
COMPUTER ARCHITECTURE

MSAJCE

Computer Architecture

Bus

CPU

RAM

Input/
Output
Devices

Central Processing
Unit

RAM (cont.)

220

bytes of
RAM

(1 Mega-byte)
Write

Address

Data input Data Output

20 bits of
address

8 bits (1 byte)
of data

RAM (cont.)

• When you talk about the memory of a computer,
most often you’re talking about its RAM.

• If a program is stored in RAM, that means
that a sequence of instructions are stored in
consecutively addressed bytes in the RAM.

• Data values (variables) are stored anywhere in
RAM, not necessarily sequentially

• Both instructions and data are accessed from
RAM using addresses

• RAM is one (crucial) part of the computer’s
overall architecture

Computer Architecture

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

The Bus

Bus

• What is a bus?

• It is a simplified way for many devices to
communicate to each other.

• Looks like a “highway” for information.

• Actually, more like a “basket” that they all
share.

CPU Keyboard Display

The Bus

Bus

CPU Keyboard Display

The Bus

Bus

• Suppose CPU needs to check to see if the user
typed anything.

CPU Keyboard Display

The Bus

Bus

• CPU puts “Keyboard, did the user type
anything?” (represented in some way) on the Bus.

CPU Keyboard Display

“Keyboard, did the user type anything?”

The Bus

Bus

• Each device (except CPU) is a State Machine
that constantly checks to see what’s on the Bus.

CPU Keyboard Display

“Keyboard, did the user type anything?”

The Bus

Bus

• Keyboard notices that its name is on the Bus,
and reads info. Other devices ignore the info.

CPU Keyboard Display

“Keyboard, did the user type anything?”

The Bus

Bus

• Keyboard then writes “CPU: Yes, user typed ‘a’.”
to the Bus.

CPU Keyboard Display

“CPU: Yes, user typed ‘a’.”

The Bus

Bus

• At some point, CPU reads the Bus, and gets
the Keyboard’s response.

CPU Keyboard Display

“CPU: Yes, user typed ‘a’.”

Computer Architecture

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

Inside the CPU

• The CPU is the brain of the computer.

• It is the part that actually executes
the instructions.

• Let’s take a look inside.

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Temporary Memory.
Computer “Loads” data
from RAM to registers,
performs operations on
data in registers, and
“stores” results from

registers back to RAM

Remember our initial example: “read value of A from memory; read value

of B from memory; add values of A and B; put result in memory in

variable C.” The reads are done to registers, the addition is done in

registers, and the result is written to memory from a register.

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit

For doing basic
Arithmetic / Logic

Operations on Values stored
in the Registers

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register

Arithmetic
/ Logic

Unit

To hold the current
instruction

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register

Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

To hold the
address of the

current instruction
in RAM

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register

Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

The Control Unit

• It all comes down to the Control Unit.

• This is just a State Machine.

• How does it work?

The Control Unit

• Control Unit State Machine has very simple
structure:

• 1) Fetch: Ask the RAM for the instruction
whose address is stored in IP.

• 2) Execute: There are only a small number
of possible instructions.
Depending on which it is, do
what is necessary to execute it.

• 3) Repeat: Add 1 to the address stored in
IP, and go back to Step 1 !

The Control Unit is a State Machine

Add
Load

Store
Goto…

… … … … …

Add 1
to IP

Fetch

Exec Exec Exec Exec Exec

A Simple Program

• Want to add values of variables a and b
(assumed to be in memory), and put the
result in variable c in memory, I.e. c a+b

