
CS3351-DIGITAL PRINCIPLES AND COMPUTER

ORGANIZATION

UNITICOMBINATIONALCIRCUITS:

 -Combinational Circuits

– Karnaugh Map - Analysis and Design Procedures

 – Binary Adder – Subtractor

– Decimal Adder

 - Magnitude Comparator

 – Decoder

– Encoder

– Multiplexers

 - Demultiplexers

INTRODUCTION:

Thedigitalsystemconsistsoftwotypesofcircuits,namely

(i) Combinationalcircuits

(ii) Sequentialcircuits

Combinationalcircuitconsistsoflogicgateswhoseoutputatanytimeisdeter

mined from the present combination of inputs. The logic gate is the most

basicbuildingblockofcombinationallogic.Thelogicalfunctionperformedbyacomb

inationalcircuitisfullydefinedbyasetofBooleanexpressions.

Sequential logic circuit comprises both logic gates and the state of

storageelementssuchasflip-

flops.Asaconsequence,theoutputofasequentialcircuitdependsnotonlyonpresentv

alueofinputs butalsoonthepaststateofinputs.

Inthepreviouschapter,wehavediscussedbinarynumbers,codes,Booleanalge

braandsimplificationofBooleanfunctionandlogicgates.Inthischapter,formulation

andanalysisofvarioussystematicdesignsofcombinationalcircuitswillbediscussed.

Acombinationalcircuitconsistsofinputvariables,logicgates,andoutputvaria

bles. The logic gates accept signals from inputs and output signals are

generatedaccording to the logic circuits employed in it. Binary information

from the given datatransforms to desired output data in this process. Both input

and output are obviouslythe binary signals, i.e., both the input and output

signals are of two possible states, logic1andlogic0.

Blockdiagramofacombinationallogiccircuit

Fornnumberofinputvariablestoacombinationalcircuit,2npossiblecombinat

ionsofbinaryinputstatesarepossible.Foreachpossiblecombination,thereisone and

only one possible output combination. A combinational logic circuit can

bedescribed by m Boolean functions and each output can be expressed in terms

of n inputvariables.

DESIGNPROCEDURE:

Anycombinationalcircuitcanbedesignedbythefollowingstepsofdesignprocedure.

1. Theproblemisstated.

2. Identifytheinputandoutputvariables.

3. Theinputandoutputvariablesareassignedlettersymbols.

4. Constructionofatruthtabletomeetinput-outputrequirements.

5. WritingBooleanexpressionsforvariousoutputvariablesintermsofinp

utvariables.

6. ThesimplifiedBooleanexpressionisobtainedbyanymethodofminimization

—algebraic method,Karnaughmapmethod,ortabulationmethod.

7. Alogicdiagramisrealizedfromthesimplifiedbooleanexpressionusinglog

icgates.

Thefollowingguidelinesshouldbefollowedwhilechoosingthepreferredformforhard

wareimplementation:

1. Theimplementationshouldhavetheminimumnumberofgates,withthegate

susedhavingtheminimumnumberofinputs.

2. Thereshouldbeaminimumnumberofinterconnections.

3. Limitationonthedrivingcapabilityofthegatesshouldnotbeignored.

ARITHMETICCIRCUITS–BASICBUILDINGBLOCKS:

Inthissection,wewilldiscussthosecombinationallogicbuildingblocksthatca

nbe used to perform addition and subtraction operations on binary numbers.

Additionand subtraction are the two most commonly used arithmetic

operations, as the othertwo, namely multiplication and division, are

respectively the processes of repeatedadditionandrepeated subtraction.

Thebasicbuildingblocksthatformthebasisofallhardwareusedtoperformthea

rithmeticoperationsonbinarynumbersarehalf-adder,fulladder,half-

subtractor,full-subtractor.

Half-Adder:

A half-adder is a combinational circuit that can be used to add two

binary bits. Ithas two inputs that represent the two bits to be added and two

outputs, with oneproducingtheSUMoutputandtheotherproducingtheCARRY.

Blockschematicofhalf-adder

Thetruthtableofahalf-

adder,showingallpossibleinputcombinationsandthecorrespondingoutputs

areshownbelow.

Inputs Outputs

A B Carry(C
)

Sum(S)

0 0 0 0
0 1 0 1

1 0 0 1
1 1 1 0

Truthtableofhalf-adder

K-mapsimplificationforcarryandsum:

TheBooleanexpressionsfortheSUMandCARRYoutputsaregivenbytheequations,
Sum,S =A’B+AB’=AB

Carry,C=A.B

ThefirstonerepresentingtheSUMoutputisthatofanEX-

ORgate,thesecondonerepresentingtheCARRYoutputisthatofanANDgate.

The logicdiagram ofthehalf adderis,

Full- Adder:

Afulladderisacombinationalcircuitthatformsthearithmeticsumofthreeinput

bits.Itconsistsof3inputsand2outputs.

Two of the input variables, represent the significant bits to be added. The

thirdinputrepresentsthecarryfrompreviouslowersignificantposition.Theblockdia

gramoffulladderisgivenby,

Blockschematicoffull-adder

The full adder circuit overcomes the limitation of the half-adder, which

can beused to add two bits only. As there are three input variables, eight

different inputcombinationsarepossible.Thetruthtableis shownbelow,

TruthTable:

Input

s
Output

s
A B Ci

n
Sum(S) Carry(Co

ut)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

ToderivethesimplifiedBooleanexpressionfromthetruthtable,theKarnaughmapm

ethodisadoptedas,

TheBooleanexpressionsfortheSUMandCARRYoutputsaregivenbytheequati

ons,

Sum,S =A’B’Cin+A’BC’in+AB’C’in+ABCin

Carry,Cout =AB+ACin+BCin.

Thelogicdiagramfortheabovefunctionsisshownas,

Implementationoffull-adderinSumofProducts

Thelogicdiagram ofthefulladdercanalsobeimplementedwithtwohalf-

addersand one ORgate.The S output fromthe secondhalfadderistheexclusive-

OR ofCinandtheoutputofthefirsthalf-adder,giving

Sum=Cin (AB) [xy=x‘y+xy‘]

=Cin(A‘B+AB‘)

=C‘in(A‘B+AB‘)+Cin(A‘B+AB‘)‘ [(x‘y+xy‘)‘=(xy+x‘y‘)]

=C‘in(A‘B+AB‘)+Cin(AB+A‘B‘)

=A‘BC‘in+AB‘C‘in+ABCin+A‘B‘Cin.

andthecarryoutputis,

Carry,Cout=AB+Cin(A’B+AB’)

=AB+A‘BCin+AB‘Cin

=AB(Cin+1)+A‘BCin+AB‘Cin [Cin+1=1]

=ABCin+AB+A‘BCin+AB‘Cin

=AB+ACin(B+B‘)+A‘BCin

=AB+ACin+A‘BCin

=AB(Cin+1)+ACin+A‘BCin [Cin+1=1]

=ABCin+AB+ACin+A‘BCin

=AB+ACin+BCin(A+A‘)

=AB+ACin+BCin.

Implementationoffulladderwithtwohalf-addersandanORgate

Half-Subtractor:Blockschematicofhalf-subtractor

Ahalf-

subtractorisacombinationalcircuitthatcanbeusedtosubtractonebinarydigitfroman

othertoproduceaDIFFERENCEoutputandaBORROWoutput.TheBORROWout

putherespecifieswhethera‗1‘hasbeenborrowedtoperformthesubtraction.Thetrut

htableofhalf-

subtractor,showingallpossibleinputcombinationsandthecorrespondingoutputsar

eshownbelow.
Input Output

A B Difference(
D)

Borrow(Bout)

0 0 0 0
0 1 1 1
1 0 1 0

1 1 0 0

K-mapsimplificationforhalfsubtractor:

The Boolean expressions for the DIFFERENCE and BORROW outputs

are givenbytheequations,

Difference,D= A’B+ AB’=AB

Borrow,Bout =A’.B

The first one representing the DIFFERENCE (D)output is that of an

exclusive-ORgate, the expression for the BORROW output (Bout) is that of an

AND gate with input Acomplementedbeforeitisfedtothegate.

The logicdiagramofthehalf adderis,

LogicImplementationofHalf-Subtractor

Comparing a half-subtractor with a half-adder, we find that the

expressions forthe SUM and DIFFERENCE outputs are just the same. The

expression for BORROW inthe case of the half-subtractor is also similar to

what we have for CARRY in the case ofthe half-adder. If the input A, ie., the

minuend is complemented, an AND gate can

beusedtoimplementtheBORROWoutput.

FullSubtractor:

Afullsubtractorperformssubtractionoperationontwobits,aminuendandasubtra

hend, and alsotakes intoconsideration whethera ‗1‘ has alreadybeen

borrowedbythepreviousadjacentlowerminuendbitornot.

As a result, there are three bits to be handled at the input of a full

subtractor,namely the two bits to be subtracted and a borrow bit designated as

Bin. There are twooutputs,namelytheDIFFERENCEoutputDandthe

BORROWoutput Bo. TheBORROW output bit tells whether the minuend bit

needs to borrow a ‗1‘ from the nextpossiblehigherminuendbit.

Block schematicof full-adder

Thetruthtableforfull-subtractoris,
Input

s
Output

s
A B Bi

n
Difference(D

)
Borrow(Bo

ut)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

K-map simplification for full-subtractor:

TheBooleanexpressionsfortheDIFFERENCEandBORROWoutputsaregiv

enbytheequations,

PreparedByKAVIARASAN.S/Asst.Prof.,PIT

Difference,D =A’B’Bin+A’BB’in+AB’B’in+ABBin

Borrow,Bout =A’B+A’Cin+BBin.

Thelogicdiagramfortheabovefunctionsisshownas,

Implementationoffull-adderinSumofProducts

The logic diagram of the full-subtractor can also be implemented with two

half-

subtractorsandoneORgate.Thedifference,Doutputfromthesecondhalfsubtractorist

heexclusive-ORofBinandtheoutputofthefirsthalf-subtractor, giving

Difference,D=Bin(AB) [xy=x‘y+xy‘]

=Bin(A‘B+AB‘)

=B‘in(A‘B+AB‘)+Bin(A‘B+AB‘)‘ [(x‘y+xy‘)‘=(xy+x‘y‘)]

=B‘in(A‘B+AB‘)+Bin(AB+A‘B‘)

= A‘BB‘in+ AB‘B‘in+ ABBin+A‘B‘Bin.

andtheborrowoutputis,

Borrow,Bout=A’B+Bin(A’B+AB’)’[(x‘y+xy‘)‘=(xy+x‘y‘)]

=A‘B+Bin(AB+A‘B‘)

= A‘B+ABBin+A‘B‘Bin

=A‘B(Bin+1)+ABBin+A‘B‘Bin [Cin+1=1]

=A‘BBin+A‘B+ABBin+A‘B‘Bin

= A‘B+ BBin(A+A‘)+A‘B‘Bin [A+A‘=1]

=A‘B+BBin+A‘B‘Bin

=A‘B(Bin+1)+BBin+A‘B‘Bin [Cin+1=1]

=A‘BBin+A‘B+BBin+A‘B‘Bin

=A‘B+BBin+A‘Bin(B+B‘)

=A‘B+BBin+A‘Bin.

Therefore,

wecanimplementfull-subtractorusingtwohalf-subtractorsandORgateas,

Implementationoffull-subtractorwithtwohalf-

subtractorsandanORgate

Four –bit BinaryAdder(ParallelAdder):

The4-bitbinaryadderusingfulladdercircuitsiscapableofaddingtwo4-

bitnumbersresulting ina4-bit sumanda carry output as showninfigure below.

4-bitbinaryparallelAdder

Sinceallthebitsofaugendandaddendarefedintotheaddercircuitssimultaneou

slyandtheadditionsineachpositionaretakingplaceatthesametime,thiscircuitiskno

wnasparalleladder.

Letthe4-

bitwordstobeaddedberepresentedby,A3A2A1A0=1111andB3B

2B1B0=0011.

Thebitsareaddedwithfulladders,startingfromtheleastsignificantposition,to

formthesumitandcarrybit.TheinputcarryC0intheleastsignificantpositionmustbe

0. The carry output of the lower order stage is connected to the carry input of the

nexthigherorderstage.Hencethistypeofadderiscalledripple-carryadder.

In the least significant stage, A0, B0 and C0 (which is 0) are added

resulting insumS0andcarryC1.ThiscarryC1becomesthecarryinputtothesecond

stage.Similarly in the second stage, A1, B1 and C1 are added resulting in sum

S1 and carry C2,in the third stage, A2, B2 and C2 are added resulting in sum

S2 and carry C3, in the thirdstage, A3, B3 and C3 are added resulting in sum

S3 and C4, which is the output carry.Thusthe circuitresultsin a

sum(S3S2S1S0) and acarry output(Cout).

Though the parallel binary adder is said to generate its output

immediately afterthe inputs are applied, its speed of operation is limited by the

carry propagation delaythrough all stages. However,there are several methods

to reduce thisdelay.

One of the methods of speeding up this process is look-ahead carry

additionwhicheliminatestheripple-carrydelay.

BinarySubtractor(ParallelSubtractor):

The subtraction of unsigned binary numbers can be done most

conveniently bymeans of complements. The subtraction A-B can be done by

taking the 2‘s

complementofBandaddingittoA.The2‘scomplementcanbeobtainedbytakingthe1

‘scomplementandadding1totheleastsignificantpairofbits.

The1‘scomplementcanbeimplementedwithinvertersanda1canbeaddedtoth

esumthroughtheinputcarry.

ThecircuitforsubtractingA-

Bconsistsofanadderwithinvertersplacedbetween each data input B and the

corresponding input of the full adder. The

inputcarryC0mustbeequalto1whenperformingsubtraction.Theoperationthusperf

ormed becomes A, plus the 1‘s complement of B, plus1. This is equal to A plus

the2‘scomplementofB.

4-bitParallelSubtractor

4-Bit ParallelAdder/Subtractor:

The addition and subtraction operation can be combined into one circuit

withone common binary adder. This is done by including an exclusive-OR

gate with eachfulladder.A4-bitadderSubtractorcircuitisshownbelow.

ThemodeinputMcontrolstheoperation.WhenM=0,thecircuitisanadderand

whenM=1,thecircuitbecomesaSubtractor.Eachexclusive-

ORgatereceivesinputMand one of the inputs of B. When M=0, we have B 0=

B. The full adders receive

thevalueofB,theinputcarryis0,andthecircuitperformsAplusB.WhenM=1,wehave

B 1= B‘ and C0=1. The B inputs are all complemented and a 1 is added

through theinput carry. The circuit performs the operation A plus the 2‘s

complement of B. Theexclusive-ORwithoutputVisfordetectinganoverflow.

DecimalAdder(BCDAdder):

The digital system handles the decimal number in the form of binary

codeddecimalnumbers(BCD).ABCDadderisacircuitthataddstwoBCDbitsandpro

ducesasumdigitalsoinBCD.

Considerthearithmetic additionof twodecimal digits in BCD,togetherwith

aninputcarryfromaprevious stage.Sinceeach inputdigitdoes not exceed9,the

outputsumcannotbegreaterthan9+9+1 =19; the1isthesumbeinganinputcarry.

Theadderwillformthesuminbinaryandproducearesultthatrangesfrom0through19.

These binary numbers are labeled by symbols K, Z8, Z4, Z2, Z1, K is the

carry.

Thecolumnsunderthebinarysumlistthebinaryvaluesthatappearintheoutputsofthe4-

bitbinaryadder.TheoutputsumofthetwodecimaldigitsmustberepresentedinBCD.

BinarySum BCD Sum

Decimal
K Z

8

Z4 Z2 Z1 C S8 S

4

S2 S1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

10

11

12

13

14

15

16

17

18

19

In examining the contents of the table, it is apparent that when the binary

sum isequal to or less than 1001, the corresponding BCD number is identical, and

therefore noconversionis needed. When the binarysum is greaterthan 9(1001),

weobtain anon-

validBCDrepresentation.Theadditionofbinary6(0110)tothebinarysumconvertsittoth

ecorrectBCDrepresentationandalsoproducesanoutputcarryasrequired.

Thelogic circuittodetectsumgreaterthan

9canbedeterminedbysimplifyingthebooleanexpressionofthegiventruthtable.

ToimplementBCDadder werequire:

 4-bitbinaryadderforinitialaddition

 Logiccircuittodetectsumgreaterthan9and

 Onemore4-bitaddertoadd01102inthesumifthesumisgreaterthan9orcarryis1.

The twodecimal digits, togetherwith the inputcarry, are firstadded in the

top4-bit binary adder to provide the binary sum. When the output carry is equal

to zero,nothing is added to the binarysum. When itis equal to one, binary0110 is

added tothe binary sum through the bottom 4-bit adder. The output carry

generated from thebottom adder can be ignored, since it supplies information

already available at

theoutputcarryterminal.Theoutputcarryfromonestagemustbeconnectedtotheinput

carryofthenexthigher-orderstage.

BlockdiagramofBCDadder

MAGNITUDECOMPARATOR:

A magnitude comparator is a combinational circuit that compares two

givennumbers(AandB)anddetermineswhetheroneisequalto,lessthanorgreatertha

ntheother.Theoutputisintheformofthreebinaryvariables

Blockdiagramofn-Bit magnitudecomparator

representingtheconditionsA=B,A>BandA<B,ifAandBarethetwonumbers

beingcompared.

Forcomparisonoftwon-bitnumbers,theclassicalmethodtoachievetheBoolean expressions

requires a truth table of 22nentries and becomes too lengthy andcumbersome.

1-Bit Magnitude Comparator:

A comparator used to compare two bits is called a single-bit comparator. It consists

of two inputs each for two single-bit numbers and three outputs to generate less than,

equal to, and greater than between two binary numbers.

The truth table for a 1-bit comparator is given below:

From the above truth table logical expressions for each output can be expressed as

follows:

A>B: AB'

A<B: A'B

A=B: A'B' + AB

From the above expressions we can derive the following formula:

By using these Boolean expressions, we can implement a logic circuit for this

comparator as given below:

2-bitMagnitudeComparator:

Thetruthtableof2-bitcomparatorisgivenintablebelow—

Truthtable:

Input

s

Outputs

A

3

A2 A1 A0 A>B A=B A<B

0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

K-mapSimplification:

LogicDiagram:

2- bitMagnitudeComparator

ENCODERS:

An encoder is a digital circuit that performs the inverse operation of a

decoder.Hence,theoppositeofthedecodingprocessiscalledencoding.Anencoderis

acombinationalcircuitthatconvertsbinaryinformationfrom2ninputlinestoamaxim

umof‗n‘uniqueoutputlines.

Thegeneralstructureofencodercircuitis–

GeneralstructureofEncoder

It has 2n input lines, only one which 1 is active at any time and ‗n‘

output lines. Itencodes one of the active inputs to a coded binary output with

‗n‘ bits. In an encoder,thenumberofoutputsislessthanthenumberofinputs.

Octal-to-BinaryEncoder:

It has eight inputs (one for each of the octal digits) and the three outputs

thatgenerate the corresponding binary number. It is assumed that only one

input has avalueof1atanygiventime.

Inputs Outputs

D

0

D

1

D

2

D

3

D

4

D

5

D

6

D

7

A B C

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

The encoder can be implemented with OR gates whose inputs are

determineddirectly from the truth table. Output z is equal to 1, when the input

octal digit is 1 or 3or5or7.Outputyis

1foroctaldigits2,3,6,or7andtheoutputis1fordigits4,5,6or

7.TheseconditionscanbeexpressedbythefollowingoutputBooleanfunctions:

z=D1+D3+D5+D7

y=D2+D3+D6+D7

x=D4+D5+D6+D7

The encoder can be implemented with three OR gates. The encoder

defined inthe below table, has the limitation that only one input can be active at

any given time.

Iftwoinputsareactivesimultaneously,theoutputproducesanundefinedcombinatio

n.

For eg., if D3 and D6 are 1 simultaneously, the output of the encoder

may be 111.This does not represent either D6 or D3. To resolve this problem,

encoder circuits mustestablish an input priority to ensure that only one input is

encoded. If we establish ahigher priority for inputs with higher subscript

numbers and if D3and D6are 1 at thesame time, the output will be 110

becauseD6hashigher prioritythan D3.

Octal-to-BinaryEncoder

Another problem in the octal-to-binary encoder is that an output with all 0‘s

isgenerated when all the inputs are 0; this output is same as when D0is equal to 1.

Thediscrepancycan be resolvedbyproviding one moreoutput

toindicatethatatleastoneinputisequalto1.

PriorityEncoder:

A priority encoder is an encoder circuit that includes the priority

function.

Inpriorityencoder,iftwoormoreinputsareequalto1atthesametime,theinputhavingt

hehighestprioritywilltakeprecedence.

In addition to the two outputs x and y, the circuit has a third output, V (valid

bitindicator).Itis set to 1 whenoneormore inputs areequal to 1.If allinputs are0,

thereisnovalidinputandVisequalto0.Thehigherthesubscriptnumber,higherthepriority

oftheinput.InputD3,hasthe highest priority. So, regardless of the values of the other

inputs, whenD3is 1, theoutputforxyis11.

D2hasthenextprioritylevel.Theoutputis10,ifD2=1providedD3=0.Theoutputfo

rD1isgeneratedonlyifhigherpriorityinputsare0,andsoondowntheprioritylevels.

Truthtable:

Input

s

Outputs

D

0

D

1

D

2

D

3

x y V

0 0 0 0 x x 0
1 0 0 0 0 0 1
x 1 0 0 0 1 1
x x 1 0 1 0 1
x x x 1 1 1 1

Although the above table has only five rows, when each don‘t care

condition isreplaced first by 0 and then by 1, we obtain all 16 possible input

combinations.

Forexample,thethirdrowinthetablewithX100representsminterms0100and1100.T

hedon‘tcareconditionis replacedby0and 1asshown in thetable below.

ModifiedTruthtable:

Input

s

Outputs

D

0

D

1

D

2

D

3

x y V

0 0 0 0 x x 0
1 0 0 0 0 0 1
0 1 0 0

0 1 1 1 1 0 0
0 0 1 0
0
1

1
0

1
1

0
0 1 0 1

1 1 1 0
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

K-mapSimplification:

ThepriorityencoderisimplementedaccordingtotheaboveBooleanfunctions.

InputPriorityEncoder

DECODERS:

A decoder is a combinational circuit that converts binary information

from

‗n‘inputlinestoamaximumof‗2n‘uniqueoutputlines.Thegeneralstructureofdec

odercircuitis–

Generalstructureofdecoder

Theencodedinformationispresentedas‗n‘inputsproducing‗2n‘possibleout

puts. The 2noutput values are from 0 through 2n-1. A decoder is provided

withenable inputs to activate decoded output based on data inputs. When any

one enableinputisunasserted,alloutputsofdecoderaredisabled.

BinaryDecoder(2to4decoder):

A binary decoder has ‗n‘ bit binary input and a one activated output out

of 2noutputs. A binary decoder is used when it is necessary to activate exactly

one of 2noutputsbasedonann-bitinputvalue.

2-to-4Linedecoder

Herethe2inputsaredecodedinto4outputs,eachoutputrepresentingoneoftheminter

msofthetwoinputvariables.

Input

s

Output

s

Enabl

e

A B Y

3

Y

2

Y

1

Y

0
0 x x 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Asshowninthetruthtable,ifenableinputis1(EN=1)onlyoneoftheoutputs(Y0–

Y3),isactiveforagiveninput.

TheoutputY0isactive,ie.,Y0=1wheninputs

A=B=0,Y1isactivewheninputs,

A=0andB=1,

Y2isactive,wheninputA=1andB=0,

Y3isactive,

wheninputsA=B=1.

3 to-8LineDecoder:

A3-to-8linedecoderhasthreeinputs(A,B,C)andeightoutputs(Y0-

Y7).Basedonthe3inputsoneoftheeightoutputsisselected.

Thethreeinputsaredecodedintoeightoutputs,eachoutputrepresentingoneofthe

mintermsofthe3-inputvariables.Thisdecoderisusedforbinary-to-

octalconversion.Theinputvariablesmayrepresentabinarynumberandtheoutputswillre

present the eight digits in the octal number system. The output variables are

mutuallyexclusivebecauseonlyone outputcanbeequalto1 atanyone

time.Theoutputlinewhosevalueisequalto1representsthemintermequivalentofthebinar

ynumberpresentlyavailableintheinputlines.

Input

s

Output

s

A B C Y

0

Y

1

Y

2

Y

3

Y

4

Y

5

Y

6

Y

7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

3-to-8linedecoder

BCDto7-SegmentDisplayDecoder:

A seven-segment display isnormally usedfordisplaying any one of the

decimaldigits,0through9.ABCD-to-

sevensegmentdecoderacceptsadecimaldigitinBCDandgeneratesthecorrespondi

ngseven-segmentcode.

Eachsegmentismadeupofamaterialthatemitslightwhencurrentispassedthrou

ghit.Thesegmentsactivatedduringeachdigit displayaretabulatedas—

Dig

it

Displa

y

Segments

Activated

0

a,b,c, d,e,f

1

b,c

2

a, b, d, e, g

3

a, b,c,d,g

4

b,c,f, g

5

a,c,d,f,g

6

a,c,d,e,f,g

7

a,b,c

8

a, b,c,d,e,f, g

9

a,b,c,d,f,g

Truthtable:

 BCDcode 7-

Segmentcode

Digi

t

A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

PreparedByKAVIARASAN.S/Asst.Prof.,PIT

K-mapSimplification:

Logic Diagram

BCDto7-segmentdisplaydecoder

Applicationsofdecoders:

1. Decodersareusedincountersystem.

2. Theyareusedinanalogtodigitalconverter.

3. Decoderoutputscanbeusedtodriveadisplaysystem.

MULTIPLEXER:(DataSelector)

A multiplexer or MUX, is a combinational circuit with more than one

input

line,oneoutputlineandmorethanoneselectionline.Amultiplexerselectsbinaryinfor

mation present from one of many input lines, depending upon the logic status

ofthe selection inputs, and routes it to the output line. Normally, there are 2n

input linesand n selection lines whose bit combinations determine which input

is selected. ThemultiplexerisoftenlabeledasMUXinblockdiagrams.

A multiplexer is also called a data selector, since it selects one of many

inputsandsteersthebinaryinformationto theoutputline.

BlockdiagramofMultiplexer

2-to-1-lineMultiplexer:

Thecircuithastwodatainputlines,oneoutputlineandoneselectionline,S.WhenS=

0,theupperANDgateisenabledandI0hasapathtotheoutput.
When S=1,thelowerAND gateisenabledandI1has apathtotheoutput.

Themultiplexeractslikeanelectronicswitchthatselectsoneofthetwosources.

Truthtable:

S Y

0 I0

1 I1

4-to-1-lineMultiplexer:

A 4-to-1-line multiplexer has four (2n) input lines, two (n) select lines

and oneoutput line. It is the multiplexer consisting of four input channels and

information ofone of the channels can be selected and transmitted to an output

line according to theselect inputs combinations. Selection of one of the four

input channel is possible by twoselectioninputs.

EachofthefourinputsI0throughI3,isappliedtooneinputofANDgate.Selection

lines S1and S0are decoded to select a particular AND gate. The outputs of

theANDgateareappliedtoasingleORgatethatprovidesthe1-lineoutput.

