DEPARTMENT OF HUMANITIES AND SCIENCEMATHEMATICS

(ACADEMIC YEAR: 2022-2023)

MA3251 -STATISTICS \& NUMERICAL METHODS

(Regulation 2021)
COMMON TO ALL BRANCHES OF B.E/B.TECH
I-YEAR-Semester-2

NAME-
REG NO-

OBJECTIVES:

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS

Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means -Tests based on t , Chi-square and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.

UNIT II DESIGN OF EXPERIMENTS

One way and two way classifications - Completely randomized design - Randomized block design - Latin square design - 2^{2} factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method - Solution of linear system of equations - Gauss elimination method Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

Lagrange's and Newton's divided difference interpolations - Newton's forward and backward difference interpolation - Approximation of derivates using interpolation polynomials - Numerical single and double integrations using Trapezoidal and Simpson's $1 / 3$ rules.

Single step methods : Taylor's series method - Euler's method - Modified Euler's method Fourth order Runge-Kutta method for solving first order equations - Multi step methods : Milne's and Adams - Bash forth predictor corrector methods for solving first order equations.

TOTAL : 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students will be able to:

- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications

TEXT BOOKS:

1. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science", 10 th Edition, Khanna Publishers, New Delhi, 2015.
2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8 th Edition, 2015.

REFERENCES:

1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9 th Edition, Cengage Learning, 2016.
2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8 th Edition, 2014.
3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
4. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics ", Tata McGraw Hill Edition, 2004.
5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 8 th Edition, Pearson Education, Asia, 2007.

STATISTICS

UNIT- I TESTING OF HYPOTHESIS

Population:

A population consists of collection of individual units, which may be person's or experimental outcomes, whose characteristics are to be studied.

Sample:

A sample is proportion of the population that is studied to learn about the characteristics of the population.

Random sample:

A random sample is one in which each item of a population has an equal chance of being selected.

Sampling:

The process of drawing a sample from a population is called sampling.

Sample size:

The number of items selected in a sample is called the sample size and it is denoted by ' n '. If $n \geq 30$, the sample is called large sample and if $n \leq 30$, it is called small sample

Sampling distribution:

Consider all possible samples of size' n' drawn from a given population at random. We calculate mean values of these samples.

If we group these different means according to their frequencies, the frequency distribution so formed is called sampling distribution.

The statistic is itself a random variate. Its probability distribution is often called sampling distribution.

All possible samples of given size are taken from the population and for each sample, the statistic is calculated. The values of the statistic form its sampling distribution.

Standard error:

The standard deviation of the sampling distribution is called the standard error.
Notation:
Pop. mean $=\mu ; \quad$ Pop. $\mathrm{S} . \mathrm{D}=\sigma ; \quad \mathrm{P}-$ Pop. proportion

$$
\text { sample mean }=\bar{x} ; \text { sample } \mathrm{S} . \mathrm{D}=\mathrm{s} ; \quad \mathrm{P}^{\prime}=\text { sample Proportion }
$$

Note

Statistic

$$
\begin{aligned}
& \bar{x} \\
& \mathrm{p}_{1}^{\prime}-p_{2}^{\prime}\binom{\text { Difference of sample }}{\text { proportions }} \\
& \overline{x_{1}}-\overline{x_{2}}\binom{\text { Difference of sample }}{\text { means }} \\
& \mathrm{p}^{\prime}(\text { Sample proportion })
\end{aligned}
$$

S.E (Standard Error)

$$
\begin{aligned}
& \frac{\sigma}{\sqrt{n}} \\
& \sqrt{p q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
& \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \\
& \sqrt{\frac{p q}{n}}
\end{aligned}
$$

Null Hypothesis (H_{0})

The hypothesis tested for possible rejection under the assumption that it is true is usually called null hypothesis. The null hypothesis is a hypothesis which reflects no change or no difference. It is usually denoted by H_{0}

Alternative Hypothesis (H_{1})

The Alternative hypothesis is the statement which reflects the situation anticipated to be correct if the null hypothesis is wrong. It is usually denoted by H_{1}.

For example:

If $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ (There is no diff' bet' the means) then the formulated alternative hypothesis is
$\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$
ie., either $\mathrm{H}_{1}: \mu_{1}<\mu_{2}$ (or) $\mu_{1}>\mu_{2}$

Level of significance

It is the probability level below which the null hypothesis is rejected. Generally, 5\% and 1% level of significance are used.

Critical Region (or) Region of Rejection

The critical region of a test of statistical hypothesis is that region of the normal curve which corresponds to the rejection of null hypothesis.

The shaded portion in the following figure is the critical region which corresponds to 5\% LOS

Critical values (or) significant values

The sample values of the statistic beyond which the null hypothesis will be rejected are called critical values or significant values

Level of significance

Types of test	1%	5%	10%
Two tailed test	2.58	1.96	1.645
One tailed test	2.33	1.645	1.28

Two tailed test and one-tailed tests:

When two tails of the sampling distribution of the normal curve are used, the relevant test is called two tailed test.

The alternative hypothesis $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$ is taken in two tailed test for $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
When only one tail of the sampling distribution of the normal curve is used, the test is described as one tail test $\mathrm{H}_{1}: \mu_{1}<\mu_{2}$ (or) $\mu_{1}>\mu_{2}$

$$
\left.\begin{array}{l}
\mathrm{H}_{0}=\mu_{1}=\mu_{2} \\
\mathrm{H}_{1}=\mu_{1} \neq \mu_{2}
\end{array}\right\} \text { two tailed test }
$$

Type I and type II Error
Type I Error : Rejection of null hypothesis when it is correct

Type II Error : Acceptance of null hypothesis when it is wrong

Procedure for testing Hypothesis:

1. Formulate H_{0} and H_{1}
2. Choose the level of significance α
3. Compute the test statistic Z, using the data available in the problem
4. Pick out the critical value at $\alpha \%$ level say Z_{α}
5. Draw conclusion: If $|\mathrm{Z}|<\mathrm{Z}_{\alpha}$, accept H_{0} at $\alpha \%$ level. Otherwise reject H_{0} at $\alpha \%$ level

Test of Hypothesis (Large Sample Tests)

Large sample tests (Test based in Normal distribution.)
Type - I: (Test of significance of single mean)
Let $\left\{x_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{n}\right\}$ be a sample of size ($\mathrm{n} \geq 30$) taken from a population with mean μ and S.D σ. Let \bar{x} be the sample mean. Assume that the population is Normal.

To test whether the difference between Population mean μ and sample mean \bar{x} is significant or not and this sample comes from the normal population whose mean is μ or not.
$\mathrm{H}_{0}: \mu=$ a specified value
$\mathrm{H}_{1}: \mu \neq$ a specified value
we choose $\alpha=0.05(5 \%)$ (or) $0.01(1 \%)$ as the Level of significance
the test statistic is

$$
\mathrm{Z}=\frac{\bar{x}-\mu}{S . E(\bar{x})}=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathrm{~N}(0.1) \text { for large } \mathrm{n} .
$$

Note:

1. If σ is not known, for large $\mathrm{n}, \mathrm{S.E} \bar{x}=\frac{s}{\sqrt{n}}$ where 's' is the sample S.D

Problems:

1. A sample of 900 members is found to have a mean 3.5 cm . Can it reasonably regarded as a simple sample from a large population whose mean is 3.38 and a standard deviation 2.4 cm ?

Solution:

We formulate the null hypothesis that the sample is drawn from population whose mean is 3.38 cm .

$$
\text { i.e., } \mathrm{H}_{0}: \mu=3.38
$$

$\mathrm{H}_{1}: \mu \neq 3.38$

Hence it is a two-tailed test
Level of significance $\alpha=0.05$
Test statistic $\mathrm{Z}=\frac{\bar{x}-\mu}{\sigma}$

$$
\overline{\sqrt{n}}
$$

Given $\bar{x}=3.5, \mu=3.38, \mathrm{n}=900, \sigma=2.4$

$$
\therefore \mathrm{Z}=\frac{3.5-3.32}{\frac{2.4}{\sqrt{900}}}=1.5
$$

Critical value:

At 5% level, the tabulated value of Z is 1.96

Conclusion:

Since $|Z|=1.5<1.96, H$ is accepted at 5% level of significance
i.e., the sample comes froma population with mean 3.38 cm
2. A manufacturer claims that his synthetic fishing line has a mean breaking strength of 8 kg and S.D
0.5 kg . Can we accept his claim if a random sample of 50 lines yield a mean breaking of 7.8 kg . Use 1% level of significance.

Solution:

$$
\begin{aligned}
& \text { We formulate } \mathrm{H}_{0}: \mu=8 \\
& \qquad \begin{array}{l}
\mathrm{H}_{1}: \mu \neq 8 \\
\text { L.O.S } \alpha=0.01
\end{array}
\end{aligned}
$$

Test statistic $\mathrm{Z}=\frac{\bar{x}-\mu}{\sigma}$ $\overline{\sqrt{n}}$

Given $\bar{x}=7.8, \mu=8, \mathrm{n}=50, \sigma=0.5$
$\therefore \mathrm{Z}=\frac{7.8-8}{\frac{0.5}{\sqrt{50}}}=-2.828$
$\therefore|Z|=2.828$

Critical value:

At 1% level of significance the table of $Z=2.58$

Conclusion:

Since $|\mathrm{Z}|>2.58, \mathrm{H}_{0}$ is rejected at 1% level
i.e., the manufacturer's claim is not accepted
3. A random sample of 200 Employee's at a large corporation showed their average age to be 42.8 years, with a S.D of 6.8 years. Test the hypothesis $\mathrm{H}_{0}: \mu=40$ versus $\mathrm{H}_{1}: \mu>40$ at $\alpha=0.01$ level of significance.

Solution:

We set up $\mathrm{H}_{0}: \mu=40$

$$
\mathrm{H}_{1}: \mu \neq 40
$$

It is one tailed test.

$$
\text { L.O.S } \alpha=0.01
$$

Test statistic $\mathrm{Z}=\frac{\bar{x}-\mu}{\sigma}$

$$
\frac{0}{\sqrt{n}}
$$

Given $\bar{x}=42.8, \mu=40, \mathrm{n}=200, \sigma=6.89$

$$
\therefore \mathrm{Z}=\frac{42.8-40}{\frac{6.89}{\sqrt{200}}}=5.747
$$

Critical value:

For one-tail test, the table value of Z at 1% level $=2.33$

Conclusion:

Since $|\mathrm{Z}|=5.747>2.33, \mathrm{H}_{0}$ is rejected at 1% level.
i.e., The hypothesis $\mu=40$ is accepted at this level.

Type - II:

Test of significance of difference of two means
Consider two samples of sizes n_{1} and n_{2} taken from two different populations with population means μ_{1} and μ_{1} and S.D's σ_{1} and σ_{2}

Let \bar{x}_{1} and $\overline{x_{2}}$ be the sample means and S_{1} and S_{2} be the S.D's of the samples
The formulated null and alternative hypothesis is,

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

The test statistic ' Z ' is defined by
$\mathrm{Z}=\frac{\overline{x_{1}}-\overline{x_{2}}}{S . E\left(\overline{x_{1}}-\overline{x_{2}}\right)}$
ie., $\mathrm{Z}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1)$
We use the los is $\alpha=0.05$ (or) 0.01
If $|\mathrm{Z}|<\mathrm{Z}_{\alpha}, \mathrm{H}_{0}$ is accepted at $\alpha \%$ Los
otherwise, H_{0} is rejected at $\alpha \%$ Los

Note:
In many situations, we do not know the S.D's of the populations (or) population from which the samples are drawn.

In such cases, we can subs the S.D's are of samples S_{1} and S_{2} in place of σ_{1} and σ_{2}
\therefore The test statistic $\mathrm{Z}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}}$

Problems

The mean of two sample large samples of 1000 and 200 members are 67.5 inches and 68 inches respectively. Can the samples be regard as drawn from the population of standard deviation of 2.5 inches? Test at 5\% Los

Solution
we set up $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
ie., the samples are drawn from the sample population
$\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$
The test statistic $Z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
Given $\quad \bar{x}_{1}=67.5 ; \quad n_{1}=1000$
$\overline{x_{2}}=68 ; \quad n_{2}=2000 ; \quad \sigma=2.5$
$\therefore \mathrm{Z}=\frac{67.5-68}{2.5 \sqrt{\frac{1}{1000}+\frac{1}{2000}}}=-5.164$
$\therefore|Z|=5.164$

We choose the $\operatorname{Los} \alpha=0.05$

Critical value:

The table values of Z at $5 \% \mathrm{Los}$ is $\mathrm{Z}=1.96$

Conclusion:

Since $|\mathrm{Z}|>1.96, \mathrm{H}_{0}$ is rejected at 5% Los.
\therefore The sample cannot be regards as drawn from the same population.
2. Samples of students were drawn from two universities and from the weights is kilogram. The means and S.D's are calculated. Test the significance of the difference between the means of two samples

	Mean	S.D	Sample Size
University A	55	10	400
University B	57	15	100

Solution:

we set up $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
ie., there is no significant difference between the sample means
$\mathrm{H}_{1}: \mu_{1} \neq \mu_{2} ; \quad \alpha=0.05$
The test statistic $Z=\frac{\overline{x_{1}}-x_{2}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}}$

Given $\quad \overline{x_{1}}=55 ; \quad s_{1}=10 ; \quad n_{1}=400$

$$
\begin{aligned}
& \overline{x_{2}}=57 ; \quad s_{2}=15 ; \quad n_{2}=100 \\
& \therefore \quad \mathrm{Z}=\frac{55-57}{\sqrt{\frac{10^{2}}{400}+\frac{15^{2}}{100}}}=-1.265
\end{aligned}
$$

$\therefore|Z|=1.265$

Critical value:

The table values of Z at $5 \% \mathrm{Los}$ is $\mathrm{Z}=1.96$

Conclusion:

Since $\mathrm{ZZ} \mid<1.96, \mathrm{H}_{0}$ is accepted at 5% Los. We conclude that the difference between the means is not significant.
3. The average hourly wage of a sample of 150 workers is plant A was Rs. 2.56 with a S.D of Rs.1.08. The average wage of a sample of 200 workers in plant B was Rs. 2.87 with a S.D of Rs.
1.28. Can an applicant safety assume that the hourly wages paid by plant B are greater than those paid by plant A?

Solution:
Let x_{1} and x_{2} denote the hourly wages paid to workers in plant A and plant B respectively.

We set up $\mathrm{H}_{0}: \mu_{1}<\mu_{2}$ (Plant Bnot greater than Plant A)

$$
\mathrm{H}_{1}: \mu_{1}<\mu_{2}(\text { one tailed test })
$$

$$
\alpha=0.05
$$

$$
\mathrm{Z}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}}
$$

$$
\text { Given } \quad \overline{x_{1}}=2.56 ; \quad s_{1}=1.08 ; \quad n_{1}=150
$$

$$
\overline{x_{2}}=2.87 ; \quad s_{2}=1.28 ; \quad n_{2}=200
$$

$$
\therefore \mathrm{Z}=\frac{2.56-2.87}{\sqrt{\frac{(1.08)^{2}}{150}+\frac{(1.28)^{2}}{200}}}=-2.453
$$

$\therefore|Z|=2.453$

Critical value:

The table values of Z at 5% in case of one-tailed test is $\mathrm{Z}=1.645$

Conclusion:

Since $|\mathrm{Z}|>1.643, \mathrm{H}_{0}$ is rejected at 5% Los.
\therefore The hourly wage paid by Plant B are greater than those paid by Plant A
4. A sample of size 30 from a normal population yielded 80 and variance 150 . A sample of size 40 from a second normal population yielded the sample mean 71 and variance 200.
Test $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=2$. Versus $\mathrm{H}_{1}: \mu_{1}>\mu_{2}=2$
Solution:

$$
\mathrm{H}_{0}: \mu_{1}-\mu_{2}=2
$$

ie., the diff 'bet the means of two population is 2

Versus $\mathrm{H}_{1}: \mu_{1}>\mu_{2}=2$ (one tailed)

Test Statistic $\mathrm{Z}=\frac{\overline{x_{1}}-\overline{x_{2}} \mu_{1}-\mu_{2}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}}$
$\therefore Z=\frac{(80-71)-2}{\sqrt{\frac{150}{30}+\frac{200}{40}}}=2.215$

Critical value:

For one tail test, at 5% Los the table value of $\mathrm{z}=1.645$

Conclusion:

Since $\mid \mathrm{ZI}>1.645, \mathrm{H}_{0}$ is rejected.
\therefore The formulated null hypothesis $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=2$ is wrong
5. A buyer of electric bulbs purchases 400 bulbs; 200 bulbs of each brand. Upon testing these bulbs be found that brand A has an average of 1225 hrs with a S.D of 42 hrs . where as brand B had a mean life of 1265 hrs with a S.D of 60 hrs . Can the buyer be certain that brand B is Superior than brand A in quality?

Solution:

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2} \text {; }
$$

ie., the two brands of bulbs do not differ in quality
ie., they have the same mean life
$\mathrm{H}_{1}: \mu_{1}<\mu_{2}$ (one tailed)
L.o.s : $\alpha=0.05$

Test Statistic $\mathrm{Z}=\frac{\overline{x_{1}}-\overline{x_{2}}}{S . E \overline{x_{1}}-\overline{x_{2}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}}$
Here, $\quad \bar{x}_{1}=1225 ; \quad s_{1}=42 ; \quad n_{1}=200$

$$
\begin{aligned}
& \overline{x_{2}}=1265 ; \quad s_{2}=60 ; \quad n_{2}=200 \\
& \therefore \mathrm{Z}=\frac{1225-1265}{\sqrt{\frac{(42)^{2}}{200}+\frac{(60)^{2}}{200}}}=\frac{-40}{5.18}=-7.72 \\
& \Rightarrow \\
& |\mathrm{Z}|=7.72
\end{aligned}
$$

Critical value:

The critical value of Z at $5 \% \mathrm{Los} \mathrm{Z}=1.645$.

Conclusion:

Since $\mathrm{zl}<1.645 \mathrm{H}_{0}$ is rejected.
\therefore The brand B is superior to brand A in equality.
Type - III:
Test of significance of single proportion:
If ' x ' is the number of times possessing a certain attribute in a sample of n items,

The sample proportion $p^{\prime}=\frac{x}{n}$
p : sample porportion;
p : population proportion.

The hypothesis $\mathrm{H}_{0}: p=\mathrm{p}$
ie., p has a specified value
Alternative hyp: $\mathrm{H}_{1}: p \neq \mathrm{p}^{\prime}$

Test statistic $\mathrm{Z}=\frac{p-p}{\sqrt{\frac{\mathrm{pq}}{n}}}$
Since the sample is large $Z \sim N(0,1)$

Problems

1. A coin is tossed 400 times and it turns up head 216 times. Discuss whether the coin may be regarded as unbiased one.

Solution

we set up H_{0} : coin is unbiased

$$
\text { ie., } p=\frac{1}{2} \Rightarrow q=1-p=\frac{1}{2}
$$

H_{1} : coin is biased
$\alpha=0.05$

Test statistic $\mathrm{Z}=\frac{p-p}{\sqrt{\frac{\mathrm{pq}}{n}}}$
Here $\mathrm{p}^{\prime}=\frac{216}{400} ; n=400$
$\therefore \mathrm{Z}=\frac{0.54-0.5}{\sqrt{\frac{1}{600}}}=1.6$
Table value of $\mathrm{Z}=1.96$
Conclusion:
Since $|\mathrm{z}|<1.96, \mathrm{H}_{0}$ is accepted at 5% Los
Hence the coin may be regarded as unbiased
2. In a city of sample of 500 people, 280 are tea drinkers and the rest are coffee drinkers. Can we assume that both coffee and tea are equally popular in this city at 5% Los.

Solution:

we set up $\mathrm{H}_{0}: \mathrm{p}=\frac{1}{2}$
ie., the coffee and tea are equally popular
$\mathrm{H}_{1}: \mathrm{p} \neq \frac{1}{2}$
Test statistic $\mathrm{Z}=\frac{p^{\prime}-p}{\sqrt{\frac{\mathrm{pq}}{n}}}$
Here $\mathrm{p}^{\prime}=\frac{280}{500}=0.56 ; n=500 ; \mathrm{p}=0.5$
$\Rightarrow \mathrm{q}=1-\mathrm{p}=0.5$
$\therefore \mathrm{Z}=\frac{0.56-0.5}{\sqrt{\frac{0.5 \times 0.5}{500}}}=2.68$

Conclusion:

Since $|\mathrm{z}|>1.96, \mathrm{H}_{0}$ is rejected at 5% level
Both type of drinkers are not popular at 5\% Los.
3. A manfacturing company claims that atleast 95% of its products supplied confirm to the specifications out of a sample of 200 prodcuts, 18 are defective. Test the claim at 5% Los.

Solution

we set up H_{0} : The proportion of the products confirming to specification is 95% ie., $p=0.95$
$\mathrm{H}_{1}: \mathrm{p}<0.95$ (one tailed test)

$$
\mathrm{Z}=\frac{p^{\prime}-p}{\sqrt{\frac{\mathrm{pq}}{n}}}
$$

Here $\mathrm{p}^{\prime}=\frac{200-18}{200}=0.91 ; n=200$
$\mathrm{p}=0.95 \Rightarrow \mathrm{q}=1-\mathrm{p}=0.05$
$\therefore \mathrm{Z}=\frac{0.91-0.95}{\sqrt{\frac{0.95 \times 0.05}{200}}}=-2.595 \Rightarrow Z \neq 2.595$
Critical value : at 5% Los $\mathrm{Z}_{\alpha}=1.645$
Conclusion:
$|\mathrm{z}|=2.595>1.645, \mathrm{H}_{0}$ is rejected at $5 \% \operatorname{Los}($ Level of significance)
4. A manfacturer claims that only 4% of his products supplied by him are defective. Sample of 600 products contained 36 defectives. Test the claim of the manufactrer.
Solution:
we set up $\mathrm{H}_{0}: \mathrm{p}=0.04$
$\mathrm{H}_{1}: \mathrm{p}>0.04$ (one tailed test)
Test Statistic $\mathrm{Z}=\frac{p^{\prime}-p}{\sqrt{\frac{\mathrm{pq}}{n}}}$
Here $\mathrm{p}=0.04 \Rightarrow \mathrm{q}=1-\mathrm{p}=0.96$
$\mathrm{p}^{\prime}=\frac{36}{600}=0.06 ; n=500$
$\therefore Z=\frac{0.06-0.04}{\sqrt{\frac{0.04 \times 0.96}{600}}}=2.5$
Critical value :
The table value of $\mathrm{Z}=1.645$ at 5\%L.o.s
Conclusion:

$$
|\mathrm{Z}|=2.5>1.645, \mathrm{H}_{0} \text { is rejected }
$$

\therefore Manufacturer's claim is not acceptable
Type - IV: Test of significance for Difference of proportion of success in two samples:
To test the significance of the difference between the sample proportions p_{1}^{\prime} and p_{2}^{\prime}.
We formulate the null hypothesis $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$
ie., the population proportions are equal
The alternative hypothesis is $\mathrm{H}_{1}: \mathrm{p}_{1} \neq \mathrm{p}_{2}$
The standard error of $\mathrm{p}_{1}{ }^{\prime}-\mathrm{p}_{2}{ }^{\prime}=\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$
Where $\mathrm{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}$

The test statistic is $\mathrm{Z}=\frac{p_{1}-\mathrm{p}_{2}}{\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim N(0,1)$
Problems:

1. If a sample of 300 units of a manufactured product 65 units were found to be defective and in another sample of 200 units, there were 35 defectives. Is there significant difference in the proportion of defectives in the samples at 5\% Los.

Solution:
$\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$ (ie., There is no significant difference in the proportion defectives in the samples)

The alternative hypothesis $\mathrm{H}_{1}: \mathrm{p}_{1} \neq \mathrm{p}_{2}$
Los: $\alpha=0.05$
The test statistic is $\mathrm{Z}=\frac{p_{1}-\mathrm{p}_{2}}{\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
$\mathrm{p}_{1}{ }^{\prime}=\frac{65}{300}=0.22 ; \mathrm{p}_{2}{ }^{\prime}=0.175$
$\mathrm{p}=\frac{100}{500}=\frac{1}{5} \Rightarrow q=\frac{4}{5}$
$\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{\frac{4}{25}\left(\frac{1}{300}+\frac{1}{200}\right)}=0.0365$
$\therefore \mathrm{Z}=\frac{0.22-0.175}{0.0365}=1.233$
Critical value :
The table value of Z at 5% Level $=1.96$
Conclusion:
$|\mathrm{Z}|<1.96, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore The difference in the porportion of defectives in the samples is not significant
2. A machine puts out 16 imperfect articles in a sample of 500 . After the machine is over-hauled in puts out 3 imperfect articles in a batch of 100 . Has the machine improved?

