}(\mathrm{x})=\mathrm{q}(\mathrm{x}) \mathrm{f}(\mathrm{x})+\mathrm{r}(\mathrm{x})$, where $\mathrm{r}(\mathrm{x})=0$ or degree $\mathrm{r}(\mathrm{x})<\operatorname{degree} \mathrm{f}(\mathrm{x})$.

10. State the remainder theorem.

The remainder theorem:
For $\mathrm{f}(\mathrm{x}) \in F(x)$ and $\mathrm{a} \in F$, the remainder in the division of $\mathrm{f}(\mathrm{x})$ by x -a is $\mathrm{f}(\mathrm{a})$.

11. Determine all polynomials of degree 2 in $\mathrm{z}[\mathrm{x}]$.

The polynomials are
(i) x^{2}
(ii) $x^{2}+x$
(iii) $x^{2}+1$
(iv) $\mathrm{x}^{2}+\mathrm{x}+1$
12. State the factor theorem.

If $\mathrm{f}(\mathrm{x}) \quad$ and a $\mathrm{f}(\mathrm{x}) \in F$, then $\mathrm{x}-\mathrm{a}$ ia a factor of $\mathrm{f}(\mathrm{x})$ if and only if a is a root of $\mathrm{f}(\mathrm{x})$.
13. Determine polynomial $h(x)$ of degree 5 and polynomial $k(x)$ of degree 2 such that degree of $h(x) k(x)$ is 3 .
Choose $h(x)=4 x^{5}+x$ of degree 5 and $k(x) 3 x^{2}$ of degree 2 . Then $h(x) k(x)=\left(4 x^{5}+x\right)$ $\left(3 x^{2}\right)=12 x^{7}+3 x^{3}=0+3 x^{3} \quad$ which is of degree 3 .
14. Define reducible and irreducible polynomials.

Let $\mathrm{f}(\mathrm{x})$
, with F a field and degree $f(x) \geq 2$. We call $f(x)$ reducible over F if there exists
$\mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x}) \quad$, where $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x})$ and each of $\mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})$ has degree ≥ 1. If $\mathrm{f}(\mathrm{x})$ is not reducible it is called irreducible or prime.
15. Give example for reducible and irreducible polynomials.

The polynomial $f(x)=x^{4}+2 x^{2}+1$ is reducible. Since $x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}$
The polynomial $\mathrm{x}^{2}+1$ is irreducible in $\mathrm{Q}[\mathrm{x}]$ and $\mathrm{R}[\mathrm{x}]$ but in $\mathrm{C}[\mathrm{x}]$ it is reducible.
16. Verify the polynomial $x 2+x+1$ over Z, Z irreducible or not.

The polynomial $\mathrm{x}^{2}+\mathrm{x}+1=(\mathrm{x}+2)(\mathrm{x}+2)$ is irreducible over Z_{3}
The polynomial $x^{2}+x+1=(x+5)(x+3)$ is irreducible overZ7.
17. What is meant by monic polynomial?

A polynomial $f(x) \quad$ is called monic if its leading coefficients is 1 , the unity of F.
Example: $x^{2}+2 x+1$
18. When do you say that 2 polynomials are relatively prime?

If $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \quad$ and their gcd is 1 , then $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are calle d relatively prime.
19. What is the characteristic of R ?

Let ($R,+,$.) be a ring. If there is least positive integer n such that $n r=z($ the zero of R) for all $r \in R$, the we say that R has characteristic n and write characteristic n. When no such integer exists, R is said to be characteristic 0 .
20. Find the characteristic of the following rings $a)(Z,+,) b).(Z,+,$.$) and Z[x]$

The ring $\left(\mathrm{Z}_{3},+\right.$, . $)$ has characteristic 3.
The ring $\left(\mathrm{Z}_{4},+,.\right)$ has characteristic 4
$\mathrm{Z}_{3}[\mathrm{x}]$ has characteristic 3.
21. Give an example of a polynomial $f(x) R x$ where $f(x)$ has degree 8 , is reducible but has no real roots.
Choose $f(x)=\left(x^{2}+9\right)^{4}$ is of degree 8 , is reducible but has no real roots.
22. Write $f(x)=2 x 15 x 5 x 34 x 3 \mathrm{zx}$ as the product of unit and three monic polynomials.

