
SOFTWARE ENGINEERING

UNIT I - INTRODUCTION

• Software Engineering paradigms –

Waterfall Life cycle model – Spiral Model

– Prototype Model – Fourth Generation

Techniques – Planning – Software Project

Scheduling, – Risk analysis and

management – Requirements and

Specification

UNIT II - SOFTWARE DESIGN

• Abstraction – Modularity – Software

Architecture – Cohesion – Coupling –

Various Design Concepts and notations –

Real time and Distributed System Design

– Documentation – Dataflow Oriented

design – Jackson System development –

Designing for reuse – Programming

standards – Case Study for Design of any

Application Project.

UNIT III - SOFTWARE TESTING AND

MAINTENANCE

• Software Testing Fundamentals –

Software testing strategies – Black Box

Testing – White Box Testing – System

Testing – Object Orientation Testing –

State based Testing - Testing Tools – Test

Case Management – Software

Maintenance Organization – Maintenance

Report – Types of Maintenance

UNIY IV - SOFTWARE METRICS

• Scope – Classification of metrics –

Measuring Process and Product attributes

– Direct and Indirect measures – Cost

Estimation - Reliability – Software Quality

Assurance – Standards – COCOMO

model.

UNIT V - SCM

• Need for SCM – Version Control – SCM

process – Software Configuration Items –

Taxonomy – CASE Repository – Features

– Web Engineering

UNIT I - INTRODUCTION:

• Software is more than just a program code.

• A program is an executable code, which servers

some computational purpose.

• Software is the collection of computer programs,

procedures rules and associated documentation

and data.

• Software is an information transformer-

producing, managing, modifying, displaying or

transforming information that can simple as a

single bit or a complex as a multimedia

application.

Software Products:

• Software products may be developed for a

particular customer or may be developed for a

general market.

• Software products may be:
• Generic

• Bespoke

• What are the attributes of good software?

• Maintainability.

• Dependability

• Efficiency

• Usability

What is the difference between software engineering

and computer science?

Software Engineering Paradigms:

Software Characteristics:

• Software is developed or engineered, it is

not manufactured in the classical sence.

• Software doesn’t “wear out”.

• Although the industry is moving towards

component based assembly, most

software continues to be custom to built.

Software Applications Types:

• System Software.

• Real-time Software.

• Business Software.

• Engineering and Scientific Software.

• Embedded Software.

• Personal Computer Software.

• Web-based Software.

• Artifical Intelligence Software.

Software Engineering -A layered Technology:

• Application of a

systematic,

disciplined,

quantifiable approach

to the development,

operation and

maintenance of

software that is, the

application of

engineering software.

What are the five generic process framework

activities?

• The following generic process framework

is applicable to the majority of software

projects.

• Communication.

• Planning.

• Modeling.

• Construction.

• Deployment.

Process Models:

• Every software engineering organization

should describe a unique set of framework

activities for the software process it

adopts.
• Waterfall Life Cycle Model.

• Iterative Waterfall Life Cycle
Model.

• Prototyping Model.

• Incremental Model.

• Sprial Model.

• RAD Model.

• Sprial Model.

Waterfall Life Cycle Model.

• It is called classic life cycle or Linear model.

• Requirements are well defined and stable.

• It suggests a systematic, sequential approach to

software development.

• It begins with customer specification of

requirements and progresses.

• Planning.

• Modeling.

• Construction and

• Deployment.

Advantages:

• Easy to understand.

• Each phase has well defined input and output.

• Helps project manger in proper planning of project.

• Provides a templates into which methods of

analysis, design, code and support can be placed.

Disadvantages:

• One way street.

• It lack overlapping and interactions among

phases.

• Model doesn’t support delivery of system in

pieces.

Phases of the Classical Waterfall Model:

Feasibility Study:

• It involves analysis of the problem and collection of

allrelevant information relating to the product.

• The collected data are analysed.

– Requriments of the Customer.

– Formulations of the different strategies for solving the

problem.

– Evaluation of different solution strategies.

Requriments Analysis and Specification:

• It is understand the exact requriments of the customer

and to document them properly.

– Requirements gathering and analysis.

– Requirements specification.

Design:

• The deign phase is to transform the requirements

specified in the document into a structure that is suitable

for implementation in some programming languaage.

• Traditional Design Approach.

• Object-Oriented Design Approach.

