

 DEPARTMENT OF INFORMATION TECHNOLOGY

 SEVENTH SEMESTER

LECTURE NOTES

CS8079 -HUMAN COMPUTER INTERACTION

CS8079 HUMAN COMPUTER INTERACTION

OBJECTIVES: The student should be made to:
 Learn the foundations of Human Computer Interaction.
 Be familiar with the design technologies for individuals and persons with disabilities.
 Be aware of mobile HCI.
 Learn the guidelines for user interface.

UNIT I FOUNDATIONS OF HCI

The Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices –
Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles –
elements – interactivity- Paradigms. Case Studies

UNIT II DESIGN & SOFTWARE PROCESS
Interactive Design basics – process – scenarios – navigation – screen design – Iteration and
prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in
practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation
Techniques – Universal Design.

UNIT III MODELS AND THEORIES
Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and

collaboration models-Hypertext, Multimedia and WWW.

UNIT IV MOBILE HCI
Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets,
Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of
Mobile Design, Tools. Case Studies

UNIT V WEB INTERFACE DESIGN
Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and
Virtual Pages, Process Flow. Case Studies.

TOTAL: 45 PERIODS
OUTCOMES: Upon completion of the course, the student should be able to:

 Design effective dialog for HCI.
 Design effective HCI for individuals and persons with disabilities.
 Assess the importance of user feedback.
 Explain the HCI implications for designing multimedia/ ecommerce/ e-learning Web sites.
 Develop meaningful user interface.

TEXT BOOKS:
1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, ―Human Computer Interaction‖, 3rd
Edition, Pearson Education, 2004 (UNIT I , II & III).
2. Brian Fling, ―Mobile Design and Development‖, First Edition , O‟Reilly Media Inc., 2009 (UNIT –
IV).
3. Bill Scott and Theresa Neil, ―Designing Web Interfaces‖, First Edition, O‟Reilly, 2009.(UNIT-V).

Introduction
Human-computer interaction (commonly referred to as HCI) researches the design

and use of computer technology, focused on the interfaces between people (users) and
computers. Researchers in the field of HCI both observe the ways in which humans interact
with computers and design technologies that let humans interact with computers in novel
ways.
User

By "user", we may mean an individual user, a group of users working together. An
appreciation of the way people's sensory systems (sight, hearing, touch) relay information is
vital. Also, different users form different conceptions or mental models about their
interactions and have different ways of learning and keeping knowledge and. In addition,
cultural and national differences play a part.
Computer

When we talk about the computer, we're referring to any technology ranging from
desktop computers, to large scale computer systems. For example, if we were discussing the
design of a Website, then the Website itself would be referred to as "the computer". Devices
such as mobile phones or VCRs can also be considered to be ―computers‖.
Interaction

There are obvious differences between humans and machines. In spite of these, HCI
attempts to ensure that they both get on with each other and interact successfully. In order to
achieve a usable system, you need to apply what you know about humans and computers, and
consult with likely users throughout the design process. In real systems, the schedule and the
budget are important, and it is vital to find a balance between what would be ideal for the
users and what is feasible in reality.

UNIT I
FOUNDATIONS OF HCI

The Human: I/O channels – Memory – Reasoning and problem solving; The computer:
Devices – Memory – processing and networks; Interaction: Models – frameworks –
Ergonomics – styles – elements – interactivity- Paradigms. Case Studies

The Goals of HCI
The goals of HCI are to produce usable and safe systems, as well as functional

systems. In order o produce computer systems with good usability, developers must attempt
to: understand the factors that determine how people use technology, develop tools and
techniques to enable building suitable systems, achieve efficient, effective, and safe
interaction put people first.

Underlying the whole theme of HCI is the belief that people using a computer system
should come first. Their needs, capabilities and preferences for conducting various tasks
should direct developers in the way that they design systems. People should not have to
change the way that they use a system in order to fit in with it. Instead, the system should be
designed to match their requirements.
Usability
Usability is one of the key concepts in HCI. It is concerned with making systems easy to
learn and use. A usable system is:

 easy to learn
 easy to remember how to use
 effective to use
 efficient to use
 safe to use
 enjoyable to use

Factors in HCI
There are a large number of factors which should be considered in the analysis and

design of a system using HCI principles. Many of these factors interact with each other,
making the analysis even more complex. The main factors are listed in the table below:
Organisation Factors

 Training, job design, politics, roles, work organisation
 Environmental Factors
 Noise, heating, lighting, ventilation
 Health and Safety Factors

The User
 Cognitive processes and capabilities
 Motivation, enjoyment, satisfaction, personality, experience
 Comfort Factors
 Seating, equipment, layout.

User Interface
Input devices, output devices, dialogue structures, use of colour, icons, commands,
navigation, graphics, natural language, user support, multimedia,
Task Factors: Easy, complex, novel, task allocation, monitoring, skills
Constraints : Cost, timescales, budgets, staff, equipment, buildings
System Functionality:Hardware, software, application
Productivity Factors : Increase output, increase quality, decrease costs, decrease errors,
increase innovation
Disciplines contributing to HCI

The field of HCI covers a wide range of topics, and its development has relied on
contributions from many disciplines. Some of the main disciplines which have contributed to
HCI are:
Computer Science

 technology
 software design, development & maintenance
 User Interface Management Systems (UIMS) & User Interface Development

Environments (UIDE)
 prototyping tools
 graphics

Cognitive Psychology
 information processing
 capabilities
 limitations
 cooperative working
 performance prediction

Social Psychology
 social & organizational structures

Ergonomics/Human Factors
 hardware design
 display readability

Linguistics
 natural language interfaces

Artificial Intelligence
 intelligent software

Engineering & Design
 graphic design
 engineering principles

INPUT–OUTPUT CHANNELS

A person‘s interaction with the outside world occurs through information being
received and sent: input and output. In an interaction with a computer the user receives
information that is output by the computer, and responds by providing input to the computer
– the user‘s output becomes the computer‘s input and vice versa.

For example, sight may be used primarily in receiving information from the computer,
but it can also be used to provide information to the computer, for example by fixating on a
particular screen point when using an eyegaze system. Input in the human occurs mainly
through the senses and output through the motor control of the effectors.

There are five major senses: sight, hearing, touch, taste and smell. Of these, the first
three are the most important to HCI. Taste and smell do not currently play a significant role
in HCI, and it is not clear whether they could be exploited at all in general computer systems,
although they could have a role to play in more specialized systems (smells to give warning

of malfunction, for example) or in augmented reality systems. vision, hearing and touch are
central.

There are a number of effectors, including the limbs, fingers, eyes, head and vocal
system. In the interaction with the computer, the fingers play the primary role, through typing
or mouse control, with some use of voice, and eye, head and body position.

Imagine using a personal computer (PC) with a mouse and a keyboard. The
application you are using has a graphical interface, with menus, icons and windows. In your
interaction with this system you receive information primarily by sight, from what appears on
the screen.

Vision
Human vision is a highly complex activity with a range of physical and perceptual

limitations, We can roughly divide visual perception into two stages: the physical reception
of the stimulus from the outside world, and the processing and interpretation of that stimulus.
On the one hand the physical properties of the eye and the visual system mean that there are
certain things that cannot be seen by the human; on the other the interpretative capabilities of
visual processing allow images to be constructed from incomplete information. We need to
understand both stages as both influence what can and cannot be perceived visually by a
human being, which in turn directly affects the way that we design computer systems. We
will begin by looking at the eye as a physical receptor, and then go on to consider the
processing involved in basic vision.

The human eye
Vision begins with light. The eye is a mechanism for receiving light and transforming it into
electrical energy. Light is reflected from objects in the world and their image is focussed
upside down on the back of the eye. The receptors in the eye transform it into electrical
signals which are passed to the brain.

The eye has a number of important components. The cornea and lens at the front of
the eye focus the light into a sharp image on the back of the eye, the retina. The retina is light
sensitive and contains two types of photoreceptor: rods and cones.

Rods are highly sensitive to light and therefore allow us to see under a low level of
illumination. They are unable to resolve fine detail and are subject to light saturation. This is
the reason for the temporary blindness we get when moving from a darkened room into
sunlight: the rods have been active and are saturated by the sudden light. The cones do not
operate either as they are suppressed by the rods. We are therefore temporarily unable to see
at all. There are approximately 120 million rods per eye which are mainly situated towards
the edges of the retina. Rods therefore dominate peripheral vision.

Cones are the second type of receptor in the eye. They are less sensitive to light than
the rods and can therefore tolerate more light. There are three types of cone, each sensitive to
a different wavelength of light. This allows color vision. The eye has approximately 6 million
cones, mainly concentrated on the fovea, a small area of the retina on which images are
fixated.

Figure: Human Eye

The retina is mainly covered with photoreceptors there is one blind spot where the
optic nerve enters the eye. The blind spot has no rods or cones, our visual system
compensates for this so that in normal circumstances we are unaware of it.
The retina also has specialized nerve cells called ganglion cells. There are two types:

X-cells, which are concentrated in the fovea and are responsible for the early
detection of pattern; and Y-cells which are more widely distributed in the retina and are
responsible for the early detection of movement. The distribution of these cells means that,
while we may not be able to detect changes in pattern in peripheral vision, we can perceive
movement.
Visual perception

The information received by the visual apparatus must be filtered and passed to
processing elements which allow us to recognize coherent scenes, disambiguate relative
distances and differentiate colour.

How does the eye perceive size, depth and relative distances? To understand this we
must consider how the image appears on the retina. Reflected light from the object forms an
upside-down image on the retina. The size of that image is specified as a visual angle. Figure
illustrates how the visual angle is calculated.

If we are drawing a line from the top of the object to a central point on the front of the eye
and a second line from the bottom of the object to the same point, the visual angle of the
object is the angle between these two lines. Visual angle is affected by both the size of the
object and its distance from the eye. Therefore if two objects are at the same distance, the
larger one will have the larger visual angle. Similarly, if two objects of the same size are
placed at different distances from the eye, the furthest one will have the smaller visual angle.
The visual angle indicates how much of the field of view is taken by the object. The visual
angle measurement is given in either degrees or minutes of arc, where 1 degree is equivalent
to 60 minutes of arc, and 1 minute of arc to 60 seconds of arc.
Perceiving brightness

An aspect of visual perception is the perception of brightness. Brightness is in fact a
subjective reaction to levels of light. It is affected by luminance which is the amount of light
emitted by an object. The luminance of an object is dependent on the amount of light falling
on the object‘s surface and its reflective properties. Luminance is a physical characteristic
and can be measured using a photometer. Contrast is related to luminance: it is a function of
the luminance of an object and the luminance of its background.

Perceiving colour A third factor that we need to consider is perception of colour. Colour is
usually regarded as being made up of three components: hue, intensity and saturation. Hue is
determined by the spectral wavelength of the light. Blues have short wavelengths, greens medium
and reds long. Approximately 150 different hues can be discriminated by the average person.
Intensity is the brightness of the color, and saturation is the amount of whiteness in the color. By
varying these two, we can perceive in the region of 7 million different colors.

The capabilities and limitations of visual processing

Visual processing involves the transformation and interpretation of a complete image,
from the light that is thrown onto the retina. Visual processing compensates for the
movement of the image on the retina which occurs as we move around and as the object
which we see moves. Although the retinal image is moving, the image that we perceive is
stable. Similarly, colour and brightness of objects are perceived as constant, in spite of
changes in luminance.

This ability to interpret and exploit our expectations can be used to resolve ambiguity.
For example, consider the image shown in Figure is an ambiguous shape

Now consider Figure‗s below. The context in which the object appears allows our
expectations to clearly disambiguate the interpretation of the object, as either a B or a 13.

ABC 12 13 14

Consider Figure below, which line is longer? Most people when presented with this will say
that the top line is longer than the bottom. In fact, the two lines are the same length. This may
be due to a false application of the law of size constancy: the top line appears like a concave
edge, the bottom like a convex edge.

Reading

There are several stages in the reading process. First, the visual pattern of the word on
the page is perceived. It is then decoded with reference to an internal representation of
language. The final stages of language processing include syntactic and semantic analysis and
operate on phrases or sentences.

During reading, the eye makes jerky movements called saccades followed by
fixations. Perception occurs during the fixation periods, which account for approximately
94% of the time elapsed. The eye moves backwards over the text as well as forwards, in what
are known as regressions. If the text is complex there will be more regressions.

Adults read approximately 250 words a minute. It is unlikely that words are scanned
serially, character by character, since experiments have shown that words can be recognized
as quickly as single characters. Instead, familiar words are recognized using word shape. This
means that removing the word shape clues (for example, by capitalizing words) is detrimental
to reading speed and accuracy. The speed at which text can be read is a measure of its
legibility. Experiments have shown that standard font sizes of 9 to 12 points are equally
legible, given proportional spacing between lines . Similarly line lengths of between 2.3 and

 inches (58 and 132 mm) are equally legible. However, there is evidence that reading
from a computer screen is slower than from a book . This is thought to be due to a number of
factors including a longer line length, fewer words to a page, orientation and the familiarity

of the medium of the page. These factors can of course be reduced by careful design of
textual interfaces. a negative contrast (dark, characters on a light screen) provides higher
luminance and, therefore, increased acuity, than a positive contrast. This will in turn increase
legibility. Experimental evidence suggests that in practice negative contrast displays are
preferred and result in more accurate performance.

Hearing
The sense of hearing is often considered secondary to sight, but we tend to underestimate
the amount of information that we receive through our ears. hearing begins with vibrations in
the air or sound waves. The ear receives these vibrations and transmits them, through various
stages, to the auditory nerves. The ear comprises three sections, commonly known as the
Outer ear, middle ear and inner ear.

The outer ear is the visible part of the ear. It has two parts: the pinna, which is the
structure that is attached to the sides of the head, and the auditory canal, along which sound
waves are passed to the middle ear. The outer ear serves two purposes. First, it protects the
sensitive middle ear from damage. The auditory canal contains wax which prevents dust, dirt
and over-inquisitive insects reaching the middle ear. It also maintains the middle ear at a
constant temperature. Secondly, the pinna and auditory canal serve to amplify some sounds.
The middle ear is a small cavity connected to the outer ear by the tympanic membrane, or ear
drum, and to the inner ear by the cochlea. Within the cavity are the ossicles, the smallest
bones in the body. Sound waves pass along the auditory canal and vibrate the ear drum which
in turn vibrates the ossicles, which transmit the vibrations to the cochlea, and so into the inner
ear. This ‗relay‘ is required because, unlike the air-filled outer and middle ears, the inner ear
is filled with a denser cochlean liquid. If passed directly from the air to the liquid, the
transmission of the sound waves would be poor. By transmitting them via the ossicles the
sound waves are concentrated and amplified.

Processing sound

Processing sound has a number of characteristics which we can differentiate. Pitch is
the frequency of the sound. A low frequency produces a low pitch, a high frequency, a high
pitch. Loudness is proportional to the amplitude of the sound; the frequency remains
constant. Timbre relates to the type of the sound: sounds may have the same pitch and
loudness but be made by different instruments and so vary in timbre. We can also identify a
sound‘s location, since the two ears receive slightly different sounds, owing to the time
difference between the sound reaching the two ears and the reduction in intensity caused by
the sound waves reflecting from the head.

The human ear can hear frequencies from about 20 Hz to 15 kHz. It can distinguish
frequency changes of less than 1.5 Hz at low frequencies but is less accurate at high
frequencies. Different frequencies trigger activity in neurons in different parts of the auditory
system, and cause different rates of firing of nerve impulses. The auditory system performs
some filtering of the sounds received, allowing us to ignore background noise and
concentrate on important information. The exception is multimedia, which may include
music, voice commentary and sound effects. However, the ear can differentiate quite subtle

sound changes and can recognize familiar sounds without concentrating attention on the
sound source.

Touch
Touch provides us with vital information about our environment. It tells us when we

touch something hot or cold, and can therefore act as a warning. It also provides us with
feedback when we attempt to lift an object, for example. Consider the act of picking up a
glass of water. If we could only see the glass and not feel when our hand made contact with it
or feel its shape, the speed and accuracy of the action would be reduced. This is the
experience of users of certain virtual reality games: they can see the computer-generated
objects which they need to manipulate but they have no physical sensation of touching them.
Watching such users can be an informative and amusing experience! Touch is therefore an
important means of feedback, and this is no less so in using computer systems. Feeling
buttons depress is
an important part of the task of pressing the button. Also, we should be aware that, although
for the average person, haptic perception is a secondary source of information, for those
whose other senses are impaired, it may be vitally important. For such users, interfaces such
as braille may be the primary source of information in the interaction. The apparatus of touch
differs from that of sight and hearing in that it is not localized. The skin contains three types
of sensory receptor: thermo receptors respond to heat and cold, nociceptors respond to intense
pressure, heat and pain, and mechanoreceptors respond to pressure.

Movement

A simple action such as hitting a button in response to a question involves a number
of processing stages. The stimulus (of the question) is received through the sensory receptors
and transmitted to the brain. The question is processed and a valid response generated. The
brain then tells the appropriate muscles to respond. Each of these stages takes time, which
can be roughly divided into reaction time and movement time.

Movement time is dependent largely on the physical characteristics of the subjects:
their age and fitness, for example. Reaction time varies according to the sensory channel
through which the stimulus is received. A person can react to an auditory signal in
approximately 150 ms, to a visual signal in 200 ms and to pain in 700 ms.

A second measure of motor skill is accuracy. One question that we should ask is
whether speed of reaction results in reduced accuracy. This is dependent on the task and the
user. In some cases, requiring increased reaction time reduces accuracy. This is the premise
behind many arcade and video games where less skilled users fail at levels of play that
require faster responses. Speed and accuracy of movement are important considerations in the
design of interactive systems, primarily in terms of the time taken to move to a particular
target on a screen. The target may be a button, a menu item or an icon, for example. The time
taken to hit a target is a function of the size of the target and the distance that has to be
moved. This is formalized in Fitts‘ law . There are many variations of this formula, which
have varying constants, but they are all very similar. One common form is

Movement time = a + b log2(distance/size + 1)
where a and b are empirically determined constants.

HUMAN MEMORY
Our memory contains our knowledge of actions or procedures. It allows us to repeat

actions, to use language, and to use new information received via our senses. It also gives us
our sense of identity, by preserving information from our past experiences.

Memory is the second part of our model of the human as an information-processing
system. Memory is associated with each level of processing. Bearing this in mind, we will
consider the way in which memory is structured and the activities that take place within the
system. It is generally agreed that there are three types of memory or memory function:
sensory buffers, short-term memory or working memory, and long-term memory. There
is some disagreement as to whether these are three separate systems or different functions of
the same system. It is sufficient to note three separate types of memory. These memories
interact, with information being processed and passed between memory stores.

Figure A model of the structure of memory
Sensory memory

The sensory memories act as buffers for stimuli received through the senses. A
sensory memory exists for each sensory channel: iconic memory for visual stimuli, echoic
memory for aural stimuli and haptic memory for touch. These memories are constantly
overwritten by new information coming in on these channels.

The existence of echoic memory is evidenced by our ability to ascertain the direction
from which a sound originates. This is due to information being received by both ears. Since
this information is received at different times, we must store the stimulus in the meantime.
Echoic memory allows brief ‗play-back ‗of information. Information is passed from sensory
memory into short-term memory by attention, thereby filtering the stimuli to only those
which are of interest at a given time.

Attention is the concentration of the mind on one out of a number of competing
stimuli or thoughts. It is clear that we are able to focus our attention selectively, choosing to
attend to one thing rather than another. This is due to the limited capacity of our sensory and
mental processes.
Short-term memory

Short-term memory or working memory acts as a ‗scratch-pad‘ for temporary recall
of information. It is used to store information which is only required fleetingly.Short-term
memory can be accessed rapidly, in the order of 70 ms. It also decays rapidly, meaning that
information can only be held there temporarily, in the order of 200 ms. Short-term memory
also has a limited capacity. There are two basic methods for measuring memory capacity. The
first involves determining the length of a sequence which can be remembered in order. The
second allows items to be freely recalled in any order.

Figure: model of short-term memory
Long-term memory

If short-term memory is our working memory or ‗scratch-pad‘, long-term memory is
our main resource. Here we store factual information, experiential knowledge, procedural
rules of behaviour – in fact, everything that we ‗know‘. It differs from short-term memory in
a number of significant ways. First, it has a huge, if not unlimited, capacity. Secondly, it has a
relatively slow access time of approximately a tenth of a second. Thirdly, forgetting occurs
more slowly in long-term memory, if at all.

Long-term memory is intended for the long-term storage of information. Information
is placed there from working memory through rehearsal. Unlike working memory there is
little decay: long-term recall after minutes is the same as that after hours or days.
Long-term memory structure

There are two types of long-term memory: episodic memory and semantic memory.
Episodic memory represents our memory of events and experiences in a serial form. It is
from this memory that we can reconstruct the actual events that took place at a given point in
our lives. Semantic memory, on the other hand, is a structured record of facts, concepts and
skills that we have acquired. The information in semantic memory is derived from that in our
episodic memory.

Long-term memory processes
This process can be optimized in a number of ways. Ebbinghaus performed numerous

experiments on memory, using himself as a subject. In these experiments he tested his ability
to learn and repeat nonsense syllables, comparing his recall minutes, hours and days after the
learning process. He discovered that the amount learned was directly proportional to the
amount of time spent learning. This is known as the total time hypothesis. However,
experiments by Baddeley and others suggest that learning time is most effective if it is
distributed over time.

There are two main theories of forgetting: decay and interference. The first theory
suggests that the information held in long-term memory may eventually be forgotten.
Ebbinghaus concluded from his experiments with nonsense syllables that information in
memory decayed logarithmically, that is that it was lost rapidly to begin with, and then more
slowly. Jost‘s law, which follows from this, states that if two memory traces are equally
strong at a given time the older one will be more durable.

The second theory is that information is lost from memory through interference. If we
acquire new information it causes the loss of old information. This is termed retroactive
interference. A common example of this is the fact that if you change telephone numbers,
learning your new number makes it more difficult to remember your old number. This is
because the new association masks the old. However, sometimes the old memory trace breaks
through and interferes with new information. This is called proactive inhibition.

Forgetting is also affected by emotional factors. In experiments, subjects given
emotive words and non-emotive words found the former harder to remember in the short term
but easier in the long term.

First, proactive inhibition demonstrates the recovery of old information even after it
has been ‗lost‘ by interference. Secondly, there is the ‗tip of the tongue‘ experience, which
indicates that some information is present but cannot be satisfactorily accessed. Thirdly,
information may not be recalled but may be recognized, or may be recalled only with
prompting. This leads us to the third process of memory: information retrieval. Here we need
to distinguish between two types of information retrieval, recall and recognition. In recall the
information is reproduced from memory. In recognition, the presentation of the information
provides the knowledge that the information has been seen before. Recognition is the less
complex cognitive activity since the information is provided as a cue.

THINKING: REASONING AND PROBLEM SOLVING

Humans, on the other hand, are able to use information to reason and solve problems,
and indeed do these activities when the information is partial or unavailable. Human thought
is conscious and self-aware: while we may not always be able to identify the processes we
use, we can identify the products of these processes, our thoughts. In addition, we are able to
think about things of which we have no experience, and solve problems which we have never
seen before.

Thinking can require different amounts of knowledge. Some thinking activities are
much directed and the knowledge required is constrained. Others require vast amounts of
knowledge from different domains. For example, performing a subtraction calculation

requires a relatively small amount of knowledge, from a constrained domain, whereas
understanding newspaper headlines demands.
Reasoning

Reasoning is the process by which we use the knowledge we have to draw
conclusions or infer something new about the domain of interest. There are a number of
different
Types of reasoning: deductive, inductive and abductive. We use each of these types of
reasoning in everyday life, but they differ in significant ways.
Deductive reasoning

Deductive reasoning derives the logically necessary conclusion from the given
premises.

For example,
If it is Friday then she will go to work
It is Friday
Therefore she will go to work.

Inductive reasoning
Induction is generalizing from cases we have seen to infer information about cases we

have not seen. Induction is a useful process, which we use constantly in learning about our
environment. We can never see all the elephants that have ever lived or will ever live, but we
have certain knowledge about elephants which we are prepared to trust for all practical
purposes, which has largely been inferred by induction. Even if we saw an elephant without a
trunk, we would be unlikely to move from our position that ‗All elephants have trunks‘, since
we are better at using positive than negative evidence.

Abductive reasoning

The third type of reasoning is abduction. Abduction reasons from a fact to the action
or state that caused it. This is the method we use to derive explanations for the events we
observe. For example, suppose we know that Sam always drives too fast when she has been
drinking. If we see Sam driving too fast we may infer that she has been drinking. Of course,
this too is unreliable since there may be another reason why she is driving fast: she may have
been called to an emergency.

Problem solving

Human problem solving is characterized by the ability to adapt the information we
have to deal with new situations often solutions seem to be original and creative. There are a
number of different views of how people solve problems.

The Gestalt view that problem solving involves both reuse of knowledge and insight.
This has been largely superseded but the questions it was trying to address remain and its
influence can be seen in later research. In the 1970s by Newell and Simon, was the problem
space theory, which takes the view that the mind is a limited information processor.
Gestalt theory

Gestalt psychologists were answering the claim, made by behaviorists, that problem
solving is a matter of reproducing known responses or trial and error. This explanation was
considered by the Gestalt school to be insufficient to account for human problem-solving

behavior. Instead, they claimed, problem solving is both productive and reproductive.
Reproductive problem solving draws on previous experience as the behaviorists claimed, but
productive problem solving involves insight and restructuring of the problem. Indeed,
reproductive problem solving could be a hindrance to finding a solution, since a person may
‗fixate‘ on the known aspects of the problem and so be unable to see novel interpretations
that might lead to a solution. Gestalt psychologists backed up their claims with experimental
evidence.

Problem space theory

Newell and Simon proposed that problem solving centers on the problem space. The
problem space comprises problem states, and problem solving involves generating these
states using legal state transition operators. The problem has an initial state and a goal state
and people use the operators to move from the former to the latter. Such problem spaces may
be huge, and so heuristics are employed to select appropriate operators to reach the goal. One
such heuristic is means–ends analysis. In means–ends analysis the initial state is compared
with the goal state and an operator chosen to reduce the difference between the two.

Newell and Simon‘s theory, and their General Problem Solver model which is based
on it, have largely been applied to problem solving in well-defined domains, for example
solving puzzles. These problems may be unfamiliar but the knowledge that is required to
solve them is present in the statement of the problem and the expected solution is clear. In
real-world problems finding the knowledge required to solve the problem may be part of the
problem, or specifying the goal may be difficult.

Analogy in problem solving

A third element of problem solving is the use of analogy. Similarities between the
known domain and the new one are noted and operators from the known domain are
transferred to the new one.
Skill acquisition

All of the problem solving that we have considered so far has concentrated on
handling unfamiliar problems. A commonly studied domain is chess playing. It is particularly
suitable since it lends itself easily to representation in terms of problem space theory. The
initial state is the opening board position; the goal state is one player checkmating the other;
operators to move states are legal moves of chess. It is therefore possible to examine skilled
behavior within the context of the problem space theory of problem solving.
Errors and mental models

Human capability for interpreting and manipulating information is quite impressive.
Some are trivial, resulting in no more than temporary inconvenience or annoyance. Others
may be more serious, requiring substantial effort to correct.

THE COMPUTER

A typical computer system

There is the computer ‗box‘ itself, a keyboard, a mouse and a colour screen. The
screen layout is shown alongside it. data have to be entered into and obtained from a system,
and there are also many different types of user, each with their own unique requirements.

Levels of interaction – batch processing
There was minimal interaction with the machine: the user would simply dump a pile

of punched cards onto a reader, press the start button, and then return a few hours later. This
still continues today although now with pre-prepared electronic files or possibly machine-
read forms. With batch processing the interactions take place over hours or days. In contrast
the typical desktop computer system has interactions taking seconds or fractions of a second.
The field of Human– Computer Interaction largely grew due to this change in interactive
pace.

Richer interaction – everywhere, everywhen

Information appliances are putting internet access or dedicated systems onto the
fridge, microwave and washing machine: to automate shopping, give you email in your
kitchen or simply call for maintenance when needed. We carry with us WAP phones and
smartcards, have security systems that monitor us and web cams that show our homes to the
world.

A typical computer system.

A computer system comprises various elements, each of which affects the user of the system.
 Input devices for interactive use, allowing text entry, drawing and selection from the

screen:
o text entry: traditional keyboard, phone text entry, speech and

handwriting
o pointing: principally the mouse, but also touchpad, stylus and others
o 3D interaction devices.

 Output display devices for interactive use:
o different types of screen mostly using some form of bitmap display
o large displays and situated displays for shared and public use
o digital paper may be usable in the near future.

 Virtual reality systems and 3D visualization which have special interaction and
display devices.

 Various devices in the physical world:
o physical controls and dedicated displays
o sound, smell and haptic feedback
o sensors for nearly everything including movement, temperature, bio-

signs.
 Paper output and input: the paperless office and the less-paper office:

o different types of printers and their characteristics, character styles and
fonts

o Scanners and optical character recognition.
 Memory:

o short-term memory: RAM
o long-term memory: magnetic and optical disks
o capacity limitations related to document and video storage
o Access methods as they limit or help the user.

 Processing:
o the effects when systems run too slow or too fast, the myth of the

infinitely fast machine
o limitations on processing speed
o Networks and their impact on system performance.

 Network Hubs

o Switches
o Bridges
o Routers
o Gateways
o Network interface cards (NICs), ISDN adapters, and system area

network cards
o Wireless access points (WAPs)

Interaction models

Interaction involves at least two participants: the user and the system. The interface
must therefore effectively translate between them to allow the interaction to be successful.
This translation can fail at a number of points and for a number of reasons. The use of models
of interaction can help us to understand exactly what is going on in the interaction and
identify the likely root of difficulties. They also provide us with a framework to compare
different interaction styles and to consider interaction problems.

The terms of interaction

The purpose of an interactive system is to aid a user in accomplishing goals from
some application domain. A domain defines an area of expertise and knowledge in some real-
world activity. Some examples of domains are graphic design, authoring and process control
in a factory.

A domain consists of concepts that highlight its important aspects. In a graphic design
domain, some of the important concepts are geometric shapes, a drawing surface and a
drawing utensil. Tasks are operations to manipulate the concepts of a domain. A goal is the
desired output from a performed task. For example, one task within the graphic design
domain is the construction of a specific geometric shape with particular attributes on the
drawing surface. A related goal would be to produce a solid red triangle centered on the
canvas. An intention is a specific action required to meet the goal.

The execution–evaluation cycle

The interactive cycle can be divided into two major phases: execution and evaluation.
These can then be subdivided into further stages, seven in all. The stages in Norman‘s model
of interaction are as follows:

1. Establishing the goal.
2. Forming the intention.
3. Specifying the action sequence.
4. Executing the action.
5. Perceiving the system state.
6. Interpreting the system state.
7. Evaluating the system state with respect to the goals and intentions.

It is liable to be imprecise and therefore needs to be translated into the more specific
intention, and the actual actions that will reach the goal, before it can be executed by the user.
The user perceives the new state of the system, after execution of the action sequence, and
interprets it in terms of his expectations. If the system state reflects the user‘s goal then the
computer has done what he wanted and the interaction has been successful; otherwise the
user must formulate a new goal and repeat the cycle.