4-to-1-LineMultiplexer

Functiontable:

S1 S0 Y

0 0 I0
0 1 I1
1 0 I2

1 1 I3

To demonstrate the circuit operation, consider the case when S1S0= 10. The

ANDgateassociatedwithinputI2hastwoofitsinputsequalto1andthethirdinputconnecte

dtoI2.TheotherthreeANDgateshaveatleastoneinputequalto0,whichmakestheiroutput

sequalto0.TheORoutputisnowequaltothevalueofI2,providingapathfromtheselectedin

puttotheoutput.

The data output is equal to I0 only if S1= 0 and S0= 0;

PreparedByKAVIARASAN.S/Asst.Prof.,PIT

Y= I0S1‘S0‘.The data output is equal to I1 only if S1= 0

and S0= 1; Y= I1S1‘S0.The data output is equal to I2

only if S1= 1 and S0= 0; Y=

I2S1S0‘.ThedataoutputisequaltoI3onlyifS1=1andS0=1;Y

=I3S1S0.

WhenthesetermsareORed,thetotalexpressionforthedataoutputis,

Y=I0S1’S0’+I1S1’S0+I2S1S0’+I3S1S0.

As in decoder, multiplexers may have an enable input to control the

operation ofthe unit. When the enable input is in the inactive state, the outputs

are disabled, andwhenit isin the activestate, the circuit functionsasa

normalmultiplexer.

Quadruple 2-to-1LineMultiplexer:

This circuit has four multiplexers, each capable of selecting one of two

inputlines. Output Y0 can be selected to come from either A0 or B0. Similarly,

output Y1 mayhave the value of A1 or B1, and so on. Input selection line, S

selects one of the lines

ineachofthefourmultiplexers.TheenableinputEmustbeactivefornormaloperation.

Although the circuit contains four 2-to-1-Line multiplexers, it is viewed

as acircuit that selects one of two 4-bit sets of data lines. The unit is enabled

when E=

0.ThenifS=0,thefourAinputshaveapathtothefouroutputs.Ontheotherhand,ifS=1,

the four B inputs are applied to the outputs. The outputs have all 0‘s when E=

1,regardlessofthevalueofS.

Application:

ThemultiplexerisaveryusefulMSIfunctionandhasvariousrangesofapplicati

ons in data communication. Signal routing and data communication are

theimportantapplicationsofamultiplexer.Itisusedforconnectingtwoormoresource

stoguide to a single destination among computer units and it is useful for

constructing acommon bus system. One of the general properties of a

multiplexer is that Booleanfunctionscanbeimplementedbythisdevice.

ImplementationofBooleanFunctionusingMUX:

AnyBooleanorlogicalexpressioncanbeeasilyimplementedusingamultiplex

er. If a Boolean expression has (n+1) variables, then ‗n‘ of these variables

canbe connected to the select lines of the multiplexer. The remaining single

variable alongwith constants 1 and 0 is used as the input of the multiplexer. For

example, if C is

thesinglevariable,thentheinputsofthemultiplexersareC,C‘,1and0.Bythismethoda

nylogicalexpression canbeimplemented.

In general, a Boolean expression of (n+1) variables can be implemented

using amultiplexerwith2ninputs.

1. Implementthefollowingboolean

functionusing4:1multiplexer,F(A,B,C)=∑m(1,3,5,6).

Solution:

Variables,n=3(A,B,C)Se

lectlines=n-1=2(S1,S0)

2n-

1toMUXi.e.,22to1=4to1MUXInputli

nes=2n-1=22=4(D0,D1,D2,D3)

Implementationtable:

ApplyvariablesAandBtotheselectlines.Theproceduresforimplementingthefunct

ionare:

i. Listtheinputofthemultiplexer

ii. Listunderthemallthemintermsintworowsasshownbelow.

The first half of the minterms is associated with A‘ and the second half with A.

Thegivenfunctionisimplementedbycirclingthemintermsofthefunctionandapplyi

ngthefollowingrulestofindthevaluesfortheinputsofthemultiplexer.

1. Ifboththemintermsinthecolumnarenotcircled,apply0tothecorrespondingin

put.

2. Ifboththemintermsinthecolumnarecircled,apply1tothecorrespondinginput.

3. Ifthebottommintermiscircledandthetopisnotcircled,applyCtotheinput.

4. Ifthetopmintermiscircledandthebottomis notcircled,applyC‘totheinput.

MultiplexerImplementation:

2.F(x,y,z)=∑m(1,2,6,7)

Solution:

Implementationtable:

Multiplexer Implementation:

3.F(A,B,C) =∑m(1,2,4,5)

Solution:

Variables,n=3(A,B,C)Selectli

nes=n-1=2(S1,S0)

2n-

1toMUXi.e.,22to1=4to1MUXInputli

nes=2n-1=22=4(D0,D1,D2,D3)

Implementationtable:

Multiplexer Implementation

:

4.F(P,Q,R,S)=∑m(0,1,3,4,8,9,15)

Solution:

Variables,n=4(P,Q,R,S)Sel

ectlines=n-1=3(S2,S1,S0)

2n-1toMUXi.e.,23to1=8to1MUX

Inputlines=2n-1=23=8(D0,D1,D2,D3,D4,D5,D6,D7)

Implementationtable:

Multiplexer Implementation:

5. ImplementtheBooleanfunctionusing8:1andalsousing4:1multiplexer

F(A,B,C,D)=∑m(0,1,2,4,6,9,12,14)

Solution:

Variables,n=4(A,B,C,D)Se

lectlines=n-1=3(S2,S1,S0)

2n-1toMUXi.e.,23to1=8to1MUX

Inputlines=2n-1=23=8(D0,D1,D2,D3,D4,D5,D6,D7)

Implementationtable:

MultiplexerImplementation(Using8:1MUX):

Using4:1MUX:

6.F(A,B,C,D)=∑m(1,3,4,11,12,13,14,15)

Solution:

Variables,n=4(A,B,C,D)Se

lectlines=n-1=3(S2,S1,S0)

2n-1toMUXi.e.,23to1=8to1MUX

Inputlines=2n-1=23=8(D0,D1,D2,D3,D4,D5,D6,D7)

Implementationtable:

Multiplexer Implementation:

7. ImplementtheBooleanfunctionusing8:1multiplexer.

F(A,B,C,D)=A’BD’+ACD+B’CD+A’C’D.

Solution:

ConvertintostandardSOPform,

=A‘BD‘(C‘+C)+ACD(B‘+B)+B‘CD(A‘+A)+A‘C‘D(B‘+B)

=A‘BC‘D‘+A‘BCD‘+AB‘CD+ABCD+A‘B‘CD+AB‘CD+A‘B‘C‘D

+A‘BC‘D

=A‘BC‘D‘+A‘BCD‘+AB‘CD+ABCD+A‘B‘CD+A‘B‘C‘D+A‘BC‘

D

=m4+m6+m11+m15+m3+m1+m5

=∑m (1,3,4,5,6,11,15)

Implementationtable:

Multiplexer Implementation:

8. ImplementtheBooleanfunctionusing8:1multiplexer.

F(A,B,C,D)=AB’D+A’C’D+B’CD’+AC’D.

Solution:

ConvertintostandardSOPform,

=AB‘D(C‘+C)+A‘C‘D(B‘+B)+B‘CD‘(A‘+A)+AC‘D(B‘+B)

=AB‘C‘D+AB‘CD+A‘B‘C‘D+A‘BC‘D+A‘B‘CD‘+AB‘CD‘+AB‘C

‘D+ABC‘D

=AB‘C‘D+AB‘CD+A‘B‘C‘D+A‘BC‘D+A‘B‘CD‘+AB‘CD‘+ABC‘

D

=m9+m11+m1+m5+m2+m10+m13

=∑m (1,2,5,9,10,11,13).

ImplementationTable:

Multiplexer Implementation:

9. ImplementtheBooleanfunctionusing8:1andalsousing4:1multiplexer

F(w,x,y,z)=∑m(1,2,3,6,7,8,11,12,14)

Solution:

Variables,n=4(w,x,y,z)Sele

ctlines=n-1=3(S2,S1,S0)

2n-1toMUXi.e.,23to1=8to1MUX

Inputlines=2n-1=23=8(D0,D1,D2,D3,D4,D5,D6,D7)

Implementationtable:

MultiplexerImplementation(Using8:1MUX):

(Using4:1MUX):

10. ImplementtheBooleanfunctionusing8:1multiplexer

F(A,B,C,D)=∏m(0,3,5,8,9,10,12,14)

Solution:

Variables,n=4(A,B,C,D)Se

lectlines=n-1=3(S2,S1,S0)

2n-1toMUXi.e.,23to1=8to1MUX

Inputlines=2n-1=23=8(D0,D1,D2,D3,D4,D5,D6,D7)

Implementationtable:

Multiplexer Implementation:

11. ImplementtheBooleanfunctionusing8:1multiplexer

F(A,B,C,D)=∑m(0,2,6,10,11,12,13)+d(3,8,14)

Solution:

Variables,n=4(A,B,C,D)Se

lectlines=n-1=3(S2,S1,S0)

2n-1toMUXi.e.,23to1=8to1MUX

Inputlines=2n-1=23=8(D0,D1,D2,D3,D4,D5,D6,D7)

ImplementationTable:

Multiplexer Implementation:

12. An8×1multiplexer hasinputsA,BandC

connectedtotheselectioninputsS2,S1,andS0respectively.ThedatainputsI0t

o I7areasfollows

I1=I2=I7=0;I3=I5=1;I0=I4=DandI6=D'.

DeterminetheBooleanfunctionthatthemultiplexerimplements.

Multiplexer Implementation:

Implementationtable:

F(A,B,C,D)=∑m(3,5,6,8,11,12,13).

DEMULTIPLEXER:

Demultiplexmeansoneintomany.Demultiplexingistheprocessoftakinginfo

rmationfromoneinputandtransmittingthesameoveroneofseveraloutputs.

Ademultiplexerisacombinationallogiccircuitthatreceivesinformationonasi

ngleinputandtransmitsthesameinformationoveroneofseveral(2n)outputlines.

Blockdiagramofdemultiplexer

The block diagram of a demultiplexer which is opposite to a multiplexer

in itsoperation is shown above. The circuit has one input signal, ‗n‘ select

signals and 2noutput signals. The select inputs determine to which output the

data input will beconnected. As the serial data is changed to parallel data, i.e.,

the input caused to

appearononeofthenoutputlines,thedemultiplexerisalsocalleda―datadistributer‖

ora
―serial-to-parallelconverter‖.

1-to-4Demultiplexer:

A1-to-

4demultiplexerhasasingleinput,Din,fouroutputs(Y0toY3)andtwoselectinputs(S

1andS0).

LogicSymbol

PreparedByKAVIARASAN.S/Asst.Prof.,PIT

The input variable Dinhas a path to all four outputs, but the input

information isdirected to only one of the output lines. The truth table of the 1-

to-4 demultiplexer isshownbelow.

Enabl

e

S1 S0 Din Y0 Y1 Y2 Y3

0 x x x 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1

Truthtableof1-to-4demultiplexer

Fromthetruthtable,itisclearthatthedatainput,DinisconnectedtotheoutputY0

, when S1= 0 and S0= 0 and the data input is connected to output Y1 when S1=

0 andS0= 1. Similarly, the data input is connected to output Y2and Y3when

S1= 1 and S0= 0and when S1= 1 and S0= 1, respectively. Also, from the truth

table, the expression foroutputscanbewrittenasfollows,

Y0=

S1’S0’DinY1=

S1’S0DinY2=S1S0

’Din

Y3=S1S0Din

Logicdiagramof1-to-4demultiplexer

Now, using the above expressions, a 1-to-4 demultiplexer can be

implementedusingfour3-inputAND gatesand twoNOT gates.

Here,theinputdatalineDin,isconnectedto allthe

ANDgates.ThetwoselectlinesS1,S0enableonlyonegate at a

time.andthedatathatappearsontheinputlinepassesthroughtheselectedgatetotheassoci

atedoutputline.

1-to-8Demultiplexer:

A1-to-

8demultiplexerhasasingleinput,Din,eightoutputs(Y0toY7)andthreeselectinputs(

S2,S1andS0).Itdistributesoneinputlinetoeightoutputlinesbasedontheselectinputs

.Thetruthtableof1-to-8demultiplexerisshownbelow.

Din S

2

S1 S0 Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0
0 x x x 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

Truthtableof1-to-8demultiplexer

Fromtheabovetruthtable,itisclearthatthedatainputisconnectedwithoneoftheei

ghtoutputsbasedontheselectinputs.Nowfromthistruthtable,theexpressionforeightout

putscanbewrittenasfollows:

Y0=S2‘S1‘S0‘Din

Y1=S2‘S1‘S0Din

Y2=S2‘S1S0‘Din

Y3=S2‘S1S0Din

Y4= S2S1‘S0‘Din

Y5= S2S1‘S0Din

Y6= S2S1S0‘Din

Y7=S2S1S0Din

Now using the above expressions, the logic diagram of a 1-to-8 demultiplexer

can bedrawn as shown below. Here, the single data line, Din is connected to all

the eight ANDgates, but only one of the eight AND gates will be enabled by

the select input lines. Forexample, if S2S1S0= 000, then only AND gate-0 will

be enabled and thereby the

datainput,DinwillappearatY0.Similarly,thedifferentcombinationsoftheselectinp

uts,theinputDinwillappearattherespectiveoutput.

Logicdiagramof1-to-8demultiplexer

1. Design1:8demultiplexerusingtwo1:4DEMUX.

PreparedByKAVIARASAN.S/Asst.Prof.,PIT

2. Implementfullsubtractorusingdemultiplexer.

Input

s
Output

s

A B Bi

n

Difference(D

)

Borrow(Bo

ut)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

UNITII-SYNCHRONOUS SEQUENTIAL LOGIC

INTRODUCTION

Incombinationallogiccircuits,theoutputsatanyinstantoftimedependonlyontheinput
signalspresentatthattime.Forachangeininput,theoutputoccursimmediately.

CombinationalCircuit-BlockDiagram

In sequential logic circuits, it consists of combinational circuits to
whichstorage elements are connected to form a feedback path. The storage elements
aredevicescapableofstoringbinaryinformationeither1or0.

The information stored in the memory elements at any given time defines
thepresentstateofthesequentialcircuit.Thepresentstateandtheexternalcircuitdeterminetheo
utputandthenextstateofsequentialcircuits.

SequentialCircuit-BlockDiagram

Thusinsequentialcircuits,theoutputvariablesdependnotonlyonthepresent input

variablesbut also on the past historyof input variables.
Therotarychannelselectedknobonanold-fashionedTVislikeacombinational. Its

output selects a channel based only on its current input – theposition of the knob. The
channel-up and channel-down push buttons on a TV is
likeasequentialcircuit.Thechannelselectiondependsonthepastsequenceofup/downpus
hes.Thecomparisonbetweencombinationalandsequentialcircuitsisgivenintablebelow.

S.No Combinationallogic Sequentiallogic

1

Theoutputvariable,atalltimesd
ependsonthecombinationof
inputvariables.

Theoutputvariabledependsnotonlyo
nthepresentinputbutalsodepend
uponthepasthistoryofinputs.

2 Memoryunitisnotrequired Memoryunitisrequiredtostorethe
pasthistoryofinputvariables.

3 Fasterinspeed Slowerthancombinationalcircuits.

4 Easy to design Comparativelyhardertodesign.

5 Eg.Paralleladder Eg.Serialadder

 ClassificationofLogicCircuits

Thesequentialcircuitscanbeclassifieddependingonthetimingoftheirsignals:

 Synchronoussequentialcircuits
 Asynchronoussequentialcircuits.

In synchronous sequential circuits, signals can affect the memory
elementsonlyatdiscreteinstantsoftime.Inasynchronoussequentialcircuitschange
ininput signals can affect memory element at any instant of time. The
memoryelements used in both circuits are Flip-Flops, which are capable of
storing 1-bitinformation.

S.No Synchronoussequentialcircuits Asynchronoussequentialcircuits

1 Memoryelements are clocked
Flip-Flops

Memoryelementsareeitherunclocked
Flip-Flopsortimedelayelements.

2

Thechangeininputsignalscan
affect memory element
 uponactivationofclocksig
nal.

Thechangeininputsignalscanaffectmem
oryelementatanyinstantoftime.

3

Themaximumoperatingspeedofc
lockdependsontimedelays
involved.

Becauseoftheabsenceofclock,itcanoper
ate faster than synchronous
circuits.

4 Easiertodesign Moredifficulttodesign

 LATCHES:

Latches and Flip-Flops are the basic building blocks of the most
sequentialcircuits.Latchesareusedforasequentialdevicethatchecksallofitsinputscontinu
ouslyandchangesitsoutputsaccordinglyatanytimeindependentofclockingsignal.Enables
ignalisprovidedwiththelatch.Whenenablesignal isactive output changes occur as the
input changes. But when enable signal is
notactivatedinputchangesdonotaffecttheoutput.

Flip-Flop is used for a sequential device that normally samples its inputs
andchangesitsoutputsonlyattimesdeterminedbyclockingsignal.

 SRLatch:
The simplest type of latch is the set-reset (SR) latch. It can be constructed

fromeithertwoNORgatesortwoNANDgates.

T

SRlatchusingNORgates:
The two NOR gates are cross-coupled so that the output of NOR gate 1

isconnected to one of the inputs of NOR gate 2 and vice versa. The latch has
twooutputsQandQ’andtwoinputs,setandreset.

SRlatchusingNOR gates

LogicSymbol

Before going to analyse the SR latch, we recall that a logic 1 at any input of

aNORgateforcesitsoutputtoalogic0.Letusunderstandtheoperationofthiscircuitforvariou
sinput/outputpossibilities.
Case1:S=0andR=0
Initially,Q=1andQ’=0

Letus assumethatinitiallyQ=1and Q’=0. WithQ’=0,both inputs to NORgate 1 are
at logic 0. So, its output, Q is at logic 1. With Q=1, one input of NOR gate 2isatlogic

1. Hence its output, Q’ is at logic 0. This shows that when S and R both
arelow,theoutputdoesnotchange.
Initially,Q=0andQ’=1

WithQ’=1,oneinputofNORgate1isatlogic1,henceitsoutput,Qisatlogic
0.WithQ=0,bothinputstoNORgate2areatlogic
0.So,itsoutputQ’isatlogic1.Inthiscasealsothereisnochangeintheoutputstate.
Case2:S=0andR=1
Inthiscase,RinputoftheNORgate1isatlogic1,henceitsoutput,Qisatlogic0.BothinputstoNO

Rgate2arenowatlogic 0.Sothatitsoutput,Q’is atlogic 1.

Case3:S=1andR=0
In thiscase,Sinputofthe NORgate 2isat logic1, henceitsoutput,Q isat logic0.Bothinputs

toNORgate1arenow atlogic0.Sothatits output,Qisatlogic 1.

Case4:S=1andR=1
When R and S both are at logic 1, they force the outputs of both NOR gates tothe

low state, i.e., (Q=0 and Q’=0). So, we call this an indeterminate or
prohibitedstate,andrepresentthisconditioninthetruthtableasanasterisk(*).Thisconditio
nalso violates the basic definition of a latch that requires Q to be complement of
Q’.Thusinnormaloperationthisconditionmustbeavoidedbymakingsurethat1’sarenotapp
liedtoboththeinputssimultaneously.

WecansummarizetheoperationofSRlatchasfollows:
 WhenS=0andR= 0,theoutput, Qn+1remainsinitspresentstate,Qn.
 WhenS=0andR=1,thelatchisresetto0.
 WhenS=1andR=0,thelatchissetto1.
 WhenS=1andR=1,theoutputofbothgateswillproduce0.i.e.,Qn+1=

Qn+1’=0.

S R Qn Qn+1 State

0
0

0
0

0
1

0
1

No Change
(NC)

0
0

1
1

0
1

0
0

Reset

1
1

0
0

0
1

1
1

Set

1
1

1
1

0
1

x
x

Indeterminate
*

SRlatchusingNANDgates:
TheSRlatchcanalsobeimplementedusingNANDgates.TheinputsofthisLatchareSa

ndR.Tounderstandhowthiscircuitfunctions,recallthatalowonanyinputtoaNANDgatefor
cesitsoutputhigh.

SRlatchusingNANDgates

LogicSymbol

WecansummarizetheoperationofSRlatchasfollows:
 WhenS=0andR=0,theoutputofboth

gateswillproduce0.i.e.,Qn+1=Qn+1’=1.
 WhenS=0andR=1,thelatchisresetto0.
 WhenS=1andR=0,thelatchissetto1.
 WhenS=1andR= 1,theoutput, Qn+1remainsinitspresentstate,Qn.

S R Qn Qn+1 State

0
0

0
0

0
1

x
x

Indeterminate
*

0
0

1
1

0
1

1
1

Set

1
1

0
0

0
1

0
0

Reset

1
1

1
1

0
1

0
1

No Change
(NC)

GatedSRLatch:

IntheSRlatch,theoutputchangesoccurimmediatelyaftertheinputchangesi.e,thela
tchissensitivetoitsSandRinputsallthetime.

Alatchthatissensitivetotheinputsonlywhenanenableinputisactive.Suchalatchwithena
bleinputisknownasgatedSRlatch.

 ThecircuitbehaveslikeSRlatchwhenEN=1.ItretainsitspreviousstatewhenEN
=0

SRLatchwithenableinputusingNANDgates LogicSymbol

ThetruthtableofgatedSRlatchisshowbelow.

EN S R Qn Qn+1 State

1
1

0
0

0
0

0
1

0
1

No Change(NC)

1
1

0
0

1
1

0
1

0
0

Reset

1
1

1
1

0
0

0
1

1
1

Set

1
1

1
1

1
1

0
1

x
x

Indeterminate
*

0
0

x
x

x
x

0
1

0
1

No Change(NC)

WhenSisHIGHandRisLOW,aHIGHontheENinputsetsthelatch.WhenSisLOWandRisHIGH,
aHIGHontheENinputresetsthelatch.

 DLatch

In SR latch, when both inputs are same (00 or 11), the output either does
notchange or it is invalid. In many practical applications, these input conditions are
notrequired. These input conditions can be avoided by making them complement
ofeachother.ThismodifiedSRlatchisknownasDlatch.

DLatch LogicSymbol

Asshowninthefigure,DinputgoesdirectlytotheSinput,anditscomplement is
applied to the R input. Therefore, only two input conditions
exists,eitherS=0andR=1orS=1andR=0.The truthtableforDlatchisshownbelow.

EN D Qn Qn+1 State

1
1
0

0
1
x

x
x
x

0
1

Qn

Reset
Set

No Change(NC)

Asshowninthetruthtable,theQoutputfollowstheDinput.Forthisreason,Dlatchiscalledt

ransparentlatch.

When D is HIGH and EN is HIGH. Q goes HIGH. When D is LOW and EN
isHIGH,QgoesLOW.WhenENisLOW,thestateofthelatchisnotaffectedbytheDinput.

 TRIGGERINGOFFLIP-FLOPS

ThestateofaFlip-Flopisswitchedbyamomentarychangeintheinputsignal.This
momentary change is called a trigger and the transition it causes is said totrigger the
Flip-Flop. Clocked Flip-Flops are triggered by pulses. A clock pulse startsfrom an initial
value of 0, goes momentarily to 1and after a short time, returns to itsinitial0value.

Latches are controlled by enable signal, and they are level triggered,
eitherpositive level triggered or negative level triggered. The output is free to
changeaccording to the S and R input values, when active level is maintained at the
enableinput.Flip-Flopsaredifferentfromlatches.Flip-
Flopsarepulseorclockedgetriggeredinsteadofleveltriggered.

 EDGETRIGGEREDFLIP-FLOPS

Flip-Flops are synchronous bistable devices (has two outputs Q and Q’).
Inthiscase,thetermsynchronousmeansthattheoutputchangesstateonlyataspecified
point on the triggering input called the clock (CLK), i.e., changes in
theoutputoccurinsynchronizationwiththeclock.

Anedge-triggeredFlip-Flopchangesstateeitheratthepositiveedge(rising
edge) or at the negative edge (falling edge) of the clock pulse and is sensitive to
itsinputs only at this transition of the clock. The different types of edge-triggered Flip-
Flopsare—
 S-RFlip-Flop,
 J-KFlip-Flop,
 DFlip-Flop,
 TFlip-Flop.

Although the S-R Flip-Flop is not available in IC form, it is the basis for the
DandJ-KFlip-Flops.Eachtypecanbeeitherpositiveedge-triggered(nobubbleatC
input) or negative edge-triggered (bubble at C input). The key to identifying anedge-
triggered Flip-Flop by its logic symbol is the small triangle inside the block
attheclock(C)input.Thistriangleiscalledthedynamicinputindicator.

 S-RFlip-Flop

TheSandRinputsoftheS-RFlip-Floparecalledsynchronousinputsbecausedata on
these inputs are transferred to the Flip-Flop's output only on the triggeringedge of the
clock pulse. The circuit is similar to SR latch except enable signal
isreplacedbyclockpulse(CLK).Onthepositiveedgeoftheclockpulse,thecircuit
respondstotheSandRinputs.

SRFlip-Flop

WhenSisHIGHandRisLOW,theQoutputgoesHIGHonthetriggeringedgeoftheclockp
ulse,andtheFlip-FlopisSET.WhenSisLOWandRisHIGH,theQ output goes LOW on the
triggering edge of the clock pulse, and the Flip-Flop isRESET. When both S and R are
LOW, the output does not change from its prior
state.AninvalidconditionexistswhenbothSandRareHIGH.

CLK S R Qn Qn+1 State

1
1

0
0

0
0

0
1

0
1

No Change(NC)

1
1

0
0

1
1

0
1

0
0

Reset

1
1

1
1

0
0

0
1

1
1

Set

1
1

1
1

1
1

0
1

x
x

Indeterminate
*

0
0

x
x

x
x

0
1

0
1

No Change(NC)

TruthtableforSRFlip-Flop

InputandoutputwaveformsofSRFlip-Flop

 J-KFlip-Flop:
JKmeansJackKilby,TexasInstrument(TI)Engineer,whoinventedICin1958.JK Flip-

Flop has two inputs J(set) and K(reset). A JK Flip-Flop can be obtained
fromtheclockedSRFlip-FlopbyaugmentingtwoANDgatesasshownbelow.

JKFlipFlop

The data input J and the output Q’ are applied o the first AND gate and

itsoutput(JQ’)isappliedtotheSinputofSRFlip-Flop.Similarly,thedatainputKand

theoutputQareappliedtothesecondANDgateanditsoutput(KQ)isappliedtotheRinputof
SRFlip-Flop.
J=K=0

WhenJ=K=0,bothANDgatesaredisabled.Thereforeclockpulsehavenoeffect,henc
etheFlip-Flopoutputis sameasthepreviousoutput.
J=0,K=1

WhenJ=0andK=1,ANDgate1isdisabledi.e.,S=0andR=1.Thisconditionwillresetth
eFlip-Flopto0.
J=1,K=0

WhenJ=1andK=0,ANDgate2isdisabledi.e.,S=1andR=0.ThereforetheFlip-
Flopwillsetontheapplicationofaclockpulse.
J=K=0

WhenJ=K=1,itispossibletosetorresettheFlip-Flop.IfQisHigh,ANDgate 2 passes
on a reset pulse to the next clock. When Q is low, AND gate 1 passes ona set pulse to
the next clock. Eitherway, Q changes to the complement of the
laststatei.e.,toggle.Togglemeanstoswitchtotheoppositestate.
Thetruth tableof JKFlip-Flop isgiven below.