Solution:
H_{0} : Machine has not been improved
ie., $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$
The alternative hypothesis $\mathrm{H}_{1}: \mathrm{p}_{1}>\mathrm{p}_{2}$ (one-tailed)
Los: $\alpha=0.05$
The test statistic is $\mathrm{Z}=\frac{p_{1}^{\prime}-\mathrm{p}_{2}}{\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
Here $\mathrm{p}_{1}{ }^{\prime}=\frac{16}{500}=0.032 ; \mathrm{p}_{2}{ }^{\prime}=0.03$
$\mathrm{n}_{1}=500 ; \mathrm{n}_{2}=100$
$\mathrm{p}=\frac{19}{600}$ and $q=\frac{581}{600}$
$\therefore Z=\frac{0.032-0.03}{\sqrt{\frac{19}{600} \times \frac{581}{600}\left(\frac{1}{500}+\frac{1}{100}\right)}}=0.104$
$|Z|=0.104$

Critical value :
The table value of Z for one tailed test $\mathrm{Z}=1.645$ at 5 Los
Conclusion:

$$
|\mathrm{Z}|<1.645, \mathrm{H}_{0} \text { is accepted at } 5 \% \text { Los. }
$$

The Machine has not improved due to overhaulding.
3. Before an increase in excise duty on tea, 800 perons out of a sample of 1000 persons were found to be tea drinkers. After an increse is excise duty. 800 people were tea drinkers in a sample of 1200 people. Test whether there is a significant decrease in the consumption of tea after the increase in excise duty at 5% Los

Solution:
H_{0} : the proportion of tea drinkers before and after the increase in excise duty are equal

$$
\begin{aligned}
& \text { ie., } \mathrm{p}_{1}=\mathrm{p}_{2} \\
& \mathrm{H}_{1}: \mathrm{p}_{1}>\mathrm{p}_{2} \\
& \text { Los: } \alpha=0.05
\end{aligned}
$$

The test statistic is $\mathrm{Z}=\frac{p_{1}-\mathrm{p}_{2}}{\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$

Here $\mathrm{x}_{1}=800 ; \mathrm{x}_{2}=800 ; \mathrm{n}_{1}=1000$;
$\mathrm{n}_{2}=1200 ; \mathrm{p}_{1}{ }^{\prime}=\frac{800}{1000}=0.8 ; \mathrm{p}_{2}{ }^{\prime}=\frac{800}{1200}=0.67$
$\mathrm{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}=\frac{1600}{2200}=\frac{8}{11} \Rightarrow q=\frac{3}{11}$
$\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{\frac{24}{121} 0.001+0.0008}=0.0189$
$\therefore Z=\frac{0.13}{0.0189}=6.88 \Rightarrow|Z|=6.88$
Critical value: At 5\% Los 1.645
Conclusion:

$$
|\mathrm{Z}|>1.645, \mathrm{H}_{0} \text { is rejected. }
$$

\therefore There is a significance decrease in the consumption of tea due to increase in excise duty.
Type - V: (Test of significance for the difference of S.D's of two large samples)

Let S_{1} and S_{2} be the S.D's of two indepedent samples of sizes n_{1} and n_{2} respectively
The null hypothesis $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$;
ie., the sample S.D's do not differ significantly.
The Alternative Hypothesis $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$
the test statistic is $\mathrm{Z}=\frac{S_{1}-S_{2}}{S . E\left(S_{1}-S_{2}\right)} \sim N(0,1)$ for large ' n '
ie., If σ_{1} and σ_{2} are known,
$\mathrm{Z}=\frac{S_{1}-S_{2}}{\sqrt{\frac{\sigma_{1}{ }^{2}}{2 n_{1}}+\frac{\sigma_{2}{ }^{2}}{2 n_{2}}}} \sim N(0,1)$
(or)If σ_{1} and σ_{2} are not known,

$$
\mathrm{Z}=\frac{S_{1}-S_{2}}{\sqrt{\frac{S_{1}^{2}}{2 n_{1}}+\frac{S_{2}^{2}}{2 n_{2}}}}
$$

If $|\mathrm{Z}|>\mathrm{Z}_{\alpha}, \mathrm{H}_{0}$ is rejected at $\alpha \%$ level, otherwise H_{0} is accepted

Problems:

1. The sample of sizes 1000 and 800 gave the following results

Mean	S.D	
Sample I	17.5	2.5
Sample II	18	2.7

Assuming that the samples are indepedent, test whether the two samples may be regarded as drawn from the universe with same S.D's at 1% Level.

Solution:
We set up $\mathrm{H}_{0}: \sigma_{1}=\sigma_{2}$;
ie., two samples maybe regarded as drawn from the universe with same S.D's

$$
\mathrm{H}_{1}: \sigma_{1} \neq \sigma_{2}
$$

Test statistic $\mathrm{Z}=\frac{S_{1}-S_{2}}{\sqrt{\frac{S_{1}{ }^{2}}{2 n_{1}}+\frac{S_{2}{ }^{2}}{2 n_{2}}}}$
Here $\mathrm{n}_{1}=1000 ; \mathrm{n}_{2}=800 ; \mathrm{S}_{1}=2.5 ; \mathrm{S}_{2}=2.7$

$$
\therefore \mathrm{Z}=\frac{2.5-2.7}{\sqrt{\frac{(2.5)^{2}}{2000}+\frac{(2.7)^{2}}{1600}}}=\frac{-0.2}{\sqrt{0.3125+0.455625}}
$$

$$
\Rightarrow|Z|=2.282
$$

Critical value :
At 1% Los, the tabulated value is 2.58
Conclusion:
Since $|\mathrm{Z}|<2.58, \mathrm{H}_{0}$ is accepted at 1% Los.
\therefore The two samples may be regarded as drawn from the universe with the same S.D's
2. In a survey of incomes of two classes of workers, two random samples gave the following results. Examine whether the differences between (i) the means and (ii) the S.D's are significant.
Sample \quad Size Mean annualincome (Rs) S.D in Rs

Examine also whether the samples have been drawn from a population with same S.D
Solution:
(i) We set up $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$;
ie., the difference is not significant

$$
\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}
$$

Here it is two tailed test

$$
\begin{aligned}
& \text { Test statistic } \mathrm{Z}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{S_{1}{ }^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}=\frac{582-546}{\sqrt{\frac{(24)^{2}}{100}+\frac{(28)^{2}}{100}}} \\
& \therefore \mathrm{Z}=\frac{360}{\sqrt{(24)^{2}+(28)^{2}}}=9.76 \\
& \Rightarrow|\mathrm{Z}|=9.76
\end{aligned}
$$

Critical value :
At $5 \% \mathrm{Los}$, the table value of Z is 1.96
Conclusion:
Since $|\mathrm{Z}|>1.96, \mathrm{H}_{0}$ is rejected at 5% Los.
\therefore There is a significant difference in the means in the two samples.
(ii) $\mathrm{H}_{0}: \sigma_{1}=\sigma_{2}$
$\mathrm{H}_{1}: \sigma_{1} \neq \sigma_{2}$
Here it is two tailed test
Los: $\alpha=0.05$

Test statistic $\mathrm{Z}=\frac{S_{1}-S_{2}}{\sqrt{\frac{S_{1}{ }^{2}}{2 n_{1}}+\frac{S_{2}{ }^{2}}{2 n_{2}}}}=\frac{24-28}{\sqrt{\frac{(24)^{2}}{200}+\frac{(28)^{2}}{200}}}$
$\therefore \mathrm{Z}=\frac{-40}{\sqrt{288+392}}=-1.53$
$\Rightarrow|Z|=1.53$
Critical value :
At $5 \% \mathrm{Los}$, the table value of Z is 1.96

Conclusion:
Since $|\mathrm{Z}|<1.96, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore The difference between the sample S.D's is not significant.
Hence we conclude that the two samples have been drawn from population with the same S.D's
3. Two machines A and B produced 200 and 250 items on the average per day with a S.D of 20 and 25 items reply on the basis of records of 50 day's production. Can you regard both machine's equally efficient at 1% Los.

Solution:
(i) $\mathrm{H}_{0}: \sigma_{1}=\sigma_{2}$; ie., the two machines aer equally efficient

$$
\mathrm{H}_{1}: \sigma_{1} \neq \sigma_{2}
$$

Los: $\alpha=0.05$
Test statistic $\mathrm{Z}=\frac{S_{1}-S_{2}}{\sqrt{\frac{S_{1}{ }^{2}}{n_{1}}+\frac{S_{2}{ }^{2}}{n_{2}}}}$
$\mathrm{n}_{1}=200 \times 50 ; \mathrm{S}_{2}=25$
$\mathrm{n}_{2}=250 \times 50 ; \mathrm{S}_{1}=20$
$\therefore \mathrm{Z}=\frac{(20-25) \times \sqrt{50}}{\sqrt{\frac{400}{400}+\frac{625}{500}}}=\frac{-5 \sqrt{50}}{\sqrt{1+1.25}}=-23.57$
$\Rightarrow|Z|=23.57$

Critical value :
At $1 \% \mathrm{Los}$, the table value of Z is 2.58
Conclusion:
Since $|\mathrm{Z}|>2.58, \mathrm{H}_{0}$ is rejected at 1% Los.
We conclude that the both machines are not equally efficient at 1% Los
Small sample Tests (t - Test):
Definition:
Consider a random sample $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{n}\right\}$ of size ' n ' drawn from a Normal population with mean μ and variance σ^{2}.

$$
\text { Sample mean } \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

The unbiased estimate of the pop.variance σ^{2} is denoted as s^{2}.

$$
\mathrm{s}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

The student's t -statistic is defined as $\mathrm{t}=\frac{|\bar{x}-\mu|}{s} \sqrt{n}$, Where $\mathrm{n}=$ sample size The degree of freedon of this statistic

$$
\mathrm{V}=n-1
$$

Type I:

To test the significance of a single mean (For small samples)

$$
\begin{aligned}
& \text { Test Statistic } \mathrm{t}=\frac{\bar{x}-\mu}{\frac{S . D}{\sqrt{n-1}}}=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}} \\
& \mathrm{~s}=\text { sample S.D and } \\
& \mathrm{S}^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2} \text { (or) } \mathrm{S}=\sqrt{\frac{n s^{2}}{n-1}}
\end{aligned}
$$

If the computed value of t is greater than the critical value $\mathrm{t}_{\alpha}, \mathrm{H}_{o}$ is rejected
(or) if $\mathrm{tt}<\mathrm{t}_{\alpha}$, the null hypothesis H_{o} is accepted at α level.

1. A machinist is making engine parts with axle diameter of 0.700 inch. A random sample of 10 parts shows a mean diamter of 0.742 inch with a S.D of 0.40 . Test whether the work is meeting the specification at 5% Los

Solution:
Given that $\mathrm{n}=10 ; \bar{x}=0.742$ inches

$$
\begin{array}{ll}
\mu=0.700 \text { inches } & S=\sqrt{\frac{n s^{2}}{n-1}}=\sqrt{\frac{10 \times(0.40)^{2}}{9}}=0.4216 \\
\mathrm{~S}=0.40 \text { inches } & \mathrm{S}=0.42
\end{array}
$$

Null hypothesis H_{0} : the product is confirming to specification ie., there is no significant difference between \bar{x} and μ
$\mathrm{H}_{0}: \mu=0.700$ inches

$$
\mathrm{H}_{1}: \mu \neq 0.700 \text { inches }
$$

Test Statistic $\mathrm{t}=\frac{|\bar{x}-\mu|}{s} \sqrt{n}=0.316$
degrees of freedom $=\mathrm{n}-1=9$
Table value of t at 5% level $=2.26$
\therefore the product is meeting the specification.
2. Ten individuals are chosen at random from a population and their heights are found to be in inches $63,63,66,67,68,69,70,70,71,71$. In the light of this data, discuss the suggestion that the mean height in the universe is 66 inches.

Solution:

x	$: 63$	63	66	67	68	69	70	70	71	71
$(\mathrm{x}-\bar{x})^{2}: 23.04$	23.04	3.24	0.64	0.04	1.44	4.84	4.84	10.24	10.24	
$\therefore \sum x=678$	and $\sum(\mathrm{x}-\bar{x})^{2}=81.6$									
$\therefore \sum x$										

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{678}{10}=67.8 \\
& \mathrm{~S}=\sqrt{\frac{\sum(\mathrm{x}-\bar{x})^{2}}{9}}=\sqrt{\frac{81.6}{9}}=3.011
\end{aligned}
$$

Let $\mathrm{H}_{0}: \mu=66$ the mean and height if the universe is 66 inches and $\mathrm{H}_{1}: \mu \neq 66$
$\operatorname{Los} \alpha=0.05$
Test Statistic $\mathrm{t}=\frac{|\bar{x}-\mu|}{s} \sqrt{n}=\frac{67.8-66}{3.011} \sqrt{10}=1.89$
Table value of t for 9 d.f at $5 \% \operatorname{Los}$ is $t_{0}=2.2$
Since $|\mathrm{t}|<\mathrm{t}_{0}, \mathrm{H}_{0}$ is accepted at 5% level.
\therefore The mean height of universe of 66 is accepted.
Type II: (Test of significance of difference of mean)
Test Statistic $\mathrm{t}=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
Where $S^{2}=\frac{n_{1} s_{1}^{2}+n_{2} s_{2}{ }^{2}}{n_{1}+n_{2}-2}$ (or)

$$
S^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\bar{x}_{2}\right)^{2}}{n_{1}+n_{2}-2}
$$

The number of degrees of freedom $=\mathrm{V}=n_{1}+n_{2}-2$

The calculated value of t is less than the table value of t for $d . f=n_{1}+n_{2}-2, H_{0}$ is accepted Otherwise H_{0} is rejected at the selected Los

1. Two independent samples from normal pop's with equal variances gave the following results

Sample Size Mean S.D

1	16	23.4	2.5
2	12	24.9	2.8

Test for the equations of means.
Solution:
(i) We set up $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$; ie., there is no significant difference between their means

$$
\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}
$$

Los: $\alpha=0.05$
Test Statistic $\mathrm{t}=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$ Where $S^{2}=\frac{n_{1} s_{1}{ }^{2}+n_{2} s_{2}{ }^{2}}{n_{1}+n_{2}-2}$
Given $\overline{x_{1}}=23.4 ; \mathrm{n}_{1}=16 ; \mathrm{s}_{1}=2.5$

$$
\begin{aligned}
& \overline{x_{2}}=24.9 ; \mathrm{n}_{2}=12 ; \mathrm{s}_{2}=2.8 \\
& \mathrm{~S}^{2}=\frac{n_{1} s_{1}^{2}+n_{2} s_{2}{ }^{2}}{n_{1}+n_{2}-2}=\frac{16(2.5)^{2}+12(2.8)^{2}}{16+12-2} \\
& =\frac{100+94.08}{26}=7.465 \\
& \mathrm{~S}=2.732 \\
& \therefore \mathrm{t}=\frac{23.4-24.9}{2.732 \sqrt{\frac{1}{16}+\frac{1}{12}}}=-1.438
\end{aligned}
$$

$$
\therefore|\mathrm{t}|=1.438
$$

Number of degrees of freedom $=n_{1}+n_{2}-2=26$
Critical value :
The table value of t for 26 d.f at 5% Los is

$$
\mathrm{t}_{0.05}=2.056
$$

Conclusion:
Since the calculated value of t is less than table value of t,
H_{0} is accepted at 5% Los.
\therefore There is no significant difference between their means
2. Two independent samples of 8 and 7 items respectively had the following values
Sample I : $9 \quad 13 \quad 11 \quad 11 \quad 15$

Sample II : $10 \begin{array}{lllllll}12 & 10 & 14 & 9 & 8 & 10\end{array}$
Is the difference between the means of the samples significant?
Solution:
We set up $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
$\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$
Hence it is a two tailed test
Los: $\alpha=0.05$
Test Statistic $\mathrm{t}=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
Where $\quad S^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\bar{x}_{2}\right)^{2}}{n_{1}+n_{2}-2}$
$\left.\begin{array}{|c|c|c|c|c|c|}\hline x_{1} & \begin{array}{c}\mathrm{d}_{1}=\left(x_{1}-\overline{x_{1}}\right) \\ \mathrm{d}_{1}=x_{1}-11.75\end{array} & \mathrm{~d}_{1}{ }^{2}=\left(x_{1}-\overline{x_{1}}\right)^{2}\end{array} x_{2} \begin{array}{c}\mathrm{d}_{2}=\left(x_{2}-\overline{x_{2}}\right) \\ \mathrm{d}_{2}=x_{2}-10.43\end{array} \mathrm{~d}_{2}{ }^{2}=\left(x_{2}-\overline{x_{2}}\right)^{2}\right)$

$$
\begin{aligned}
& \overline{x_{1}}=11+\frac{6}{8}=11.75 \\
& \overline{x_{2}}=10+\frac{3}{7}=10.43
\end{aligned}
$$

$$
\sum\left(x_{1}-\overline{x_{1}}\right)^{2}=\sum \mathrm{d}_{1}^{2}-\frac{\sum \mathrm{d}_{1}^{2}}{\mathrm{n}_{1}}=38-\frac{36}{8}=33.5
$$

$$
\sum\left(x_{2}-\overline{x_{2}}\right)^{2}=\sum \mathrm{d}_{2}^{2}-\frac{\sum \mathrm{d}_{2}^{2}}{\mathrm{n}_{2}}=25-\frac{9}{7}=33.5
$$

$$
\therefore \mathrm{S}^{2}=\frac{33.5+23.71}{8+7-2} \Rightarrow \mathrm{~S}=2.097
$$

$$
\therefore \mathrm{t}=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

$$
\begin{aligned}
& =\frac{11.75-10.43}{2.097 \sqrt{\frac{1}{8}+\frac{1}{7}}} \\
& \mathrm{t}=1.218 \\
& \text { d.f }=8+7-2=13
\end{aligned}
$$

Critical value:
The table value of t for 13 d.f at 5% level is 2.16
Conclusion:
Since l $\mathrm{l}<2.16, \mathrm{H}_{0}$ is accepted
\therefore There is no significant difference between the means of the two samples.

Type III:

Testing of significance of the difference in means paired data.
When the two samples are of the same sizes and the data are paired

Where $\bar{d}=$ mean of differences

$$
\begin{aligned}
& \text { and } \mathrm{S}=\sqrt{\frac{\sum(d-\bar{d})^{2}}{n-1}} \\
& \quad \text { Degrees of freedom }=\mathrm{n}-1
\end{aligned}
$$

1. Elevan school boys were given a test in painting. They were given a month's further tution and a second test of equal difficulty was held at the end of the month. Do the marks give evidance that the students have beneifit by extra coaching?

Boys:	1	2	3	4	5	6	7	8	9	10	11
First Test (marks)	25	23	19	22	21	19	22	21	25	18	20
Second test (marks)	26	22	22	19	23	21	24	24	25	22	18

Solution:
$\mathrm{H}_{0}: \mu=$ the student have not been benefited by extra coaching.
ie., The mean of the difference between the marks of the two tests is zero
ie., $\mathrm{H}_{0}: \bar{d}=0$
$\mathrm{H}_{1}: \bar{d}>0$
Los: $\alpha=0.05$ (or) 5%

$$
\text { the test statistic is } \mathrm{t}=\frac{\overline{\bar{d}}}{\frac{S}{\sqrt{n}}}
$$

$\mathrm{S} . \mathrm{No}$	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{~d}=\mathrm{x}-\mathrm{y}$	-1	1	-3	3	-2	-2	-2	-3	0	-4	2
$\mathrm{~d}-\bar{d}$	0	2	-2	4	-1	-1	-1	-2	1	-3	3
${\mathrm{~d}-\bar{d}^{2}}^{2}$	0	4	4	16	1	1	1	4	1	9	9

$$
\begin{aligned}
& \sum \mathrm{d}=-11 ; \overline{\mathrm{d}}=\frac{\sum \mathrm{d}}{n}=\frac{-11}{11}=-1 \\
& \sum \mathrm{~d}-\bar{d}^{2}=50 \\
& \mathrm{~S}=\sqrt{\frac{\sum(d-\bar{d})^{2}}{n-1}}=\sqrt{\frac{50}{10}}=\sqrt{5}=2.236
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathrm{t}=\frac{\bar{d}}{\frac{S}{\sqrt{n}}}=\frac{-1}{\frac{2.236}{\sqrt{11}}} \\
& \therefore|\mathrm{t}|=\frac{1}{0.625}=1.48
\end{aligned}
$$

No. of d.f $=11-1=10$
Critical value:
At 5% Los, the table value of t at 10 degree freedom is 1.812
Conclusion:

$$
|\mathrm{t}|<1.812, \mathrm{H}_{0} \text { is accepted at } 5 \% \text { Los. }
$$

\therefore The students have not been benefited by extra-coaching.
2. The scores of 10 candidates prior and after training are given below,

| Prior : | 84 | 48 | 36 | 37 | 54 | 69 | 83 | 96 | 90 | 65 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| After : | 90 | 58 | 56 | 49 | 62 | 81 | 84 | 86 | 84 | 75 |

Is the training effective?
Solution:
We set up H_{0} : the training is not effective

$$
\begin{aligned}
& \text { ie., } \mathrm{H}_{0}: \bar{d}=0 \\
& \mathrm{H}_{1}: \bar{d}>0 \\
& \text { the test statistic is } \mathrm{t}=\frac{\bar{d}}{\frac{S}{\sqrt{n}}}
\end{aligned}
$$

$\mathrm{S} . \mathrm{No}$	1	2	3	4	5	6	7	8	9	10
$\mathrm{~d}=\mathrm{x}-\mathrm{y}$	-6	-10	-20	-12	-8	-12	-1	10	6	-10
$\mathrm{~d}-\bar{d}$	0.3	-3.7	-13.7	-5.7	-1.7	-5.7	5.3	16.3	12.3	-3.7
${\mathrm{~d}-\bar{d}^{2}}^{2}$	0.09	13.69	187.69	32.49	2.89	32.49	28.09	265.69	151.29	13.69

$$
\begin{aligned}
& \sum \mathrm{d}=-63 ; \overline{\mathrm{d}}=\frac{\sum \mathrm{d}}{n}=\frac{-63}{10}=-6.3 \\
& \quad \sum \mathrm{~d}-\bar{d}^{2}=728.1 \\
& \quad \mathrm{~S}=\sqrt{\frac{\sum(d-\bar{d})^{2}}{n-1}}=\sqrt{\frac{728.1}{9}}=\sqrt{80.9}=8.994 \\
& \quad S=8.994 \\
& \therefore \mathrm{t}=\frac{-6.3}{\frac{8.994}{\sqrt{10}}}=\frac{-6.3}{2.844}=-2.21 \\
& |\mathrm{t}|=2.21
\end{aligned}
$$

Degrees of freedom $\mathrm{V}=\mathrm{n}-1=10-1=9$
Critical value:
At 5\% Los, the table value of t at 9 degree freedom is 2.262
Conclusion:
$|\mathrm{t}|<2.262, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore There is no effective in the training.

