COMPUTER ARCHITECTURE

MSAJCE

Computer Architecture

Central Processing
Unit

Input/
Output
Devices

RAM (cont.)
20 bits of

address
\ Address

Data input Data Output

(1 Mega-byte)

Write

8 bits (1 byte)
of data

RAM (cont.)

When you talk about the memory of a computer,
most often you're talking about its RAM.

If a program is stored in RAM, that means
that a sequence of instructions are stored in
consecutively addressed bytes in the RAM.

Data values (variables) are stored anywhere in
RAM, not necessarily sequentially

Both instructions and data are accessed from
RAM using addresses

RAM is one (crucial) part of the computer’s
overall architecture

]
UL NI 30U 1

FoRriErY
b b

L >

T
. CLELEy

" &

=
tt
]
3 ‘“
-~
A
=
~
#J
i

Ty 0
AR ARRRRRAR R :
AL ii 1 h

& in W
WAL ,1(’)? L i o
N1 ¢ my s

-
vy o]
UL

R PR) — N—

Computer Architecture

Keyboard Display
Bus
Hard

The Bus

What is a bus?

It is a simplified way for many devices to
communicate to each other.

Looks like a "highway” for. information.

Actually, more likea "basket” that they all

Keyboard

share.

Bus

The Bus

The Bus

Suppose CPU needs to check to see if the user
typed anything.

The Bus

CPU puts "Keyboard, did the user type
anything?” (represented in some way) on the Bus.

"Keyboard, did the user type anything?”

The Bus

Each device (except CPU) is a State Machine
that constantly checks to see what's on the Bus.

"Keyboard, did the user type anything?”

The Bus

Keyboard notices that its hame is on the Bus,
and reads info. Other devices ignore the info.

"Keyboard, did the user type anything?”

The Bus

Keyboard then writes "CPU: Yes, user typed 'a'.”
to the Bus.

"CPU: Yes, user typed 'a'.”

The Bus

At some point, CPU reads the Bus, and gets
the Keyboard's response.

"CPU: Yes, user typed 'a'.”

Computer Architecture

" Keyboard Display
Bus 1
Hard

Inside the CPU

The CPU is the brain of the computer.

It is the part that actually executes
the instructions.

Let's take a look inside.

Inside the CPU (cont.)

Memory Registers Temporary Memory.

Register O Computer "Loads" data

fromRAM to registers,

Reaqister 1 \per'for'ms oper'aTions on
J — data in registers, and
Regis‘rer 2 47 “stores" results from

registers back to RAM
Register 3

Remember our initial example: “read value of A from memory; read value
of B from memory; add values of A and B; put result in memory in
variable C.” The reads are done to registers, the addition is done in
registers, and the result is written to memory from a register.

Inside the CPU (cont.)

Memory Registers

Register O Arithmetic
Register 1 / Logic
Unit

Register 2

Register 3 ’
For doing basic
Arithmetic / Logic
Operations on Values stored
in the Registers

Inside the CPU (cont.)

Memory Registers

Register O Arithmetic
Register 1 / Logic
Unit

Register 2

Register 3
To hold the current

Instruction Register ~— instruction

Inside the CPU (cont.)

Memory Registers

Register O Arithmetic
Register 1 / Logic
Unit

Register 2

Register 3

To hold the

Instruction Register address of the

Instr. Pointer (IP) weri\;r\ g\j’;\l;\uchon

Inside the CPU (cont.)

Memory Registers

Register O Arithmetic
Register 1 / Logic
Unit

Register 2

Register 3
Control Unit

Instruction Register (State Machine)
Instr. Pointer (IP)

The Control Unit

It all comes down to the Control Unit.
This is just a State Machine.

How does it work?

The Control Unit

Control Unit State Machine has very simple
structure:

1) Fetch: Ask the RAM for the instruction
whose address is stored in IP.

2) Execute: There are only a small humber
of possible instructions.
Depending on which it is, do
what is necessary to execute it.

3) Repeat: Add 1 to the address stored in
IP, and go back to Step 1!

The Control Unit is a State Machine

A Simple Program

» \Want to add values of variables a and b
(assumed to be in memary), and put the
result in variable ¢ In memory, l.e. ¢ € a+b