CLK Inputs Output State

J K Qn+1

1 0 0 Qn No Change

1 0 1 0 Reset

1 1 0 1 Set

1 1 1 Qn’ Toggle

InputandoutputwaveformsofJKFlip-Flop

CharacteristictableandCharacteristicequation:
The characteristic table for JK Flip-Flop is shown in the table below. From

thetable, K-map for the next state transition (Qn+1) can be drawn and the simplified

logicexpressionwhichrepresentsthecharacteristicequationofJKFlip-Flopcanbefound.
Qn J K Qn+1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
1
1
1
0
1
0

Characteristictable

K-mapSimplification:

Characteristicequation:Qn+1=JQ’+K’Q.
 DFlip-Flop:

LikeinDlatch,inDFlip-FlopthebasicSRFlip-
Flopisusedwithcomplementedinputs.TheDFlip-FlopissimilartoD-
latchexceptclockpulseisusedinsteadofenableinput.

DFlip-Flop

ToeliminatetheundesirableconditionoftheindeterminatestateintheRSFlip-
FlopistoensurethatinputsSandRareneverequalto1atthesametime.Thisis donebyD Flip-

Flop.TheD (delay) Flip-Flophas one inputcalled
delayinputandclockpulseinput.TheDFlip-FlopusingSRFlip-Flopisshownbelow.

The truth table of D Flip-Flop isgiven below.

Clock D Qn+1 State

1
1
0

0
1
x

0
1

Qn

Reset
Set

No Change

TruthtableforDFlip-Flop

InputandoutputwaveformsofclockedDFlip-Flop

Looking at the truth table for D Flip-Flop we can realize that Qn+1

functionfollowstheD inputatthepositivegoingedgesoftheclockpulses.

CharacteristictableandCharacteristicequation:

ThecharacteristictableforDFlip-Flopshows thatthenextstateof theFlip-
FlopisindependentofthepresentstatesinceQn+1isequaltoD.Thismeansthataninputpulsewi
lltransferthevalueofinputDintotheoutputoftheFlip-
Flopindependentofthevalueoftheoutputbeforethepulsewasapplied.

ThecharacteristicequationisderivedfromK-map.

Qn D Qn+1

0
0
1
1

0
1
0
1

0
1
0
1

Characteristictable

Characteristicequation:Qn+1=D.

 TFlip-Flop
The T (Toggle) Flip-Flop is a modification of the JK Flip-Flop. It is

obtainedfromJKFlip-
FlopbyconnectingbothinputsJandKtogether,i.e.,singleinput.Regardlessofthepresents
tate,theFlip-FlopcomplementsitsoutputwhentheclockpulseoccurswhileinputT=1.

TFlip-Flop

When T= 0, Qn+1= Qn, ie., the next state is the sameas the present state and
nochangeoccurs.

WhenT=1,Qn+1=Qn’,ie.,thenextstateisthecomplementofthepresentstate.

ThetruthtableofTFlip-Flopisgivenbelow.

T Qn+1 State

0
1

Qn

Qn’

No
ChangeT
oggle

TruthtableforTFlip-Flop

CharacteristictableandCharacteristicequation:
ThecharacteristictableforTFlip-

FlopisshownbelowandcharacteristicequationisderivedusingK-map.
Qn T Qn+1

0
0
1
1

0
1
0
1

0
1
1
0

3.6.1 SRFlip-Flop:

K-mapSimplification:

Characteristicequation:Qn+1=TQn’+ T’Qn.

 Master-SlaveJKFlip-Flop

Amaster-slaveFlip-FlopisconstructedusingtwoseparateJKFlip-Flops.The
firstFlip-Flop is called the master. Itis driven by the positive edge of the
clockpulse.ThesecondFlip-Flopiscalledtheslave.Itisdrivenby the negative edge
oftheclockpulse.Thelogicdiagramofamaster-slaveJKFlip-Flopisshownbelow.

Logicdiagram

When the clock pulse has a positive edge, the master acts according to its J-
K inputs, but the slave does not respond, since it requires a negative edge at
theclockinput.

When the clock input has a negative edge, the slave Flip-Flop copies
themaster outputs. But the master does not respond since it requires a positive
edge atitsclockinput.

Theclockedmaster-slaveJ-KFlip-FlopusingNANDgatesisshownbelow.

Master-SlaveJKFlip-Flop

 APPLICATION TABLE(OR)EXCITATION TABLE:

ThecharacteristictableisusefulforanalysisandfordefiningtheoperationoftheFli

p-Flop.Itspecifiesthenextstate(Qn+1)whentheinputsandpresentstateareknown.

Theexcitationorapplicationtableisusefulfordesignprocess.Itisusedtofind
theFlip-Flopinputconditions thatwill causetherequiredtransition,when

thepresentstate(Qn)andthenextstate(Qn+1)areknown.

SR flipflop

CharacteristicTable

ModifiedTable

xcitation Table

The above table presents the excitation table for SR

Flip-Flop. It consists of present state (Qn), next state

(Qn+1) and a column for each input to show how the
required transition is achieved.

There are 4 possible transitions from present state to

next state. The required Input conditions for each of the

four transitions are derived from the information
available in the characteristic table. The symbol ‘x’

denotes the don’t care condition, it does not matter

whether the input is 0 or 1.

Present
State

Next
State

Inputs

Qn Qn+1 S R

0 0 0 x

0 1 1 0

1 0 0 1

1 1 x 0

Present

State
Inputs

Next

State

Qn S R Qn+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 x

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 x

Present

State

Next

State
Inputs Inputs

Qn Qn+1 S R S R

0 0 0 0
0 x

0 0 0 1

0 1 1 0 1 0

1 0 0 1 0 1

1 1 0 0
x 0

1 1 1 0

 JKFlip-Flop:

CharacteristicTable

Excitation Table

ModifiedTable

Present
State

Next
State

Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Present

State
Inputs

Next

State

Qn J K Qn+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Present

State

Next

State
Inputs Inputs

Qn Qn+1 J K J K

0 0 0 0
0 x

0 0 0 1

0 1 1 0
1 x

0 1 1 1

1 0 0 1
x 1

1 0 1 1

1 1 0 0
x 0

1 1 1 0

 DFlip-Flop

CharacteristicTable ExcitationTable

 TFlip-Flop

Present
State

Input Next
State

Qn T Qn+1

0
0
1
1

0
1
0
1

0
1
1
0

CharacteristicTable

ModifiedTable

Present

State

Next

State
Input

Qn Qn+1 T

0 0 0

0 1 1

1 0 1

1 1 0

Present

State
Input

Next

State

Qn D Qn+1

0

0

1

1

0

1

0

1

0

1

0

1

Present

State

Next

State
Input

Qn Qn+1 D

0 0 0

0 1 1

1 0 0

1 1 1

 REALIZATIONOFONEFLIP-FLOPUSINGOTHERFLIP-FLOPS

It is possible to convert one Flip-Flop into another Flip-Flop with

someadditional gates or simply doing some extra connection. The realization of one

Flip-Flop using other Flip-Flops is implemented by the use of characteristic tables

andexcitationtables.LetusseefewconversionsamongFlip-Flops.

SRFlip-FloptoDFlip-

FlopSRFlip-FloptoJKFlip-

FlopSRFlip-FloptoTFlip-

FlopJKFlip-FloptoTFlip-

FlopJKFlip-FloptoDFlip-

FlopDFlip-FloptoTFlip-

Flop

TFlip-FloptoDFlip-Flop

 SRFlip-FloptoDFlip-Flop:

 WritethecharacteristictableforrequiredFlip-Flop(DFlip-Flop).

 WritetheexcitationtableforgivenFlip-Flop(SRFlip-Flop).

 DeterminetheexpressionforthegivenFlip-Flopinputs(SandR)byusingK-

map.

 DrawtheFlip-FlopconversionlogicdiagramtoobtaintherequiredFlip-Flop(D

Flip-Flop)byusingtheaboveobtainedexpression.

Theexcitationtablefortheaboveconversionis

RequiredFlip-Flop(D) GivenFlip-Flop
(SR)

Input Presentstate Nextstate Flip-FlopInputs

D Qn Qn+1 S R

0 0 0 0 x

0 1 0 0 1

1 0 1 1 0

1 1 1 x 0

DFlip-Flop

 SRFlip-FloptoJKFlip-Flop
Theexcitationtablefortheaboveconversionis,

Inputs Presentstate Nextstate Flip-Flop
Input

J K Qn Qn+1 S R

0 0 0 0 0 x

0 0 1 1 x 0
0 1 0 0 0 x
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 x 0

1 1 0 1 1 0
1 1 1 0 0 1

JKFlip-Flop

2.7.3 SRFlip-FloptoTFlip-Flop
Theexcitationtablefortheaboveconversionis

Input Presentstate Nextstate Flip-Flop
Inputs

T Qn Qn+1 S R

0 0 0 0 x

0 1 1 x 0
1 0 1 1 0
1 1 0 0 1

3.7.4JKFlip-FloptoTFlip-Flop
Theexcitationtablefortheaboveconversionis

Input Presentstate Nextstate Flip-Flop
Inputs

T Qn Qn+1 J K

0 0 0 0 x

0 1 1 x 0
1 0 1 1 x
1 1 0 x 1

JKFlip-FloptoDFlip-Flop

Theexcitationtablefortheaboveconversionis

Input Presentstate Nextstate Flip-Flop
Inputs

D Qn Qn+1 J K

0 0 0 0 x

0 1 0 x 1
1 0 1 1 x
1 1 1 x 0

DFlip-FloptoTFlip-Flop

Theexcitationtablefortheaboveconversionis

Input Presentstate Nextstate Flip-Flop
Input

T Qn Qn+1 D

0
0
1
1

0
1
0
1

0
1
1
0

0
1
1
0

TFlip-FloptoDFlip-Flop

Theexcitationtablefortheaboveconversionis

Input Presentstate Nextstate Flip-Flop
Input

D Qn Qn+1 T

0
0
1
1

0
1
0
1

0
0
1
1

0
1
1
0

 CLASSIFICATIONOFSYNCHRONOUSSEQUENTIALCIRCUIT:

In synchronous or clocked sequential circuits, clocked Flip-Flops are used
asmemory elements, which change their individual states in synchronism with
theperiodic clock signal. Therefore, the change in states of Flip-Flop and change in
stateof theentirecircuits occuratthetransitionoftheclocksignal.

The synchronous or clocked sequential networks are represented by
twomodels.

 Mooremodel:TheoutputdependsonlyonthepresentstateoftheFlip-Flops.
 Mealymodel:TheoutputdependsonboththepresentstateoftheFlip-

Flopsandontheinputs.

 Mooremodel:
IntheMooremodel,theoutputsareafunctionofthepresentstateoftheFlip-Flops

only. The output depends only on present state of Flip-Flops, it appears onlyafter
theclock pulse isapplied, i.e.,it variesinsynchronism with the clockinput.

Mooremodel

 Mealymodel:
IntheMealymodel,theoutputsarefunctionsofboththepresentstateoftheFlip-

Flopsandinputs.
Mealymodel

 DifferencebetweenMooreandMealymodel

Sl.No Mooremodel Mealymodel

1 Itsoutputisafunctionofpresent
stateonly.

Itsoutputisafunctionofpresentstate
aswellaspresentinput.

2 Inputchangesdoesnotaffectthe
output.

Inputchangesmayaffecttheoutputof
thecircuit.

3 Itrequiresmorenumberofstates
forimplementingsamefunction.

Itrequireslessnumberofstatesfor
implementingsamefunction.

 ANALYSISOFSYNCHRONOUSSEQUENTIALCIRCUIT:

The behavior of a sequential circuit is determined from the inputs,
outputsand the state of its Flip-Flops. The outputs and the next state are both a
function ofthe inputs and the present state. The analysis of a sequential circuit
consists
ofobtainingatableordiagramfromthetimesequenceofinputs,outputsandinternalstat
es.

Beforegoingtoseetheanalysisanddesignexamples,wefirstunderstandthestate
diagram,statetable.

 StateDiagram

Statediagramisapictorialrepresentationofabehaviorofasequentialcircuit.
Inthestatediagram,astateisrepresentedbyacircleandthetransitionbetweenstatesis
indicatedbydirectedlinesconnectingthecircles.
A directed line connecting a circle with circle with itself indicates that
nextstateissameaspresentstate.
Thebinarynumberinsideeach circleidentifies thestate representedbythecircle.
Thedirectedlinesarelabeledwithtwobinarynumbersseparatedbyasymbol‘/’.Thein
putvaluethatcausesthestatetransitionislabeledfirstandtheoutputvalueduringthep
resentstateislabeledafterthesymbol‘/’.

IncaseofMoorecircuit,thedirectedlinesarelabeledwithonlyonebinarynumberreprese

ntingthestateoftheinputthatcausesthestatetransition.Theoutputstateisindicatedwithinth
ecircle,belowthepresentstatebecauseoutputstatedependsonlyonpresentstateandnotont
heinput.

Statediagramfor Mealy circuit StatediagramforMoorecircuit

 StateTable

Statetablerepresents relationshipbetweeninput,outputandFlip-Flopstates.
Itconsistsofthreesectionslabeledpresentstate,nextstateandoutput.

o ThepresentstatedesignatesthestateofFlip-Flopsbeforetheoccurrence of
a clock pulse, and the output section gives the values
oftheoutputvariablesduringthepresentstate.

o Both the next state and output sections have two columns
representingtwopossibleinputconditions:X=0andX=1.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

AB AB AB Y Y

a a c 0 0

b b a 0 0

c d c 0 1

d b d 0 0

IncaseofMoorecircuit,theoutputsectionhasonlyonecolumnsinceoutputdoesnot
dependoninput.

Presentstate Nextstate Output

X=0 X=1 Y

AB AB AB

a a c 0

b b a 0

c d c 1

d b d 0

2.9.3 StateEquation

ItisanalgebraicexpressionthatspecifiestheconditionforaFlip-Flopstatetransition.
The Flip-Flopsmay beof any typeandthe logicdiagrammay

ormaynotincludecombinationalcircuitgates.

 ANALYSISPROCEDURE

Thesynchronoussequentialcircuitanalysisissummarizesasgivenbelow:

1. AssignastatevariabletoeachFlip-Flopinthesynchronoussequentialcircuit.
2. WritetheexcitationinputfunctionsforeachFlip-

FlopandalsowritetheMoore/Mealyoutputequations.
3. SubstitutetheexcitationinputfunctionsintothebistableequationsfortheFlip-

Flopstoobtainthenextstateoutputequations.
4. Obtainthestatetableandreducedformofthestatetable.
5. Drawthestatediagrambyusingthesecondformofthestatetable.

 Analysis ofMealy Model

1. A sequentialcircuithas two JKFlip-Flops Aand B,oneinput(x)
andoneoutput(y).theFlip-Flopinputfunctionsare,

JA=B+x JB=A’+x’
KA=1 KB=1

andthecircuitoutputfunction,Y=xA’B.
a) DrawthelogicdiagramoftheMealycircuit,
b) Tabulatethestatetable,
c) Drawthestatediagram.
Soln:

Statetable:
Toobtainthenext-statevaluesofasequentialcircuitwithJKFlip-Flops,usetheJKFlip-

Flopcharacteristicstable.
Presentstate Input Flip-FlopInputs Nextstate Output

A B x JA=B+x KA=1 JB=A’+x’ KB=1 A(t+1) B(t+1) Y=xA’B

0 0 0 0 1 1 1 0 1 0

0 0 1 1 1 1 1 1 1 0
0 1 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 1

1 0 0 0 1 1 1 0 1 0

1 0 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 0 0 0

1 1 1 1 1 0 1 0 0 0

Presentstate

Nextstate Output

x=0 x=1 x=0 x=1

A B A B A B y y

0
0
1
1

0
1
0
1

0
1
0
0

1
0
1
0

1
1
0
0

1
0
0
0

0
0
0
0

0
1
0
0

Second form ofstatetable

State Diagram:

StateDiagram

2. Asequentialcircuitwithtwo‘D’Flip-
FlopsAandB,oneinput(x)andoneoutput(y).theFlip-Flopinputfunctionsare:

DA=Ax+Bx
DB=A’x andthecircuitoutputfunctionis,
Y=(A+ B)x’.

(a) Drawthe logicdiagram of the circuit,
(b) Tabulatethestatetable,
(c) Drawthestatediagram.

Soln:

State Table:
Presentstate Input Flip-FlopInputs Nextstate Output

A B x DA=
Ax+Bx

DB=A’x A(t+1) B(t+1) Y=(A+B)x’

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1
0 1 1 1 1 1 1 0

1 0 0 0 0 0 0 1

1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 1
1 1 1 1 0 1 0 0

Presentstate
Nextstate Output

x=0 x=1 x=0 x=1

A B A B A B Y Y

0
0
1
1

0
1
0
1

0
0
0
0

0
0
0
0

0
1
1
1

1
1
0
0

0
1
1
1

0
0
0
0

Secondform ofstatetable

StateDiagram:

3. AnalyzethesynchronousMealymachineandobtainitsstatediagram.

Soln:
The given synchronous Mealy machine consists of two D Flip-Flops, one inputs
andoneoutput.
TheFlip-Flopinputfunctionsare,

DA=Y1’Y2X’D

B=X+Y1’Y2

Thecircuitoutputfunctionis,Z=Y1Y2X

State Table:

Presentstate Input Flip-FlopInputs Nextstate Output

Y1 Y2 X DA=Y1’Y2X’ DB=X+Y1’Y2 Y1(t+1) Y2(t+1) Z=Y1Y2X

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 0

0 1 1 0 1 0 1 0

1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 1 0 1 0 1 1

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

Y1 Y2 Y1 Y2 Y1 Y2 Z Z

0
0
1
1

0
1
0
1

0
1
0
0

0
1
0
0

0
0
0
0

1
1
1
1

0
0
0
0

0
0
0
1

Secondform ofstatetable

StateDiagram:
4. AsequentialcircuithastwoJKFlop-
FlopsAandB,twoinputsxandyandoneoutput z.The Flip-Flop inputequation
andcircuit output equationsare

JA =Bx+B'y' KA=B'xy'
JB =A'x KB=A+xy'
z=Ax'y'+Bx'y'

(a) Drawthelogicdiagramofthecircuit
(b) Tabulatethestatetable.
(c) Derivethestateequation.

Statediagram:

Statetable:
Toobtainthenext-statevaluesofasequentialcircuitwithJKFlip-Flop,usetheJKFlip-

Flopcharacteristictable,

Present
state

Input Flip-FlopInputs Nextstate Output

A B x y JA=
Bx+B’y’

KA=
B’xy’

JB=
A’x

KB=
A+xy’

A(t+1) B(t+1) z

0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 1 1 1 1 1 0

0 0 1 1 0 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 1 1 1 1 0

0 1 1 1 1 0 1 0 1 1 0

1 0 0 0 1 0 0 1 1 0 1

1 0 0 1 0 0 0 1 1 0 0

1 0 1 0 1 1 0 1 0 0 0

1 0 1 1 0 0 0 1 1 0 0

1 1 0 0 0 0 0 1 1 0 1

1 1 0 1 0 0 0 1 1 0 0

1 1 1 0 1 0 0 1 1 0 0

1 1 1 1 1 0 0 1 1 0 0

State Equation:

5. AsequentialcircuithastwoJKFlip-FlopAandB.theFlip-Flopinputfunctionsare:

JA=B JB=x’

KA=Bx’ KB=Ax.
(a) Drawthe logicdiagram of the circuit,
(b) Tabulatethestatetable,
(c) Drawthestatediagram.

Logic diagram:

Theoutputfunctionisnotgivenintheproblem.Theoutputofthe Flip-
Flopsmaybeconsideredastheoutputofthecircuit.
Statetable:

Toobtainthenext-statevaluesofasequentialcircuitwithJKFlip-Flop,usetheJKFlip-
Flopcharacteristictable.
Presentstate Input Flip-FlopInputs Nextstate

A B x JA=B KA=Bx’ JB=x’ KB=A x A(t+1) B(t+1)

0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 0

0 1 0 1 1 1 0 1 1

0 1 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1 1

1 0 1 0 0 0 0 1 0

1 1 0 1 1 1 1 0 0

1 1 1 1 0 0 0 1 1

Presentstate

Nextstate

X=0 X=1

A B A B A B

0 0 0 1 0 0

0 1 1 1 1 0

1 0 1 1 1 0

1 1 0 0 1 1

PreparedByKAVIARASAN.S/Asst.Prof.,PIT

StateDiagram:

Secondformofstatetable

 Analys
isofMo
oreMo
del

6. Analyzethe
synchronou
sMoorecirc
uitandobtai
nitsstatedia
gram.

Soln:

Using
the

assignedvariable Y1and Y2forthetwoJKFlip-Flops,we
canwrite

thefourexcitationinputequationsandtheMooreoutputequat

ionasfollows
:

JA=Y2X ; KA=Y2’

JB=X ; KB=X’ and outputfunction,Z=Y1Y2’

Statetable:

StateDiagram:

Secondformofstatetable

Here the output depends on the present state only and is independent of
theinput.Thetwovaluesinsideeachcircleseparatedbyaslashareforthepresentstatean
doutput.

Presentstate Input Flip-FlopInputs Nextstate Output

Y1 Y2 X JA=Y2X KA=Y2’ JB=X KB=X’ Y1(t+1) Y2(t+1) Z=Y1Y2’

0 0 0 0 1 0 1 0 0 0

0 0 1 0 1 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 0 1

1 0 1 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1 0 0
1 1 1 1 0 1 0 1 1 0

Presentstate

Nextstate Output

X=0 X=1
Y

Y1 Y2 Y1 Y2 Y1 Y2

0
0
1
1

0
1
0
1

0
0
0
1

0
0
0
0

0
1
0
1

1
1
1
1

0
0
1
0

7. Asequentialcircuithas twoTFlip-FlopAandB.TheFlip-Flopinputfunctionsare:
TA=Bx TB=x
y=AB

(a) Drawthe logicdiagram of the circuit,
(b) Tabulatethestatetable,
(c) Drawthestatediagram.

Soln:
Logic diagram:

Statetable

Presentstate Input Flip-FlopInputs Nextstate Output

A B x TA=Bx TB=x A(t+1) B(t+1) y=AB

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 0 0 0 1 0

0 1 1 1 1 1 0 0

1 0 0 0 0 1 0 0

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 1

1 1 1 1 1 0 0 1

Presentstate

Nextstate Output

x=0 x=1 x=0 x=1

A B A B A B y y

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

0
1
1
0

1
0
1
0

0
0
0
1

0
0
0
1

StateDiagram:

Secondformofstatetable

 STATEREDUCTION/MINIMIZATION
The state reduction is used to avoid the redundant states in the

sequentialcircuits. The reduction in redundant states reduces the number of
required Flip-Flopsandlogicgates,reducingthecostofthefinalcircuit.

The two states are said to be redundant or equivalent, if every possible set
ofinputs generateexactlysameoutputand samenextstate.When twostates
areequivalent,oneofthemcanberemovedwithoutalteringtheinput-
outputrelationship.

Since‘n’Flip-
Flopsproduced2nstate,areductioninthenumberofstatesmayresultinareductioninthen
umberofFlip-Flops.

Theneedforstatereductionorstateminimizationisexplainedwithoneexample.

Statediagram
Step1:Determinethestatetableforgivenstatediagram

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a b c 0 0

b d e 1 0

c c d 0 1

d a d 0 0

e c d 0 1

Statetable

Step2:Findequivalentstates
Fromtheabovestatetablecandegenerateexactlysamenextstateandsameoutputforeverypossiblesetofinp
uts.Thestatecandegotonextstatescanddandhaveoutputs0and1forx=0andx=1respectively.Thereforesta
teecanberemovedand replacedbyc.Thefinalreducedstatetableisshownbelow

.Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a b c 0 0

b d c 1 0

c c d 0 1

d a d 0 0

SynchronousSequentialCircuits 3.38

Reducedstatetable

Thestatediagramforthereducedtableconsistsofonlyfourstatesandisshownbelow.
Reducedstatediagram

1. Reducethenumberofstatesinthefollowingstatetableandtabulatethereducedstatetabl
e.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

Soln:

Fromtheabovestatetableeandggenerateexactlysamenextstateandsame
outputforeverypossiblesetofinputs.Thestateeandggotonextstatesaandfandhaveout
puts0and1forx=0andx=1respectively.Thereforestategcanberemovedandreplacedby
e.

Thereducedstatetable-1isshownbelow.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

SynchronousSequentialCircuits 3.39

e a f 0 1

f e f 0 1

Reducedstatetable-1

Nowstatesdandfareequivalent.Bothstatesgotothesamenextstate(e,f)andhav
esameoutput(0,1).Thereforeonestatecanberemoved;fisreplacedbyd.Thefinalreduc
edstatetable-2isshownbelow.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1
Reducedstatetable-2

Thus7statesarereducedinto5states.

2. Determineaminimalstatetableequivalentfurnishedbelow

Presentstate Nextstate

X=0 X=1

1 1, 0 1, 0

2 1, 1 6, 1

3 4, 0 5, 0

4 1, 1 7, 0

5 2, 0 3, 0

6 4, 0 5, 0

7 2, 0 3, 0

Soln:

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

1 1 1 0 0

2 1 6 1 1

3 4 5 0 0

4 1 7 1 0

5 2 3 0 0

6 4 5 0 0

7 2 3 0 0

Fromtheabovestatetable,5and7generateexactlysamenextstateandsameoutputfor
everypossiblesetofinputs.Thestate5and7gotonextstates2and3andhaveoutputs0and

SynchronousSequentialCircuits 3.40

0forx=0andx=1respectively.Thereforestate7canberemovedandreplacedby5.
Similarly,3and6generateexactlysamenextstateandsameoutputforeverypossi

blesetofinputs.Thestate3and6gotonextstates4and5andhaveoutputs0and 0 for x=0
and x=1 respectively. Therefore state 6 can be removed and replacedby3.

Thefinalreducedstatetableisshownbelow.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

1 1 1 0 0

2 1 3 1 1

3 4 5 0 0

4 1 5 1 0

5 2 3 0 0

Reducedstatetable

Thus7statesarereducedinto5states.

3. Minimizethefollowing statetable.

Presentstate Nextstate

X=0 X=1

A D,0 C,1

B E,1 A,1

C H, 1 D,1

D D,0 C,1

E B,0 G,1

F H, 1 D,1

G A,0 F,1

H C,0 A,1

I G,1 H,1

Soln:

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

A D C 0 1

B E A 1 1

C H D 1 1

D D C 0 1

E B G 0 1

F H D 1 1

G A F 0 1

H C A 0 1

I G H 1 1

SynchronousSequentialCircuits 3.41

From the above state table, A and D generate exactly same next state
andsame output for every possible set of inputs. The state A and D go to next states
Dand C and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state D
canbe removed and replaced by A.Similarly, C and F generate exactly same next
stateand same output for every possible set of inputs. The state C and F go to next
statesH and D and have outputs 1 and 1 for x=0 and x=1 respectively. Therefore
state FcanberemovedandreplacedbyC.

Thereducedstatetable-1isshownbelow.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

A A C 0 1

B E A 1 1

C H A 1 1

E B G 0 1

G A C 0 1

H C A 0 1

I G H 1 1

Reducedstatetable-1

From the above reduced state table-1, A and G generate exactly same
nextstate and same output for every possible set of inputs. The state A and G go to
nextstates A and C and have outputs 0 and 1 for x=0 and x=1 respectively.
Thereforestate G can be removed and replaced by A. The final reduced state table-2
is shownbelow.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

A A C 0 1

B E A 1 1

C H A 1 1

E B A 0 1

H C A 0 1

I A H 1 1

Reducedstatetable-2

Thus9statesarereducedinto6states.