Variance Ratio Test (or) F-test for equality of variances

This test is used to test the significance of two or more sample estimates of population variance The F-statistic is defined as a ratio of unbiased estimate of population variance

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{S}_{1}^{2}}{\mathrm{~S}_{2}^{2}} ; \quad \text { Where } \mathrm{S}_{1}^{2}=\frac{\sum x_{1}-\bar{x}_{1}^{2}}{\mathrm{n}_{1}-1} \\
& \mathrm{~S}_{2}^{2}=\frac{\sum x_{2}-\bar{x}_{2}^{2}}{\mathrm{n}_{2}-1}
\end{aligned}
$$

\therefore The distribution of $\mathrm{F}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}} \quad \mathrm{~S}_{1}{ }^{2}>\mathrm{S}_{2}{ }^{2} \quad$ is given by the following p.d.f
If S_{1}^{2} and S_{2}^{2} are the variances of two sample of sizes n_{1} and n_{2} respectively, the estimate of the population variances based on these samples are respectively

$$
\begin{aligned}
& \mathrm{S}_{1}^{2}=\frac{\mathrm{n}_{1} \mathrm{~s}_{1}^{2}}{\mathrm{n}_{1}-1} ; \quad \mathrm{S}_{2}^{2}=\frac{\mathrm{n}_{2} \mathrm{~S}_{2}^{2}}{\mathrm{n}_{2}-1} \\
& \text { d.f } \mathrm{V}_{1}=\mathrm{n}_{1}-1 \& \mathrm{~V}_{2}=\mathrm{n}_{2}-1
\end{aligned}
$$

While defining the statistic F, the large oftwo variances is always placed in the numerator and smaller in the denominator

Test of significance for equality of population variances

Consider two independent R, samples $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . \mathrm{x}_{\mathrm{n}_{1}} \& \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots . \dot{y}_{\mathrm{n}_{2}}$ from normal populations The hypothesis to be tested is
"The population variances are same".
we set up: $\mathrm{H}_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$
\& $\mathrm{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$
The test statistic $\quad \mathrm{F}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}^{2}} \quad \mathrm{~S}_{1}{ }^{2}>\mathrm{S}_{2}{ }^{2}$
$\mathrm{S}_{1}^{2}=\frac{1}{\mathrm{n}_{1}-1} \sum_{i=1}^{n} x_{i}-\bar{x}^{2}$ and $\mathrm{S}_{1}{ }^{2}=\frac{1}{\mathrm{n}_{1}-1} \sum_{j=1}^{n} y_{j}-\bar{y}^{2}$
F distribution with d.f $\mathrm{V}_{1}=\mathrm{n}_{1}-1 \& \mathrm{~V}_{2}=\mathrm{n}_{2}-1$

Problems:

1. It is known that the mean diameters o rivets produced by two firms A and B are practically the same but the standard deviations may differ.
For 22 rivets produced by A, the $\mathrm{S} . \mathrm{D}$ is 2.9 m , while for 16 rivets manufactured by B, the $\mathrm{S} . \mathrm{D}$ is 3.8 m . Test whether the products of A have the same variability as those of B Solution:

$$
\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}
$$

ie., variability for the two types of products are same.
Los: $\alpha=0.05$ (or) 5\%
The test statistic $\quad \mathrm{F}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}} \quad \mathrm{~S}_{1}{ }^{2}>\mathrm{S}_{2}{ }^{2}$
Given, $\mathrm{n}_{1}=22 ; \quad \mathrm{n}_{2}=16$
$\mathrm{S}_{1}=2.9 ; \quad \mathrm{S}_{2}=3.8$
$\mathrm{S}_{1}{ }^{2}=\frac{\mathrm{n}_{1} \mathrm{~s}_{1}{ }^{2}}{\mathrm{n}_{1}-1}=\frac{22(2.9)^{2}}{22-1}=8.81$
$\mathrm{S}_{2}{ }^{2}=\frac{\mathrm{n}_{2} \mathrm{~S}_{2}{ }^{2}}{\mathrm{n}_{2}-1}=\frac{16(3.8)^{2}}{16-1}=15.40$
$\mathrm{F}=\frac{\mathrm{S}_{2}{ }^{2}}{\mathrm{~S}_{1}{ }^{2}} \quad \mathrm{~S}_{2}{ }^{2}>\mathrm{S}_{1}{ }^{2}$
$=\frac{15.40}{8.81}$
$\mathrm{F}=1.748$
Number of degrees of freedom are $V_{1}=16-1=15$

$$
V_{2}=22-1=21
$$

Critical value:
At 5\% Los, the table value of F at d.f $(15,21)$ is $\mathrm{F}=2.18$
Conclusion:
$\mathrm{F}<2.18, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore Variability for two types of products may be same.
2. Two random samples of sizes 8 and 11, drawn from two normal populations are characterized as follows

Size Sum of observations Sum of square of observations

Sample I	8	9.6	61.52
Sample II	11	16.5	73.26

You are to decide if the two populations can be taken to have the same variance.
Solution:
Let x and y be the observations of two samples
we set up: $\mathrm{H}_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$

$$
\& \mathrm{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

For sample I

$$
\begin{aligned}
& \mathrm{s}_{1}^{2}=\frac{\sum x^{2}}{\mathrm{n}}-\left(\frac{\sum x}{n}\right)^{2} \\
& =\frac{61.52}{8}-\left(\frac{9.6}{8}\right)^{2} \\
& =7.69-(1.2)^{2}=7.69-1.44 \\
& \mathrm{~s}_{1}^{2}=6.25
\end{aligned}
$$

For sample II

$$
\begin{aligned}
& \mathrm{s}_{2}^{2}=\frac{\sum y^{2}}{\mathrm{n}}-\left(\frac{\sum y}{n}\right)^{2} \\
& =\frac{73.26}{11}-\left(\frac{16.5}{11}\right)^{2} \\
& =6.66-(1.5)^{2}=6.66-2.25 \\
& \mathrm{~s}_{2}^{2}=4.41 \\
& \mathrm{~S}_{1}^{2}=\frac{\mathrm{n}_{1} \mathrm{~s}_{1}{ }^{2}}{\mathrm{n}_{1}-1}=\frac{8(6.25)}{7}=7.143
\end{aligned}
$$

$$
\mathrm{S}_{2}^{2}=\frac{\mathrm{n}_{2} \mathrm{~S}_{2}{ }^{2}}{\mathrm{n}_{2}-1}=\frac{11(4.41)}{10}=4.851
$$

$$
\mathrm{F}=\frac{\mathrm{S}_{2}^{2}}{\mathrm{~S}_{1}^{2}} \quad \mathrm{~S}_{2}^{2}>\mathrm{S}_{1}^{2}
$$

$$
\begin{aligned}
&= \frac{7.143}{4.851}=1.472 \\
& \mathrm{~F}=1.472
\end{aligned}
$$

Number of degrees of freedom are $V_{1}=n_{1}-1=8-1=7$

$$
\mathrm{V}_{2}=\mathrm{n}_{2}-1=11-1=10
$$

Critical value:
The table value of F for $(7,10)$ d.f at 5% Los is 3.14
Conclusion:
Since $|\mathrm{F}|<3.14, \mathrm{H}_{0}$ is accepted at 5% level
\therefore Variances of two populations may be same.
Variability for two types of products may be same.

Chi-Square Test

Definition

If $\mathrm{O}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots \ldots \mathrm{n})$ are set of observed (experimental) frequencies and $\mathrm{E}_{\mathrm{i}}(i=1,2, \ldots n)$ are the corresponding set of expected frequncies, then the statistic

$$
\begin{aligned}
& \chi^{2} \text { is defined as } \\
& \chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}}{\mathrm{E}_{\mathrm{i}}}
\end{aligned}
$$

The degree of freedom is $\mathrm{v}=\mathrm{n}-1$
For fitting Binomial distribution $\mathrm{v}=\mathrm{n}-1$
For fitting Poisson distribution $\quad \mathrm{v}=\mathrm{n}-2$
For fitting Normal distribution $\quad \mathrm{v}=\mathrm{n}-3$

Chi-square Test of Goodness of fit

If the calculated value of χ^{2} is less than the table value at a specified Los.
The fit is considered to be good otherwise the fit is considered to be poor.
Conditions for applying χ^{2} Test

For the validity of chi-square test of "goodness of fit" between theory and experiment following Conditions must be satisfied.
(i) The sample of observations should be independent
(ii) Constraints on the cell frequncies. If any, should be linear.
(iii) N , the total frequency should be reasonably large, say greater than 50 .
(iv) $\quad \mathrm{N}_{0}$ theoretical cell frequency should be less than 5, If any theoretical cell frequency less than 5, the for application χ^{2} test It is pooled with the preceeding or succeeding frequency so that the pooled frequency is greater than 5 and finally adjust for the d.f lost in pooling.

Problems

1. The following table gives the number of aircraft accident that occured during the various days of the week. Test whether the acidents are uniformly distributed over the week.

Days	: Mon	Tue	Wed	Thu	Fri	Sat	Total	
No.of accidents	$:$	14	18	12	11	15	14	84

Solution:
We set up H_{0} : The accidents are uniformly distributed over the week
$\operatorname{Los} \alpha=0.05$
Test Statistic $\chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}{ }^{2}}{\mathrm{E}_{\mathrm{i}}}$
Under the nul hypothesis,
The expected frequency of the on each day $=\frac{84}{6}=14$

$$
\begin{aligned}
& \mathrm{O}_{\mathrm{i}}: ~ \begin{array}{lllllll}
14 & 18 & 12 & 11 & 15 & 14
\end{array} \\
& \begin{array}{lllllll}
\mathrm{E}_{\mathrm{i}}
\end{array}: \begin{array}{lllll}
14 & 14 & 14 & 14 & 14
\end{array} 14 \\
& \chi^{2}=\frac{14-14^{2}}{14}+\frac{18-14^{2}}{14}+\frac{12-14^{2}}{14}+\frac{11-14^{2}}{14}+\frac{15-14^{2}}{14}+\frac{14-14^{2}}{14} \\
& =1.143+0.286+0.643+0.071
\end{aligned}
$$

$=2.143$
Number of degrees of freedom $V=n-1=7-1=6$
Critical value:
The tablulated value of χ^{2} at 5% for 6 d.f is 12.59
Conclusion:
Since $\chi^{2}<12.59$, we accept the null hypothesis
\therefore We conclude that the accidents are uniformly distributed over the week.
2. The theory predicts the population of beans in the four groups $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D should be 9:3:3:1. In an experiment among 1600 beans, the number in the four groups were 882,313 , 287 and 118. Does the experimental result support the theory?

Solution:

We set up the null hypothesis
H_{0} : The theory fits well into the experiment
ie., the experimental results supports the theory
Total Number of beans $=1600$
Divide these beans in the ratio 9:3:3:1
To calculate the expected frequencies

$$
\begin{aligned}
& \mathrm{E}(882)=\frac{9}{16} \times 1600=900 \\
& \mathrm{E}(313)=\frac{3}{16} \times 1600=300 \\
& \mathrm{E}(287)=\frac{3}{16} \times 1600=300 \\
& \mathrm{E}(118)=\frac{1}{16} \times 1600=100 \\
& \mathrm{O}_{\mathrm{i}}: 882 \quad 313 \quad 287 \quad 118
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{E}_{\mathrm{i}}: & 900 & 300 & 300
\end{array} 100
$$

Test Statistic $\chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}{ }^{2}}{\mathrm{E}_{\mathrm{i}}}$

$$
\chi^{2}=\frac{882-900^{2}}{900}+\frac{313-300^{2}}{300}+\frac{287-300^{2}}{300}+\frac{118-100^{2}}{100}
$$

$$
=0.36+0.563+0.563+3.24
$$

$$
\chi^{2}=4.726
$$

Critical Value:

The table value of χ^{2} at 5% for 3 d.f is 7.815
Conclusion:
Since $\chi^{2}<7.815, H_{0}$ is accepted at 5% Los.
\therefore We conclude that there is a very good correspondent between theory and experiment
3. 4 coins were tossed 160 times and the following results were obtained.

No. of heads $\begin{array}{lllllll}: & 0 & 1 & 2 & 3 & 4\end{array}$

Test the goodness of fit with the help of χ^{2} on the assumption that the coins are unbiased
Solution:
We set up, the null hypothesis, the coins are unbiased:

The probability if getting the success of heads is $\mathrm{p}=\frac{1}{2}$

$$
\mathrm{q}=1-\mathrm{p}=\frac{1}{2}
$$

When 4 coins are tossed, the probability of getting 'r' heads is given by,

$$
\begin{aligned}
& \begin{aligned}
\mathrm{P}(\mathrm{x}=\mathrm{r}) & =\mathrm{n}_{\mathrm{C}_{\mathrm{r}}} \mathrm{p}^{\mathrm{r}} q^{\mathrm{n-r}} ; \mathrm{r}=0,1,2,3,4 \\
& =4_{\mathrm{C}_{\mathrm{r}}}\left(\frac{1}{2}\right)^{\mathrm{r}}\left(\frac{1}{2}\right)^{4-\mathrm{r}} \\
& =4_{\mathrm{C}_{\mathrm{r}}}\left(\frac{1}{2}\right)^{4}
\end{aligned} \\
& \therefore \mathrm{P}(\mathrm{x}=\mathrm{r})=4_{\mathrm{C}_{\mathrm{r}}} \frac{1}{16} \quad \mathrm{r}=0,1,2,3,4
\end{aligned}
$$

The expected frequencies of getting $0,1,2,3,4$ heads are given by $1604_{\mathrm{C}_{\mathrm{r}}} \frac{1}{16}$

$$
\begin{aligned}
& =104_{C_{r}}, r=0,1,2,3,4 \\
& =10,40,60,40,10 \\
& \mathrm{O}_{i} \quad: \quad 19 \quad 50 \quad 52 \quad 30 \quad 9 \\
& \mathrm{E}_{i} \quad: \quad 10 \quad 40 \quad 60 \quad 40 \quad 10 \\
& \begin{array}{lllll}
26 & 48 & 43 & 26 & 12
\end{array} \\
& \text { Test Statistic } \chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}{ }^{2}}{\mathrm{E}_{\mathrm{i}}} \\
& \chi^{2}=\frac{19-10^{2}}{10}+\frac{50-40^{2}}{40}+\frac{52-60^{2}}{60}+\frac{30-40^{2}}{40}+\frac{9-10^{2}}{40} \\
& =8.1+2.5+1.067+2.5+0.1 \\
& \chi^{2}=14.267 \\
& \text { D.f } \quad V=n-1=5-1=4
\end{aligned}
$$

Critical value:
The table value of χ^{2} for 4 d.f at $5 \% \operatorname{Los}$ is 9.488
Conclusion:
Since $\chi^{2}>9.488, \mathrm{H}_{0}$ is rejected at 5% Los
\therefore The coins are biased
4. The follwoing table shows the distribution of goals in a football match
$\begin{array}{llllllllll}\text { No. of goals } & : & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
No. of mistakes : $\begin{array}{llllllll}95 & 158 & 108 & 63 & 40 & 9 & 5 & 2\end{array}$

Fit a poisson distribution and test the goodness of fit.
Solution:
Fitting of poisson distribution

$$
\begin{aligned}
& \mathrm{x}: \\
& \mathrm{f}: \\
& \mathrm{f}: \\
& 95 \\
& 95
\end{aligned} 158
$$

\therefore The expected frequencies are computed by
$=480 \times \frac{e^{-1.7}(1.7)^{r}}{r!} \quad r=0,1,2,3,4,5,6,7$
$=88,150,126,72,30,10,3,1$
We set up H_{0} : The fit is good
Test Statistic $\chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}{ }^{2}}{\mathrm{E}_{\mathrm{i}}}$

$$
\begin{aligned}
& \mathrm{O}_{i} \quad: \quad 95 \quad 158 \quad 108 \quad 63 \quad 40 \quad \underbrace{9}_{16} \begin{array}{l}
5 \\
\hline
\end{array} \\
& \mathrm{E}_{i} \quad: \begin{array}{llllll}
1 & 88 & 150 & 126 & 72 & 30
\end{array} \underbrace{10}_{14} \begin{array}{l}
3 \\
10
\end{array} \\
& \chi^{2}=\frac{\mathrm{O}-\mathrm{E}^{2}}{\mathrm{E}}=\frac{95-88^{2}}{88}+\frac{158-150^{2}}{150}+\frac{108-126^{2}}{126}+\frac{40-30^{2}}{30}+\frac{16-14^{2}}{14}+\frac{63-72^{2}}{72} \\
& =0.56+0.43+2.57+3.33+1.12+0.29
\end{aligned}
$$

$$
\chi^{2}=8.30
$$

Number of degrees of freedom $\mathrm{V}=\mathrm{n}-2=6-2=4$
Critical value:
The table value of χ^{2} at 5% Los for 4 d.f is 9.483
Conclusion:
Since $\chi^{2}<9.483, H_{0}$ is accepted at 5% Los.
\therefore The fit is good
5. Apply the χ^{2} test of goodness of fit to the follwoing data

Test Statistic $\chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}{ }^{2}}{\mathrm{E}_{\mathrm{i}}}$

$$
\begin{aligned}
& \chi^{2}=\frac{6-7^{2}}{7}+\frac{20-18^{2}}{18}+\frac{28-25^{2}}{25}+\frac{42-40^{2}}{40}+\frac{22-25^{2}}{25}+\frac{15-18^{2}}{18}+\frac{7-7^{2}}{7} \\
& =0.143+0.222+0.36+0.1+0.36+0.5+0 \\
& \chi^{2}=1.685 \\
& \text { d.f } \mathrm{V}=\mathrm{n}-1=7-1=6
\end{aligned}
$$

Critical value:
At 5% Los, the table value of χ^{2} for 6 d.f is 12.592
Conclusion:
Since $\chi^{2}<12.592, H_{0}$ is accepted at 5% Los.
\therefore The fit is good
6. The follwoing table shows the number of electricity failures in a town for a period of 180 days

Failures	$:$	0	1	2	3	4	5	6	7

No. of days : $\begin{array}{lllllllll}12 & 39 & 47 & 40 & 20 & 17 & 3 & 2\end{array}$
Use χ^{2}, examine whether the data are poisson distributed.

Solution:

Fitting of poisson distribution

$\mathrm{x}:$	0	1	2	3	4	5	6	7
$\mathrm{f}:$	12	39	47	40	20	17	3	2
$\mathrm{fx}:$	0	39	94	120	80	85	18	14
$\sum f x=450$	and $\sum f=180$							

$\therefore \bar{x}=\lambda=\frac{\sum f_{x}}{\sum f}=\frac{450}{180}=2.5$
\therefore The expected frequencies are computed by

$$
=180 \times \frac{e^{-2.5}(2.5)^{r}}{r!} \quad \mathrm{r}=0,1,2,3,4,5,6,7
$$

$$
\mathrm{E}_{i}=15,37,46,38,24,12,5,2
$$

$$
\mathrm{r}=0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 67
$$

We set up H_{0} : The fit is good
$\mathrm{O}_{i} \quad \begin{array}{llllllll}12 & 39 & 47 & 40 & 20 & 17 & \underbrace{3 \quad 2}_{5}\end{array}$

$$
\mathrm{E}_{i}: \begin{array}{lllllll}
15 & 37 & 46 & 38 & 24 & 12 & \underbrace{5 \quad 2}_{7}
\end{array}
$$

\therefore Test Statistic χ^{2}

$$
\begin{aligned}
& \quad \chi^{2}=\frac{12-15^{2}}{15}+\frac{39-37^{2}}{37}+\frac{47-46^{2}}{46}+\frac{40-38^{2}}{38}+\frac{20-24^{2}}{24}+\frac{17-12^{2}}{12}+\frac{5-7^{2}}{7} \\
& =0.6+0.108+0.022+0.105+0.667+2.083+0.5+1
\end{aligned}
$$

$\chi^{2}=4.156$
d.f $V=n-1=7-1=6$

Critical value:
At 5% Los, the table value of χ^{2} for 6 d.f is 12.592
Conclusion:
Since $\chi^{2}<12.592, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore The fit is good

Test for Independence of Attributes

Attribute A

$$
\mathrm{B}_{\mathrm{s}} \quad \mathrm{O}_{s 1} \quad \mathrm{O}_{s 2} \ldots \ldots \ldots \ldots \ldots \mathrm{O}_{\mathrm{sj} 1} \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{O}_{s t} \quad\left(\mathrm{~B}_{s}\right)
$$

Total (A_{1})
(A_{2}).
(A_{i}).
................. $\left(\mathrm{A}_{t}\right)$
N
Attribute A

Such a table is called $(\mathrm{s} \times \mathrm{t})$ consistency table
Here, $\quad \mathrm{N} \rightarrow$ Total Frequency
$\mathrm{O}_{\mathrm{ij}} \rightarrow$ Observed frequency of $(\mathrm{i}, \mathrm{j})^{\text {th }}$ cell
The expected frequency e_{ij} obtained by the rule

$$
\begin{array}{r}
\mathrm{e}_{\mathrm{ij}}=\frac{\text { row total } \mathrm{B}_{i} \text { Column total } \mathrm{A}_{j}}{N} \text { Where } \mathrm{i}=1,2,3 \ldots \ldots . \mathrm{s} \\
\mathrm{j}=1,2 \ldots \ldots \ldots . \mathrm{t}
\end{array}
$$

Degrees of freedom associated with $s \times t$ consistency table $=(s-1) \times(t-1)$
Chi-square table for 2×2 consistency table
In a 2×2 consistency table where in the frequencies are $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the value of χ^{2} is
$\chi^{2}=\frac{(a+b+c+d)(a d-b c)^{2}}{(a+b)(a+c)(c+d)(b+d)}$

Problems:

1. An opinion poll was conducted to find the reaction to a proposed civic reform in 100 members of each of the two political parties theinformation is tabulated below

	Favorable	Unfavorable	Indifferent
Party A	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{3 0}$
Party B	$\mathbf{4 2}$	$\mathbf{2 8}$	$\mathbf{3 0}$

Test for Indepedence of reduction with the party affiliations.
Solution:
We set up H_{0} : Reactions and party affiliations are independent The expected frequencies are calculated by

40	30	30	100
42	28	30	100
Total 82	58	60	200
Favorable	Unfavorable	Indifferent	
$\frac{82 \times 100}{200}=41$	$\frac{58 \times 100}{200}=29$	$\frac{60 \times 100}{200}=30$	

Party B $\quad \frac{82 \times 100}{200}=41 \quad \frac{58 \times 100}{200}=29 \quad \frac{60 \times 100}{200}=30$
\therefore Test Statistic χ^{2}
$\chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}{ }^{2}}{\mathrm{E}_{\mathrm{i}}}$

O_{i}	$:$	40	30	30	42	28	30

| E_{i} | $:$ | 41 | 29 | 30 | 41 | 29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 30$

$$
\begin{aligned}
& \quad \chi^{2}=\frac{40-41^{2}}{41}+\frac{30-29^{2}}{29}+\frac{30-30^{2}}{30}+\frac{42-41^{2}}{41}+\frac{28-29^{2}}{29}+\frac{30-30^{2}}{30} \\
& =0.024+0.024+0.034+0.034 \\
& \chi^{2}=0.116
\end{aligned}
$$

Number of degrees of freedom $=(2-1)(3-1)=2$
Critical value:
At 5% Los, the table value of χ^{2} for 2 d.f is 5.99
Conclusion:
Since $\chi^{2}<5.99, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore The independence of reactions with the party affiliations may be correct.
2. In a locality 100 persons were randomly selected and asked about their educational achievements. The results are given below.

		Education	
	Middle	High School	College
Male	10	15	25
Female	25	10	15

Can you say that education depends on sex?
3. The following table gives the classification of 100 workers according to sex and the nature of work. Test whether nature of work is independent of the sec of the worker.
Skilled Unskilled Total
Male
40
20
60

Sex Female 10
30
40
Total 50
50
Solution:
H_{0} : Nature of work is independent of the sex of the worker
Under H_{0}, the expected frequencies are

$$
\begin{array}{ll}
\mathrm{E}(40)=\frac{60 \times 50}{100}=30 ; & \mathrm{E}(20)=\frac{60 \times 50}{100}=30 \\
\mathrm{E}(10)=\frac{40 \times 50}{100}=20 ; & \mathrm{E}(30)=\frac{40 \times 50}{100}=20
\end{array}
$$

\therefore Test Statistic χ^{2}

$$
\begin{aligned}
& \chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}{ }^{2}}{\mathrm{E}_{\mathrm{i}}} \\
& \mathrm{O}_{i} \quad: 40 \quad 20 \quad 10 \quad 30 \\
& \mathrm{E}_{i} \quad: 30 \quad 30 \quad 20 \quad 20 \\
& \chi^{2}=\frac{40-30^{2}}{30}+\frac{20-30^{2}}{30}+\frac{10-20^{2}}{20}+\frac{30-20^{2}}{20} \\
& =3.333+3.333+5+5 \\
& \chi^{2}=16.67
\end{aligned}
$$

Number of degrees of freedom $=(2-1)(2-1)=1$
Critical value:
The table value of χ^{2} at 5% Los, for 1 d.f is 3.841

Conclusion:

Since $\chi^{2}>3.841, \mathrm{H}_{0}$ is rejected at 5% Los.
\therefore We conclude that the nature of work is dependent on sex of the worker.
4. From the following data, test whether there is any association between intelligency and economics conditions

Intelligences							
	Excellent	Good	Medium	Dull	Total		
Economic	Good	$\mathbf{4 8}$	$\mathbf{2 0 0}$	$\mathbf{1 5 0}$	$\mathbf{8 0}$	$\mathbf{4 7 8}$	
Conditions	Not Good	$\mathbf{5 2}$	$\mathbf{1 8 0}$	$\mathbf{1 9 0}$	$\mathbf{1 0 0}$	$\mathbf{5 2 2}$	
	Total	$\mathbf{1 0 0}$	$\mathbf{3 8 0}$	$\mathbf{3 4 0}$	$\mathbf{1 8 0}$	$\mathbf{1 0 0 0}$	

Solution:
H_{0} : There is no association between intelligency and economic conditions.
Los: $\alpha=0.05$ (or) 5%
Under H_{0}, the expected frequencies are obtained as follows

$$
\begin{array}{ll}
\mathrm{E}(48)=\frac{100 \times 478}{1000}=47.8 ; & \mathrm{E}(52)=\frac{100 \times 522}{1000}=52.2 \\
\mathrm{E}(200)=\frac{380 \times 478}{1000}=181.64 ; & \mathrm{E}(180)=\frac{380 \times 522}{1000}=198.36 \\
\mathrm{E}(150)=\frac{478 \times 340}{1000}=162.52 ; & \mathrm{E}(190)=\frac{340 \times 522}{1000}=177.48 \\
\mathrm{E}(80)=\frac{180 \times 478}{1000}=86.04 ; & \mathrm{E}(100)=\frac{180 \times 522}{1000}=93.96
\end{array}
$$

$$
\begin{array}{llllllllll}
\mathrm{O}_{i} & : & 48 & 200 & 150 & 80 & 52 & 180 & 190 & 100
\end{array}
$$

$$
\begin{array}{lllllllll}
\mathrm{E}_{i} & : & 47.8 & 181.64 & 162.52 & 86.04 & 52.2 & 198.36 & 177.48 \\
93.96
\end{array}
$$

\therefore Test Statistic χ^{2}

$$
\begin{aligned}
& \chi^{2}=\sum_{i=1}^{n} \frac{\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}}{\mathrm{E}_{\mathrm{i}}} \\
& = \\
& =\frac{48-47.8^{2}}{47.8}+\frac{150-162.52^{2}}{162.52}+\frac{52-52.2^{2}}{52.2}+\frac{190-177.48^{2}}{177.48}+\frac{200-181.64^{2}}{181.64} \\
& \quad+\frac{80-86.04^{2}}{86.04}+\frac{180-198.36^{2}}{198.36}+\frac{100-93.96^{2}}{93.96} \\
& =0.0008+0.9645+0.0008+0.8832+1.8558+0.4240+1.6994+0.3883 \\
& \chi^{2}= \\
&
\end{aligned}
$$

Number of degrees of freedom $=(\mathrm{s}-1)(\mathrm{t}-1)=(2-1)(4-1)=3$

Critical value:

The table value of χ^{2} at 5% Los for 3 d.f is 7.815
Conclusion:
Since $\chi^{2}<7.815, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore We conclude that there is no association between intelligency and economic conditions
5. From the following data, test the hypothesis that the flower color is independent of flatness of leaf

	Flat leaves	Curved leaves	Total
White Flowers	$\mathbf{9 9}$	36	135
Red Flowers	20	5	25
Total	119	41	160

Solution:
We set up: H_{0} : flower color is independent of flatness of leaf. Los $\alpha=0.05$ (or) 5%
The given probelm is a 2×2 consistency table
\therefore we use the formula to find χ^{2} is
$\chi^{2}=\frac{(a+b+c+d)(a d-b c)^{2}}{(a+b)(a+c)(c+d)(b+d)}$
Here, $a=99 ; b=36 ; \quad e=20 ; \quad d=5$

$$
\begin{aligned}
& \chi^{2}=\frac{160(495-720)^{2}}{(135)(119)(25)(41)}=\frac{160(50625)}{16,466,625} \\
& \chi^{2}=0.4919
\end{aligned}
$$

Number of degrees of freedom $=(\mathrm{s}-1)(\mathrm{t}-1)=(2-1)(2-1)=1$
Critical value:
The table value of χ^{2} at 5% Los for 1 d.f is 3.841

Conclusion:
Since $\chi^{2}<3.841, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore Flower colour is independent of flatness of leaf.