Coding and Unit Testing:

• The purpose mof the coding and unit testing phase of

software development is to translate the software design

into source code.

Integration and System Testing:

• ‘Integration of different modules is coded and unit tested.

• 𝛼 − 𝑇𝑒𝑠𝑡𝑖𝑛𝑔

• 𝛽 − 𝑇𝑒𝑠𝑡𝑖𝑛𝑔

• Accsptance Testing.

Maintenance:

• Maintenance of a typical software products

requires much more than the effort

necessary to develope the product itself.

Iterative Waterfall life cycle model:

• The main changes is done by providing

feedback paths from every phase to its

preceding phase.

Prototype Model:

• Prototyping Model

is a software

development

model in which

prototype is built,

tested, and

reworked until an

acceptable

prototype is

achieved.

Advantages:

• Clarity.

• Risk Identification.

• Good Environment.

• Take less time to complete.

Disadvantages:

• High cost.

• Slow process.

• Too many changes.

RAD Model:

• Rapid Application Development(RAD) is

an incremental software model that a short

development cycle.

• The RAD model is a “high-speed” of the

waterfall model.

• The RAD process enables a development

team to create a fully functional system

within a very short time period.

Contents of RAD Pakages:

• Graphical user development environment.

• Reusable Components.

• Code generator.

• Programming Language.

Advantages:

• Fast products.

• Efficient Documentation.

• Interaction with user.

Disadvantages:

• User may not like fast activities.

• Not suitable for technical risks.

Sprial Model :

• This Spiral model is a combination of

iterative development process model and

sequential linear development model i.e.

the waterfall model with a very high

emphasis on risk analysis.

• The spiral model has four phases:

Planning, Design, Construct and

Evaluation.

Quadrants in sprial model :

Advantages :

• Risk Identification at early stage.

• Suitable for high rk projects.

• Flexibility for adding functionaility.

Disadvantages:

• Costly.

• Risk dependent.

• Not suitable for smaller projects.

• Difficult to meeting budget.

Win-Win Sprial Model:
• The customer wins by getting the system satisfying most

of thier requirements and developers winsby working on

achievable budgets and deadlines.

• Advantages:

• Lieghtweight methods suit small-medium size project.

• Produces good team.

• Test based approach to requirements and quality

assurance

Diadvantages:

• Programming pairs is costly.

• Difficult to scale up to large projects where

documentation.

Fourth Generation Techniques:

• Introduction:
• The tools in automatically generate ource code based on the developers

specification.

Software development environment that supports the 4GT paradigm

includes some or all of the following tools:

• 1) Non-procedural languages for database query

• 2) Report generation

• 3) Data manipulation

• 4) Screen interaction and definition

• 5) Code generation and High-level graphics capability

• 6) Spreadsheet capability

• 7) Automated generation of HTML and similar languages used for Web-site

creation using advanced software tools.

Advantages:

• Reduction in software development.

• Improved productivity of software engineers.

• 4GT helped by CASE tools and code

generators.

Disadvantages:

• Some 4GT are not at all easier than

programming languages.

• Generated source code are sometimes

inefficient.

• Time is reduced for only small and medium

projects.

Planning:
• Software planning process include steps to

estimate the size of the software work products

and the resources needed produces a schedule

identify and access software risks.

• During planning a project is split into several

activities :

• How much efforts is required to complete each

activities?

• How much calender time is needed?

• How much will the completed activity cost?

Planning Objectives:

• Understand the scope of the problem.

• Make use of past historical data.

• Estimate effort or function or size.

• Define a project schedule.

Characteristics of software project planning:

• Scope.

• Resource.

• Time.

• Quality.

• Risk.

Project Plan:

• The biggest single problem that afflicts

software developing is that of

underestimating resources required for a

project.

• According to the project management

body of knowledge.

• According to PRINCE(PRojects IN

Controlled Environments).

Project

Cluster

Planning

Process
Project

Plan

Types of Project Plan:

• Software development plan.

• Quality Assurance Plan.

• Validation Plan.

• Configuration Management Plan.

• Maintenance Plan.

• Staff development plan.

Structure of a software project

management plan:
Project summary.

Project planning.

Major issues in planning a software project:

• Software requiremments are frequently

incorrect and incomplete.

• Planning schedule and cost are not

updated and are based on marketing

needs, not system requirements.