4. Reducethefollowingstatediagram.

Soln:

Presentstate Nextstate Output

SynchronousSequentialCircuits 3.42

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1
Statetable

Fromtheabovestatetableeandggenerateexactlysamenextstateandsameoutput
foreverypossiblesetofinputs.Thestateeandggotonextstatesaandfandhaveoutputs0a
nd1forx=0andx=1respectively.Thereforestategcanberemovedand
replacedbye.Thereducedstatetable-1is shownbelow.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f e f 0 1

Reducedstatetable-1

Nowstatesdandfareequivalent.Bothstatesgotothesamenextstate(e,f)andhav
esameoutput(0,1).Thereforeonestatecanberemoved;fisreplacedbyd.Thefinalreduc
edstatetable-2isshownbelow

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1
Reducedstatetable-2

Thus7statesarereducedinto5states.
Thestatediagramforthereducedstatetable-2is,

SynchronousSequentialCircuits 3.43

Reducedstatediagram

 DESIGNOFSYNCHRONOUSSEQUENTIALCIRCUITS:

A synchronous sequential circuit is made up of number ofFlip-Flops
andcombinational gates. The design of circuit consists of choosing the Flip-Flops
andthenfindingacombinationalgatestructuretogetherwiththeFlip-Flops.Thenumber
of Flip-Flops is determined from the number of states needed in the
circuit.Thecombinationalcircuitis derivedfromthestatetable.

 Designprocedure:

1. Thegivenproblemisdeterminedwithastatediagram.
2. Fromthestatediagram,obtainthestatetable.
3. Thenumberofstatesmaybereducedbystatereductionmethods(ifappl

icable).
4. Assignbinaryvaluestoeachstate(BinaryAssignment)ifthestatetablecont

ainslettersymbols.
5. DeterminethenumberofFlip-Flops and assignalettersymbol(A,B,C,…)toeach.
6. ChoosethetypeofFlip-Flop(SR,JK,D,T)tobeused.
7. Fromthestatetable,circuitexcitationandoutputtables.
8. UsingK-

maporanyothersimplificationmethod,derivethecircuitoutputfunctionsan
dtheFlip-Flopinputfunctions.

9. Drawthelogicdiagram.

SynchronousSequentialCircuits 3.44

The type of Flip-Flop to be used may be included in the design
specificationsormaydependwhatisavailabletothedesigner.Manydigitalsystemsareco
nstructed with JK Flip-Flops because they are the most versatile available.
Theselectionofinputsisgivenasfollows.

Flip-Flop Application

JK
D

T

GeneralApplicationsApplications
requiringtransferofdata
(Ex: Shift
Registers)Applicationinvolving
complementation
(Ex:BinaryCounters)

 ExcitationTables:
Beforegoingtothedesignexamplesfortheclockedsynchronoussequentialcircuitswere

viseFlip-Flopexcitationtables.
Present

State
Next
State

Inputs

Qn Qn+1 S R

0 0 0 x

0 1 1 0
1 0 0 1
1 1 x 0

ExcitationtableforSRFlip-Flop

Present
State

Next
State

Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x
1 0 x 1
1 1 x 0

ExcitationtableforJKFlip-Flop

Present
State

Next
State

Input

Qn Qn+1 T

0
0
1
1

0
1
0
1

0
1
1
0

Excitationtable forTFlip-Flop

Present
State

Next
State

Input

Qn Qn+1 D

SynchronousSequentialCircuits 3.45

0
0
1
1

0
1
0
1

0
1
0
1

ExcitationtableforDFlip-Flop

 Problems
1. A sequential circuit has one input and one output. The state diagram is

shownbelow. Design the sequential circuit with a) D-Flip-Flops, b) T Flip-Flops,
c) RSFlip-Flopsandd)JKFlip-Flops.

Solution:
State Table:

Thestatetableforthestatediagramis,

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

A B AB AB Y Y

0 0 00 10 0 1

0 1 11 00 0 0

1 0 10 01 1 0

1 1 00 10 1 0

Statereduction:

Asseenfromthestatetablethereisnoequivalentstates.Therefore,noreductioninthest
atediagram.

The state table shows that circuit goes through four states, therefore
werequire2Flip-Flops(numberofstates=2m,wherem=numberofFlip-
Flops).Sincetwo Flip-Flopsare requiredfirst isdenoted asA
andsecondisdenotedasB.

i) DesignusingDFlip-Flops:
Excitationtable:

UsingtheexcitationtableforTFlip-
Flop,wecandeterminetheexcitationtableforthe

givencircuitas,

SynchronousSequentialCircuits 3.46

PresentState NextState Input

Qn Qn+1 D

0 0 0

0 1 1

1 0 0

1 1 1

ExcitationtableforDFlip-Flop

Presentstate Input Nextstate Flip-Flop
Inputs

Output

A B X A B DA DB Y

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1

0 1 0 1 1 1 1 0

0 1 1 0 0 0 0 0

1 0 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 1

1 1 1 1 0 1 0 0

K-mapSimplification:

Circuitexcitationtable

SynchronousSequentialCircuits 3.47

WiththeseFlip-
Flopinputfunctionsandcircuitoutputfunctionwecandrawthelogicdiagramasfollows.

LogicdiagramofgivensequentialcircuitusingDFlip-Flop

ii) DesignusingTFlip-Flops:

UsingtheexcitationtableforTFlip-
Flop,wecandeterminetheexcitationtableforthegivencircuitas,

PresentState NextState Input

Qn Qn+1 T

0 0 0

0 1 1

1 0 1

1 1 0

Excitation tablefor TFlip-Flop

Presentstate Input Nextstate Flip-Flop
Inputs

Output

A B X A B TA TB Y

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1

0 1 0 1 1 1 0 0

0 1 1 0 0 0 1 0

SynchronousSequentialCircuits 3.48

1 0 0 1 0 0 0 1

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 1

1 1 1 1 0 0 1 0

Circuitexcitationtable

K-mapSimplification:

Therefore,inputfunctionsfor,

TA= B x
andTB=AB+AX+B
X
Circuitoutputfunction,Y=XA’B’+X’A

WiththeseFlip-

Flopinputfunctionsandcircuitoutputfunctionwecandrawthelogicdiagramasfollows.

LogicdiagramofgivensequentialcircuitusingTFlip-Flop

iii) DesignusingSRFlip-Flops:
UsingtheexcitationtableforRSFlip-

SynchronousSequentialCircuits 3.49

Flop,wecandeterminetheexcitationtableforthegivencircuitas,
PresentState NextState Inputs

Qn Qn+1 S R

0 0 0 x

0 1 1 0
1 0 0 1
1 1 x 0

ExcitationtableforSRFlip-Flop

Present
state

Input Nextstate Flip-FlopInputs Output

A B X A B SA RA SB RB Y

0 0 0 0 0 0 x 0 x 0

0 0 1 1 0 1 0 0 x 1

0 1 0 1 1 1 0 x 0 0

0 1 1 0 0 0 x 0 1 0

1 0 0 1 0 x 0 0 x 1

1 0 1 0 1 0 1 1 0 0

1 1 0 0 0 0 1 0 1 1

1 1 1 1 0 x 0 0 1 0

Circuitexcitationtable

K-mapSimplification:

WiththeseFlip-
Flopinputfunctionsandcircuitoutputfunctionwecandrawthelogicdiagramasfollows.

SynchronousSequentialCircuits 3.50

iii) DesignusingJKFlip-Flops:

UsingtheexcitationtableforJKFlip-
Flop,wecandeterminetheexcitationtableforthegivencircuitas,

PresentState NextState Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

ExcitationtableforJKFlip-Flop

SynchronousSequentialCircuits 3.51

Presen
t

state

Inpu
t

Nextstate Flip-FlopInputs Outpu
t

A B X A B JA K
A

JB K
B

Y

0 0 0 0 0 0 x 0 x 0

0 0 1 1 0 1 x 0 x 1

0 1 0 1 1 1 x x 0 0

0 1 1 0 0 0 x x 1 0

1 0 0 1 0 x 0 0 x 1

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 1

1 1 1 1 0 x 0 x 1 0

Circuitexcitationtable

K-mapSimplification:

SynchronousSequentialCircuits 3.52

Theinputfunctionsfor,

JA=BX’+B’X JB=AX

=BX

KA=BX’+B’X KB=A+X

=BX

Circuitoutputfunction,Y=AX’+A’B’X

WiththeseFlip-
Flopinputfunctionsandcircuitoutputfunctionwecandrawthelogicdiagramasfollows.

LogicdiagramofgivensequentialcircuitusingJKFlip-Flop

2. DesignaclockedsequentialmachineusingJKFlip-
Flopsforthestatediagramshowninthefigure. Usestate reduction if possible. Make
properstateassignment.

SynchronousSequentialCircuits 3.53

Soln:
State Table:

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b c b 0 0

c a b 0 1

d a b 0 0

Fromtheabovestatetableaanddgenerateexactlysamenextstateandsameoutput
for every possible set of inputs. The state a andd go to next states a and band have
outputs 0 and 0 for x=0 and x=1 respectively. Therefore state dcan beremoved and
replaced bya. The finalreducedstate table isshownbelow.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b c b 0 0

c a b 0 1

BinaryAssignment:

ReducedStatetable

Now each state is assigned with binary values. Since there are three
states,numberofFlip-
Flopsrequiredistwoand2binarynumbersareassignedtothestates.a=00; b=0;
 andc=10
Thereducedstatediagramisdrawnas

ReducedStateDiagram

SynchronousSequentialCircuits 3.54

K-mapSimplification:

SynchronousSequentialCircuits 3.55

WiththeseFlip-
Flopinputfunctionsandcircuitoutputfunctionwecandrawthelogicdiagramasfollows.

3. DesignaclockedsequentialmachineusingTFlip-

Flopsforthefollowingstatediagram. Use statereduction ifpossible.Alsouse
straightbinary stateassignment.

Soln:
State Table:

Statetableforthegivenstatediagramis,

SynchronousSequentialCircuits 3.56

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

a a b 0 0

b d c 0 0

c a b 1 0

d b a 1 1

EventhoughaandcarehavingsamenextstatesforinputX=0andX=1,astheoutputsar
enotsamestatereductionisnotpossible.

StateAssignment:

Usestraightbinaryassignmentsasa=00,b=01,c=10andd=11,thetransitiontabl
eis,

Input Presentstate Nextstate Flip-Flop
Inputs

Output

X A B A B TA TB Y

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 0 0 0 1 0 1

0 1 1 0 1 1 0 1

1 0 0 0 1 0 1 0

1 0 1 1 0 1 1 0

1 1 0 0 1 1 1 0

1 1 1 0 0 1 1 1

K-mapsimplification:

SynchronousSequentialCircuits 3.57

LogicDiagram:

 STATEASSIGNMENT:

Insequentialcircuits,thebehaviorofthecircuitisdefinedintermsofitsinputs,presents
tates,nextstatesandoutputs.Togeneratedesirednextstateatparticular present state and
inputs, it is necessary to have specificFlip-Flop inputs.TheseFlip-
FlopinputsaredescribedbyasetofBooleanfunctionscalledFlip-Flopinputfunctions.

To determine the Flip-Flop functions, it is necessary to represent states in
thestate diagram using binaryvalues instead of alphabets. This procedure is known

asstateassignment.

Reducedstatediagramwithbinarystates

SynchronousSequentialCircuits 3.58

 Rulesforstateassignments
Therearetwobasicrulesformakingstateassignments.

Rule1:
States havingthesameNEXTSTATES

foragiveninputconditionshouldhaveassignmentswhichcanbegroupedintologica
llyadjacentcellsinaK-map.

Rule2:

StatesthataretheNEXTSTATESofasinglestateshouldhaveassignmentwhichcan
begroupedintologicallyadjacentcellsinaK-map.

Presentstate Nextstate Output

X=0 X=1 X=0 X=1

00 01 10 0 0

01 11 10 1 0

10 10 11 0 1

11 00 11 0 0

Statetablewithassignmentstates

 StateAssignmentProblem:
1. Design a sequential circuit for a state diagram shown below. Use

stateassignmentrulesforassigningstatesandcomparetherequiredcombination
alcircuitwithrandomstateassignment.

Usingrandomstateassignmentweassign,a=0
00,b=001,c=010,d=011ande=100.

Theexcitationtablewiththeseassignmentsisgivenas,

Presentstate Input Nextstate Output

An Bn Cn X An+1 Bn+1 Cn+1 Z

0 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 1 1 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1

SynchronousSequentialCircuits 3.59

1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0
1 0 1 0 x x x x

1 0 1 1 x x x x
1 1 0 0 x x x x
1 1 0 1 x x x x
1 1 1 0 x x x x
1 1 1 1 x x x x

K-mapSimplification:

SynchronousSequentialCircuits 3.60

Therandomassignmentsrequire:
7threeinputANDfunctions1t
woinputANDfunction
4twoinputORfunctions

12gateswith31inputs
Now,wewillapplythestateassignmentrulesandcomparetheresults.

StatediagramafterapplyingRules1and2

Rule1saysthat: eanddmustbeadjacent,and
bandcmustbeadjacent.

Rule2saysthat: eanddmustbeadjacent,and
bandcmustbeadjacent.

ApplyingRule1,Rule2tothestatediagramwegetthestateassignmentas,

Presentstate Input Nextstate Output

An Bn Cn X An+1 Bn+1 Cn+1 Z

0 0 0 0 0 0 1 0

0 0 0 1 0 1 1 0
0 0 1 0 1 0 1 0
0 0 1 1 1 1 1 0
0 1 0 0 x x x x
0 1 0 1 x x x x
0 1 1 0 1 1 1 0
0 1 1 1 1 0 1 0
1 0 0 0 x x x x
1 0 0 1 x x x x
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1
1 1 0 0 x x x x
1 1 0 1 x x x x
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0

SynchronousSequentialCircuits 3.61

K-mapSimplification:

ThestateassignmentsusingRule1and2require:4thre

einputANDfunctions
1twoinputANDfunction2t
woinputORfunctions

7gateswith18inputs

ThusbysimplyapplyingRules1and2goodresultshavebeenachieved.

 SYNCHRONOUSCOUNTERS

Flip-Flops can be connected together to perform counting operations. Such
agroup of Flip- Flops is a counter. The number of Flip-Flops used and the way
inwhich they are connected determine the number of states (called the modulus)
andalsothespecificsequenceofstatesthatthecountergoesthroughduringeachcomplete
cycle.

Countersareclassifiedintotwobroadcategoriesaccordingtothewaytheyareclocked:
Asynchronous
counters,Synchronousc
ounters.

In asynchronous (ripple) counters, the first Flip-Flop is clocked by the
externalclockpulseandtheneachsuccessiveFlip-
FlopisclockedbytheoutputoftheprecedingFlip-Flop.

In synchronous counters, the clock input is connected to all of the Flip-Flops
sothat they are clocked simultaneously. Within each of these two categories,
countersare classified primarily by the type of sequence, the number of states, or

SynchronousSequentialCircuits 3.62

the numberofFlip-Flopsinthecounter.
Theterm‘synchronous’referstoeventsthathaveafixedtimerelationshipwith

each other. In synchronous counter, the clock pulses are applied to all Flip-
Flopssimultaneously.Hencethereisminimumpropagationdelay.

S.No Asynchronous(ripple)counter Synchronouscounter

1 AlltheFlip-Flopsare not
clockedsimultaneously.

All the Flip-Flopsare clocked
simultaneously.

2 The delay times of all Flip-
Flopsareadded.Thereforet
hereisconsiderable
propagation delay.

Thereisminimumpropagationdelay.

3 Speedofoperationislow Speedofoperation ishigh.

4 Logiccircuitisverysimple Design involvescomplexlogiccircuit

 evenformorenumberofstates. asnumberofstateincreases.

5 Minimumnumbersoflogic
devicesareneeded.

Thenumberoflogicdevicesismore
thanripplecounters.

6 Cheaperthansynchronous
counters.

Costlierthanripplecounters.

 2-BitSynchronousBinaryCounter
Inthiscountertheclocksignalisconnectedinparalleltoclockinputsofboththe Flip-

Flops (FF0and FF1). The output of FF0is connected to J1and K1inputs of thesecondFlip-
Flop(FF1).

2-BitSynchronousBinaryCounter

Assume that the counter is initially in the binary 0 state: i.e., both Flip-

Flopsare RESET. When the positive edge of the first clock pulse is applied, FF0 will

togglebecause J0= k0= 1, whereas FF1 output will remain 0 because J1= k1= 0. After
the firstclockpulseQ0=1andQ1=0.

When the leading edge of CLK2 occurs, FF0will toggle and Q0will go

SynchronousSequentialCircuits 3.63

LOW.Since FF1has a HIGH (Q0= 1) on its J1and K1inputs at the triggering edge of
thisclockpulse,theFlip-FloptogglesandQ1goesHIGH.Thus,afterCLK2,
Q0=0andQ1=1.

WhentheleadingedgeofCLK3occurs,FF0againtogglestotheSETstate(Q0

= 1), and FF1 remains SET (Q1 = 1) because its J1 and K1 inputs are both LOW (Q0 =
0).Afterthistriggeringedge,Q0=1andQ1=1.

Finally, at the leading edge of CLK4, Q0 and Q1 go LOW because they
bothhave a toggle condition on their J1 and K1 inputs. The counter has now recycled
to itsoriginalstate,Q0=Q1=0.

Timingdiagram

 3-BitSynchronousBinaryCounter
A 3 bit synchronous binary counter is constructed with three JK Flip-

Flopsand an AND gate. The output of FF0 (Q0) changes on each clock pulse as the
counterprogresses from its original state to its final state and then back to its

original state.To produce this operation, FF0 must be held in the toggle mode by

constant HIGH,onitsJ0andK0inputs.
3-BitSynchronousBinaryCounter

The output of FF1(Q1) goes to the opposite state following each time Q0=

1.This change occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes

thecounter to recycle. To produce this operation, Q0 is connected to the J1 and K1

inputsof FF1. When Q0= 1 and a clock pulse occurs, FF1 is in the toggle mode and
thereforechanges state. When Q0= 0, FF1 is in the no-change mode and remains in its
presentstate.

The output of FF2 (Q2) changes state both times; it is preceded by the
uniquecondition in which both Q0 and Q1 are HIGH. This condition is detected by the
ANDgateandappliedtotheJ2andK2inputsofFF3.WheneverbothoutputsQ0=Q1=1,

the output of the AND gate makes the J2= K2= 1 and FF2toggles on the
followingclock pulse. Otherwise, the J2and K2inputs of FF2 are held LOW by the AND
gateoutput,FF2doesnotchangestate.

CLOCKPulse Q2 Q1 Q0

SynchronousSequentialCircuits 3.64

Initially
1
2
3
4
5
6
7
8(recycles)

0
0
0
0
1
1
1
1
0

0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0

Timingdiagram

 4-BitSynchronousBinaryCounter
This particular counter is implemented with negative edge-triggered Flip-

Flops. The reasoning behind the J and K input control for the first three Flip- Flops
isthe same as previously discussed for the 3-bit counter. For the fourth stage, the

Flip-Flop has to change the state when Q0= Q1= Q2= 1. This condition is decoded by

ANDgateG3.

4-BitSynchronousBinaryCounter

Therefore, when Q0= Q1= Q2= 1, Flip-Flop FF3 toggles and for all other times

itisinano-
changecondition.PointswheretheANDgateoutputsareHIGHareindicatedbytheshaded
areas.

SynchronousSequentialCircuits 3.65

Timingdiagram

 4-BitSynchronousDecadeCounter:(BCDCounter):
BCDdecadecounterhasasequencefrom0000to1001(9).After1001stateitmust

recycle back to 0000 state. This counter requires four Flip-Flops and
AND/ORlogicasshownbelow.

4-Bit Synchronous DecadeCounter

CLOCKPulse Q3 Q2 Q1 Q0

Initially
1
2
3
4
5
6
7
8
9

10(recycles)

0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
1
1
1
1
0
0
0

0
0
1
1
0
0
1
1
0
0
0

0
1
0
1
0
1
0
1
0
1
0

 First,noticethatFF0(Q0)togglesoneachclockpulse,sothelogicequationforitsJ0andK0i

nputsis

J0=K0=1

ThisequationisimplementedbyconnectingJ0andK0toaconstantHIGHlevel.
 Next,noticefromtable,thatFF1(Q1)changesonthenextclockpulseeachtime

Q0=1and Q3=0,sothelogicequationfortheJ1and K1inputsis
J1=K1=Q0Q3’

SynchronousSequentialCircuits 3.66

ThisequationisimplementedbyANDingQ0andQ3andconnectingthegateoutputtotheJ1a
ndK1inputsofFFl.

 Flip-Flop2(Q2)changesonthenextclockpulseeachtimebothQ0=Q1=1.This
requiresaninputlogicequationasfollows:

J2=K2=Q0Q1

ThisequationisimplementedbyANDingQ0andQ1andconnectingthegateoutputtotheJ2a
ndK2inputsofFF3

 Finally, FF3(Q3) changes to the opposite state on the next clock pulse
eachtime Q0 = 1, Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q1 = 1 (state
9).Theequationforthisisasfollows:

J3=K3=Q0Q1Q2+Q0Q3

ThisfunctionisimplementedwiththeAND/ORlogicconnectedtotheJ3andK3inputsofFF3.

Timingdiagram

SynchronousSequentialCircuits 3.67

 SynchronousUP/DOWNCounter
Anup/downcounterisabidirectionalcounter,capableofprogressingineitherdirectio

nthroughacertainsequence.A3-
bitbinarycounterthatadvancesupwardthroughitssequence(0,1,2,3,4,5,6,7)andthencanbe
reversedsothatit
goesthroughthesequenceintheoppositedirection(7,6,5,4,3,2,1,0)isanillustrationofup/do
wnsequentialoperation.

The complete up/down sequence for a 3-bit binary counter is shown in
tablebelow.Thearrowsindicatethestate-to-

statemovementofthecounterforbothitsUPand its DOWN modes of operation. An

examination of Q0 for both the up and downsequences shows that FF0 toggles on
each clock pulse. Thus, the J0and K0 inputs ofFF0are,

J0=K0=1

Toform a synchronous UP/DOWN counter, the control input (UP/DOWN)is
used to allow either the normal output or the inverted output of one Flip-Flop
totheJandKinputsofthenextFlip-
Flop.WhenUP/DOWN=1,theMOD8counterwillcountfrom
000to111andUP/DOWN=0,it willcount from111 to 000.

WhenUP/DOWN=1,itwillenableANDgates1and 3 and disable ANDgates 2
and 4. This allows the Q0 and Q1 outputs through the AND gates to the J
andKinputsofthefollowingFlip-Flops,sothecounter countsupaspulsesareapplied.

WhenUP/DOWN=0,thereverseactiontakesplace.

J1=K1=(Q0.UP)+(Q0’.DOWN)

J2=K2=(Q0.Q1.UP)+(Q0’.Q1’.DOWN)

3-bitUP/DOWNSynchronousCounter

SynchronousSequentialCircuits 3.68

 MODULUS-N-COUNTERS
Thecounterwith‘n’Flip-

FlopshasmaximumMODnumber2n.Findthenumber of Flip-Flops (n) required for
the desired MOD number (N) using theequation,

2n≥N
(i) Forexample,a3bitbinarycounterisaMOD8counter.Thebasiccountercanbe

modified to produce MOD numbers less than 2n by allowing the counter
toskinthosearenormallypart ofcountingsequence.

n=3
N=8
2n=23=8=N

(ii) MOD5Counter:

2n=N
2n=5
22=4lessthanN.
23=8>N(5)

Therefore,3Flip-Flopsarerequired.

(iii) MOD10Counter:
2n=N=10
23=8lessthanN.
24=16>N(10).

ToconstructanyMOD-Ncounter,thefollowingmethodscanbeused.

1. FindthenumberofFlip-
Flops(n)requiredforthedesiredMODnumber(N)usingtheequation,

2n≥N.
2. ConnectalltheFlip-Flopsasarequiredcounter.
3. FindthebinarynumberforN.
4. ConnectallFlip-FlopoutputsforwhichQ=1whenthecountisN,asinputs

toNANDgate.
5. ConnecttheNANDgateoutputtotheCLRinputofeachFlip-Flop.

When the counter reaches Nthstate, the output of the NAND gate goes
LOW,resettingallFlip-Flopsto0.Thereforethecountercountsfrom0throughN-
1.
Forexample,MOD-

10counterreachesstate10(1010).i.e.,Q3Q2Q1Q0=1010.TheoutputsQ3andQ1areconnec
tedtotheNANDgateandtheoutputoftheNANDgategoesLOWandresettingallFlip-
Flopstozero.ThereforeMOD-10countercountsfrom 0000 to1001. And thenrecycles
tothe zero value.

TheMOD-10countercircuitisshownbelow.

SynchronousSequentialCircuits 3.69

MOD-10(Decade)Counter

 SHIFTREGISTERS:

A register is simply a group of Flip-Flops that can be used to store a
binarynumber.TheremustbeoneFlip-
Flopforeachbitinthebinarynumber.Forinstance,aregister usedtostorean8-bitbinary
number musthave8Flip-Flops.

TheFlip-
Flopsmustbeconnectedsuchthatthebinarynumbercanbeentered(shifted) into the
register and possibly shifted out. A group of Flip-Flops connectedtoprovide either

orboth ofthese functionsis called ashiftregister.
Thebitsinabinarynumber(data)canberemovedfromoneplacetoanother

in either of two ways. The first method involves shifting the data one bit at a time
ina serial fashion, beginning with either the most significant bit (MSB) or the

leastsignificant bit (LSB). This technique isreferredto as serialshifting. The

second

methodinvolvesshiftingallthedatabitssimultaneouslyandisreferredtoasparallel

shifting.

There are two ways to shift into a register (serial or parallel) and similarly
twoways to shift the data out of the register. This leads to the construction of four
basicregistertypes—

i. Serialin-serialout,
ii. Serialin-parallelout,

iii. Parallelin-serialout,
iv. Parallelin-parallelout.

(i) Serial in-serialout (iii)Parallelin-serialout

SynchronousSequentialCircuits 3.70

(iii)Serialin-parallelout (iv)Parallelin-parallelout

 Serial-InSerial-OutShiftRegister:
Theserialin/serialoutshiftregisteracceptsdataserially,i.e.,onebitatatimeonasi

ngleline.Itproducesthestoredinformationonitsoutputalsoinserialform.
Serial-InSerial-OutShiftRegister

The entry of the four bits 1010 into the register is illustrated below,

beginningwith the right-most bit. The register is initially clear. The 0 is put onto the

datainputline,makingD=0forFF0.Whenthefirstclockpulseisapplied,FF0isreset,thusstoring
the0.

Nextthesecondbit,whichisa1,isappliedtothedatainput,makingD=1forFF0andD=0fo

rFF1becausetheDinputofFF1isconnectedtotheQ0output.When

thesecondclockpulseoccurs,the1onthedatainputisshiftedintoFF0,causingFF0toset;a
ndthe0thatwasinFF0isshiftedintoFFl.

The third bit, a 0, is now put onto the data-input line, and a clock pulse

isapplied. The 0 is entered into FF0, the 1 stored in FF0is shifted into FFl, and the

0storedinFF1isshiftedintoFF2.
The last bit, a 1,is nowapplied to the data input, and a clock pulseis applied.This

timethe 1 isentered intoFF0, the 0 stored in FF0 isshifted intoFFl, the 1 storedin FF1
isshiftedintoFF2, and the 0stored in FF2 is shiftedintoFF3.
Thiscompletestheserialentryofthefourbitsintotheshiftregister,wheretheycanbestoredfor
anylengthoftimeaslongastheFlip-Flopshavedcpower.