Norman uses this model of interaction to demonstrate why some interfaces cause

problems to their users. He describes these in terms of the gulfs of execution and the gulfs of
evaluation. As we noted earlier, the user and the system do not use the same terms to describe the
domain and goals – remember that we called the language of the system the core language

and the language of the user the task language. The gulf of execution is the difference
between the user‘s formulation of the actions to reach the goal and the actions allowed by the
system. If the actions allowed by the system correspond to those intended by the user, the
interaction will be effective. The interface should therefore aim to reduce this gulf. The gulf
of evaluation is the distance between the physical presentation of the system state and the
expectation of the user. If the user can readily evaluate the presentation in terms of his goal,
the gulf of evaluation is small. The more effort that is required on the part of the user to
interpret the presentation, the less effective the interaction.

The interaction framework

The interaction framework attempts a more realistic description of interaction by
including the system explicitly, and breaks it into four main components. The nodes represent
the four major components in an interactive system – the System, the User, the Input and the
Output. Each component has its own language. In addition to the User‘s task language and
the System‘s core language, which we have already introduced, there are languages for both
the Input and Output components. Input and Output together form the Interface.

The general interaction framework Translations between components

The System then transforms itself as described by the operations; the execution phase of the
cycle is complete and the evaluation phase now begins. The System is in a new state, which
must now be communicated to the User. The current values of system attributes are rendered
as concepts or features of the Output. It is then up to the User to observe the Output and
assess the results of the interaction relative to the original goal, ending the evaluation phase
and, hence, the interactive cycle. There are four main translations involved in the interaction:
articulation, performance, presentation and observation.

Assessing overall interaction

The interaction framework is presented as a means to judge the overall usability of an
entire interactive system. This is not surprising since it is only in attempting to perform a
particular task within some domain that we are able to determine if the tools we use are
adequate. For a particular editing task, one can choose the text editor best suited for
interaction relative to the task. The best editor, if we are forced to choose only one, is the one
that best suits the tasks most frequently performed. Therefore, it is not too disappointing that
we cannot extend the interaction analysis beyond the scope of a particular task.

FRAMEWORKS AND HCI

The field of ergonomics addresses issues on the user side of the interface, covering
input and output, as well as the user‘s immediate context. Dialog design and interface styles
can be placed particularly along the input branch of the framework, addressing both
articulation and performance.

Figure: A framework for human–computer interaction.

Presentation and screen design relates to the output branch of the framework.

The entire framework can be placed within a social and organizational context that also
affects the interaction. Each of these areas has important implications for the design of
interactive systems and the performance of the user

ERGONOMICS

Ergonomics (or human factors) is traditionally the study of the physical
characteristics of the interaction: how the controls are designed, the physical environment in
which the interaction takes place, and the layout and physical qualities of the screen. A
primary focus is on user performance and how the interface enhances or detracts from this. In
seeking to evaluate these aspects of the interaction, ergonomics will certainly also touch upon
human psychology and system constraints. It is a large and established field, which is closely
related to but distinct from HCI, and full coverage would demand a book in its own right.
Here we consider a few of the issues addressed by ergonomics as an introduction to the field.
We will briefly look at the arrangement of controls and displays, the physical environment,
health issues and the use of colour. These are by no means exhaustive and are intended only
to give an indication of the types of issues and problems addressed by ergonomics.

Arrangement of controls and displays

The exact organization that this will suggest will depend on the domain and the application,
but possible organizations include the following:

 Functional controls and displays are organized so that those that are functionally
related are placed together;

 Sequential controls and displays are organized to reflect the order of their use in a
typical interaction (this may be especially appropriate in domains where a particular
task sequence is enforced, such as aviation);

 Frequency controls and displays are organized according to how frequently they are
used, with the most commonly used controls being the most easily accessible.

The physical environment of the interaction

Physical issues in the layout and arrangement of the machine interface,

ergonomics is concerned with the design of the work environment itself. This will depend
largely on the domain and will be more critical in specific control and operational settings
than in general computer use. The physical environment in which the system is used may
influence how well it is accepted and even the health and safety of its users. It should
therefore be considered in all design. The first consideration here is the size of the users.
Obviously this is going to vary considerably. All users should be comfortably able to see
critical displays. For long periods of use, the user should be seated for comfort and stability.
Seating should provide back support. If required to stand, the user should have room to move
around in order to reach all the controls.

Health issues

There are a number of factors that may affect the use of more general computers. Again these
are factors in the physical environment that directly affect the quality of the interaction and
the user‘s

performance:

users should be able to reach all controls comfortably and see all displays. Users
should not be expected to stand for long periods and, if sitting, should be provided with back
support. If a particular position for a part of the body is to be adopted for long periods (for
example, in typing) support should be provided to allow rest.

Temperature

Extremes of hot or cold will affect performance and, in excessive cases, health. Experimental
studies show that performance deteriorates at high or low temperatures, with users being
unable to concentrate efficiently.

Lighting The lighting level will again depend on the work environment. adequate lighting
should be provided to allow users to see the computer screen without discomfort or eyestrain.
The light source should also be positioned to avoid glare affecting the display.

Noise Excessive noise can be harmful to health, causing the user pain, and in acute cases, loss of
hearing. Noise levels should be maintained at a comfortable level in the work environment.

This does not necessarily mean no noise at all. Noise can be a stimulus to users and can
provide needed confirmation of system activity.

Time The time users spend using the system should also be controlled. it has been suggested
that excessive use of CRT displays can be harmful to users, particularly pregnant women.

The use of color

Colors used in the display should be as distinct as possible and the distinction
should not be affected by changes in contrast. Blue should not be used to display critical
information. If color is used as an indicator it should not be the only cue: additional coding
information should be included.

The colors used should also correspond to common conventions and user
expectations. Red, green and yellow are colors frequently associated with stop, go and
standby respectively. Therefore, red may be used to indicate emergency and alarms; green,
normal activity; and yellow, standby and auxiliary function. These conventions should not be
violated without very good cause.

Ergonomics and HCI

Ergonomics is a huge area, which is distinct from HCI but sits alongside it. Its contribution to
HCI is in determining constraints on the way we design systems and suggesting detailed and
specific guidelines and standards. Ergonomic factors are in general well established and
understood and are therefore used as the basis for standardizing hardware designs.

INTERACTION STYLES

Interaction can be seen as a dialog between the computer and the user. The choice of
interface style can have a profound effect on the nature of this dialog. There are a number of
common interface styles including

 command line interface
 menus
 natural language
 question/answer and query dialog
 form-fills and spreadsheets
 WIMP
 point and click
 Three-dimensional interfaces.

Command line interface

The command line interface was the first interactive dialog style to be
commonly used and, in spite of the availability of menu-driven interfaces, it is still widely
used. It provides a means of expressing instructions to the computer directly, using function
keys, single characters, abbreviations or whole-word commands. In some systems the

command line is the only way of communicating with the system, especially for remote
access using telnet. Menu-based interfaces, providing accelerated access to the system‘s
functionality for experienced users. Command line interfaces are powerful in that they offer
direct access to system functionality and can be combined to apply a number of tools to the
same data. They are also flexible: the command often has a number of options or parameters
that will vary its behavior in some way, and it can be applied to many objects at once, making
it useful for repetitive tasks. Flexibility and power brings with it difficulty in use and
learning.

Commands must be remembered, as no cue is provided in the command line to
indicate which command is needed. They are therefore better for expert users than for
novices. This problem can be alleviated a little by using consistent and meaningful
commands and abbreviations. The commands used should be terms within the vocabulary of
the user rather than the technician. Unfortunately, commands are often obscure and vary
across systems, causing confusion to the user and increasing the overhead of learning.

Menus

In a menu-driven interface, the set of options available to the user is displayed on the screen,
and selected using the mouse, or numeric or alphabetic keys. Since the options are visible
they are less demanding of the user, relying on recognition rather than recall. Menu options
still need to be meaningful and logically grouped to aid recognition. Often menus are
hierarchically ordered and the option required is not available at the top layer of the
hierarchy. The grouping and naming of menu options then provides the only cue for the user
to find the required option. Such systems either can be purely text based, with the menu
options being presented as numbered choices, or may have a graphical component in which
the menu appears within a rectangular box and choices are made, perhaps by typing the initial
letter of the desired selection, or by entering the associated number, or by moving around the
menu with the arrow keys.

Figure Menu-driven interface

Natural language

Users, unable to remember a command or lost in a hierarchy of menus, may
long for the computer that is able to understand instructions expressed in everyday words!
Natural language understanding, both of speech and written input, is the subject of much
interest and research. the ambiguity of natural language makes it very difficult for a machine
to understand. Language is ambiguous at a number of levels. First, the syntax, or structure, of
a phrase may not be clear. If we are given the sentence―The boy hit the dog with the stick‖

Question/answer and query dialog

Question and answer dialog is a simple mechanism for providing input to an
application in a specific domain. The user is asked a series of questions (mainly with yes/no
responses, multiple choice, or codes) and so is led through the interaction step by step These
interfaces are easy to learn and use, but are limited in functionality and power. As such, they
are appropriate for restricted domains (particularly information systems) and for novice or
casual users.

Form-fills and spreadsheets

Form-filling interfaces are used primarily for data entry but can also be useful in data
retrieval applications. The user is presented with a display resembling a paper form, with
slots to fill in .Often the form display is based upon an actual form with which the user is
familiar, which makes the interface easier to use. The user works through the form, filling in
appropriate values. The data are then entered into the application in the correct place. Most
form-filling interfaces allow easy movement around the form and allow some fields to be left
blank. They also require correction facilities, as users may change their minds or make a
mistake about the value that belongs in each field. The dialog style is useful primarily for
data entry applications and, as it is easy to learn and use, for novice users.

Spreadsheets are a sophisticated variation of form filling. The spreadsheet
comprises a grid of cells, each of which can contain a value or a formula. The formula can
involve the values of other cells (for example, the total of all cellsin this column). The user
can enter and alter values and formulae in any order and the system will maintain consistency
amongst the values displayed, ensuring that all formulae are obeyed. The user can therefore
manipulate values to see the effects of changing different parameters. Spreadsheets are an
attractive medium for interaction: the user is free to manipulate values at will and the
distinction between input and output is blurred, making the interface more flexible and
natural.

The WIMP interface

WIMP stands for windows, icons, menus and pointers (sometimes windows,
icons, mice and pull-down menus), and is the default interface style for the majority of
interactive computer systems in use today, especially in the PC and desktop workstation
arena. Examples of WIMP interfaces include Microsoft Windows for IBM PC compatibles,
MacOS for Apple Macintosh compatibles and various X Windows-based systems for UNIX.

Point-and-click interfaces

This point-and-click interface style is obviously closely related to the WIMP

style. It clearly overlaps in the use of buttons, but may also include other WIMP elements. the
philosophy is simpler and more closely tied to ideas of hypertext. In addition, the point-and-
click style is not tied to mouse-based interfaces, and is also extensively used in touchscreen
information systems. In this case, it is often combined with a menu-driven interface. The
point-and-click style has been popularized by world wide web pages, which incorporate all
the above types of point-and-click navigation: highlighted words, maps and iconic buttons.

Three-dimensional interfaces

There is an increasing use of three-dimensional effects in user interfaces. The most obvious
example is virtual reality, but VR is only part of a range of 3D techniques available to the
interface designer.The simplest technique is where ordinary WIMP elements, buttons, scroll
bars, etc., are given a 3D appearance using shading, giving the appearance of being sculpted
out of stone. By unstated convention, such interfaces have a light source at their top right.
Where used judiciously, the raised areas are easily identifiable and can be used to highlight
active areas. some interfaces make indiscriminate use of sculptural effects, on every text area,
border and menu, so all sense of differentiation is lost.

INTERACTIVITY

Dialog design is focussed almost entirely on the choice and specification of
appropriate sequences of actions and corresponding changes in the interface state. It is
typically not used at a fine level of detail and deliberately ignores the ‗semantic‘ level of an
interface: for example, the validation of numeric information in a forms-based system. It is
worth remembering that interactivity is the defining feature of an interactive system. This can
be seen in many areas of HCI. For example, the recognition rate for speech recognition is too
low to allow transcription from tape, but in an airline reservation system, so long as the
system can reliably recognize yes and no it can reflect back its understanding of what you
said and seek confirmation. Speech-based input is difficult, speech-based interaction easier.
Also, in the area of information visualization the most exciting developments are all where
users can interact with visualization in real time, changing parameters and seeing the effect.

Interactivity is also crucial in determining the ‗feel‘ of a WIMP environment. All
WIMP systems appear to have virtually the same elements: windows, icons, menus, pointers,
dialog boxes, buttons, etc. In fact, menus are a major difference between the MacOS and
Microsoft Windows environments: in MacOS you have to keep the mouse depressed
throughout menu selection; in Windows you can click on the menu bar and a pull-down menu
appears and remains there until an item is selected or it is cancelled. Similarly the detailed
behavior of buttons is quite complex.

In WIMP environments, the user takes the initiative, with many options and often many
applications simultaneously available. The exceptions to this are pre-emptive parts of the
interface, where the system for various reasons wrests the initiative away from the user,
perhaps because of a problem or because it needs information in order to continue.

Interactivity is also critical in dealing with errors. We discussed slips and mistakes earlier in
the chapter, and some ways to try to prevent these types of errors. The other way to deal with
errors is to make sure that the user or the system is able to tell when errors have occurred. If
users can detect errors then they can correct them. So, even if errors occur, the interaction as
a whole succeeds. Several of the principles in deal with issues that relate to this. This ability
to detect and correct is important both at the small scale of button presses and keystrokes and
also at the large scale.

PARADIGMS

Time sharing

Major contributions to come out of this new emphasis in research were the concept of
time sharing, in which a single computer could support multiple users. The human (or more
accurately, the programmer) was restricted to batch sessions, in which complete jobs were
submitted on punched cards or paper tape to an operator who would then run them
individually on the computer. Time-sharing systems of the 1960s made programming a truly
interactive venture and brought about a subculture of programmers known as ‗hackers‘ –
single-minded masters of detail who took pleasure in understanding complexity. Though the
purpose of the first interactive time-sharing systems was simply to augment the programming
capabilities of the early hackers, it marked a significant stage in computer applications for
human use. Rather than rely on a model of interaction as a pre-planned activity that resulted
in a complete set of instructions being laid out for the computer to follow, truly interactive
exchange between programmer and computer was possible. The computer could now project
itself as a dedicated partner with each individual user and the increased throughput of
information between user and computer allowed the human to become a more reactive and
spontaneous collaborator.

Video display units

In mid-1950s researchers were experimenting with the possibility of presenting and
manipulating information from a computer in the form of images on a video display unit
(VDU). These display screens could provide a more suitable medium than a paper printout
for presenting vast quantities of strategic information for rapid assimilation. The earliest
applications of display screen images were developed in military applications, most notably
the Semi-Automatic Ground Environment (SAGE) project of the US Air Force.

Programming toolkits

Douglas Engelbart‘s ambition since the early 1950s was to use computer technology as a
means of complementing human problem-solving activity.

Personal computing

Programming toolkits provide a means for those with substantial computing skills to
increase their productivity greatly. One of the first demonstrations that the powerful tools of
the hacker could be made accessible to the computer novice was a graphics programming
language for children called LOGO. A child could quite easily pretend they were ‗inside‘ the
turtle and direct it to trace out simple geometric shapes, such as a square or a circle. By
typing in English phrases, such as go forward or Turn left, the child/programmer could teach
the turtle to draw more and more complicated figures. By adapting the graphical
programming language to a model which children could understand and use, Paper
demonstrated a valuable maxim for interactive system development – no matter how
powerful a system may be, it will always be more powerful if it is easier to use.

Window systems and the WIMP interface

Humans are able to think about more than one thing at a time, and in accomplishing
some piece of work, they frequently interrupt their current train of thought to pursue some

other related piece of work. A personal computer system which forces the user to progress in
order through all of the tasks needed to achieve some objective, from beginning to end
without any diversions, does not correspond to that standard working pattern.

One presentation mechanism for achieving this dialog partitioning is to separate
physically the presentation of the different logical threads of user–computer conversation on
the display device. The window is the common mechanism associated with these physically
and logically separate display spaces.

The metaphor

Papert used the metaphor of a turtle dragging its tail in the dirt. Children could
quickly identify with the real-world phenomenon and that instant familiarity gave them an
understanding of how they could create pictures. The danger of a metaphor is usually realized
after the initial honeymoon period. When word processors were first introduced, they relied
heavily on the typewriter metaphor. The keyboard of a computer closely resembles that of a
standard typewriter, so it seems like a good metaphor from which to start.

Hypertext

Hypertext is text which is not constrained to be linear. Hypertext is text which
contains links to other texts. The term was coined by Ted Nelson around 1965 . HyperMedia
is a term used for hypertext which is not constrained to be text: it can include graphics, video
and sound, for example. Apparently Ted Nelson was the first to use this term too. Hypertext
and HyperMedia are concepts, not products.

Multi-modality

Genuine multi-modal systems rely to a greater extent on simultaneous use of multiple
communication channels for both input and output. Humans quite naturally process
information by simultaneous use of different channels. We point to someone and refer to
them as ‗you‘, and it is only by interpreting the simultaneous use of voice and touch that our
directions are easily articulated and understood. Designers have wanted to mimic this
flexibility in both articulation and observation by extending the input and output expressions
an interactive system will support. So, for example, we can modify a gesture made with a
pointing device by speaking, indicating what operation is to be performed on the selected
object.

Computer-supported cooperative work

Personal computing provides individuals with enough computing power so that they
were liberated from dumb terminals which operated on a time-sharing system. It is interesting
to note that as computer networks became widespread, individuals retained their powerful
workstations but now wanted to reconnect themselves to the rest of the workstations in their
immediate working environment, and even throughout the world! One result of this
reconnection was the emergence of collaboration between individuals via the computer –
called computer-supported cooperative work, or CSCW.

The World Wide Web

WWW or "Web" is a global information medium which users can read and write via
computers connected to the Internet. The term is often mistakenly used as a synonym for the
Internet itself, but the Web is a service that operates over the Internet, just as e-mail also
does. The history of the Internet dates back significantly further than that of the World Wide
Web.

The internet is simply a collection of computers, each linked by any sort of data
connection, whether it be slow telephone line and modem or high-bandwidth optical
connection. The computers of the internet all communicate using common data transmission
protocols (TCP/IP) and addressing systems (IP addresses and domain names). This makes it
possible for anyone to read anything from anywhere, in theory, if it conforms to the protocol.
The web builds on this with its own layer of network protocol (http), a standard markup
notation (such as HTML) for laying out pages of information and a global naming scheme
(uniform resource locators or URLs). Web pages can contain text, color images, movies,
sound and, most important, hypertext links to other web pages. Hypermedia documents can
therefore be ‗published‘ by anyone who has access to a computer connected to the internet.

Ubiquitous computing

Ubiquitous computing is a paradigm in which the processing of information is linked
with each activity or object as encountered. It involves connecting electronic devices,
including embedding microprocessors to communicate information. Devices that use
ubiquitous computing have constant availability and are completely connected. Ubiquitous
computing focuses on learning by removing the complexity of computing and increases
efficiency while using computing for different daily activities. Ubiquitous computing is also
known as pervasive computing, everyware and ambient intelligence.

INTERACTION DESIGN BASICS
Interaction design is about creating interventions in often complex situations using
technology of many kinds including PC software, the web and physical devices.

 Design involves:
o achieving goals within constraints and trade-off between these
o understanding the raw materials: computer and human
o accepting limitations of humans and of design.

 The design process has several stages and is iterative and never complete.
 Interaction starts with getting to know the users and their context:
o finding out who they are and what they are like . . .probably not like you!
o talking to them, watching them.

 Scenarios are rich design stories, which can be used and reused throughout design:
o they help us see what users will want to do
o they give a step-by-step walkthrough of users‘ interactions: including what they

see, do and are thinking.
 Users need to find their way around a system. This involves:
o helping users know where they are, where they have been and what they can do

next
o creating overall structures that are easy to understand and fit the users‘ needs
o designing comprehensible screens and control panels.

 Complexity of design means we don‘t get it right first time:
o so we need iteration and prototypes to try out and evaluate
o but iteration can get trapped in local maxima, designs that have no simple

improvements, but are not good theory and models can help give good start
points.

WHAT IS DESIGN?

A simple definition is: achieving goals within constraints

Goals : what is the purpose of the design we are intending to produce? Who is it for? Why do
they want it? For example, if we are designing a wireless personal movie player, we may
think about young affluent users wanting to watch the latest movies whilst on the move and
download free copies, and perhaps wanting to share the experience with a few friends.

UNIT II
DESIGN & SOFTWARE PROCESS

Interactive Design basics – process – scenarios – navigation – screen design – Iteration and
prototyping. HCI in software process – software life cycle – usability engineering –
Prototyping in practice – design rationale. Design rules – principles, standards, guidelines,
rules. Evaluation Techniques – Universal Design.

Constraints: What materials must we use? What standards must we adopt? How much can it
cost? How much time do we have to develop it? Are there health and safety issues? In the
case of the personal movie player: does it have to withstand rain? Must we use existing video
standards to download movies? Do we need to build in copyright protection?

Trade-off Choosing which goals or constraints can be relaxed so that others can be met. For
example, we might find that an eye-mounted video display, a bit like those used in virtual
reality, would give the most stable image whilst walking along. However, this would not
allow you to show friends, and might be dangerous if you were watching a gripping part of
the movie as you crossed the road.

The golden rule of design
The designs we produce may be different, but often the raw materials are the same. This leads
us to the golden rule of design: understand your materials

 understand computers
o limitations, capacities, tools, platforms

 understand people
o psychological, social aspects, human error.

THE PROCESS OF DESIGN

A system has been designed and built, and only when it proves unusable do they think
to ask how to do it right! In other companies usability is seen as equivalent to testing –
checking whether people can use it and fixing problems, rather than making sure they can
from the beginning. In the best companies, however, usability is designed in from the start.

Figure: Interaction design process

Requirements – what is wanted The first stage is establishing what exactly is needed. As a
precursor to this it is usually necessary to find out what is currently happening.

Analysis: The results of observation and interview need to be ordered in some way to bring
out key issues and communicate with later stages of design.

Design: Well, this is all about design, but there is a central stage when you move from what
you want, to how to do it. There are numerous rules, guidelines and design principles that can
be used to help

Iteration and prototyping: Humans are complex and we cannot expect to get designs right
first time. We therefore need to evaluate a design to see how well it is working and where
there can be improvements.

Implementation and deployment Finally, when we are happy with our design, we need to
create it and deploy it. This will involve writing code, perhaps making hardware, writing
documentation and manuals – everything that goes into a real system that can be given to
others.

SCENARIOS

Scenarios are stories for design: rich stories of interaction. They are
perhaps the simplest design representation, but one of the most flexible and powerful. Some
scenarios are quite short: ‗the user intends to press the ―save‖ button, but accidentally
presses the ―quit‖ button so loses his work‘. Others are focussed more on describing the
situation or context.

Scenarios force you to think about the design in detail and notice potential problems before
they happen. What is the system doing now?‘. This can help to verify that the design would
make sense to the user and also that proposed implementation architectures would work.

In addition scenarios can be used to:

Communicate with others – other designers, clients or users. It is easy to misunderstand
each other whilst discussing abstract ideas. Concrete examples of use are far easier to share.

Validate other models: A detailed scenario can be ‗played‘ against various more formal
representations such as task models or dialog and navigation models .

Express dynamics Individual screen shots and pictures give you a sense of what a system
would look like, but not how it behaves.

NAVIGATION DESIGN

Navigation Design is the process or activity of accurately
ascertaining one's position and planning and following a route. the process or activity of
accurately ascertaining one's position and planning and following a route.

Widgets The appropriate choice of widgets and wording in menus and buttons will help you
know how to use them for a particular selection or action.

Screens or windows You need to find things on the screen, understand the logical grouping
of buttons.

Navigation within the application You need to be able to understand what will happen
when a button is pressed, to understand where you are in the interaction.

Environment The word processor has to read documents from disk, perhaps some are on
remote networks. You swap between applications, perhaps cut and paste.

Local structure

Table: Levels of interaction

In an ideal world if users had perfect knowledge of what they wanted
and how the system worked they could simply take the shortest path to what they want,
pressing all the right buttons and links. The important thing is not so much that they take the
most efficient route, but that at each point in the interaction they can make some assessment
of whether they are getting closer to their (often partially formed) goal.

To do this goal seeking, each state of the system or each screen needs to give the user enough
knowledge of what to do to get closer to their goal.

 knowing where you are
 knowing what you can do
 knowing where you are going – or what will happen
 knowing where you‘ve been – or what you‘ve done.

Global structure – hierarchical organization

Figure: Application functional hierarchy

SCREEN DESIGN AND LAYOUT

Tools for layout

The hierarchy links screens, pages or states in logical groupings. The
Diagram gives a high-level breakdown of some sort of messaging system. This sort of
hierarchy can be used purely to help during design, but can also be used to structure the
actual system. For example, this may reflect the menu structure of a PC application or the site
structure on the web. Any sort of information structuring is difficult, but there is evidence
that people find hierarchies simpler than most. One of the difficulties with organizing
information or system functionality is that different people have different internal structures
for their knowledge, and may use different vocabulary.

We have a number of visual tools available to help us suggest to the user appropriate ways to
read and interact with a screen or device.

Figure: Grouping related items in an order screen

Grouping and structure

If things logically belong together, then we should normally physically group them together.
This may involve multiple levels of structure. We can see a potential design for an ordering
screen. Notice how the details for billing and delivery are grouped together spatially; also
note how they are separated from the list of items actually ordered by a line as well as
spatially. This reflects the following logical structure:

Order:

 Administrative information
o Billing details
o Delivery details

 Order information
o Order line 1
o Order line 2

Order of groups and items

In general we need to think: what is the natural order for the user?
This should normally match the order on screen. For data entry forms or dialog boxes we
should also set up the order in which the tab key moves between fields. Occasionally we may
also want to force a particular order; for example we may want to be sure that we do not
forget the credit card details

Decoration

Decorative features like font style, and text or background colors can
be used to emphasize groupings.

Alignment

Alignment of lists is also very important. For users who read text
from left to right, lists of text items should normally be aligned to the left. Numbers,
however, should normally be aligned to the right (for integers) or at the decimal point. This is
because the shape of the column then gives an indication of magnitude – a sort of mini
histogram. Items like names are particularly difficult.

White space

Spacing or whitespace, white space is any section of a document that
is unused or space around an object. White spaces help separate paragraphs of text, graphics,
and other portions of a document, and helps a document look less crowded. Using white
space effectively in a document keeps the reader reading the document and helps the reader
quickly find what they are interested in reading.

How to create white space

White space is created by pressing the return key, spacebar key, or
the tab key and can also be created by setting the document's margins and inserting form
feeds or tables.

User action and control

 Entering information

In each case the screen consists not only of information presented to
the user, but also of places for the user to enter information or select options. Many of the
same layout issues for data presentation also apply to fields for data entry. Alignment is still
important. It is especially common to see the text entry boxes aligned in a jagged fashion
because the field names are of different lengths. This is an occasion where right-justified text
for the field labels may be best or, alternatively, in a graphical interface a smaller font can be
used for field labels and the labels placed just above and to the left of the field they refer to.
For both presenting and entering information a clear logical layout is important.

The task analysis techniques can help in determining how to group
screen items and also the order in which users are likely to want to read them or fill them in.
Knowing also that users are likely to read from left to right and top to bottom (depending on
their native language!) means that a screen can be designed so that users encounter items in
an appropriate order for the task at hand.

 Knowing what to do

If everyone designs buttons to look the same and menus to look the
same, then users will be able to recognize them when they see them. It is important that the
labels and icons on menus are also clear. Standards can help for common actions such as
save, delete or print. For more system-specific actions, one needs to follow broader
principles. For example, a button says ‗bold‘: does this represent the current state of a system
or the action that will be performed if the button is pressed?

 Affordances

These are especially difficult problems in multimedia applications
where one may deliberately adopt a non-standard and avant-garde style. How are users
supposed to know where to click? The psychological idea of affordance says that things may
suggest by their shape and other attributes what you can do to them: a handle affords pulling
or lifting; a button affords pushing. These affordances can be used when designing novel
interaction elements. One can either mimic real-world objects directly, or try to emulate the
critical aspects of those objects. What you must not do is depict a real-world object in a
context where its normal affordances do not work!

Appropriate appearance

 Presenting information

The way of presenting information on screen depends on the kind of information: text,
numbers, maps, tables; on the technology available to present it: character display, line
drawing, graphics, and virtual reality; and, most important of all, on the purpose for which it
is being used. The file listing is alphabetic, which is fine if we want to look up the details of a
particular file, but makes it very difficult to find recently updated files. Of course, if the list
were ordered by date then it would be difficult to find a particular file. Different purposes
require different representations. For more complex numerical data, we may be considering
scatter graphs, histograms or 3D surfaces; for hierarchical structures, we may consider
outlines or organization diagrams. But, no matter how complex the data, the principle of
matching presentation to purpose remains. We have an advantage when presenting
information in an interactive system in that it is easy to allow the user to choose among
several representations, thus making it possible to achieve different goals.

Figure : Alphabetic file listing. Screen shot reprinted by permission from Apple

Computer, Inc.

Aesthetics and utility

The beauty and utility may sometimes be at odds. For example, an
industrial control panel will often be built up of the individual controls of several subsystems,
some designed by different teams, some bought in. The resulting inconsistency in appearance
may look a mess and suggest tidying up. Certainly some of this inconsistency may cause
problems.

The conflict between aesthetics and utility can also be seen in many
‗well designed‘ posters and multimedia systems. In particular, the backdrop behind text must
have low contrast in order to leave the text readable; this is often not the case and graphic
designers may include excessively complex and strong backgrounds because they look good.
The results are impressive, perhaps even award winning, but completely unusable! In
consumer devices these aesthetic considerations may often be the key differentiator between

products, for example, the sleek curves of a car. This is not missed by designers of electronic
goods: devices are designed to be good to touch and feel as well as look at and this is
certainly one of the drivers for the futuristic shapes of the Apple iMac family.

Making a mess of it: colour and 3D

The increasing use of 3D effects in interfaces has posed a whole new
set of problems for text and numerical information. Whilst excellent for presenting physical
information and certain sorts of graphs, text presented in perspective can be very difficult to
read and the all too common 3D pie chart is all but useless.

Localization / internationalization

If you are working in a different country, you might see a document
being word processed where the text of the document and the file names are in the local
language, but all the menus and instructions are still in English. The process of making
software suitable for different languages and cultures is called localization or
internationalization.

It is clear that words have to change and many interface construction
toolkits make this easy by using resources. When the program uses names of menu items,
error messages and other text, it does not use the text directly, but instead uses a resource
identifier, usually simply a number. A simple database is constructed separately that binds
these identifiers to particular words and phrases. A different resource database is constructed
for each language, and so the program can be customized to use in a particular country by
simply choosing the appropriate resource database.

ITERATION AND PROTOTYPING

All interaction design includes some form of iteration of ideas. This
often starts early on with paper designs and storyboards being demonstrated to colleagues and
potential users. Any of these prototypes, whether paper-based or running software, can then
be evaluated to see whether they are acceptable and where there is room for improvement.
This sort of evaluation, intended to improve designs, is called formative evaluation. This is in
contrast to summative evaluation, which is performed at the end to verify whether the product
is good enough. One approach is to get an expert to use a set of guidelines, for example the
‗knowing where you are‘ list above, and look screen by screen to see if there are any
violations.

The other main approach is to involve real users either in a controlled
experimental setting, or ‗in the wild‘ – a real-use environment. The result of evaluating the
system will usually be a list of faults or problems and this is followed by a redesign exercise,
which is then prototyped, evaluated The end point is when there are no more problems that
can economically be fixed. So iteration and prototyping are the universally accepted ‗best
practice‘ approach for interaction design.