• Cost and schedule are not re-estimated

when requirements or development

environment change.

Software Project Scheduling:

• Introduction:

• Software project scheduling is an

distributes estimated effort across the

planned project.

• Project schedulinginvolves seperating the

total work involved in a project in seperate

activities and judging the time required to

complete the activities.

Basic principles of software project

scheduling:

• Compartmentalization.

• Interdependency.

• Time Allocation.

• Effort Validation.

• Defined Responsibilities.

• Defined outcomes.

• Defined Milestones.

Relationship between people and effort:

• The PNR curve

provides an

indication of the

relationship

between effort

applied and

delivery time for a

software project.

Effort Distribution:

• A recommended distribution of effort the

software process is often referred to as the 40-

20-40 rule.

Defining a task set for the software project:

• A task set is a collection of software engineering

work tasks, milestones, and work products that

must be acomplished to complete a particular

project.
• Concept Development projects.

• New application development
projects.

• Application enhancement projects.

• Application maintenance projects.

• Re-Engineering projects.

Example of a task set:

• Concept Scoping: It determines the overall

scope of the project.

• Preliminary concept planning: It establishes

the organization ability to undertake the work

implied by the project scope.

• Technology Risk Assessment: It evaluates the

risk associated with the technology to be

implemented as part of project scope.

• Concept Implementation: It implement the

concept representation in a manner that can be

reviewed by a customer and is used marketing

purposes.

• Customer Reaction: Customer reaction to the

concept feedback on a new technology concept

and target specific customer applications.

Scheduling Techniques:

• Scheduling of a software project does not differ

greatly from scheduling of any multitask

engineering effort.

• Work Breakdown Structure(WBS).

• Activity Charts.

• Project Evaluation Review
Techniques(PERT).

• Grant Charts.

• Critical Path Method(CPM).

Work Breakdown Structure(WBS):

• A Work Breakdown Structure is a

hierarcical decomposition or breakdown of

a project or major activity into successive

levels.
Project

Design

Imple

menta

tion

Testing Testing

UI

Design
Data

Design

Module

Testing

Data

Design Design Site

Features of WBS:

• Structure.

• Description.

• Coding.

• Depth.

• Level of Detail.

Activity Charts : Representation of WBS:

• Network of boxes and arrows.

• Shows different tasks making up a project.

• Represents the ordering among the tasks.

Project Evaluation Review Technique(PERT):

• PERT chart is a project management tool

used to schedule, organize and coordinate

tasks within the project.

• PERT methonology developed by the U.S.

Navy in the 1950’s to manage the polaris

submarine program.

• PERT is an event-oriented technique

• PERT is a probabilistic model

• Grantt chart, PERT can be both a cost and

a time management system.

Grantt Chart:

A grantt chart is a

horizontal bar chart

developedas a

production control tool

named after Henry L,

Grantt an american

engineer and social

scientist ferquently used

in project management.

Critical Path Method(CPM):

• CPM acts as the basic both for perparation

of a schedule and of resource planning.

• The critical path determine the total

duration of the project.

• CPM is an activity-oriented technique

• CPM is a deterministic model

Risk Analysis & Management:

• Risk analysis and management are a

series of steps that help a software team

to understand and manage uncertainty

during the development process..

• A risk is a potential problem.

• Managers, Software enginners and

customers participate in risk analysis &

management.

Software Risk:

• According to webster risk is the possibility

of suffering loss.

• Risk in a project or program is a measure

of the ability to achieve objectives within

cost, schedule and constraints.

• Types of software risk:

Classification I

Classification II

Classification I

• Project Risks

• Technical Risks.

• Business Risks.

Classification II:

• Known Risks.

• Predictable Risks.

• Unperdictable Risks.

Classification I:

• Project Risks: The projct schedule will

slip and that costs will incnrease.Project

risks identify schedule, resource, customer

and requirements problem.

• Technical Risks:The product quality and

the timeliness of the schedule if a

technical risks is real then implementation

may become difficult or implssible.

• If identify potential design, implementation,

interface, verfication and maintenance

problems.

Business Risks:

• Market Risk.

• Strategic Risk.

• Management Risk.

• Budget Risk.

Classification II:

• Known Risks: That can be uncovered

after careful evaluation of the project plan.

• Predictable Risks:Predictable Risks are
extrapolated from past project experience.