SynchronousSequentialCircuits 3.71

Fourbits(1010)beingenteredseriallyintotheregister

SynchronousSequentialCircuits 3.72

To get the data out of the register, the bits must be shifted out serially

andtaken offtheQ3 output. AfterCLK4, theright-most bit, 0,appearson theQ3 output.
When clock pulse CLK5 is applied, the second bit appears on the Q3

output.Clock pulse CLK6 shifts the third bit to the output, and CLK7 shifts the fourth
bit
totheoutput.Whiletheoriginalfourbitsarebeingshiftedout,morebitscanbeshiftedin.All
zerosareshownbeingshiftedout,morebitscanbeshiftedin.

Fourbits(1010)beingenteredserially-shiftedoutoftheregisterandreplacedbyallzeros

 Serial-InParallel-OutShiftRegister:

In this shift register, data bits are entered into the register in the same
asserial-inserial-
outshiftregister.Buttheoutputistakeninparallel.Oncethedataarestored,eachbitappea
rsonitsrespectiveoutputlineandallbitsareavailablesimultaneouslyinsteadofonabit-
by-bit.

SynchronousSequentialCircuits 3.73

Serial-Inparallel-OutShiftRegister

X

SynchronousSequentialCircuits 3.74

Fourbits(1111)beingseriallyenteredintotheregister

 Parallel-InSerial-OutShiftRegister:
In this type, the bits are entered in parallel i.e., simultaneously into

theirrespectivestagesonparallellines.
A 4-bit parallel-in serial-out shift register is illustrated below. There are

fourdata input lines, X0, X1, X2and X3for entering data in parallel into the

register.SHIFT/ LOAD input is the control input, which allows four bits of data to
load inparallelintotheregister.

When SHIFT/LOADis LOW,gates G1,G2, G3and G4 are enabled, allowingeach
data bit to be applied to the D input of its respective Flip-Flop. When a clockpulse is
applied, the Flip-Flops with D = 1 will set and those with D = 0 will
reset,therebystoringallfourbitssimultaneously.

Parallel-InSerial-OutShiftRegister

WhenSHIFT/LOADisHIGH,gatesG1,G2,G3andG4aredisabledandgatesG5, G6 and
G7 are enabled, allowing the data bits to shift right from one stage to thenext. The
OR gates allow either the normal shifting operation or the parallel data-entry
operation, depending on which AND gates are enabled by the level on
theSHIFT/LOADinput.
 Parallel-InParallel-OutShiftRegister:

In this type, there is simultaneous entry of all data bits and the bits appear
onparalleloutputssimultaneously.

Parallel-InParallel-OutShiftRegister

 UNIVERSALSHIFTREGISTERS
If the register has shift and parallel load capabilities, then it is called a

shiftregister with parallel load or universal shift register. Shift register can be used
forconverting serial data to parallel data, and vice-versa. If a parallel load capability
isaddedtoashiftregister,thedataenteredinparallelcanbetakenoutinserialfashionbyshi
ftingthedatastoredintheregister.
Thefunctionsofuniversalshiftregisterare:

 Aclearcontroltocleartheregisterto0.
 Aclockinputtosynchronizetheoperations.
 Ashift-

rightcontroltoenabletheshiftrightoperationandtheserialinputandoutputlines
associatedwiththeshiftright.

 Ashift-
leftcontroltoenabletheshiftleftoperationandtheserialinputandoutputlinesassociat
edwiththeshiftleft.

 Aparallel-
loadcontroltoenableaparalleltransferandtheninputlinesassociatedwiththepar
alleltransfer.

 ‘n’paralleloutputlines.
 Acontrollinethatleavestheinformationintheregisterunchangedeventhoughthe

clockpulsesrecontinuouslyapplied.
It consists of four D-Flip-Flops and four 4 input multiplexers (MUX). S0 and

S1arethetwoselectioninputsconnectedtoallthefourmultiplexers.Thesetwoselectionin
putsareusedtoselectoneofthefourinputsofeachmultiplexer.

The input 0 in each MUX is selected when S1S0= 00 and input 1 is
selectedwhen S1S0= 01. Similarly inputs 2 and 3 are selected when S1S0= 10 and
S1S0=
11respectively.TheinputsS1andS0controlthemodeoftheoperationoftheregister.

4-BitUniversalShiftRegister

When S1S0= 00, the present value of the register is applied to the D-inputs of
theFlip-Flops. This is done by connecting the output of each Flip-Flop to the 0 input
ofthe respective multiplexer. The next clock pulse transfers into each Flip-Flop,
thebinaryvalueisheldpreviously,andhencenochangeofstateoccurs.

When S1S0= 01, terminal 1 of the multiplexer inputs has a path to the D inputs
oftheFlip-Flops.Thiscausesashift-
rightoperationwiththelefterserialinputtransferredintoFlip-FlopFF3.

When S1S0= 10, a shift-left operation results with the right serial input going
intoFlip-FlopFF1.

FinallywhenS1S0=11,thebinaryinformationontheparallelinputlines(I1,I2,I3andI

4)aretransferredintotheregistersimultaneouslyduringthenextclockpulse.

Thefunctiontableofbi-
directionalshiftregisterwithparallelinputsandparalleloutputsisshownbelow.

ModeControl Operation

S1 S0

0
0
1
1

0
1
0
1

No
changeShi
ft-
rightShift-
left

Parallelload

 BI-DIRECTIONSHIFTREGISTERS:
A bidirectional shift register is one in which the data can be shifted either

leftor right. It can be implemented by using gating logic that enables the transfer of
adata bit from one stage to the next stage to the right or to the left depending on
thelevelofacontrolline.

A4-bitbidirectionalshiftregisterisshownbelow.AHIGHontheRIGHT/LEFT
control input allows data bits inside the register to be shifted to theright,andaLOW
enablesdata bitsinsidetheregisterto beshifted tothe left.

When the RIGHT/LEFT control input is HIGH, gates G1, G2, G3and
G4areenabled, and the state of the Q output of each Flip-Flop is passed through to
the Dinput of the following Flip-Flop. When a clock pulse occurs, the data bits are
shiftedoneplacetotheright.

When the RIGHT/LEFT control input is LOW, gates G5, G6, G7and
G8areenabled, and the Q output of each Flip-Flop is passed through to the D input of
thepreceding Flip-Flop. When a clock pulse occurs, the data bits are then shifted
oneplacetotheleft.

4-bitbi-directionalshiftregister

UNIT III

COMPUTER FUNDAMENTALS

FUNCTIONAL UNITS OF A DIGITAL COMPUTER:

Computer: A computer is a combination of hardware and software resources which integrate together and provides various

functionalities to the user. Hardware are the physical components of a computer like the processor, memory devices, monitor,

keyboard etc. while software is the set of programs or instructions that are required by the hardware resources to function

properly.

There are a few basic components that aids the working-cycle of a computer i.e. the Input- Process- Output Cycle and these are

called as the functional components of a computer. It needs certain input, processes that input and produces the desired outp ut.

The input unit takes the input, the central processing unit does the processing of data and the output unit produces the output. The

memory unit holds the data and instructions during the processing.

Digital Computer: A digital computer can be defined as a programmable machine which reads the binary data passed as

instructions, processes this binary data, and displays a calculated digital output. Therefore, Digital computers are those th at work

on the digital data.

Details of Functional Components of a Digital Computer

 Input Unit :The input unit consists of input devices that are attached to the computer. These devices take input and convert it

into binary language that the computer understands. Some of the common input devices are keyboard, mouse, joystick, scanner

etc.

 Central Processing Unit (CPU) : Once the information is entered into the computer by the input device, the processor

processes it. The CPU is called the brain of the computer because it is the control center of the computer. It first fetches

instructions from memory and then interprets them so as to know what is to be done. If required, data is fetched from memory

or input device. Thereafter CPU executes or performs the required computation and then either stores the output or displays o n

the output device. The CPU has three main components which are responsible for different functions – Arithmetic Logic Unit

(ALU), Control Unit (CU) and Memory registers

 Arithmetic and Logic Unit (ALU) : The ALU, as its name suggests performs mathematical calculations and takes logical

decisions. Arithmetic calculations include addition, subtraction, multiplication and division. Logical decisions involve

comparison of two data items to see which one is larger or smaller or equal.

 Control Unit : The Control unit coordinates and controls the data flow in and out of CPU and also controls all the operations

of ALU, memory registers and also input/output units. It is also responsible for carrying out all the instructions stored in the

program. It decodes the fetched instruction, interprets it and sends control signals to input/output devices until the required

operation is done properly by ALU and memory.

 Memory Registers : A register is a temporary unit of memory in the CPU. These are used to store the data which is directly

used by the processor. Registers can be of different sizes(16 bit, 32 bit, 64 bit and so on) and each register inside the CPU has

a specific function like storing data, storing an instruction, storing address of a location in memory etc. The user registers can

be used by an assembly language programmer for storing operands, intermediate results etc. Accumulator (ACC) is the main

register in the ALU and contains one of the operands of an operation to be performed in the ALU.

 Memory : Memory attached to the CPU is used for storage of data and instructions and is called internal memory The internal

memory is divided into many storage locations, each of which can store data or instructions. Each memory location is of the

same size and has an address. With the help of the address, the computer can read any memory location easily without having

to search the entire memory. when a program is executed, it’s data is copied to the internal memory and is stored in the

memory till the end of the execution. The internal memory is also called the Primary memory or Main memory. This memory

is also called as RAM, i.e. Random Access Memory. The time of access of data is independent of its location in memory,

therefore this memory is also called Random Access memory (RAM). Read this for different types of RAMs

 Output Unit : The output unit consists of output devices that are attached with the computer. It converts the binary data

coming from CPU to human understandable form. The common output devices are monitor, pr inter, plotter etc.

Interconnection between Functional Components
A computer consists of input unit that takes input, a CPU that processes the input and an output unit that produces output. A ll

these devices communicate with each other through a common bus. A bus is a transmission path, made of a set of conducting

wires over which data or information in the form of electric signals, is passed from one component to another in a computer. The

bus can be of three types – Address bus, Data bus and Control Bus.

Following figure shows the connection of various functional components:

The address bus carries the address location of the data or instruction. The data bus carries data from one component to anot her

and the control bus carries the control signals. The system bus is the common communication path that carries signals to/from

CPU, main memory and input/output devices. The input/output devices communicate with the system bus through the controller

circuit which helps in managing various input/output devices attached to the computer.

Von-Neumann Architecture:

Historically there have been 2 types of Computers:

1. Fixed Program Computers – Their function is very specific and they couldn’t be re-programmed, e.g. Calculators.

2. Stored Program Computers – These can be programmed to carry out many different tasks, applications are stored on them,

hence the name.

The modern computers are based on a stored-program concept introduced by John Von Neumann. In this stored-program concept,

programs and data are stored in a separate storage unit called memories and are treated the same. This novel idea meant that a

computer built with this architecture would be much easier to reprogram.

The basic structure is like this,

https://www.geeksforgeeks.org/types-computer-memory-ram-rom/
https://www.geeksforgeeks.org/different-types-ram-random-access-memory/

It is also known as ISA (Instruction set architecture) computer and is having three basic units:

1. The Central Processing Unit (CPU)

2. The Main Memory Unit

3. The Input/Output Device

Let’s consider them in details.

 Control Unit –

A control unit (CU) handles all processor control signals. It directs all input and output flow, fetches code for instructions, and

controls how data moves around the system.

 Arithmetic and Logic Unit (ALU) –

The arithmetic logic unit is that part of the CPU that handles all the calculations the CPU may need, e.g. Addition, Subtraction,

Comparisons. It performs Logical Operations, Bit Shifting Operations, and Arithmetic operations.

Figure – Basic CPU structure, illustrating ALU

 Main Memory Unit (Registers) –

1. Accumulator: Stores the results of calculations made by ALU.

2. Program Counter (PC): Keeps track of the memory location of the next instructions to be dealt with. The PC then passes

this next address to Memory Address Register (MAR).

3. Memory Address Register (MAR): It stores the memory locations of instructions that need to be fetched from memory or

stored into memory.

4. Memory Data Register (MDR): It stores instructions fetched from memory or any data that is to be transferred to, and

stored in, memory.

5. Current Instruction Register (CIR): It stores the most recently fetched instructions while it is waiting to be coded and

executed.

6. Instruction Buffer Register (IBR): The instruction that is not to be executed immediately is placed in the instruction

buffer register IBR.

 Input/Output Devices – Program or data is read into main memory from the input device or secondary storage under the

control of CPU input instruction. Output devices are used to output the information from a computer. If some results are

evaluated by computer and it is stored in the computer, then with the help of output devices, we can present them to the user.

 Buses – Data is transmitted from one part of a computer to another, connecting all major internal components to the CPU and

memory, by the means of Buses. Types:

1. Data Bus: It carries data among the memory unit, the I/O devices, and the processor.

2. Address Bus: It carries the address of data (not the actual data) between memory and processor.

3. Control Bus: It carries control commands from the CPU (and status signals from other devices) in order to control and

coordinate all the activities within the computer.

Von Neumann bottleneck –

Whatever we do to enhance performance, we cannot get away from the fact that instructions can only be done one at a time and

can only be carried out sequentially. Both of these factors hold back the competence of the CPU. This is commonly referred to as

the ‘Von Neumann bottleneck’. We can provide a Von Neumann processor with more cache, more RAM, or faster components but

if original gains are to be made in CPU performance then an influential inspection needs to take place of CPU configuration.

This architecture is very important and is used in our PCs and even in Super Computers.

Basic Computer Instructions

The basic computer has 16-bit instruction register (IR) which can denote either memory reference or register reference or input-

output instruction.

1. Memory Reference – These instructions refer to memory address as an operand. The other operand is always accumulator.

Specifies 12-bit address, 3-bit opcode (other than 111) and 1-bit addressing mode for direct and indirect addressing.

Example –
IR register contains = 0001XXXXXXXXXXXX, i.e. ADD after fetching and decoding of instruction we find out that it is a

memory reference instruction for ADD operation.

Hence, DR ← M[AR]

AC ← AC + DR, SC ← 0

2. Register Reference – These instructions perform operations on registers rather than memory addresses. The IR(14 – 12) is

111 (differentiates it from memory reference) and IR(15) is 0 (differentiates it from input/output instructions). The rest 12 bits

specify register operation.

Example –
IR register contains = 0111001000000000, i.e. CMA after fetch and decode cycle we find out that it is a register reference

instruction for complement accumulator.

Hence, AC ← ~AC

3. Input/Output – These instructions are for communication between computer and outside environment. The IR(14 – 12) is 111

(differentiates it from memory reference) and IR(15) is 1 (differentiates it from register reference instructions). The rest 12 bits

specify I/O operation.

Example –
IR register contains = 1111100000000000, i.e. INP after fetch and decode cycle we find out that it is an input/output

instruction for inputing character. Hence, INPUT character from peripheral device.

The set of instructions incorporated in16 bit IR register are:

1. Arithmetic, logical and shift instructions (and, add, complement, circulate left, right, etc)

2. To move information to and from memory (store the accumulator, load the accumulator)

3. Program control instructions with status conditions (branch, skip)

4. Input output instructions (input character, output character)

Symbol Hexadecimal Code Description

AND 0xxx 8xxx And memory word to AC

ADD 1xxx 9xxx Add memory word to AC

LDA 2xxx Axxx Load memory word to AC

STA 3xxx Bxxx Store AC content in memory

BUN 4xxx Cxxx Branch Unconditionally

BSA 5xxx Dxxx Branch and Save Return Address

ISZ 6xxx Exxx Increment and skip if 0

CLA 7800 Clear AC

CLE 7400 Clear E(overflow bit)

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC > 0

SNA 7008 Skip next instruction if AC < 0

SZA 7004 Skip next instruction if AC = 0

Symbol Hexadecimal Code Description

SZE 7002 Skip next instruction if E = 0

HLT 7001 Halt computer

INP F800 Input character to AC

OUT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt On

IOF F040 Interrupt Off

Instruction Formats (Zero, One, Two and Three Address Instruction):

A computer performs a task based on the instruction provided. Instruction in computers comprises groups called fields. These

fields contain different information as for computers everything is in 0 and 1 so each field has d ifferent significance based on

which a CPU decides what to perform. The most common fields are:

 Operation field specifies the operation to be performed like addition.

 Address field which contains the location of the operand, i.e., register or memory location.

 Mode field which specifies how operand is to be founded.

Instruction is of variable length depending upon the number of addresses it contains. Generally, CPU organization is of three types

based on the number of address fields:

1. Single Accumulator organization

2. General register organization

3. Stack organization

In the first organization, the operation is done involving a special register called the accumulator. In second on multiple r egisters

are used for the computation purpose. In the third organization the work on stack basis operation due to which it does not contain

any address field. Only a single organization doesn’t need to be applied, a blend of various organizations is mostly what we see

generally.

Based on the number of address, instructions are classified as:

Note that we will use X = (A+B)*(C+D) expression to showcase the procedure.

1. Zero Address Instructions –

A stack-based computer does not use the address field in the instruction. To evaluate an expression first it is converted to reverse

Polish Notation i.e. Postfix Notation.

Expression: X = (A+B)*(C+D)

Postfixed : X = AB+CD+*

TOP means top of stack

M[X] is any memory location

PUSH A TOP = A

PUSH B TOP = B

ADD TOP = A+B

PUSH C TOP = C

PUSH D TOP = D

ADD TOP = C+D

MUL TOP = (C+D)*(A+B)

POP X M[X] = TOP

2 .One Address Instructions –

This uses an implied ACCUMULATOR register for data manipulation. One operand is in the accumulator and the other is in the

register or memory location. Implied means that the CPU already knows that one operand is in the accumulator so there is no need

to specify it.

Expression: X = (A+B)*(C+D)

AC is accumulator

M[] is any memory location

M[T] is temporary location

LOAD A AC = M[A]

ADD B AC = AC + M[B]

STORE T M[T] = AC

LOAD C AC = M[C]

ADD D AC = AC + M[D]

MUL T AC = AC * M[T]

STORE X M[X] = AC

3.Two Address Instructions –

This is common in commercial computers. Here two addresses can be specified in the instruction. Unlike earlier in one address

instruction, the result was stored in the accumulator, here the result can be stored at different locations rather than just

accumulators, but require more number of bit to represent address.

Here destination address can also contain operand.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]

MOV R2, C R2 = C

ADD R2, D R2 = R2 + D

MUL R1, R2 R1 = R1 * R2

MOV X, R1 M[X] = R1

4.Three Address Instructions –

This has three address field to specify a register or a memory location. Program created are much short in size but number of bits

per instruction increase. These instructions make creation of program much easier but it does not mean that program will run much

faster because now instruction only contain more information but each micro operation (changing content of register, loading

address in address bus etc.) will be performed in one cycle only.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

ADD R1, A, B R1 = M[A] + M[B]

ADD R2, C, D R2 = M[C] + M[D]

MUL X, R1, R2 M[X] = R1 * R2

INSTRUCTION SET ARCHITECTURE

In this article, we look at what an Instruction Set Architecture (ISA) is and what is the difference between

an ‘ISA’ and Microarchitecture. An ISA is defined as the design of a computer from the Programmer’s Perspective.

This basically means that an ISA describes the design of a Computer in terms of the basic operations it must support. The ISA

is not concerned with the implementation-specific details of a computer. It is only concerned with the set or collection of basic

operations the computer must support. For example, the AMD Athlon and the Core 2 Duo processors have entirely different

implementations but they support more or less the same set of basic operations as defined in the x86 Instruction Set.

Let us try to understand the Objectives of an ISA by taking the example of the MIPS ISA. MIPS is one of the most widely used

ISAs in education due to its simplicity.

1. The ISA defines the types of instructions to be supported by the processor.

Based on the type of operations they perform MIPS Instructions are classified into 3 types:

 Arithmetic/Logic Instructions:

These Instructions perform various Arithmetic & Logical operations on one or more operands.

 Data Transfer Instructions:

These instructions are responsible for the transfer of instructions from memory to the processor registers and vice versa.

 Branch and Jump Instructions:

These instructions are responsible for breaking the sequential flow of instructions and jumping to instructions at various

other locations, this is necessary for the implementation of functions and conditional statements.

2. The ISA defines the maximum length of each type of instruction.

Since the MIPS is a 32 bit ISA, each instruction must be accommodated within 32 bits.

3. The ISA defines the Instruction Format of each type of instruction.

The Instruction Format determines how the entire instruction is encoded within 32 bits

There are 3 types of Instruction Formats in the MIPS ISA:

 R-Instruction Format

 I-Instruction Format

 J-Instruction Format

If we look at the Abstraction Hierarchy:

Figure – The Abstraction Hierarchy

We note that the Microarchitectural level lies just below the ISA level and hence is concerned with the implementation of the

basic operations to be supported by the Computer as defined by the ISA. Therefore we can say that the AMD Athlon and Core 2

Duo processors are based on the same ISA but have different microarchitectures with different performance and efficiencies.

Now one may ask the need to distinguish between Microarchitecture and ISA?

The answer to this lies in the need to standardize and maintain the compatibility of programs across different hardware

implementations based on the same ISA. Making different machines compatible with the same set of basic instructions (The ISA)

allows the same program to run smoothly on many different machines thereby making it easier for the programmers to document

and maintain code for many different machines simultaneously and efficiently.

This Flexibility is the reason we first define an ISA and then design different microarchitectures complying with this ISA fo r

implementing the machine. The design of a lower-level ISA is one of the major tasks in the study of Computer Architecture.

Instruction Set Architecture Microarchitecture

Instruction Set Architecture Microarchitecture

The ISA is responsible for defining the set of instructions to be

supported by the processor. For example, some of the

instructions defined by the ARMv7 ISA are given below.

The Microarchitecture is more concerned with the lower level

implementation of how the instructions are going to be executed

and deals with concepts like Instruction Pipelining, Branch

Prediction, Out of Order Execution.

The Branch of Computer Architecture is more inclined

towards the Analysis and Design of Instruction Set

Architecture. For Example, Intel developed the x86 architecture,

ARM developed the ARM architecture, & AMD developed

the amd64 architecture. The RISC-V ISA developed by UC

Berkeley is an example of an Open Source ISA.

On the other hand, the Branch of Computer Organization is

concerned with the implementation of a particular ISA deals with

various hardware implementation techniques, i.e. is the

Microarchitecture level. For Example, ARM licenses other

companies like Qualcomm, Apple for using ARM ISA, but each

of these companies have their own implementations of this ISA

thereby making them different in performance and power

efficiency. The Krait cores developed by Qualcomm have a

different microarchitecture and the Apple A-series processors

have a different microarchitecture.

The x86 was developed by Intel, but we see that almost every year Intel comes up with a new generation of i -series processors.

The x86 architecture on which most of the Intel Processors are based essentially remains the same across all these generations but,

where they differ is in the underlying Microarchitecture. They differ in their implementation and hence are claimed to have

improved Performance. These various Microarchitectures developed by Intel are codenamed as ‘Nehalem’, ‘Sandybridge’,

‘Ivybridge’, and so on.

Therefore, in conclusion, we can say that different machines may be based on the same ISA but have different Microarchitectur es.

INSTRUCTIONS & INSTRUCTION SEQUENCING

The tasks carried out by a computer program consist of a sequence of small steps, suchas adding two numbers, testing for a particular

condition, reading a character from the keyboard, or sending a character to be displayed on a display screen.

A computer must have instructions capable of performing 4 types of operations:

1) Data transfers between the memory and the registers (MOV, PUSH, POP, XCHG).

2) Arithmetic and logic operations on data (ADD, SUB, MUL, DIV, AND, OR, NOT).

3) Program sequencing and control(CALL.RET, LOOP, INT).

4) I/0 transfers (IN, OUT).

REGISTER TRANSFER NOTATION (RTN)

Here we describe the transfer of information from one location in a computer to another.Possible locations that may be involved in

such transfers are memory locations, processor registers, or registers in the I/O subsystem. Most of the time, we identify such

locationssymbolically with convenient names.

• The possible locations in which transfer of information occurs are:

1) Memory-location

2) Processor register &

3) Registers in I/O device.

ASSEMBLY LANGUAGE NOTATION

• To represent machine instructions and programs, assembly language format is used.

BASIC INSTRUCTION TYPES

INSTRUCTION EXECUTION & STRAIGHT LINE SEQUENCING

• The program is executed as follows:

1) Initially, the address of the first instruction is loaded into PC (Figure 2.8).

2) Then, the processor control circuits use the information in the PC to fetch and execute instructions, one at a time, in the order of

increasing addresses. This is called Straight-Line sequencing.

3) During the execution of each instruction, PC is incremented by 4 to point to next instruction.

• There are 2 phases for Instruction Execution:

1) Fetch Phase: The instruction is fetched from the memory-location and placed in the IR.

2) Execute Phase: The contents of IR is examined to determine which operation is to beperformed. The specified-operation is then

performed by the processor.

Program Explanation

• Consider the program for adding a list of n numbers (Figure 2.9).

• The Address of the memory-locations containing the n numbers are symbolically given as NUM1, NUM2…..NUMn.

• Separate Add instruction is used to add each number to the contents of register R0.

• After all the numbers have been added, the result is placed in memory-location SUM.

ADDRESSING MODES:

The different ways in which the location of an operand is specified in an instruction are referred to as

1)Immediate Mode

• The operand is given explicitly in the instruction.

• For example, the instruction Move #200, R0 ;Place the value 200 in register R0.

• Clearly, the immediate mode is only used to specify the value of a source-operand.

2)Register Mode

• The operand is the contents of a register.

• The name (or address) of the register is given in the instruction.

• Registers are used as temporary storage locations where the data in a register are accessed.

• For example, the instruction Move R1, R2 ;Copy content of register R1 into register R2.

3)Absolute (Direct) Mode

• The operand is in a memory-location.

• The address of memory-location is given explicitly in the instruction.

• The absolute mode can represent global variables in the program.

• For example, the instruction Move LOC, R2 ;Copy content of memory-location LOC into register R2.

4)INDIRECTION AND POINTERS

• Instruction does not give the operand or its address explicitly.

• Instead, the instruction provides information from which the new address of the operand can be determined.

• This address is called Effective Address (EA) of the operand.

Indirect Mode
• The EA of the operand is the contents of a register(or memory-location).

• The register (or memory-location) that contains the address of an operand is called a Pointer.

• We denote the indirection by → name of the register or → new address given in the instruction. E.g: Add (R1), R0;The operand is

in memory. Register R1 gives the effective-address (B) of the operand. The data is read from location B and added to contents of

register R0.

• To execute the Add instruction in fig 2.11 (a), the processor uses the value which is in register R1, as the EA of the operand.

• It requests a read operation from the memory to read the contents of location B. The value read is the desired operand, which the

processor adds to the contents of register R0.

• Indirect addressing through a memory-location is also possible as shown in fig 2.11(b). In this case, the processor first reads the

contents of memory-location A, then requests a second read operation using the value B as an address to obtain the operand.

Program Explanation
• In above program, Register R2 is used as a pointer to the numbers in the list, and the operands are accessed indirectly through R2.

• The initialization-section of the program loads the counter-value n from memory-location N into R1 and uses the immediate

addressing-mode to place the address value NUM1, which is the address of the first number in the list, into R2. Then it clears R0 to 0.

• The first two instructions in the loop implement the unspecified instruction block starting at LOOP.

• The first time through the loop, the instruction Add (R2), R0 fetches the operand at location NUM1 and adds it to R0.