Figure :Role of prototyping

Prototyping is an example of what is known as a hill-climbing
approach. Imagine you are standing somewhere in the open countryside. You walk uphill and
keep going uphill as steeply as possible. Eventually you will find yourself at a hill top.is
exactly how iterative prototyping works: you start somewhere, evaluate it to see how to make
it better, change it to make it better and then keep on doing this until it can‘t get any better.

Figure: Moving little by little but to where?

HCI IN THE SOFTWARE PROCESS

 Software engineering provides a means of understanding the structure of the design
process, and that process can be assessed for its effectiveness in interactive system
design.

 Usability engineering promotes the use of explicit criteria to judge the success of a
product in terms of its usability.

 Iterative design practices work to incorporate crucial customer feedback early in the
design process to inform critical decisions which affect usability.

 Design involves making many decisions among numerous alternatives. Design
rationale provides an explicit means of recording those design decisions and the
context in which the decisions were made.

Software Life cycle models

In the development of a software product, we consider two main
parties: the customer who requires the use of the product and the designer who must provide
the product. Typically, the customer and the designer are groups of people and some people
can be both customer and designer. It is often important to distinguish between the customer
who is the client of the designing company and the customer who is the eventual user of the
system. These two roles of customer can be played by different people. The group of people
who negotiate the features of the intended system with the designer may never be actual users
of the system. This is often particularly true of web applications. In this chapter, we will use

the term ‗customer‘ to refer to the group of people who interact with the design team and we
will refer to those who will interact with the designed system as the user or end-user.

The graphical representation is reminiscent of a waterfall, in which
each activity naturally leads into the next. The analogy of the waterfall is not completely
faithful to the real relationship between these activities, but it provides a good starting point
for discussing the logical flow of activity. We describe the activities of this waterfall model of
the software life cycle

Figure The activities in the waterfall model of the software life cycle

Requirements specification

Requirements specification begins at the start of product

development. Though the requirements are from the customer‘s perspective, if they are to be
met by the software product they must be formulated in a language suitable for
implementation. Requirements are usually initially expressed in the native language of the
customer. The executable languages for software are less natural and are more closely related
to a mathematical language in which each term in the language has a precise interpretation, or
semantics. The transformation from the expressive but relatively ambiguous natural language
of requirements to the more precise but less expressive executable languages is one key to
successful development. Task analysis techniques, which are used to express work domain
requirements in a form that is both expressive and precise.

Architectural design

The requirements specification concentrates on what the system is
supposed to do. The next activities concentrate on how the system provides the services
expected from it. The first activity is a high-level decomposition of the system into
components that can either be brought in from existing software products or be developed
from scratch independently. An architectural design performs this decomposition. It is not
only concerned with the functional decomposition of the system, determining which
components provide which services. It must also describe the interdependencies between
separate components and the sharing of resources that will arise between components.

Detailed design

The architectural design provides a decomposition of the system
description that allows for isolated development of separate components which will later be
integrated. For those components that are not already available for immediate integration, the
designer must provide a sufficiently detailed description so that they may be implemented in
some programming language. The detailed design is a refinement of the component
description provided by the architectural design. The behaviour implied by the higher-level
description must be preserved in the more detailed description.

There will be more than one possible refinement of the architectural
component that will satisfy the behavioural constraints. Choosing the best refinement is often
a matter of trying to satisfy as many of the non-functional requirements of the system as
possible. Thus the language used for the detailed design must allow some analysis of the
design in order to assess its properties.

Coding and unit testing

The detailed design for a component of the system should be in such
a form that it is possible to implement it in some executable programming language. After
coding, the component can be tested to verify that it performs correctly, according to some
test criteria that were determined in earlier activities. Research on this activity within the life
cycle has concentrated on two areas. There is plenty of research that is geared towards the
automation of this coding activity directly from a low-level detailed design. Most of the work
in formal methods operates under the hypothesis that, in theory, the transformation from the
detailed design to the implementation is from one mathematical representation to another and
so should be able to be entirely automated. Other, more practical work concentrates on the
automatic generation of tests from output of earlier activities which can be performed on a
piece of code to verify that it behaves correctly.

Integration and testing

Once enough components have been implemented and individually
tested, they must be integrated as described in the architectural design. Further testing is done
to ensure correct behaviour and acceptable use of any shared resources. It is also possible at
this time to perform some acceptance testing with the customers to ensure that the system

meets their requirements. It is only after acceptance of the integrated system that the product
is finally released to the customer.

Maintenance

After product release, all work on the system is considered under the
category of maintenance, until such time as a new version of the product demands a total
redesign or the product is phased out entirely. Consequently, the majority of the lifetime of a
product is spent in the maintenance activity. Maintenance involves the correction of errors in
the system which are discovered after release and the revision of the system services to
satisfy requirements that were not realized during previous development.

Validation and verification

Throughout the life cycle, the design must be checked to ensure that
it both satisfies the high-level requirements agreed with the customer and is also complete
and internally consistent. These checks are referred to as validation and verification,
respectively. Verification of a design will most often occur within a single life-cycle activity
or between two adjacent activities. For example, in the detailed design of a component of a
payroll accounting system, the designer will be concerned with the correctness of the
algorithm to compute taxes deducted from an employee‘s gross income.

The architectural design will have provided a general specification of
the information input to this component and the information it should output. The detailed
description will introduce more information in refining the general specification. The detailed
design may also have to change the representations for the information and will almost
certainly break up a single high-level operation into several low-level operations that can
eventually be implemented. In introducing these changes to information and operations, the
designer must show that the refined description is a legal one within its language (internal
consistency) and that it describes all of the specified behaviour of the high-level description
(completeness) in a provably correct way (relative consistency). Validation of a design
demonstrates that within the various activities the customer‘s requirements are satisfied.
Validation is a much more subjective exercise than verification, mainly because the disparity
between the language of the requirements and the language of the design forbids any
objective form of proof. In interactive system design, the validation against HCI requirements
is often referred to as evaluation and can be performed by the designer in isolation or in
cooperation with the customer.

Figure: Feedback from maintenance activity to other design activities

Management and contractual issues

The life cycle described above concentrated on the more technical
features of software development. In a technical discussion, managerial issues of design, such
as time constraints and economic forces, are not as important. The different activities of the
life cycle are logically related to each other. We can see that requirements for a system
precede the high-level architectural design which precedes the detailed design, and so on. In
reality, it is quite possible that some detailed design is attempted before all of the
architectural design. In management, a much wider perspective must be adopted which takes
into account the marketability of a system, its training needs, the availability of skilled
personnel or possible subcontractors, and other topics outside the activities for the
development of the isolated system.

Interactive systems and the software life cycle

Figure: Representing iteration in the waterfall model

The life cycle for development we described above presents the
process of design in a somewhat pipeline order. In reality, even for batch-processing systems,
the actual design process is iterative, work in one design activity affecting work in any other
activity either before or after it in the life cycle.

A final point about the traditional software life cycle is that it does
not promote the use of notations and techniques that support the user‘s perspective of the
interactive system. We discussed earlier the purpose of validation and the formality gap. It is
very difficult for an expert on human cognition to predict the cognitive demands that an
abstract design would require of the intended user if the notation for the design does not
reflect the kind of information the user must recall in order to interact. The same holds for
assessing the timing behaviour of an abstract design that does not explicitly mention the
timing characteristics of the operations to be invoked or their relative ordering. Though no
structured development process will entirely eliminate the formality gap, the particular
notations used can go a long way towards making validation of non-functional requirements
feasible with expert assistance. In the remaining sections of this chapter, we will describe
various approaches to augment the design process to suit better the design of interactive
systems. These approaches are categorized under the banner of user-centred design.

USABILITY ENGINEERING

In relation to the software life cycle, one of the important features of
usability engineering is the inclusion of a usability specification, forming part of the
requirements specification that concentrates on features of the user–system interaction which
contribute to the usability of the product. Various attributes of the system are suggested as
gauges for testing the usability. For each attribute, six items are defined to form the usability
specification of that attribute.

Table : Sample usability specification for undo with a VCR

Recoverability refers to the ability to reach a desired goal after

recognition of some error in previous interaction. The recovery procedure can be in either a
backward or forward sense. Current VCR design has resulted in interactive systems that are
notoriously difficult to use; the redesign of a VCR provides a good case study for usability
engineering. In designing a new VCR control panel, the designer wants to take into account
how a user might recover from a mistake he discovers while trying to program the VCR to
record some television program in his absence. One approach that the designer decides to
follow is to allow the user the ability to undo the programming sequence, reverting the state
of the VCR to what it was before the programming task began. The backward recoverability
attribute is defined in terms of a measuring concept, which makes the abstract attribute more
concrete by describing it in terms of the actual product. So in this case, we realize backward
recoverability as the ability to undo an erroneous programming sequence. The measuring
method states how the attribute will be measured, in this case by the number of explicit user
actions required to perform the undo, regardless of where the user is in the programming
sequence. The remaining four entries in the usability specification then provide the agreed
criteria for judging the success of the product based on the measuring method. The now level
indicates the value for the measurement with the existing system, whether it is computer
based or not. The worst case value is the lowest acceptable measurement for the task,
providing a clear distinction between what will be acceptable and what will be unacceptable
in the final product. The planned level is the target for the design and the best case is the level
which is agreed to be the best possible measurement given the current state of development
tools and technology. In the example, the designers can look at their previous VCR products
and those of their competitors to determine a suitable now level. In this case, it is determined
that no current model allows an undo which returns the state of the VCR to what it was
before the programming task.

Table: Examples of usability metrics from ISO 9241

Table: Criteria by which measuring method can be determined

1. Time to complete a task
2. Per cent of task completed
3. Per cent of task completed per unit time
4. Ratio of successes to failures
5. Time spent in errors
6. Per cent or number of errors
7. Per cent or number of competitors better than it
8. Number of commands used
9. Frequency of help and documentation use
10. Per cent of favorable/unfavorable user comments
11. Number of repetitions of failed commands
12. Number of runs of successes and of failures
13. Number of times interface misleads the user
14. Number of good and bad features recalled by users
15. Number of available commands not invoked
16. Number of regressive behaviors
17. Number of users preferring your system
18. Number of times users need to work around a problem
19. Number of times the user is disrupted from a work task
20. Number of times user loses control of the system
21. Number of times user expresses frustration or satisfaction

Table : Possible ways to set measurement levels in a usability specification

Problems with usability engineering

The major feature of usability engineering is the assertion of explicit
usability metrics early on in the design process which can be used to judge a system once it is
delivered. There is a very solid argument which points out that it is only through empirical
approaches such as the use of usability metrics that we can reliably build more usable
systems. Although the ultimate yardstick for determining usability may be by observing and
measuring user performance, that does not mean that these measurements are the best way to
produce a predictive design process for usability.

The problem with usability metrics is that they rely on measurements
of very specific user actions in very specific situations. When the designer knows what the
actions and situation will be, then she can set goals for measured observations. However, at
early stages of design, designers do not have this information. Take our example usability
specification for the VCR. In setting the acceptable and unacceptable levels for backward
recovery, there is an assumption that a button will be available to invoke the undo. In fact, the
designer was already making an implicit assumption that the user would be making errors in
the programming of the VCR. We should recognize another inherent limitation for usability
engineering, which provides a means of satisfying usability specifications and not necessarily
usability. The designer is still forced to understand why a particular usability metric enhances
usability for real people.

ITERATIVE DESIGN AND PROTOTYPING

The design can then be modified to correct any false assumptions that
were revealed in the testing. This is the essence of iterative design, a purposeful design
process which tries to overcome the inherent problems of incomplete requirements
specification by cycling through several designs, incrementally improving upon the final
product with each pass.

The problems with the design process, which lead to an iterative design philosophy, are not
unique to the usability features of the intended system. The problem holds for requirements
specification in general, and so it is a general software engineering problem, together with
technical and managerial issues. On the technical side, iterative design is described by the use
of prototypes, artifacts that simulate or animate some but not all features of the intended
system. There are three main approaches to prototyping:

Throw-away :The prototype is built and tested. The design knowledge gained from this
exercise is used to build the final product, but the actual prototype is discarded. Figure
depicts the procedure in using throw-away prototypes to arrive at a final requirements
specification in order for the rest of the design process to proceed.

Figure: Throw-away prototyping within requirements specification

Incremental The final product is built as separate components, one at a time. There is one
overall design for the final system, but it is partitioned into independent and smaller
components. The final product is then released as a series of products, each subsequent
release including one more component.

Figure: Incremental prototyping within the life cycle

Evolutionary Here the prototype is not discarded and serves as the basis for the next iteration
of design. In this case, the actual system is seen as evolving from a very limited initial
version to its final release,

Evolutionary prototyping also fits in well with the modifications which must be made to the
system that arise during the operation and maintenance activity in the life cycle.

Prototypes differ according to the amount of functionality and
performance they provide relative to the final product. An animation of requirements can
involve no real functionality, or limited functionality to simulate only a small aspect of the
interactive behavior for evaluative purposes. At the other extreme, full functionality can be
provided at the expense of other performance characteristics, such as speed or error tolerance.
Regardless of the level of functionality, the importance of a prototype lies in its projected
realism. The prototype of an interactive system is used to test requirements by evaluating
their impact with real users. An honest appraisal of the requirements of the final system can
only be trusted if the evaluation conditions are similar to those anticipated for the actual
operation. But providing realism is costly, so there must be support.

Time Building prototypes takes time and, if it is a throw-away prototype, it can be seen as
precious time taken away from the real design task. So the value of prototyping is only
appreciated if it is fast, hence the use of the term rapid prototyping. Rapid development and
manipulation of a prototype should not be mistaken for rushed evaluation which might lead to

erroneous results and invalidate the only advantage of using a prototype in the first place.
Planning Most project managers do not have the experience necessary for adequately
planning and costing a design process which involves prototyping.

Non-functional features Often the most important features of a system will be non-
functional ones, such as safety and reliability, and these are precisely the kinds of features
which are sacrificed in developing a prototype. For evaluating usability features of a
prototype, response time – yet another feature often compromised in a prototype – could be
critical to product acceptance. This problem is similar to the technical issue of prototype
realism.

Contracts The design process is often governed by contractual agreements between customer
and designer which are affected by many of these managerial and technical issues. Prototypes
and other implementations cannot form the basis for a legal contract, and so an iterative
design process will still require documentation which serves as the binding agreement. There
must be an effective way of translating the results derived from prototyping into adequate
documentation. A rapid prototyping process might be amenable to quick changes, but that
does not also apply to the design process.

Techniques for prototyping

Probably the simplest notion of a prototype is the storyboard, which is a
graphical depiction of the outward appearance of the intended system, without any accompanying
system functionality. Storyboards do not require much in terms of computing power to construct;
in fact, they can be mocked up without the aid of any computing resource. The origins of
storyboards are in the film industry, where a series of panels roughly depicts snapshots from an
intended film sequence in order to get the idea across about the eventual scene. Similarly, for
interactive system design, the storyboards provide snapshots of the interface at particular points
in the interaction. Evaluating customer or user impressions of the storyboards can determine
relatively quickly if the design is heading in the right direction.

Modern graphical drawing packages now make it possible to create
storyboards with the aid of a computer instead of by hand. Though the graphic design
achievable on screen may not be as sophisticated as that possible by a professional graphic
designer, it is more realistic because the final system will have to be displayed on a screen.
Also, it is possible to provide crude but effective animation by automated sequencing through
a series of snapshots. Animation illustrates the dynamic aspects of the intended user–system
interaction, which may not be possible with traditional paper-based storyboards. If not
animated, storyboards usually include annotations and scripts indicating how the interaction
will occur.

Limited functionality simulations

Storyboards and animation techniques are not sufficient for this
purpose, as they cannot portray adequately the interactive aspects of the system. To do this,
some portion of the functionality must be simulated by the design team. Programming

support for simulations means a designer can rapidly build graphical and textual interaction
objects and attach some behaviour to those objects, which mimics the system‘s functionality.
Once this simulation is built, it can be evaluated and changed rapidly to reflect the results of
the evaluation study with various users.

High-level programming support

HyperTalk and many similar languages allow the programmer to
attach functional behavior to the specific interactions that the user will be able to do, such as
position and click on the mouse over a button on the screen. Previously, the difficulty of
interactive programming was that it was so implementation dependent that the programmer
would have to know quite a bit of intimate detail of the hardware system in order to control
even the simplest of interactive behavior. These high-level programming languages allow the
programmer to abstract away from the hardware specifics and think in terms that are closer to
the way the input and output devices are perceived as interaction devices. The frequent
conceptual model put forth for interactive system design is to separate the application
functionality from its presentation. It is then possible to program the underlying functionality
of the system and to program the behavior of the user interface separately. The job of a
UIMS, then, is to allow the programmer to connect the behavior at the interface with the
underlying functionality.

Warning about iterative design

The ideal model of iterative design, in which a rapid prototype is designed, evaluated and
modified until the best possible design is achieved in the given project time, is appealing. But
there are two problems.

First, it is often the case that design decisions made at the very beginning of the prototyping
process are wrong and, in practice, design inertia can be so great as never to overcome an
initial bad decision. So, whereas iterative design is, in theory, amenable to great changes
through iterations, it can be the case that the initial prototype has bad features that will not be
amended.

The second problem is slightly more subtle, and serious. If, in the process of evaluation, a
potential usability problem is diagnosed, it is important to understand the reason for the
problem and not just detect the symptom.

DESIGN RATIONALE

Design rationale is the information that explains why a computer system is the way it is,
including its structural or architectural description and its functional or behavioural
description. In this sense, design rationale does not fit squarely into the software life cycle
described in this chapter as just another phase or box. Rather, design rationale relates to an
activity of both reflection (doing design rationale) and documentation (creating a design
rationale) that occurs throughout the entire life cycle.

In an explicit form, a design rationale provides a communication mechanism among the
members of a design team so that during later stages of design and/or maintenance it is
possible to understand what critical decisions were made, what alternatives were investigated
(and, possibly, in what order) and the reason why one alternative was chosen over the others.
This can help avoid incorrect assumptions later.

 Accumulated knowledge in the form of design rationales for a set of products can be
reused to transfer what has worked in one situation to another situation which has
similar needs. The design rationale can capture the context of a design decision in
order that a different design team can determine if a similar rationale is appropriate
for their product.

 The effort required to produce a design rationale forces the designer to deliberate
more carefully about design decisions. The process of deliberation can be assisted by
the design rationale technique by suggesting how arguments justifying or discarding a
particular design option are formed.

In the area of HCI, design rationale has been particularly important, again for several reasons:

 There is usually no single best design alternative. More often, the designer is faced
with a set of trade-offs between different alternatives. For example, a graphical
interface may involve a set of actions that the user can invoke by use of the mouse
and the designer must decide whether to present each action as a ‗button‘ on the
screen, which is always visible, or hide all of the actions in a menu which must be
explicitly invoked before an action can be chosen. The former option maximizes the
operation visibility but the latter option takes up less screen space. It would be up to
the designer to determine which criterion for evaluating the options was more
important and then communicating that information in a design rationale.

 Even if an optimal solution did exist for a given design decision, the space of
alternatives is so vast that it is unlikely a designer would discover it. In this case, it is
important that the designer indicates all alternatives that have been investigated. Then
later on it can be determined if she has not considered the best solution or had thought
about it and discarded it for some reason. In project management, this kind of
accountability for design is good.

 The usability of an interactive system is very dependent on the context of its use. The
flashiest graphical interface is of no use if the end-user does not have access to a high-
quality graphics display or a pointing device. Capturing the context in which a design
decision is made will help later when new products are designed.

If the context remains the same, then the old rationale can be adopted without revision. If the
context has changed somehow, the old rationale can be re-examined to see if any rejected
alternatives are now more favourable or if any new alternatives are now possible.

Process-oriented design rationale

Rationale is based on Rittel‘s issue-based information system, or IBIS, a style for
representing design and planning dialog developed in the 1970s. In IBIS (pronounced

‗ibbiss‘), a hierarchical structure to a design rationale is created. A root issue is identified
which represents the main problem or question that the argument is addressing. Various
positions are put forth as potential resolutions for the root issue, and these are depicted as
descendants in the IBIS hierarchy directly connected to the root issue. Each position is then
supported or refuted by arguments, which modify the relationship between issue and position.
The hierarchy grows as secondary issues are raised which modify the root issue in some way.
Each of these secondary issues is in turn expanded by positions and arguments, further sub-
issues, and so on.

Figure: The structure of a gIBIS design rationale

A graphical version of IBIS has been defined by Conklin and Yakemovic
called gIBIS (pronounced ‗gibbiss‘), which makes the structure of the design rationale more
apparent visually in the form of a directed graph which can be directly edited by the creator
of the design rationale. Above figure gives a representation of the gIBIS vocabulary. Issues,
positions and arguments are nodes in the graph and the connections between them are labeled
to clarify the relationship between adjacent nodes. So, for example, an issue can suggest
further sub-issues, or a position can respond to an issue or an argument can support a
position. The gIBIS structure can be supported by a hypertext tool to allow a designer to
create and browse various parts of the design rationale.

Design space analysis

MacLean and colleagues have proposed a more deliberative approach to design rationale
which emphasizes a post hoc structuring of the space of design alternatives that have been
considered in a design project. Their approach, embodied in the Questions, Options and
Criteria (QOC) notation, is characterized as design space analysis issues raised based on

reflection and understanding of the actual design activities. Questions in a design space
analysis are therefore similar to issues in IBIS except in the way they are captured. Options
provide alternative solutions to the question. They are assessed according to some criteria in
order to determine the most favorable option. In Figure an option which is favorably assessed
in terms of a criterion is linked with a solid line, whereas negative links have a dashed line.

Figure: The QOC notation

The key to an effective design space analysis using the QOC notation is deciding the right
questions to use to structure the space and the correct criteria to judge the options. The initial
questions raised must be sufficiently general that they cover a large enough portion of the
possible design space, but specific enough that a range of options can be clearly identified. It
can be difficult to decide the right set of criteria with which to assess the options.

Structure-oriented technique, called Decision Representation Language (DRL),
developed by Lee and Lai, structures the design space in a similar fashion to QOC, though its
language is somewhat larger and it has a formal semantics. The questions, options and criteria in
DRL are given the names: decision problem, alternatives and goals. QOC assessments are
represented in DRL by a more complex language for relating goals to alternatives. The sparse
language in QOC used to assess an option relative to a criterion (positive or negative assessment
only) is probably insufficient, but there is a trade-off involved in adopting a more complex
vocabulary which may prove too difficult to use in practice. The advantage of the formal
semantics of DRL is that the design rationale can be used as a computational mechanism to help
manage the large volume of information. For example, DRL can track the

dependencies between different decision problems, so that subsequent changes to the design
rationale for one decision problem can be automatically propagated to other dependent
problems. Design space analysis directly addresses the claim that no design activity can hope
to uncover all design possibilities, so the best we can hope to achieve is to document the
small part of the design space that has been investigated. An advantage of the post hoc
technique is that it can abstract away from the particulars of a design meeting and therefore
represent the design knowledge in such a way that it can be of use in the design of other
products. The major disadvantage is the increased overhead such an analysis warrants. More
time must be taken away from the design activity to do this separate documentation task.
When time is scarce, these kinds of overhead costs are the first to be trimmed.

Psychological design rationale

The final category of design rationale tries to make explicit the psychological
claims of usability inherent in any interactive system in order better to suit a product for the
tasks users have. This psychological design rationale has been introduced by Carroll and
Rosson, and before we describe the application of the technique it is important to understand
some of its theoretical background.

When designing a new interactive system, the designers take into account the
tasks that users currently perform and any new ones that they may want to perform. This task
identification serves as part of the requirements for the new system, and can be done through
empirical observation of how people perform their work currently and presented through
informal language or a more formal task analysis language . When the new system is
implemented, or becomes an artifact, further observation reveals that in addition to the
required tasks it was built to support, it also supports users in tasks that the designer never
intended. Once designers understand these new tasks, and the associated problems that arise
between them and the previously known tasks, the new task definitions can serve as
requirements for future artifacts.

Carroll refers to this real-life phenomenon as the task–artifact cycle. He provides a good
example of this cycle through the evolution of the electronic spreadsheet. When the first
electronic spreadsheet, VisiCalc, was marketed in the late 1970s, it was presented simply as
an automated means of supporting tabular calculation, a task commonly used in the
accounting world. Within little over a decade of its introduction, the application of
spreadsheets had far outstripped its original intent within accounting. Spreadsheets were
being used for all kinds of financial analysis, ‗what-if ‘ simulations, report formatting and
even as a general programming language paradigm! As the set of tasks expands, new
spreadsheet products have flooded the marketplace trying to satisfy the growing customer
base. Another good example of the task–artifact cycle in action is with word processing,
which was originally introduced to provide more automated support for tasks previously
achieved with a typewriter and now provides users with the ability to carry out various
authoring tasks that they never dreamed possible with a conventional typewriter. And today,
the tasks for the spreadsheet and the word processor are intermingled in the same artifact.

The purpose of psychological design rationale is to support this natural task– artifact cycle of
design activity. The main emphasis is not to capture the designer‘s intention in building the
artifact. Rather, psychological design rationale aims to make explicit the consequences of a
design for the user, given an understanding of what tasks he intends to perform. Previously,
these psychological consequences were left implicit in the design, though designers would
make informal claims about their systems

The first step in the psychological design rationale is to identify the tasks that the proposed
system will address and to characterize those tasks by questions that the user tries to answer
in accomplishing them. For instance, Carroll gives an example of designing a system to help
programmers learn the Smalltalk object-oriented programming language environment. The
main task the system is to support is learning how Smalltalk works. In learning about the
programming environment, the programme will perform tasks that help her answer the
questions:

 What can I do: that is, what are the possible operations or functions that this
programming environment allows?

 How does it work: that is, what do the various functions do?
 How can I do this: that is, once I know a particular operation I want to perform,
 how do I go about programming it?

DESIGN RULES

 Designing for maximum usability is the goal of interactive systems design.
 Abstract principles offer a way of understanding usability in a more general sense,

especially if we can express them within some coherent catalog.
 Design rules in the form of standards and guidelines provide direction for design, in

both general and more concrete terms, in order to enhance the interactive properties of
the system.

 The essential characteristics of good design are often summarized through ‗golden
rules‘ or heuristics.

 Design patterns provide a potentially generative approach to capturing and reusing
design knowledge.

PRINCIPLES TO SUPPORT USABILITY

The principles we present are first divided into three main categories:

Learnability – the ease with which new users can begin effective interaction and achieve
maximal performance.

Flexibility – the multiplicity of ways in which the user and system exchange information.

Robustness – the level of support provided to the user in determining successful achievement
and assessment of goals.

Table :Summary of principles affecting learnability

Predictability

Predictability of an interactive system is distinguished from deterministic behavior of the
computer system alone. Most computer systems are ultimately deterministic machines, so
that given the state at any one point in time and the operation which is to be performed at that
time, there is only one possible state that can result. Predictability is a user-centered concept;
it is deterministic behavior from the perspective of the user. It is not enough for the behavior
of the computer system to be determined completely from its state, as the user must be able to
take advantage of the determinism.

Synthesizability

When an operation changes some aspect of the internal state, it is important that the change is
seen by the user. The principle of honesty relates to the ability of the user interface to provide
an observable and informative account of such change. In the best of circumstances, this
notification can come immediately, requiring no further interaction initiated by the user. At
the very least, the notification should appear eventually, after explicit user directives to make
the change observable. A good example of the distinction between immediacy and
eventuality can be seen in the comparison between command language interfaces and visual
desktop interfaces for a file management system. You have moved a file from one directory
to another. The principle of honesty implies that after moving the file to its new location in
the file system you are then able to determine its new whereabouts. In a command language
system, you would typically have to remember the destination directory and then ask to see
the contents of that directory in order to verify that the file has been moved (in fact, you
would also have to check that the file is no longer in its original directory to determine that it
has been moved and not copied). In a visual desktop interface, a visual representation (or
icon) of the file is dragged from its original directory and placed in its destination directory
where it remains visible (assuming the destination folder is selected to reveal its contents). In

this case, the user need not expend any more effort to assess the result of the move operation.
The visual desktop is immediately honest.

Familiarity

New users of a system bring with them a wealth of experience across a wide number of
application domains. This experience is obtained both through interaction in thereal world
and through interaction with other computer systems. For a new user, the familiarity of an
interactive system measures the correlation between the user‘s existing knowledge and the
knowledge required for effective interaction. For example, when word processors were
originally introduced the analogy between the word processor and a typewriter was intended
to make the new technology more immediately accessible to those who had little experience
with the former but a lot of experience with the latter. Familiarity has to do with a user‘s first
impression of the system. In this case, we are interested in how the system is first perceived
and whether the user can determine how to initiate any interaction.

Generalizability

The generalizability of an interactive system supports this activity, leading to a more
complete predictive model of the system for the user. We can apply generalization to
situations in which the user wants to apply knowledge that helps achieve one particular goal
to another situation where the goal is in some way similar. Generalizability can be seen as a
form of consistency. Generalization can occur within a single application or across a variety
of applications. For example, in a graphical drawing package that draws a circle as a
constrained form of ellipse, we would want the user to generalize that a square can be drawn
as a constrained rectangle. A good example of generalizability across a variety of applications
can be seen in multi-windowing systems that attempt to provide cut/paste/copy operations to
all applications in the same way (with varying degrees of success). Generalizability within an
application can be maximized by any conscientious designer.

Consistency

Consistency relates to the likeness in behavior arising from similar situations or
similar task objectives. Consistency is probably the most widely mentioned principle in the
literature on user interface design. ‗Be consistent!‘ we are constantly urged. The user relies
on a consistent interface. However, the difficulty of dealing with consistency is that it can
take many forms. Consistency is not a single property of an interactive system that is either
satisfied or not satisfied. Instead, consistency must be applied relative to something. Thus we
have consistency in command naming, or consistency in command/argument invocation.

Consistency can be expressed in terms of the form of input expressions or output responses
with respect to the meaning of actions in some conceptual model of the system. For example,
before the introduction of explicit arrow keys, some word processors used the relative
position of keys on the keyboard to indicate directionality for operations (for example, to
move one character to the left, right, up or down).The conceptual model for display-based
editing is a two-dimensional plane, so the user would think of certain classes of operations in

terms of movements up, down, left or right in the plane of the display. Operations that
required directional information, such as moving within the text or deleting some unit of text,
could be articulated by using some set of keys on the keyboard that form a pattern consistent
with up, down, left and right (for example, the keys e, x, s and d, respectively). For output
responses, a good example of consistency can be found in a warnings system for an aircraft.
Warnings to the pilot are classified into three categories, depending on whether the situation
with the aircraft requires immediate recovery action, eventual but not immediate action, or no
action at all (advisory) on the part of the crew.

Flexibility

Table: Summary of principles affecting flexibility

Dialog initiative

The system can initiate all dialog, in which case the user simply responds to requests for
information. We call this type of dialog system pre-emptive. For example, a modal dialog
box prohibits the user from interacting with the system in any way that does not direct input
to the box. Alternatively, the user may be entirely free to initiate any action towards the
system, in which case the dialog is user pre-emptive. The system may control the dialog to
the extent that it prohibits the user from initiating any other desired communication
concerning the current task or some other task the user would like to perform. From the
user‘s perspective, a system-driven interaction hinders flexibility whereas a user-driven
interaction favours it.

