LESSON PLAN			
Department of Science \& Humanities -Mathematics			
Name of the Subject	STATISTICS AND NUMARICAL METHODS	Name of the handling Faculty	
Subject Code	MA3251	Year / Sem	I/II
Acad Year	$2022-23$	Batch	2022-2026

Course Objective

This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for sol numerically different kinds of problems occurring in engineering and technology.

To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problem
To introduce the basic concepts of solving algebraic and transcendental equations.
To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integr plays an important role in engineering and technology disciplines.
To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.
Course Outcome-On successful completion of this course, the student will be able to
Apply the concept of testing of hypothesis for small and large samples in real life problems.
Apply the basic concepts of classifications of design of experiments in the field of agriculture.
Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation ar for engineering problems.
Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations. Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with enginec

$\begin{aligned} & \hline \text { Sl. } \\ & \text { No. } \end{aligned}$	Topic(s)	$\begin{aligned} & \hline \text { T/R* } \mathbf{R}^{*} \\ & \hline \text { Book } \end{aligned}$	$\begin{gathered} \text { Perio } \\ \text { ds } \end{gathered}$	Mode of Teaching	Blooms Level	CO
UNIT I-TESTING OF HYPOTHESIS						
1	Large sample test-Sigle Mean	T2	1	BB	L2	CO1
2	Large sample test -Differnece of Means,Propotion	T2	1	BB	L2	CO1
3	Large Sample-Difference of Propotion	T2	1	BB	L2	CO1
4	Tutorial -Large Sample	T2	1	BB	L2	CO1
5	Small Sample-Single Mean	T2	1	BB	L2	CO1
6	Small Sample-Difference of Means	T2	1	BB	L2	CO1
7	Chi Square test Single Variance-Goodness of fit	T2	1	BB	L2	CO1
8	Chi Square test-Independence of Attributes	T2	1	BB	L2	CO1
9	Tutorial -Small Sample \& Chi Square Test	T2	1	BB	L2	CO1
10	F distributions for testing means and variances	T2	1	BB	L2	CO1
11	F distributions for testing means and variances	T2	1	BB	L2	CO1
12	Tutorial-F-distribution	T2	1	BB	L2	CO1

Suggested Activity: Assignment given
Evaluation method: Evaluation of Assignment

UNIT II-DESIGN OF EXPERIMENTS

$\mathbf{1 3}$	Introduction-Analysis of Variance	T 2	$\mathbf{1}$	BB	L2
$\mathbf{1 4}$	One way classification (Completely Randamized Design- CRD)	T 2	1	BB	L 2
$\mathbf{1 5}$	One way classifications (Completely Randamized Design- CRD)	T 2	1	BB	L 2

$\mathbf{1 6}$	Tutorial-CRD	T 2	1	BB	L 2	CO 2
$\mathbf{1 7}$	Two way classifications (Randomized block Design-RBD)	T 2	1	BB	L 2	CO 2
$\mathbf{1 8}$	Two way classifications (Randomized block Design)	T 2	1	BB	L 2	CO 2
$\mathbf{1 9}$	Tutorial-RBD	T 2	1	BB	L 2	CO 2
$\mathbf{2 0}$	Latian Square Design	T 2	1	BB	L 2	CO 2
$\mathbf{2 1}$	Latian Square Design	T 2	1	BB	L 2	CO 2
$\mathbf{2 2}$	Tutorial-Latin Square Design	T 2	1	BB	L 2	CO 2
$\mathbf{2 3}$	$2^{\wedge} 2$ factorial design	T 2	1	BB	L 2	CO 2
$\mathbf{2 4}$	$2^{\wedge} 2$ factorial design	T 2	1	BB	L 2	CO 2
$\mathbf{S y y y y y y y}$						

Suggested Activity: Assignment given						
Evaluation method: Evaluation of Assignment						
UNIT III-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS						
25	Introduction-Fixed Point Iteration Method	T1	1	BB	L3	CO3
26	Newton-Raphson method-Problems	T1	1	BB	L3	CO3
27	Tutorial Fixed point \& NR-Method	T1	1	BB	L3	CO3
28	Solution of Linear System of Equation-Gauss Elimination method.	T1	1	BB	L3	CO3
29	Gauss-Jordan methods	T1	1	BB	L3	CO3
30	Tutorial-Gauss Elimination \& Gauss Jordan	T1	1	BB	L3	CO3
31	Iterative methods - Gauss-Jacobi	T1	1	BB	L3	CO3
32	Iterative methods- Gauss-Seidel	T1	1	BB	L3	CO3
33	Tutorial-Gauss Elimination \& Gauss Jordan	T1	1	BB	L3	CO3
34	Eigenvalues of a matrix by Power method.	T1	1	BB	L3	CO3
35	Eigenvalues of a matrix by Power method.	T1	1	BB	L3	CO3
36	Jacobi's method for Symmetric Matrices	T1	1	BB	L3	CO3