• The second Add instruction adds 4 to the contents of the pointer R2, so that it will contain the address value NUM2 when the above

instruction is executed in the second pass through the loop.

5)INDEXING AND ARRAYS

• A different kind of flexibility for accessing operands is useful in dealing with lists and arrays. Index mode

• The operation is indicated as X(Ri) where X=the constant value which defines an offset(also called a displacement). Ri=the name of

the index register which contains address of a new location.

• The effective-address of the operand is given by EA=X+[Ri]

• The contents of the index-register are not changed in the process of generating the effectiveaddress.

• The constant X may be given either → as an explicit number or → as a symbolic-name representing a numerical value.

6)Base with Index Mode

• Another version of the Index mode uses 2 registers which can be denoted as(Ri, Rj)

• Here, a second register may be used to contain the offset X.

• The second register is usually called the base register.

• The effective-address of the operand is given by EA=[Ri]+[Rj]

• This form of indexed addressing provides more flexibility in accessing operands because both components of the effective-address

can be changed.

7)Base with Index & Offset Mode

• Another version of the Index mode uses 2 registers plus a constant, which can be denoted as X(Ri, Rj)

• The effective-address of the operand is given by EA=X+[Ri]+[Rj]

•This added flexibility is useful in accessing multiple components inside each item in a record, where the beginning of an item is

specified by the (Ri, Rj) part of the addressing-mode. In other words, this mode implements a 3-dimensional array.

8)RELATIVE MODE

• This is similar to index-mode with one difference: The effective-address is determined using the PC in place of the general purpose

register Ri.

• The operation is indicated as X(PC).

• X(PC) denotes an effective-address of the operand which is X locations above or below the current contents of PC.

• Since the addressed-location is identified “relative” to the PC, the name Relative mode is associated with this type of addressing.

• This mode is used commonly in conditional branch instructions.

• An instruction such as Branch > 0 LOOP ;Causes program execution to go to the branch target locationidentified by name LOOP if

branch condition is satisfied.

9) Auto Increment Mode

Effective-address of operand is contents of a register specified in the instruction (Fig: 2.16). After accessing the operand, the contents

of this register are automatically incremented to point to the next item in a list. Implicitly, the increment amount is 1. This mode is

denoted as (Ri)+ ;whereRi=pointer-register.

10) Auto Decrement Mode The contents of a register specified in the instruction are first automatically decremented and are then

used as the effective-address of the operand. This mode is denoted as -(Ri) ;where Ri=pointer-register. These 2 modes can be used

together to implement an important data structure called a stack.

ENCODING OF MACHINE INSTRUCTIONS

• To be executed in a processor, an instruction must be encoded in a binary-pattern. Such encoded instructions are referred to as

Machine Instructions.

• The instructions that use symbolic-names and acronyms are called assembly language instructions.

• We have seen instructions that perform operations such as add, subtract, move, shift, rotate, and branch. These instructions may use

operands of different sizes, such as 32-bit and 8-bit numbers.

• Let us examine some typical cases.

The instruction Add R1, R2 ; Has to specify the registers R1 and R2, in addition to the OP code. If the processor has 16 registers, then

four bits are needed to identify each register. Additional bits are needed to indicate that the Register addressing-mode is used for each

operand.

The instruction Move 24(R0), R5 ;Requires 16 bits to denote the OP code and the two registers, and some bits to express that the

source operand uses the Index addressing mode and that the index value is 24.

• In all these examples, the instructions can be encoded in a 32-bit word (Fig 2.39).

• The OP code for given instruction refers to type of operation that is to be performed.

• Source and destination field refers to source and destination operand respectively.

• The “Other info” field allows us to specify the additional information that may be needed such as an index value or an immediate

operand.

• Using multiple words, we can implement complex instructions, closely resembling operations in high level programming languages.

The term complex instruction set computers (CISC) refers to processors that use

• CISC approach results in instructions of variable length, dependent on the number of operands and the type of addressing modes

used.

• In RISC (reduced instruction set computers), any instruction occupies only one word.

• The RISC approach introduced other restrictions such as that all manipulation of data must be done on operands that are already in

registers. Ex: Add R1,R2,R3

• In RISC type machine, the memory references are limited to only Load/Store operations.Ro

Rotate operations:

• In shift operations, the bits shifted out of the operand are lost, except for the last bit shifted out which is retained in the Carry-flag C.

• To preserve all bits, a set of rotate instructions can be used.

• They move the bits that are shifted out of one end of the operand back into the other end.

• Two versions of both the left and right rotate instructions are usually provided. In one version, the bits of the operand is simply

rotated. In the other version, the rotation includes the C flag.

SHIFT AND ROTATE INSTRUCTIONS

• There are many applications that require the bits of an operand to be shifted right or left some specified number of bit positions.

• The details of how the shifts are performed depend on whether the operand is a signed number or some more general binary-coded

information.

• For general operands, we use a logical shift. For a number, we use an arithmetic shift, which preserves the sign of the number.

LOGICAL SHIFTS

• Two logical shift instructions are

1) Shifting left (LShiftL) &

2) Shifting right (LShiftR).

• These instructions shift an operand over a number of bit positions specified in a count operand contained in the instruction.

Interaction between Assembly language and high level language

High level languages such as Python, C, C++, Java, C# allows the programmer to write the alpha

numeric codes.

The compiler converts the alpha numeric codes into assembly code. Assembly

language codes example:

ADD R1, R2, R3

ADDi R1, R2, 20

LOAD R1, 20(R2)

STORE R1, 20(R2)

The assembler intern converts the assembly language code into binary code (machine code).

https://educatech.in/#facebook
https://educatech.in/#facebook

Difference between assembly language and high level language

Parameters

Assembly Language

High-Level Language

Conversion The assembly language requires an

assembler for the process of conversion.

A high-level language requires an

interpreter/ compiler for the process of

conversion.

Process of

Conversion

We perform the conversion of an

assembly language into a machine

language.

We perform the conversion of a high-level

language into an assembly language and

then into a machine-level language for the

computer.

Machine

Dependency

The assembly language is a machine-

dependent type of language.

A high-level language is a machine-

independent type of language.

Codes It makes use of the mnemonic codes for

operation.

It makes use of the English statements for

operation.

Operation of

Lower Level

It provides support for various low-level

operations.

It does not provide any support for low-

level languages.

Access to

Hardware

Component

Accessing the hardware component is

very easy in this case.

Accessing the hardware component is very

difficult in this case.

Compactness in

Code

The code is more compact in this case. No code compactness is present in this

case.

Type of Processor The program that we write for one

processor in an assembly language will

not run on any other processor type. It

means that it is processor-dependent.

This language is processor-independent. It

means that the programs that we write

using high-level languages can easily run

on any processor independent of its type.

Accuracy It has better accuracy. Accuracy is much lesser in this case.

Performance An assembly language performs better

than any high-level language, in

general.

The performance is comparatively not so

good.

Length of

Executable Code

It is shorter in assembly language. It is larger in a high-level language.

Time Taken in

Code Execution

Execution of code takes less time in this

case because the code is not very large.

It takes up more time for execution because

it needs to execute a large code.

Efficiency It is way more efficient because of the

shorter executable codes.

It is comparatively less efficient because

the executable codes are comparatively

longer in length.

Reading of

Pointers

We can do that directly at a physical

address in the case of an assembly

language.

It is not possible to do so in the case of a

high-level language.

Extra Instructions We don‟t need that in the case of an

assembly language.

This language must give some extra

instructions for running any code on the

computer.

Ease of

Understanding

It is very difficult to debug and

understand the code of an assembly

language.

It is very easy to debug and understand the

code of an assembly language.

UNIT –IV

PROCESSOR

INSTRUCTION EXECUTION

Steps in Instruction Execution by CPU:

Six steps are involved in execution of an instruction by CPU. However, not all of

them are required for all instructions.

1. Fetch instruction

2. Decode information

3. Perform ALU operation

4. Access memory

5. Update register file

6. Update the Program Counter (PC)

Step 1: Fetch instruction

Execution cycle starts with fetching instruction from main memory. The instruction at

the current program counter (PC) will be fetched and will be stored in instruction

register (IR).

Step 2: Decode instruction

During this cycle the encoded instruction present in the IR (instruction register) is

interpreted by the decoder.

Step 3: Perform ALU operation

ALU (Arithmetic Logic Unit) is where two operands in the instruction will be

operated on given operator in the instructions. Such as, if the instruction was to add

two numbers, then here the addition will happen. ALU take two values and output

one, the result of the operation.

https://onlineclassnotes.com/2011/06/draw-expanded-structure-of-von-neumann.html
https://onlineclassnotes.com/2011/06/draw-expanded-structure-of-von-neumann.html
https://onlineclassnotes.com/2011/06/draw-expanded-structure-of-von-neumann.html
https://onlineclassnotes.com/2016/07/discuss-organization-and-functions-of-alu-or-arithmetic-and-logic-unit.html

Step 4: Access memory

There are only two kind of instructions that access memory: LOAD and STORE.

LOAD copies a value from memory to a register and STORE copies a register value

to memory. Any other instruction skips this step.

Step 5: Update Register File

In this step, the output/result of the ALU is written back to the register file to update

the register file. The result could also be due to a LOAD from memory. Some

instructions don’t have results to store. For example, BRANCH and JUMP

instructions do not have any results to store.

Step 6: Update the PC (Program Counter)

Ultimately, at the end of the execution of the current instruction, we need to update

the program counter (PC) to the address of the next instruction, so that we can go

back to step 1 where the CPU will fetch instruction. However, the program counter

might need to be set to other memory address than the next one if the instruction was

BRANCH or JUMP

BUILDING A DATAPATH

Datapath:

It is a processor components that are used to perform arithmetic operations and

elements that holds the data.

Main elements of data path are Instruction memory, Program Counter (PC), ALU

adder.

Building a data path

MIPS processor data path can be built incrementally by only considering the

subsets of instruction.

Types of Elements in the Datapath

State element:

· A memory element, i.e., it contains a state

· E.g., program counter, instruction memory Combinational element:

· Elements that operate on values

· Eg adder ALU E.g. adder, ALU

Elements required by the different classes of instructions

· Arithmetic and logical instructions

· Data transfer instructions

· Branch instructions

R-Format ALU Instructions

· E.g., add $t1, $t2, $t3

· Perform arithmetic/logical operation

· Read two register operands and write register result

Register file:

· A collection of the registers

· Any register can be read or written by specifying the number of the register

· Contains the register state of the computer

ALU

· Takes two 32 bit input and produces a 32 bit output

· Also, sets one-bit signal if the results is 0

· The operation done by ALU is controlled by a 4 bit control signal input. This

is set according to the instruction .

Portion of data path used for fetching instructions and incrementing the program

counter

Register type instructions

ADD $t1, $t2, $t3

Use of sign extension unit

It is used to convert the 16 bit constant input into 32 bit constant output.

Addi $R1, $R2, 20

Here 20 is the 16 bit constant.

Sign extension unit is used to convert this 16 bit constant into 32 bit output and

given to the ALU unit as a input

Use of shift left 2

Shift left 2 operation is used in conditional branch instruction

Beq $t0, $t1, 250

It is used to find the exact byte address from the branch address specified in word

(here 250 is word no.)

Control branch : PC = PC + 250

If we perform the shift left 2 operation on 250 we can obtain

1000.

The control branch address is, PC = PC +1000

Creating a single data path

Here all the operations are included in single data path.

Operations such as R-Type, I-Type, J-type are included in this datapath.

DESIGNING OF CONTROL UNIT

Control Unit is the part of the computer’s central processing unit (CPU), which

directs the operation of the processor. It was included as part of the Von Neumann

Architecture by John von Neumann. It is the responsibility of the Control Unit to

tell the computer’s memory, arithmetic/logic unit and input and output devices how

to respond to the instructions that have been sent to the processor. It fetches internal

instructions of the programs from the main memory to the processor instruction

register, and based on this register contents, the control unit generates a control

signal that supervises the execution of these instructions.

A control unit works by receiving input information to which it converts into control

signals, which are then sent to the central processor. The computer’s processor then

tells the attached hardware what operations to perform. The functions that a control

unit performs are dependent on the type of CPU because the architecture of CPU

varies from manufacturer to manufacturer. Examples of devices that require a CU

are:

 Control Processing Units(CPUs)

 Graphics Processing Units(GPUs)

Functions of the Control Unit –

1. It coordinates the sequence of data movements into, out of, and between a

processor’s many sub-units.

2. It interprets instructions.

3. It controls data flow inside the processor.

4. It receives external instructions or commands to which it converts to sequence of

control signals.

https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture/
https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture/

5. It controls many execution units(i.e. ALU, data buffers and registers) contained

within a CPU.

6. It also handles multiple tasks, such as fetching, decoding, execution handling and

storing results.

 Simple datapath with the control unit

Truth table for ouptut control lines and ALUOp

Types of Control Unit –

There are two types of control units: Hardwired control unit and

Microprogrammable control unit.

HARDWIRED CONTROL METHOD

It is a hardware based method to design the control unit.

o A Hard-wired Control consists of two decoders, a sequence counter, and a

number of logic gates.

o An instruction fetched from the memory unit is placed in the instruction

register (IR).

o The component of an instruction register includes; I bit, the operation code, and

bits 0 through 11.

o The operation code in bits 12 through 14 are coded with a 3 x 8 decoder.

o The outputs of the decoder are designated by the symbols D0 through D7.

o The operation code at bit 15 is transferred to a flip-flop designated by the

symbol I.

o The operation codes from Bits 0 through 11 are applied to the control logic

gates.

o The Sequence counter (SC) can count in binary from 0 through 15

In the Hardwired control unit, the control signals that are important for instruction

execution control are generated by specially designed hardware logical circuits, in

which we can not modify the signal generation method without physical change of

the circuit structure. The operation code of an instruction contains the basic data

for control signal generation. In the instruction decoder, the operation code is

decoded. The instruction decoder constitutes a set of many decoders that decode

different fields of the instruction opcode.

As a result, few output lines going out from the instruction decoder obtains active

signal values. These output lines are connected to the inputs of the matrix that

generates control signals for execution units of the computer. This matrix

implements logical combinations of the decoded signals from the instruction

opcode with the outputs from the matrix that generates signals representing

consecutive control unit states and with signals coming from the outside of the

processor, e.g. interrupt signals. The matrices are built in a similar way as a

programmable logic arrays.

Control signals for an instruction execution have to be generated not in a single

time point but during the entire time interval that corresponds to the instruction

execution cycle. Following the structure of this cycle, the suitable sequence of

internal states is organized in the control unit.

A number of signals generated by the control signal generator matrix are sent

back to inputs of the next control state generator matrix. This matrix combines

these signals with the timing signals, which are generated by the timing unit

based on the rectangular patterns usually supplied by the quartz generator. When

a new instruction arrives at the control unit, the control units is in the initial state

of new instruction fetching. Instruction decoding allows the control unit enters

the first state relating execution of the new instruction, which lasts as long as the

timing signals and other input signals as flags and state information of the

computer remain unaltered. A change of any of the earlier mentioned signals

stimulates the change of the control unit state.

This causes that a new respective input is generated for the control signal

generator matrix. When an external signal appears, (e.g. an interrupt) the control

unit takes entry into a next control state that is the state concerned with the

reaction to this external signal (e.g. interrupt processing). The values of flags and

state variables of the computer are used to select suitable states for the instruction

execution cycle.

The last states in the cycle are control states that commence fetching the next

instruction of the program: sending the program counter content to the main

memory address buffer register and next, reading the instruction word to the

instruction register of computer. When the ongoing instruction is the stop

instruction that ends program execution, the control unit enters an operating

system state, in which it waits for a next user directive.

Pros(advantage) of Hardwired Control Unit

 Hardwired Control Unit is quick due to the usage of combinational circuits

to generate signals.

 The amount of delay that can occur in the creation of control signals is

dependent on the number of gates.

 It can be tweaked to get the fastest mode of operation.

 Quicker than a micro-programmed control unit.

Cons(disadvantage) of Hardwired Control Unit

 As it require additional control signals to be created, the design becomes

more complex (need for more encoders or decoders).

 Changes to control signals are challenging since they necessitate

rearranging wires in the hardware circuit.

 It’s difficult and time-consuming to add a new feature.

 It’s difficult to evaluate and fix flaws in the initial design.

MICRO PROGRAMMED CONTROL METHOD

It is programming method to design control unit.

It consists of micro program stored in control memory called ROM.

Micro program consists of large number of micro instructions. When executing a

micro instruction it will generate a appropriate control signal.

Next address generator examine the instruction within Instruction Register(IR) and

find the address of micro instruction within micro program to create the

corresponding control signal.

Send the micro instruction address to control address register. Now control address

register contain the address of microinstruction.

Then the appropriate microinstruction is pick from the control memory (ROM).

(Control memory contains the micro program)

The micro instruction is then shifted to control data register.

The data processor executes the microinstruction to produce the control signal.

While executing the micro instruction, next address generator generate the address

of the micro instruction needed to execute next.

The address of micro instruction stored control address register(micro instruction

address register) is decoded then it given as input to control memory(control store)

Micro instructions operation part is decoded and produce the control signals.

Micro instructions control part and address part is useful to generate the next micro

instruction address and provide this information to next address generator.

The fundamental difference between these unit structures and the structure of the

hardwired control unit is the existence of the control store that is used for storing

words containing encoded control signals mandatory for instruction execution.

In microprogrammed control units, subsequent instruction words are fetched into

the instruction register in a normal way. However, the operation code of each

instruction is not directly decoded to enable immediate control signal generation

but it comprises the initial address of a microprogram contained in the control

store.

 With a single-level control store:

In this, the instruction opcode from the instruction register is sent to the control

store address register. Based on this address, the first microinstruction of a

microprogram that interprets execution of this instruction is read to the

microinstruction register. This microinstruction contains in its operation part

encoded control signals, normally as few bit fields. In a set microinstruction

field decoders, the fields are decoded. The microinstruction also contains the

address of the next microinstruction of the given instruction microprogram and

a control field used to control activities of the microinstruction address

generator.

The last mentioned field decides the addressing mode (addressing operation) to

be applied to the address embedded in the ongoing microinstruction. In

microinstructions along with conditional addressing mode, this address is

refined by using the processor condition flags that represent the status of

computations in the current program. The last microinstruction in the

instruction of the given microprogram is the microinstruction that fetches the

next instruction from the main memory to the instruction register.

 With a two-level control store:

In this, in a control unit with a two-level control store, besides the control

memory for microinstructions, a nano-instruction memory is included. In such

a control unit, microinstructions do not contain encoded control signals. The

operation part of microinstructions contains the address of the word in the

nano-instruction memory, which contains encoded control signals. The nano-

instruction memory contains all combinations of control signals that appear in

microprograms that interpret the complete instruction set of a given computer,

written once in the form of nano-instructions.

In this way, unnecessary storing of the same operation parts of

microinstructions is avoided. In this case, microinstruction word can be much

shorter than with the single level control store. It gives a much smaller size in

bits of the microinstruction memory and, as a result, a much smaller size of the

entire control memory. The microinstruction memory contains the control for

selection of consecutive microinstructions, while those control signals are

generated at the basis of nano-instructions. In nano-instructions, control signals

are frequently encoded using 1 bit/ 1 signal method that eliminates decoding.

Micro programmed Control Unit Pros(advantage)

 It allows for a more methodical control unit design.

 It’s easier to troubleshoot and modify.

 It can keep the control function’s fundamental structure.

 It can make the control unit’s design easier. As a result, it is less expensive

and less prone to errors or glitches.

 It has the ability to design in a methodical and ordered manner.

 It is used to control software-based functions rather than hardware-based

functions.

 It’s more adaptable.

 It is used to do complex functions with ease.

Microprogrammed Control Unit Cons(disadvantage)

 Adaptability comes at a higher price.

 It is comparatively slower than a control unit that is hardwired.

Differences between hardwired control and micro programmed control

 Hardwired control Micro programmed control

i. It is a hardware based method It is programming method to design

to design control unit control unit

ii. Here control logic circuits generate Here micro instructions generate the

the control signals control signals

iii. It is difficult one to modify the It is easier one to modify

method of generating control signals

iv. Higher speed than micro programmed It is slower than hardwired control

control method

v. Costlier than micro program method cheaper than hardwired method

PIPELINING

Pipelining defines the temporal overlapping of processing. Pipelines are emptiness

greater than assembly lines in computing that can be used either for instruction

processing or, in a more general method, for executing any complex operations. It

can be used efficiently only for a sequence of the same task, much similar to

assembly lines.

A basic pipeline processes a sequence of tasks, including instructions, as per the

following principle of operation −

Each task is subdivided into multiple successive subtasks as shown in the figure. For

instance, the execution of register-register instructions can be broken down into

instruction fetch, decode, execute, and writeback.

A pipeline phase related to each subtask executes the needed operations.

A similar amount of time is accessible in each stage for implementing the needed

subtask.

All pipeline stages work just as an assembly line that is, receiving their input

generally from the previous stage and transferring their output to the next stage.

Finally, it can consider the basic pipeline operates clocked, in other words

synchronously. This defines that each stage gets a new input at the beginning of the

clock cycle, each stage has a single clock cycle available for implementing the

needed operations, and each stage produces the result to the next stage by the starting

of the subsequent clock cycle.

Five phases of instruction execution

1. Instruction Fetch

2. Instruction decode

3. Instruction execution

4. Memory access

5. Write back

Pipelining take this instruction execution phases into pipelining stages.

Pipelining stages

i. Instruction Fetch(IF)

ii. Instruction Decode (ID)

iii. Instruction Execution (ALU)

iv. Memory Access (MA)

v. Write Back(WB)

Pipelining is used to improve the program execution speed. It never leave the

processor components in idle position.

Each stage in pipeline is executed in one clock cycle of CPU.

Pipelined Execution

Exact time required to finish each stage of pipeline in MIPS processor is given as

follows

Following diagram shows time between instruction in non pipelined execution and

pipelined execution.

Non- Pipelined Execution

Pipelined execution

Types of pipelines

There are two types of pipelines in computer processing.

Instruction pipeline

The instruction pipeline represents the stages in which an instruction is moved

through the various segments of the processor, starting from fetching and then

buffering, decoding and executing. One segment reads instructions from the memory,

while, simultaneously, previous instructions are executed in other segments. Since

these processes happen in an overlapping manner, the throughput of the entire system

increases. The pipeline's efficiency can be further increased by dividing the

instruction cycle into equal-duration segments.

Pipeline processing can occur not only in the data stream but in the instruction stream

as well.

Most of the digital computers with complex instructions require instruction pipeline

to carry out operations like fetch, decode and execute instructions.

In general, the computer needs to process each instruction with the following

sequence of steps.

1. Fetch instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

Each step is executed in a particular segment, and there are times when different

segments may take different times to operate on the incoming information. Moreover,

there are times when two or more segments may require memory access at the same

time, causing one segment to wait until another is finished with the memory.

The organization of an instruction pipeline will be more efficient if the instruction

cycle is divided into segments of equal duration. One of the most common examples

of this type of organization is a Four-segment instruction pipeline.

https://www.techtarget.com/searchnetworking/definition/throughput

A four-segment instruction pipeline combines two or more different segments and

makes it as a single one. For instance, the decoding of the instruction can be

combined with the calculation of the effective address into one segment.

The following block diagram shows a typical example of a four-segment instruction

pipeline. The instruction cycle is completed in four segments.

Segment 1:

The instruction fetch segment can be implemented using first in, first out (FIFO)

buffer.

Segment 2:

The instruction fetched from memory is decoded in the second segment, and

eventually, the effective address is calculated in a separate arithmetic circuit.

Segment 3:

An operand from memory is fetched in the third segment.

Segment 4:

The instructions are finally executed in the last segment of the pipeline organization.

Arithmetic pipeline

Arithmetic Pipelines are mostly used in high-speed computers. They are used to

implement floating-point operations, multiplication of fixed-point numbers, and

similar computations encountered in scientific problems.

To understand the concepts of arithmetic pipeline in a more convenient way, let us

consider an example of a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized floating-point

binary numbers defined as:

 X = A * 2a = 0.9504 * 103

 Y = B * 2b = 0.8200 * 102

Where A and B are two fractions that represent the mantissa and a and b are the

exponents.

The combined operation of floating-point addition and subtraction is divided into four

segments. Each segment contains the corresponding suboperation to be performed in

the given pipeline. The suboperations that are shown in the four segments are:

1. Compare the exponents by subtraction.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

The following block diagram represents the suboperations performed in each segment

of the pipeline.

Note: Registers are placed after each suboperation to store the intermediate results.

1. Compare exponents by subtraction:

The exponents are compared by subtracting them to determine their difference. The

larger exponent is chosen as the exponent of the result.

The difference of the exponents, i.e., 3 - 2 = 1 determines how many times the

mantissa associated with the smaller exponent must be shifted to the right.

2. Align the mantissas:

The mantissa associated with the smaller exponent is shifted according to the

difference of exponents determined in segment one.

 X = 0.9504 * 103

 Y = 0.08200 * 103

3. Add mantissas:

The two mantissas are added in segment three.

Z = X + Y = 1.0324 * 103

4. Normalize the result:

After normalization, the result is written as:

Z = 0.1324 * 104

Advantages of Pipelining

 The cycle time of the processor is decreased. It can improve the instruction

throughput. Pipelining doesn't lower the time it takes to do an instruction. Rather

than, it can raise the multiple instructions that can be processed together ("at

once") and lower the delay between completed instructions (known as

'throughput').

 If pipelining is used, the CPU Arithmetic logic unit can be designed quicker, but

more complex.

 Pipelining increases execution over an un-pipelined core by an element of the

multiple stages (considering the clock frequency also increases by a similar

factor) and the code is optimal for pipeline execution.

 Pipelined CPUs frequently work at a higher clock frequency than the RAM

clock frequency, (as of 2008 technologies, RAMs operate at a low frequency

correlated to CPUs frequencies) increasing the computer’s global

implementation.

Disadvantages of Pipelining

Designing of the pipelined processor is complex. Instruction latency increases in

pipelined processors. The throughput of a pipelined processor is difficult to predict.

The longer the pipeline, worse the problem of hazard for branch instructions.

PIPELINE HAZARD

Dependencies between instructions in pipeline is called hazards

.Three types

i. Structural hazard

ii. Data hazard

iii. Control hazard

Structural hazard

Hardware dependencies between instructions in pipeline are called as structural

hazard. Here hardware means memory, ALU, a register.

Example:

Here instruction1 and instruction 4 are use the memory at the same. So memory

conflict will occur. At a time memory process only one work. Not able to do more

than one work at a time (mutual exclusion property).

Pipeline stall

Delay in execution of instruction in pipeline is called pipeline stall. It is also called

as bubble –nickname.

Data hazard

Data hazard occur when the pipeline must be stalled because one step must

Wait for another to complete. Also called as pipeline data hazard. When a planned

instruction can not execute in proper clock cycle because data that is need to

execute the instruction is not yet available

Consider following two instructions

Subtract operation needs the value of S0. But S0 value available write at WB stage.

Forwarding

Forwarding technique is useful to forward the results from internal hardware units.

Forward another example:

Control hazard

Control hazard arising from the need to make a decision based on the results of one

instruction while others are executing.

In the above example , if $1 = $2 then go to the branch address PC=PC + 40x4

But here next load word instruction, lw $3, 300($0) is fetched from memory.

Suppose branch is taken then the pipeline wrongly fetch and execute the load word

instruction

HANDLING DATA HAZARDS & CONTROL HAZARDS

Hazards: Prevent the next instruction in the instruction stream from executing during

its designated clock cycle.