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\left(2 x^{2}+1\right)\left(5 x^{3}-5 x+3\right)(4 x-3) \\
& =2\left(x^{2}+4\right) 5\left(x^{3}-x+2\right) 4(x-6) \\
& =40\left(x^{2}+4\right)\left(x^{3}-x+2\right) 4(x-6) \\
& =5\left(x^{2}+4\right)\left(x^{3}-x+2\right) 4(x-6)
\end{aligned}
$$

Here each polynomial is monic.
23. If $f(x)$ and $g(x)$ are relatively prime and $F x$ where F is any field, show that there is no element $a \in F$ such that $f(a)=0$ and $g(a)=0$
Suppose there exists $\mathrm{a} \in F$ such that $\mathrm{f}(\mathrm{a})=0$ and $\mathrm{g}(\mathrm{a})=0$. Then $(\mathrm{x}-\mathrm{a})$ would be a factor of both $\mathrm{f}(\mathrm{x})$ and $g(x)$. So ($x-a$) would divide the gcd of both $f(x)$ and $g(x)$.But this is a contradiction since $f(x)$ and $g(x)$ are relatively prime.

UNIT-III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITION

Division algorthim-Base b-representations-Number patterns-Prime and Composite Numbers-GCD-Euclidean algorithm-Fundamental theorem of arithmetic-LCM

UNIT-III
DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS PART-A

1. Write about divisible.

An integer b is divisible by an integer a, not zero, if there is an integer x such that $b=a x$, and we write a / b. m In case b is not divisible by a , we write $\mathrm{a} \backslash \mathrm{b}$.
2. Define division algorithm.

Given any integers a and b, with $a>0$, there exist unique integers q and r such that $b=q a+r$, $0<r<a$. If $a \backslash b$, then r satisfies the stronger inequalities $z<r<a$.
3. Define greatest common divisor of b.

The integer a is a common divisor of b and c in case a / b and a / c. Since there is only a finite number of divisors of any nonzero integer, there is only a finite number of common divisors of b and c, except in the case $b=c=0$, If at least one of b and c is not 0 , the greatest among their common divisors is called the greatest common divisor of b and c and is denoted by (b, c).
4. Define Euclidean algorithm.

Given integers b and $c>0$, we make a repeated application of the division algorithm, to obtain a series of equations

$b=c q_{1}+r_{1}$,	$0<r_{1}<c$
$c=r_{1} q_{2}+r_{2}$,	$0<r_{2}<r_{1}$
$r_{1}=r_{1} q_{3}+r_{3}$,	$0<r_{2}<r_{1}$
$\ldots \ldots \ldots \ldots .$.	$\ldots .$.
$r_{j-2}=r_{j-1} q_{j}+r_{j}$,	$0<r_{2}<r_{1}$
$r_{j-1}=r_{j} q_{j+1}$	

The greatest common divisor (b, c) of b and c is r_{j}, the last nonzero remainder in the division process. Values of x_{0} and $y_{0} \operatorname{In}(b, c)=b x_{0}+c y_{0}$ can be obtained by writing each r_{i} as a linear combination of b and c.
5. Solve by Euclidean algorithm for $b=288$ and $c=158$.
$288=158.2-28$
$158=28.6-10$
$28=10.3-2$
$10=2.5$
6. Define least common multiple.

The integers $a_{1}, a_{2}, \ldots . a_{n}$. all different from zero, have a common multiple b if a_{i} / b for $i=1,2, \ldots . n$. The least of the positive common multiples is called the least common multiple [le, and it is denoted by [$\left.\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . . \mathrm{a}_{\mathrm{n}}\right]$.
7. Define prime number.

An integer $p>1$ is called a prime number, or a prime, in case there is no divisor d of satisfying $1<d<p$.
8. Define Composite number with example.

If an integer $a>1$ is not a prime, it is called a composite number. Eg: 4,6,8,9....
9. State the binomial theorem.