Suggested Activity: Assignment given						
Evaluation method: Evaluation of Assignment						
UNIT IV- INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION						
37	Lagrange's and Newton's divided difference interpolations	T1	1	BB	L3	CO4
38	Newton's forward and backward difference interpolation and class test	T1	1	BB	L3	CO4
39	Newton'x backward difference	T1	1	BB	L3	CO 4
40	Tutorial -DD,NF,NB	T1	1	BB	L3	CO4
41	Approximation of derivates using interpolation polynomials	T1	1	BB	L3	CO4
42	Approximation of derivates using interpolation polynomials	T1	1	BB	L3	CO 4
43	Tutorial-Derivatives	T1	1	BB	L3	CO 4
44	Numerical single integrations using Trapezoidal and Simpson's $1 / 3$ rules.	T1	1	BB	L3	CO4
45	Numerical single integrations using Trapezoidal and Simpson's $1 / 3$ rules.	T1	1	BB	L3	CO4
46	Numerical double integrations using Trapezoidal and Simpson's $1 / 3$ rules.	T1	1	BB	L3	CO4
47	Numerical double integrations using Trapezoidal and Simpson's $1 / 3$ rules.	T1	1	BB	L3	CO 4
48	Tutorial -Trapezoidal \& Simpson's Rules	T1	1	BB	L3	CO4

[^0]
UNIT V-NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

$\mathbf{4 9}$	Taylor's series method,	T 1	1	BB	L 3	CO
$\mathbf{5 0}$	Euler's method,	T 1	1	BB	L 3	CO
$\mathbf{5 1}$	Modified Euler's method	T 1	1	BB	L 3	CO 5
$\mathbf{5 2}$	Tutorial-Taylor's,euler's, modified euler's method	T 1	1	BB	L 3	CO 5
$\mathbf{5 3}$	Fourth order Runge-Kutta method for solving first order equations	T 1	1	BB	L 3	CO 5
$\mathbf{5 4}$	Fourth order Runge-Kutta method for solving first order equa					
$\mathbf{5 5}$	T1 einne's predictor corrector methods for solving first order	T 1	1	BB	L 3	CO
$\mathbf{5 6}$	Milne's predictor corrector methods for solving first order equations	$\mathrm{T1}$	1	BB	L 3	CO
$\mathbf{5 7}$	Tutorial-4th order RK method,Milne's method					

Text Books

| $\mathbf{1}$ | Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, New Delhi, 2014. |
| ---: | :--- | :--- |
| $\mathbf{2}$ | Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II .
 Publishers Pvt. Ltd, Chennai, 1998. |
| | |
| $\mathbf{1}$ | Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016. |
| $\mathbf{2}$ | Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 20 |

Blooms Level										
Level 1 (L1) : Remembering		Lower Order Thinking	Fixed Hour Exams	Level 4 (L4) : Analysing						Higher Order Thinking
Level 2 (L2) : Understanding				Level 5 (L5) : Evaluating						
Level 3 (L3) : Applying				Level 6 (L6) : Creating						
Mapping syllabus with Bloom's Taxonomy LOT and HOT										
Unit No	Unit Name		L1	L2	L3	L4	L5	L6	LOT	HOT
Unit 1	TESTING OF HYPOTHESIS		6	0	0	0	0	0	6	0
Unit 2	DESIGN OF EXPERIMENTS		0	0	0	0	7	0	0	7
Unit 3	SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS		0	8	0	0	0	0	8	0

Unit 4		INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION				0	0	0	7	0	0	0	7
Unit 5		NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS				0	0	6	0	0	0	6	0
Total						6	8	6	7	7	0	20	14
Total Percentage						17.65	24	17.6	20.59	20.59	0	58.824	41.1765
CO PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	$\begin{gathered} \mathrm{PO} \\ 7 \end{gathered}$	PO8	PO9	PO10	$\begin{gathered} \text { PO1 } \\ 1 \end{gathered}$	PO12	PSO1
CO1	3	2	1	-	-	-	-	-	-	-	-	-	1
CO2	3	3	3	-	-	-	-	-	-	-	-	-	2
CO3	3	3	1	-	-	-	-	-	-	-	-	-	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	2
CO5	3	3	3	-	-	-	-	-	-	-	-	-	2
Avg	3	2.8	2.2	0	0	0	0	0	0	0	0	0	2

> Justification for CO-PO mapping
are taken out of unmanageably huge populations. The student would be able to calculate mean and proportions (small samp
CO1 make Important decisions from few samples which are taken out of unmanageably huge populations.
Highly Mapped with PO6 because subject need basic engineering knowledge to understand the terms and definitions \& Hi
CO2 with PO10 because with out proper communication skills it is difficult to understand the concept

CO3 Moderately mapped as students apply the knowledge of engineering fundamentals and gauss -Jordan technique method.
Highly Mapped with PO4 because subject well engineering knowledge to understand the terms and concepts \& Highly Me
PO10 because with out proper communication skills it is difficult to understand the concept
Highly Mapped with PO4 because subject well engineering knowledge to understand the terms and concepts \& Highly Mc
PO10 because with out proper communication skills it is difficult to understand the concept

3	High level	$\mathbf{2}$	Moderate level	1	Low le

Name \& Sign of Faculty Incharge :
Name \& Sign of Subject Expert :
Head of the Department
Format No :231

[^0]: Suggested Activity: Assignment given
 Evaluation method: Evaluation of Assignment