Test for single variance

Chi-square test for population variance

In this method, we set up the null hypothesis $\mathrm{H}_{0}: \sigma^{2}=\sigma_{0}{ }^{2}$ (with a specified variance)
The test statistic $\quad \chi^{2}=\frac{n s^{2}}{\sigma^{2}}$
Where $\mathrm{n}=$ sample size
$\mathrm{s}=$ sample variance
$\sigma=$ population variance
Note:

* If the sample size n is large (>30)

The test statistic $\mathrm{z}=\sqrt{2 \chi^{2}}-\sqrt{2 n-1} \sim N(0,1)$
We use the usual normal test.

1. A random sample of size 9 from a normal population have the following values $72,68,74,77$, $61,63,63,73,71$. Test the hypothesis that the population variance is 36 .

Solution:
Null hypothesis $\quad \mathrm{H}_{0}: \sigma^{2}=36$
Alternative hypothesis $\mathrm{H}_{1}: \sigma^{2} \neq 36$
Los $\alpha: 0.05$ (or) 5%
\therefore The test statistic $\quad \chi^{2}=\frac{n s^{2}}{\sigma^{2}}$
x: 72
$68 \quad 74 \quad 77$
$\sum x=622 ; \quad \overline{\mathrm{x}}=\frac{\sum x}{n}=\frac{622}{9}=69.11$
$\begin{array}{lllllllllll}x-\bar{x} & : & 2.9 & -1.1 & 4.9 & 7.9 & -8.1 & -6.1 & -6.1 & 3.9 & 1.9\end{array}$
$x-\bar{x}^{2}: 8.41 \quad 1.21 \quad 24.01 \quad 62.41 \quad 65.61 \quad 37.21 \quad 37.21 \quad 15.21 \quad 3.61$
$\sum x-\bar{x}^{2}=254.89$
$\chi^{2}=\frac{n s^{2}}{\sigma^{2}}=\frac{254.89}{36}=7.08$
d. f $n-1=9-1=8$

Critical value:
The table value of χ^{2} for 8 d.f at 5% Los is 15.51

Conclusion:

Since $\chi^{2}<15.51, \mathrm{H}_{0}$ is accepted at 5% Los.
\therefore We conclude that the hypothesis of population variance is 36 is accepted
2. Test the hypothesis that $\sigma=10$, given that $\mathrm{s}=15$ for a random sample of size 50 from a normal population

Solution:
Null hypothesis $\quad \mathrm{H}_{0}: \sigma=10$
Alternative hypothesis $\mathrm{H}_{1}: \sigma \neq 36$
We are given $\mathrm{n}=50 ; \quad \mathrm{s}=15$

$$
\chi^{2}=\frac{n s^{2}}{\sigma^{2}}=\frac{50 \times 225}{100}=112.5
$$

Since ' n ' is large $\left(\mathrm{n}>30\right.$, the test statistic $\mathrm{z}=\sqrt{2 \chi^{2}}-\sqrt{2 n-1}$

$$
=\sqrt{225}-\sqrt{99}=15-9.95
$$

$$
\mathrm{z}=5.05
$$

This statistic z follows $\mathrm{N}(0,1)$
Critical value:
At 5% Los, the table value of z is 3
Conclusion:
Since $|z|>3, H_{0}$ is rejected.
\therefore We conclude that $\sigma \neq 10$
3. The standard deviation of the distribution of times taken by 12 workers for performing a Job is 11 sec . Can it be taken 1 as a sample from a popualation whose S.D is 10 sec .

Solution:

Let $\mathrm{H}_{0}: \sigma=10$
ie., the population standard deviation $\sigma=10$

$$
\mathrm{H}_{1}: \sigma \neq 10
$$

$\operatorname{Los} \alpha: 0.05$ (or) 5% Los
Given $\mathrm{n}=12 ; \quad \mathrm{s}=11$
\therefore The test statistic is

$$
\begin{aligned}
\begin{aligned}
\chi^{2} & =\frac{n s^{2}}{\sigma^{2}} \\
& =\frac{12 \times 121}{100}=14.52 \\
\chi^{2} & =14.52
\end{aligned} \\
\text { Degrees of freedom }=\mathrm{n}-1=12-1=11
\end{aligned}
$$

Critical value:
The table value of χ^{2} for 11 d.f at 5% Los is 19.675 .

Conclusion:

Since $\chi^{2}<19.675, \mathrm{H}_{0}$ is accepted at 5% level
\therefore The S.D of the time element is 10 sec is supported.
ie., the population standard deviation $\sigma=10$

UNIT -2 DESIGNS OF EXPERIMENT

Define Anova?

Anova is separation of variance ascribable to one group of causes from the variance ascribable to other group

Some Important Abbreviations:

$>$ SSC- Between sum of squares (Column)
$>$ TSS- Total sum of squares
$>$ SST-Sum of squares due to Treatments
$>$ MSS- Mean Sum of squares
$>$ SSE- Error Sum of squares (or) Within Sum of squares
$>$ RSS- Row Sum of squares
$>$ CF- Correction Factor
$>$ CD-Critical Difference
$>$ SSR-Sum of squares between Rows
$>$ MSC- Mean Sum of squares (Between Columns)
$>$ MSE- Mean Sum of squares (within Columns)
$>$ MSR-Mean Sum of squares (Between Rows)
$>$ N1-Number of Elements in each Column
$>$ N2- Number of Elements in each Row
Anova Table-For One way Classification(C.R.D):

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio
Between Columns	SSC	$\mathrm{C}-1$	$\mathrm{MSC}=\overline{\mathrm{C}-1}$	$\mathrm{~F}-\frac{\mathrm{MSC}}{\mathrm{MSE}}$
Within Columns	SSE	$\mathrm{N}-\mathrm{C}$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{C}}$	$\mathrm{F}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$
Total	TSS	$\mathrm{NR})$		

Anova Table For Two wav Classification :

Randomized Block Design (R.B.D)

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio
Column Treatment	SSC	$\mathrm{C}-1$	$\mathrm{MSC}=\frac{\mathrm{SSL}}{\mathrm{C}-1}$	$\mathrm{~F}_{\mathrm{c}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$
Row Treatment	SSR	$\mathrm{R}-1$	$\mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{R}-1}$	$\mathrm{~F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}}$
Error	SSE	N-C-R+1	MSE $=\frac{\mathrm{DJE}}{(\mathrm{R}-1)(\mathrm{C}-1)}$	
Total	TSS		Condition Always F >1	

Anova Table For Three way Classification:

Latin Square Design (L.S.D)

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio
Between Columns	SSC	K-1	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{~K}-1}$	$\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$
Between Rows	SSR	K-1	$\mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{K}-1}$	
Between Treatments	SST	K-1	$\mathrm{MST}=\frac{\mathrm{SST}}{\mathrm{K}-1}$	
Error	SSE	(K-1)(K-2)	$\text { MSE }=\frac{\text { SSE }}{(K-1)(K-2)}$	$\mathrm{F}_{\mathrm{T}}=\frac{\mathrm{MST}}{\mathrm{MSE}}$
Total	TSS	$\mathrm{K}^{2}-1$	Condition Always F>1	

Merits \& Demerits of C.R.D:

* Merits
$>$ It has a simple layout
$>$ The analysis the design as it results in a one way classification analysis of variance
$>$ There is complete flexibility as the number of replication is not fixed
$>$ Analysis can be performed if some observations are missing
* Demerits:
$>$ The Experimental error is large as compare to other designs because homogeneity of the units is not taken into consideration

Merits \& Demerits of R.B.D:

* Merits
$>$ It has a simple layout but it is more efficient than CRD because of reduction of experimental error
$>$ Analysis is possible even if some observations are missing
$>$ It is flexible and so any number of treatments and any number of replication may be used
$>$ The analysis of design is simple as its results in a two way classification of analysis of variance
$>$ This is more popular design with experiments because of its simplicity, flexibility and validity
* Demerits:
$>$ If the number of treatments is large, then the size of the block will increase this may causes heterogeneity within the blocks
$>$ The shape of experimental material should be Rectangle
$>$ If the interation are large, the experiment may yields misreading results

Merits \& Demerits of L.S.D:

* Merits
$>$ The analysis of design is simple as its results in a three way classification of analysis of variance
$>$ LSD controls variations in two directions of the experimental materials as row and column resulting in the reduction of experimental error
$>$ The analysis of remains relatively simple even with missing data
* Demerits:
$>$ The number of treatments should be equal to the number of rows and columns as the area should be in square form
$>$ It is suitable only for smaller number of treatments say between 5 to 12
$>2 \times 2$ Latin square is not possible
$>$ The process of randomization is not as simple as RBD
Some Important Formulas:
- Correction Factor (CF) $=T^{2} \underset{\mathrm{~N}}{2}$ Where $\mathrm{N}=$ Number of Data's given in the problem, $\mathrm{T}=$ Total
- TSS $\left.=\underset{\left(\Sigma_{\mathrm{i}=1,2,3, \ldots}\right.}{\left[\left(\Sigma_{\mathrm{i}=1,2, \ldots}\right)^{2}\right.} \mathrm{X}_{\mathrm{i}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}_{\mathrm{T}^{2}}}, \mathrm{i}$ ranges from number of colums given in the Pb
- $\operatorname{SSC}=\left[\left(\overline{\left(\Sigma_{\left.\mathrm{i}=1,2,3, \ldots, \mathrm{Y}_{\mathrm{i}}\right)^{2}}^{N_{1}}\right)-\frac{\mathrm{N}^{2}}{2}}\right]\right.$, i ranges from number of colums given in the Pb
- $\operatorname{SSR}=\left[\left(\begin{array}{ll}\mathrm{N}_{2}\end{array}\right)-\overline{\mathrm{N}}\right]$, i ranges from number of rows given in the Pb
- $\operatorname{SSE}=\mathrm{TSS}-\mathrm{SSC}(\mathrm{OR}) \mathrm{SSE}=\mathrm{TSS}-\mathrm{SSR}$, Based on the Problem (For CRD)
- $\operatorname{SSE}=\mathrm{TSS}-\mathrm{SSR}-\mathrm{SSC}($ For RBD)
- $\operatorname{SSE}=\mathrm{TSS}-\mathrm{SSR}-\mathrm{SSC-SST}($ For LSD $)$

Note:
$\checkmark \mathrm{N}_{1}=$ number of elements in each Column
$\checkmark \mathrm{N}_{2}=$ number of elements in each Row

- Compare RBD and LSD:

S.No.	LSD	RBD
1	The number of replication of each treatment is equal to the number of treatments in LSD	There are no such restrictions on treatments and replication in RBD.
2	LSD can be performed on a square field.	While RBD can be performed either on a square field or a rectangle field.
3	LSD is known to be suitable for the case when the number of treatments is between 5 and 12	RBD can be used for any number of treatments.
4	The main advantage of LSD is that it controls the effect of two extraneous variables.	RBD controls the effect of only one extraneous variable. Hence the experimental error is reduced to a larger extent in LSD than in RBD.

- Name the basic principles of experimental design.

There are three basic principles of experimental design. They are:
(i) Randomization
(ii) Replication
(iii) Local Control

- Define Randomization:

It ensures that each treatment gets an equal chance of being allocated. Consequently randomization eliminates the bias of any form.

- Define Replication:

By replication we mean, the repetition of the treatments under investigation. Due to replication more reliable estimates can be made available. To be more precise as the replication increases the experimental error decreases.

- Define Local Control:

It is a process of reducing the experimental error by dividing the heterogeneous experimental area into homogeneous blocks.

- Define "Analysis of Variance" (or) ANOVA.

According to R.A. Fisher, Analysis Of Variance (ANOVA) is the separation of variance ascribable to one group of causes from the variance ascribable to other groups.

- Define "experimental error".

The estimation of the amount of variation due to each of the independent factors separately and then comparing these estimates due to assignable factors with the estimate due to the chance factor is known as experimental error or simple error.

- What do you mean by one-way classification in analysis of variance?

In one-way classification the data are classified according to only one criterion (or) factor.

- Explain the meaning and use of Analysis of Variance?

Analysis of variance to test the homogeneity several means.

Uses:

(i) It helps to find out the F-test
(ii) Between the samples we can find the variances.

- Define the term Completely Randomized Design.

The completely randomized design is the simplest of all the designs, based on principles of randomization and replication. In this design, treatments are allocated at random to the experimental units over the entire experimental.

- What is a randomized block design?

Let us consider an agricultural experiment using which we wish to test the effect of ' k ' fertilizing treatments on the yield of crops. We assume that we know some information about the soil fertility of the plots. Then we divide the plots into ' h ' blocks. Thus the plots in each block will be of homogeneous fertility as far as possible within each block, the ' k ' treatments are given to the ' k ' plots in a perfectly random manner, such that each treatment occurs only once in any block. But the same k treatments are repeated from block to block. This design is called Randomized Block Design

- State the differences between CRD and RBD.

S.No.	CRD	RBD
1	This design provides a one-way classified data according to levels of a single factor namely 'treatment'	The analysis of the design is simple and straight forward as in the case of two-way classification.
2	It has a simple layout	The analysis of this decision is not as simple as a completely randomized design.
3	Grouping of the experimental site so as to allocate the treatments at random to the experimental units is not done	Treatments are allocated at random within the units of each stratum.

- Define Latin Square Design:

Here for k treatments we should have k^{2} experimental units arranged in a square. So that each row as well as each column contains k units. Such a layout is known as $\mathrm{k} x \mathrm{k}$ latin square design. The treatments should be allocated in a random manner in such a way that each treatment occurs in each row and each column.

- What are the basic principal of experimental design?
(Apr/May 2015 (R2013 \& R2008))
Soln: There are three basic principles of experimental design. They are:
(iv) Randomization
(v) Replication
(vi) Local Control
- Is 2×2 Latin square is possible? Why?
(Apr/May, \& Nov/Dec 2015)
Soln: No because SSE degree of freedom is $(\mathrm{k}-1)(\mathrm{k}-2)$ where k is number of rows and columns
In 2X2 Latin square $\mathrm{k}=2$ so SSE degree of freedom is zero, If error is zero we are not able to find calculated value of F
- Define (a) Mean Square (b) Complete randomized design
(Nov/Dec 2015)
Soln: (a) mean squares are used to determine whether factors (treatments) are significant. The treatment mean square is obtained by dividing the treatment sum of squares by the degrees of freedom. The treatment mean square represents the variation between the sample means.
(b) The completely randomized design is the simplest of all the designs, based on principles of randomization and replication. In this design, treatments are allocated at random to the experimental units over the entire experimental.
- What is the aim of designs of experiments?
(Apr/May 2015)
Soln: The design of experiments is the design of any task that aims to describe or explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with true experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasiexperiments in which natural conditions that influence the variation are selected for observation.

PART-B

1) The following are the numbers of mistakes made in 5 successive days of 4 Technicians working a photographic laboratory

Technicians-I	Technicians-II	Technicians-III	Technicians-IV
$\mathbf{6}$	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{9}$
$\mathbf{1 4}$	$\mathbf{9}$	$\mathbf{1 2}$	$\mathbf{1 2}$
$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{1 0}$
$\mathbf{1 1}$	$\mathbf{1 4}$	$\mathbf{1 1}$	$\mathbf{1 1}$

Test the level of signification $\alpha=0.01$ whether the difference among the 4 sample can be attributed to chance?

Soln: Ho: There is no significance difference betwee the Technicians

H_{1} : There is a significance difference betwee the Technicians

We shifted our origin to 10

X_{1} $\left(\mathrm{X}_{1}-10\right)$	X_{2} $\left(\mathrm{X}_{2}-10\right)$	X_{3} $\left(\mathrm{X}_{3}-10\right)$	X_{4} $\left(\mathrm{X}_{4}-10\right)$	Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
-4	4	0	-1	-1	16	16	0	1
4	-1	2	2	7	16	1	4	4
0	2	-3	-2	-3	0	4	9	4
-2	0	5	0	3	4	0	25	0
1	4	1	1	7	1	16	1	1
$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathbf{y}($ Total $)$	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$	$\Sigma \mathrm{X}_{4}^{2}$
$\mathbf{- 1}$	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{T}=\mathbf{1 3}$	$\mathbf{3 7}$	$\mathbf{3 7}$	$\mathbf{3 9}$	$\mathbf{1 0}$

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=20$)
Step 2: T=13 (From above Table)
Step $3: \frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(13)^{2}}{20}=8.45$ (Correction Factor)
Step4: TSS $=\underset{1}{\Sigma \mathrm{X}^{2}}+\underset{2}{\Sigma \mathrm{X}^{2}}+\underset{3}{\Sigma \mathrm{X}^{2}}+\underset{4}{\Sigma \mathrm{X}^{2}} \underset{4}{\mathrm{~T}} \underset{\mathrm{~N}}{ }{ }^{2}=(37+37+39+10-8.45)=114.55$
Step 5: $\mathrm{SSC}=\frac{\mathrm{ZX}_{1}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{3}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{4}^{2}}{\mathrm{~N}_{1}}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(-1)^{2}}{5}+\frac{9^{2}}{5}+\frac{5^{2}}{5}+0-8.45\right)=12.95$
Step 6: SSE = TSS - SSC $=114.55-12.95=101.6$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio	Table Value at 1\% level
Between Columns	$\mathrm{SSC}=12.95$	$\mathrm{C}-1=4-1=$ 3	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{C}}$ $=4.317$	$\mathrm{F}=\frac{\mathrm{MSC}}{\mathrm{MSE}}<$ MSE	$\mathrm{Fc}(16,3)$ $=26.87$
Error	$\mathrm{SSE}=101.6$	$\mathrm{N}-\mathrm{C}=20-4$ $=16$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{C}}$	$\mathrm{F}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$	1.471

Conclusion \rightarrow Calculate $\mathrm{F}_{\mathrm{c}}(1.471)$ < table value of $\mathrm{F}_{\mathrm{c}}(26.87)$ so we accept H_{0}
(ie)There is no significance difference betwee the Technicians
2) There are three main brands of a certain powder, A set of $\mathbf{1 2 0}$ sample values is examined and found to be allocated among four groups (A,B,C,D) and three brands are (I,II,III) are shown under

Brands	Groups			
			8	15
I	0	4	13	6
II	5	8	11	13
III	8	19	5	

Is there any significance difference in brands preference answer at $\mathbf{5 \%}$ Level?
Soln:
H_{0} : There is no significance difference in Brands
H_{1} : There is a significance difference in Brands

Brand	Groups				Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
	X_{1} (A)	$\begin{aligned} & \mathrm{X}_{2} \\ & \text { (B) } \end{aligned}$	$\begin{aligned} & \mathrm{X}_{3} \\ & (\mathrm{C}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X}_{4} \\ & \text { (D) } \end{aligned}$					
$\mathrm{I}\left(\mathrm{Y}_{1}\right)$	0	4	8	15	$\Sigma \mathrm{y} 1=27$	0	16	64	225
II (Y2)	5	8	13	6	$\Sigma \mathrm{y}_{2}=32$	25	64	169	36
III (Y_{3})	8	19	11	13	$\Sigma \mathrm{y}_{3}=51$	64	361	121	169
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathrm{y}$ (Total)	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$	$\Sigma \mathrm{X}_{4}^{2}$
	13	31	32	34	$\mathrm{T}=110$	89	441	354	430

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=12$)
Step 2: $\mathrm{T}=\mathbf{1 1 0}$ (From above Table)
Step $3: \frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(110)^{2}}{12}=1008.3$ (Correction Factor)
Step4 : TSS $=\underset{1}{\Sigma \mathrm{X}^{2}}+\underset{2}{\Sigma \mathrm{X}^{2}}+\underset{3}{\Sigma \mathrm{X}^{2}}+\underset{4}{\mathrm{I}} \mathrm{X}^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=(89+441+354+430-1008.3)=305.7$
Step 5: SSR $=\frac{\mathrm{Zy}_{1}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(27)^{2}}{4}+\frac{32^{2}}{4}+\frac{51^{2}}{4}-1008.3\right)=80.2$
Step 6: $\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSR}=305.7-80.2=\mathbf{2 2 5 . 5}$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio	Table Value at 5\% level
Between Rows	$\mathrm{SSR}=80.2$	$\mathrm{R}-1=3-1=$	$\mathrm{MSC}=\frac{\mathrm{SSR}}{\mathrm{R}-1}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}} \\ & =1.999 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}(2,9) \\ & =4.26 \end{aligned}$
Error	$\mathrm{SSE}=225$	$\begin{aligned} \mathrm{N}-\mathrm{C} & =12-3 \\ & =9 \end{aligned}$	$\begin{aligned} & \text { MSE }=\frac{\text { SSE }}{\mathrm{N}-\mathrm{R}} \\ & =2006 \end{aligned}$	$\mathrm{F}=\frac{\mathrm{M} \phi \mathrm{E}}{\mathrm{MSR}}<1$	
Total	TSS $=305.7$	$\begin{aligned} & \mathrm{N}-1=12-1 \\ & =11 \end{aligned}$	Condition Always F >1		

Conclusion \rightarrow Calculate F_{R} (1.999) < table value of $\mathrm{F}_{\mathrm{R}}(4.26)$ so we accept H_{0}
(ie)There is no significance difference in Brands
3) Three different machines are used for production ,on the basis of the outputs, setup One - Way ANOVA table and test whether the machines are equally effective.

MACHINE I	MACHINE II	MACHINE III
10	9	20
15	7	16
11	5	10
10	6	14

Given that the value of F at 5% level of significance for $(2,9)$ d.f is 4.26

Solution:

Null hypothesis H_{0} : The machines are equally effective
Alternate Hypothesis H_{1} : The machines are not equally effective
Step:1

$$
\begin{gathered}
\text { Grand Total }(\mathrm{G})=56+27+60 \\
\mathrm{~T}=143
\end{gathered}
$$

Step:2
Correction factor (C.F) $=\frac{T^{2}}{N}$

MACHINES		
X_{1}	X_{2}	X_{3}
10	9	20
15	7	16
11	5	10
10	6	14
$\Sigma X_{1}=56$	$\Sigma X_{2}=27$	$\Sigma X_{3}=60$

$$
\begin{aligned}
& =\frac{(143)^{2}}{12} \\
\text { C.F } & =1704.08
\end{aligned}
$$

Step:3
$\mathrm{TSS}=$ Total sum of squares.
$=10^{2}+15^{2}+11^{2}+10^{2}+9^{2}+$ \qquad $-C . F$
$=1866.25-1704.08$

$$
\mathrm{TSS}=284.92
$$

Step : 4
SSC $=$ Sum of squares between samples.

$=\frac{(56)^{2}}{4}+\frac{(27)^{2}}{4}+\frac{(60)^{2}}{4}-1704.08$
$=\frac{3136}{4}+\frac{729}{4}+\frac{3600}{4}-1704.08$
$=784+182.25+400-1704.08$
$=1866.25-1704.08$
$\mathrm{SSC}=162.17$
Step: 5

$$
\begin{aligned}
\mathrm{SSE} & =\mathrm{TSS}-\mathrm{SSC} \\
& =284.92-162.17
\end{aligned}
$$

$$
\mathrm{SSE}=122.75
$$

Source of variation	Sum of squares	Degrees of freedom		
Between samples	SSC $=162.17$	$v_{1}=C-1=3-1=2$		
Within samples	SSE $=122.75$	$v_{2}=n-C=12-3$ $=9$		
Total	$\mathrm{TSS}=284.92$	$n-1=12-1=11$		
RESULT:				

RESULT:
F calculated value $\quad=5.945$
$\mathrm{T} \operatorname{tab}(2,9)$ df at 5% level $=4.26$

$$
\text { Fcal }>\mathrm{Ftab}
$$

$$
5.945>4.26
$$

$\therefore H_{0}$ is rejected. Hence we conclude that the machines are not equally effective.
4) Three samples below have been obtained from normal population with equal variances .test the hypothesis that the samples means are equal.