For any integer $\mathrm{n} \geq 1$ and any real numbers x and $\mathrm{y}(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

10. Define arithmetical function with example.

A function $f(n)$ defined for all natural numbers n is called an arithmetical function. Eg: $x^{2}+x-3$
11. Prove that if \mathbf{n} is an even number, then $3^{\mathbf{n}}+\mathbf{1}$ is divisible by 2 ; if \mathbf{n} is an odd number, k then 3^{n+1} is divisible by 2^{2}; if n is any number, whether even or odd, then $3^{n}+1$ is not divisible by 2^{m} with $\mathrm{m} \geq 3$.

Since the square of an odd number minus 1 is a multiple of 8 , when $n=2 m$ we have $3 n=3^{2 m}=\left(3^{m}\right)^{2}=8 a+1$, and therefore $3^{n}+1=2(4 a+1)$. When $n=2 m+1$, we have $3^{n}+1=3^{2 m}+1=3(8 a+1)+1=4(6 a+1)$. Since $4 a+1$ and $6 a+1$ are odd, the statement is true.
12. Show that if $1<a_{1}<a_{2} \ldots .<a_{n-1}<a_{n}$, then there exist i and j with $i<j$, such that a_{i} / a_{j}.

Let $\mathrm{a}_{\mathrm{i}}=2^{\text {ni }} \mathrm{b}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}} \geq 0$), b_{i} is odd. Since among $1,2, \ldots, 2 \mathrm{n}$, there are only n distinct odd numbers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}+1}$ are not all distinct, in other words, among them there are some equal odd numbers, Let $b_{i}=b_{j}$. Then ai/aj.
13. Define square number with example.

If an integer a is a square of some other integer, then a is called a square number.Eg:4,9,16...
14. Find the greatest common divisor of 525 and 231.

From 525=2.231+63
$231=3.63+42$
$63=1.42+21$
$42=2.21$
Therefore g.c.d.(525.231)=21

UNIT-IV-DIOPHANTINE EQUATIONS AND CONGRUENCES

Linear Diaphantine equations-Congruence's-Linear congruence'sCongruence's applications-Divisibility tests-Modular exponentiation -Chinese remainder theorem-2x2 linear system.

UNIT IV DIOPHANTINE QUATIONS AND CONGRUENCES
 PART A

1. Define linear Diophantine equation.

Any linear equation in two variables having integral coefficients can be put in the form $a x+b y=c$ where a, b, c are given integers.
2. State about the solution of linear Diophantine equation.

Consider the equation $\mathrm{ax}+\mathrm{by}=\mathrm{c}---(1)$, in which x and y are integers. If $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$, then every pair (x, y) of integers is a solution of (1), whereas if $a=b=0$ and $c \neq 0$, then (1) has no
solution. Now suppose that at least one of a and b is nonzero, and let $g=\operatorname{gcd}(a, b)$. If g / c then (1)has no solution.
3. Write the solution of $a x+b y=c$.

If the pair $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is one integral solution, then all others are of the form $\mathrm{x}=\mathrm{x}_{1}+\mathrm{kb} / \mathrm{g}$, $y=y_{1}=k a / g$ where k is an integer and $g=g c d(a, b)$
4. Define unimodular with example.

A square matrix U with integral elements is called unimodular if $\operatorname{det}(U)= \pm 1 . E g$: Identity matrix
5. Define Pythagorean triangle.

We wish to solve the equation $x^{2}+y^{2}=z^{2}$ in positive integers. The two most familiar solutions are $3,4,5$ and $5,12,13$. We refer to such a triple of positive integers as a Pythagorean triple or a Pythagorean triangle, since in geometric terms x and y are the legs of a right triangle with hypotenuse z .
6. Write the legs of the Pythagorean triangles.

The legs of the Pythagorean triangles.
$\mathrm{X}=\mathrm{r}^{2}-\mathrm{s}^{2}$
$\mathrm{Y}=2 \mathrm{rs}$
$Z=r^{2}+s^{2}$
7. Define congruent and not congruent.