• Unperdictable Risks: Unperdictable Risks
are the joker in the desk, they can extremely
difficult to identify in advance.

Risk Principles:

• Global Perspective.

• Forward looking view.

• Open communication.

• Integrated management.

• Continuous process.

• Shared product vision.

• Team work.

Risk Strategies:
• Reactive Risk Strategies.

• Proactive Risk Strategies.

Risks in software development projects:

• Poorly defined requirements.

• Client requirements changes.

• Poor techniques for cost estimation.

• Dependence on skills of individual

developers.

Risk Management Process:

• The risk management activities includes

identify, analysis, plan, track and control

risks.

• Risk Assessment.

• Risk Control.

Risk Assessment:

• Risk assessment is the determination os

qualitative value of risk related to a

concrete situation and recognized the risk.

• Risk identification.

• Risk analysis.

• Risk Prioritization.

Risk Identification:

• Risk identification is a systematic attempt

to specify to the project plan.

Risk Item Checklist:

• Product Size.

• Bussiness Impact.

• Customer Characteristics.

• Process definition.

• Development environment.

Activities in risk identification phase:

• Identify Risks.

• Define Risk Attributes.

• Document.

• Communicate.

Risk Analysis:

• The risk identify all items are analysed using

different criterias.

• Activities in risk analysis:

• Group similar risks.

• Determine risk derivers.

• Determine sources of risks.

• Estimate risk.

Risk Prioritization:

• The project focus on its most server risks

by assessing the risk.

• Let (r) is the likehood of a risk coming

trace.

• (s) is the consequence of the problem

associated with that risk.

• P=r*s.

Risk Control:

• Risk control is the process of managing

risks should outcomes.

• Risk Management Planning.

• Risk Resolution.

• Risk Monitoring.

Risk Management Planning:

• It is a plan for delaing with each significant

risk.

Strategies in risk management planning:

• Risk Avoidance.

• Risk monitoring.

• Risk management and contingency

planning.

Risk Resoution:
• Risk resolution is the execution of the plan

for dealing with each risk.

• The risk has triggered the project manager

need to execute the action plan.

Outputs of risk resolution phase:

• Risk status.

• Acceptable risks.

• Reduced rework.

• Corrective actions.

• Problem prevention.

Risk Monitoring:

• Risk monitoring is the continually

reassessing of risks as the project

proceeds and conditions change.

• RMMM Plan:

• Risk Mitigation , Monitoring and

management in the software project plan

or the risk management steps are

organized.

Requirement Engineering Process:

• Introduction:

• Requirement engineering is the sub-

discipline of software engineering that is

concerned with determine the goal,

functions and constraints of software

system.

Requirements:

• Requirements management is a

systematic approach to eliciting organizing

and documenting the requirements of the

systems.

Types of Requirements:

• System Requirements.

• User Requirements.

System Requirements:

• System requirements set out the systems

functions, services and operational

constraints in detail.

• It may be part of the constract betwwen

the system buyer and the software

developer.

Types of system requirements:
• Functional requirements.

• Non-functional Requirements.

• Domain Requirements.

Functional Requirements:

• The customer should provide statement of service. It

should be clear how the system should react to particular

inputs and how a particular system.

Problem of Functional Requirements:

• User Intention.

• Developer Interpretation.

• Requirements completness and consistency:

Non-Functional Requirements:

• The system properties and constraints

various properties of a system can be:

realiability, response tiime, storage

requirements.

Types of Non-Functional Requirements:

• Product Requirements.

• Organizational Requirements.

• External Requirements.

Domain Requirements:
• Requirements can be application domain

of the system, reflecting, characteristics of

the domain.

Problem of Domain Requements:

• Understandability.

• Implicitness.

User Requirements:

• User requirements are defined using

natural language lables and diagrams

because these are the representation that

can be undestood by all users.

• Client Managers.

• System End Users.

• Client Engineers.

• Contract Managers.

Problem of User Requirements:

• Lack of Clarity.

• Requirements Confusion.

• Requirements Mixture.

Software Requirement Specification:

• Software Requirements document is the

specification of the system.

• It is not a design document.

• Requirements document is called SRS.

Users of SRS:

• Users, Customer and marketing

Personnel.

• Software Developers.

• Test Engineers.

• Project Managers.

• Maintenance Engineers.