Samples.		
8	7	12
10	5	19
7	10	13
14	9	12
11	9	14

The value of \mathbf{F} at 5% level of significance is 3.88

Soln:

Null hypothesis $\quad H_{0}$: The sample means are equal
Alternate Hypothesis H_{1} : The sample means are not equal
Step: 1

$$
\begin{gathered}
\text { Grand total }(\mathrm{G})=50+40+70 \\
\qquad T=160
\end{gathered}
$$

Step: 2

Samples.		
8	7	12
10	5	19
7	10	13
14	9	12
11	9	14
$\Sigma X_{1}=50$	$\Sigma X_{2}=40$	$\Sigma X_{3}=70$

Correction factor $(\mathrm{C} . \mathrm{F})=\frac{T^{2}}{N}=\frac{(160)^{2}}{15}$
$C . F=1706.7$
Step : 3
$\mathrm{TSS}=$ Total sum squares

$$
=8^{2}+10^{2}+7^{2}+14^{2}+
$$

\qquad C.F

$$
=1880-1706.7
$$

Step: 4
SSC $=$ Sum of squares between samples

$$
\begin{aligned}
& =\frac{\left(\Sigma X_{1}\right)^{2}}{n}+\frac{\left(\Sigma X_{2}\right)^{2}}{n}+\frac{\left(\Sigma X_{3}\right)^{2}}{n}-C . F \\
& =\frac{(50)^{2}}{5}+\frac{(40)^{2}}{5}+\frac{(70)^{2}}{5}-1706.7 \\
& =500+320+980-1706.7 \\
& =1800-1706.7 \\
\mathrm{SSC} & =93.3
\end{aligned}
$$

Step: 5
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}$

$$
=173.3-93.3
$$

$\mathrm{SSE}=80$

F calculated value

$$
=6.97
$$

$\mathrm{T} \operatorname{tab}(2,12)$ df at 5% level $=3.88$
Fcal $>\mathrm{F}$ tab
$6.97>3.88 \therefore H_{0}$ is rejected. Hence we conclude that the sample means are not equal (i.e. There is a significant difference between the means of the three samples.
5) An Experiment was designed to study the performance of $\mathbf{4}$ different detergents for cleaning fuel injectors the following cleanness reading were obtained with specially Designed equipments for 12 tanks of Gas distributed over 3 different models of engine

Detergent	Engine-I	Engine-II	Engine-I	Total
\mathbf{A}	45	43	51	$\mathbf{1 3 9}$
\mathbf{B}	47	46	52	$\mathbf{1 4 5}$
\mathbf{C}	48	50	55	$\mathbf{1 5 3}$
\mathbf{D}	42	37	49	$\mathbf{1 2 8}$
Total	$\mathbf{1 8 2}$	$\mathbf{1 7 6}$	$\mathbf{2 0 7}$	$\mathbf{5 6 5}$

Perform the ANOVA \& Test at 0.01 level of significance whether there are differences in detergent or in engines
$H_{0}:\left\{\begin{array}{l}\text { (i) There is no significance difference in Engines } \\ \text { (ii)There is no significance difference in Detergents }\end{array}\right.$

$$
\mathrm{H}_{1}:\left\{\begin{array}{l}
\text { (i) There is a significance difference in Engines } \\
\text { (ii)There is a significance difference in Detergents }
\end{array}\right.
$$

We shifted our origin to 50

Brand	Groups			Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}
	$\begin{aligned} & \mathrm{X}_{1} \\ & \text { (I) } \end{aligned}$	$\begin{gathered} \mathrm{X}_{2} \\ \text { (II) } \end{gathered}$	$\begin{gathered} \mathrm{X}_{3} \\ \text { (III) } \\ \hline \end{gathered}$				
$\mathrm{A}\left(\mathrm{Y}_{1}\right)$	-5	-7	1	$\Sigma \mathrm{y}_{1}=11$	25	49	1
$\mathrm{B}\left(\mathrm{Y}_{2}\right)$	-3	-4	2	$\Sigma \mathrm{y}_{2}=-5$	9	16	4
$\mathrm{C}\left(\mathrm{Y}_{3}\right)$	-2	0	5	$\Sigma \mathrm{y}_{3}=3$	4	0	25
D(Y_{4})	-8	-13	-1	$\Sigma \mathrm{y}_{4}=-22$	64	169	1
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{y}$ (Total)	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$
	-18	-24	7	T= -35	102	234	31

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=12$)
Step 2: $\mathrm{T}=\mathbf{- 3 5}$ (From above Table)
Step $3: \frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(-35)^{2}}{12}=102.08$ (Correction Factor)
Step4 : TSS $\left.=\underset{1}{\left(\Sigma \mathrm{X}^{2}\right.}+\underset{2}{\Sigma \mathrm{X}^{2}}+\underset{3}{\mathrm{X}}+\underset{4}{2} \mathrm{X}^{2}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=(102+234+31-102.08)=264.92$
Step 5: SSR $=\left(\frac{\mathrm{Zy}_{1}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}_{4}^{2}}{\mathrm{~N}_{2}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{-11^{2}}{3}+\frac{(-5)^{2}}{3}+\frac{3^{2}}{3}+\frac{(-22)^{2}}{3}-102.08\right)=110.91$
Step 6: $\mathrm{SSC}=\left(\frac{\mathrm{ZX}_{1}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{3}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{18^{2}}{4}+\frac{(-24)^{2}}{4}+\frac{7^{2}}{4}-102.08\right)=135.17$
Step 7: SSE $=$ TSS - SSC- $\operatorname{SSR}=264.92-135.17-110.91=18.84$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio	Table Value at 1% level
Column Treatment	$\mathrm{SSC}=135.17$	$\mathrm{C}-1=2$	$\begin{aligned} & \mathrm{MSC}= \frac{\mathrm{SSC}}{\mathrm{C}-1}=\frac{135.17}{2} \\ &=67.58 \end{aligned}$	$\begin{aligned} \mathrm{F}_{\mathrm{c}} & =\frac{\mathrm{MSC}}{\mathrm{MSE}} \\ & =\frac{67.585}{3.14} \\ & =21.52 \end{aligned}$	$\begin{aligned} & \mathrm{Fc}(2,6) \\ & =10.92 \end{aligned}$
Row Treatment	$\mathrm{SSR}=110.91$	$\mathrm{R}-1=3$	$\begin{aligned} & \mathrm{MSR}= \frac{\mathrm{SSR}}{\mathrm{R}-1}=\frac{110.91}{3} \\ &=36.97 \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}} \\ 36.97 \end{gathered}$	$\begin{aligned} & \mathrm{FR}(3,6) \\ & =9.78 \end{aligned}$
Error	$\mathrm{SSE}=18.84$	$\begin{gathered} \mathrm{N}-\mathrm{C}- \\ \mathrm{R}+1=6 \end{gathered}$	$\begin{aligned} & \mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{NE}} \\ & =\frac{18.84^{2}=3.14}{6}=3.14 \end{aligned}$	$\begin{aligned} & =\frac{1.14}{3.14} \\ & =11.77 \end{aligned}$	
Total	TSS $=264.92$	Condition Always F >1			

Conclusion \rightarrow Calculate Value $>$ table value in both the Cases so we Reject H0
(ie)There is a significance difference between Detergents \& Engines
6) Five Doctors each test five treatments for a certain disease and observe the number of days each patients recover the results are (Anna University --Dec-13)

Doctors	Treatments				
	I	II	III	IV	V
\mathbf{A}	10	14	23	19	20
\mathbf{B}	11	15	24	17	21
\mathbf{C}	9	11	20	16	19
D	8	13	17	17	20
\mathbf{E}	12	15	19	15	22

Discuss the Difference between Doctors and Treatments?
Soln:

$$
H_{0}:\left\{\begin{array}{l}
\text { (i) There is no significance difference between Doctors } \\
\text { (ii) There is no significance difference between Treatments }
\end{array}\right.
$$

$$
H_{1}:\left\{\begin{array}{c}
\text { (i) There is a significance difference between Doctors } \\
\text { (ii)There is a significance difference between Treatments }
\end{array}\right.
$$

We shifted our origin to 16

Doctors	Treatments					Total	X_{1}^{2}		X_{3}^{2}	X_{4}^{2}	X ${ }_{5}^{2}$
	X_{1}	X2	X_{3}	X4	X5			X_{2}^{2}			
$\mathrm{A}\left(\mathrm{Y}_{1}\right)$	-6	-2	7	3	4	$\Sigma \mathrm{y}_{1}=6$	36	4	49	9	16
B (Y_{2})	-5	-1	8	1		$2=$	25	1	64	1	25
$\mathrm{C}\left(\mathrm{Y}_{3}\right)$	-7	-5	4			$\Sigma \mathrm{y}_{3}=-4$	49	16	16	0	9
$\mathrm{D}\left(\mathrm{Y}_{4}\right)$	-8	-3	1			$\Sigma \mathrm{y}_{4}=-5$	64	9	9	1	16
E (Y5)	-4	-1				$\Sigma \mathrm{y} 5=3$	16	1	1	1	36
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathrm{X}_{5}$	$\Sigma \mathrm{y}$ (Total)	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$	$\Sigma \mathrm{X}_{4}^{2}$	$\Sigma \mathrm{X}_{5}^{2}$
	-30	-12	23	4	22	T=8	190	31	139	12	102

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=25$)
Step 2: T=8 (From above Table)
Step $3: \frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(8)^{2}}{25}=2.56$ (Correction Factor)
Step4: TSS $\left.=\underset{1}{\left(\Sigma X^{2}\right.}+\underset{2}{2} \mathrm{X}_{2}^{2}+\Sigma \mathrm{X}_{3}^{2}+\Sigma \mathrm{X}^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right)=474-2.56=471.44$
Step 5: SSR $=\left(\frac{\mathrm{Zy}_{1}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}_{4}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{5}^{2}}{\mathrm{~N}_{2}}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right.$

$$
\operatorname{SSR}=\left(\frac{(6)^{2}}{5}+\frac{(8)^{2}}{5}+\frac{(-4)^{2}}{5}+\frac{(-5)^{2}}{5}+\frac{(3)^{2}}{5}-2.56\right)=30-2.56=27.64
$$

Step 6: $\mathrm{SSC}=\left(\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{Zx}^{2}}{\mathrm{~N}_{1}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}$

$$
\operatorname{SSC}=\left(\frac{(-30)^{2}}{5}+\frac{(-12)^{2}}{5}+\frac{23^{2}}{5}+\frac{(4)^{2}}{5}+\frac{(22)^{2}}{5}-2.56\right)=410-2.56=407.44
$$

Step 7: SSE $=$ TSS - SSC- $\operatorname{SSR}=471.44-407.44-27.64=36.56$

Source of Variance	Sum of Squares	$\begin{gathered} \text { Degree } \\ \text { of } \\ \text { Freedom } \end{gathered}$	Mean sum of Squares	Variance Ratio	Table Value at 1% level
Column Treatment	$\mathrm{SSC}=407.44$	$\mathrm{C}-1=4$	$\begin{aligned} \text { MSC }= & =\frac{\text { SSC }}{C-1}=\frac{407.44}{4} \\ & =101.86 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=\frac{\mathrm{MSC}}{\mathrm{MSE}} \\ & =\frac{101.86}{2.28} \\ & =44.67 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{C}(4,6) \\ & =3.01 \end{aligned}$
Row Treatment	SSR $=27.44$	$\mathrm{R}-1=4$	$\begin{aligned} \text { MSR } & =\frac{\text { SSR }}{\text { R-1 }}=\frac{27.44}{4} \\ & =6.86\end{aligned}$	$\mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}} \frac{1.86}{6.8}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}(4,6) \\ & =3.01 \end{aligned}$
Error	$\mathrm{SSE}=36.56$	$\begin{gathered} \mathrm{N}-\mathrm{C}- \\ \mathrm{R}+1=16 \end{gathered}$	$\begin{aligned} & \mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{~N}-\mathrm{C}-\mathrm{R}+1} \\ & =\frac{36.56}{16}=2.28 \end{aligned}$	$\begin{aligned} & =\frac{1}{2.28} \\ & =3.01 \end{aligned}$	
Total	TSS $=471.44$	Condition Always F >1			

Calculated Value $\mathrm{FR}_{\mathrm{R}}(3.01) \leq$ table value $\mathrm{F}_{\mathrm{R}}(3.01)$ so we accept H_{0}
Calculated Value $\mathrm{Fc}_{\mathrm{C}}(44.67)>$ table value $\mathrm{Fc}_{\mathrm{C}}(3.01)$ so we Reject H_{0}
Conclusion:
There is no significance difference between Doctors but,
There is a significance difference between Trearments
7) The following table gives monthly sales (in thousand rupees) of a certain firm in three states by its four salesman.

	Salesman			
States	I	II	III	IV
A	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{8}$
B	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{6}$	$\mathbf{5}$
C	$\mathbf{1 0}$	7	$\mathbf{8}$	$\mathbf{7}$

Setup the analysis of variance table and test whether there is any significant difference (i) between the sales by the firm salesman ,(ii) between sales in the three states.

Solution:
H_{0} :There is no significant difference between the sales by the firm's salesman
H_{1} : There is significant difference between the sales by the firm's salesman
H_{0} :There is no significant difference between the three states.
H_{1} : There is significant difference between the three states

States	Saleman				Total
	I	II	III	IV	
A	6	5	3	8	22
B	8	9	6	5	28
C	10	7	8	7	32
Total	24	21	17	20	T $=82$

Step : 1
Correction factor (C.F) $=\frac{T^{2}}{N}=\frac{(82)^{2}}{12}$

$$
C . F=560.333
$$

Step;2
TSS $=$ Sum of squares of each values - C.F

$$
=6^{2}+8^{2}+10^{2}+5^{2}+9^{2}+\ldots \ldots \ldots .-560.333
$$

$$
=602-560.333
$$

$\mathrm{TSS}=41.667$
Step : 3
$\mathrm{SSC}=$ Sum of squares between columns, (salesman)

$$
\begin{aligned}
& =\frac{1}{3}\left[24^{2}+21^{2}+17^{2}+20^{2}\right]-\text { C.F } \\
& =\frac{1}{3}\left[24^{2}+21^{2}+17^{2}+20^{2}\right]-560.333 \\
& =568.667-560.333 \\
\mathrm{SSC} & =8.334
\end{aligned}
$$

Step : 4
SSR = Row sum of squares.(states)
$=\frac{1}{4}\left[22^{2}+28^{2}+32^{2}\right]-$ C.F
$=\frac{1}{4}\left[22^{2}+28^{2}+32^{2}\right]-560.333$
$=573-560.333$
$\mathrm{SSR}=12.667$
Step :5
$\mathrm{SSE}=$ Error sum of squares.

$$
=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}
$$

$$
=41.667-8.334-12.667
$$

$\mathrm{SSE}=20.666$

Source of variation	Sum of squares	Degrees of freedom	Mean square	F-ratio
Between columns	$\mathrm{SSC}=8.334$	$\mathrm{k}-1=4-1=3$	$M S C=\frac{8.334}{3}=2.778$	$F_{C}=\frac{3.444}{2.778}=1.239$
Between rows	SSR=12.667	$\mathrm{r}-1=3-1=2$	$M S R=\frac{12.667}{2}=6.334$	$F_{R}=\frac{6.334}{3.444}=1.84$
Residual error	SSE=20.667	$\begin{aligned} & (\mathrm{k}-1)(\mathrm{r}-1)= \\ & (3)(2)=6 \end{aligned}$	$M S E=\frac{20.667}{6}=3.444$	
Total	TSS $=41.667$	rk-1		

RESULT:1
F Calculated value $\quad=1.239$
$\mathrm{F} \operatorname{tab}(3,6)$ df at 5% level $=4.75$
F Cal < F tab
$1.239<4.75$
H_{0} is accepted.
Hence we conclude that there is no significant difference between the sales by the firm's salesman.
RESULT :2
F Calculated value $\quad=1.84$
$\mathrm{F} \operatorname{tab}(2,6)$ df at 5% level $=5.14$
F Cal < F tab
$1.84<4.75$
H_{0} is accepted. Hence we conclude that there is no significant difference between the sales in the three states.
\therefore There is no significant difference in the states as far as sales are concerned at 5% level of significance
8) A tea company appoints four saleman A, B, C, D and observes their sales in three seasons summer ,winter, monsoon. The figures (in lakhs) are given in the following table.

Seasons	Salesman				
Season's Total					
	A	B	C	D	
Summer	36	36	21	35	$\mathbf{1 2 8}$
Winter	28	29	31	32	120
Monsoon	26	28	29	29	$\mathbf{1 1 2}$
Salesman's Total	$\mathbf{9 0}$	$\mathbf{9 3}$	$\mathbf{8 1}$	$\mathbf{9 6}$	$\mathbf{3 6 0}$

(i) Does the salesman significantly differ in performance?
(ii) Is there significant difference between the seasons?

Solution:
H_{0} :The salesman does not differ significantly differ in performance.
H_{1} : The salesman differs significantly differ in their performance.
H_{0} :There is no significant difference between the three seasons.
H_{1} : There is significant difference between the three seasons
Step:1
Correction factor (C.F) $=\frac{T^{2}}{N}=\frac{(360)^{2}}{12}$
C.F $=10800$

Step :2

$$
\begin{aligned}
\text { TSS } & =\text { Sum of squares of each values }- \text { C.F } \\
& =36^{2}+36^{2}+21^{2}+35^{2}+28^{2}+\ldots \ldots \ldots \ldots-10800 \\
& =11010-10800 \\
\text { TSS } & =210
\end{aligned}
$$

Step :3
SSC = Sum of squares between columns, (salesman)

$$
\begin{aligned}
& =\frac{1}{3}\left[90^{2}+93^{2}+81^{2}+96^{2}\right]-\text { C.F } \\
& =\frac{1}{3}\left[90^{2}+93^{2}+81^{2}+96^{2}\right]-10800 \\
& =10842-10800 \\
\text { SSC } & =42
\end{aligned}
$$

Step :4

$$
\begin{aligned}
\text { SSR } & =\text { Sum of squares between rows.(seasons) } \\
& =\frac{1}{4}\left[128^{2}+120^{2}+112^{2}\right]-\text { C.F }=\frac{1}{4}\left[128^{2}+120^{2}+112^{2}\right]-10800=10832-10800 \quad \text { SSR }=32
\end{aligned}
$$

SSE $=$ Error sum of squares. $=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=210-42-32 \quad \mathrm{SSE}=136$

Source of variation	Sum of squares	Degrees of freedom	Mean square	F-ratio
Between columns	SSC $=42$	$\mathrm{k}-1=4-1=3$	$M S C=\frac{42}{3}=14$	$F_{c}=\frac{22.67}{14}=1.619$
Between rows	SSR=32	$\mathrm{r}-1=3-1=2$	$M S R=\frac{32}{2}=16$	$F_{n}=\frac{\angle L .0 I}{16}=1.41$
Residual error	SSE=136	$\begin{aligned} & (\mathrm{k}-1)(\mathrm{r}-1) \\ & 3 \times 2=6 \end{aligned}$	$M S E=\frac{136}{6}=22.67$	
Total	TSS $=210$	rk-1=11		

RESULT: 1

F Calculated value $\quad=1.619$
F tab(3,6) df at 5% level $=4.75$
F Cal < F tab
$1.619<4.75$
H_{0} is accepted.

Hence we conclude that the salesman do not differ significantly in their performance .
RESULT :2
F Calculated value $\quad=1.41$
$\mathrm{F} \operatorname{tab}(2,6)$ df at 5% level $=5.14$
F Cal < F tab
$1.41<5.14$
H_{0} is accepted. Hence we conclude that there is no significant difference between the three seasons.
9) Preform a Two - way ANOVA on the data given below.

Plots of land	Treatments			
	A	B	C	D
I	$\mathbf{3 8}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{3 9}$
II	$\mathbf{4 5}$	$\mathbf{4 2}$	$\mathbf{4 9}$	$\mathbf{3 6}$
III	$\mathbf{4 0}$	$\mathbf{3 8}$	$\mathbf{4 2}$	$\mathbf{4 2}$

Solution:
H_{0} :There is no significant difference between Treatments
H_{1} : There is significant difference between Treatments
H_{0} :There is no significant difference between Plots
H_{1} : There is significant difference between Plots

Plots of land	Treatments				
Total					
	A	B	C	D	
I	38	40	41	39	158
II	45	42	49	36	172
III	40	38	42	42	162
Total	123	120	132	117	492

Step :1
Correction factor (C.F) $=\frac{T^{2}}{N}=\frac{(492)^{2}}{12}$
C.F $=20172$

Step :2

$$
\begin{aligned}
\text { TSS } & =\text { Sum of squares of each values }- \text { C.F } \\
& =38^{2}+45^{2}+40^{2}+40^{2}+42^{2}+\ldots \ldots \ldots-20172 \\
& =20304-20172 \\
\text { TSS } & =132
\end{aligned}
$$

Step :3
SSC = Sum of squares between columns, (Treatments)
$=\frac{1}{3}\left[123^{2}+120^{2}+132^{2}+117^{2}\right]-$ C.F

$$
\begin{aligned}
& =\frac{1}{3}\left[123^{2}+120^{2}+132^{2}+117^{2}\right]-20172 \\
& =20214-20172 \\
\mathrm{SSC} & =42
\end{aligned}
$$

Step :4

$$
\begin{aligned}
\text { SSR } & =\text { Sum of squares between rows.(plots) } \\
& =\frac{1}{4}\left[158^{2}+172^{2}+162^{2}\right]-\text { C.F } \\
& =\frac{1}{4}\left[158^{2}+172^{2}+162^{2}\right]-20172 \\
& =20198-210172 \\
\text { SSR } & =26
\end{aligned}
$$

Step :5

$$
\begin{aligned}
\text { SSE } & =\text { Error sum of squares. } \\
& =\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR} \\
& =132-42-26 \\
\text { SSE } & =64
\end{aligned}
$$

ANOVA TABLE

Source of variation	Sum of squares	Degrees of freedom	Mean square	F-ratio
Between columns	SSC $=42$	$\mathrm{k}-1=4-1=3$	$M S C=\frac{42}{3}=14$	$F_{C}=\frac{14}{10.67}=1.312$
Between rows	$\mathrm{SSR}=26$	$\mathrm{r}-1=3-1=2$	$M S R=\frac{26}{2}=13$	$F_{R}=\frac{13}{10.67}=1.218$
Residual error	SSE=64	$(\mathrm{k}-1)(\mathrm{r}-1)$ $3 \times 2=6$	$M S R=\frac{64}{6}=10.67$	
Total	$\mathrm{TSS}=132$	rk-1=11		

F Calculated value $=1.312$
F tab(3,6) df at 5% level $=4.75$
F Cal < F tab
$1.312<4.75$
H_{0} is accepted. Hence we conclude there is no significant difference between treatments
F Calculated value $\quad=1.218$
F tab(2,6) df at 5% level $=5.14$
F Cal < F tab
1.218 < 5.14
H_{0} is accepted. Hence we conclude that there is no significant difference between the Plots.
10) The Following Latin Square of a design when four varieties of seeds are being tested set up the analysis table and state your conclusion you may carry out suitable change of origin and scale

| A 105 | B 95 | C 125 | D 115 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C 115 | D 125 | A 105 | B 105 |
| D 115 | C 95 | B 105 | A 115 |
| B 95 | A 135 | D 95 | C 115 |

(i) There is no significance Difference in Seeds

Soln: Let $H_{0}=\{(\mathrm{ii})$ There is no significance Difference in Treatments
(iii) There is no significance Difference in Lands
(i) There is a significance Difference in Seeds
$\mathrm{H}_{1}=\{(\mathrm{ii})$ There is a significance Difference in Treatments
(iii) There is a significance Difference in Lands

Shifted Origin to 100 and divided by 5,

| Lands | Seeds | | | | | Total | X_{1}^{2} | X_{2}^{2} | X_{3}^{2} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | X_{4}^{2}

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=16$)
Step 2: T = $\mathbf{3 2}$ (From above Table)
Step $3: \frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(32)^{2}}{16}=64$ (Correction Factor)
Step4: TSS $=\left(\Sigma \mathrm{X}_{1}^{2}+\Sigma \mathrm{X}_{2}^{2}+\Sigma \mathrm{X}_{3}^{2}+\Sigma \mathrm{X}_{4}^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right)=\left(20+76+28+28^{\prime}\right)-64=88$
Step 5: $\mathrm{SSR}=\left(\frac{\mathrm{Zy}_{1}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}_{4}^{2}}{\mathrm{~N}_{2}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(8)^{2}}{4}+\frac{(10)^{2}}{4}+\frac{(6)^{2}}{4}+\frac{(8)^{2}}{4}-64\right)=2$
Step 6: $\operatorname{SSC}=\left(\frac{\mathrm{ZX}_{1}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(6)^{2}}{4}+\frac{(10)^{2}}{4}+\frac{(6)^{2}}{4}+\frac{(10)^{2}}{4}-64\right)=4$

SST					Total
A	1	1	3	7	$\mathbf{1 2}$
B	-1	1	1	-1	$\mathbf{0}$
C	5	3	-1	3	$\mathbf{1 0}$
D	3	5	3	-1	$\mathbf{1 0}$

Step 7: $\operatorname{SST}=\left(\frac{(12)^{2}}{4}+\frac{(0)^{2}}{4}+\frac{(10)^{2}}{4}+\frac{(10)^{2}}{4}-64\right)=22$

Step 8: SSE $=$ TSS - SSC- SSR - SST $=88-2-4-22=60$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	$\begin{aligned} & \text { Variance } \\ & \text { Ratio } \end{aligned}$	Table Value at 5\% level
Between Columns	SSC=4	$\mathrm{K}-1=3$	$\begin{aligned} & \mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{~K}-1}=\frac{4}{3} \\ & =1.33 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=\frac{\mathrm{MSE}}{\mathrm{MSC}} \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{c}(6,3) \\ & =8.94 \end{aligned}$
Between Rows	SSR=2	$\mathrm{K}-1=3$	$\begin{aligned} & \mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{~K}-1}=\frac{2}{3} \\ & =0.67 \end{aligned}$	$\begin{aligned} & =\frac{10}{1.33} \\ & =7.52 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}(6,3) \\ & =8.94 \end{aligned}$
Between Treatments	$\mathrm{SST}=22$	$\mathrm{K}-1=3$	$\begin{aligned} & \mathrm{MST}=\frac{\mathrm{SSI}}{\mathrm{~K}-1} \\ & =\frac{22}{3}=7.33 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSE}}{\mathrm{MSR}} \\ & =\frac{10}{0.67} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{T}}(6,3) \\ & =8.94 \end{aligned}$
Error	SSE=60	$\begin{aligned} & (\mathrm{K}-1)(\mathrm{K}-2) \\ & =6 \end{aligned}$	$\begin{aligned} & \text { MSE } \\ & =\frac{\text { SSE }}{6 K-1)(K-2)} \\ & =\frac{60}{6}=10 \end{aligned}$	$\begin{aligned} & =14.9 \\ & \\ & \mathrm{~F}_{\mathrm{T}}=\mathrm{MSE} \\ & =\frac{10}{\mathrm{MST}} \\ & =1.33 \\ & =1.36 \end{aligned}$	
Total	TSS $=88$	$\begin{aligned} & \mathrm{K}^{2}-1 \\ & =15 \end{aligned}$	Cond	Always F	