* Hazards reduce the performance from the ideal speedup gained by pipelining.

 3 classes of hazards:

Ø Structural hazards: arise from resource conflicts when the hardware cannot

support all possible combinations of instructions simultaneously in overlapped

execution.

Ø Data hazards: arise when an instruction depends on the results of a previous

instruction in a way that is exposed by the overlapping of instructions in the

pipeline.

Ø Control hazards: arise from the pipelining of branches and other instructions

that change the PC.

Performance of Pipelines with Stalls

* A stall causes the pipeline performance to degrade from the ideal performance.

Speedup from pipelining = [1/ (1+ pipeline stall cycles per instruction)] * Pipeline

Structural Hazards

* When a processor is pipelined, the overlapped execution of instructions

requires pipelining of functional units and duplication of resources to allow all

possible combinations of instructions in the pipeline.

* If some combination of instructions cannot be accommodated because of

resource conflicts, the processor is said to have a structural hazard.

* Instances:

§ When functional unit is not fully pipelined, Then a sequence of

instructions using that unpipelined unit cannot proceed at the rate of one

per clock cycle.

§ when some resource has not been duplicated enough to allow all

combinations of instructions in the pipeline to execute.

* To Resolve this hazard,

§ Stall the the pipeline for 1 clock cycle when the data memory

access occurs. A stall is commonly called a pipeline bubble or just

bubble, since it floats through the pipeline taking space but carrying no

useful work.

Data Hazards

* A major effect of pipelining is to change the relative timing of instructions

by overlapping their execution. This overlap introduces data and control

hazards.

* Data hazards occur when the pipeline changes the order of read/write

accesses to operands so that the order differs from the order seen by

sequentially executing instructions on an unpipelined processor.

Minimizing Data Hazard Stalls by Forwarding

* The problem solved with a simple hardware technique called forwarding

(also called bypassing and sometimes short-circuiting). Forwards works as:

§ The ALU result from both the EX/MEM and MEM/WB pipeline

registers is always fed back to the ALU inputs.

§ If the forwarding hardware detects that the previous ALU operation

has written the register corresponding to a source for the current ALU

operation, control logic selects the forwarded result as the ALU input

rather than the value read from the register file.

Data Hazards Requiring Stalls

* The load instruction has a delay or latency that cannot be eliminated by

forwarding alone. Instead, we need to add hardware, called a pipeline interlock,

to preserve the correct execution pattern.

* A pipeline interlock detects a hazard and stalls the pipeline until the hazard

is cleared.

* This pipeline interlock introduces a stall or bubble. The CPI for the stalled

instruction increases by the length of the stall.

Branch Hazards

* Control hazards can cause a greater performance loss for our MIPS pipeline .

When a branch is executed, it may or may not change the PC to something

other than its current value plus 4.

* If a branch changes the PC to its target address, it is a taken branch; if it falls

through, it is not taken, or untaken.

Reducing Pipeline Branch Penalties

* Simplest scheme to handle branches is to freeze or flush the pipeline,

holding or deleting any instructions after the branch until the branch destination

is known.

* A higher-performance, and only slightly more complex, scheme is to treat

every branch as not taken, simply allowing the hardware to continue as if the

branch were not

executed. The complexity of this scheme arises from having to know when the

state might be changed by an instruction and how to “back out” such a change.

* In simple five-stage pipeline, this predicted-not-taken or predicted untaken

scheme is implemented by continuing to fetch instructions as if the branch

were a normal instruction.

§ The pipeline looks as if nothing out of the ordinary is happening.

§ If the branch is taken, however, we need to turn the fetched

instruction into a no-op and restart the fetch at the target address.

* An alternative scheme is to treat every branch as taken. As soon as the

branch is decoded and the target address is computed, we assume the branch to

be taken and begin fetching and executing at the targetPerformance of Branch

Schemes

Pipeline speedup = Pipeline depth / [1+ Branch frequency × Branch penalty]

The branch frequency and branch penalty can have a component from both

unconditional and conditional branches.

UNIT V

MEMORY AND I/O

MEMORY HIERARCHY IN COMPUTER ARCHITECTURE

In the design of the computer system, a processor, as well as a large amount of memory

devices, has been used. However, the main problem is, these parts are expensive. So

the memory organization of the system can be done by memory hierarchy. It has several

levels of memory with different performance rates. But all these can supply an exact purpose,

such that the access time can be reduced. The memory hierarchy was developed depending

upon the behavior of the program. This article discusses an overview of the memory

hierarchy in computer architecture.

What is Memory Hierarchy?

The memory in a computer can be divided into five hierarchies based on the speed as well as

use. The processor can move from one level to another based on its requirements. The five

hierarchies in the memory are registers, cache, main memory, magnetic discs, and magnetic

tapes. The first three hierarchies are volatile memories which mean when there is no power,

and then automatically they lose their stored data. Whereas the last two hierarchies are not

volatile which means they store the data permanently.

A memory element is the set of storage devices which stores the binary data in the type of

bits. In general, the storage of memory can be classified into two categories such as volatile

as well as non- volatile.

Memory Hierarchy in Computer Architecture

The memory hierarchy design in a computer system mainly includes different storage

devices. Most of the computers were inbuilt with extra storage to run more powerfully

beyond the main memory capacity. The following memory hierarchy diagram is a

hierarchical pyramid for computer memory. The designing of the memory hierarchy is

divided into two types such as primary (Internal) memory and secondary (External) memory.

Memory Hierarchy

https://www.elprocus.com/8085-microprocessor-architecture/
https://www.elprocus.com/ram-memory-organization-types/
https://www.elprocus.com/an-overview-of-bio-battery-working-principle-types-applications/
https://www.elprocus.com/different-types-of-memory-modules-used-embedded-system/

Primary Memory
The primary memory is also known as internal memory, and this is accessible by the

processor straightly. This memory includes main, cache, as well as CPU registers.

Secondary Memory

The secondary memory is also known as external memory, and this is accessible by the

processor through an input/output module. This memory includes an optical disk, magnetic

disk, and magnetic tape.

Characteristics of Memory Hierarchy

The memory hierarchy characteristics mainly include the following.

Performance

Previously, the designing of a computer system was done without memory hierarchy, and the

speed gap among the main memory as well as the CPU registers enhances because of the

huge disparity in access time, which will cause the lower performance of the system. So, the

enhancement was mandatory. The enhancement of this was designed in the memory

hierarchy model due to the system’s performance increase.

Ability

The ability of the memory hierarchy is the total amount of data the memory can store.

Because whenever we shift from top to bottom inside the memory hierarchy, then the

capacity will increase.

Access Time
The access time in the memory hierarchy is the interval of the time among the data

availability as well as request to read or write. Because whenever we shift from top to bottom

inside the memory hierarchy, then the access time will increase

Cost per bit

When we shift from bottom to top inside the memory hierarchy, then the cost for each bit will

increase which means an internal Memory is expensive compared with external memory.

Memory Hierarchy Design

The memory hierarchy in computers mainly includes the following.

Registers

Usually, the register is a static RAM or SRAM in the processor of the computer which is used

for holding the data word which is typically 64 or 128 bits. The program counter register is

the most important as well as found in all the processors. Most of the processors use a status

word register as well as an accumulator. A status word register is used for decision making,

and the accumulator is used to store the data like mathematical operation. Usually, computers

like complex instruction set computers have so many registers for accepting main memory,

and RISC- reduced instruction set computers have more registers.

https://www.elprocus.com/know-about-types-of-registers-in-8051-microcontroller/
https://www.elprocus.com/know-about-types-of-registers-in-8051-microcontroller/
https://www.elprocus.com/difference-between-risc-and-cisc-architecture/
https://www.elprocus.com/what-is-risc-and-cisc-architecture-and-their-workings/

Cache Memory
Cache memory can also be found in the processor, however rarely it may be another IC

(integrated circuit) which is separated into levels. The cache holds the chunk of data which

are frequently used from main memory. When the processor has a single core then it will

have two (or) more cache levels rarely. Present multi-core processors will be having three, 2-

levels for each one core, and one level is shared.

Main Memory
The main memory in the computer is nothing but, the memory unit in the CPU that

communicates directly. It is the main storage unit of the computer. This memory is fast as

well as large memory used for storing the data throughout the operations of the computer.

This memory is made up of RAM as well as ROM.

Magnetic Disks

The magnetic disks in the computer are circular plates fabricated of plastic otherwise metal

by magnetized material. Frequently, two faces of the disk are utilized as well as many disks

may be stacked on one spindle by read or write heads obtainable on every plane. All the disks

in computer turn jointly at high speed. The tracks in the computer are nothing but bits which

are stored within the magnetized plane in spots next to concentric circles. These are usually

separated into sections which are named as sectors.

Magnetic Tape

This tape is a normal magnetic recording which is designed with a slender magnetizable

covering on an extended, plastic film of the thin strip. This is mainly used to back up huge

data. Whenever the computer requires to access a strip, first it will mount to access the data.

Once the data is allowed, then it will be un mounted. The access time of memory will be

slower within magnetic strip as well as it will take a few minutes for accessing a strip.

Advantages of Memory Hierarchy

The need for a memory hierarchy includes the following.

 Memory distributing is simple and economical

 Removes external destruction

 Data can be spread all over

 Permits demand paging & pre-paging

 Swapping will be more proficient

Thus, this is all about memory hierarchy. From the above information, finally, we can

conclude that it is mainly used to decrease the bit cost, access frequency, and to increase the

capacity, access time.

MEMORY MANAGEMENT

What do you mean by memory management?

Memory is the important part of the computer that is used to store the data. Its management is

critical to the computer system because the amount of main memory available in a computer

system is very limited. At any time, many processes are competing for it. Moreover, to

increase performance, several processes are executed simultaneously. For this, we must keep

several processes in the main memory, so it is even more important to manage them

effectively.

https://www.elprocus.com/how-integrated-circuits-work-physically/
https://www.elprocus.com/how-integrated-circuits-work-physically/
https://en.wikipedia.org/wiki/Memory_hierarchy

Memory management plays several roles in a computer system.ibers get early access to

certain merchandise!

o Memory manager is used to keep track of the status of memory locations, whether it is

free or allocated. It addresses primary memory by providing abstractions so that

software perceives a large memory is allocated to it.

o Memory manager permits computers with a small amount of main memory to execute

programs larger than the size or amount of available memory. It does this by moving

information back and forth between primary memory and secondary memory by using

the concept of swapping.

o The memory manager is responsible for protecting the memory allocated to each

process from being corrupted by another process. If this is not ensured, then the

system may exhibit unpredictable behavior.

o Memory managers should enable sharing of memory space between processes. Thus,

two programs can reside at the same memory location although at different times.

Memory management Techniques:

The Memory management Techniques can be classified into following main categories:

o Contiguous memory management schemes

o Non-Contiguous memory management schemes

Contiguous memory management schemes:

In a Contiguous memory management scheme, each program occupies a single contiguous

block of storage locations, i.e., a set of memory locations with consecutive addresses.

Single contiguous memory management schemes:

The Single contiguous memory management scheme is the simplest memory management

scheme used in the earliest generation of computer systems. In this scheme, the main memory

is divided into two contiguous areas or partitions. The operating systems reside permanently

in one partition, generally at the lower memory, and the user process is loaded into the other

partition.

Advantages of Single contiguous memory management schemes:

o Simple to implement.

o Easy to manage and design.

o In a Single contiguous memory management scheme, once a process is loaded, it is

given full processor's time, and no other processor will interrupt it.

Disadvantages of Single contiguous memory management schemes:

o Wastage of memory space due to unused memory as the process is unlikely to use all

the available memory space.

o The CPU remains idle, waiting for the disk to load the binary image into the main

memory.

o It can not be executed if the program is too large to fit the entire available main

memory space.

o It does not support multiprogramming, i.e., it cannot handle multiple programs

simultaneously.

Multiple Partitioning:

The single Contiguous memory management scheme is inefficient as it limits computers to

execute only one program at a time resulting in wastage in memory space and CPU time. The

problem of inefficient CPU use can be overcome using multiprogramming that allows more

than one program to run concurrently. To switch between two processes, the operating

systems need to load both processes into the main memory. The operating system needs to

divide the available main memory into multiple parts to load multiple processes into the main

memory. Thus multiple processes can reside in the main memory simultaneously.

The multiple partitioning schemes can be of two types:

o Fixed Partitioning

o Dynamic Partitioning

Fixed Partitioning

The main memory is divided into several fixed-sized partitions in a fixed partition memory

management scheme or static partitioning. These partitions can be of the same size or

different sizes. Each partition can hold a single process. The number of partitions determines

the degree of multiprogramming, i.e., the maximum number of processes in memory. These

partitions are made at the time of system generation and remain fixed after that.

Advantages of Fixed Partitioning memory management schemes:

o Simple to implement.

o Easy to manage and design.

Disadvantages of Fixed Partitioning memory management schemes:

o This scheme suffers from internal fragmentation.

o The number of partitions is specified at the time of system generation.

Dynamic Partitioning

The dynamic partitioning was designed to overcome the problems of a fixed partitioning

scheme. In a dynamic partitioning scheme, each process occupies only as much memory as

they require when loaded for processing. Requested processes are allocated memory until the

entire physical memory is exhausted or the remaining space is insufficient to hold the

requesting process. In this scheme the partitions used are of variable size, and the number of

partitions is not defined at the system generation time.

Advantages of Dynamic Partitioning memory management schemes:

o Simple to implement.

o Easy to manage and design.

Disadvantages of Dynamic Partitioning memory management schemes:

o This scheme also suffers from internal fragmentation.

o The number of partitions is specified at the time of system segmentation.

Non-Contiguous memory management schemes:

In a Non-Contiguous memory management scheme, the program is divided into different

blocks and loaded at different portions of the memory that need not necessarily be adjacent to

one another. This scheme can be classified depending upon the size of blocks and whether the

blocks reside in the main memory or not.

What is paging?

Paging is a technique that eliminates the requirements of contiguous allocation of main

memory. In this, the main memory is divided into fixed-size blocks of physical memory

called frames. The size of a frame should be kept the same as that of a page to maximize the

main memory and avoid external fragmentation.

Advantages of paging:

o Pages reduce external fragmentation.

o Simple to implement.

o Memory efficient.

o Due to the equal size of frames, swapping becomes very easy.

o It is used for faster access of data.

What is Segmentation?

Segmentation is a technique that eliminates the requirements of contiguous allocation of main

memory. In this, the main memory is divided into variable-size blocks of physical memory

called segments. It is based on the way the programmer follows to structure their programs.

With segmented memory allocation, each job is divided into several segments of different

sizes, one for each module. Functions, subroutines, stack, array, etc., are examples of such

modules.

CACHE MEMORY

Cache Memory is a special very high-speed memory. It is used to speed up and

synchronize with high-speed CPU. Cache memory is costlier than main memory or disk

memory but more economical than CPU registers. Cache memory is an extremely fast

memory type that acts as a buffer between RAM and the CPU. It holds frequently requested

data and instructions so that they are immediately available to the CPU when needed.

Cache memory is used to reduce the average time to access data from the Main memory.

The cache is a smaller and faster memory that stores copies of the data from frequently

used main memory locations. There are various different independent caches in a CPU,

which store instructions and data.

Levels of memory:
 Level 1 or Register – It is a type of memory in which data is stored and accepted that

are immediately stored in CPU. Most commonly used register is accumulator, Program

counter, address register etc.

 Level 2 or Cache memory – It is the fastest memory which has faster access time

where data is temporarily stored for faster access.

 Level 3 or Main Memory – It is memory on which computer works currently. It is

small in size and once power is off data no longer stays in this memory.

 Level 4 or Secondary Memory – It is external memory which is not as fast as main

memory but data stays permanently in this memory.

Cache Performance: When the processor needs to read or write a location in main

memory, it first checks for a corresponding entry in the cache.

 If the processor finds that the memory location is in the cache, a cache hit has occurred

and data is read from the cache.

 If the processor does not find the memory location in the cache, a cache miss has

occurred. For a cache miss, the cache allocates a new entry and copies in data from main

memory, then the request is fulfilled from the contents of the cache.

The performance of cache memory is frequently measured in terms of a quantity called Hit

ratio.

Hit ratio = hit / (hit + miss) = no. of hits/total accesses

We can improve Cache performance using higher cache block size, and higher

associativity, reduce miss rate, reduce miss penalty, and reduce the time to hit in the cache.

Cache Mapping: There are three different types of mapping used for the purpose of cache

memory which is as follows: Direct mapping, Associative mapping, and Set-Associative

mapping. These are explained below.

A. Direct Mapping

The simplest technique, known as direct mapping, maps each block of main memory into

only one possible cache line. or In Direct mapping, assign each memory block to a specific

line in the cache. If a line is previously taken up by a memory block when a new block

needs to be loaded, the old block is trashed. An address space is split into two parts index

field and a tag field. The cache is used to store the tag field whereas the rest is stored in the

main memory. Direct mapping`s performance is directly proportional to the Hit ratio.

i = j modulo m

where

i=cache line number

j= main memory block number

m=number of lines in the cache

1. For purposes of cache access, each main memory address can be viewed as consisting of

three fields. The least significant w bits identify a unique word or byte within a block of

main memory. In most contemporary machines, the address is at the byte level. The

remaining s bits specify one of the 2s blocks of main memory. The cache logic interprets

these s bits as a tag of s-r bits (most significant portion) and a line field of r bits. This

latter field identifies one of the m=2r lines of the cache. Line offset is index bits in the

direct mapping.

B. Associative Mapping

In this type of mapping, the associative memory is used to store content and addresses of

the memory word. Any block can go into any line of the cache. This means that the word id

bits are used to identify which word in the block is needed, but the tag becomes all of the

remaining bits. This enables the placement of any word at any place in the cache memory.

It is considered to be the fastest and the most flexible mapping form. In associative

mapping the index bits are zero.

C. Set-associative Mapping

This form of mapping is an enhanced form of direct mapping where the drawbacks of direct

mapping are removed. Set associative addresses the problem of possible thrashing in the

direct mapping method. It does this by saying that instead of having exactly one line that a

block can map to in the cache, we will group a few lines together creating a set. Then a

block in memory can map to any one of the lines of a specific set. Set-associative mapping

allows that each word that is present in the cache can have two or more words in the main

memory for the same index address. Set associative cache mapping combines the best of

direct and associative cache mapping techniques. In set associative mapping the index bits

are given by the set offset bits. In this case, the cache consists of a number of sets, each of

which consists of a number of lines. The relationships are

m = v * k

i= j mod v

where

i=cache set number

j=main memory block number

v=number of sets

m=number of lines in the cache number of sets

k=number of lines in each set

Application of Cache Memory:

1. Usually, the cache memory can store a reasonable number of blocks at any given time,

but this number is small compared to the total number of blocks in the main memory.

2. The correspondence between the main memory blocks and those in the cache is

specified by a mapping function.

3. Primary Cache – A primary cache is always located on the processor chip. This cache

is small and its access time is comparable to that of processor registers.

4. Secondary Cache – Secondary cache is placed between the primary cache and the rest

of the memory. It is referred to as the level 2 (L2) cache. Often, the Level 2 cache is also

housed on the processor chip.

5. Spatial Locality of reference This says that there is a chance that the element will be

present in close proximity to the reference point and next time if again searched then

more close proximity to the point of reference.

6. Temporal Locality of reference In this Least recently used algorithm will be used.

Whenever there is page fault occurs within a word will not only load word in main

memory but complete page fault will be loaded because the spatial locality of reference

rule says that if you are referring to any word next word will be referred to in its register

that’s why we load complete page table so the complete block will be loaded.

Cache Organization

Cache is close to CPU and faster than main memory. But at the same time is smaller than

main memory. The cache organization is about mapping data in memory to a location in

cache. A Simple Solution: One way to go about this mapping is to consider last few bits of

long memory address to find small cache address, and place them at the found

address. Problems With Simple Solution: The problem with this approach is, we lose the

information about high order bits and have no way to find out the lower order bits belong to

which higher order bits.

Solution is Tag: To handle above problem, more information is stored in cache to tell

which block of memory is stored in cache. We store additional information as Tag

What is a Cache Block? Since programs have Spatial Locality (Once a location is

retrieved, it is highly probable that the nearby locations would be retrieved in near future).

https://media.geeksforgeeks.org/wp-content/uploads/cache.jpg
https://media.geeksforgeeks.org/wp-content/uploads/cache-tag.jpg

So a cache is organized in the form of blocks. Typical cache block sizes are 32 bytes or 64

bytes.

 The above arrangement is Direct Mapped Cache and it has following

problem We have discussed above that last few bits of memory addresses are being used to

address in cache and remaining bits are stored as tag. Now imagine that cache is very small

and addresses of 2 bits. Suppose we use the last two bits of main memory address to decide

the cache (as shown in below diagram). So if a program accesses 2, 6, 2, 6, 2, …, every

access would cause a hit as 2 and 6 have to be stored in same location in cache.

Solution to above problem – Associativity What if we could store data at any place in

cache, the above problem won’t be there? That would slow down cache, so we do

something in between.

https://media.geeksforgeeks.org/wp-content/uploads/cache-tag-3.jpg
https://media.geeksforgeeks.org/wp-content/uploads/cache-problem.jpg
https://media.geeksforgeeks.org/wp-content/uploads/cache-solution.jpg

VIRTUAL MEMORY

Virtual Memory

Virtual Memory is a storage scheme that provides user an illusion of having a very big main

memory. This is done by treating a part of secondary memory as the main memory.

In this scheme, User can load the bigger size processes than the available main memory by

having the illusion that the memory is available to load the process.

Instead of loading one big process in the main memory, the Operating System loads the

different parts of more than one process in the main memory.

By doing this, the degree of multiprogramming will be increased and therefore, the CPU

utilization will also be increased.

How Virtual Memory Works?

In modern word, virtual memory has become quite common these days. In this scheme,

whenever some pages needs to be loaded in the main memory for the execution and the

memory is not available for those many pages, then in that case, instead of stopping the pages

from entering in the main memory, the OS search for the RAM area that are least used in the

recent times or that are not referenced and copy that into the secondary memory to make the

space for the new pages in the main memory.

Since all this procedure happens automatically, therefore it makes the computer feel like it is

having the unlimited RAM.

Demand Paging

Demand Paging is a popular method of virtual memory management. In demand paging, the

pages of a process which are least used, get stored in the secondary memory.

A page is copied to the main memory when its demand is made or page fault occurs. There

are various page replacement algorithms which are used to determine the pages which will be

replaced. We will discuss each one of them later in detail.

Snapshot of a virtual memory management system

Let us assume 2 processes, P1 and P2, contains 4 pages each. Each page size is 1 KB. The

main memory contains 8 frame of 1 KB each. The OS resides in the first two partitions. In the

third partition, 1st page of P1 is stored and the other frames are also shown as filled with the

different pages of processes in the main memory.

The page tables of both the pages are 1 KB size each and therefore they can be fit in one

frame each. The page tables of both the processes contain various information that is also

shown in the image.

The CPU contains a register which contains the base address of page table that is 5 in the case

of P1 and 7 in the case of P2. This page table base address will be added to the page number

of the Logical address when it comes to accessing the actual corresponding entry.

Advantages of Virtual Memory

1. The degree of Multiprogramming will be increased.

2. User can run large application with less real RAM.

3. There is no need to buy more memory RAMs.

Disadvantages of Virtual Memory

1. The system becomes slower since swapping takes time.

2. It takes more time in switching between applications.

3. The user will have the lesser hard disk space for its use.

DIRECT MEMORY ACCESS

For the execution of a computer program, it requires the synchronous working of more than

one component of a computer. For example, Processors – providing necessary control

information, addresses…etc, buses – to transfer information and data to and from memory to

I/O devices…etc. The interesting factor of the system would be the way it handles the

transfer of information among processor, memory and I/O devices. Usually, processors

control all the process of transferring data, right from initiating the transfer to the storage of

data at the destination. This adds load on the processor and most of the time it stays in the

ideal state, thus decreasing the efficiency of the system. To speed up the transfer of data

between I/O devices and memory, DMA controller acts as station master. DMA controller

transfers data with minimal intervention of the processor.

What is a DMA Controller?

The term DMA stands for direct memory access. The hardware device used for direct

memory access is called the DMA controller. DMA controller is a control unit, part of I/O

device’s interface circuit, which can transfer blocks of data between I/O devices and main

memory with minimal intervention from the processor.

DMA Controller Diagram in Computer Architecture

DMA controller provides an interface between the bus and the input-output devices.

Although it transfers data without intervention of processor, it is controlled by the processor.

The processor initiates the DMA controller by sending the starting address, Number of words

in the data block and direction of transfer of data .i.e. from I/O devices to the memory or

from main memory to I/O devices. More than one external device can be connected to the

DMA controller.

DMA controller contains an address unit, for generating addresses and selecting I/O device

for transfer. It also contains the control unit and data count for keeping counts of the number

of blocks transferred and indicating the direction of transfer of data. When the transfer is

completed, DMA informs the processor by raising an interrupt. The typical block diagram of

the DMA controller is shown in the figure below.

https://www.elprocus.com/evolution-of-microprocessor-with-applications
https://www.elprocus.com/arm7-based-lpc2148-microcontroller-pin-configuration/
https://www.elprocus.com/led-interfacing-with-8051-microcontroller/

Working of DMA Controller

DMA controller has to share the bus with the processor to make the data transfer. The device

that holds the bus at a given time is called bus master. When a transfer from I/O device to the

memory or vice verse has to be made, the processor stops the execution of the current

program, increments the program counter, moves data over stack then sends a DMA select

signal to DMA controller over the address bus.

If the DMA controller is free, it requests the control of bus from the processor by raising the

bus request signal. Processor grants the bus to the controller by raising the bus grant signal,

now DMA controller is the bus master. The processor initiates the DMA controller by

sending the memory addresses, number of blocks of data to be transferred and direction of

data transfer. After assigning the data transfer task to the DMA controller, instead of waiting

ideally till completion of data transfer, the processor resumes the execution of the program

after retrieving instructions from the stack.

MA controller now has the full control of buses and can interact directly with memory and

I/O devices independent of CPU. It makes the data transfer according to the control

instructions received by the processor. After completion of data transfer, it disables the bus

request signal and CPU disables the bus grant signal thereby moving control of buses to the

CPU.

When an I/O device wants to initiate the transfer then it sends a DMA request signal to the

DMA controller, for which the controller acknowledges if it is free. Then the controller

requests the processor for the bus, raising the bus request signal. After receiving the bus grant

signal it transfers the data from the device. For n channeled DMA controller n number of

external devices can be connected.

The DMA transfers the data in three modes which include the following.

a) Burst Mode: In this mode DMA handover the buses to CPU only after completion of

whole data transfer. Meanwhile, if the CPU requires the bus it has to stay ideal and wait for

data transfer.

b) Cycle Stealing Mode: In this mode, DMA gives control of buses to CPU after transfer of

every byte. It continuously issues a request for bus control, makes the transfer of one byte and

returns the bus. By this CPU doesn’t have to wait for a long time if it needs a bus for higher

priority task.

c) Transparent Mode: Here, DMA transfers data only when CPU is executing the

instruction which does not require the use of buses.

https://www.elprocus.com/8086-assembly-language-programs-explanation/

Advantages and Disadvantages of DMA Controller

The advantages and disadvantages of DMA controller include the following.

Advantages
 DMA speedups the memory operations by bypassing the involvement of the CPU.

 The work overload on the CPU decreases.

 For each transfer, only a few numbers of clock cycles are required

Disadvantages
 Cache coherence problem can be seen when DMA is used for data transfer.