If an d integer m, not zero, divides the difference $a-b$, we say that a is congruent to b modulo m and write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$. If $\mathrm{a}-\mathrm{b}$ is not divisible by m , we say that a is not congruent to b modulo m , and in this case we write $\mathrm{a} \neq \mathrm{b}(\bmod \mathrm{m})$.
8. Define residue.

If $x \equiv y(\bmod m)$ then y is called a residue of x modulo m.
9. Define complete residue

A set $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}$ is called a complete residue system modulo m if for every integer y there is one and only one x_{j} such that $y \equiv x_{j}(\bmod m)$.

10.State Chinese Remainder Theorem.

Let $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{r}}$ denote r positive integers that are relatively prime in pairs, and let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{r}}$ denote any r integers. Then the congruences
$\mathrm{x} \equiv \mathrm{a}_{1}\left(\bmod \mathrm{~m}_{1}\right)$
$\mathrm{x} \equiv \mathrm{a}_{2}\left(\bmod \mathrm{~m}_{2}\right)$
$\mathrm{x} \equiv \mathrm{ar}_{\mathrm{r}}\left(\bmod \mathrm{m}_{\mathrm{r}}\right)$
have common solutions. If x_{0} is one such solution, then an integer x satisfies the congruences the above equations iff x is of the form $x=x_{0}+k m$ for some integer k. Here $m=m_{1} m_{2} \ldots m_{r}$.
11. Define n-th power residue modulo p.

If $(a, p)=1$ and $x_{n} \equiv a(\bmod p)$ has a solution, then a is called an n-th power residue modulo p.
12. Define Euler's criterion.

If p is an odd prime and $(q, p)=1$, then $x^{2} \equiv a(\bmod p)$ has two solutions or no solution according as a ${ }^{(p-1) / 2} \equiv$ or $\equiv-1(\bmod p)$.

UNIT-V-CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS

Wilson's theorem-Fermat's little theorem-Euler's theorem-Euler's phi-functionsTau and Sigma functions

UNIT V

CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS

PART A

1. State Wilson's theorem

The Wilson's theorem states that, if p is a prime, then $(p-1)!\equiv-1(\bmod p)$
2. State Fermat's theorem.

Let p denote a prime. If p / a then $a^{p-1} \equiv 1(\bmod p)$. For every integer $a, a^{p} \equiv a(\bmod p)$.
3. State Euler's generalization of Fermat's theorem.

If $(a, m)=1$, then $a \phi(m) \equiv 1(\bmod m)$.
4. State Fermat's little theorem

If p is a prime and $a \not \equiv 0(\bmod p)$, then $a^{p-1} \equiv 1(\bmod p)$
5. Explain the Exponent of an integer modulo n.

Let n be a natural number >1 and a an integer prime to n. if the infinite sequence $a, a^{2}, a^{3}, \ldots . . \equiv 1(\bmod n)$. Suppose that a^{δ} is the first number in the sequence $\equiv 1(\bmod n)$. then a is said to belong to the Exponent of an integer modulo n
6. Define improper divisor of n

Every integer n is a divisor of itself. It is called the improper divisor of n. All other divisors of n are called proper divisors .
7. Define Eulers Phi function
$\phi(n)$ is the number of non-negative integers less than n that are relatively prime to n. In other words, if $n>1$ then $\phi(n)$ is the number of elements in $U n$, and $\phi(1)=1$.
8. If p is a prime, the only elements of $U p$ which are their own inverses are [1] and $[p-1]=[-1]$.

Note that $[n]$ is its own inverse if and only if $[n 2]=[n] 2=[1]$ if and only if $n 2 \equiv 1(\bmod p)$ if and only if $p \mid(n 2-1)=(n-1)(n+1)$. This is true if and only if $p \mid(n-1)$ or $p \mid(n+1)$. In the first case, $n \equiv 1(\bmod p)$, i.e., $[n]=[1]$. In the second case, $n \equiv-1 \equiv p-1(\bmod p)$, i.e., $[n]=[p-1]$.
9. Find the remainder of $97!$ When divided by 101.