Calculated Value $\mathrm{F}_{\mathrm{C}}(7.52)$ < table value $\mathrm{F}_{\mathrm{C}}(8.94)$ so we accept H_{0}
Calculated Value $\mathrm{F}_{\mathrm{R}}(14.9)>$ table value $\mathrm{F}_{\mathrm{R}}(8.94)$ so we Reject H_{0}
Calculated Value $\mathrm{FT}_{\mathrm{T}}(1.36)$ < table value $\mathrm{F}_{\mathrm{T}}(8.94)$ so we accept H_{0}
Conclusion:
There is no significance difference between Seeds \& Treatments, But
There is a significance difference between Lands
11) Analyze the following Latin Square experiment at 1% level

A (12)	D (20)	C (16)	B (10)
D (18)	A (14)	B (11)	C (14)
B (12)	C (15)	D (19)	A (13)
C (16)	B (11)	A (15)	D (20)

The Letters (A,B,C,D) denotes the treatments \& the figures in brackets denotes the observation
Soln: We Shifted our origin to 12
(i) There is no significance Difference in Seeds

Let $\mathrm{H}_{0}=\{(\mathrm{ii})$ There is no significance Difference in Treatments
(iii) There is no significance Difference in Lands
(i) There is a significance Difference in Seeds $\mathrm{H}_{1}=\{(\mathrm{ii})$ There is a significance Difference in Treatments (iii) There is a significance Difference in Lands

Lands	Seeds					Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}
	X_{1} $(\mathrm{~A})$	X_{2} $(\mathrm{~B})$	X_{3} (C)	X_{4} (D)					
I (Y1)	0	8	4	2	$\Sigma \mathrm{y}_{1}=10$	0	64	16	4
II (Y2)	6	2	-1	2	$\Sigma \mathrm{y}_{2}=9$	36	4	1	4
III (Y3)	0	3	7	1	$\Sigma \mathrm{y}_{3}=11$	0	9	49	1
IV (Y4)	4	-1	3	8	$\Sigma \mathrm{y}_{4}=14$	16	1	9	64
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathbf{y}($ Total $)$	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$	$\Sigma \mathrm{X}_{4}^{2}$
	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{9}$	$\mathbf{T}=\mathbf{4 4}$	$\mathbf{5 2}$	$\mathbf{7 8}$	$\mathbf{7 5}$	$\mathbf{7 3}$

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=16$)
Step 2: $\mathrm{T}=44$ (From above Table)
Step 3: $\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(44)^{2}}{16}=121$ (Correction Factor)
Step4: TSS $\left.\left.=\underset{1}{\left(\Sigma \mathrm{X}_{2}\right.}+\Sigma \mathrm{X}_{2}+\Sigma \mathrm{X}_{3}+\Sigma \mathrm{X}_{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right)=52+78+75+73\right)^{-121=157}$
Step 5: SSR $=\left(\frac{\mathrm{Zy}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}_{4}^{2}}{\mathrm{~N}_{2}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(10)^{2}+(9)^{2}+(11)^{2}+(14)^{2}}{4}+121\right)=3.5$
Step 6: $\mathrm{SSC}=\left(\frac{\mathrm{ZX}_{1}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{4}^{2}}{\mathrm{~N}_{1}}+\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(10)^{2}}{4}+\frac{(12)^{2}}{4}+\frac{(13)^{2}}{4}+\frac{(9)^{2}}{4}-121\right)=2.5$

SST					Total
A	0	2	3	1	$\mathbf{6}$
B	0	-1	-1	-2	$\mathbf{- 4}$
C	4	3	4	2	$\mathbf{1 3}$
D	6	8	7	8	$\mathbf{2 9}$

Step 7: $\operatorname{SST}=\left(\frac{(6)^{2}}{4}+\frac{(-4)^{2}}{4}+\frac{(13)^{2}}{4}+\frac{(29)^{2}}{4}-121\right)=144.5$
Step 8: SSE $=$ TSS - SSC- SSR- $\operatorname{SST}=157-2.5-3.5-144.5=6.5$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio	Table Value at 1\% level
Between Colums	$\mathrm{SSC}=2.5$	$\mathrm{~K}-1=3$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{K}-1}=\frac{2.5}{3}$	$\mathrm{~F}_{\mathrm{c}}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$	$\mathrm{F}_{\mathrm{c}}(6,3)$ $=27.91$ $=\frac{1.08}{}$
Between Rows	$\mathrm{SSR}=3.5$	$\mathrm{~K}-1=3$	$\mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{K}-1.5}=\frac{1.83}{3}$	$=1.301$	$\mathrm{F}_{\mathrm{R}}(3,6)$ $=9.78$ $=1.17$

Between Treatments	SST=144.5	$\mathrm{K}-1=3$	$\begin{aligned} & \text { MST }=\frac{\text { SST }}{\mathrm{K}-1} \\ & =\frac{144.5}{3}=48.17 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}} \\ & =\frac{1.17}{1.08} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{T}}(3,6) \\ & =9.78 \end{aligned}$
Error	$\mathrm{SSE}=6.5$	$\begin{aligned} & (\mathrm{K}-1)(\mathrm{K}-2) \\ & =6 \end{aligned}$	$\begin{aligned} \text { MSE } & =\frac{\text { SSE }}{6(\mathrm{~K}-1)(\mathrm{K}-2)} \\ = & \frac{65}{6}=1.08 \end{aligned}$	$\begin{aligned} & =1.08 \\ & \mathrm{~F}_{\mathrm{T}}=\frac{\mathrm{MST}}{\mathrm{MSE}} \\ & =\frac{48.17}{1.08} \\ & =44.6 \end{aligned}$	
Total	TSS=157	$\begin{aligned} & \mathrm{K}^{2}-1 \\ & =15 \end{aligned}$	Condition Always F >1		

Calculated Value $\mathrm{Fc}_{\mathrm{C}}(1.301)$ < table value $\mathrm{Fc}_{\mathrm{C}}(27.91)$ so we accept H_{0}
Calculated Value $\mathrm{F}_{\mathrm{R}}(1.08)$ < table value $\mathrm{F}_{\mathrm{R}}(9.78)$ so we accept H_{0}
Calculated Value $\mathrm{F}_{\mathrm{T}}(44.6)>$ table value $\mathrm{F}_{\mathrm{T}}(9.78)$ so we Reject H_{0}
Conclusion: There is no significance difference between Seeds \& Lands , But
There is a significance difference between Treatments
12) Three varieties of a crop are tested in the Randomized block design with four replications, the layout being has given below: The yields are given in kilograms Analyse for significance

C48	A51	B52	A49
A47	B49	C52	C51
B49	$\mathbf{C 5 3}$	A49	B50

(Apr/May 2015 (R13 \&R08))
(i) There is no significance difference between Yields

Soln: $\mathrm{H}_{0}:\{$ (ii) There is no significance difference between Crops $\mathrm{H}_{1}:\left\{\begin{array}{l}\text { (i) There is a significance difference between Yields } \\ \text { (ii) There is a significance difference between Crops }\end{array}\right.$

Yields	Treatments				Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
	X_{1}	X_{2}	X_{3}	X4					
A (Y1)	48	51	52	49	$\Sigma \mathrm{y}_{1}=200$	2304	2601	2704	2401
B (Y2)	47	49	52	51	$\Sigma \mathrm{y} 2=199$	2209	2401	2704	2601
$\mathrm{C}\left(\mathrm{Y}_{3}\right)$	49	53	49	50	$\Sigma \mathrm{y}_{3}=201$	2401	2809	2401	2500
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathrm{y}$ (Total)	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$	$\Sigma \mathrm{X}_{4}^{2}$
	144	153	153	150	T=600	6914	7811	7809	7502

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=12$)
Step 2: $\mathrm{T}=\mathbf{6 0 0}$ (From above Table)
Step $3: \frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(600)^{2}}{12}=30000$ (Correction Factor)

Step4: TSS $=\left(\Sigma \mathrm{X}_{1}^{2}+\Sigma \mathrm{X}_{2}^{2}+\Sigma \mathrm{X}_{3}^{2}+\Sigma \mathrm{X}_{4}^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right)=36$
Step 5: SSR $=\left(\frac{\mathrm{Zy}_{1}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}_{4}{ }^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{5}^{2}}{\mathrm{~N}_{2}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}$

$$
\operatorname{SSR}=\left(\frac{(200)^{2}}{4}+\frac{(199)^{2}}{4}+\frac{(201)^{2}}{4}-30000\right)=0.5
$$

Step 6: $\mathrm{SSC}=\left(\frac{\mathrm{ZX}_{1}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{3}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{4}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}$

$$
\left(\frac{(144)^{2}}{3}+\frac{(153)^{2}}{3}+\frac{(153)^{2}}{3}+\frac{(150)^{2}}{3}-30000\right)=18
$$

Step 7: $\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=36-0.5-18=17.5$

Source of Variance	Sum of Squares	$\begin{gathered} \text { Degree } \\ \text { of } \\ \text { Freedom } \\ \hline \end{gathered}$	Mean sum of Squares	Variance Ratio	Table Value at 5\% level
Column Treatment	$\mathrm{SSC}=18$	$\mathrm{C}-1=3$	$=\frac{\mathrm{SSC}}{\mathrm{C}-1}=\frac{18}{-6}$	$\begin{aligned} \mathrm{F}_{\mathrm{c}} & =\frac{\mathrm{MSC}}{\mathrm{MSE}} \\ & =\frac{6}{2.91} \end{aligned}$	$\begin{aligned} & \mathrm{Fc}(3,6) \\ & =4.75 \end{aligned}$
Row Treatment	$\mathrm{SSR}=0.5$	$\mathrm{R}-1=2$	$\begin{aligned} \mathrm{MSR} & =\frac{\mathrm{SSR}}{\mathrm{R}-1}= \\ & =0.25 \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSE}}{\mathrm{MSR}} \\ 2.91 \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}(6,2) \\ & =19.32 \end{aligned}$
Error	$\mathrm{SSE}=17.5$	$\begin{gathered} \mathrm{N}-\mathrm{C}- \\ \mathrm{R}+1=6 \end{gathered}$	$=\frac{}{\mathrm{N}-\mathrm{C}-\mathrm{R}+}$	$\begin{gathered} =\overline{0.25} \\ =11.667 \end{gathered}$	
Total	TSS $=36$		Condition	F >1	

Calculated Value $\mathrm{F}_{\mathrm{R}}(11.66)$ < table value $\mathrm{F}_{\mathrm{R}}(19.32)$ so we Accept H_{0}
Calculated Value Fc(2.057) < table value Fc(4.75) so we Accept Ho
Conclusion: There is no significance difference between Yields and crops
13) Analyse the variance in the latin square of yields in (Kgs) of paddy where A,B,C,D denote the different method of cultivation. Examine whether the different method of cultivation have given significantly different yields
(Apr/May 2015(R13 \&R08))

D 122	A 121	C 123	B 122
B 124	C 123	A 122	D 125
A 120	B 119	D 120	C 121
C 122	D 123	B 121	A 122

(i) There is no significance Difference in Seeds

Soln: Let $H_{0}=\{(\mathrm{ii})$ There is no significance Difference in Treatments
(iii) There is no significance Difference in Lands

> (i) There is a significance Difference in Seeds $\mathrm{H}_{1}=\{(\mathrm{ii})$ There is a significance Difference in Treatments (iii) There is a significance Difference in Lands

Lands	Seeds				Total	X ${ }^{2}$	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
	$\begin{aligned} & \mathrm{X}_{1} \\ & \text { (A) } \\ & \hline \end{aligned}$	X_{2} (B)	$\begin{aligned} & \mathrm{X}_{3} \\ & \text { (C) } \\ & \hline \end{aligned}$	X4 (D)					
$\mathrm{I}\left(\mathrm{Y}_{1}\right)$	122	121	123	122	$\Sigma \mathrm{y}_{1}=488$	14884	14641	15129	14884
II (Y2)	124	123	122	125	$\Sigma \mathrm{y}_{2}=494$	15376	15129	14884	15625
III (Y_{3})	120	119	120	121	$\Sigma \mathrm{y}_{3}=480$	14400	14161	14400	14641
IV (Y_{4})	122	123	121	122	$\Sigma \mathrm{y}_{4}=488$	14884	15129	14641	14884
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathrm{y}$ (Total)	$\Sigma \mathrm{X}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	EX3	$\Sigma \mathrm{X}_{4}^{2}$
	488	486	486	490	T= 1950	59544	59060	59054	60034

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=16$)
Step 2: $\mathrm{T}=\mathbf{1 9 5 0}$ (From above Table)
Step 3: $\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(1950)^{2}}{16}=237656.3$ (Correction Factor)
Step4: TSS $=\left(\Sigma \mathrm{X}_{2}+\Sigma \mathrm{X}_{2}+\Sigma \mathrm{X}_{3}+\Sigma \mathrm{X}_{4}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right)=35.75$
Step 5: SSR $=\left(\frac{\mathrm{Zy}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}_{4}^{2}}{\mathrm{~N}_{2}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(488)^{2}}{4}+\frac{(494)^{2}}{4}+\frac{(480)^{2}}{4}+\frac{(488)^{2}}{4}-237656.3\right)=24.75$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio	Table Value at 5\% level
Between Columns	$\mathrm{SSC}=2.75$	$\mathrm{K}-1=3$	$\begin{aligned} \mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{~K}-1}= & =\frac{2.75}{3} \\ & =0.91 \end{aligned}$	$\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}(3,6) \\ & =4.75 \end{aligned}$
Between Rows	SSR=24.75	K-1=3	$\begin{aligned} & \mathrm{MSR}=\mathrm{SSK} \\ & =\frac{24.75}{\mathrm{~K}-1}=8.25 \end{aligned}$	$\begin{aligned} & =\overline{0.66} \\ & =1.375 \end{aligned}$	$\begin{aligned} & \mathrm{FR}_{\mathrm{R}}(3,6) \\ & =4.75 \end{aligned}$
Between Treatments	$\mathrm{SST}=4.25$	$\mathrm{K}-1=3$	$\begin{aligned} \mathrm{MST}=\frac{\mathrm{SST}}{\mathrm{~K}-1}=\frac{4.25}{3} \\ =1.41 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}=\mathrm{MSR} \\ & \mathrm{MSE} \\ & =8.25 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{T}}(3,6) \\ & =4.75 \end{aligned}$
Error	SSE=4	$\begin{aligned} & (\mathrm{K}-1)(\mathrm{K}-2) \\ & =6 \end{aligned}$	$\begin{aligned} \text { MSE } & =\begin{array}{l} (K-1)(K-2) \\ \\ \\ \end{array}=\frac{\overline{6}}{4}=0.66 \end{aligned}$	$\begin{aligned} & =0.66 \\ & =12.375 \\ & \mathrm{~F}_{\mathrm{T}}=\mathrm{MST} \\ & =1.41 \\ & =0.66 \\ & =2.125 \end{aligned}$	
Total	TSS $=35.75$	$\begin{aligned} & \mathrm{K}^{2}-1 \\ & =15 \end{aligned}$	Condition Always $\mathrm{F}>1$		

Step 6: $\mathrm{SSC}=\left(\frac{\mathrm{ZX}}{\mathrm{N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(488)^{2}}{4}+\frac{(486)^{2}}{4}+\frac{(486)^{2}}{4}+\frac{(490)^{2}}{4}-237656.3\right)=2.75$

SST					Total
A	121	122	120	122	$\mathbf{4 8 5}$
B	122	124	119	121	$\mathbf{4 8 6}$
C	123	123	121	122	$\mathbf{4 8 9}$
D	122	125	120	123	$\mathbf{4 9 0}$

Step 7: SST $=\left(\frac{(485)^{2}}{4}+\frac{(486)^{2}}{4}+\frac{(489)^{2}}{4}+\frac{(490)^{2}}{4}-237656.3\right)=4.25$
Step 8: SSE $=$ TSS - SSC - SSR - SST $=35.75-24.75-275-4.25=4$
Calculated Value $\mathrm{Fc}(1.375)$ < table value Fc (4.75) so we Accept H_{0}
Calculated Value $\mathrm{F}_{\mathrm{R}}(12.375)>$ table value $\mathrm{F}_{\mathrm{R}}(4.75)$ so we Reject H_{0}
Calculated Value $\mathrm{FT}_{\mathrm{T}}(2.125)$ < table value F_{T} (4.75) so we Accept H_{0}
Conclusion: There is no significance difference between Seeds \&Treatments, But
There is a significance difference between Lands
14) Four different, through supposed by equivalent, forms of a standardized reading achievements test where give to each of five students and the followings are the scores which they obtained (Nov/Dec 2015)

	Student-1	Student-2	Student-3	Student-4	Student-5
Form A	$\mathbf{7 5}$	$\mathbf{7 3}$	$\mathbf{5 9}$	$\mathbf{6 9}$	$\mathbf{8 4}$
Form B	$\mathbf{8 3}$	$\mathbf{7 2}$	$\mathbf{5 6}$	$\mathbf{7 0}$	$\mathbf{9 2}$
Form C	$\mathbf{8 6}$	$\mathbf{6 1}$	$\mathbf{5 3}$	$\mathbf{7 2}$	$\mathbf{8 8}$
Form D	$\mathbf{7 3}$	$\mathbf{6 7}$	$\mathbf{6 2}$	$\mathbf{7 9}$	$\mathbf{9 5}$

Perform two way analysis of variance to test at the level of significance $\alpha=0.01$ whether it is reasonable to treat the four form are equivalent, Are the scores of the students significantly difference $\alpha=0.01$ level?
Soln: H_{0} : (i) There is no significance difference between Students
(ii)There is no significance difference between Forms
$H_{1}:\{$ (i) There is a significance difference between Students
(ii)There is a significance difference between Forms

Forms	Students					X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	Total
	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}	X_{5}^{2}							
$\mathrm{~A}\left(\mathrm{Y}_{1}\right)$	75	73	59	69	84	$\Sigma \mathrm{y}_{1}=360$	5625	5329	3481	4761	7056
$\mathrm{~B}\left(\mathrm{Y}_{2}\right)$	83	72	56	70	92	$\Sigma \mathrm{y}_{2}=373$	6889	5184	3136	4900	8464
$\mathrm{C}\left(\mathrm{Y}_{3}\right)$	86	61	53	72	88	$\Sigma \mathrm{y}_{3}=360$	7396	3721	2809	5184	7744
$\mathrm{D}\left(\mathrm{Y}_{4}\right)$	73	67	62	79	95	$\Sigma \mathrm{y}_{4}=376$	5329	4489	3844	6241	9025
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathrm{X}_{5}$	$\Sigma \mathbf{y}($ Total $)$	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$	$\Sigma \mathrm{X}_{4}^{2}$	$\Sigma \mathrm{X}_{5}^{2}$
	$\mathbf{3 1 7}$	$\mathbf{2 7 3}$	$\mathbf{2 3 0}$	$\mathbf{2 9 0}$	$\mathbf{3 5 9}$	$\mathbf{T}=\mathbf{1 4 6 9}$	$\mathbf{2 5 2 3 9}$	$\mathbf{1 8 7 2 3}$	$\mathbf{1 3 2 7 0}$	$\mathbf{2 1 0 8 6}$	$\mathbf{3 2 2 8 9}$

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=20$)
Step 2: $\mathrm{T}=1469$ (From above Table)

Step 3: $\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(1469)^{2}}{20}=107898.1$ (Correction Factor)
Step4: TSS $=\left(\Sigma \mathrm{X}_{\mathcal{Z}}+\Sigma \mathrm{X}_{Z}+\Sigma \mathrm{X}_{\mathcal{Z}}+\Sigma \mathrm{X}_{\mathbb{Z}}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right)=2708.95$
Step 5: SSR $=\left(\frac{\mathrm{Zy}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{5}^{2}}{\mathrm{~N}_{2}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}$

$$
\operatorname{SSR}=\left(\frac{(360)^{2}}{5}+\frac{(373)^{2}}{5}+\frac{(360)^{2}}{5}+\frac{(376)^{2}}{5}-107898.1\right)=42.95
$$

Step 6: SSC $=\left(\frac{\mathrm{ZX}_{1}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{Zx}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{Zx}^{2}}{\mathrm{~N}_{1}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}$

$$
\left(\frac{(317)^{2}}{4}+\frac{(273)^{2}}{4}+\frac{(230)^{2}}{4}+\frac{(290)^{2}}{4}+\frac{(359)^{2}}{4}-107898.1\right)=2326.7
$$

Step 7: SSE $=$ TSS - SSC- $\operatorname{SSR}=2708.95-42.95-2326.7=339.3$

Source of Variance	Sum of Squares	$\begin{gathered} \text { Degree } \\ \text { of } \\ \text { Freedom } \end{gathered}$	Mean sum of Squares	Variance Ratio	Table Value at 5\% level
Column Treatment	SSC $=2326.7$	$\mathrm{C}-1=4$	$\begin{aligned} \text { MSC }= & \frac{\text { SSC }}{C-1}=\frac{2326.7}{4} \\ & =581.67 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=\frac{\mathrm{MSC}}{\mathrm{MSE}} \\ & =\frac{581.67}{28.27} \end{aligned}$	$\begin{aligned} & \mathrm{Fc}(4,12) \\ & =3.25 \end{aligned}$
Row Treatment	$\mathrm{SSR}=42.95$	$\mathrm{R}-1=3$	$\begin{aligned} & \text { MSR }= \frac{\text { SSR }}{\frac{R-1}{R-1}=\frac{42.95}{3}} \\ &=14.31 \\ & \text { SSE } \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{R}}=\mathrm{MSSE} \\ =\frac{28.27}{14.21} \end{gathered}$	$\stackrel{\text { Fr }}{=} 812.74{ }^{3}$
Error	SSE $=339.3$	$\begin{gathered} \mathrm{N}-\mathrm{C}- \\ \mathrm{R}+1=12 \end{gathered}$	$\begin{aligned} & \text { MSE }=\frac{\text { SEE }}{} \\ & =\frac{339.3}{12}=28.27 \end{aligned}$	$\begin{aligned} & 14.31 \\ & =1.975 \end{aligned}$	
Total	$\begin{gathered} \text { TSS }= \\ 2708.95 \end{gathered}$		Condition Al	s $\mathrm{F}>1$	

Calculated Value $\mathrm{Fr}_{\mathrm{R}}(1.97)$ < table value $\mathrm{Fr}_{\mathrm{R}}(8.74)$ so we Accept H_{0}
Calculated Value $\mathrm{Fc}_{\mathrm{C}}(20.57)>$ table value $\mathrm{F}_{C}(3.25)$ so we Reject H_{0}

Conclusion:

There is a significance difference between Students, but not in Forms,
-The following data related to the Latin square experiment on four varieties of paddy A,B,C \& D

18 A	21 C	25 D	11 B
22	12 B	15 A	19 C
15 B	20 A	23 C	24 D
22 C	21 D	10 B	17 A

(Nov/Dec 2015)

Analyse the result and offer your comments of $\alpha=0.05$ level of significance
(i) There is no significance Difference in Seeds

Soln: Let $H_{0}=\{(\mathrm{ii})$ There is no significance Difference in Treatments
(iii) There is no significance Difference in Lands
(i) There is a significance Difference in Seeds
$\mathrm{H}_{1}=\{(\mathrm{ii})$ There is a significance Difference in Treatments (iii) There is a significance Difference in Lands

Lands	Seeds				Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
	X1 (A)	X_{2} (B)	$\begin{aligned} & \mathrm{X}_{3} \\ & \text { (C) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X}_{4} \\ & \text { (D) } \end{aligned}$					
$\mathrm{I}\left(\mathrm{Y}_{1}\right)$	18	21	25	11	$\Sigma \mathrm{y}_{1}=75$	324	441	625	121
II (Y_{2})	22	12	15	19	$\Sigma \mathrm{y}_{2}=68$	484	144	225	361
III (Y3)	15	20	23	24	$\Sigma \mathrm{y}_{3}=82$	225	400	529	576
IV (Y4)	22	21	10	17	$\Sigma \mathrm{y}_{4}=70$	484	441	100	289
Total	$\Sigma \mathrm{X}_{1}$	$\Sigma \mathrm{X}_{2}$	$\Sigma \mathrm{X}_{3}$	$\Sigma \mathrm{X}_{4}$	$\Sigma \mathrm{y}$ (Total)	$\Sigma \mathrm{X}_{1}^{2}$	$\Sigma \mathrm{X}_{2}^{2}$	$\Sigma \mathrm{X}_{3}^{2}$	$\Sigma \mathrm{X}_{4}^{2}$
	77	74	73	71	T= 295	1517	1426	1479	1347