In general, we want to maximize the user‘s ability to pre-empt the system and minimize the
system‘s ability to pre-empt the user. Although a system pre-emptive dialog is not desirable
in general, some situations may require it. In a cooperative editor (in which two people edit a

document at the same time) it would be impolite for you to erase a paragraph of text that your
partner is currently editing. For safety reasons, it may be necessary to prohibit the user from
the ‗freedom‘ to do potentially serious damage. A pilot about to land an aircraft in which the
flaps have asymmetrically failed in their extended position2 should not be allowed to abort
the landing, as this failure will almost certainly result in a catastrophic accident.

Multi-threading

A thread of a dialog is a coherent subset of that dialog. In the user–system dialog, we can
consider a thread to be that part of the dialog that relates to a given user task. Multi-threading
of the user–system dialog allows for interaction to support more than one task at a time.
Concurrent multi-threading allows simultaneous communication of information pertaining to
separate tasks. Interleaved multi-threading permits a temporal overlap between separate tasks,
but stipulates that at any given instant the dialog is restricted to a single task.

Task migratability

Task migratability concerns the transfer of control for execution of tasks between system and
user. It should be possible for the user or system to pass the control of a task over to the other
or promote the task from a completely internalized one to a shared and cooperative venture.
Hence, a task that is internal to one can become internal to the other or shared between the
two partners.

Substitutivity

Substitutivity requires that equivalent values can be substituted for each other. For example,
in considering the form of an input expression to determine the margin for a letter, you may
want to enter the value in either inches or centimeters. You may also want to input the value
explicitly (say 1.5 inches) or you may want to enter a calculation which produces the right
input value (you know the width of the text is 6.5 inches and the width of the paper is 8.5
inches and you want the left margin to be twice as large as the right margin, so you enter 2/3
(8.5 − 6.5) inches). This input substitutivity contributes towards flexibility by allowing the
user to choose whichever form best suits the needs of the moment. By avoiding unnecessary
calculations in the user‘s head, substitutivity can minimize user errors and cognitive effort.

Robustness

A user is engaged with a computer in order to achieve some set of goals. The
robustness of that interaction covers features that support the successful achievement and
assessment of the goals.

Observability

Observability allows the user to evaluate the internal state of the system by means of its
perceivable representation at the interface. Observability can be discussed through five other
principles: browsability, defaults, reachability, persistence and operation visibility.

Browsability allows the user to explore the current internal state of the system via the limited
view provided at the interface. Usually the complexity of the domain does not allow the
interface to show all of the relevant domain concepts at once. Indeed, this is one reason why
the notion of task is used, in order to constrain the domain information needed at one time to
a subset connected with the user‘s current activity. While you may not be able to view an
entire document‘s contents, you may be able to see all of an outline view of the document, if
you are only interested in its overall structure. Even with a restriction of concepts relevant to
the current task, it is probable that all of the information a user needs to continue work on that
task is not immediately perceivable. Or perhaps the user is engaged in a multi-threaded dialog
covering several tasks. There needs to be a way for the user to investigate, or browse, the
internal state. This browsing itself should not have any side-effects on that state; that is, the
browsing commands should be passive with respect to the domain specific parts of the
internal state.

The availability of defaults can assist the user by passive recall .It also reduces the number of
physical actions necessary to input a value. Thus, providing default values is a kind of error
prevention mechanism. There are two kinds of default values: static and dynamic. Static
defaults do not evolve with the session. They are either defined within the system or acquired
at initialization. On the other hand, dynamic defaults evolve during the session. They are
computed by the system from previous user inputs; the system is then adapting default
values.

Reachability refers to the possibility of navigation through the observable system states.
There are various levels of reachability that can be given precise mathematical definitions,
but the main notion is whether the user can navigate from any given state to any other state.
Reachability in an interactive system affects the recoverability of the system, as we will
discuss later. In addition, different levels of reachability can reflect the amount of flexibility
in the system as well, though we did not make that explicit in the discussion on flexibility.

Persistence deals with the duration of the effect of a communication act and the ability of the
user to make use of that effect. The effect of vocal communication does not persist except in
the memory of the receiver. Visual communication, on the other hand, can remain as an
object which the user can subsequently manipulate long after the act of presentation. If you
are informed of a new email message by a beep at your terminal, you may know at that
moment and for a short while later that you have received a new message. If you do not
attend to that message immediately, you may forget about it. If, however, some persistent
visual information informs you of the incoming message , then that will serve as a reminder
that an unread message remains long after its initial receipt.

Recoverability

Recoverability is the ability to reach a desired goal after recognition of some error in a
previous interaction. There are two directions in which recovery can occur, forward or
backward. Forward error recovery involves the acceptance of the current state and
negotiation from that state towards the desired state. Forward error recovery may be the only

possibility for recovery if the effects of interaction are not revocable (for example, in building
a house of cards, you might sneeze whilst placing a card on the seventh level, but you cannot
undo the effect of your misfortune except by rebuilding). Backward error recovery is an
attempt to undo the effects of previous interaction in order to return to a prior state before
proceeding. In a text editor, a mistyped keystroke might wipe out a large section of text
which you would want to retrieve by an equally simple undo button. Recovery can be
initiated by the system or by the user. When performed by the system, recoverability is
connected to the notions of fault tolerance, safety, reliability and dependability, all topics
covered in software engineering. However, in software engineering this recoverability is
considered only with respect to system functionality; it is not tied to user intent. When
recovery is initiated by the user, it is important that it determines the intent of the user‘s
recovery actions; that is, whether he desires forward (negotiation) or backward (using
undo/redo actions) corrective action.

Responsiveness

Responsiveness measures the rate of communication between the system and the user.
Response time is generally defined as the duration of time needed by the system to express
state changes to the user. In general, short durations and instantaneous response times are
desirable. Instantaneous means that the user perceives system reactions as immediate. But
even in situations in which an instantaneous response cannot be obtained, there must be some
indication to the user that the system has received the request for action and is working on a
response. As significant as absolute response time is response time stability. Response time
stability covers the invariance of the duration for identical or similar computational resources.
For example, pull-down menus are expected to pop up instantaneously as soon as a mouse
button is pressed. Variations in response time will impede anticipation exploited by motor
skill.

Task conformance

Since the purpose of an interactive system is to allow a user to perform various
tasks in achieving certain goals within a specific application domain, we can ask whether the
system supports all of the tasks of interest and whether it supports these as the user wants.
Task completeness addresses the coverage issue and task adequacy addresses the user‘s
understanding of the tasks. It is not sufficient that the computer system fully implements
some set of computational services that were identified at early specification stages. It is
essential that the system allows the user to achieve any of the desired tasks in a particular
work domain as identified by a task analysis that precedes system specification

Task completeness refers to the level to which the system services can be mapped
onto all of the user tasks. However, it is quite possible that the provision of a new computer
based tool will suggest to a user some tasks that were not even conceivable before the tool.
Therefore, it is also desirable that the system services be suitably general so that the user can
define new tasks.

STANDARDS

Standards for interactive system design are usually set by national or international bodies to
ensure compliance with a set of design rules by a large community. Standards can apply
specifically to either the hardware or the software used to build the interactive system. Smith
points out the differing characteristics between hardware and software, which affect the
utility of design standards applied to them:

Underlying theory Standards for hardware are based on an understanding of physiology or
ergonomics/human factors, the results of which are relatively well known, fixed and readily
adaptable to design of the hardware. On the other hand, software standards are based on
theories from psychology or cognitive science, which are less well formed, still evolving and
not very easy to interpret in the language of software design. Consequently, standards for
hardware can directly relate to a hardware specification and still reflect the underlying theory,
whereas software standards would have to be more vaguely worded.

Change Hardware is more difficult and expensive to change than software, which is usually
designed to be very flexible. Consequently, requirements changes for hardware do not occur
as frequently as for software. Since standards are also relatively stable, they are more suitable
for hardware than software.

A given standards institution, such as the British Standards Institution (BSI) or the
International Organization for Standardization (ISO) or a national military agency, has had
standards for hardware in place before any for software. For example, the UK Ministry of
Defence has published an Interim Defence Standard 00–25 on Human Factors for Designers
of Equipment, produced in 12 parts:

 Part 1 Introduction
 Part 2 Body Size
 Part 3 Body Strength and Stamina
 Part 4 Workplace Design
 Part 5 Stresses and Hazards
 Part 6 Vision and Lighting
 Part 7 Visual Displays
 Part 8 Auditory Information
 Part 9 Voice Communication
 Part 10 Controls
 Part 11 Design for Maintainability
 Part 12 Systems

One component of the ISO standard 9241, pertaining to usability specification, applies
equally to both hardware and software design. In the beginning of that document, the
following definition of usability is given:

Usability The effectiveness, efficiency and satisfaction with which specified users achieve
specified goals in particular environments.

Effectiveness The accuracy and completeness with which specified users can achieve
specified goals in particular environments.

Efficiency The resources expended in relation to the accuracy and completeness of goals
achieved.

Satisfaction The comfort and acceptability of the work system to its users and other people
affected by its use.

GUIDELINES

A major concern for all of the general guidelines is the subject of dialog styles, which in the
context of these guidelines pertains to the means by which the user communicates input to the
system, including how the system presents the communication device. Smith and Mosier
identify eight different dialog styles and Mayhew identifies seven . The only real difference is
the absence of query languages in Mayhew‘s list, but we can consider a query language as a
special case of a command language

Most guidelines are applicable for the implementation of any one of these dialog styles in
isolation. It is also important to consider the possibility of mixing dialog styles in one
application. In contrasting the action and language paradigms , we concluded that it is not
always the case that one paradigm wins over the other for all tasks in an application and,
therefore, an application may want to mix the two paradigms. This equates to a mixing of
dialog styles – a direct manipulation dialog being suitable for the action paradigm and a
command language being suitable for the language paradigm. Mayhew provides guidelines
and a technique for deciding how to mix dialog styles.

Table: Comparison of dialog styles mentioned in guidelines

GOLDEN RULES AND HEURISTICS

Shneiderman’s Eight Golden Rules of Interface Design

They are intended to be used during design butcan also be applied, like Nielsen‘s heuristics,
to the evaluation of systems.

1. Strive for consistency in action sequences, layout, terminology, command use and so on.

2. Enable frequent users to use shortcuts, such as abbreviations, special key sequences and
macros, to perform regular, familiar actions more quickly.

3. Offer informative feedback for every user action, at a level appropriate to the magnitude of
the action.

4. Design dialogs to yield closure so that the user knows when they have completed a task.

5. Offer error prevention and simple error handling so that, ideally, users are prevented from
making mistakes and, if they do, they are offered clear and informative instructions to enable
them to recover.

6. Permit easy reversal of actions in order to relieve anxiety and encourage exploration, since
the user knows that he can always return to the previous state.

7. Support internal locus of control so that the user is in control of the system, which
responds to his actions.

8. Reduce short-term memory load by keeping displays simple, consolidating multiple page
displays and providing time for learning action sequences.

Norman’s Seven Principles for Transforming Difficult Tasks into Simple Ones

1. Use both knowledge in the world and knowledge in the head. People work better when the
knowledge they need to do a task is available externally – either explicitly or through the
constraints imposed by the environment. But experts also need to be able to internalize
regular tasks to increase their efficiency. So systems should provide the necessary knowledge
within the environment and their operation should be transparent to support the user in
building an appropriate mental model of what is going on.

2. Simplify the structure of tasks. Tasks need to be simple in order to avoid complex problem
solving and excessive memory load. There are a number of ways to simplify the structure of
tasks. One is to provide mental aids to help the user keep track of stages in a more complex
task. Another is to use technology to provide the user with more information about the task
and better feedback. A third approach is to automate the task or part of it, as long as this does
not detract from the user‘s experience. The final approach to simplification is to change the
natureof the task so that it becomes something more simple. In all of this, it is important not
to take control away from the user.

3. Make things visible: bridge the gulfs of execution and evaluation. The interface should
make clear what the system can do and how this is achieved, and should enable the user to
see clearly the effect of their actions on the system.

4. Get the mappings right. User intentions should map clearly onto system controls. User
actions should map clearly onto system events. So it should be clear what does what and by

how much. Controls, sliders and dials should reflect the task – so a small movement has a
small effect and a large movement a large effect.

5. Exploit the power of constraints, both natural and artificial. Constraints are things in the
world that make it impossible to do anything but the correct action in the correct way. A
simple example is a jigsaw puzzle, where the pieces only fit together in one way. Here the
physical constraints of the design guide the user to complete the task.

6. Design for error. To err is human, so anticipate the errors the user could make and design
recovery into the system.

7. When all else fails, standardize. If there are no natural mappings then arbitrary mappings
should be standardized so that users only have to learn them once. It is this standardization
principle that enables drivers to get into a new car and drive it with very little difficulty – key
controls are standardized. Occasionally one might switch on the indicator lights instead of the
windscreen wipers, but the critical controls (accelerator, brake, clutch, steering) are always
the same.

EVALUATION TECHNIQUES

• Evaluation

– tests usability and functionality of system

– occurs in laboratory, field and/or in collaboration with users

– evaluates both design and implementation

– should be considered at all stages in the design life cycle

Goals of Evaluation

• assess extent of system functionality

• assess effect of interface on user

• identify specific problems

Types of evaluation

• Depends on what criteria are used for classification.

• Evaluation setting

– Laboratory based

• Rigorously planned

• Controlled

– Field study

• Conducted in real situations

• Typically less well controlled

• Data obtained

– Quantitative evaluation: typically objective

– Qualitative evaluation: typically subjective

• Context of the evaluation

– Formative evaluation

• Linked into design process

• Guides design by providing feedback

– Summative evaluation

• After the product has been developed

• Full assessment of finished product

Evaluation techniques

• Heuristic evaluation

• Focus group

• Cognitive walkthrough

• Questionnaire

• Interview

• Think aloud

• Eye tracking

Evaluation techniques

• Which technique(s) to use?

– Depends on testing purposes

– Depends on the stage in the development cycle

– Depends on resources available

• E.g. time, availability or expertise & equipment, access to users

– Can be used in combination

Usability evaluation

• Analytic inspection:

– Heuristic Evaluation

• Principles, Guidelines

– Cognitive walkthroughs

• Based on task scenarios

• Empirical evaluation:

– Usability Test

• Observation, problem identification

– Controlled Experiment

• Formal controlled scientific experiment

• Comparisons, statistical analysis

COGNITIVE MODELS

Cognitive models represent users of interactive systems.
 Hierarchical models represent a user‘s task and goal structure.

 Linguistic models represent the user–system grammar.

 Physical and device models represent human motor skills.

 Cognitive architectures underlie all of these cognitive models.

GOAL AND TASK HIERARCHIES

To achieve this goal we divide it into several subgoals, say gathering the data

together, producing the tables and histograms, and writing the descriptive material.

Concentrating on the data gathering, we decide to split this into further subgoals: find the

names of all introductory HCI textbooks and then search the book sales database for these

books. Similarly, each of the other subgoals is divided up into further subgoals, until some

level of detail is found at which we decide to stop. We thus end up with a hierarchy of goals

and subgoals.

We can go on decomposing tasks until we get down to the individual hand and eye

movements of the user, or we can stop at a more abstract level. Where do we start? In a

similar way, we can start our analyses at different points in the hierarchy of goals. At the

extreme we could extend our analysis to larger and larger goals: ‗light hob‘ is a subgoal of

‗boil peas‘ and so on to goals such as ‗have my dinner‘, ‗feed‘ and ‗stay alive‘.

These two questions are issues of granularity, and both of the methods described below leave

this to some extent in the hands of the designer. Different design issues demand different

levels of analysis. However, both methods operate at a relatively low level; neither would

attempt to start with such an abstract goal as ‗produce a report‘ which will involve real

creativity and difficult problem solving. Instead they confine themselves to more routine

learned behavior. This most abstract task is referred to as the unit task. The unit task does not

require any problem-solving skills on the part of the user, though it frequently demands quite

sophisticated problem-solving skills on the part of the designer to determine them. What do

we do when there are several ways of solving a problem, or if the solutions to two subgoals

UNIT III

MODELS AND THEORIES

Cognitive models –Socio-Organizational issues and stake holder requirements –

Communication and collaboration models-Hypertext, Multimedia and WWW.

interact? Users will often have more than one way to achieve a goal and there must be some

way of representing how they select between competing solutions.

GOMS

The GOMS model of Card, Moran and Newell is an acronym for Goals, Operators, Methods

and Selection

Goals These are the user‘s goals, describing what the user wants to achieve. GOMS the goals

are taken to represent a ‗memory point‘ for the user, from which he can evaluate what should

be done and to which he may return should any errors occur.

Operators These are the lowest level of analysis. They are the basic actions that the user

must perform in order to use the system. They may affect the system (for example, press the

‗X‘ key) or only the user‘s mental state (for example, read the dialog box). There is still a

degree of flexibility about the granularity of operators; we may take the command level

‗issue the SELECT command‘ or be more primitive: ‗move mouse to menu bar, press center

mouse button .

Methods There are typically several ways in which a goal can be split into subgoals. For

instance, in a certain window manager a currently selected window can be closed to an icon

either by selecting the ‗CLOSE‘ option from a pop-up menu, or by hitting the ‗L7‘ function

key. In GOMS these two goal decompositions are referred to as methods, so we have the

CLOSE-METHOD and the L7-METHOD:

GOAL: ICONIZE-WINDOW

. [select GOAL: USE-CLOSE-METHOD

. . MOVE-MOUSE-TO-WINDOW-HEADER

. . POP-UP-MENU

. . CLICK-OVER-CLOSE-OPTION

GOAL: USE-L7-METHOD

. . PRESS-L7-KEY]

The dots are used to indicate the hierarchical level of goals. Selection From the above snippet

we see the use of the word select where the choice of methods arises. GOMS does not leave

this as a random choice, but attempts to predict which methods will be used. This typically

depends both on the particular user and on the state of the system and details about the goals.

Rule 1: Use the CLOSE-METHOD unless another rule applies.

Rule 2: If the application is ‗blocks‘ use the L7-METHOD.

The goal hierarchies described in a GOMS analysis are almost wholly below the level of the

unit task defined earlier. A typical GOMS analysis would therefore consist of a single high-

level goal, which is then decomposed into a sequence of unit tasks, all of which can be

further decomposed down to the level of basic operators:

GOAL: EDIT-MANUSCRIPT

GOAL: EDIT-UNIT-TASK repeat until no more unit tasks The goal decomposition between

the overall task and the unit tasks would involve detailed understanding of the user‘s

problem-solving strategies and of the application domain.

Cognitive complexity theory

Cognitive complexity refer to the number of mental structures an individual uses, how

abstract they are and how they interact to shape his discernment or an individual difference

variable linked with a wide range of communication skills and associated abilities.

Individuals with high cognitive complexity have the capacity to analyze a situation to discern

various constituent elements and explore connections and possible relationships among the

elements. These individuals think in a multidimensional way. The assumption of the

complexity theory is that the more an event can be differentiated and parts considered in

novel relationships, the more sophisticated the response and successful the solution. Whereas

less complex individuals can be trained to understand a complicated set of detailed

differentiations for a specific context, highly complex individuals are highly flexible in

creating distinctions in new situations.

Individuals with high cognitive complexity are open to new information, attracted to other

individuals of high complexity, highly flexibility, socially influential, problem solvers,

strategic planners, highly creative, effective communicators and generally good leaders.

Problems and extensions of goal hierarchies

The formation of a goal hierarchy is largely a post hoc technique and runs a very real risk

of being defined by the computer dialog rather than the user. One way to rectify this is to produce

a goal structure based on pre-existing manual procedures and thus obtain a natural hierarchy .

GOMS defines its domain to be that of expert use, and thus the goal structures that are important

are those which users develop out of their use of the system.the conceptual framework of goal

hierarchies and user goal stacks can be used to express interface issues, not directly addressed by

the notations above. For instance, we can use this to examine in more detail the closure problem

with early automated teller machines (ATMs) mentioned in the Design Focus box These early

ATMs gave the customers the money before returning their cards. Unfortunately, this led to many

customers leaving their cards behind. This was despite on-screen messages telling them to wait.

This is referred to as a problem of closure. The

user‘s principal goal is to get money; when that goal is satisfied, the user does not complete

or close the various subtasks which still remain open:

GOAL: GET-MONEY

. GOAL: USE-ATM

. . INSERT-CARD

. . ENTER-PIN

. . ENTER-AMOUNT

. . COLLECT-MONEY

<< outer goal now satisfied goal stack popped >>

. . COLLECT-CARD – subgoal operators missed

LINGUISTIC MODELS

The user‘s interaction with a computer is often viewed in terms of a language, so it is

not surprising that several modeling formalisms have developed centered around this concept.

BNF grammars are frequently used to specify dialogs.

The models here, although similar in form to dialog design notations, have been proposed

with the intention of understanding the user‘s behavior and analyzing the cognitive difficulty

of the interface.

BNF

Representative of the linguistic approach is Reisner‘s use of Backus–Naur Form (BNF) rules

to describe the dialog grammar . This views the dialog at a purely syntactic level, ignoring the

semantics of the language. BNF has been used widely to specify the syntax of computer

programming languages, and many system dialogs can be described easily using BNF rules.

For example, imagine a graphics system that has a line-drawing function. To select the

function the user must select the ‗line‘ menu option. The line-drawing function allows the

user to draw a polyline, that is a sequence of line arcs between points. The user selects the

points by

clicking the

mouse

button in the

drawing

area. The

user

double clicks to indicate the last point of the polyline.

The ames in the description are of two types: non-terminals, shown in lower case, and

terminals, shown in upper case. Terminals represent the lowest level of user behavior, such as

pressing a key, clicking a mouse button or moving the mouse. Non-terminals are higher-level

abstractions. The non-terminals are defined in terms of other non-terminals and terminals by

a definition of the form name ::= expression The ‗::=‘ symbol is read as ‗is defined as‘. Only

non-terminals may appear on the left of a definition. The right-hand side is built up using two

operators ‗+‘ (sequence) and ‗|‘ (choice). For example, the first rule says that the non-

terminal draw-line is defined to be select-line followed by choose-points followed by

lastpoint. All of these are non-terminals, that is they do not tell us what the basic user actions

are. The second rule says that select-line is defined to be position mouse (intended to be over

the ‗line‘ menu entry) followed by CLICK-MOUSE. This is our first terminal and represents

the actual clicking of a mouse.

Position-mouse is, we look at the last rule. This tells us that there are two possibilities for

position-mouse (separated by the ‗|‘ symbol). One option is that position-mouse is empty – a

special symbol representing no action. That is, one option is not to move the mouse at all.

The other option is to doa MOVE-MOUSE action followed by position-mouse. This rule is

recursive, and this second position-mouse may itself either be empty or be a MOVE-MOUSE

action followed by position-mouse, and so on. That is, position-mouse may be any number of

MOVE-MOUSE actions whatsoever. Similarly, choose-points is defined recursively, but this

time it does not have the option of being empty. It may be one or more of the non-terminal

choose-one which is itself defined to be (like select-line) position-mouse followed by

CLICK-MOUSE.

The BNF description of an interface can be analyzed in various ways. One measure is to

count the number of rules. The more rules an interface requires to use it, the more

complicated it is. This measure is rather sensitive to the exact way the interface is described.

For example, we could have replaced the rules for choose points and choose-one with the

single definition choose-points ::= position-mouse + CLICK-MOUSE | position-mouse +

CLICK-MOUSE + choose-points

Task–action grammar

Measures based upon BNF have been criticized as not ‗cognitive‘ enough. They ignore the

advantages of consistency both in the language‘s structure and in its use of command names

and letters. Task–action grammar (TAG)

THE CHALLENGE OF DISPLAY-BASED SYSTEMS

hierarchical and grammar-based techniques were initially developed when most interactive

systems were command line, or at most, keyboard and cursor based. There are significant

worries, therefore, about how well these approaches can generalize to deal with more modern

windowed and mouse-driven interfaces. Pressing a cursor key is a reasonable lexeme, but

moving a mouse one pixel is less sensible. In addition, pointer-based dialogs are more display

oriented. Clicking a cursor at a particular point on the screen has a meaning dependent on the

current screen contents. This problem can be partially resolved by regarding operations such

as ‗select region of text‘ or ‗click on quit button‘ as the terminals of the grammar. If this

approach is taken, the detailed mouse movements and parsing of mouse events in the context

of display information (menus, etc.) are abstracted away. Goal hierarchy methods have

different problems, as more display-oriented systems encourage less structured methods for

goal achievement. Instead of having well-defined plans, the user is seen as performing a more

exploratory task, recognizing fruitful directions and backing out of others. Typically, even

when this

exploratory style is used at one level,

WRITE_LETTER

. FIND_SIMILAR_LETTER

. COPY_IT

. EDIT_COPY

PHYSICAL AND DEVICE MODELS

Keystroke-level model

The human motor system is well understood. KLM (Keystroke-Level Model) uses

this understanding as a basis for detailed predictions about user performance. It is aimed at

unit tasks within interaction – the execution of simple command sequences, typically taking

no more than 20 seconds. Examples of this would be using a search and replace feature, or

changing the font of a word. It does not extend to complex actions such as producing a

diagram. The assumption is that these more complex tasks would be split into subtasks (as in

GOMS) before the user attempts to map them into physical actions.

The task is split into two phases:

Acquisition of the task, when the user builds a mental representation of the task;

Execution of the task using the system‘s facilities.

During the acquisition phase, the user will have decided how to accomplish the task

using the primitives of the system, and thus, during the execution phase, there is no high-level

mental activity – the user is effectively expert. KLM is related to the GOMS model, and can

be thought of as a very low-level GOMS model where the method is given.

The model decomposes the execution phase into five different physical motor operators, a

mental operator and a system response operator:

K Key stroking, actually striking keys, including shifts and other modifier keys.

B Pressing a mouse button.

P Pointing, moving the mouse (or similar device) at a target.

H Homing, switching the hand between mouse and keyboard.

D Drawing lines using the mouse.

M Mentally preparing for a physical action.

R System response which may be ignored if the user does not have to wait for it, as in copy

typing.

The execution of a task will involve interleaved occurrences of the various operators. For

instance, imagine we are using a mouse-based editor. If we notice a single character error we

will point at the error, delete the character and retype it, and then return to our previous

typing point. This is decomposed as follows:

1. Move hand to mouse H[mouse]

2. Position mouse after bad character PB[LEFT]

3. Return to keyboard H[keyboard]

4. Delete character MK[DELETE]

5. Type correction K[char]

6. Reposition insertion point H[mouse]MPB[LEFT]

COGNITIVE ARCHITECTURES

The concept of taking a problem and solving it by divide and conquer using subgoals

is central to GOMS. CCT assumes the distinction between long- and short-term memory,

with production rules being stored in long-term memory and ‗matched‘ against the contents

of short-term (or working) memory to determine which ‗fire‘. The values for various motor

and mental operators in KLM were based on the Model Human Processor (MHP) architecture

of Card, Moran and Newell. Another common assumption, which we have not discussed in

this chapter, is the distinction between linguistic levels – semantic, syntactic and lexical – as

an architectural model of the user‘s understanding.

The problem space model Rational behavior is characterized as behavior that is

intended to achieve a specific goal. This element of rationality is often used to distinguish

between intelligent and machine-like behavior. In the field of artificial intelligence (AI), a

system exhibiting rational behavior is referred to as a knowledge-level system. A knowledge-

level system contains an agent behaving in an environment. The agent has knowledge about

itself and its environment, including its own goals. It can perform certain actions and sense

information about its changing environment. As the agent behaves in its environment, it

changes the environment and its own knowledge. We can view the overall behavior of the

knowledge-level system as a sequence of environment and agent states as they progress in

time. The goal of the agent is characterized as a preference over all possible sequences of

agent/environment states. The search proceeds by moving from one state to another possible

state by means of operations or actions, the ultimate goal of which is to arrive at one of the

desired states. This very general model of computation is used in the ordinary task of the

programmer. Once she has identified a problem and a means of arriving at the solution to the

problem (the algorithm), the programmer then represents the problem and algorithm in a

programming language, which can be executed on a machine to reach the desired state. The

architecture of the machine only allows the definition of the search or problem space and the

actions that can occur to traverse that space. Termination is also assumed to happen once the

desired state is reached.

The new computational model is the problem space model, based on the problem-

solving work of Newell and Simon at Carnegie–Mellon University. A problem space consists

of a set of states and a set of operations that can be performed on the states. Behavior in a

problem space is a two-step process. First, the current operator is chosen based on the current

state and then it is applied to the current state to achieve the new state. The problem space

must represent rational behavior, and so it must characterize the goal of the agent. A problem

space represents a goal by defining the desired states as a subset of all possible states. Once

the initial state is set, the task within the problem space is to find a sequence of operations

that form a path within the state space from the initial state to one of the desired states,

whereupon successful termination occurs.

We can highlight four different activities that occur within a problem space: goal

formulation, operation selection, operation application and goal completion. The relationship

between these problem space processes and knowledge-level activity is key. Perception that

occurs at the knowledge level is performed by the goal formulation process, which creates the

initial state based on observations of the external environment. Actions at the knowledge

level are operations in the problem space which are selected and applied. The real knowledge

about the agent and its environment and goals is derived from the state/operator information

in the problem space. Because of the goal formulation process, the set of desired states

indicates the knowledge-level goal within the problem space. The operation selection process

selects the appropriate operation at a given point in time because it is deemed the most likely

to transform the state in the problem space to one of the desired states; hence rational

behavior is implied.

Interacting cognitive subsystems (ICS) provides a model of perception, cognition and

action, but unlike other cognitive architectures, it is not intended to produce a description of

the user in terms of sequences of actions that he performs. ICS provides a more holistic view

of the user as an information-processing machine. The emphasis is on determining how easy

particular procedures of action sequences become as they are made more automatic within

the user.

ICS attempts to incorporate two separate psychological traditions within one cognitive

architecture. On the one hand is the architectural and general-purpose information-processing

approach of short-term memory research. On the other hand is the computational and

representational approach characteristic of psycholinguistic research and AI problem-solving

literature.

The architecture of ICS is built up by the coordinated activity of nine smaller

subsystems: five peripheral subsystems are in contact with the physical world and four are

central, dealing with mental processes. Each subsystem has the same generic structure. A

subsystem is described in terms of its typed inputs and outputs along with a memory store for

holding typed information. It has transformation functions for processing the input and

producing the output and permanently stored information. Each of the nine subsystems is

specialized for handling some aspect of external or internal processing. For example, one

peripheral subsystem is the visual system for describing what is seen in the world.

SOCIO-ORGANIZATIONAL ISSUES AND STAKEHOLDER REQUIREMENTS

There are several organizational issues that affect the acceptance of technology by users and

that must therefore be considered in system design:

o systems may not take into account conflict and power relationships
o those who benefit may not do the work

o not everyone may use systems.

In addition to generic issues, designers must identify specific stakeholder requirements

within their organizational context.

 Socio-technical models capture both human and technical requirements.

 Soft systems methodology takes a broader view of human and organizational issues.

 Participatory design includes the user directly in the design process.

 Ethnographic methods study users in context, attempting to take an unbiased
perspective.

ORGANIZATIONAL ISSUES

Cooperation or conflict?

The term ‗computer-supported cooperative work‘ (CSCW) seems to assume that

groups will be acting in a cooperative manner. This is obviously true to some extent;even

opposing football teams cooperate to the extent that they keep (largely) within the rules of the

game, but their cooperation only goes so far. People in organizations and groups have

conflicting goals, and systems that ignore this are likely to fail spectacularly.

Imagine that an organization is already highly computerized, the different

departments all have their own systems and the board decides that an integrated information

system is needed. The production manager can now look directly at stocks when planning the

week‘s work, and the marketing department can consult the sales department‘s contact list to

send out marketing questionnaires.