 Increases the price of the system.

DMA (Direct Memory Access) controller is being used in graphics cards, network cards,

sound cards etc… DMA is also used for intra-chip transfer in multi-core processors.

Operating in one of its three modes, DMA can considerably reduce the load of the processor.

INTRODUCTION TO INPUT- OUTPUT INTERFACE:

 Input -Output Interface is used as an method which helps in transferring of information

between the internal storage devices i.e. memory and the external peripheral device . A

peripheral device is that which provide input and output for the computer, it is also called

Input-Output devices. For Example: A keyboard and mouse provide Input to the computer

are called input devices while a monitor and printer that provide output to the computer are

called output devices. Just like the external hard-drives, there is also availability of some

peripheral devices which are able to provide both input and output.

https://en.wikipedia.org/wiki/Direct_memory_access

Input-Output Interface

In micro-computer base system, the only purpose of peripheral devices is just to

provide special communication links for the interfacing them with the CPU. To resolve

the differences between peripheral devices and CPU, there is a special need for

communication links.

The major differences are as follows:

1. The nature of peripheral devices is electromagnetic and electro-mechanical. The nature

of the CPU is electronic. There is a lot of difference in the mode of operation of both

peripheral devices and CPU.

2. There is also a synchronization mechanism because the data transfer rate of peripheral

devices are slow than CPU.

3. In peripheral devices, data code and formats are differ from the format in the CPU and

memory.

4. The operating mode of peripheral devices are different and each may be controlled so as

not to disturb the operation of other peripheral devices connected to CPU.

There is a special need of the additional hardware to resolve the differences between CPU

and peripheral devices to supervise and synchronize all input and output devices.

Functions of Input-Output Interface:

1. It is used to synchronize the operating speed of CPU with respect to input-output

devices.

2. It selects the input-output device which is appropriate for the interpretation of the input-

output device.

3. It is capable of providing signals like control and timing signals.

4. In this data buffering can be possible through data bus.

5. There are various error detectors.

6. It converts serial data into parallel data and vice-versa.

7. It also convert digital data into analog signal and vice-versa.

I/O Interface (Interrupt and DMA Mode)

The method that is used to transfer information between internal storage and external I/O

devices is known as I/O interface. The CPU is interfaced using special communication links

by the peripherals connected to any computer system. These communication links are used

to resolve the differences between CPU and peripheral. There exists special hardware

components between CPU and peripherals to supervise and synchronize all the input and

output transfers that are called interface units.

Mode of Transfer:

The binary information that is received from an external device is usually stored in the

memory unit. The information that is transferred from the CPU to the external device is

originated from the memory unit. CPU merely processes the information but the source and

target is always the memory unit. Data transfer between CPU and the I/O devices may be

done in different modes.

Data transfer to and from the peripherals may be done in any of the three possible ways

1. Programmed I/O.

2. Interrupt- initiated I/O.

3. Direct memory access(DMA).

Now let’s discuss each mode one by one.

1. Programmed I/O: It is due to the result of the I/O instructions that are written in the

computer program. Each data item transfer is initiated by an instruction in the program.

Usually the transfer is from a CPU register and memory. In this case it requires constant

monitoring by the CPU of the peripheral devices.

Example of Programmed I/O: In this case, the I/O device does not have direct access

to the memory unit. A transfer from I/O device to memory requires the execution of

several instructions by the CPU, including an input instruction to transfer the data from

device to the CPU and store instruction to transfer the data from CPU to memory. In

programmed I/O, the CPU stays in the program loop until the I/O unit indicates that it is

ready for data transfer. This is a time consuming process since it needlessly keeps the

CPU busy. This situation can be avoided by using an interrupt facility. This is discussed

below.

2. Interrupt- initiated I/O: Since in the above case we saw the CPU is kept busy

unnecessarily. This situation can very well be avoided by using an interrupt driven

method for data transfer. By using interrupt facility and special commands to inform the

interface to issue an interrupt request signal whenever data is available from any device.

In the meantime the CPU can proceed for any other program execution. The interface

meanwhile keeps monitoring the device. Whenever it is determined that the device is

ready for data transfer it initiates an interrupt request signal to the computer. Upon

detection of an external interrupt signal the CPU stops momentarily the task that it was

already performing, branches to the service program to process the I/O transfer, and then

return to the task it was originally performing.

Note: Both the methods programmed I/O and Interrupt-driven I/O require the active

intervention of the

processor to transfer data between memory and the I/O module, and any data transfer must

transverse

a path through the processor. Thus both these forms of I/O suffer from two inherent

drawbacks.

 The I/O transfer rate is limited by the speed with which the processor can test and

service a

device.

 The processor is tied up in managing an I/O transfer; a number of instructions must be

executed

for each I/O transfer.

3. Direct Memory Access: The data transfer between a fast storage media such as

magnetic disk and memory unit is limited by the speed of the CPU. Thus we can allow

the peripherals directly communicate with each other using the memory buses, removing

the intervention of the CPU. This type of data transfer technique is known as DMA or

direct memory access. During DMA the CPU is idle and it has no control over the

memory buses. The DMA controller takes over the buses to manage the transfer directly

between the I/O devices and the memory unit.

Bus Request : It is used by the DMA controller to request the CPU to relinquish the

control of the buses.

Bus Grant : It is activated by the CPU to Inform the external DMA controller that the

buses are in high impedance state and the requesting DMA can take control of the buses.

Once the DMA has taken the control of the buses it transfers the data. This transfer can take

place in many ways.

Types of DMA transfer using DMA controller:

BurstTransfer :

DMA returns the bus after complete data transfer. A register is used as a byte count,

being decremented for each byte transfer, and upon the byte count reaching zero, the

DMAC will

release the bus. When the DMAC operates in burst mode, the CPU is halted for the duration

of the data

transfer.

Steps involved are:

1. Bus grant request time.

2. Transfer the entire block of data at transfer rate of device because the device is usually

slow than the

speed at which the data can be transferred to CPU.

3. Release the control of the bus back to CPU

So, total time taken to transfer the N bytes

= Bus grant request time + (N) * (memory transfer rate) + Bus release control time.

Where,

X µsec =data transfer time or preparation time (words/block)

Y µsec =memory cycle time or cycle time or transfer time (words/block)

% CPU idle (Blocked)=(Y/X+Y)*100

% CPU Busy=(X/X+Y)*100

CyclicStealing :
An alternative method in which DMA controller transfers one word at a time after which it

must return the control of the buses to the CPU. The CPU delays its operation only for one

memory cycle to allow the direct memory I/O transfer to “steal” one memory cycle.

Steps Involved are:

4. Buffer the byte into the buffer

5. Inform the CPU that the device has 1 byte to transfer (i.e. bus grant request)

6. Transfer the byte (at system bus speed)

7. Release the control of the bus back to CPU.

Before moving on transfer next byte of data, device performs step 1 again so that bus isn’t

tied up and

the transfer won’t depend upon the transfer rate of device.

So, for 1 byte of transfer of data, time taken by using cycle stealing mode (T).

= time required for bus grant + 1 bus cycle to transfer data + time required to release the

bus, it will be

N x T

In cycle stealing mode we always follow pipelining concept that when one byte is getting

transferred then Device is parallel preparing the next byte. “The fraction of CPU time to the

data transfer time” if asked then cycle stealing mode is used.

Where,

X µsec =data transfer time or preparation time

(words/block)

Y µsec =memory cycle time or cycle time or transfer

time (words/block)

% CPU idle (Blocked) =(Y/X)*100

% CPU busy=(X/Y)*100

Interleaved mode: In this technique , the DMA controller takes over the system bus when

the

microprocessor is not using it.An alternate half cycle i.e. half cycle DMA + half cycle

processor.

ACCESSING I/O DEVICE

We can access the i/o device in two interfaces.

i. Serial interface

ii. Parallel interface

The main difference between the serial and parallel interfaces is how they

transmit data. In serial interface the data is sent or received one bit at a time

over a series of clock pulses.

In parallel mode the interface sends and receives 4 bits, 8 bits, or 16 bits of

data at a time over multiple transmission lines. These two interface modes

will be explained in further detail below.

Serial interface

Serial interface send a byte by bit by bit in serial manner with defined

clock pulse width (with parity).

Serial interfaces consist of 3 types each with their own pins:

1. I2C (Inter-Integrated Circuit): Serial Data In and Serial Clock

2. 3/4-wire SPI (Serial Peripheral Interface): Consists of Serial Data Out,

Serial Data In, Serial Clock and an additional Chip Select pin for the 4-

wire SPI

3. Serial synchronous control and data lines: Serial Data In, Register

Select, Reset, and Serial Clock

Below is the serial interface connection example.

Serial Interface Pros:

-Less data pins

-Cheaper

-Easy setup

Parallel Interface

The parallel interface transmits 8-bits, or one byte, of data over multiple data

bus lines over one clock pulse. This makes parallel transmission faster than

serial but is typically more expensive and requires more data pins to be

connected. The parallel interface consists of 8 data pins and 3 control pins. The

control pins are typically labeled: Register Select (RS), Enable (E), and

Read/Write (R/W). Additional common parallel interface pins may include:

Contrast adjust (V0), Chip Select (CS) and

Parallel interface consists of 2 standard types:

1. 8080 type: parallel 4-bit/8-bit data input with a write and a read line

2. 6800 type: parallel 4/8-bit data input with write, read and enable lines

Parallel Interface Pros

-Faster data transmission

-High performance

INTERCONNECTION STANDARDS

There are two interconnection standards

i. USB

ii. SATA (Serial ATA)

Universal Serial Bus (USB)

The universal serial bus (USB) is a standard interface for connecting a wide range of

devices to the computer such as keyboard, mouse, smartphones, speakers, cameras etc. The

USB was introduced for commercial use in the year 1995 at that time it has a data transfer

speed of 12 megabits/s.

With some improvement, a modified USB 2 was introduced which is also called a highspeed

USB that transfers data at 480 megabits/s. With the evolution of I/O devices that require

highspeed data transfer also leads to the development of USB 3 which is also referred to

as Superspeed USB which transfers data at 5 gigabits/s. The recent version of USB can

transfer data up to 20 gigabits/s.

Key Objectives of Universal Serial Bus

 The developed USB must be simple and a low-cost interconnection system that should

be easy to use.

 The developed USB must be compatible with all new I/O devices, their bit rates, internet

connections and audio, video application.

 The USB must support a plug-and-play mode of operation.

 The USB must support low power implementation.

 The USB must also provide support for legacy hardware and software.

USB Architecture

When multiple I/O devices are connected to the computer through USB they all are organized

in a tree structure. Each I/O device makes a point-to-point connection and transfers data using

the serial transmission format we have discussed serial transmission in our previous content

‘interface circuit’.

https://binaryterms.com/interface-circuit.html

A tree structure has a root, nodes and leaves. The tree structure connecting I/O devices to the

computer using USB has nodes which are also referred to as a hub. Hub is the intermediatory

connecting point between the I/O devices and the computer. Every tree has a root here, it is

referred to as the root hub which connects the entire tree to the hosting computer. The leaves

of the tree here are nothing but the I/O devices such as a mouse, keyboard, camera, speaker.

The USB works on the principle of polling. In polling, the processor keeps on checking

whether the I/O device is ready for data transfer or not. So, the devices do not have to inform

the processor about any of their statuses. It is the processor’s responsibility to keep a check.

This makes the USB simple and low cost.

Whenever a new device is connected to the hub it is addressed as 0. Now at a regular interval

the host computer polls all the hubs to get their status which lets the host know of I/O devices

that are either detached from the system or are attached to the system.

When the host becomes aware of the new device it gets to know about the capabilities of the

device by reading the information present in the special memory of the device’s USB

interface. So that the host can use the appropriate device driver to communicate with the

device.

The host then assigns an address to this new device, this address is written to the register of

the device interface register. With this mechanism, USB serves plug-and-play capability.

The plug and play feature let the host recognize the existence of the new I/O device

automatically when the device is plugged in. The host software determines the capabilities of

the I/O devices and if it has any special requirement.

The USB is hot-pluggable which means the I/O device can be attached or removed from the

host system without performing any restart or shutdown. That means your system can keep

running while the I/O device is plugged or removed.

Types of USB Connectors

The USB has different types of ports and connectors. Usually, the upstream port and

connector are always the USB type A the downstream port and connector differ depending on

the type of device connected. We will discuss all types of the USB connector.

USB Type A: This is the standard connector that can be found at one end of the USB cable

and is also known as upstream. It has a flat structure and has four connecting lines as you can

see in the image below.

USB Type B: This is an older standard cable and was used to connect the peripheral devices

also referred to as downstream. It is approximately a square as you can see in the image

below. This is now been replaced by the newer versions.

Mini USB: This type of USB is compatible with mobile devices. This type of USB is now

superseded your micro-USB still you will get it on some devices.

Micro USB: This type of USB is found on newer mobile devices. It has a compact 5 pin

design.

USB Type C: This type of USB is used for transferring both data and power to the attached

peripheral or I/O device. The USB C does not have a fixed orientation as it is reversible i.e.

you can plug it upside down or in reverse.

USB 3.0 Micro B: This USB is a superspeed USB. This USB is used for a device that

requires high-speed data transfer. You can find this kind of USB on portable hard drives.

Electrical Characteristics of USB

The standard USB has four lines of connection among which two carry power (one carry +5

V and one is for Ground). The other two lines of connection are for data transfer. USB also

supply power to connected I/O device that requires very low power.

Transferring of data over USB can be divided into two categories i.e., transferring data at low

speed and transferring data at high speed.

The low-speed transmission uses single-ended signalling where varying high voltage is

transmitted over one of the two data lines to represent the signal bit 0 or 1. The other data line

is connected to the reference voltage i.e., ground. The single-ended signalling is prone to

noise.

The high-speed data transmission uses the approach differential signalling. Here, the signal

is transmitted over the two data lines that are twisted together. Here both the data lines are

involved in carrying the signal no ground wire is required. The differential signalling is not

prone to noise and uses low voltages as compared to single-ended transmission.

SATA

SATA stands for Serial Advanced Technology Attachment or Serial ATA.

SATA is an interface that connects various storage devices such as hard disks, optical

drives, SSD’s, etc to the motherboard. SATA was introduced in the year 2000 to replace

the long-standing PATA (Parallel ATA) interface. We all know, in serial mode, data is

transferred bit by bit and in parallel, there are several streams that carry the data. Despite

knowing this fact, there is a drawback in PATA. PATA is highly susceptible to outside

interferences and hence allows SATA to operate at high speeds than PATA. SATA cables

are thinner, more flexible and compact as compared to the PATA cables.

There were several industry groups that began their development in SATA late in the

2000s. It was only in the year 2003 that SATA-IO (SATA International Organization) was

formed and it laid out the first SATA specifications.

A SATA controller is a device that is used to connect the computer’s motherboard to

the storage drives.

SATA operates on two modes –

1. IDE mode: IDE stands for Integrated Drive Electronics. This is a mode which is used to

provide backward compatibility with older hardware, which runs on PATA, at the cost

of low performance.

2. AHCI mode: AHCI is abbreviation for Advanced Host Controller Interface. AHCI is a

high-performance mode that also provides support for hot-swapping.

Characteristics of SATA

 Low Voltage Requirement: SATA operates on 500mV (0.5V) peak-to-peak signaling.

This help in promoting a much low interference and crosstalk between conductors.

 Simplified construction: PATA cables had 40-pin/80-wire ribbon cable. This was

complex in construction. In comparison, SATA had a single 7 pin data cable and a 15

pin power cable. This cable resulted in a higher signaling rate, which translates to faster

throughput of data.

 Differential Signaling: SATA uses differential signaling. Differential signaling is a

technology which uses two adjacent wires to simultaneously the in-phase and out-of-

phase signals. Thus, it is possible to transfer high-speed data with low operating voltage

and low power consumption by detecting the phase difference between the two signals at

the receiver’s end.

 High data transfer rate: SATA has a high data transfer rate of 150/300/600

MBs/second. This capability of SATA allows for faster program loading, better picture

loading and fast document loading.

Advantages of SATA

 Faster data transfer rate as compared to PATA.

 SATA cable can be of length upto 1 meter, whereas PATA cable can only have length of

maximum 18 inches.

 SATA cables are smaller in size.

 Since, they are smaller in size, they take up less space inside the computer and increase

the internal air flow. Increased air flow can decrease heat build-up and therefore

increases the overall life of computer.

 Most modern computer motherboards today have SATA ports more than PATA ports.

 Low power consumption (0.5V).

Disadvantages of SATA

 Special device drivers are required sometimes to recognize and use the drive. However,

a SATA hard drive can behave as a PATA

drive. This eliminates the need for a specific driver to be installed.

 SATA cable supports only one hard drive to connect at a time, whereas PATA cable

allows up to two PATA drives per cable.

 SATA is costlier as compared to PATA.

SATA standards and revisions

The nonprofit SATA-IO industry consortium authors the technical specifications governing

Serial ATA device interfaces. The consortium revises SATA standards to reflect

increased data transfer rates. These revisions include the following changes:

 SATA Revision 1. These devices were widely used in personal desktop and office

computers, configured from PATA drives daisy chained together in a primary/secondary

configuration. SATA Revision 1 devices reached a top transfer rate of 1.5 Gbps.

 SATA Revision 2. These devices doubled the transfer speed to 3.2 Gbps with the

inclusion of port multipliers, port selectors and improved queue depth.

 SATA Revision 3. These interfaces supported drive transfer rates up to 6 Gbps. Revision

3 drives are backward-compatible with SATA Revision 1 and Revision 2 devices, though

with lower transfer speeds.

 SATA Revision 3.1. This intermediate revision added final design requirements for

SATA Universal Storage Module for consumer-based portable storage applications.

 SATA Revision 3.2. This update added the SATA Express specification. It supports the

simultaneous use of SATA ports and PCI Express (PCIe) lanes.

 SATA Revision 3.3. This revision addressed the use of shingled magnetic recording

 SATA Revision 3.5. This change promoted greater integration and interoperability with

PCIe flash and other I/O protocols.

COMPARISON:

https://www.techtarget.com/searchunifiedcommunications/definition/data-transfer-rate
https://www.techtarget.com/searchstorage/definition/queue-depth
https://www.techtarget.com/whatis/definition/backward-compatible-backward-compatibility
https://www.techtarget.com/searchdatacenter/definition/PCI-Express
https://www.techtarget.com/searchstorage/definition/shingled-magnetic-recording-SMR

	ARITHMETICCIRCUITS–BASICBUILDINGBLOCKS:
	Half-Adder:
	K-mapsimplificationforcarryandsum:
	Sum,S =A’B+AB’=A(B
	Full-Adder:
	Half-Subtractor:Blockschematicofhalf-subtractor
	Difference,D= A’B+ AB’=A(B
	Borrow,Bout =A’.B
	K-map simplification for full-subtractor:
	Difference,D =A’B’Bin+A’BB’in+AB’B’in+ABBin
	Four –bit BinaryAdder(ParallelAdder):
	4-Bit ParallelAdder/Subtractor:
	DecimalAdder(BCDAdder):
	1-Bit Magnitude Comparator:
	2-bitMagnitudeComparator:
	LogicDiagram:
	Octal-to-BinaryEncoder:
	PriorityEncoder:
	Truthtable:
	ModifiedTruthtable:
	BinaryDecoder(2to4decoder):
	3 to-8LineDecoder:
	BCDto7-SegmentDisplayDecoder:
	Truthtable: (1)
	Applicationsofdecoders:
	2-to-1-lineMultiplexer:
	Truthtable: (2)
	Functiontable:
	Quadruple 2-to-1LineMultiplexer:

	Application:
	ImplementationofBooleanFunctionusingMUX:
	1. Implementthefollowingboolean functionusing4:1multiplexer,F(A,B,C)=∑m(1,3,5,6).
	Implementationtable:
	MultiplexerImplementation:
	Solution:
	Multiplexer Implementation:
	Solution: (1)
	Implementationtable: (1)
	Multiplexer Implementation
	4.F(P,Q,R,S)=∑m(0,1,3,4,8,9,15)
	Implementationtable: (2)
	5. ImplementtheBooleanfunctionusing8:1andalsousing4:1multiplexerF(A,B,C,D)=∑m(0,1,2,4,6,9,12,14)
	Implementationtable: (3)
	Using4:1MUX:
	Solution: (2)
	Multiplexer Implementation: (1)
	F(A,B,C,D)=A’BD’+ACD+B’CD+A’C’D.
	Implementationtable: (4)
	F(A,B,C,D)=AB’D+A’C’D+B’CD’+AC’D.
	F(w,x,y,z)=∑m(1,2,3,6,7,8,11,12,14)
	Implementationtable: (5)
	(Using4:1MUX):
	F(A,B,C,D)=∏m(0,3,5,8,9,10,12,14)
	Implementationtable: (6)
	F(A,B,C,D)=∑m(0,2,6,10,11,12,13)+d(3,8,14)
	ImplementationTable:
	Multiplexer Implementation: (2)
	F(A,B,C,D)=∑m(3,5,6,8,11,12,13).
	1-to-4Demultiplexer:
	1-to-8Demultiplexer:

	UNITII-SYNCHRONOUS SEQUENTIAL LOGIC
	SRLatch:
	Case1:S=0andR=0
	Case2:S=0andR=1
	Case3:S=1andR=0
	Case4:S=1andR=1

	DLatch
	TRIGGERINGOFFLIP-FLOPS
	EDGETRIGGEREDFLIP-FLOPS

	S-RFlip-Flop
	J-KFlip-Flop:
	J=K=0
	J=0,K=1
	J=1,K=0
	J=K=0 (1)
	CharacteristictableandCharacteristicequation:

	DFlip-Flop:
	CharacteristictableandCharacteristicequation:

	TFlip-Flop
	CharacteristictableandCharacteristicequation:

	Master-SlaveJKFlip-Flop
	APPLICATION TABLE(OR)EXCITATION TABLE:

	JKFlip-Flop:
	DFlip-Flop
	TFlip-Flop (1)
	REALIZATIONOFONEFLIP-FLOPUSINGOTHERFLIP-FLOPS
	SRFlip-FloptoDFlip-Flop:

	SRFlip-FloptoJKFlip-Flop
	2.7.3 SRFlip-FloptoTFlip-Flop

	3.7.4JKFlip-FloptoTFlip-Flop
	DFlip-FloptoTFlip-Flop
	CLASSIFICATIONOFSYNCHRONOUSSEQUENTIALCIRCUIT:
	Mooremodel:
	Mealymodel:
	DifferencebetweenMooreandMealymodel
	ANALYSISOFSYNCHRONOUSSEQUENTIALCIRCUIT:
	Statediagramisapictorialrepresentationofabehaviorofasequentialcircuit.

	StateTable
	Statetablerepresents relationshipbetweeninput,outputandFlip-Flopstates.

	2.9.3 StateEquation
	Analysis ofMealy Model
	JA=B+x JB=A’+x’
	DA=Ax+Bx
	Y=(A+ B)x’.
	Soln:
	StateDiagram:
	Soln: (1)
	State Table:
	StateDiagram: (1)
	z=Ax'y'+Bx'y'
	Statediagram:
	State Equation:
	Logic diagram:
	Statetable:
	StateDiagram: (2)

	AnalysisofMooreModel
	Soln:
	TA=Bx TB=x
	Soln: (1)
	Statetable
	STATEREDUCTION/MINIMIZATION
	Step1:Determinethestatetableforgivenstatediagram
	Step2:Findequivalentstates
	Soln: (2)
	Soln: (3)
	Soln: (4)
	DESIGNOFSYNCHRONOUSSEQUENTIALCIRCUITS:
	Problems
	Statereduction:
	K-mapSimplification:
	ii) DesignusingTFlip-Flops:
	iii) DesignusingSRFlip-Flops:
	K-mapSimplification: (1)
	iii) DesignusingJKFlip-Flops:
	K-mapSimplification: (2)
	Soln:
	BinaryAssignment:
	K-mapSimplification: (3)
	StateAssignment:
	K-mapsimplification:
	STATEASSIGNMENT:

	Rulesforstateassignments
	Rule1:
	Rule2:
	SYNCHRONOUSCOUNTERS
	2-BitSynchronousBinaryCounter
	3-BitSynchronousBinaryCounter
	4-BitSynchronousBinaryCounter
	4-BitSynchronousDecadeCounter:(BCDCounter):
	SynchronousUP/DOWNCounter
	J1=K1=(Q0.UP)+(Q0’.DOWN)
	(ii) MOD5Counter:
	(iii) MOD10Counter:
	SHIFTREGISTERS:

	Serial-InSerial-OutShiftRegister:
	Serial-InParallel-OutShiftRegister:
	Parallel-InSerial-OutShiftRegister:
	Parallel-InParallel-OutShiftRegister:

	Instruction Formats (Zero, One, Two and Three Address Instruction):
	Interaction between Assembly language and high level language
	UNIT –IV PROCESSOR
	INSTRUCTION EXECUTION
	Steps in Instruction Execution by CPU:
	Step 1: Fetch instruction
	Step 2: Decode instruction
	Step 3: Perform ALU operation
	Step 4: Access memory
	Step 5: Update Register File
	Step 6: Update the PC (Program Counter)
	BUILDING A DATAPATH
	Use of sign extension unit
	Use of shift left 2

	DESIGNING OF CONTROL UNIT
	HARDWIRED CONTROL METHOD
	Cons(disadvantage) of Hardwired Control Unit
	MICRO PROGRAMMED CONTROL METHOD
	Differences between hardwired control and micro programmed control

	PIPELINING
	Types of pipelines
	Instruction pipeline
	Segment 1:
	Segment 2:
	Segment 3:
	Segment 4:
	Arithmetic pipeline
	Note: Registers are placed after each suboperation to store the intermediate results.

	1. Compare exponents by subtraction:
	2. Align the mantissas:
	3. Add mantissas:
	4. Normalize the result:
	Advantages of Pipelining
	Designing of the pipelined processor is complex. Instruction latency increases in pipelined processors. The throughput of a pipelined processor is difficult to predict. The longer the pipeline, worse the problem of hazard for branch instructions.
	PIPELINE HAZARD
	Structural hazard
	Data hazard
	Forwarding
	Control hazard

	MEMORY HIERARCHY IN COMPUTER ARCHITECTURE
	What is Memory Hierarchy?
	Memory Hierarchy in Computer Architecture
	Characteristics of Memory Hierarchy
	Memory Hierarchy Design
	Advantages of Memory Hierarchy
	Contiguous memory management schemes:
	Single contiguous memory management schemes:
	Multiple Partitioning:
	Fixed Partitioning
	Dynamic Partitioning
	Non-Contiguous memory management schemes:
	What is paging?
	What is Segmentation?
	A. Direct Mapping
	B. Associative Mapping
	C. Set-associative Mapping
	Application of Cache Memory:

	Virtual Memory
	How Virtual Memory Works?
	Demand Paging
	Snapshot of a virtual memory management system
	Advantages of Virtual Memory
	Disadvantages of Virtual Memory

	What is a DMA Controller?
	DMA Controller Diagram in Computer Architecture
	Working of DMA Controller
	Advantages and Disadvantages of DMA Controller
	Functions of Input-Output Interface:

	I/O Interface (Interrupt and DMA Mode)
	Mode of Transfer:
	Parallel Interface

	INTERCONNECTION STANDARDS
	Universal Serial Bus (USB)
	Key Objectives of Universal Serial Bus
	USB Architecture
	SATA
	Characteristics of SATA
	Advantages of SATA
	Disadvantages of SATA
	SATA standards and revisions