Step-1: $\mathrm{N} \rightarrow$ Number of Data given in the Problem ($\mathrm{N}=16$)
Step 2: $\mathrm{T}=\mathbf{2 9 5}$ (From above Table)
Step 3: $\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(295)^{2}}{16}=5439.06$ (Correction Factor)
Step4: TSS $=\left(\Sigma \mathrm{X}_{1}^{2}+\Sigma \mathrm{X}_{2}^{2}+\Sigma \mathrm{X}_{3}+\Sigma \mathrm{X}_{4}^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}\right)=329.93$
Step 5: $\mathrm{SSR}=\left(\frac{\mathrm{Zy}_{1}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{2}^{2}}{\mathrm{~N}_{2}}+\frac{\mathrm{Zy}_{3}^{2}}{\mathrm{~N}_{2}}++\frac{\mathrm{Zy}_{4}^{2}}{\mathrm{~N}_{2}}\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(75)^{2}}{4}+\frac{(68)^{2}}{4}+\frac{(82)^{2}}{4}+\frac{(70)^{2}}{4}-5439.06\right)=29.18$
Step 6: $\mathrm{SSC}=\left(\frac{\mathrm{ZX}_{1}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{2}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{3}^{2}}{\mathrm{~N}_{1}}+\frac{\mathrm{ZX}_{4}^{2}}{\mathrm{~N}_{1}}+\right)-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\left(\frac{(77)^{2}}{4}+\frac{(74)^{2}}{4}+\frac{(73)^{2}}{4}+\frac{(71)^{2}}{4}-5439.06\right)=4.68$

SST				Total	
A	18	15	20	17	$\mathbf{7 0}$
B	11	12	15	10	$\mathbf{4 8}$
C	21	19	23	22	$\mathbf{8 5}$
D	25	22	24	21	$\mathbf{9 2}$

Step 7: SST $=\left(\frac{(70)^{2}}{4}+\frac{(48)^{2}}{4}+\frac{(85)^{2}}{4}+\frac{(92)^{2}}{4}-5439.06\right)=284.18$
Step 8: $\mathrm{SSE}=\mathrm{TSS}-$ SSC- SSR- SST $=329.93-29.18-4.68-284.18=11.87$

Source of Variance	Sum of Squares	Degree of Freedom	Mean sum of Squares	Variance Ratio	Table Value at 5\% level
Between Columns	SSC=4.68	$\mathrm{K}-1=3$	$\begin{aligned} & \mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{~K}-1} \\ & =\frac{4.68}{3}=1.56 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=\frac{\mathrm{MSE}}{\mathrm{MSC}} \\ & =\frac{1.97}{1.56} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}(6,3) \\ & =8.94 \end{aligned}$
Between Rows	SSR=29.18	$\mathrm{K}-1=3$	$\begin{aligned} & \mathrm{MSR}=\mathrm{DSK} \\ & =\frac{29.19}{\mathrm{~K}-1}=9.72 \end{aligned}$	$=1.26$	$\begin{aligned} & F_{R}(3,6) \\ & =4.75 \end{aligned}$

Between Treatments	SST=284.18	$\mathrm{K}-1=3$	$\begin{aligned} & \mathrm{MST}=\frac{\mathrm{SSI}}{\mathrm{~K}-1} \\ & =\frac{284.18}{3}=94.72 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}} \\ & =\frac{9.72}{1.97} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{T}}(3,6) \\ & =4.75 \end{aligned}$
Error	SSE=11.875	$\begin{aligned} & (\mathrm{K}-1)(\mathrm{K}-2) \\ & =6 \end{aligned}$	$\begin{aligned} & \text { MSE } \\ & =\frac{\text { SSE }}{(\mathrm{K}-1)(\mathrm{K}-2)} \\ & =\frac{11.875}{6}=1.97 \end{aligned}$	$=4.91$ $\begin{aligned} & \mathrm{F}_{\mathrm{T}}=\frac{\mathrm{MST}}{\mathrm{MSE}} \\ & =\frac{94.72}{1.97} \\ & =47.86 \end{aligned}$	
Total	TSS=329.93	$\begin{aligned} & \mathrm{K}^{2}-1 \\ & =15 \end{aligned}$	Condition Always F >1		

Calculated Value $\mathrm{Fc}_{c}(1.26)$ < table value $\mathrm{Fc}_{\mathrm{C}}(8.94)$ so we Accept H_{0}
Calculated Value $\mathrm{F}_{\mathrm{R}}(4.91)$ > table value $\mathrm{F}_{\mathrm{R}}(4.75)$ so we Reject H_{0}
Calculated Value $\mathrm{F}_{\mathrm{T}}(47.86)>$ table value $\mathrm{F}_{\mathrm{T}}(4.75)$ so we Reject H_{0}

Conclusion:

There is no significance difference between Seeds, But there is a significance difference between Treatments \& Lands

Describe the Latin Square Layout.

Latin Square Designs are probably not úsed as much as they should be - they are very efficient designs. Latin square designs allow for two blocking factors. In other words, these designs are used to simultaneously control (or eliminate) two sources of nuisance variability. For instance, if you had a plot of land the fertility of this land might change in both directions, North -- South and East -- West due to soil or moisture gradients. So, both rows and columns can be used as blocking factors. However, you can use Latin squares in lots of other settings. As we shall see, Latin squares can be used as much as the RCBD in industrial experimentation as well as other experiments.
Whenever, you have more than one blocking factor a Latin square design will allow you to remove the variation for these two sources from the error variation. So, consider we had a plot of land, we might have blocked it in columns and rows, i.e. each row is a level of the row factor, and each column is a level of the column factor. We can remove the variation from our measured response in both directions if we consider both rows and columns as factors in our design.
The Latin Square Design gets its name from the fact that we can write it as a square with Latin letters to correspond to the treatments. The treatment factor levels are the Latin letters in the Latin square design. The number of rows and columns has to correspond to the number of treatment levels. So, if we have four treatments then we would need to have four rows and four columns in order to create a Latin square. This gives us a design where we have each of the treatments and in each row and in each column.
This is just one of many 4×4 squares that you could create. In fact, you can make any size square you want, for any number of treatments - it just needs to have the following property associated with it - that each treatment occurs only once in each row and once in each column.
Consider another example in an industrial setting: the rows are the batch of raw material, the columns are the operator of the equipment, and the treatments ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D) are an industrial process or protocol for producing a particular product.
What is the model? We let:

$$
y_{i j k}=\mu+\rho_{i}+\beta_{j}+r_{k}+e_{i j k}
$$

$$
\begin{aligned}
& \mathrm{i}=1, \ldots, \mathrm{t} \\
& \mathrm{j}=1, \ldots, \mathrm{t}
\end{aligned}
$$

$[\mathrm{k}=1, \ldots, \mathrm{t}]$ where $-\mathrm{k}=\mathrm{d}(\mathrm{i}, \mathrm{j})$ and the total number of observations
$\mathrm{N}=t^{2}$ (the number of rows times the number of columns) and t is the number of treatments.
Note that a Latin Square is an incomplete design, which means that it does not include observations for all possible combinations of i, j and k. This is why we use notation $\mathrm{k}=\mathrm{d}(\mathrm{i}, \mathrm{j})$. Once we know the row and column of the design, then the treatment is specified. In other words, if we know i and j, then k is specified by the Latin Square design.
This property has an impact on how we calculate means and sums of squares, and for this reason we can not use the balanced ANOVA command in Minitab even though it looks perfectly balanced. We will see later that although it has the property of orthogonality, you still cannot use the balanced ANOVA command in Minitab because it is not complete.
An assumption that we make when using a Latin square design is that the three factors (treatments, and two nuisance factors) do not interact. If this assumption is violated, the Latin Square design error term will be inflated.
The randomization procedure for assigning treatments that you would like to use when you actually apply a Latin Square, is somewhat restricted to preserve the structure of the Latin Square. The ideal randomization would be to select a square from the set of all possible Latin squares of the specified size. However, a more practical randomization scheme would be to select a standardized Latin square at random (these are tabulated) and then:

1. randomly permute the columns,
2. randomly permute the rows, and then
3. assign the treatments to the Latin letters in a random fashion.

Consider a factory setting where you are producing a product with 4 operators and 4 machines. We call the columns the operators and the rows the machines. Then you can randomly assign the specific operators to a row and the specific machines to a column. The treatment is one of four protocols for producing the product and our interest is in the average time needed to produce each product. If both the machine and the operator have an effect on the time to produce, then by using a Latin Square Design this variation due to machine or operators will be effectively removed from the analysis.
The following table gives the degrees of freedom for the terms in the model.

AOV	$\boldsymbol{d f}$	$\boldsymbol{d f}$ for the example
Rows	$t-1$	3
Cols	$t-1$	3
Treatments	$t-1$	3
Error	$(t-1)(t-2)$	6
Total	$\left(t^{2}-1\right)$	15

A Latin Square design is actually easy to analyze. Because of the restricted layout, one observation per treatment in each row and column, the model is orthogonal.
If the row, ρ_{i}, and column, β_{j}, effects are random with expectations zero, the expected value of $\mathrm{Y}_{\mathrm{ijk}}$ is $\mu+\mathrm{rk}$. In other words, the treatment effects and treatment means are orthogonal to the row and column effects. We can also write the sums of squares, as seen in Table 4.10 in the text.
We can test for row and column effects, but our focus of interest in a Latin square design is on the treatments. Just as in RCBD, the row and column factors are included to reduce the error variation but are not typically of interest. And, depending on how we've conducted the experiment they often haven't been randomized in a way that allows us to make any reliable inference from those tests.
Note: if you have missing data then you need to use the general linear model and test the effect of treatment after fitting the model that would account for the row and column effects.
In general, the General Linear Model tests the hypothesis that:

$$
\mathrm{H}_{\mathrm{o}}: \mathrm{ri}_{\mathrm{i}}=0 \text { vs. } \mathrm{Ha}_{\mathrm{a}}: \mathrm{ri}_{\mathrm{i}} \neq 0
$$

To test this hypothesis we will look at the F-ratio which is written as:

$$
F=\frac{\operatorname{MS}\left(r k \mid \mu, \rho_{i}, \beta_{j}\right)}{\operatorname{MSE}\left(\mu, \rho_{i}, \beta_{j}, r k\right)} \sim F((t-1),(t-1)(t-2))
$$

To get this in Minitab you would use GLM and fit the three terms: rows, columns and treatments.
The F statistic is based on the adjusted MS for treatment.
The Rocket Propellant Problem - A Latin Square Design
Table 4-8 Latin Square Design for the Rocket Propellant Problem

Batches of Raw Material	1	2	Operators				
	$A=24$	$B=20$	$C=19$	$D=24$	$E=24$		
	$B=17$	$C=24$	$D=30$	$E=27$	$A=36$		
	$C=18$	$D=38$	$E=26$	$A=27$	$B=21$		
	$D=26$	$E=31$	$A=26$	$B=23$	$C=22$		
	$E=22$	$A=30$	$B=20$	$C=29$	$D=31$		

Table 4-13 (4-12 in 7th ed) shows some other Latin Squares from $t=3$ to $t=7$ and states the number of different arrangements available.

Statistical Analysis of the Latin Square Design

The statistical (effects) model is:

$$
\begin{array}{r}
i=1,2, \ldots, p \\
Y_{i j k}=\mu+p_{i}+\beta_{j}+\tau k+\varepsilon i j k\{j=1,2, \ldots, p \\
k=1,2, \ldots, p
\end{array}
$$

but $\mathrm{k}=\mathrm{d}(\mathrm{i}, \mathrm{j})$ shows the dependence of k in the cell i, j on the design layout, and $p=t$ the number of treatment levels.
The statistical analysis (ANOVA) is much like the analysis for the RCBD.

The $\mathbf{2}^{\mathbf{2}}$ Factorial Design

Two factors, A and B, and each factor has two levels, low and high
The concentration of reactant v.s. the amount of the catalyst

Factor		Treatment Combination	Replicate			Total
A	B		I	II	III	
-	-	A low, B low	28	25	27	80
$+$	-	A high, B low	36	32	32	100
-	$+$	A low, B high	18	19	23	60
+	+	A high, B high	31	30	29	90

- " - " And " + " denote the low and high levels of a factor, respectively
- Low and high are arbitrary terms
- Geometrically, the four runs form the corners of a square
- Factors can be quantitative or qualitative, although their treatment in the final model will be different

Figure 6-1 Treatment combinations in the $\mathbf{2}^{2}$ design.
effect of a factor = the change in response produced by a change in the level of that factor averaged over the levels if the other factors. , a, b and $a b$: the total of n replicates taken at the treatment combination.

The main effects

$$
\begin{gathered}
A=\frac{1}{2 n}\{[a b-b]+[a-(1)]\}=\frac{1}{2 n}[a b+a-b-(1)] \\
=\frac{a b+a}{2 n}-\frac{b+(1)}{2 n}=y_{A^{+}}-\bar{y}_{A^{-}}
\end{gathered}
$$

$$
B=\frac{1}{2 n}\{[a b-a]+[b-(1)]\}=\frac{1}{2 n}[a b+b-a-(1)]
$$

The interaction effect

$$
=\frac{a b+b}{2 n}-\frac{a+(1)}{2 n}=\bar{y}_{B^{+}}-\bar{y}_{B^{-}}
$$

$$
\begin{aligned}
A B & =\frac{1}{2 n}\{[a b-b]-[a-(1)]\}=\frac{1}{2 n}[a b+(1)-a-b] \\
& =\frac{a b+(1)}{2 n}-\frac{b+a}{2 n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Contrast }_{A}=a b+a-b-(1) \\
& \text { Contrast }_{B}=a b+b-a-(1) \\
& \text { Contrast }_{A B}=a b+(1)-a-b
\end{aligned}
$$

- Sum of squares:

$$
\begin{aligned}
& S S_{A}=\frac{[a b+a-b-(1)]^{2}}{4 n} \\
& S S_{B}=\frac{[a b+b-a-(1)]^{2}}{4 n}-\mathrm{SS}_{\mathrm{E}}-\mathrm{SS}_{\mathrm{T}}-\mathrm{SS}_{\mathrm{B}}-\mathrm{SS}_{\notin \mathrm{B}} \\
& S S_{A B}=\frac{[a b+(1)-b-a]^{2}}{4 n} \\
& S S_{T}=\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{n} y_{i j k}^{2}-\frac{y^{2}}{4} \\
& S S_{E}=S S_{T}-S S_{A}-S S_{B}-S S_{A B}
\end{aligned}
$$

The Analysis of Variance is completed by computing the total sum of squares SS_{T} with $(4 \mathrm{n}-1) \mathrm{d}$. f as usual and the Error Sum of Squares SS_{E} with (4(n-1)d.f)

Table of plus and minus signs

	I	A	B	AB
(1)	+	-	-	+
a	+	+	-	-
b	+	-	+	-
$a b$	+	+	+	+

- The regression model:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

- x_{1} and x_{2} are coded variables that represent the two factors, i.e. $x_{1}\left(\right.$ or $\left.x_{2}\right)$ only take values on -1 and 1 .
- Use least square method to get the estimations of the coefficients
- For that example,

$$
\hat{y}=27.5+\frac{8.33}{x}+\frac{-5.00}{x} x_{2}
$$

- Model adequacy: residuals and normal probability plot

Degree of Freedom as follows

RBD		LSD	
Treatments	$4-1=3$	Treatments	$4-1=3$
Blocks	$\mathrm{b}-1$	Row	$4-1=3$
Error	$3(\mathrm{~b}-1)$	Columns	$4-1=3$
Total	$4(\mathrm{~b}-1)$	Error	$(4-1)(4-2)=6$
	Total	15	

Problem－1

14.037	14.165	13.972	13.907
14.821	14.757	14.843	14.878
13.880	13.860	14.032	13.914
14.888	14.921	14.415	14.932

The above table presents the results of a 2^{2} factorial design with $\mathrm{n}=4$ replicates，using the factor $\mathrm{A}=$ deposition time and $\mathrm{B}=$ Arsenic Flow rate

The two Level of deposition time are $-=$ short $\&+=$ long ，
The two Level of Arsenic Flow rate $-=55 \% \quad \&+=59 \%$ ，The response variable epitaxial layer thickness（ μ_{m} ） 2^{2} design for Epitaxial layer thickness $\left(\mu_{m}\right)$

Treatment Combinations	Design Factors			Thickness（ μ_{m} ）				Thickness	
	A	B	AB					Total	Average
（1）	－	－	＋	14.037	14.165	13.972	13.907	56.081	14.020
a	＋	－	－	14.821	14.757	14.843	14.878	59.299	14.825
b	－	＋	－	13.880	13.860	14.032	13.914	55.686	13.922
ab	＋	＋	＋	14.888	14.921	14.415	14.932	59.156	14.789

$$
\begin{aligned}
A & =\frac{1}{2 n}[a+a b-b-(1)]=\frac{1}{2(4)}[59.299+59.156-55.686-56.081]=\frac{1}{8}[6.688]=0.836 \\
B & =\frac{1}{2 n}[b+a b-a-(1)]=\frac{1}{2(4)}[55.686+59.156-59.299-56.081]=\frac{1}{8}[-0.536]=-0.067
\end{aligned}
$$

$$
\mathrm{AB}=\frac{1}{2 \mathrm{n}}[(1)+\mathrm{ab}-\mathrm{a}-\mathrm{b}]=\frac{1}{2(4)}[56.081+59.156-59.299-55.686]=\frac{1}{8}[0.256]=0.032
$$

$$
\mathrm{SS}_{\notin}=\frac{[\mathrm{a}+\mathrm{ab}-\mathrm{b}-(1)]^{2}}{4 \mathrm{n}}=\frac{[6.688]^{2}}{16}=2.7956
$$

$$
\mathrm{SS}_{\mathrm{B}}=\frac{[\mathrm{b}+\mathrm{ab}-\mathrm{a}-(1)]^{2}}{4 \mathrm{n}}=\frac{[-0.536]^{2}}{16}=0.0181
$$

$$
\mathrm{SS}_{太 B}=\frac{[(1)+\mathrm{ab}-\mathrm{a}-\mathrm{b}]^{2}}{4 \mathrm{n}}=\frac{[0.252]^{2}}{16}=0.0040
$$

Source of variations	Sum of squares	Degree of freedom	Mean Square	Variance Ratio	Table Value 5\％Level	Table Value 1% Level
A	$\mathrm{SS}_{\text {\＆}}=2.7956$	1	$\begin{aligned} \mathrm{MS}_{Æ} & =\frac{\mathrm{SS}_{太}}{\mathrm{~d} . \mathrm{f}} \\ & =2.7956 \end{aligned}$	$\begin{aligned} \mathrm{F}_{夫} & =\frac{\mathrm{MS}_{E}}{\mathrm{MS}_{\mathrm{E}}} \\ & =134.4 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\text {E }}(1,12) \\ & =4.75 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\notin}(1,12) \\ & =9.33 \end{aligned}$
B	$\mathrm{SS}_{\mathrm{B}}=0.0181$	1	$\begin{aligned} \mathrm{MS} & =\frac{\mathrm{SS}_{B}}{\mathrm{~d} . \mathrm{f}} \\ & =0.0181 \end{aligned}$	$\begin{aligned} \mathrm{F}_{\mathrm{B}} & =\frac{\mathrm{MS}_{\mathrm{B}}}{\mathrm{MS}_{\mathrm{E}}} \\ & =0.87 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{B}}(1,12) \\ & =4.75 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{B}}(1,12) \\ & =9.33 \end{aligned}$
AB	$\mathrm{SS}_{\text {€В }}=0.0040$	1	$\begin{aligned} & \mathrm{MS}=\frac{\mathrm{SD}}{\mathrm{~EB}} \\ & \mathrm{~d} . \mathrm{f} \\ &=0.0040 \end{aligned}$	$\begin{aligned} \mathrm{F}_{\notin B} & =\frac{\mathrm{MS}_{\mathbb{E B}}}{\mathrm{MS}_{\mathrm{E}}} \\ & =0.19 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\text {EB }}(1,12) \\ & =4.75 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\notin \mathrm{B}}(1,12) \\ & =9.33 \end{aligned}$
Error	$\mathrm{SS}_{\mathrm{E}}=0.2495$	12	$\begin{aligned} \mathrm{MS} & =\frac{\mathrm{DJ}_{E}}{\mathrm{d.f}} \\ & =0.0208 \end{aligned}$	Always $\mathrm{F}>1$		

$$
\begin{aligned}
& \text { SS }_{\mathrm{T}}=\left\{(14.037)^{2}+(14.165)^{2}+\cdots+(14.415)^{2}+(14.932)^{2}\right\} \\
&-\left\{\frac{56.081+59.299+55.686+59.156^{2}}{16}\right\}^{2}
\end{aligned}
$$

$$
\mathrm{SS}_{\mathrm{T}}=3.0672
$$

$$
\mathrm{SS}_{\mathrm{E}}=\mathrm{SS}_{\mathrm{T}}-\mathrm{SS}_{Æ}-\mathrm{SS}_{\mathrm{B}}-\mathrm{SS}_{Æ \in \mathrm{~B}}=3.0672-2.7956-0.0181-0.004=0.2495
$$

Analysis of Variance Epitaxial Process Experiment
Here $\quad \mathrm{Cal} \mathrm{F}_{\mathrm{A}}>$ Table F_{A}
Cal $\mathrm{F}_{\mathrm{B}}<$ Table F_{B}
Cal $\mathrm{F}_{\mathrm{AB}}<$ Table F_{AB}
2) Find out the main effects and interactions in the following 2^{2} Factorial experiment and write down the analysis of variance Table

	(I)	a	b	ab
	00	10	01	11
BLOCK-I	64	25	30	6
BLOCK-II	75	14	50	33
BLOCK-III	76	12	41	17
BLOCK-IV	75	33	25	10

Soln:
Taking Deviation $\mathrm{y}=37$, We get

Treatment Combinations	BLOCKS				TOTAL	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
	$\begin{gathered} \mathrm{I} \\ \mathrm{X}_{1} \end{gathered}$	$\begin{aligned} & \hline \mathrm{II} \\ & \mathrm{X}_{2} \end{aligned}$	$\begin{aligned} & \hline \text { III } \\ & \mathrm{X}_{3} \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \mathrm{X}_{4} \\ & \hline \end{aligned}$					
$\left(\mathrm{y}_{1}\right)(1)$	27	38	39	38	142	729	1444	1521	1444
(y_{2}) a	-12	-23	-25	-4	-64	144	529	625	16
(y_{3}) b	-7	13	4	-12	-2	49	169	16	144
(y_{4}) ab	-31	-4	-20	-27	-82	961	16	400	729
Total	-23	24	-2	-5	-6	1883	2158	2562	2333

Step: $1 \mathrm{~N}=16$
Step: $2 \mathrm{~T}=-6$
Step:3 Correction Factor $(\mathrm{CF})=\frac{\mathrm{T}^{2}}{\mathrm{~N}}=\frac{(-6)^{2}}{16}=\frac{36}{16}=2.25$
Step:4 TSS $=\Sigma \underset{1}{\Sigma \mathrm{X}^{2}}+\underset{2}{ } \mathrm{X}_{2}+\Sigma \mathrm{X}_{3}^{2}+\Sigma \mathrm{X}^{2}-{ }_{4}^{\mathrm{T}} \underset{\mathrm{N}}{2}=1883+2158+2562+2333-2.25=8933.75$
Step:5 SSC $=\frac{\left(\Sigma X_{1}\right)^{2}}{N_{1}}+\frac{\left(\Sigma X_{2}\right)^{2}}{N_{1}}+\frac{\left(\Sigma X_{3}\right)^{2}}{N_{1}}+\frac{\left(\Sigma X_{4}\right)^{2}}{N_{1}}-\frac{T^{2}}{N}=\frac{(-23)^{2}}{4}+\frac{(24)^{2}}{4}+\frac{(-2)^{2}}{4}+\frac{(-5)^{2}}{4}-2.25$ SSC $=281.25$
$\mathrm{N}_{1} \rightarrow$ Number of elements in each row
Step:6 SSR $=\frac{\left(\Sigma Y_{1}\right)^{2}}{N_{2}}+\frac{\left(\Sigma Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\Sigma Y_{3}\right)^{2}}{N_{2}}+\frac{\left(\Sigma Y_{4}\right)^{2}}{N_{2}}-\frac{T^{2}}{N}=\frac{(142)^{2}}{4}+\frac{(-64)^{2}}{4}+\frac{(-2)^{2}}{4}+\frac{(-82)^{2}}{4}-2.25$
SSR $=7745.75$

Step:7: SSE $=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=8933.75-281.25-7744.75=\mathbf{9 0 7 . 7 5}$

For 2^{2} Experiment

Contrast $\mathrm{A}=\mathrm{a}+\mathrm{ab}-\mathrm{b}-(1)=[-64-82+2-142]=-286$
Contrast $B=b+a b-a-(1)=[-2-82+64-142]=-162$
Contrast $\mathrm{AB}=(1)+\mathrm{ab}-\mathrm{b}-\mathrm{a}=[142-82+2+64]=126$

MainEffects:

$$
\begin{gathered}
\mathrm{A}=\frac{1}{2}\left(\mathrm{a}+\mathrm{ab-b-(1))=-} \mathrm{\frac{286}{2}=-143}\right. \\
\mathrm{B}=\frac{1}{2}(\mathrm{~b}+\mathrm{ab}-\mathrm{a}-(1))=-\frac{162}{2}=-81 \\
\mathrm{AB}=\frac{1}{2}((1)+\mathrm{ab}-\mathrm{b}-\mathrm{a})=\frac{126}{2}=63 \\
\mathrm{SS}_{\text {E }}=\frac{(\mathrm{a}+\mathrm{ab}-\mathrm{b}-(1))^{2}}{16}=\frac{(-286)^{2}}{16}=5112.25 \\
\mathrm{SS}_{\mathrm{B}}=\frac{(\mathrm{b}+\mathrm{ab}-\mathrm{a}-(1))^{2}}{16}=\frac{(-162)^{2}}{16}=1640.25 \\
\mathrm{SS}_{\text {EB }}=\frac{((1)+\mathrm{ab}-\mathrm{b}-\mathrm{a})^{2}}{16}=\frac{(126)^{2}}{16}=992.25
\end{gathered}
$$