* |nstructions In program
— Load a into registerrl
— Load b Iinto register r3

—r2<rl+r3
— Storer2inc

Running the Program

r1
r2

r3
r4

IR

Load aintorl «——

IP

2005

Memory

Load a intorl

Load b into r3

r2 €<rl+r3

CPU

Store r2 intoc

2005
2006

2007
2008

Running the Program

rl
r2

r3
r4

IR
IP

3

Load b into r3 l«—

Memory

Load a intorl

2006

Load b into r3

r2 €<rl+r3

CPU

Store r2 intoc

2005
2006

2007
2008

Running the Program

rl
r2

r3
r4

3

IR

2 <rl+r3 «—

IP

2007

Memory

Load a intorl

Load b into r3

r2 €<rl+r3

CPU

Store r2 intoc

2005
2006

2007
2008

Running the Program

rl
r2

r3
r4

IR
IP

3

Store r2 into ¢ «_|

2008

Memory

Load a intorl

Load b into r3

r2 €<rl+r3

CPU

Store r2 intoc

2005
2006

2007
2008

Running the Program

rl
r2

r3
r4

IR
IP

3

Store r2 into ¢ «_|

2008

Memory

Load a intorl

Load b into r3

r2 €<rl+r3

CPU

Store r2 intoc

2005
2006

2007
2008

Putting it all together

Computer has many parts, connected by a Bus:

Keyboard Display
Bus
Hard

Putting it all together

The RAM is the computer’s main memory.

This is where programs and data are stored.

Keyboard Display
Bus
~
Hard
) L8[

Putting it all together

The CPU goes in a never-ending cycle, reading
instructions from RAM and executing them.

‘-’ Keyboard Display

\|

Hard

Putting it all together

This cycle is orchestrated by the Control Unit
in the CPU.

Memory Registers

Register O Arithmetic
Register 1 / Logic
Unit

Register 2

Register 3
Control Unit

Instruction Register (State Machine)
Instr. Pointer (IP)

d

Back to the Control Unit

It simply looks at where IP is pointing, reads the
instruction there from RAM, and executes it.

Memory Registers

Register O Arithmetic
Register 1 / Logic
Unit

Register 2

Register 3
Control Unit

Instruction Register (State Machine)

ns’rr. Pointer (IP

Putting it all together

To execute an instruction, the Control Unit uses
the ALU plus Memory and/or the Registers.

ReglsTerO r : -
k Unit

Register 3
~——
Instruction Register (State Machine)

Instr. Pointer (IP)

Control Unit

Programming

Where we are

« Examined the hardware for a computer
— Truth tables
— Logic gates
— States and transitions In a state machine
— The workings of a CPU and Memory

* Now, want to program the hardware

Programs and Instructions

Programs are made up of instructions

CPU executes one instruction every clock cycle
Modern CPUS do more, but we ignore that

Specifying a program.and its instructions:
Lowest level: Machine language
Intermediate level: Assembly language

Typically today: High-level programming
language

Specifying a Program and its
Instructions

High-level programs: each statement
translates to many instructions [oad a into ri

E.g. c € a+bto: Load b into r3
ré €rl+r3

Store r2 into ¢
Assembly language: specify each machine

instruction, using mnemonic form
E.g. Loadri, A

Machine language: specify each machine
instruction, using bit patterns

E.g. 1101101000001110011

Machine/Assembly Language

We have a machine that can execute
iInstructions

Basic Questions:
What instructions?

How are these instructions represented to
the computer hardware?

Complex vs Simple Instructions

Computers used to have very complicated
instruction sets - this was known as:

CISC = Complex Instruction Set Computer

Almost all computers 20 years ago were
CISC.

80s introduced RISC:
RISC = Reduced Instruction Set Computer

Complex vs Simple Instructions
RISC = Reduced Instruction Set Computer

Fewer, Less powerful basic instructions
But Simpler, Faster, Easier 1o design CPU's

Can make "powerful” instructions by
combining several wimpy ones

Shown to deliver better performance than
Complex Instruction Set Computer (CISC) for
several types of applications.

Complex vs Simple Instructions

Nevertheless, Pentium is actually CISC |
Why?

Complex vs Simple Instructions

Nevertheless, Pentium is actually CISC |
Why: Compatibility with older software

Newer application types(media processing etc)
perform better with specialized instructions

The world has become too complex to talk about
RISC versus CISC

Typical Assembly Instructions

Some common assembly instructions include:

1) "Load” - Load a value from RAM into
one of theregisters

2) "Load Direct” - Put.a fixed value in one of
the registers (as specified)

3) "Store"” - Store the value in a specified
register to the RAM

4)"Add" - Add the contents of two
registers and put the result ina
third register

Typical Assembly Instructions

Some common instructions include:

5) "Compare"” - If the value in a specified
register-is.larger than the

value in a

second register, put

a "Q" inRegister rO

6) "Jump” - _ ‘If the value in Register r0 is
0", change Instruction Pointer

to the va
7) "Branch” - If the va

ue in a given register

ue in a specified

register is larger than that in
another register, change
IP to a specified value

Machine Languages

Different types of CPU's understand different
instructions

Pentium family / Celeron /. Xeon / AMD K6 /
Cyrix ... (Intel x86 family)

PowerPC (Mac)

DragonBall (Palm Pilot)

StrongARM/MIPS (WinCE)

Many Others(specialized or general-purpose)

They represent instructions differently in their
assembly/machine languages (even common ones)

Let's look instructions for a simple example CPU