The storekeeper always used to understate stock levels slightly in order to keep an

emergency supply, or sometimes inflate the quoted levels when a delivery was due from a

reliable supplier. Also, requests for stock information allowed the storekeeper to keep track

of future demands and hence plan future orders. The storekeeper has now lost a sense of

control and important sources of information. Members of the sales department are also

unhappy: their contacts are their livelihood. The last thing they want is someone from

marketing blundering in and spoiling a relationship with a customer built up over many years.

Some of these people may resort to subverting the system, keeping ‗sanitized‘ information

online, but the real information in personal files.

Changing power structures

The identification of stakeholders will uncover information transfer and power

relationships that cut across the organizational structure. Indeed, all organizations have these

informal networks that support both social and functional contacts. The official lines of

authority and information tend to flow up and down through line management.

The physical layout of an organization often reflects the formal hierarchy: each

department is on a different floor, with sections working in the same area of an office. If

someone from sales wants to talk to someone from marketing then one of them must walk to

the other‘s office. Their respective supervisors can monitor the contact.

In face-to-face conversation, the manager can easily exert influence over a

subordinate: both know their relative positions and this is reflected in the patterns of

conversation and in other non-verbal cues. Email messages lose much of this sense of

presence and it is more difficult for a manager to exercise authority. The ‗levelling‘ effect

even makes it possible for subordinates to direct messages ‗diagonally‘ across the hierarchy,

to their manager‘s peers, or, even worse, to their manager‘s manager!

The invisible worker

The ability to work and collaborate at a distance can allow functional groups to be

distributed over different sites. This can take the form of cross-functional neighbourhood

centers, where workers from different departments do their jobs in electronic contact with

their functional colleagues. If the approach in an organization is ‗management by presence‘,

that is you know someone is working because they are in the office, then there is no way a

remote worker is going to be trusted. If, on the other hand, the style is ‗management by

objectives‘, that is you know your subordinates are working because they are doing their jobs

and producing results, then remote working is not so problematical.

Who benefits?

In these systems the sender has to do work in putting information into fields

appropriately, but it is the recipient who benefits. Another example is shared calendars. The

beneficiary of the system is a manager who uses the system to arrange meeting times, but

whose personal secretary does the work of keeping the calendar up to date. Subordinates are

less likely to have secretarial support, yet must keep up the calendar with little perceived

benefit. Of course, chaos results when a meeting is automatically arranged and the

subordinates may have to rearrange commitments that have not been recorded on the system.

The manager may force use by edict or the system may simply fall into disuse. Many such

groupware systems are introduced on a ‗see if it works‘ basis,

Free rider problem

A system may still not function symmetrically, which may be a problem, particularly

with shared communication systems. One issue is the free rider problem. Take an electronic

conferencing system. If there is plenty of discussion of relevant topics then there are obvious

advantages to subscribing and reading the contributions. When considering writing a

contribution, the effort of doing so may outweigh any benefits.

The total benefit of the system for each user outweighs the costs, but for any

particular decision the balance is overturned. A few free riders in a conference system are

often not a problem, as the danger is more likely from too much activity. In addition, in

electronic conferences the patterns of activity and silence may reflect other factors such as

expertise. It is easy for the number of free riders gradually to increase and the system slide

into disuse. It is hard to enforce equal use, except by restrictive schemes such as round-robin

contributions (everyone contributes something however short). In the real world, such

problems are often solved by social pressure, and the free rider reacts to the collective

censure of the group. Increasing the visibility of participants‘ contributions might also help

these social mechanisms.

Critical mass

When telephones were only in public places, their use as a form of pervasive

interpersonal communication was limited. However, once a large number of people have

telephones in their homes it becomes worthwhile paying to have a telephone installed. In

cost/benefit terms, the early subscribers probably have a smaller benefit than the cost. Only

when the number of subscribers increases beyond the critical mass does the benefit for all

dominate the cost .

Figure: Cost/benefit of system use

The telephone was useful for subgroups before it became beneficial for all. Even

when only a small proportion of the population had personal telephones, they still formed a

significant proportion of their social group, so these cliques of use could grow gradually over

time.

Automating processes – workflow and BPR

Organizations have many such processes, and workflow systems aim to automate

much of the process using electronic forms, which are forwarded to the relevant person based

on pre-coded rules. Some workflow systems are built using special purpose groupware, often

based on a notation for describing the desired workflow.

The rigid form of a typical workflow system is an example of global structuring. The

danger with any form of global structuring is that it may conflict with or inhibit more

informal and less structured patterns of activity which also contribute to the organization‘s

free running.

A more radical approach to organizational processes is found in business process re-

engineering (BPR). Traditionally, organizations have been structured around functions: sales,

accounts, stores, manufacturing. However, the purpose of an organization can be seen in

terms of key business processes. The ordering/delivery process described above is a typical

and important example. In BPR these processes are recorded and analyzed. Problems in the

current process are noted and the whole process may be redesigned in order to make the path

of the process more efficient. For example, instead of sending an order to the accounts

department to approve, a list of customer credit limits could be given to the sales executives.

They could then check the credit rating of the customer whilst on the phone and only forward

the order to accounts if there are any unusual problems.

Evaluating the benefits

The benefits from cooperative systems, especially organization-wide systems such as

email or electronic conferencing, are in terms of job satisfaction or more fluid information

flow. Some, such as the video wall , are expected primarily to help social contact within the

organization. It may be possible to measure contentment and job satisfaction using attitude

questionnaires.

CAPTURING REQUIREMENTS

Who are the stakeholders?

A stakeholder can be defined as anyone who is affected by the success or failure of

the system. It can be useful to distinguish different categories of stakeholder, and the

following categorization from the CUSTOM approach is helpful for this:

Primary stakeholders are people who actually use the system – the end-users.

Secondary stakeholders are people who do not directly use the system, but receive output

from it or provide input to it (for example, someone who receives a report produced by the

system).

Tertiary stakeholders are people who do not fall into either of the first two categories but

who are directly affected by the success or failure of the system .Facilitating stakeholders are

people who are involved with the design, development and maintenance of the system.

The aim of the design team is to meet the needs of as many stakeholders as possible.

The reality is that usually stakeholder needs are in conflict with each other. Sometimes this

does not matter: a company is unlikely to be too concerned that its competitors‘ requirement

to maintain advantage over it is under threat by the new system.

Socio-technical models

The socio-technical systems view came about to counter this technology-centric

position, by stressing that work systems were composed of both human and machine

elements and that it was the interrelationship between these that should be central.

Socio-technical models for interactive systems are therefore concerned with technical,

social, organizational and human aspects of design. They recognize the fact that technology is

not developed in isolation but as part of a wider organizational environment. It is important to

consider social and technical issues side by side so that human issues are not overruled by

technical considerations.

The key focus of the socio-technical approach is to describe and document the impact

of the introduction of a specific technology into an organization. Methods vary but most

attempt to capture certain common elements:

 The problem being addressed: there is a need to understand why the technology is
being proposed and what problem it is intended to solve.

 The stakeholders affected, including primary, secondary, tertiary and facilitating,
together with their objectives, goals and tasks.

 The workgroups within the organization, both formal and informal.
 The changes or transformations that will be supported.

 The proposed technology and how it will work within the organization.

 External constraints and influences and performance measures.

CUSTOM methodology

CUSTOM is a socio-technical methodology designed to be practical to use in small

organizations. It is based on the User Skills and Task Match (USTM) approach, developed to

allow design teams to understand and fully document user requirements. CUSTOM focusses

on establishing stakeholder requirements: all stakeholders are considered, not just the end-

users.

It is applied at the initial stage of design when a product opportunity has been identified, so

the emphasis is on capturing requirements. It is a forms-based methodology, providing a set

of questions to apply at each of its stages.

There are six key stages to carry out in a CUSTOM analysis:

1. Describe the organizational context, including its primary goals, physical characteristics,

political and economic background.

2. Identify and describe stakeholders. All stakeholders are named, categorized (as primary,

secondary, tertiary or facilitating) and described with regard to personal issues, their role in

the organization and their job. For example, CUSTOM addresses issues such as stakeholder

motivation, disincentives, knowledge, skills, power and influence within the organization,

daily tasks and so on.

3. Identify and describe work-groups. A work-group is any group of people who work

together on a task, whether formally constituted or not. Again, work-groups are described in

terms of their role within the organization and their characteristics.

4. Identify and describe task–object pairs. These are the tasks that must be performed,

coupled with the objects that are used to perform them or to which they are applied.

5. Identify stakeholder needs. Stages 2–4 are described in terms of both the current system

and the proposed system. Stakeholder needs are identified by considering the differences

between the two. For example, if a stakeholder is identified as currently lacking a particular

skill that is required in the proposed system then a need for training is identified.

6. Consolidate and check stakeholder requirements. Here the stakeholder needs list is checked

against the criteria determined at earlier stages.

Open System Task Analysis (OSTA)

OSTA attempts to describe what happens when a technical system is introduced into an

organizational work environment. Like CUSTOM, OSTA specifies both social and technical

aspects of the system. However, whereas in CUSTOM these aspects are framed in terms of

stakeholder perspectives, in OSTA they are captured through a focus on tasks.

OSTA has eight main stages:

1. The primary task which the technology must support is identified in terms of users‘ goals.

2. Task inputs to the system are identified. These may have different sources and forms that

may constrain the design.

3. The external environment into which the system will be introduced is described, including

physical, economic and political aspects.

4. The transformation processes within the system are described in terms of actions

performed on or with objects.

5. The social system is analyzed, considering existing work-groups and relationships within

and external to the organization.

6. The technical system is described in terms of its configuration and integration with other

systems.

7. Performance satisfaction criteria are established, indicating the social and technical

requirements of the system.

8. The new technical system is specified.

Soft systems methodology

Soft systems methodology (SSM) arises from the same tradition but takes a view of the

organization as a system of which technology and people are components. There is no

assumption of a particular solution: the emphasis is rather on understanding the situation

fully.

Figure: The seven stages of soft systems methodology

Participatory design

Participatory design is a philosophy that encompasses the whole design cycle. It is

design in the workplace, where the user is involved not only as an experimental subject or as

someone to be consulted when necessary but as a member of the design team. Users are

therefore active collaborators in the design process, rather than passive participants whose

involvement is entirely governed by the designer. The argument is that users are experts in

the work context and a design can only be effective within that context if these experts are

allowed to contribute actively to the design process. In addition, introduction of a new system

is liable to change the work context and organizational processes, and will only be accepted if

these changes are acceptable to the user. Participatory design therefore aims to refine system

requirements iteratively through a design process in which the user is actively involved.

Participatory design has three specific characteristics. It aims to improve the work

environment and task by the introduction of the design. This makes design and evaluation

context or work oriented rather than system oriented. Secondly, it is characterized by

collaboration: the user is included in the design team and can contribute to every stage of the

design. Finally, the approach is iterative: the design is subject to evaluation and revision at

each stage.

The participatory design process utilizes a range of methods to help convey

information between the user and designer. They include

Brainstorming This involves all participants in the design pooling ideas. This is informal

and relatively unstructured although the process tends to involve ‗on the- structuring of the

ideas as they materialize.

Storyboarding : Storyboards can be used as a means of describing the user‘s day-to-day

activities as well as the potential designs and the impact they will have.

Workshops These can be used to fill in the missing knowledge of both user and designer and

provide a more focussed view of the design. They may involve mutual enquiry in which both

parties attempt to understand the context of the design from each other‘s point of view. The

designer questions the user about the work environment in which the design is to be used, and

the user can query the designer on the technology and capabilities that may be available. This

establishes common ground between the user and designer and sets the foundation for the

design that is to be produced. The use of role play can also allow both user and designer to

step briefly into one another‘s shoes.

Pencil and paper exercises These allow designs to be talked through and evaluated with

very little commitment in terms of resources. Users can ‗walk through‘ typical tasks using

paper mock-ups of the system design. This is intended to show up discrepancies between the

user‘s requirements and the actual design as proposed. Such exercises provide a simple and

cheap technique for early assessment of models.

Effective Technical and Human Implementation of Computer-based Systems (ETHICS)

ETHICS methodology, stakeholders are included as participants in the decision making

process. ETHICS considers the process of system development as one of managing change:

conflicts will occur and must be negotiated to ensure acceptance and satisfaction with the

system. If any party is excluded from the decision-making process then their knowledge and

contribution is not utilized and they are more likely to be dissatisfied. However, participation

is not always complete. Mumford recognizes three levels of participation:

Consultative – the weakest form of participation where participants are asked for their

opinions but are not decision makers.

Representative – a representative of the participant group is involved in the decision making

process.

Consensus – all stakeholders are included in the decision-making process.

The usual practice is that design groups are set up to include representatives from each

stakeholder group and these groups make the design decisions, overseen by a steering

committee of management and employee representatives.

1. Make the case for change. Change for its own sake is inappropriate. If a case cannot be

made for changing the current situation then the process ends and the system remains as it is.

2. Identify system boundaries. This focusses on the context of the current system and its

interactions with other systems, in terms of business, existing technology, and internal and

external organizational elements. How will the change impact upon each of these?

3. Describe the existing system, including a full analysis of inputs and outputs and the

various other activities supported, such as operations, control and coordination.

4. Define key objectives, identifying the purpose and function of each area of the

organization.

5. Define key tasks: what tasks need to be performed to meet these objectives?

6. Define key information needs, including those identified by analysis of the existing

system and those highlighted by definition of key tasks.

7. Diagnose efficiency needs, those elements in the system that cause it to underperform or

perform incorrectly. If these are internal they can be redesigned out of the new system; if they

are external then the new system must be designed to cope with them.

8. Diagnose job satisfaction needs, with a view to increasing job satisfaction where it is low.

9. Analyze likely future changes, whether in technology, external constraints (such as legal

requirements), economic climate or stakeholder attitudes. This is necessary to ensure that the

system is flexible enough to cope with change.

10. Specify and prioritize objectives based on efficiency, job satisfaction and future needs.

All stakeholders should be able to contribute here as it is a critical stage and conflicting

priorities need to be negotiated. Objectives are grouped as either primary (must be met) or

secondary

Ethnographic methods

Ethnography is based on very detailed recording of the interactions between people

and between people and their environment. It has a special focus on social relationships and

how they affect the nature of work. The ethnographer does not enter actively into the

situation, and does not see things from a particular person‘s viewpoint. However, an aim is to

be encultured, to understand the situation from within its own cultural framework. Culture

here means that of the particular workgroup or organization, rather than that of society as a

whole. Ethnographers try to take an unbiased and open-ended view of the situation. They

report and do not like to speculate, so it is often unclear how well their approach can

contribute to the design of new systems.

Contextual inquiry

Contextual inquiry has much in common with the ethnographic tradition: it studies the

user in context, trying to capture the reality of his work culture and practice. However, it is

also an approach rooted in practice and it differs in a number of significant ways from pure

ethnographic study: the intention is to understand and to interpret the data gathered, and

rather than attempting to take an open-ended view, the investigator acknowledges and

challenges her particular focus. In addition, the explicit aim is to design a new system,

whereas in a pure ethnographic study, it would be open ended.

The model of contextual inquiry is of the investigator being apprenticed to the user to

learn about his work. Interviews take place in the workplace so that the objects, artifacts and

relationships of the work can be better understood. Examples of work are collected and both

verbal and non-verbal communication is studied. The idea is to be as comprehensive in the

data gathering as possible and to be concrete. Another central notion of contextual inquiry is

that of partnership: the user is the expert in the workplace and is therefore encouraged to lead

the investigation. the investigator is not a passive observer. Her objective is to gain a shared

understanding of how the work happens and, to do so, she questions meaning and offers

interpretations of what she observes. The aim is to draw out the implications of comments

and actions and understand (rather than assume) what they really mean. In order to do this

honestly and effectively the investigator must know her focus – her pre-existing beliefs and

assumptions about the situation – and be prepared to challenge and adjust them in the face of

new information.

A number of models of the work are developed to capture what is important in the

user’s work situation:

The sequence model elaborates the steps required to complete a specific task, as well as the

triggers that initiate that sequence of steps.

 The physical model maps the physical work environment and how it impacts upon
work practice, for example, an office plan showing where different work activities
happen.

 The flow model shows the lines of coordination and communication between the user
and other participants within and outside the workplace.

 The cultural model reflects the influences of work culture and policy and shows the
scope of these influences. This may include official or unofficial codes of behavior,
common expectations (which may or may not be explicit) and value systems.

 The artifact model describes the structure and use of a particular artifact within the
work process.

COMMUNICATION AND COLLABORATION MODELS

All computer systems, single-user or multi-user, interact with the work-groups and

organizations in which they are used.

 We need to understand normal human–human communication:

– face-to-face communication involves eyes, face and body

– conversation can be analyzed to establish its detailed structure.

 This can then be applied to text-based conversation, which has:

– reduced feedback for confirmation

– less context to disambiguate utterances

– slower pace of interaction but is more easily reviewed.
 Group working is more complex than that of a single person:

– it is influenced by the physical environment

– experiments are more difficult to control and record

– field studies must take into account the social situation.

FACE-TO-FACE COMMUNICATION

Face-to-face contact is the most primitive form of communication – primitive, that is,

in terms of technology.

Transfer effects and personal space

When we come to use computer-mediated forms of communication, we carry forward

all our expectations and social norms from face-to-face communication. People are very

adaptable and can learn new norms to go with new media. However, success with new media

is often dependent on whether the participants can use their existing norms. The rules of face-

to-face conversation are not conscious, so, when they are broken, we do not always recognize

the true problem. We may just have

feeling of unease, or we may feel that our colleague has been rude.

Eye contact and gaze

Normal conversation uses eye contact extensively, if not as intently. Our eyes tell us

whether our colleague is listening or not; they can convey interest, confusion or boredom.

Sporadic direct eye contact (both looking at one another‘s eyes) is important in establishing a

sense of engagement and social presence. People who look away when you look at them may

seem shifty and appear to be hiding something. Furthermore, relative frequency of eye

contact and who ‗gives way‘ from direct eye contact is closely linked to authority and power.

Gestures and body language

When the participants are in the same room, the existence of electronic equipment can

interfere with the body language used in normal face-to-face communication. The fact that

attention is focused on keyboard and screen can reduce the opportunities for eye contact.

Also, large monitors may block participants‘ views of one another‘s bodies, reducing their

ability to interpret gestures and body position. Most computer-supported meeting rooms

recess monitors into the desks to reduce these problems.

Back channels, confirmation and interruption

It is easy to think of conversation as a sequence of utterances: A says something, then

B says something, then back to A. This process is called turn-taking and is one of the

fundamental structures of conversation. However, each utterance is itself the result of

intricate negotiation and interaction. Consider the following transcript:

Alison: Do you fancy that film . . . er . . . ‗The Green‘ um . . . it starts at eight.

Brian: Grea

The nods, grimaces, shrugs of the shoulder and small noises are called back channels. They

feed information back from the listener to the speaker at a level below the turn-taking of the

conversation. The existence of back channels means that the speaker can afford to be slightly

vague, adding details until it is obvious that the listener understands. Imagine making no

response as someone talks to you, no little ‗yes‘es, no nods or raised eyebrows. You could

answer questions and speak in turn, but not use back channels. It is likely that your colleague

would soon become very uncomfortable, possibly rambling on with ever more detailed

explanations, looking for some sign of understanding:

Do you fancy that film . . . er . . . ‘The Green’ um . . . the one with Charles Dermot in

. . . you know with that song, er and the black cat on the poster . . . uhh

Turn-taking

Starting to speak in the middle of someone‘s utterance can be rude, but one can say

something like ‗well uh‘ accompanied by a slight raising of the hands and a general tensing

of the body and screwing of the eyes. This tells the speaker that you would like to interrupt,

allowing a graceful transition. In this case, the listener requested the floor. Turn-taking is the

process by which the roles of speaker and listener are exchanged. Back channels are often a

crucial part of this process.

The role of ‗um‘s and ‗ah‘s is very important. They can be used by either participant

during the gap to claim the turn. So, if Brian wanted to respond in the middle of the utterance,

but had not yet framed his utterance, he might begin ‗um the one . . .‘. As it was, Brian did

not respond, so Alison starts ‗er‘ which says to Brian ‗I‘m going to continue, but I‘m

thinking‘. Alternatively, Alison could have started to ‗er‘ as soon as she had said the word

‗film‘. This would have told Brian not to interrupt. These turn-offering gaps are just the

places where the speaker expects some back channel response even if no turn exchange takes

place. A total lack of response will be taken, depending on the circumstances, as assent to the

speaker, or perhaps as lack of understanding.

CONVERSATION

Conversational analyses are sociological and psychological understandings of conversation.

Basic conversational structure

Imagine we have a transcript of a conversation, recalling from that the production of such a

transcript is not a simple task. For example, a slightly different version of Alison and Brian‘s

conversation may look like this:

Alison: Do you fancy that film?

Brian: The uh (500 ms) with the black cat – ‗The Green whatsit‘?

Alison: Yeah, go at uh . . . (looks at watch – 1.2 s) . . . 20 to?

This transcript is quite heavily annotated with the lengths of pauses and even Alison‘s action

of looking at her watch. it certainly lacks the wealth of gesture and back channel activity that

were present during the actual conversation.

Transcripts may be less well documented, perhaps dropping the pause timings, or more

detailed, adding more actions, where people were looking and some back channelling. Whilst

thinking about the structure of conversation, the transcript above is sufficient.

The most basic conversational structure is turntaking. On the whole we have an alternating

pattern: Alison says something, then Brian, then Alison again. The speech within each turn is

called an utterance. There can be exceptions to this turn-taking structure even within two-

party conversation.

Context

Take a single utterance from a conversation, and it will usually be highly ambiguous if not

meaningless: ‗the uh with the black cat – ―The Green whatsit‖‘. Each utterance and each

fragment of conversation is heavily dependent on context, which must be used to

disambiguate the utterance. We can identify two types of context within conversation:

internal context – dependence on earlier utterances. For example, when Brian says ‗masses‘

in the last transcript, this is meaningful in the light of Alison‘s question ‗and lots of

chocolate?‘. This in turn is interpreted in the context of Brian‘s original offer of gateau.

external context – dependence on the environment. For example, if Brian had said simply

‗do you want one?‘, this could have meant a slice of gateau, or, if he had been holding a

bottle, a glass of wine, or, if accompanied by a clenched fist, a punch on the nose.

Topics, focus and forms of utterance

Alison began the conversation with the topic of roses. Brian shifts to the related, but distinct,

topic of greenfly. However, for some reason Alison has missed this shift in focus, so when

she makes her second utterance, her focus and Brian‘s differ, leading to the breakdown in

communication. The last two utterances are a recovery which re-establishes a shared dialog

focus.

Breakdown and repair

When Alison and Brian were talking about Brian‘s roses, they failed to maintain a shared

focus. Brian

tried to interpret Alison‘s utterance in terms of his focus and failed, or rather the meaning in

that focus was unusual – greenfly are the symbol of the English summer? He then questioned

Alison and the confusion was cleared. This correction after breakdown is called repair.

Speech act theory

Speech act theory, has been both influential and controversial in CSCW. Not only is it an

analytic technique, but it has been used as the guiding force behind the design of a

commercial system, The basic premise of speech act theory is that utterances can be

characterized by what they do. If you say ‗I‘m hungry‘, this has a certain propositional

meaning – that you are feeling hungry. However, depending on who is talking and to whom,

this may also carry the meaning ‗get me some food‘ – the intent of the statement is to evoke

an action on the part of the hearer. Speech act theory concerns itself with the way utterances

interact with the actions of the participants. The act of saying the words changes the state of

the couple. Other acts include promises by the speaker to do something and requests that the

hearer do something. These basic acts are called illocutionary points.

Individual speech acts can contribute to a conversation. The basic structure of

conversations can then be seen as instances of generic conversations. One example of such a

generic structure is a conversation for action (CfA).

 TEXT-BASED COMMUNICATION

Text-based communication is familiar to most people, in that they will have written

and received letters. However, the style of letter writing and that of face-to face

communication are very different. The text-based communication in groupware systems is

acting as a speech substitute, and, thus, there are some problems adapting between the two

media.

There are four types of textual communication in current groupware:

discrete – directed message as in email. There is no explicit connection between different

messages, except in so far as the text of the message refers to a previous one.

linear – participants‘ messages are added in (usually temporal) order to the end of a single

transcript.

non-linear – when messages are linked to one another in a hypertext fashion.

spatial – where messages are arranged on a two-dimensional surface.

Back channels and affective state

One of the most profound differences between face-to-face and text-based

communication is the lack of fine-grained channels. Much of the coordination of face-to-face

conversation depends on back channels and interpretation of the listener‘s expressions. Text-

based communication loses these back channels completely. speaker would pause to seek

back channel confirmation or to offer the floor, the text ‗speaker‘ must either continue

regardless, or finish the message, effectively passing the turn.

These normally convey the affective state of the speaker (happy, sad, angry,

humorous) and the illocutionary force of the message (an important and urgent demand or a

deferential request). Email users have developed explicit tokens of their affective state by the

use of ‗flaming‘ and ‗smilies‘, using punctuation and acronyms; for example:

:-) – smiling face, happy

:-(– sad face, upset or

angry ;-) – winking face,

humorous LOL – laughing

out loud.

Grounding constraints

This grounding process is linked strongly with the types of channels through which the

conversants communicate. Clark and Brennan describe the properties of these channels in

terms of grounding constraints. These include:

Co-temporality – an utterance is heard as soon as it is said (or typed);

simultaneity – the participants can send and receive at the same time;

sequence – the utterances are ordered.

These are all constraints which are weaker in text-based compared with face-to-face

interaction.

In a text-based system, different participants can compose simultaneously, but they lack

cotemporality. As we saw, even if the messages appear as they are produced, they will not be

read in real time. In addition, the messages may only be delivered when complete and even

then may be delayed by slow communications networks.

Turn-taking

In a pair of participants, turn-taking is simple; first one person says something, then

the other. The only problem is deciding exactly when the exchange should happen. With

three or more participants, turn-taking is more complex. They must decide who should have

the next turn. This is resolved by face-to-face groups in a number of ways. First, the

conversation may, for a period, be focused on two of the parties, in which case normal two-

party turn-taking holds. Secondly, the speaker may specifically address another participant as

the utterance is finished, either implicitly by body position, or explicitly: ‗what do you think

Alison?‘ Finally, the next speaker may be left open, but the cotemporality of the audio

channel allows the other participants to negotiate the turn. Basically, whoever speaks first, or

most strongly, gets in. These mechanisms are aided by back channels, as one of the listeners

may make it clear that she wants to speak. In this case, either the speaker will explicitly pass

the turn (the second option above), or at least the other listeners are expecting her to speak. In

addition, the movement between effective two-party conversation (the first option) and open

discussion will be mediated by back channel messages from the other participants.

In an unstructured text-based conversation the third option is not available, nor, of

course, are the back channels. Paired conversation is quite common and the second option,

explicitly naming the next speaker, is possible. This naming is not particularly natural unless

a direct question is being asked. In both options, the absence of back channels makes it

difficult for another listener to interrupt the conversation. Some systems use more structured

mechanisms to get round these problems, perhaps having a round-robin protocol (each

participant ‗speaks‘ in turn) or having a queue of turn-requests. Whether the strictures of

such mechanisms are worse than the problems of occasional breakdown depends very much

on the context and is a matter of opinion.

Context and deixis

Utterances are highly ambiguous and are only meaningful with respect to external

context, the state of the world, and internal context, the state of the conversation. Both of

these are problems in text-based communication.

The very fact that the participants are not co-present makes it more difficult to use

external context to disambiguate utterances. This is why many groupware systems strive so

hard to make the participants‘ views the same; that is, to maintain WYSIWIS (‗what you see

is what I see‘).

Whatever the means of direct communication, remote participants have difficulty in using

deictic reference. They cannot simply say ‗that one‘, but must usually describe the referrant: ‗the

big circle in the corner‘. If their displays are not WYSIWIS then they must also ensure that their

colleague‘s display includes the object referred to and that the description is unambiguous.

Asynchronous participants have even more problems with deixis as there is no opportunity for

their colleagues to clarify a reference (without extremely lengthy exchanges). The objects

referred to by a message may have changed by the time someone comes to read it! Similarly,

group pointers are not really an option, but one can use methods of linking the conversation to its

context, either by embedding it within the objects as annotations or by having hypertext links

between the conversation and the object. The trouble does not end with external context; there are

also problems with deictic reference to internal context. In speech, the context is intimately

connected to linear sequence and adjacency. As we have seen, even in linear text transcripts,

overlap breaks the strict sequentiality of the conversation, and thus causes problems with

indexicals and with context in general.

1. Alison: Brian‘s got some lovely roses.

2. Brian: I‘m afraid they‘re covered in greenfly.

3. Clarise: I‘ve seen them, they‘re beautiful.

Fig: Hypertext conversation structure

Pace and granularity

The term pace is being used in a precise sense above. Imagine a message being

composed and sent, the recipient reading (or hearing) the message and then composing and

sending a reply. The pace of the conversation is the rate of such a sequence of connected

messages and replies. Clearly, as the pace of a conversation reduces, there is a tendency for

the granularity to increase. To get the same information across, you must send more per

message. However, it is not as easy as that. We have seen the importance of feedback from

listener to speaker in clarifying meaning and negotiating common ground. Even most

monologs are interactive in the sense that the speaker is constantly looking for cues of

comprehension in the listener. Reducing the pace of a conversation reduces its interactivity.

In a hypertext-based system one can expand several branches of a conversation tree,

but in speech or in a linear text transcript the conversation follows one branch. To overcome

these limitations, people adopt several coping strategies. The simplest strategy is just to avoid

conversation. This can be done by delegating parts of a task to the different participants. Each

participant can then perform much of the task without communication. They must still

communicate for large-scale strategic decisions, but have significantly reduced the normal

communications. Of course, this approach reduces communication by reducing collaboration.

More interesting in a cooperative work setting are two coping strategies which increase the

chunk size of messages in order to reduce the number of interactions required to complete a

task. These strategies are frequently seen in both text-based conferences and in letter writing.

The first of these coping strategies is multiplexing. Basically, the conversants hold

several conversations in parallel, each message referring to several topics. In terms of the

conversation tree, this corresponds to going down several branches at once.

Linear text vs. Hypertext

Multiplexed messages can be represented as updates to several parts of the hypertext, thus

reducing the likelihood of breakdown and lost topics. In addition, if the messages themselves

can be mini-hypertexts, then eager messages listing several possible courses of action can be

explicitly represented by the message.

Even static hypertexts, which have been carefully crafted by their authors, can be

difficult to navigate. A hypertext that is created ‗on the fly‘ is unlikely to be comprehensible

to any but those involved in its creation. Conklin and Begeman, themselves associated with

the hypertext based argumentation tool gIBIS, conclude that ‗traditional linear text provides

a continuous, unwinding thread of context.

For the asynchronous reader trying to catch up with a conversation, a linear transcript is

clearly easier, but it is precisely in more asynchronous settings where overlap in linear text is

most likely to cause confusion.

GROUP WORKING

Group behavior is more complex still as we have to take into account the dynamic

social relationships during group working. We will begin by looking at several factors which

affect group working, and then discuss the problems of studying group working .

Group dynamics

organizational relationships such as supervisor/supervisee are relatively stable, the roles and

relationships within a group may change dramatically within the lifetime of a task and even

within a single work session. For example, studies of joint authoring have found that roles

such as author, co-author and commentator change throughout the lifetime of a document.