First we will apply Wilson's theorem to note that $100!\equiv-1(\bmod 101)$. When we decompose the factorial, we get that: $(100)(99)(98)(97!) \equiv-1(\bmod 101)$. Now we note that 100 $\equiv-1(\bmod 101), 99 \equiv-2(\bmod 101)$, and $98 \equiv-3(\bmod 101)$.

Hence: $(-1)(-2)(-3)(97!) \equiv-1(\bmod 101)(-6)(97!) \equiv-1(\bmod 101)(6)(97!) \equiv 1(\bmod 101)$. Now we want to find a modular inverse of $6(\bmod 101)$. Using the division algorithm, we get that: $101=6(16)+56=5(1)+11=6+5(-1) 1=6+[101+6(-16)](-1) 1=101(-1)+6(17)$
Hence, 17 can be used as an inverse for $6(\bmod 101)$. It thus follows that: $(17)(6)(97!) \equiv(17) 1(\bmod 101) 97!\equiv 17(\bmod 101)$ Hence, $97!$ has a remainder of 17 when divided by 101 .
10.For prime $p \geq 5$, determine the remainder when ($p-4$)! is divided by p.

By Wilson's theorem, $(\mathrm{p}-1)!\equiv-1(\bmod \mathrm{p})$. Therefore
$-1 \equiv(p-1)(p-2)(p-3) \cdot(p-4)!\equiv-6 \cdot(p-4)!(\operatorname{modp})$.
If $p=6 k+1$, multiplying both sides of the congruence by k gives $(p-4)!\equiv-k=-(p-1) / 6(\bmod p)$. If $p=6 k-1$, multiplying both sides of the congruence by k gives $(p-4)!\equiv k=(p+1) / 6(\bmod p)$.
11. Find the remainder of 53 ! when divided by 61 .

We know that by Wilson's theorem $60!\equiv-1(\bmod 61)$. Decomposing $60!$, we get that: (60)(59)(58)(57)(56)(55)(54)(53)(52)51! =-1 $(\bmod 61)(-1)(-2)(-3)(-4)(-5)(-6)(-7)(-8)(-9)$ $51!\equiv-1(\bmod 61)(-362880) 51!\equiv-1(\bmod 61)(362880) 51!\equiv 1(\bmod 61)(52) 51!\equiv 1(\bmod 61) \mathrm{We}$ will now use the division algorithm to find a modular inverse of 52 (mod 61): $61=52(1)+952=9(5)+79=7(1)+27=2(3)+11=7+2(-3) 1=7+[9+7(-1)](-3) 1=9(-3)+7(4) 1=9(-3)+$ $[52+9(-5)](4) 1=52(4)+9(-23) 1=52(4)+[61+52(-1)](-23) 1=61(-23)+52(27)$ Hence 27 can be used as an inverse $(\bmod 61)$. We thus get that: $(27)(52) 51!\equiv(27) 1(\bmod 61) 51!\equiv 27(\bmod 61)$ Hence the remainder of 51 ! when divided by 61 is 2 .
12. What is the remainder of 149 ! when divided by 139 ?

From Wilson's theorem we know that $138!\equiv-1(\bmod 139)$. We are now going to multiply both sides of the congruence until we get up to 149 !:
$149!\equiv(149)(148)(147)(146)(145)(144)(143)(142)(141)(140)(139)(-1)(\bmod 139) 149!\equiv$ $(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)(0)(-1)(\bmod 139) 149!\equiv 0(\bmod 139)$. Hence the remainder of 149 ! when divided by 139 is 0 .
13. Define congruence in one variable

A congruence of the form $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{m})$ where x is an unknown integer is called a linear congruence in one variable.
14. Let p be a prime. A positive integer m is its own inverse modulo p iff p divides $m+1$ or p divides $m-1$.

Suppose that m is its own inverse. Thusm. $m \equiv 1(\bmod p)$. Hence $p \mid m^{2}-1$.then $\mathrm{p} \mid(\mathrm{m}-1)$ or $\mathrm{p} \mid(\mathrm{m}+1)$.