• Instructions in program

– Load a into register r1

– Load b into register r3

– r2 r1 + r3

– Store r2 in c

Running the Program

a

c

2

1

3

Memory

Load a into r1

Load b into r3

r2 r1 + r3

Store r2 into c

2005

2006

2007

2008

2005

Load a into r1

r1

r2

r3

r4

IR

IP

Logic

CPU

2

b

Running the Program

a

c

2

1

3

Memory

Load a into r1

Load b into r3

r2 r1 + r3

Store r2 into c

2005

2006

2007

2008

2006

Load b into r3

r1

r2

r3

r4

IR

IP

Logic

CPU

3

b

2

Running the Program

a

c

2

1

3

Memory

Load a into r1

Load b into r3

r2 r1 + r3

Store r2 into c

2005

2006

2007

2008

2007

r2 r1 + r3

r1

r2

r3

r4

IR

IP

Logic

CPU

3

b

2

5

Running the Program

a

c

2

1

3

Memory

Load a into r1

Load b into r3

r2 r1 + r3

Store r2 into c

2005

2006

2007

2008

2008

Store r2 into c

r1

r2

r3

r4

IR

IP

Logic

CPU

3

b

2

5

Running the Program

a

c

2

5

3

Memory

Load a into r1

Load b into r3

r2 r1 + r3

Store r2 into c

2005

2006

2007

2008

2008

Store r2 into c

r1

r2

r3

r4

IR

IP

Logic

CPU

3

b

2

5

Putting it all together

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

• Computer has many parts, connected by a Bus:

Putting it all together

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

• The RAM is the computer’s main memory.

• This is where programs and data are stored.

Putting it all together

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

• The CPU goes in a never-ending cycle, reading
instructions from RAM and executing them.

Putting it all together
• This cycle is orchestrated by the Control Unit

in the CPU.

Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register

Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

Back to the Control Unit
• It simply looks at where IP is pointing, reads the

instruction there from RAM, and executes it.

Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register

Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

Putting it all together
• To execute an instruction, the Control Unit uses

the ALU plus Memory and/or the Registers.

Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register

Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

Programming

Where we are

• Examined the hardware for a computer

– Truth tables

– Logic gates

– States and transitions in a state machine

– The workings of a CPU and Memory

• Now, want to program the hardware

Programs and Instructions

• Programs are made up of instructions

• CPU executes one instruction every clock cycle

• Modern CPUS do more, but we ignore that

• Specifying a program and its instructions:

• Lowest level: Machine language

• Intermediate level: Assembly language

• Typically today: High-level programming
language

Specifying a Program and its
Instructions

• High-level programs: each statement
translates to many instructions

• E.g. c a + b to:

• Assembly language: specify each machine
instruction, using mnemonic form

• E.g. Load r1, A

• Machine language: specify each machine
instruction, using bit patterns

• E.g. 1101101000001110011

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

Machine/Assembly Language

• We have a machine that can execute
instructions

• Basic Questions:

• What instructions?

• How are these instructions represented to
the computer hardware?

Complex vs Simple Instructions

• Computers used to have very complicated
instruction sets – this was known as:

• CISC = Complex Instruction Set Computer

• Almost all computers 20 years ago were
CISC.

• 80s introduced RISC:

• RISC = Reduced Instruction Set Computer

Complex vs Simple Instructions

• RISC = Reduced Instruction Set Computer

• Fewer, Less powerful basic instructions

• But Simpler, Faster, Easier to design CPU’s

• Can make “powerful” instructions by
combining several wimpy ones

• Shown to deliver better performance than
Complex Instruction Set Computer (CISC) for
several types of applications.

Complex vs Simple Instructions

• Nevertheless, Pentium is actually CISC !

• Why?

Complex vs Simple Instructions

• Nevertheless, Pentium is actually CISC !

• Why: Compatibility with older software

• Newer application types (media processing etc)
perform better with specialized instructions

• The world has become too complex to talk about
RISC versus CISC

Typical Assembly Instructions

• Some common assembly instructions include:

• 1) “Load” – Load a value from RAM into
one of the registers

• 2) “Load Direct” – Put a fixed value in one of
the registers (as specified)

• 3) “Store” - Store the value in a specified
register to the RAM

• 4) “Add” - Add the contents of two
registers and put the result in a
third register

Typical Assembly Instructions

• Some common instructions include:

• 5) “Compare” - If the value in a specified
register is larger than the
value in a second register, put
a “0” in Register r0

• 6) “Jump” - If the value in Register r0 is
“0”, change Instruction Pointer
to the value in a given register

• 7) “Branch” - If the value in a specified
register is larger than that in
another register, change
IP to a specified value

Machine Languages
• Different types of CPU’s understand different

instructions

• Pentium family / Celeron / Xeon / AMD K6 /
Cyrix … (Intel x86 family)

• PowerPC (Mac)

• DragonBall (Palm Pilot)

• StrongARM/MIPS (WinCE)

• Many Others (specialized or general-purpose)

• They represent instructions differently in their
assembly/machine languages (even common ones)

• Let’s look instructions for a simple example CPU