This means that systems, such as co-authoring systems, which use a formal concept of role,

must allow these roles to change together with the socially defined roles.

A person may be an author of a book or paper, but never write the words in it, acting instead

as a source of ideas and comments. A particular case of this is the biographical story where

the individual

concerned and a professional writer co-author the book, but only the professional author

writes. A co-authoring system such as Quilt would call the non-writing author a

‗commentator‘ or a ‗reviewer‘, but not an ‗author‘. One can imagine some of the social

friction such naming will cause.

Physical layout

The designers of Capture Lab, an eight-person meeting room, considered all these

features and many other subtle effects. However, the users still had some difficulty in

adapting to the power positions in the electronic meeting room. At first sight, the electronic

meeting room is not unlike a normal conference room. If the shared screen is a whiteboard or

an overhead projector, then the most powerful position is toward the front of the room .

Managers would normally take this seat as they can then easily move to the whiteboard or

overhead projector to point out some item and draw the group‘s attention.

Figure: Meeting room layout

Distributed cognition

Traditional views talk about the movement of information between working memory and

long-term memory: it is not so difficult then to regard bits of paper, books and computer

systems as extensions to these internal memory systems. Similarly, many models of human

cognition regard the mind as a set of interacting subsystems. The step to regarding several

people as involved in joint thinking is not difficult.

HYPERTEXT, MULTIMEDIA AND THE WORLD WIDE WEB
 Hypertext allows documents to be linked in a nonlinear fashion.
 Multimedia incorporates different media: sound, images, and video.

 The world wide web is a global hypermedia system.

 Animation and video can show information that is difficult to convey statically.
 Applications of hypermedia include online help, education and e-commerce.

 Design for the World Wide Web illustrates general hypermedia design, but also has
its own special problems.

 Dynamic web content can be used for simple online demonstration

Hypertext.

•The term hypertext means certain extra capabilities imparted to normal or standard text.

•Technical documentation consists often of a collection of independent information units.

•It consists of cross references which lead to multiple searches at different places for the

reader.

•Hypertext is text which is not constrained to be linear and it contains links to other texts

which is known as hyperlinks.

•Hypertext is mostly used on World Wide Web for linking and navigating through different

web pages.

•A hypertext consists of two different parts: Anchor and link

•An anchor or node is an entry point to another document. In some cases instead of a text an

image a video or some other non-textual element.

•A link or pointer provide connection to other information unit known as target documents.

Multimedia refers to using computers to integrate text, graphics, animation, audio, and video

into one

application. Most multimedia applications are interactive, so that users may choose the

material to view, define the order in which it is presented, and obtain feedback on their

actions.

Interactivity also makes multimedia very suitable for video games, electronic newspapers and

magazines, electronic books and references, simulations, virtual reality, and computer-based

training.

Multimedia applications can be created by using a multimedia authoring software. Many

multimedia applications are also deliverable via the World Wide Web.

Graphics

A graphic is a digital representation of information such as a drawing, a chart, or a

photograph.

Graphics were the first media used to enhance the originally text-based Internet. Two of the

more common graphical formats on the Web are JPEG and GIF. Other graphical formats

such as BMP and TIFF have larger file sizes, and may require special viewer software to

display on the Web. To reduce download times for graphics, some Web sites use thumbnails,

which is a smaller version of a larger graphical image that a user may click to display the

fullsized image.

Audio

Audio can be music, speech, or any other sound. Common audio formats include WAV,

MID, and MP3. Some Web sites use streaming audio, which allows a user to listen to the

sound as it downloads to the computer. Two accepted standards for streaming audio on the

Web are Windows Media Player and RealAudio.

Video

Video consists of full-motion images that are played back at various speed. Most video is also

accompanied with audio. MPEG is a popular video compression standard defined by the

Moving Picture Experts Group (MPEG). Streaming video allows a user to view longer or live

video images as they download to the computer from the Web. Two popular streaming video

formats are Windows Media Player and RealVideo.

Animation is the appearance of motion that is created by displaying a series of still images

in rapid sequence. Animated GIF is a popular type of animation format, which combines

several images into a single GIF file.

Multimedia Authoring Software

Multimedia authoring software combines text, graphics, animation, audio, and video into an

application. Multimedia is widely used in video games, electronic newspapers and

magazines, electronic books and references, simulations, virtual reality, and computer-based

training. Popular multimedia authoring software includes Macromedia AuthorWare,

Macromedia Director, and Macromedia Flash. Multimedia computers have facilities for

handling sound and video as well as text and graphics. Most computers are now sold with a

multimedia capacity.

Web - World Wide Web

The Web, or World Wide Web, is basically a system of Internet servers that support specially

formatted documents. The documents are formatted in a markup language called HTML

(HyperText Markup Language) that supports links to other documents, as well as graphics,

audio, and video files.

This means you can jump from one document to another simply by clicking on hot spots. Not

all Internet servers are part of the World Wide Web.

The Internet is a worldwide collection of networks that links millions of businesses,

government offices, educational institutions, and individuals. Data is transferred over the

Internet using servers, which are computers that manage network resources and provide

centralized storage areas, and clients, which are computers that can access the contents of the

storage areas. The data travels over communications lines. Each computer or device on a

communications line has a numeric address called an IP (Internet protocol) address, the text

version of which is called a domain name. Every time you specify a domain name, a DNS

(domain name system) server translates the domain name into its associated IP address, so

data can route to the correct computer.

An Internet service provider (ISP) provides temporary Internet connections to

individuals and companies. An online service provider (OSP) also supplies Internet access, in

addition to a variety of special content and services. A wireless service provider (WSP)

provides wireless Internet access to users with wireless modems or Web-enabled handheld

computers or devices.

Employees and students often connect to the Internet through a business or school

network that connects to a service provider. For home or small business users, dial-up access

provides an easy and inexpensive way to connect to the Internet. With dial-up access, you use

a computer, a modem, and a regular telephone line to dial into an ISP or OSP. Some home

and small business users opt for newer, high-speed technologies. DSL (digital subscriber line)

provides high-speed connections over a regular copper telephone line. A cable modem

provides high-speed Internet connections through a cable television network.

The World Wide Web (WWW or Web) consists of a worldwide collection of

electronic documents called Web pages. A browser is a software program used to access and

view Web pages. Each Web page has a unique address, called a URL (Uniform Resource

Locator), that tells a browser where to locate the Web page. A URL consists of a protocol,

domain name, and sometimes the path to a specific Web page or location on a Web page.

Most URLs begin with http://, which stands for hypertext transfer protocol, the

communications standard that enables pages to transfer on the Web.

A search engine is a software program you can use to find Web sites, Web pages, and

Internet files. To find a Web page or pages, you enter a relevant word or phrase, called search

text or keywords, in the search engine‘s text box. Many search engines then use a program

called a spider to read pages on Web sites and create a list of pages that contain the

keywords. Any Web page that is listed as the result of the search is called a hit. Each hit is a

link that can be clicked to display the associated Web site or Web page.

There are six basic types of Web pages. An advocacy Web page contains content that

describes a cause, opinion, or idea. A business/marketing Web page contains content that

promotes or sells products or services. An informational Web page contains factual

information. A news Web page contains newsworthy material including stories and articles

relating to current events, life, money, sports, and the weather. A portal Web page offers a

variety of Internet services from a single, convenient location. A personal Web page is

maintained by a private individual who normally is not associated with any organization.

Many exciting Web pages use multimedia. Multimedia refers to any application that

integrates text with one of the following elements: graphics, sound, video, virtual reality, or

other media elements.

A graphic is a digital representation of information such as a drawing, chart, or

photograph. Two common file formats for graphical images on the Web are JPEG (Joint

Photographic Experts Group) and GIF (Graphics Interchange Format), which use

compression techniques to reduce the size of graphics files and thus speed downloading.

http://,

Animation is the appearance of motion created by displaying a series of still images in

rapid sequence. One popular type of animation, called an animated GIF, uses computer

animation and graphics software to combine several images into a single GIF file.

Audio is music, speech, or any other sound. A common format for audio files on the

Web is MP3, a popular technology that compresses audio. More advanced Web audio

applications use streaming audio, which transfers audio data in a continuous and even flow,

allowing users to listen to the sound as it downloads. Video consists of full-motion images

that are played back at various speeds. Video files often are quite large in size. The Moving

Pictures Experts Group (MPEG) defines a popular video compression standard. Streaming

video allows you to view longer or live video images as they are downloaded.

Virtual reality (VR) is the use of computers to simulate a real or imagined

environment that appears as a three-dimensional (3-D) space. A VR world is an entire 3-D

site that contains infinite space and depth.

A variety of services are used widely on the Internet, including e-mail, FTP,

newsgroups and message boards, mailing lists, chat rooms, and instant messaging. E-mail

(electronic mail) is the transmission of messages and files via a computer network. You use

an e-mail program to create, send, receive, forward, store, print, and delete messages. To

receive messages, you need an e-mail address, which is a combination of a username and a

domain name that identifies a user.

FTP (File Transfer Protocol) is an Internet standard that allows you to upload and

download files with other computers on the Internet. An FTP server is a computer that allows

you to use FTP to upload files to, and download files from, an FTP site. With anonymous

FTP, anyone can transfer some, if not all, available files. A newsgroup is an online area in

which users conduct written discussions about a particular subject. The computer that stores

and distributes newsgroup messages is called a news server. You use a program called a

newsreader to access a newsgroup, read previously entered messages (called articles), and

add (post) messages of your own.

A thread consists of the original article and all subsequent related replies. In a

moderated newsgroup, a moderator reviews articles and posts them, if appropriate. A

message board is a popular Web-based type of discussion group that does not require a

newsreader and typically is easier to use than a newsgroup. A mailing list is a group of e-mail

names and addresses given a single name. To add your e-mail name and address to a mailing

list you subscribe to it; to remove your name, you unsubscribe.

A chat is real-time (meaning everyone involved in the chat is online at the same time)

typed conversation that takes place on a computer. A location on an Internet server that

permits users to chat is called a chat room. Some chat rooms support voice chats and video

chats, where you can hear or see others and they can hear or see you as you chat. A chat

client is a program on your computer that allows you to connect to a chat server and start a

chat session. Instant messaging (IM) is a real-time Internet communications service that

notifies you when one or more people are online and then allows you to exchange messages

or join a private chat room.

The Mobile Ecosystem

Mobile is an entirely unique ecosystem and, like the Internet, it is made up of many

different parts that must all work seamlessly together. With mobile technology, the parts are

different, and because you can use mobile devices to access the Internet, that means that not

only do you need to understand the facets of the Internet, but you also need to understand the

mobile ecosystem.

PLATFORMS

A mobile platform‘s primary duty is to provide access to the devices. To run software

and services on each of these devices, you need a platform, or a core programming language

in which all of your software is written. Like all software platforms, these are split into three

categories: licensed, proprietary, and open source.

Licensed

Licensed platforms are sold to device makers for nonexclusive distribution on

devices. The goal is to create a common platform of development Application Programming

Interfaces (APIs) that work similarly across multiple devices with the least possible effort

required to adapt for device differences, although this is hardly reality. Following are the

licensed platforms:

UNIT IV

MOBILE HCI

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications:

Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design:

Elements of Mobile Design, Tools. Case Studies

Java Micro Edition (Java ME)

Java ME is by far the most predominant software platform of any kind in the mobile

ecosystem. It is a licensed subset of the Java platform and provides a collection of Java APIs

for the development of software for resource constrained devices such as phones.

Binary Runtime Environment for Wireless (BREW)

BREW is a licensed platform created by Qualcomm for mobile devices, mostly for the

U.S. market. It is an interface-independent platform that runs a variety of application

frameworks, such as C/C++, Java, and Flash Lite.

Windows Mobile

Windows Mobile is a licensable and compact version of the Windows operating

system, combined with a suite of basic applications for mobile devices that is based on the

Microsoft Win32 API.

LiMo

LiMo is a Linux-based mobile platform created by the LiMo Foundation. Although

Linux is open source, LiMo is a licensed mobile platform used for mobile devices. LiMo

includes SDKs for creating Java, native, or mobile web applications using the WebKit

browser framework.

Proprietary

Proprietary platforms are designed and developed by device makers for use on their

devices. They are not available for use by competing device makers. These include: Palm

Palm uses three different proprietary platforms. Their first and most recognizable is the Palm

OS platform based on the C/C++ programming language; this was initially developed for

their Palm Pilot line, but is now used in low-end smartphones such as the Centro line. As

Palm moved into higher-end smartphones, they started using the Windows Mobile-based

platform for devices like the Treo line. The most recent platform is called webOS, is based on

the WebKit browser framework, and is used in the Prē line.

BlackBerry

Research in Motion maintains their own proprietary Java-based platform, used

exclusively by their BlackBerry devices.

iPhone

Apple uses a proprietary version of Mac OS X as a platform for their iPhone and iPod

touch line of devices, which is based on Unix.

Open Source

Open source platforms are mobile platforms that are freely available for users to

download, alter, and edit. Open source mobile platforms are newer and slightly controversial,

but they are increasingly gaining traction with device makers and developers. Android is one

of these platforms. It is developed by the Open Handset Alliance, which is spearheaded by

Google. The Alliance seeks to develop an open source mobile platform based on the Java

programming language.

APPLICATION FRAMEWORKS

Application frameworks often run on top of operating systems, sharing core services

such as communications, messaging, graphics, location, security, authentication, and many

others.

Java

Applications written in the Java ME framework can often be deployed across the

majority of Java-based devices, but given the diversity of device screen size and processor

power, cross-device deployment can be a challenge.

S60

The S60 platform, formerly known as Series 60, is the application platform for

devices

that run the Symbian OS. S60 is often associated with Nokia devices—Nokia owns the

platform—but it also runs on several non-Nokia devices. S60 is an open source framework.

S60 applications can be created in Java, the Symbian C++ framework, or even Flash Lite.

BREW

Applications written in the BREW application framework can be deployed across the

majority of BREW-based devices, with slightly less cross-device adaption than other

frameworks.

Flash Lite

Adobe Flash Lite is an application framework that uses the Flash Lite and

ActionScript frameworks to create vector-based applications. Flash Lite applications can be

run within the Flash Lite Player, which is available in a handful of devices around the world.

Flash Lite is a promising and powerful platform, but there has been some difficulty

getting it on devices. A distribution service for applications written in Flash Lite is long

overdue.

Windows Mobile

Applications written using the Win32 API can be deployed across the majority of

Windows Mobile-based devices. Like Java, Windows Mobile applications can be

downloaded and installed over the air or loaded via a cable-connected computer.

Cocoa Touch

Cocoa Touch is the API used to create native applications for the iPhone and iPod

touch. Cocoa Touch applications must be submitted and certified by Apple before being

included in the App Store. Once in the App Store, applications can be purchased,

downloaded, and installed over the air or via a cable-connected computer.

Android SDK

The Android SDK allows developers to create native applications for any device that

runs the Android platform. By using the Android SDK, developers can write applications in

C/C++ or use a Java virtual machine included in the OS that allows the creation of

applications with Java, which is more common in the mobile ecosystem.

Web Runtimes (WRTs)

Nokia, Opera, and Yahoo! provide various Web Runtimes, or WRTs. These are meant

to be miniframeworks, based on web standards, to create mobile widgets. Both Opera‘s and

Nokia‘s WRTs meet the W3C-recommended specifications for mobile widgets.

WebKit

WebKit is a browser technology, so applications can be created simply by using web

technologies such as HTML, CSS, and JavaScript. WebKit also supports a number of

recommended standards not yet implemented in many desktop browsers. Applications can be

run and tested in any WebKit browser, desktop, or mobile device.

The Web

The Web is the only application framework that works across virtually all devices and

all platforms. Although innovation and usage of the Web as an application framework in

mobile has been lacking for many years, increased demand to offer products and services

outside of operator control, together with a desire to support more devices in shorter

development cycles, has made the Web one of the most rapidly growing mobile application

platforms to date.

Types of Mobile Applications

Mobile Web Widgets

Largely in response to the poor experience provided by the mobile web over the

years, there has been a growing movement to establish mobile widget frameworks and

platforms. For years the mobile web user experience was severely underutilized and failed to

gain traction in the market, so several operators, device makers, and publishers began

creating widget platforms (Figure) to counter the mobile web‘s weaknesses.

Figure: An example mobile web widget

I initially saw mobile web widgets as another attempt by the mobile industry to hype a

technology that no one wants. I liked to quiz mobile web widget advocates about what makes

mobile web widgets different than what we can do with the mobile web.

A component of a user interface that operates in a particular way.

The ever-trusty Wikipedia defines a web widget this way:

A portable chunk of code that can be installed and executed within any separate

HTMLbased web page by an end user without requiring additional compilation.

Between these two definitions is a better answer:

A mobile web widget is a standalone chunk of HTML-based code that is executed by

the end user in a particular way.

Mobile web widgets are small web applications that can‘t run by themselves; they

need to be executed on top of something else. I think one reason for all the confusion around

what is a mobile web widget is that this definition can also encompass any web application

that runs in a browser. Opera Widgets, Nokia Web RunTime (WRT), Yahoo! Blueprint, and

Adobe Flash Lite are all examples of widget platforms that work on a number of mobile

handsets. Using a basic knowledge of HTML (or vector graphics in the case of Flash), you

can create compelling user experiences that tap into device features and, in many cases, can

run while the device is offline.

Pros

The pros of mobile web widgets are:

• They are easy to create, using basic HTML, CSS, and JavaScript knowledge.

• They can be simple to deploy across multiple handsets.

• They offer an improved user experience and a richer design, tapping into device features

and offline use.

Cons

The cons of mobile web widgets are:

• They typically require a compatible widget platform to be installed on the device.

• They cannot run in any mobile web browser.

• They require learning additional proprietary, non-web-standard techniques.

MOBILE WEB APPLICATIONS

Mobile web applications are mobile applications that do not need to be installed or

compiled on the target device. Using XHTML, CSS, and JavaScript, they are able to provide

an application-like experience to the end user while running in any mobile web browser. By

―application-like‖ experience, I mean that they do not use the drill-down or page metaphors

in which a click equals a refresh of the content in view. Web applications allow users to

interact with content in real time, where a click or touch performs an action within the current

view.

The history of how mobile web applications came to be so commonplace is

interesting, and is one that I think can give us an understanding of how future mobile trends

can be assessed and understood. Shortly after the explosion of Web 2.0, web applications like

Facebook, Flickr, and Google Reader hit desktop browsers, and there was discussion of how

to bring those same web applications to mobile devices. The Web 2.0 movement brought

user-centered design principles to the desktop web, and those same principles were sorely

needed in the mobile web space as well.

The challenge, as always, was device fragmentation. The mobile browsers were years

behind the desktop browsers, making it nearly impossible for a mobile device to render a

comparable experience. While XHTML support had become fairly commonplace across

devices, the rendering of CSS2 was wildly inconsistent, and support for Java- Script,

necessary or simple DHTML, and Ajax was completely nonexistent. To make matters worse,

the perceived market demand for mobile web applications was not seen as a priority with

many operators and device makers. It was the classic chickenor- the-egg scenario. What had

to come first, market demand to drive browser innovation or optimized content to drive the

market?

With the introduction of the first iPhone, we saw a cataclysmic change across the

board.

Using WebKit, the iPhone could render web applications not optimized for mobile devices as

perfectly usable, including DHTML- and Ajax-powered content. Developers quickly got on

board, creating mobile web applications optimized mostly for the iPhone (Figure). The

combination of a high-profile device with an incredibly powerful mobile web browser and a

quickly increasing catalog of nicely optimized experiences created the perfect storm the

community had been waiting for.

Figure: The Facebook mobile web

app

Usage of the mobile web exploded with not just users of the iPhone, but users of other
handsets, too. Because Web applications being created for the iPhone
were based on web standards, they actually worked reasonably well on other devices.

Operators and device makers saw that consumers wanted not just the mobile web on their

handsets, but the regular Web, too.

Pros: The pros of mobile web applications are:

• They are easy to create, using basic HTML, CSS, and JavaScript knowledge.

• They are simple to deploy across multiple handsets.

• They offer a better user experience and a rich design, tapping into device features & offline

use.

• Content is accessible on any mobile web browser.

Cons: The cons of mobile web applications are:

• The optimal experience might not be available on all handsets.

• They can be challenging (but not impossible) to support across multiple devices.

• They don‘t always support native application features, like offline mode, location lookup,

file system access, camera, and so on.

GAMES

The most popular of all media available to mobile devices. Technically games are

really just native applications that use the similar platform SDKs to create immersive

experiences (Figure). But I treat them differently from native applications for two reasons:

they cannot be easily duplicated with web technologies, and porting them to multiple mobile

platforms is a bit easier than typical platform-based applications.

Figure: An example game for the iPhone

Seeing as how we have yet to see these types of gaming experiences appear on the

desktop using standard web technologies, I believe we are still a few years out from seeing

them on mobile devices. Adobe‘s Flash and the SVG (scalable vector graphics) standard are

the only

way to do it on the Web now, and will likely be how it is done on mobile devices in the

future, the primary obstacle being the performance of the device in dealing with vector

graphics. The reason games are relatively easy to port (―relatively‖ being the key word), is

that the bulk of the gaming experience is in the graphics and actually uses very little of the

device APIs. The game mechanics are the only thing that needs to adapted to the various

platforms. Like in console gaming, there are a great number of mobile game porting shops

that can quickly take a game written in one language and port it to another.

These differences, in my mind, are what make mobile games stand apart from all

other application genres—their capability to be unique and difficult to duplicate in another

application type, though the game itself is relatively easy to port. Looking at this model for

other application areas—namely, the mobile web—could provide helpful insight into how we

create the future of mobile web applications.

Pros: The pros of game applications are:

• They provide a simple and easy way to create an immersive experience.

• They can be ported to multiple devices relatively easily.

Cons: The cons of game applications are:

• They can be costly to develop as an original game title.

• They cannot easily be ported to the mobile web.

MOBILE INFORMATION ARCHITECTURE

What Is Information Architecture?

The structural design of shared information environments

 The combination of organizations, labelling, search, and navigation systems within
websites and intranets

 The art and science of shaping information products and experiences to support
usability and find ability

 An emerging discipline and community of practice focused on bringing principles of
design and architecture to the digital landscape

Information architecture

The organization of data within an informational space. In other words, how the user will get

to information or perform tasks within a website or application.

Interaction design

The design of how the user can participate with the information present, either in a direct or

indirect way, meaning how the user will interact with the website of application to create a

more meaningful experience and accomplish her goals.

Information design

The visual layout of information or how the user will assess meaning and direction given the

information presented to him.

Navigation design

The words used to describe information spaces; the labels or triggers used to tell the users

what something is and to establish the expectation of what they will find.

Interface design

The design of the visual paradigms used to create action or understanding.

The role of information architecture is played by a variety of people, from product

managers to designers and even developers. To make things more confusing, information

architecture can be called many different things throughout the design and development

process. Words like intuitive, simple, findable, usable, or the executive favourite easy to-use

—all describe the role that information architects play in creating digital experiences.

The visual design of your product, what frameworks you use, and how it is developed

are integral to the success of any product, but the information architecture stands apart as

being the most crucial element of your product. It is the first line of scrimmage—the user‘s

first impression of your product. Even if you have the best design, the best code, and the best

backend service, if the user cannot figure out how to use it, she will fail and so will your

product.

Mobile Information Architecture

Information architecture has become a common discipline in the web industry, unfortunately,

the mobile industry like software has only a handful of specialized mobile information

architects. Although mobile information architecture is hardly a discipline in its own right, it

certainly ought to be. This is not because it is so dissimilar from its desktop cousin, but

because of context, added technical constraints, and needing to display on a smaller screen as

much information as we would on a desktop.

The role of a mobile information architect would be to interpret this content to the

mobile context. Do you use the same structure, or sections? Do you present the same

information above the fold? If so, how should that be prioritized? How does the user navigate

to other areas? Do you use the same visual and interaction paradigms, or invent new ones?

And if you do start to invent new paradigms, will you lose the visual characteristics of what

users expect?

Keeping It Simple

When thinking about your mobile information architecture, you want to keep it as simple as

possible.

Support your defined goals

If something doesn‘t support the defined goals, lose it. Go back to your user goals and needs,

and identify the tasks that map to them. Find those needs and fill them.

Clear, simple labels

Good trigger labels, the words we use to describe each link or action, are crucial in

Mobile. Words like ―products‖ or ―services‖ aren‘t good trigger labels. Users have a much

higher threshold of pain when clicking about on a desktop site or application, hunting and

pecking for tasty morsels. Mobile performs short, to-the-point, get-it-quick, and get-out types

of tasks. What is convenient on the desktop might be a deal breaker on mobile.

Site Maps

Relationship of content to other content and provide a map for how the user will travel

through the informational space

Figure: An example mobile site map

Limit opportunities for mistakes In Figure, you can see a poorly designed mobile information
architecture that too closely mimics its desktop cousin; it was not designed with the mobile
user in mind.

Figure: An example of a bad mobile information architecture that was designed with desktop
users in mind rather than mobile users

In the mobile context, tasks are short and users have limited time to perform them. And with
mobile websites, we can‘t assume that the users have access to a reliable broadband
connection that allows them to quickly go back to the previous page. In addition, the users
more often than not have to pay for each page view in data charges. So not only do they pay
cash for viewing the wrong page by mistake, they pay to again download the page they
started from: we can‘t assume that pages will be cached properly.

Confirm the path by teasing content

Information-heavy sites and applications often employ nested or drill-down
architectures, forcing the user to select category after category to get to their target. To reduce
risking the user‘s time and money, we want to make sure we present enough information for
the user to wade through our information architecture successfully. On the Web, we take
these risks very lightly, but with mobile, we must give our users a helping hand. We do this
by teasing content within each category— that is, providing at least one content item per
category.

In Figure, you can see in a constrained screen that teasing the first few items of the page
provides the user with a much more intuitive interface, immediately indicating what type of
content the user can expect.

Figure: Teasing content to confirm the user‘s expectations of the content within

Clickstreams

Clickstream is a term used for showing the behaviour on websites, displaying the
order in which users travel through a site‘s information architecture, usually based on data
gathered from server logs. Clickstreams are usually historical, used to see the flaws in your
information architecture, typically using heat-mapping or simple percentages to show where
your users are going. I‘ve always found them to be a useful tool for rearchitecting large
websites.

The maps the ideal path the user will take to perform common tasks. Being able
to visually lay out the path users will take gives you a holistic or bird‘s-eye view of your
mobile information architecture, just as a road map does. When you can see all the paths next
to each other and take a step back, you start to see shortcuts and how you can get users to
their goal faster or easier, as shown in Figure.

Figure: An example Clickstream for an iPhone web application

Just create user or process flows,‖ such as the esoteric diagram shown in Figure, which is
made up of boxes and diamonds that look more like circuit board diagrams than an
information architecture.

If that is what your team prefers, then by all means, flow away. Personally, I like to present
all of my information architecture deliverables from the perspective of the user, using the
same metaphors she will use to make her way through my information architecture in this
case, either a screen or page metaphor.

Wireframes

The next information architecture tool at
our disposal is wireframes. Wireframes
are a way to lay out information on the
page, also referred to as information
design. Site maps show how our content
is organized in our informational space;
wireframes show how the user will
directly interact with it. Wireframes are
like the peanut butter to the site map
jelly in our information architecture

A good architect‘s job is to create a map of user goals, not map out every technical
contingency or edge case. Too often, process flows go down a slippery slope of adding every

project equirement, bogging down the user experience with unnecessary distractions, rather
than focusing

on

streamlining the experience. Remember, in mobile, our job is to keep it as simple as possible.
We need to have an unwavering focus on defining an excellent user experience first and
foremost. Anything that distracts us from that goal is just a distraction.

Figure: An example of an iPhone web application wireframe, intended to be low fidelity to
prevent confusion of visual design concepts with information design concepts

sandwich. It‘s the stuff that sticks. Wireframes like the one in Figure serve to make our
information space tangible and useful.

Figure: Using annotations to indicate the desired interactions of the site or application

Wireframes to be one of the most valuable information deliverables to communicate my
vision for how a site or app will work, the challenge is that a diagram on a piece of paper
doesn‘t go a long way toward describing how the interactions will work. Most common are
what I call ―in-place‖ interactions, or areas where the user can interact with an element
without leaving the page. This can be done with Ajax or a little show/hide JavaScript. These
interactions can include copious amounts of annotation, describing each content area in as
much length as you can fit in the margins of the page

Prototyping

Prototypes might sound like a scary (or costly) step in the process. Some view them as
redundant or too time-consuming, preferring to jump in and start coding things. But as with
wireframes, I‘ve found that each product we‘ve built out some sort of prototype has saved
both time and money.

Paper prototypes

The most basic level we have is paper prototyping: taking our printed-out wireframes or even
drawings of our interface, like the one shown in Figure, and putting them in front of people.

Figure: A paper prototype, where the interaction is nothing more than drawings on note cards

Context prototype

The next step is creating a context prototype (Figure). Take a higher-end device that enables
you to load full-screen images on it. Take your wireframes or sketches and load them onto
the device, sized to fill the device screen. Leave the office. Go for a walk down to your
nearest café. Or get on a bus or a train.

Pay particular attention to what you are thinking and your physical behavior while you are
using your interface and then write it down. If you are brave and don‘t have strict
nondisclosure issues, ask the people around you to use it, too. I wouldn‘t bother with timing
interactions or sessions, but try to keep an eye on a clock to determine how long the average
session is.

Figure: An example of a context prototype, or taking images loaded onto a device and testing
them in the mobile context

HTML prototypes

The third step is creating a lightweight, semi functional static prototype using XHTML, CSS,
and JavaScript, if available. This is a prototype that you
can actually load onto a device and produce the nearest

experience to the final product, but with static
dummy content and data (Figure). It takes a little
extra time, but it is worth the effort. With a static
XHTML prototype, you use all the device metaphors

of navigation, you see how much content will really be
displayed on screen (it is always less than you
expect), and you have to deal with slow load times

and network latency. In short, you will feel the same pains your user will go through.

Figure: An XHTML prototype that you can actually interact with on real mobile devices.

The Design Myth

A little secret about interactive design is that people don‘t respond to the visual aesthetic as
much as you might think. What colours you use, whether you use square or rounded corners,
or, gradients or flat backgrounds, helps build first impressions, but it doesn‘t do too much to
improve the user‘s experience. Don‘t get me wrong: users appreciate good design, but they
are quickly indifferent about the visual aesthetic and move almost immediately to the layout
(information design), what things are called (taxonomy), the find ability of content, and how
intuitive it is to perform tasks. These are all facets of information architecture.

Figure: Comparing visual design to information design of the iPhone application Tweetie.

Mobile 2.0

The Web as a platform for the mobile context, this means ―write once, deploy
everywhere,‖ moving away from the costly native applications deployed over multiple
frameworks and networks.

Harnessing collective intelligence this isn‘t something the mobile community has done
much of, but projects like WURFL—an open source repository of device profiles provided by
the community—is exactly what mobile needs more of.

Data is the next Intel inside Mobile takes this principle several steps further. It can include
the data we seek, the data we create, and the data about or around our physical locations.

End of the software release cycle Long development and testing cycles heavily weigh on
mobile projects, decreasing all hopes of profitability. Shorter agile cycles are needed to make
mobile development work as a business. Releasing for one device, iterating, improving, and
then releasing for another is a great way to ensure profitability in mobile.

Lightweight programming models Because mobile technology is practically built on
enterprise Java, the notion of using lightweight models is often viewed with some skepticism.
But decreasing the programming overhead required means more innovation occurs faster.

Software above the level of a single device This effectively means that software isn‘t just
about computers anymore. We need to approach new software as though the user will
demand it work in multiple contexts, from mobile phones to portable gaming consoles and e-
book readers.

Rich user experiences a great and rich user experience helps people spend less time with the
software and more time living their lives. Mobile design is about enabling users to live their
lives better.

MOBILE 2.0

Mobile 2.0, refers to a perceived next generation of mobile internet services that
leverage the social web, or what some call Web 2.0. The social web includes social
networking sites and wikis that emphasise collaboration and sharing amongst users. Mobile
Web 2.0, with an emphasis on Web, refers to bringing Web 2.0 services to the mobile
internet, i.e., accessing aspects of Web 2.0 sites from mobile internet browsers.

By contrast, Mobile 2.0 refers to services that integrate the social web with the core
aspects of mobility – personal, localized, always-on and ever-present. These services are
appearing on wireless devices such as Smartphone‘s and multimedia feature phones that are
capable of delivering rich, interactive services as well as being able to provide access and to
the full range of mobile consumer touch points including talking, texting, capturing, sending,
listening and viewing.

Enablers of Mobile 2.0

 Ubiquitous Mobile Broadband Access
 Affordable, unrestricted access to enabling software platforms, tools and technologies
 Open access, with frictionless distribution and monetization

Characteristics of Mobile 2.0

 The social web meets mobility
 Extensive use of User-Generated Content, so that the site is owned by its contributors
 Leveraging services on the web via mashups
 Fully leveraging the mobile device, the mobile context, and delivering a rich mobile

user experience
 Personal, Local, Always-on, Ever-present

Implementations of Mobile 2.0

Mobile 2.0 is still at the development stage but there are already a range of sites
available, both for so-called "smartphones" and for more ordinary "feature" mobile phones.
The best examples are Micro-blogging services Jaiku, Twitter, Pownce, CellSpin, and open
platforms for creating sms services like Fortumo and Sepomo or providing information and
services like mobeedo.

The largest mobile telecoms body, the GSM Association, representing companies serving
over 2 billion users, is backing a project called Telco 2.0, designed to drive this area.

The Elements of Mobile Design

Context

As the designer, it is your job to make sure that the user can figure out how to address context
using your app. Make sure you do your homework to answer the following questions:

• Who are the users? What do you know about them? What type of behavior can you assume
or predict about the users?

• What is happening? What are the circumstances in which the users will best absorb the
content you intend to present?

• When will they interact? Are they at home and have large amounts of time? Are they at
work where they have short periods of time? Will they have idle periods of time while
waiting for a train, for example?

• Where are the users? Are they in a public space or a private space? Are they inside or
outside? Is it day or is it night?

• Why will they use your app? What value will they gain from your content or services in
their present situation?

• How are they using their mobile device? Is it held in their hand or in their pocket? How are
they holding it? Open or closed? Portrait or landscape?

The answers to these questions will greatly affect the course of your design. Treat these
questions as a checklist to your design from start to finish.

Message

Another design element is your message, or what you are trying to say about your site or
application visually. One might also call it the ―branding,‖ although I see branding and
messaging as two different things. Your message is the overall mental impression you create
explicitly through visual design. I like to think of it as the holistic or at times instinctual
reaction someone will have to your design. If you take a step back, and look at a design from
a distance, what is your impression? Or conversely, look at a design for 30 seconds, and then
put it down. What words would you use to describe the experience?

Branding shouldn‘t be confused with messaging. Branding is the impression your company
name and logo gives—essentially, your reputation. Branding serves to reinforce the message
with authority, not deliver it. In mobile, the opportunities for branding are limited, but the
need for messaging is great. With such limited real estate, the users don‘t care about your
brand, but they will care about the messaging, asking themselves questions like, ―What can
this do for me?‖ or ―Why is this important to me?‖ Your approach to the design will define
that message and create expectations. A sparse, minimalist design with lots of whitespace
will tell the user to expect a focus on content. A ―heavy‖ design with use of dark colors and
lots of graphics will tell the user to expect something more immersive.

THE ELEMENTS OF MOBILE DESIGN

Good design requires three abilities: the first is a natural gift for being able to see
visually how something should look that produces a desired emotion with the target audience.
The second is the ability to manifest that vision into something for others to see, use, or
participate in. The third knows how to utilize the medium to achieve your design goals.

Six elements of mobile design that you need to consider, starting with the context and
layering in visual elements or laying out content to achieve the design goal. Then, you need to
understand how to use the specific tools to create mobile design, and finally, you need to
understand the specific design considerations of the mobile medium.

Context

I won‘t belabor the point except to say that context is core to the mobile experience. As the
designer, it is your job to make sure that the user can figure out how to address context using
your app. Make sure you do your homework to answer the following questions:

• Who are the users? What do you know about them? What type of behaviour can you assume
or predict about the users?

• What is happening? What are the circumstances in which the users will best absorb the
content you intend to present?

• When will they interact? Are they at home and have large amounts of time? Are they at
work where they have short periods of time? Will they have idle periods of time while
waiting for a train, for example?

• Where are the users? Are they in a public space or a private space? Are they inside or
outside? Is it day or is it night?

• Why will they use your app? What value will they gain from your content or services in
their present situation?

• How are they using their mobile device? Is it held in their hand or in their pocket?

•How are they holding it? Open or closed? Portrait or landscape?

The answers to these questions will greatly affect the course of your design. Treat these
questions as a checklist to your design from start to finish.

Message

Message is the overall mental impression you create explicitly through visual design.
I like to think of it as the holistic or at times instinctual reaction someone will have to your
design. If you take a step back, and look at a design from a distance, what is your impression?
Or conversely, look at a design for 30 seconds, and then put it down. What words would you
use to describe the experience?

Branding shouldn‘t be confused with messaging. Branding is the impression your
company name and logo gives—essentially, your reputation. Branding serves to reinforce the
message with authority, not deliver it. In mobile, the opportunities for branding are limited,
but the need for messaging is great. With such limited real estate, the users don‘t care about
your brand, but they will care about the messaging, asking themselves questions like, ―What
can this do for me?‖ or ―Why is this important to me?‖

Yahoo!

Yahoo! sort of delivers a message. This app provides a clean interface, putting a focus on
search and location, using color to separate it from the news content. But I‘m not exactly sure
what it is saying. Words you might use to describe the message are crisp, clean, and sharp.

ESPN

The ESPN site clearly is missing a message. It is heavily text-based, trying to put a lot of
content above the fold, but doesn‘t exactly deliver a message of any kind. If you took out the
ESPN logo, you likely would have indifferent expectations of this site; it could be about
anything, as the design doesn‘t help set expectations for the user in any way. Words you
might use to describe the message: bold, cluttered, and content-heavy.

Disney

Disney creates a message with its design. It gives you a lot to look at—probably too much—
but it clearly tries to say that the company is about characters for a younger audience. Words
you might use to describe the message: bold, busy, and disorienting.

Wikipedia

The Wikipedia design clearly establishes a message. With a prominent search and text-heavy
layout featuring an article, you know what you are getting with this design. Words you might
use to describe the message: clean, minimal, and text-heavy.

Amazon

Amazon sort of creates a message. Although there are some wasted opportunities above the
fold with the odd ad placement, you can see that it is mostly about products (which is
improved even more if you scroll down). Words you might use to describe the message:
minimal but messy, product-heavy, and disorienting.

Look and Feel

Look and feel is used to describe appearance, as in ―I want a clean look and feel‖ or
―I want a usable look and feel.‖ The problem is: as a mobile designer, what does it mean?
And how is that different than messaging?

I think of look and feel in a literal sense, as something real and tactile that the users
can ―look‖ at, then ―feel‖—something they can touch or interact with. Look and feel is used
to evoke action—how the user will use an interface. Messaging is holistic, as the expectation
the users will have about how you will address their context. It is easy to confuse the two,
because ―feel‖ can be interpreted to mean our emotional reaction to design and the role of
messaging.

I often find myself explaining the look and feel with the word ―because,‖ with a
cause-and-effect rationale for design decisions, as in ―The user will press this button
because...‖ or ―The user will go to this screen because…‖ followed by a reason why a button
or control is designed a certain way. Establishing a look and feel usually comes from
wherever design inspiration comes from. However, your personal inspiration can be a hard
thing to justify. Therefore we have ―design patterns,‖ or documented solutions to design
problems, sometimes referred to as style guides. On large mobile projects or in companies
with multiple designers, a style guide or pattern library is crucial, maintaining consistency in
the look and feel and reducing the need for each design decision to be justified.

Figure: Pattern Tap shows a number of user interface patterns that help to establish look and

feel

Layout

Layout is an important design element, because it is how the user will visually process the
page, but the structural and visual components of layout often get merged together, creating
confusion and making your design more difficult to produce. The first time layout should rear
its head is during information architecture. In fact, I prefer to make about 90 percent of my
layout decisions during the information architecture period. I ask myself questions like: where
should the navigation go on the page or screen? What kind of navigation type should I use?
Should I use tabs or a list? What about a sidebar for larger screens? All of these should be
answered when defining the information architecture and before you begin to design. Design
is just too subjective of an issue. If you are creating a design for anyone but yourself, chances
are good that there will be multiple loosely-based-on- experience opinions that will be offered
and debated.

Where the design opinions of the CEO or Chief Marketing Officer (CMO) might
influence a design direction more than, say, the Creative Director or Design Director. By
defining design elements like layout prior to actually applying the look and feel, you can
separate the discussion. As a self-taught designer, I started out in this business making
designs for my own projects. I could just put pen to paper and tweak it to my heart‘s content.
If I wanted to radically change the layout, I could. When I started my mobile design career
with my first mobile company more than a decade ago, I realized that this approach didn‘t
work. The majority of comments that reviewers would make were about the layout. They
focused on the headers, the navigation, the footer, or how content blocks are laid out, and so
on. But their feedback got muddied with the ―look and feel, the colors, and other design
elements.‖

Reviewers do make remarks like ―I like the navigation list, but can you make it look more
raised?‖ Most designers don‘t hear that; they hear ―The navigation isn‘t right, do it again.‖
But, with this kind of feedback, there are two important pieces of information about different
types of design. First, there is confirmation that the navigation and layout are correct. Second,
there is a question about the ―look and feel.‖ Because designers hear ―Do it again,‖ they
typically redo the layout, even though it was actually fine.

Creating mobile designs in an environment with multiple reviewers is all about getting the
right feedback at the right time. Your job is to create a manifestation of a shared vision.
Layout is one of the elements you can present early on and discuss independently. People
confuse the quality and fidelity of your deliverables as design. By keeping it basic, you don‘t
risk having reviewers confuse professionalism with design. The irony is that as I become
more adept at defining layouts, I make them of increasingly lower fidelity. For example,
when I show my mobile design layouts as wireframes during the information architecture
phase, I intentionally present them on blueprint paper, using handwriting fonts for my
annotations (Figure below). It also helps to say that this is not a design, it is a layout, so
please give me feedback on the layout.

Figure: Design4Mobile provides a list of common mobile design patterns

Color

The fifth design element, color, is hard to talk about in a black-and-white book. Maybe it is
fitting, because it wasn‘t that long ago that mobile screens were available only inblack and
white well, technically, it was black on a green screen). These days, we have nearly the entire
spectrum of colors to choose from for mobile designs.

The most common obstacle you encounter when dealing with color is mobile screens, which
come in a number of different color or bit depths, meaning the number of bits (binary digits)
used to represent the color of a single pixel in a bitmapped image. When complex designs are

displayed on different mobile devices, the limited color depth on one device can cause
banding, or unwanted posterization in the image.

For an example of posterization, the technical term for when the gradation of tone is replaced
with regions of fewer tones, see in Figure 8-10 how dramatically the color depth can affect
the quality of a photo or gradient, producing banding in several parts in the image.

Different devices have different colour depths.

12-bit

depth Supported colors 4,096 colors Used with older phones;

dithering artifacts in photos can easily be seen.

Examples: Nokia 6800

16-bit depth

Supported colors 65,536 colors Also known as HighColor;

very common in today‘s mobile devices.

Can cause some banding and dithering artifacts in some designs.

Examples: HTC G1, BlackBerry Bold 9000, Nokia 6620

The psychology of colour

People respond to different colours differently. It is fairly well known that different colours
reduce different emotions in people, but surprisingly few talk about it outside of art school.
Thinking about the emotions that colours evoke in people is an important aspect of mobile
design, which is such a personal medium that tends to be used in personal ways. Using the
right colours can be useful for delivering the right message and setting expectations.

Colour palettes

Defining color palettes can be useful for maintaining a consistent use of color in your mobile
design. Color palettes typically consist of a predefined number of colors to use throughout the
design. Selecting what colors to use varies from designer to designer, each having different

techniques and strategies for deciding on the colors. I‘ve found that I use three basic ways to
define a color palette:

Sequential

In this case, there are primary, secondary, and tertiary colors. Often the primary color is
reserved as the ―brand‖ color or the color that most closely resembles the brand‘s meaning.
The secondary and tertiary colors are often complementary colors that I select using a color
wheel.

Adaptive

An adaptive palette is one in which you leverage the most common colors present in a
supporting graphic or image. When creating a design that is meant to look native on the
device, I use an adaptive palette to make sure that my colors are consistent with the target
mobile platform.

Inspired

This is a design that is created from the great pieces of design you might see online, as shown
in Figure below, or offline, in which a picture of the design might inspire you. This could be
anything from an old poster in an alley, a business card, or some packaging. When I sit down
with a new design, I thumb through some of materials to create an inspired palette. Like with
the adaptive palette, you actually extract the colors from the source image, though you should
never ever use the source material in a design.

Figure: Adobe Kuler, a site that enables designers to share and use different color palettes

MOBILE DESIGN TOOLS

Designing for the Right Device

Mobile design requires understanding the design elements and specific tools. The
closest thing to a common design tool is Adobe Photoshop, though each framework has a
different method of implementing the design into the application. Some frameworks provide
a complete interface toolkit, allowing designers or developers to simply piece together the
interface, while others leave it to the designer to define from scratch.

Table : Design tools and interface toolkits

The truly skilled designer doesn‘t create just one product—she translates ideas into
experiences. The spirit of your design should be able to be adapted to multiple devices.
―What device suits this design best? What market niche would appreciate it most? What
devices are the most popular within that niche?‖ The days of tent-poles are gone. Focus
instead on getting your best possible experience to the market that will appreciate it most. It
might not be the largest or best long-term market, but what you will learn from the best
possible scenario will tell you volumes about your mobile product‘s potential for success or
failure. You will learn which devices you need to design for, what users really want, and how
well your design works in the mobile context.

This knowledge will help you develop your porting and/or adaptation strategy, the
most expensive and riskiest part of the mobile equation. For example, if you know that 30
percent of your users have iPhones, then that is a market you can exploit to your advantage.
iPhone users consume more mobile content and products than the average mobile user. This
platform has an easy-to-learn framework and excellent documentation, for both web and

native products, and an excellent display and performance means. Although iPhone users
might not be the majority of your market, the ability to create the best possible design and get
it in front of those users presents the least expensive product to produce with the lowest risk.

With a successful single device launch, you can start to adapt designs from the best
possible experience to the second best possible experience, then the third, and fourth, and so
on. The best possible experience is how it should be, so it serves as a reference point for how
we will adapt the experience to suit more devices.

Designing for Different Screen Sizes

Mobile devices come in all shapes and sizes. Choice is great for consumers, but bad for
design. It can be incredibly difficult to create that best possible experience for a plethora of
different screen sizes. For example, your typical feature phone might only be 140 pixels wide,
whereas your higher-end smartphone might be three to four times wider.

Landscape or portrait? Fixed width or fluid? Do you use one column or two? These are
common questions that come up when thinking about your design on multiple screen sizes.
The bad news is that there is no simple answer. How you design each screen of content
depends on the scope of devices you look to support, your content, and what type of
experience you are looking to provide. The good news is that the vast majority of mobile
device screens share the same vertical or portrait orientation, even though they vary greatly in
dimension

Figure: Comparing the various screen sizes

There are some devices by default in a
horizontal orientation, and many smartphones that can switch between the two

orientations, but most people use their mobile devices in portrait mode. This is a big shift in
thinking if you are coming from interactive design, as up to this point, screens have been
getting wider, not taller.

With vertical designs, the goal is to think of your design as a cascade of content from top to
bottom (Figure below), similar to a newspaper. The most contextual information lives at the
top, and the content consumes the majority of the screen. Any exit points live at the bottom.
Mobile is no different.

Figure: The typical flow of information on mobile devices

The greatest challenge to creating a design that works well on multiple screen sizes is

filling the width. For content-heavy sites and applications, the width of mobile devices is
almost the perfect readability, presenting not too many words per line of text. The problem is
when you have to present a number of tasks or actions. The easiest and most compatible way
is to present a stacked list of links or buttons, basically one action per line. It isn‘t the most
effective use of space, but presenting too many actions on the horizontal axis quickly clutters
the design—not to mention that it is more difficult to adapt to other devices.

As devices get larger, denser screens, you will see an increase in the use of touch,
forcing the size of content to increase to fingertip size—typically 40 pixels wide and 40
pixels tall (Figure below). This actually solves part of the horizontal axis problem, simply by
making content larger for larger screens. Ironically, you can fit almost the same amount of
usable content in an iPhone as you can a lower-end device.

User Interface Design Basics

User Interface (UI) Design focuses on anticipating what users might need to do and ensuring

that the interface has elements that are easy to access, understand, and use to facilitate those

actions. UI brings together concepts from interaction design, visual design, and information

architecture.

Choosing Interface Elements

Users have become familiar with interface elements acting in a certain way, so try to be

consistent and predictable in your choices and their layout. Doing so will help with task

completion, efficiency, and satisfaction.

Interface elements include but are not limited to:

Input Controls: buttons, text fields, checkboxes, radio buttons, dropdown lists, list boxes,

toggles, date field

Navigational Components: breadcrumb, slider, search field, pagination, slider, tags, icons

Informational Components: tooltips, icons, progress bar, notifications, message boxes, modal

windows

Containers: accordion

There are times when multiple elements might be appropriate for displaying content. When

this happens, it‘s important to consider the trade-offs. For example, sometimes elements that

can help save you space, put more of a burden on the user mentally by forcing them to guess

what is within the dropdown or what the element might be.

Best Practices for Designing an Interface

Everything stems from knowing your users, including understanding their goals, skills,

preferences, and tendencies. Once you know about your user, make sure to consider the

following when designing your interface:

Keep the interface simple. The best interfaces are almost invisible to the user. They avoid

unnecessary elements and are clear in the language they use on labels and in messaging.

Create consistency and use common UI elements. By using common elements in your UI,

users feel more comfortable and are able to get things done more quickly. It is also important

UNIT V

WEB INTERFACE DESIGN

Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and

Virtual Pages, Process Flow. Case Studies.

to create patterns in language, layout and design throughout the site to help facilitate

efficiency. Once a user learns how to do something, they should be able to transfer that skill

to other parts of the site.

Be purposeful in page layout. Consider the spatial relationships between items on the page

and structure the page based on importance. Careful placement of items can help draw

attention to the most important pieces of information and can aid scanning and readability.

Strategically use color and texture. You can direct attention toward or redirect attention away

from items using color, light, contrast, and texture to your advantage.

Use typography to create hierarchy and clarity. Carefully consider how you use typeface.

Different sizes, fonts, and arrangement of the text to help increase scanability, legibility and

readability.

Make sure that the system communicates what‘s happening. Always inform your users of

location, actions, changes in state, or errors. The use of various UI elements to communicate

status and, if necessary, next steps can reduce frustration for your user.

Think about the defaults. By carefully thinking about and anticipating the goals people bring

to your site, you can create defaults that reduce the burden on the user. This becomes

particularly important when it comes to form design where you might have an opportunity to

have some fields pre-chosen or filled out.

DRAG AND DROP

Interesting Moments

At first blush, drag and drop seems simple. Just grab an object and drop it somewhere. But, as

always, the devil is in the details. There are a number of individual states at which interaction

is possible. We call these microstates interesting moments:

• How will users know what is draggable?

• What does it mean to drag and drop an object?

• Where can you drop an object, and where is it not valid to drop an object?

• What visual affordance will be used to indicate draggability?

• ill valid and invalid drop targets be signified?

• Do you drag the actual object?

• Or do you drag just a ghost of the object?

• Or is it a thumbnail representation that gets dragged?

• What visual feedback should be used during the drag and drop interaction?

What makes it challenging is that there are a lot of events during drag and drop that can be

used as opportunities for feedback to the user. Additionally, there are a number of elements

on the page that can participate as actors in this feedback loop.

The Events: There are at least 15 events available for cueing the user during a drag and drop

interaction:

Page Load: Before any interaction occurs, you can pre-signify the availability of drag and

drop. For example, you could display a tip on the page to indicate draggability.

Mouse Hover: The mouse pointer hovers over an object that is draggable.

Mouse Down: The user holds down the mouse button on the draggable object.

Drag Initiated: After the mouse drag starts (usually some threshold—3 pixels).

Drag Leaves Original Location: After the drag object is pulled from its location or object

that contains it.

Drag Re-Enters Original Location: When the object re-enters the original location.

Drag Enters Valid Target: Dragging over a valid drop target.

Drag Exits Valid Target: Dragging back out of a valid drop target.

Drag Enters Specific Invalid Target: Dragging over an invalid drop target.

Drag Is Over No Specific Target: Dragging over neither a valid or invalid target. Do you

treat all areas outside of valid targets as invalid?

Drag Hovers Over Valid Target : User pauses over the valid target without dropping the

object. This is usually when a spring loaded drop target can open up. For example, drag over

a folder and pause, the folder opens revealing a new area to drag into.

Drag Hovers Over Invalid Target: User pauses over an invalid target without dropping the

object. Do you care? Will you want additional feedback as to why it is not a valid target?

Drop Accepted : Drop occurs over a valid target and drop has been accepted.

Drop Rejected: Drop occurs over an invalid target and drop has been rejected. Do you zoom

back the dropped object?

Drop on Parent Container: Is the place where the object was dragged from special? Usually

this is not the case, but it may carry special meaning in some contexts.

The Actors : During each event you can visually manipulate a number of actors. The page

elements available include:

• Page (e.g., static messaging on the page)

• Cursor

• Tool Tip

• Drag Object (or some portion of the drag object, e.g., title area of a module)

• Drag Object‘s Parent Container

• Drop Target

Interesting Moments Grid

That‘s 15 events times 6 actors. That means there are 90 possible interesting moments—each

requiring a decision involving an almost unlimited number of style and timing choices. You

can pull all this together into a simple interesting moments grid for Drag and Drop.

Figure: A simplified interesting moment‘s grid for the original My Yahoo! drag and drop
design;* it provided a way to capture the complexities of drag and drop into a single page

Purpose of Drag and Drop

Drag and drop can be a powerful idiom if used correctly. Specifically it is useful for:

 Drag and Drop Module: Rearranging modules on a page.
 Drag and Drop List : Rearranging lists.
 Drag and Drop Object :Changing relationships between objects.
 Drag and Drop Action: Invoking actions on a dropped object.
 Drag and Drop Collection : Maintaining collections through drag and drop.

Drag and Drop Module

One of the most useful purposes of drag and drop is to allow the user to directly place objects
where she wants them on the page. A typical pattern is Drag and Drop Modules on a page.
Netvibes provides a good example of this interaction pattern

Figure: Netvibes allows modules to be arranged directly via drag and drop; the hole cues
what will happen when a module is dropped

Considerations

Netvibes allows its modules to be rearranged with drag and drop. A number of interesting
moments decide the specific interaction style for this site. Figure shows the interesting
moments grid for Netvibes.

While dragging, it is important to make it clear what will happen when the user drops the
dragged object. There are two common approaches to targeting a drop:

• Placeholder target

• Insertion target

Placeholder target

Netvibes uses a placeholder (hole with dashed outline) as the drop target. The idea (illustrated
in Figure) is to always position a hole in the spot where the drop would occur. When module
1 starts dragging, it gets ―ripped‖ out of the spot. In its place is the placeholder target
(dashed outline). As 1 gets dragged to the spot between 3 and 4, the placeholder target jumps
to fill in this spot as 4 moves out of the way.

The hole serves as a placeholder and always marks the spot that the dragged module

will land when dropped. It also previews what the page will look like (in relation to the other
modules) if the drop occurs there. For module drag and drop, the other modules only slide up
or down within a vertical column to make room for the dragged module.

One complaint with using placeholder targets is that the page content jumps around a
lot during the drag. This makes the interaction noisier and can make it harder to understand
what is actually happening. This issue is compounded when modules look similar. The user
starts dragging the modules around and quickly gets confused about what just got moved.
One way to resolve this is to provide a quick animated transition as the modules move. It is
important, however, that any animated transitions not get in the way of the normal interaction.

Boundary-based placement. Since most sites that use placeholder targeting drag the module
in its original size, targeting is determined by the boundaries of the dragged object and the
boundaries of the dragged-over object. The mouse position is usually ignored because
modules are only draggable in the title (a small region). Both Netvibes and iGoogle take the
boundary-based approach. But, interestingly, they calculate the position of their placeholders
differently.

In Netvibes, the placeholder changes position only after the dragged module‘s title bar has
moved beyond the dragged-over module‘s title bar. In practice, this means if you are moving
a small module to be positioned above a large module, you have to move it to the very top of

the large module. In Figure you have to drag the small ―To Do List‖ module all the way to
the top of the ―Blog Directory‖ module before the placeholder changes position.

Insertion target

Placeholder positioning is a common approach, but it is not the only way to indicate drop
targeting. An alternate approach is to keep the page as stable as possible and only move
around an insertion target (usually an insertion bar). A previous version of My Yahoo! Used
the insertion bar approach as the dragged module was moved around.

Drag distance

Dragging the thumbnail around does have other issues. Since the object being dragged is
small, it does not intersect a large area. It requires moving the small thumbnail directly to the
place it will be dropped. With iGoogle, the complete module is dragged. Since the module
will always be larger than the thumbnail, it intersects a drop target with much less movement.
The result is a shorter drag distance to accomplish a move

Drag rendering

How should the dragged object be represented? Should it be rendered with a slight
transparency (ghost)? Or should it be shown fully opaque? Should a thumbnail representation
be used instead?

Drag and Drop List

The Drag and Drop List pattern defines interactions for rearranging items in a list. 37 Signal‘s
Backpackit allows to-do items to be rearranged with Drag and Drop List

Considerations

Backpackit takes a real-time approach to dragging items. Since the list is constrained, this is a
natural approach to moving objects around in a list. You immediately see the result of the
drag.

Placeholder target

This is essentially the same placeholder target approach we discussed earlier for dragging and
dropping modules. The difference is that when moving an item in a list, we are constrained to
a single dimension. Less feedback is needed. Instead of a ―ripped-out‖ area (represented
earlier with a dotted rectangle), a simple hole can be exposed where the object will be placed
when dropped.

Insertion target

Drag and Drop Modules, placeholder targeting is not the only game in town. You can also
use an insertion bar within a list to indicate where a dropped item will land. Netflix uses an
insertion target when movies are dragged to a new location in a user‘s movie queue

The upside to this approach is that the list doesn‘t have to shuffle around during drag. The
resulting experience is smoother than the Backpack it approach. The downside is that it is not
as obvious where the movie is being positioned. The insertion bar appears under the ghosted
item. The addition of the brackets on the left and right of the insertion bar is an attempt to
make the targeting clearer.

Non–drag and drop alternative

Besides drag and drop, the Netflix queue actually supports two other ways to move objects
around:

Edit the row number and then press the ―Update DVD Queue‖ button.

Click the ―Move to Top‖ icon to pop a movie to the top.

Modifying the row number is straightforward. It‘s a way to rearrange items without drag and
drop. The ―Move to Top‖ button is a little more direct and fairly straightforward (if the user
really understands that this icon means ―move to top‖). Drag and drop is the least
discoverable of the three, but it is the most direct, visual way to rearrange the list. Since
rearranging the queue is central to the Netflix customer‘s satisfaction, it is appropriate to
allow multiple ways to do so.

Hinting at drag and drop

When the user clicks the ―Move to Top‖ button, Netflix animates the movie as it moves up.
But first, the movie is jerked downward slightly and then spring-loaded to the top

The combination of the downward jerk and then the quick animation to the top gives a
subtle clue that the object is draggable. This is also an interesting moment to advertise drag
and drop. After the move to top completes, a simple tip could appear to invite users to drag
and drop. The tip should probably be shown only once, or there should be a way to turn it off.
Providing an invitation within a familiar idiom is a good way to lead users to the new idiom.

Drag lens

Drag and drop works well when a list is short or the items are all visible on the page.
But when the list is long, drag and drop becomes painful. Providing alternative ways to
rearrange is one way to get around this issue. Another is to provide a drag lens while
dragging.

A drag lens provides a view into a different part of the list that can serve as a shortcut
target. It could be a fixed area that is always visible, or it could be a miniature view of the list
that provides more rows for targeting. The lens will be made visible only during dragging.

Drag and Drop Object

Another common use for drag and drop is to change relationships between objects. This is
appropriate when the relationships can be represented visually. Drag and drop as a means of
visually manipulating relationships is a powerful tool.

Cogmap is a wiki for organizational charts. Drag and Drop Object is used to rearrange

Fig: Cogmap allows organizational charts to be rearranged on the fly with drag and drop

Considerations

When object relationships can be clearly represented visually, drag and drop is a natural
choice to make these type of changes. Cogmap uses the target insertion approach. This allows
the dragging to be nondistracting, since the chart does not have to be disturbed during
targeting.

Drag feedback: Highlighting

Bubbl.us, an online mind-mapping tool, simply highlights the node that will be the new
parent

Drag and Drop Action

Drag and drop is also useful for invoking an action or actions on a dropped object. The Drag
and Drop Action is a common pattern. Its most familiar example is dropping an item in the
trash to perform the delete action.

Normally uploading files to a web application includes pressing the upload button and
browsing for a photo. This process is repeated for each photo.

Considerations

This is not a trivial implementation. But it does clearly illustrate the benefit of drag and drop
for operating on a set of files. The traditional model requires each photo to be selected
individually for upload. Drag and drop frees you to use whatever browsing method is
available on your system and then drop those photos for upload.

Anti-pattern: Artificial Visual Construct

Unfortunately, drag and drop can sometimes drive the design of an interface instead of being
an extension of a natural interface. These interactions are almost always doomed, as they are
the tail wagging the proverbial dog. Rating movies, books, and music is a common feature
found on many sites. But what happens if you try to use drag and drop to rate movies?

Drag and Drop Collection

A variation on dragging objects is collecting objects for purchase, bookmarking, or saving
into a temporary area. This type of interaction is called Drag and Drop Collection. Drag and
drop is a nice way to grab items of interest and save them to a list. The Laszlo shopping cart
example illustrates this nicely.

DIRECT SELECTION

 Toggle Selection: Checkbox or control-based selection.
 Collected Selection: Selection that spans multiple pages.
 Object Selection: Direct object selection.
 Hybrid Selection: Combination of Toggle Selection and Object Selection

Toggle Selection

The most common form of selection on the Web is Toggle Selection. Checkboxes and toggle
buttons are the familiar interface for selecting elements on most web pages.

The way to select an individual mail message is through the row‘s checkbox. Clicking on the
row itself does not select the message. We call this pattern of selection Toggle Selection since
toggle-style controls are typically used for selecting items.

Once items have been check-selected, actions can be performed on them. Usually these
actions are performed on the selection by clicking on a separate button (e.g., the Delete
button). Gmail is a good example of actions in concert with Toggle Selection

Considerations

Toggle Selection with checkboxes has some nice attributes:

 Clear targeting, with no ambiguity about how to select the item or deselect it.
 Straightforward discontinuous selection, and no need to know about Shift or Control

key ways to extend a selection. Just click the checkboxes in any order, either in a
continuous or discontinuous manner.

 Clear indication of what has been selected.

Scrolling versus paging

The previous examples were with paged lists. But what about a scrolled list? Yahoo! Mail
uses a scrolled list to show all of its mail messages (Figure). While not all messages are
visible at a time, the user knows that scrolling through the list retains the currently selected
items. Since the user understands that all the messages not visible are still on the same
continuous pane, there is no confusion about what an action will operate on—it will affect all
selected items in the list. Sometimes the need for clarity of selection will drive the choice
between scrolling and paging.

Making selection explicit

With Yahoo! Bookmarks you can manage your bookmarks by selecting bookmarked
pages and then acting on them. The selection model is visually explicit

Collected Selection

Toggle Selection is great for showing a list of items on a single page. But what happens if
you want to collect selected items across multiple pages? Collected Selection is a pattern for
keeping track of selection as it spans multiple pages.

In Gmail, you can select items as you move from page to page. The selections are
remembered for each page. If you select two items on page one, then move to page two and
select three items, there are only three items selected. This is because actions only operate on
a single page. This makes sense, as users do not normally expect selected items to be
remembered across different pages.

Considerations

Gmail does provide a way to select all items across different pages. When selecting all items
on a individual page (with the ―All‖ link), a prompt appears inviting the user to ―Select all
2785 conversations in Spam‖. Clicking that will select all items across all pages (Figure). The
―Delete Forever‖ action will operate on all 2785 conversations, not just the 25 selected on
the page.

Keeping the selection visible

The real challenge for multi-page selection is finding a way to show selections gathered
across multiple pages. You need a way to collect and show the selection as it is being created.
Here is one way that Collected Selection comes into play. LinkedIn uses Collected Selection
to add potential contacts to an invite list.

The list of potential invitees is shown in a paginated list on the lefthand side. Clicking the
checkbox adds them to the invite list. The invite list becomes the place where selected
contacts across multiple pages are remembered.

Collected Selection and actions

In the menu system it was hard to discern whether the user meant to operate on the
selection (photos on the page could be selected through an Object Selection model) or on the
collected items in the tray. To resolve this ambiguity, the drop-down menus contained two
identical sets of commands. The first group of commands in the menu operated on the
collected items in the tray. The second set of commands operated on the selected objects.
Needless to say, this was confusing since it required the user to be fully aware of these two
selection models when initiating a command.

One way to remove this ambiguity would have been to have a single set of commands
that operated on either the tray or the photos—depending on which had the focus. This would
require a way to select the tray and a way to deselect it (by clicking outside the tray). A
possible approach would be to slightly dim the photo gallery when the tray is selected
(causing it to clearly have the focus), and do the opposite when the tray is not the focus.

Object Selection

Object Selection, is when selection is made directly on objects within the interface.
Sometimes using a checkbox does not fit in with the style of interaction desired. Laszlo‘s
WebTop mail allows the user to select messages by clicking anywhere in the row

Considerations

Desktop applications tend to use Object Selection. It is also natural that web-based
mail applications that mimic desktop interactions employ this same style of selection. Instead
of showing a control (like a checkbox), the object itself can be selected and acted on directly.
Object Selection can be extended by holding down the Shift key while clicking on a different
item. The Command key (Macintosh) or Control key (Windows) can be used to individually
add items in a discontinuous manner. The downside to this approach is that it is not obvious
to use the modifier keys for extending the selection. Toggle Selection‘s use of toggle buttons
makes the selection extension model completely obvious.

Desktop-style selection

For now Object Selection is not as common on the Web. Given that most sites have been
content-oriented, there have been few objects to select. Also, with the Web‘s simple event
model, Object Selection was not easy to implement. In typical web pages, keyboard events
have rarely made sense since they are also shared with the browser.

Object Selection interactions include ways to use the mouse to drag-select objects. Yahoo!
Photos introduced this same type of object selection to its photo gallery (Figure below).
Individually clicking on a photo selects it. Using the Shift key and clicking also extends the
selection. In addition, using the Control key and clicking discontinuously selects photos. And
like most desktop applications, you can drag a selection box around a group of items to add
them to the selected set (in this case, photos).

Figure: Yahoo! Photos 3.0 created a rich drag selection mechanism for selecting photos

Hybrid Selection

Mixing Toggle Selection and Object Selection in the same interface can lead to a confusing
interface. Referring back to Yahoo! Bookmarks, you‘ll see an odd situation arise during drag
and drop

Figure: In Yahoo! Bookmarks, one item is selected, but two items can be dragged by
dragging on the unselected item.

Considerations

There are a few important issues to consider when using Hybrid Selection.

Confusing two models

One bookmark element is selected (notice the checkbox Toggle Selection). The second
bookmark element (―Dr. Dobb‘s‖) is unselected (the checkbox is clear). In the right panel of
clicking and dragging on the unselected bookmark element initiates a drag. The drag includes
both the selected element and the unselected element. Since only one is shown as selected,
this creates a confusing situation.

This occurs because three things are happening in the same space:

• Toggle Selection is used for selecting bookmarks for editing, deleting, etc.
• Object Selection is used for initiating a drag drop.
• Mouse click is used to open the bookmark on a separate page.

The problem is that more than one interaction idiom is applied to the same place on the same
page. In this case, if you happen to try to drag, but instead click, you will be taken to a new
page. And if you drag an unselected item, you now have two items selected for drag but only
one shown as selected for other operations. This is definitely confusing. Simply selecting the
item (automatically checking the box) when the drag starts would keep the selection model
consistent in the interface. However, it might lead the user to expect a single click to also do
the same (which it cannot since it opens the bookmark). So, mixing the two selection models
together can be problematic. However, there is a way to integrate the Toggle Selection and
Object Selection and have them coexist peacefully as well as create an improved user
experience.

CONTEXTUAL TOOLS

Interaction in Context

Desktop applications separate functionality from data. Menu bars, toolbars, and
palettes form islands of application functionality. Either the user chooses a tool to use on the
data or makes a selection and then applies the tool. They were completely content-oriented.
Rich tool sets were not needed for simply viewing and linking to content pages. Even in e-
commerce sites like Amazon or eBay, the most functionality needed was the hyperlink and
―Submit‖ button.

Touch-based interfaces were the stuff of research labs and, more recently, interesting

You- Tube videos. But now they‘re as close as our phones. Most notably, the Apple iPhone
brought touch to the masses (Figure below). Gesture-based interfaces seemed even further
out. Yet these became reality with the Nintendo Wii.

Figure: The Apple iPhone introduced touch-based interfaces
to the

consumer market

Fitts’s Law

Fitts‘s Law is an ergonomic principle that ties the size of a target and its contextual proximity
to ease of use. Bruce Tognazzini restates it simply as:

The time to acquire a target is a function of the distance to and size of the target.

In other words, if a tool is close at hand and large enough to target, then we can improve the
user‘s interaction. Putting tools in context makes for lightweight interaction.

Contextual Tools

Contextual Tools are the Web‘s version of the desktop‘s right-click menus. Instead of having
to right-click to reveal a menu, we can reveal tools in context with the content. We can do this
in a number of ways:

• Always-Visible Tools: Place Contextual Tools directly in the content.
• Hover-Reveal Tools: Show Contextual Tools on mouse hover.
• Toggle-Reveal Tools: A master switch to toggle on/off Contextual Tools for the

page.
• Multi-Level Tools: Progressively reveal actions based on user interaction.
• Secondary Menus: Show a secondary menu (usually by right-clicking on an object).

Always-Visible Tools

The simplest version of Contextual Tools is to use Always-Visible Tools. Digg is an example
of making Contextual Tools always visible

Figure: digg‘s ―digg it‖ button is a simple Contextual Tool that is always visible

Considerations

The ―digg it‖ button and Digg scorecard provide Always-Visible Tools next to each story.
Clear call to action Why not hide the tools and only reveal them when the mouse is over the
story? Since digging stories is central to the business of Digg, always showing the tool
provides a clear call to action. There are other actions associated with news stories
(comments, share, bury, etc.) but they are represented less prominently. In the case of Digg,
the designers chose to show these at all times.

Relative importance

The ―digg it‖ action is represented as a button and placed prominently in the context of the
story. The ―bury it‖ action is represented as a hyperlink along with other ―minor‖ actions
just below the story. The contrast of a button and a hyperlink as well as its placement gives a
strong indication as to the relative importance of each action.

Discoverability

Discoverability is a primary reason to choose Always-Visible Tools. On the flip side, it can
lead to more visual clutter. In the case of Digg and Netflix, there is a good deal of visual
space given to each item (story, movie). But what happens when the items you want to act on
are in a list or table?

Generally Contextual Tools in a list work well when the number of actions is kept to a
minimum. Gmail provides a single Always-Visible Tool in its list of messages—the star
rating—for flagging emails

Fig: Google Mail uses Contextual tools to flag favourites.

Simply clicking the star flags the message as important. The unstarred state is rendered in a
visually light manner, which minimizes the visual noise in the list.

Hover-Reveal Tools

One way to do this is to reveal the tools when the user pauses the mouse over an object. The
Hover-Reveal Tools pattern is most clearly illustrated by 37 Signal‘s Backpackit (Figure
below). To-do items may be deleted or edited directly in the interface. The tools to
accomplish this are revealed on mouse hover.

Discoverability

A serious design consideration for Hover-Reveal Tools is just how discoverable the
additional functionality will be. while the Contextual Tools are revealed on hover, the
checkbox is always visible for each to-do item. To check off an item, users have to move the
mouse over it. When they do, they will discover the additional functionality.

Contextual Tools in an overlay

There are several actions available for a focused object. Instead of placing tools beside the
object being acted on, the revealed tools can be placed in an overlay. However, there can be
issues with showing contextual tools in an overlay:

1. Providing an overlay feels heavier. An overlay creates a slight contextual switch for the
user‘s attention.

2. The overlay will usually cover other information—information that often provides context
for the tools being offered.

3. Most implementations shift the content slightly between the normal view and the overlay
view, causing the users to take a moment to adjust to the change.

4. The overlay may get in the way of navigation. Because an overlay hides at least part of the
next item, it becomes harder to move the mouse through the content without stepping into a
―landmine.‖

Toggle-Reveal Tools

A variation on the two previous approaches is to not show any Contextual Tools until a
special mode is set on the page. A good example of Toggle-Reveal Tools is in Basecamp‘s
category editing

Considerations

Here are a few considerations to keep in mind when using Toggle-Reveal Tools.

Soft mode

Generally, it is a good thing to avoid specific modes in an interface. However, if a
mode is soft it is usually acceptable. By ―soft‖ we mean the user is not trapped in the mode.
With Basecamp, the user can choose to ignore the tools turned on. It just adds visual noise
and does not restrict the user from doing other actions. This is a nice way to keep the
interaction lightweight.

When would you use this technique? When the actions are not the main thing and you
want to reduce visual noise. This fits the category example perfectly. Items are renamed or
deleted occasionally. It is common, however, to want to click through and see the contents of
a category (the category is always hyperlinked). Hence, make it readable and easily navigable
in the normal case—but still give the user a way to manage the items in context.

Google Reader could potentially be improved in this manner. In the current interface,
clicking ―Manage Subscriptions‖ takes the user to another page to edit subscriptions. One
possible change is the addition of an ―edit‖ button that toggles in a set of context tools for
each subscription (Figure below). This would allow the user to rename and unsubscribe
without leaving the context of the reading pane.

Multi-Level Tools

Contextual Tools can be revealed progressively with Multi-Level Tools. Songza* provides a
set of tools that get revealed after a user clicks on a song. Additional tools are revealed when
hovering over the newly visible tools

Fig: Songza uses a multi-level contextual tool menu

Radial menus

Radial menus* such as in Songza have been shown to have some advantages over more
traditional menus. First, experienced users can rely on muscle memory rather than having to
look directly at the menu items. Second, the proximity and targeting size make the menu easy
to navigate since the revealed menu items are all equally close at hand (recall Fitts‘s Law).

The one potential downside to this approach is that rating a song requires several steps: an
initial click on the song, moving the mouse over the ―rate‖ menu item, then clicking either
the thumbs up or thumbs down option. If rating songs was an important activity, the extra
effort might prevent some users from doing so. An alternate approach would be to replace
―rate‖ directly with the thumbs up and the thumbs down options.

Activation

Another interesting decision Songza made was to not activate the radial menu on hover.
Instead, the user must click on a song to reveal the menu. Activating on click makes the user
intent more explicit. Making activation more explicit avoids the issues described earlier in the
Hover and Cover anti-pattern. The user has chosen to interact with the song. Conversely, with
a mouse hover, it‘s never quite clear if the user meant to activate the menu or just happened
to pause over a song title.

Default action

Playing a song requires moving to the top leaf. One possible solution would be to place the
―play‖ option in the middle of the menu (at the stem) instead of in one of the leaves.
Clicking once would activate the menu. Clicking a second time (without moving the mouse)
would start playing the song. This interaction is very similar to one commonly used in
desktop applications: allowing a double-click to activate the first item (default action) in a
right-click menu.

Contextual toolbar

Picnik is an online photo-editing tool that integrates with services like Flickr. In all, there are
six sets of tools, each with a wide range of palette choices. Picnik uses Multiple-Level Tools
to expose additional functionality. By wrapping the photo with tools in context and
progressively revealing the levels of each tool, Picnik makes editing straight forward

Figure: Picnik wraps layers of Contextual Tools around the image being edited

Muttons

Multi-Level Tools is the ―mutton‖ (menu + button = mutton). Muttons are useful when there
are multiple actions and we want one of the actions to be the default.

Figure : Yahoo! Mail‘s ―Reply‖ button looks like a drop-down when hovered over; clicking
―Reply‖ replies to sender, and clicking the drop-down offers the default action as well as
―Reply to All‖

Clicking ―Reply‖ performs the individual reply. To reply to all, the menu has to be activated
by clicking on the drop-down arrow to show the menu. Muttons are used to:

• Provide a default button action (―Reply to Sender‖)
• Provide a clue that there are additional actions
• Provide additional actions in the drop-down

If muttons are not implemented correctly, they can be problematic for those using
accessibility technologies. Because an earlier version of Yahoo! Mail did not make the
mutton keyboard accessible, Yahoo!‘s accessibility guru, Victor Tsaran, was convinced that
there was no ―Reply to All‖ command in the Yahoo! Mail interface.

Secondary Menu

Desktop applications have provided Contextual Tools for a long time in the form of
Secondary Menus. These menus have been rare on the Web. Google Maps uses a secondary
menu that is activated by a right-click on a route. It shows additional route commands

Considerations

Secondary Menus have not been common in web applications.

Conflict with browser menu

One problem is the browser inserts its own right-click menu. Replacing the menu in normal
content areas can confuse users, as they may not know if the standard browser menu or the
application-specific menu will be shown. It will depend on whether it is clear that an object
exists in the interface (as in the route line above), and if the menu is styled differently enough
to disambiguate the menus.

Discoverability

As a general rule, never put anything in the Secondary Menu that can‘t be accomplished
elsewhere. Secondary Menus are generally less discoverable. More advanced items or
shortcuts, however, can be placed in the Secondary Menu as an alternate way to accomplish
the same task.

Accessibility

Right-click is not the only way to activate a Secondary Menu. You can activate the menu by
holding down the mouse for about one second. This provides a more accessible approach to
popping up a Secondary Menu. This technique is used in the Macintosh Dock.

Clicking and holding down on an application in the dock will reveal the Secondary Menu
without requiring a right-click activation.

Acting on multiple objects

Keep in mind that all of the other Contextual Tools presented in this chapter have a limitation
on the number of items they can operate on. Always-Visible Tools, Hover-Reveal Tools,
Toggle-Reveal Tools, and Multi-Level Tools all operate on a single item at a time (even
Toggle-Reveal Tools just shows a tool per item). Secondary Menus are different.

OVERLAYS

Overlays are really just lightweight pop ups. We use the term lightweight to make a clear
distinction between it and the normal idea of a browser pop up. Browser pop ups are created
as a new browser window (Figure below). Lightweight overlays are shown within the
browser page as an overlay (Figure below). Older style browser pop ups are undesirable
because:

Browser pop ups display a new browser window.

As a result these windows often take time and a sizeable chunk of system resources to create.

Browser pop ups often display browser interface controls (e.g., a URL bar). Due to security
concerns, in Internet Explorer 7 the URL bar is a permanent fixture on any browser pop-up
window.

Figure : If Orbitz used a browser pop-up
window for its calendar chooser (it does not),
this is how it might look.

By using either Flash or Ajax-style techniques (Dynamic HTML), a web application can
present a pop up in a lightweight overlay within the page itself. This has distinct advantages:

• Lightweight overlays are just a lightweight in-page object. They are inexpensive to
create and fast to display.

 The interface for lightweight overlays is controlled by the • web application and not
the browser.

 There is complete control over the visual style for the overlay. This allows the overlay
to be more visually integrated into the application‘s interface

Figure : Orbitz uses a lightweight DHTML overlay for its calendar chooser; since it does not
require the overhead of a separate browser window, it can pop up quickly and is better
integrated into the page visually

Dialog Overlay

Dialog Overlays replace the old style browser pop ups. Netflix provides a clear example of a
very simple Dialog Overlay. In the ―previously viewed movies for sale‖ section, a user can
click on a ―Buy‖ button to purchase a DVD. Since the customer purchasing the DVD is a
member of Netflix, all the pertinent shipping and purchasing information is already on
record. The complete checkout experience can be provided in a single overlay

Considerations

Because the overlay is a lightweight pop up, the confirmation can be displayed more rapidly
and the application has complete control over its look and placement.

Lightbox Effect

One technique employed here is the use of a Lightbox Effect. In photography a lightbox
provides a backlit area to view slides. On the Web, this technique has come to mean bringing
something into view by making it brighter than the background. In practice, this is done by
dimming down the background.

The Lightbox Effect is useful when the Dialog Overlay contains important information that
the user should not ignore. Both the Netflix Purchase dialog and the Flickr Rotate dialog are
good candidates for the Lightbox Effect. If the overlay contains optional information, then the
Lightbox Effect is overkill and should not be used.

Modality

Overlays can be modal* or non-modal. A modal overlay requires the user to interact with it
before she can return to the application

The Lightbox Effect emphasizes that we are in a separate mode. As a consequence, it is not
needed for most non-modal overlays. As an example, refer back to the Orbitz calendar pop
up. Since the overlay is really more like an in-page widget, it would not be appropriate to
make the chooser feel heavier by using a Lightbox Effect.

Staying in the flow

Overlays are a good way to avoid sending a user to a new page. This allows the user to stay
within the context of the original page. However, since overlays are quick to display and
inexpensive to produce, sometimes they can be tempting to use too freely, and in the process,
may actually break the user‘s flow.

Detail Overlay

The Detail Overlay allows an overlay to present additional information when the user
clicks or hovers over a link or section of content. Toolkits now make it easier to create
overlays across different browsers and to request additional information from the server
without refreshing the page.

Activation

The overlay is displayed when the mouse hovers over a box shot. There is about a halfsecond
delay after the user pauses over a movie. The delay on activation prevents users from
accidentally activating the overlay as they move the cursor around the screen. Once the user
moves the cursor outside the box shot, the overlay is removed immediately. Removing it
quickly gives the user a fast way to dismiss it without having to look for a ―Close‖ box.

Anti-pattern: Mouse Traps

It is important to avoid activating the Detail Overlay too easily. We have seen usability
studies that removed the delay in activation, and users reported that the interface was ―too
noisy‖ and ―felt like a trap‖. We label this anti-pattern the Mouse Trap.

The reasoning for this is not clear, but Amazon uses the Mouse Trap anti-pattern in one of its
―associate widgets‖. Original Motion Picture Soundtrack‖ activates an overlay providing
information on the soundtrack and a purchase option

Input Overlay

Input Overlay is a lightweight overlay that brings additional input information for each field
tabbed into. American Express uses this technique in its registration for premium cards such
as its gold card

Figure 5-15. American Express provides Input Overlays to guide the user through the signup
process

Considerations

There are a few things to keep in mind when using Input Overlays.

Clear focus

The overlay contains additional input help information. This allows the normal display of the
form to be displayed in a visually simple manner (just prompts and inputs). The overlay
creates focus on the given input field. Instead of seeing an ocean of inputs, the user is focused
on just entering one field.

Display versus editing

when the Input Overlay is shown, the prompt is displayed in exactly the same manner
as when the overlay doesn‘t show. This is critical, as it makes the overlay feel even more
lightweight. If the overlay prompt were bold, for example, the change would be slightly
distracting and take the focus away from input. The only difference between the non-overlay
field and the overlay version is a slightly thicker input field border. This draws the eye to the
task at hand—input.

• Field traversal
• Tab navigation
• One-click deactivation

INLAYS

Information, or dialog with the user needs to be an overlay. Another approach is to inlay the
information directly within the page itself. To distinguish from the pop-up overlay, we call
these in-page panels Inlays.

Dialog Inlay

A simple technique is to expand a part of the page, revealing a dialog area within the page.
The BBC recently began experimenting with using a Dialog Inlay as a way to reveal
customization controls for its home page

Considerations

Of course an overlay could have been used instead. However, the problem with overlays is
that no matter where they get placed, they will end up hiding information. Inlays get around
this problem by inserting themselves directly into the context of the page.

In context

This Dialog Inlay is similar to a drawer opening with a tray of tools. Instead of being taken to
a separate page to customize the home page appearance, the user can make changes and view
the effects directly. The advantage is the ability to tweak the page while viewing the actual
page.

List Inlay

Lists are a great place to use Inlays. Instead of requiring the user to navigate to a new page
for an item‘s detail or popping up the information in an Overlay, the information can be
shown with a List Inlay in context. The List Inlay works as an effective way to hide detail
until needed—while at the same time preserving space on the page for high-level overview
information.

Google Reader provides an expanded view and a list view for unread blog articles. In the list
view, an individual article can be expanded in place as a List Inlay

Detail Inlay

A common idiom is to provide additional detail about items shown on a page. We saw
his with the example of the Netflix movie detail pop up in . Hovering over a movie revealed a
Detail Overlay calling out the back-of-the-box information. Details can be shown inline as
well. Roost allows house photos to be viewed in-context for a real estate listing with a Detail
Inlay

Combining inlays and overlays

Roost‘s solution was to combine several patterns. First, it uses the Hover Reveal, a
Contextual Tools pattern, to reveal a set of tools when the user hovers over a listing. Second,
it uses the Detail Inlay pattern to show a carousel of photos when the user clicks on the
―View photos‖ link. And finally, it uses a Detail Overlay to blow up a thumbnail when
clicked on.

VIRTUAL PAGES

Patterns that support virtual pages include:

• Virtual Scrolling
• Inline Paging
• Scrolled Paging
• Panning
• Zoomable User Interface

Virtual Scrolling

The traditional Web is defined by the ―page.‖ In practically every implementation of
websites (for about the first 10 years of the Web‘s existence) pagination was the key way to
get to additional content. Of course, websites could preload data and allow the user to scroll
through it. However, this process led to long delays in loading the page. So most sites kept it
simple: go fetch 10 items and display them as a page and let the user request the next page of
content. Each fetch resulted in a page refresh.

The classic example of this is Google Search. Each page shows 10 results. Moving through
the content uses the now-famous Google pagination control Another approach is to remove
the artificial page boundaries created by paginating the data with Virtual Scrolling.

Loading status

There are a few downsides to the Yahoo! Mail version of Virtual Scrolling. First, if the
loading is slow, it spoils the illusion that the data is continuous. Second, since the scrollbar
does not give any indication of where users are located in the data, they have to guess how far
down to scroll. A remedy would be to apply a constantly updating status while the user is
scrolling.

Progressive loading

Microsoft has applied Virtual Scrolling to its image search. However, it implements it in a
different manner than Yahoo! Mail. Instead of all content being virtually loaded (and the
scrollbar reflecting this), the scrollbar reflects what has been loaded.

Inline Paging

Switching the content in and leaving the rest of the page stable, we can create an Inline
Paging experience.

In-page update

Keeping the context stable creates a better flow experience. With Inline Paging it feels
like the user never leaves the page even though new virtual pages of results are being brought
into view.

Natural chunking

Inline Paging can also be useful when reading news content online. The International Herald
Tribune applied this as a way to page through an article while keeping the surrounding
context visible at all times

Back button

The biggest issue with Inline Paging is whether the back button works correctly. One
criticism of Endless.com is that if the user pages through search results and then hits the back
button, it jumps to the page just before the search. This unexpected result could be fixed by
making the back button respect the virtual pages as well. This is the way Gmail handles the
back button.* Clicking back moves you through the virtual pages.

Interactive content loading

The iPhone employs inline paging when displaying search results in the iTunes store

Scrolled Paging: Carousel

The Carousel pattern takes this approach. A Carousel provides a way to page-in more
data by scrolling it into view. On one hand it is a variation on the Virtual Scrolling pattern. In
other ways it is like Virtual Paging since most carousels have paging controls. The additional
effect is to animate the scrolled content into view.

Time-based

Carousels work well for time-based content. Flickr employs a Carousel to let users navigate
back and forth through their photo collection

Animation direction

Inexplicably, AMCtheatres.com animates its Carousel the opposite way. This leads to a
confusing experience, and it‘s harder to know which control to click

Virtual Panning

A great place for Virtual Panning is on a map. Google Maps allows you to pan in any
direction by clicking the mouse down and dragging the map around

Zoomable User Interface

A Zoomable User Interface (ZUI) is another way to create a virtual canvas. Unlike panning or
flicking through a flat, two-dimensional space, a ZUI allows the user to also zoom in to
elements on the page. This freedom of motion in both 2D and 3D supports the concept of an
infinite interface.

Practically speaking, ZUIs have rarely been available in everyday software applications,
much less on the Web. But with more advanced features added to Flash and the advent of
Silverlight, this type of interface is starting to emerge and may be commonplace in the not-
too-distant future.

Paging Versus Scrolling

Leading web designers and companies have taken different approaches to solving the same
problems. Yahoo! Mail chose Virtual Scrolling. Gmail chose Inline Paging. How do you
choose between paging and scrolling? While there are no hard and fast rules, here are some
things to consider when making the decision:

• When the data feels ―more owned‖ by the user—in other words, the data is not transient
but something users want to interact with in various ways. If they want to sort it, filter it, and
so on, consider Virtual Scrolling (as in Yahoo! Mail).

• When the data is more transient (as in search results) and will get less and less relevant the
further users go in the data, Inline Paging works well (as with the iPhone).

• For transient data, if you don‘t care about jumping around in the data to specific sections,
consider using Virtual Scrolling (as in Live Image Search).

• If you are concerned about scalability and performance, paging is usually the best choice.
Originally Microsoft‘s Live Web Search also provided a scrollbar. However, the scrollbar
increased server-load considerably since users are more likely to scroll than page.

• If the content is really continuous, scrolling is more natural than paging.

• If you get your revenue by page impressions, scrolling may not be an option for your
business model.

• If paging causes actions for the content to become cumbersome, move to a scrolling model.
This is an issue in Gmail. The user can only operate on the current page.

Changing items across page boundaries is unexpected. Changing items in a continuous
scrolled list is intuitive.

PROCESS FLOW

Process FlowGoogle Blogger

The popular site Google Blogger generally makes it easy to create and publish blogs. One
thing it does not make easy, though, is deleting comments that others may leave on your blog.
This is especially difficult when you are the victim of hundreds of spam comments left by
nefarious companies hoping to increase their search ranking.

1. Scroll to find the offending comment.
2. Click the trash icon to delete the comment.
3. After page refreshes, click the ―Remove Forever‖ checkbox.
4. Click the ―Delete Comment‖ button.
5. After the page refreshes, click the link to return to my blog

article. Repeat steps 1–5 for each article with spam comments.

The Magic Principle

Alan Cooper discusses a wonderful technique for getting away from a technology-driven
approach and discovering the underlying mental model of the user. He calls it the ―magic
principle.‖* Ask the question, ―What if when trying to complete a task the user could invoke
some magic?‖ For example, let‘s look at the problem of taking and sharing photos.

The process for this task breaks down like this:

• Take pictures with a digital camera.
• Sometime later, upload the photos to a photo site like Flickr. This involves:

Finding the cable.
Starting iTunes.

Importing all photos.

Using a second program, such as Flickr Uploadr, to upload the photos to Flickr.

Copying the link for a Flickr set (which involves first locating the page for the uploaded set).

• Send the link in email to appropriate friends.

If some magic were invoked, here is how it might happen:

• The camera would be event-aware. It would know that is your daughter‘s eighth
birthday.

• When finished taking pictures of the event, the camera would upload the pictures to
Flickr.

• Flickr would notify family and friends that the pictures of the birthday party are
available.

Thinking along these lines gets some of the artifacts out of the way. Of course the magic
could be taken to the extreme: just eliminate the camera altogether! But by leaving some

elements in the equation, the potentially unnecessary technology pieces can be exposed. How
about the cable? What if the camera could talk magically to the computer?

Process Flow patterns:

• Interactive Single-Page Process
• Inline Assistant Process
• Configurator Process
• Overlay Process
• Static Single-Page Process

Interactive Single-Page Process

Consumer products come in a variety of shapes, sizes, textures, colors, etc. Online shoppers
will not only have to decide that they want shoes, but do they want blue suede shoes? And
what size and width do they want them in? In the end the selection is constrained by the
available inventory. As the user makes decisions, the set of choices gets more and more
limited.

This type of product selection is typically handled with a multi-page workflow. On one page,
the user selects a shirt and its color and size. After submitting the choice, a new page is
displayed. Only when the user arrives at this second page does he find out that the ―true
navy‖ shirt is not available in the medium size. The Gap accomplishes this kind of product
selection in a single page using Interactive Single-Page Process.

Benefits

Adobe calls out the Broadmoor one-page reservation interface in its Adobe Showcase.

* It states the benefits of this method:

• Reduces entire reservation process to a single screen.
• Reduces the number of screens in the online reservation process from five to one.

Other online reservation applications average 5 to 10 screens.

• Seventy-five percent of users choose OneScreen in favor of the HTML version.
• Allows users to vary purchase parameters at will and immediately view results.
• Reduces the time it takes to make a reservation from at least three minutes to less than

one.

Additionally, Adobe notes that conversion rates (users who make it through the reservation
process) are much higher with the Interactive Single-Page Process.

Inline Assistant Process

The Gap employed an Inline Assistant Process pattern for its shopping cart when it re-
launched its site a few years back

Dialog Overlay Process

Dialog Overlay Process to encapsulate a multi-step flow inside a Dialog Overlay.

Configurator Process

Process Flow is meant to invoke delight. In these cases, it is the engagement factor that
becomes most important. This is true with various Configurator Process interfaces on the
Web. We can see this especially at play with car configurators. Porsche provides a
configurator that allows users to build their own Porsche

Static Single-Page Process

Put the complete flow on one page in a Static Single-Page Process. The user sees all
the tasks needed to complete the full process. This can be both good and bad. Seeing just one
step to complete the process can encourage users to finish the task. But if the single step
seems too long or too confusing, the user will most likely bail out of the process early. In
other words, if placing all the tasks on a single page is enough to cause the user to bail out, it
is not a good idea. In the case of the Apple store, each item is optionally set, and it‘s just a
single click to include or exclude an item from the purchase.