Sour		Sum of			Table Val	
variance	freedom	S		Variance Ratio	5\% Level	$\begin{gathered} 1 \% \\ \text { Level } \end{gathered}$
Blocks	3		93.8	$\frac{100.86}{93.83}=1.075$	$F(9,3)=8.81$	27.35
Treatments	3	$744 .$	2581.58	$\frac{2581.88}{100.86}=25.6$	$F(3,9)=3.86$	6.99
A	1	5112.25	5112.25	$\frac{5112.25}{100.86}=50.69$	$F(1,9)=5.12$	6.99
B	1	1640.25	1640.25	$\frac{1640.25}{100.86}=16.26$	$F(1,9)=5.12$	6.99
AB	1	992.25	992.25	$\frac{992.25}{100.86}=9.84$	$F(1,9)=5.12$	6.99
Error	9	907.75	100.86	Always F > 1		

$\operatorname{Error}(\mathrm{d} . \mathrm{f})=\mathrm{N}-\mathrm{c}-\mathrm{r}+1=16-4-4+1=9$
Cal $\mathrm{F}_{\epsilon}>\mathrm{Tab} \mathrm{F}_{\epsilon}$
Cal $\mathrm{F}_{\mathrm{B}}>$ Tab F_{B}
Cal $\mathrm{F}_{\text {EB }}>$ Tab $\mathrm{F}_{\epsilon \mathrm{EB}}$

I-YEAR B.E./B.TECH - SEMESTER IIQUESTION BANK - MA3257 STATISTICS\& NUMERICAL METHODS	
UNIT-III SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS	
PART A	
1. Write down the order of convergence and condition for convergence of fixed point iteration $\operatorname{method} x=g(x)$	
	Solution: The order of convergence is one and condition for convergence is $\left\|g^{\prime}(x)\right\| \leq 1$, for $x \in I$ where I is the interval containing the root of $x=g(x)$.
2.	State fixed point theorem.
	Solution: Let $f(x)=0$ be the given equation whose actual root is ' a '. The equation $f(x)=0$ be written as $x=g(x)$. Let I be the interval containing the root ' a '. If $\left\|g^{\prime}(x)\right\| \leq 1$ for all x in I then the sequence of successive approximations $x_{0}, x_{1}, x_{2} \cdots$, will converges to a, if the initial starting value x_{0} is chosen in I.
3.	Locate the positive root for the equation $x e^{x}=\cos \boldsymbol{x}$
	Solution: Let $f(x)=x e^{x}-\cos x$ When $x=0 \Rightarrow f(0)=(0) e^{0}-\cos (0)=0-1=-1$ (Negative) When $x=1 \Rightarrow f(1)=(1) e^{1}-\cos (1)=2.718-0.999=1.719$ (Positive) The positive root in magnitude lies in the interval $(0,1)$.
4.	Locate the negative root for the equation $x^{3}-2 x+5=0$, approximately.
	Solution: Let $f(x)=x^{3}-2 x+5$; When $x=-1 \Rightarrow f(-1)=(-1)^{3}-2(-1)+5=-1+2+5=6$ (Positive) When $x=-2 \Rightarrow f(-2)=(-2)^{3}-2(-2)+5=-8+4+5=1$ (Positive) When $x=-3 \Rightarrow f(-3)=(-3)^{3}-2(-3)+5=-27+6+5=-16$ (Negative) The negative root in magnitude lies in the interval $(-3,-2)$.
5.	Solve $e^{x}-3 x=0$ by the method of iteration.
	Solution: Given $f(x)=e^{x}-3 x, f(x)=0 \Rightarrow e^{x}-3 x=0 \Rightarrow 3 x=e^{x} \Rightarrow \mathrm{x}=\frac{1}{3} \mathrm{e}^{\mathrm{x}}=\mathrm{g}(\mathrm{x})$, $g^{\prime}(x)=\frac{1}{3} e^{x}$. Here $\left\|g^{\prime}(x)\right\|<1$ for all x in the interval (0,1). Hence, the iteration converges. Let $x_{0}=0.6$. We obtain the following results. $x_{1}=\frac{1}{3} e^{x_{0}} \Rightarrow x_{1}=\frac{1}{3} e^{0.6} \Rightarrow x_{1}=0.60737$ $x_{2}=\frac{1}{3} e^{x_{1}} \Rightarrow x_{2}=\frac{1}{3} e^{0.60737} \Rightarrow x_{2}=0.61187, x_{3}=\frac{1}{3} e^{x_{2}} \Rightarrow x_{3}=\frac{1}{3} e^{0.61187} \Rightarrow x_{3}=0.61452$ The last two iteration values are equal. The required root is $x=0.61$
6.	State the order and criterion of convergence of Newton-Raphson method for $f(x)=0$
	Solution: The order of convergence of Newton-Raphson method is 2. The criterion of convergence of Newton-Raphson Method is $\left\|f(x) f^{\prime \prime}(x)\right\|<\left\|f^{\prime}(x)\right\|^{2}$

	Solution: Given $2 x-y=1, x-3 y=0$ The given system is equivalent to $\left[\begin{array}{ll}2 & -1 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right] \Rightarrow \mathrm{AX}=\mathrm{B}$ $[A, B]=\left[\begin{array}{cc\|c} 2 & -1 & 1 \\ 1 & -3 & 0 \end{array}\right]$ Now, we will make the matrix A as a upper triangular matrix $\begin{aligned} & \sim\left[\begin{array}{cc\|c} 2 & -1 & 1 \\ 0 & 5 & 1 \end{array}\right] R_{2} \rightarrow R_{1}-2 R_{2} \\ & \therefore 5 y=1 \text { and } 2 x-y=1 \quad \Rightarrow y=\frac{1}{5} \text { and } 2 x-\frac{1}{5}=1 \\ & \quad 2 x=1+\frac{1}{5}=\frac{6}{5}, \quad \text { Hence } x=\frac{3}{5}, y=\frac{1}{5} \end{aligned}$
14.	Explain briefly Gauss Jordan method to solve simultaneous equations.
	Solution: In this method, the augmented matrix is reduced to a diagonal matrix (or even a unit matrix). Here we get the solutions directly, without using back substitution method.
15.	Solve by Gauss-Jordan method, the following system $5 x+4 y=15,3 x+7 y=12$
	Solution: The given system is equivalent to $\left[\begin{array}{ll}5 & 4 \\ 3 & 7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}15 \\ 12\end{array}\right] \Rightarrow A X=B$ $[A, B]=\left[\begin{array}{ll\|l} 5 & 4 & 15 \\ 3 & 7 & 12 \end{array}\right]$ Now, we will make the matrix A as a diagonal matrix $\begin{aligned} & \sim\left[\begin{array}{cc\|c} 5 & 4 & 15 \\ 0 & 23 & 15 \end{array}\right] R_{2} \rightarrow 5 R_{2}-3 R_{1} \\ & \sim\left[\begin{array}{cc\|c} 115 & 0 & 285 \\ 0 & 23 & 15 \end{array}\right] R_{1} \rightarrow 23 R_{1}-4 R_{2} \\ & \therefore 115 x=285 \Rightarrow x=\frac{285}{115}=2.4783, \quad 23 y=15 \Rightarrow y=\frac{15}{23}=0.6522 \end{aligned}$
16.	Which of the iteration method for solving linear system of equation converges faster? Why?
	Solution: Gauss - Seidel method is faster than other iterative methods. In Gauss - Seidel method the latest values of unknowns at each stage of iteration are used in proceeding to the next stage of iteration. Hence the convergence in Gauss - Seidel method is more rapid than Gauss - Jacobi method.
17.	State the condition for convergence of Jacobi's iteration method for solving a system of simultaneous algebraic equations.
	Solution: The process of iteration by Gauss-Jacobi method will converge if in each equation of the system, the absolute value of the largest coefficient is greater than the sum of the absolute values of the remaining coefficients. The coefficient of matrix should be diagonally dominate. $a_{1} x+b_{1} y+c_{1} z=d_{1}, a_{2} x+b_{2} y+c_{2} z=d_{2}, a_{3} x+b_{3} y+c_{3} z=d_{3}$ The convergence condition is $\left\|a_{1}\right\|>\left\|b_{1}\right\|+\left\|c_{1}\right\|, \quad\left\|b_{2}\right\|>\left\|a_{2}\right\|+\left\|c_{2}\right\|, \quad\left\|c_{3}\right\|>\left\|b_{3}\right\|+\left\|a_{3}\right\|$

18.	Find the first iteration values of x, y, z satisfying $28 x+4 y-z=32, x+2 y+10 z=24$ and $\mathbf{2 x + 1 7 y + 4 z = 3 5}$ by Gauss - Seidel method.
	Solution: Interchanging the equation as $1,3,2: 28 x+4 y-z=32,2 x+17 y+4 z=35$ $x+2 y+10 z=24$ Now it is diagonally dominant: $x=\frac{1}{28}(32-4 y+z), y=\frac{1}{17}(35-2 x-4 z)$, $z=\frac{1}{10}(24-x-2 y)$ First iteration: Let $y=0, z=0$ $\begin{aligned} & x=\frac{1}{28}(32-4 y+z)=\frac{1}{28}(32-4(0)+0)=\frac{1}{28}(32)=1.142 \\ & y=\frac{1}{17}(35-2 x-4 z)=\frac{1}{17}(35-2(1.142)-4(0))=\frac{1}{17}(32.716)=1.924 \\ & z=\frac{1}{10}(24-x-2 y)=\frac{1}{10}(24-1.142-2(1.924))=\frac{1}{10}(19.01)=1.901 \end{aligned}$
19.	Find the dominant Eigenvalue of the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ by power method.
	Solution: Let $X_{0}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ be initial Eigen vector $\begin{aligned} & A X_{0}=\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\left[\begin{array}{l} 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} 3 \\ 7 \end{array}\right]=7\left[\begin{array}{c} 0.43 \\ 1 \end{array}\right]=7 X_{1} \\ & A X_{1}=\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\left[\begin{array}{c} 0.43 \\ 1 \end{array}\right]=\left[\begin{array}{c} 2.43 \\ 5.29 \end{array}\right]=5.29\left[\begin{array}{c} 0.46 \\ 1 \end{array}\right]=5.29 X_{2} \\ & A X_{2}=\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\left[\begin{array}{c} 0.46 \\ 1 \end{array}\right]=\left[\begin{array}{l} 2.46 \\ 5.38 \end{array}\right]=5.38\left[\begin{array}{c} 0.46 \\ 1 \end{array}\right]=5.38 X_{3} \end{aligned}$ The dominant Eigenvalue is 5.38 and the corresponding Eigenvector is $\left[\begin{array}{c}0.46 \\ 1\end{array}\right]$
20.	Find the largest Eigen value and the corresponding Eigen vector of the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ correct to two decimal places using power method.
	Solution: Let $X_{0}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ be initial Eigenvector $\mathrm{AX}_{0}=\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{l} 1 \\ 1 \end{array}\right]=2\left[\begin{array}{l} 1 \\ 1 \end{array}\right]=2 \mathrm{X}_{1}, \quad \mathrm{AX},\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{l} 1 \\ 1 \end{array}\right]=2\left[\begin{array}{l} 1 \\ 1 \end{array}\right]=2 \mathrm{X}_{2}$ The largest Eigen value is $2 \&$ the corresponding Eigen vector is $[1,1]^{\mathrm{T}}$.
	PART-B
1.	(i). Find the real root of the equation $\boldsymbol{x}^{3}+x^{2}-1=0$ using fixed point iteration.
	Solution: Let $f(x)=x^{3}+x^{2}-1$ Now $f(0)=0+0-1=-1(-v e)$ $f(1)=1+1-1=1(+v e)$ Hence a real root lies between 0 and 1

	Now $x^{3}+x^{2}-1=0$ can be written as $\begin{aligned} x^{2}(x+1)-1 & =0 \\ x^{2} & =\frac{1}{x+1} \\ x & =\frac{1}{\sqrt{x+1}} \end{aligned}$ Let $\phi(x)=\frac{1}{\sqrt{x+1}}$ Therefore $\phi^{\prime}(x)=\frac{\frac{-1}{2 \sqrt{x+1}}}{x+1}=\frac{-1}{2(x+1)^{3 / 2}}$ Clearly $\left\|\phi^{\prime}(x)\right\|=\left\|\frac{1}{2(x+1)^{3 / 2}}\right\|<1$ in $(0,1)$ For when $x=0.5,\left\|\phi^{\prime}(0.5)\right\|=\left\|\frac{1}{2(1.5)^{3 / 2}}\right\|<1$ The initial value is $x_{0}=0.5$. Now $\begin{aligned} & x_{1}=\phi\left(x_{0}\right)=\frac{1}{\sqrt{x_{0}+1}}=\frac{1}{\sqrt{0.5+1}}=0.8165, \\ & x_{2}=\phi\left(x_{1}\right)=\frac{1}{\sqrt{x_{1}+1}}=\frac{1}{\sqrt{0.8165+1}}=0.7420, x_{3}=\phi\left(x_{2}\right)=\frac{1}{\sqrt{x_{2}+1}}=\frac{1}{\sqrt{0.7420+1}}=0.7577, \\ & x_{4}=\phi\left(x_{3}\right)=\frac{1}{\sqrt{x_{3}+1}}=\frac{1}{\sqrt{0.7577+1}}=0.7543, x_{5}=\phi\left(x_{4}\right)=\frac{1}{\sqrt{x_{4}+1}}=\frac{1}{\sqrt{0.7543+1}}=0.7550 \\ & x_{6}=\phi\left(x_{5}\right)=\frac{1}{\sqrt{x_{5}+1}}=\frac{1}{\sqrt{0.7550+1}}=0.7548, x_{7}=\phi\left(x_{6}\right)=\frac{1}{\sqrt{x_{6}+1}}=\frac{1}{\sqrt{0.7548+1}}=0.7549 \\ & x_{8}=\phi\left(x_{7}\right)=\frac{1}{\sqrt{x_{7}+1}}=\frac{1}{\sqrt{0.7549+1}}=0.7549 \end{aligned}$ Two successive iteration values are equal stop the process. Hence the root is 0.7549
	(ii). Find a positive root of the equation $\cos x-3 x+1=0$ by the method of fixed point iteration.
	Solution: Let $f(x)=\cos x-3 x+1$ $\begin{aligned} & f(0)=\cos (0)-3(0)+1=1-0+1=2(+v e) \\ & f(1)=\cos (1)-3(1)+1=-1.000=(-v e) \end{aligned}$ Therefore a root lies between 0 and 1 . The given equation can be written as $x=\frac{1}{3}(1+\cos x)$ Let $\phi(x)=\frac{1}{3}(1+\cos x)$ $\phi^{\prime}(x)=\frac{-\sin x}{3}$

	Clearly, $\left\|\phi^{\prime}(x)\right\|=\left\|\frac{-\sin x}{3}\right\|=\frac{1}{3}\|\sin x\|<1$ in $(0,1)$. The initial value is $x_{0}=0$. The successive approximation are as follows: $\begin{aligned} & x_{1}=\phi\left(x_{0}\right)=\frac{1}{3}\left(1+\cos x_{0}\right)=\frac{1}{3}(1+\cos 0)=0.6667 \\ & x_{2}=\phi\left(x_{1}\right)=\frac{1}{3}\left(1+\cos x_{1}\right)=\frac{1}{3}(1+\cos 0.6667)=0.5953 \\ & x_{3}=\frac{1}{3}\left(1+\cos x_{2}\right)=0.6093, x_{4}=\frac{1}{3}\left(1+\cos x_{3}\right)=0.6067, x_{5}=\frac{1}{3}\left(1+\cos x_{4}\right)=0.6072 \\ & x_{6}=\frac{1}{3}\left(1+\cos x_{5}\right)=0.6071, x_{7}=\frac{1}{3}\left(1+\cos x_{6}\right)=0.6071 \end{aligned}$ Two successive iteration values are equal stop the process. Hence the root is 0.6071
2.	(i). Compute the real root of $x \log _{10} x=1.2$ correct to three decimal places using NewtonRaphson method.
	Solution: Given $f(x)=x \log _{10} x-1.2$ Now $f(2)=2 \log _{10} 2-1.2=2(0.3010)-1.2=-0.5980(-v e)$ $f(3)=3 \log _{10} 3-1.2=3(0.4771)-1.2=0.2313(+v e)$ Here $f(2)$ and $f(3)$ are opposite in sign, therefore the root of $f(x)=0$ lies between 2 and 3 . Here $\|f(3)\|<\|f(2)\|$. Therefore we can take the initial approximation to the root is $x_{0}=3$. Now $f(x)=x \log _{10} x-1.2$ $\begin{array}{rlr} f^{\prime}(x)= & \log _{10} x+x \frac{1}{x} \log _{10} e & {\left[\because \frac{d}{d x} \log _{a} x=\frac{1}{x} \log _{a} e\right]} \\ & =\log _{10} x+0.4343 & {\left[\because \log _{10} e=0.4343\right]} \end{array}$ We know that Newton's formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ The first approximation to the root is given by $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=x_{0}-\frac{x_{0} \log _{10} x_{0}-1.2}{\log _{10} x_{0}+0.4343}=3-\frac{3 \log _{10} 3-1.2}{\log _{10} 3+0.4343}=2.746$ The second approximation to the root is given by $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=x_{1}-\frac{x_{1} \log _{10} x_{1}-1.2}{\log _{10} x_{1}+0.4343}=2.746-\frac{2.746 \log _{10} 2.746-1.2}{\log _{10} 2.746+0.4343}=2.741$ The third approximation to the root is given by $x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=x_{2}-\frac{x_{2} \log _{10} x_{2}-1.2}{\log _{10} x_{2}+0.4343}=2.741-\frac{2.741 \log _{10} 2.741-1.2}{\log _{10} 2.741+0.4343}=2.741$ Hence the real root of $f(x)=0$, correct to three decimal places is 2.741
	(ii). Using Newton-Raphson method, find the real root of $3 x+\sin x-e^{x}=0$ by choosing initial approximation $x_{0}=0.5$

	Solution: Given $f(x)=3 x+\sin x-e^{x}$ Therefore $f^{\prime}(x)=3+\cos x-e^{x}$ Now $f(0.5)=3(0.5)+\sin (0.5)-e^{0.5}=0.3307(+v e)$ $f(2)=3(2)+\sin (2)-e^{2}=-0.4798(-v e)$ Here $f(0.5)$ is positive and $f(2)$ is negative. Therefore the root lies between 0.5 and 2 . Since $\|f(2)\|<\|f(0.5)\|$ we can take the initial approximation $x_{0}=0.5$. We know that Newton's formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ The first approximation to the root is given by $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=0.5-\frac{3(0.5)+\sin (0.5)-e^{0.5}}{3+\cos (0.5)-e^{0.5}}=0.3516$ The second approximation to the root is given by $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=0.3516-\frac{3(0.3516)+\sin (0.3516)-e^{0.3516}}{3+\cos (0.3516)-e^{0.3516}}=0.3516-\left[\frac{-0.02214}{2.5175}\right]=0.3604$ The third approximation to the root is given by $x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=0.3604-\frac{3(0.3604)+\sin (0.3604)-e^{0.3604}}{3+\cos (0.3604)-e^{0.3604}}=0.3604-[-0.0000217]=0.3604$ Hence the real root of $f(x)=0$, correct to three decimal places is 0.3604
	(ii). Find Newton's iterative formula to find the reciprocal of a given number N and hence find the value of $\frac{1}{19}$
	Let $x=\frac{1}{N} \Rightarrow \frac{1}{x}=N$ Let $f(x)=\frac{1}{x}-N=0$ $f^{\prime}(x)=\frac{-1}{x^{2}}$ We know that Newton's iterative formula is $\begin{equation*} x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\frac{1}{x_{n}}-N}{\frac{-1}{x^{2}}}=x_{n}+x_{n}^{2}\left[\frac{1}{x_{n}}-N\right]=x_{n}+x_{n}-N x_{n}^{2}=x_{n}\left[2-N x_{n}\right] \tag{1} \end{equation*}$ To find $\frac{1}{19}$: Substitute $N=19$ and $n=0$ in (1) we get $x_{1}=x_{0}\left[2-19 x_{0}\right]$ Since $\frac{1}{8}=0.06$ we take $x_{0}=0.06$ The first approximation is given by

	$x_{1}=x_{0}\left[2-19 x_{0}\right]=0.06[2-19(0.06)]=0.0516$ The second approximation is given by $x_{2}=x_{1}\left[2-19 x_{1}\right]=0.0516[2-19(0.0516)]=0.0526$ The third approximation is given by $x_{3}=x_{2}\left[2-19 x_{2}\right]=0.0526[2-19(0.0526)]=0.0526$ Therefore the value of x_{2} and x_{3} are equal Hence the value of $\frac{1}{19}=0.0526$
3.	(i). Solve the following linear system of equations by Gauss elimination method $2 x+3 y+z=-1,5 x+y+z=9,3 x+2 y+4 z=11$
	Solution: Write the given system of equation in augmented matrix form $[A, B]=\left(\begin{array}{ccc\|c}2 & 3 & 1 & -1 \\ 5 & 1 & 1 & 9 \\ 3 & 2 & 4 & 11\end{array}\right)$ By back substitution $\begin{aligned} & 80 z=210 \Rightarrow z=\frac{210}{80} \Rightarrow z=2.625 \\ & -13 y-3 z=23 \\ & -13 y-3(2.625)=23 \Rightarrow y=-2.375 \\ & 2 x+3 y+z=-1 \\ & 2 x+3(-2.375)+2.625=-1 \Rightarrow x=1.75 \end{aligned}$
	(ii). Apply Gauss Jordan method to find the solution of the following system $3 x-y+2 z=12, x+2 y+3 z=11,2 x-2 y-z=2$
	Solution: Write the given system of equation in augmented matrix form $[A, B]=\left[\begin{array}{ccc\|c} 3 & -1 & 2 & 12 \\ 1 & 2 & 3 & 11 \\ 2 & -2 & -1 & 2 \end{array}\right]$

$\sim\left[\begin{array}{ccc\|c}3 & -1 & 2 & 12 \\ 0 & 7 & 7 & 21 \\ 2 & -2 & -1 & 2\end{array}\right] \quad R_{2}: 3 R_{2}-R_{1}$	$3 R_{2}$ $: 3$ 6 9 33 $-R_{1}$ $:-3$ 1 -2 -12 R_{2} $: 0$ 7 7 21
$\sim\left[\begin{array}{ccc\|c}3 & -1 & 2 & 12 \\ 0 & 7 & 7 & 21 \\ 0 & -4 & -7 & -18\end{array}\right] \quad R_{3}: 3 R_{3}-2 R_{1}$	$3 R_{3}: 6$
$\sim\left[\begin{array}{ccc\|c}3 & -1 & 2 & 12 \\ 0 & 7 & 7 & 21 \\ 0 & 0 & -21 & -42\end{array}\right] R_{3}: 7 R_{3}+4 R_{2}$	$7 R_{3}: 0$ -28 -49 -126 $4 R_{2}: 0$ 28 28 84 $R_{3}: 0$ 0 -21 -42
$\sim\left[\begin{array}{ccc\|c}3 & -1 & 2 & 12 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2\end{array}\right] \quad \frac{R_{2}}{7} ; \frac{R_{3}}{-21}$	$\begin{array}{ccccc} \frac{R 2}{7}: & 0 & \frac{7}{7} & \frac{7}{7} & \frac{21}{7} \\ \hline R_{2}: 0 & 1 & 1 & 3 \\ \frac{R_{3}}{-21}: 0 & 0 & \frac{-21}{-21} & \frac{-42}{-21} \\ \hline R_{3}: 0 & 0 & 1 & 2 \\ \hline \end{array}$
$\sim\left[\begin{array}{ccc\|c}3 & -1 & 2 & 12 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right] \quad R_{2}: R_{2}-R_{3}$	$R_{2}: 0$$-R_{3}: 0$ 1 1 3 $R_{2}: 0$ 1 1
$\sim\left[\begin{array}{ccc\|c} 3 & -1 & 0 & 8 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{array}\right] \quad R_{1}: R_{1}-2 R_{3}$	$\begin{array}{rrrr} R_{1}: 3 & -1 & 2 & 12 \\ -2 R_{3}: 0 & 0 & -2 & -4 \\ \hline R_{3}: 3 & -1 & 0 & 8 \end{array}$
$\sim\left[\begin{array}{lll\|l}3 & 0 & 0 & 9 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right] \quad R_{1}: R_{1}+R_{2}$	$\begin{array}{lccc} R_{1}: 3 & -1 & 0 & 8 \\ R_{2}: 0 & 1 & 0 & 1 \\ \hline R_{1}: 3 & 0 & 0 & 9 \end{array}$
$\sim\left[\begin{array}{lll\|l}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right] \quad \frac{R_{1}}{3}$	$\frac{R_{1}}{3}:$ $\frac{3}{3}$ 0 0 $\frac{9}{3}$ $R_{1}:$ 1 0 0 3
$\begin{array}{r} \Rightarrow x+0 y+0 z=3 \\ 0 x+y+0 z=1 \ldots \\ 0 x+0 y+z=1 \ldots \tag{3} \end{array}$	

	VI	$\begin{aligned} x_{6} & =\frac{1}{8}\left(18+y_{5}-z_{5}\right) \\ & =\frac{1}{8}(18+0.981-2.993) \\ & =1.999 \end{aligned}$	$\begin{aligned} y_{6} & =\frac{1}{5}\left(3-2 x_{5}+2 z_{5}\right) \\ & =\frac{1}{5}(3-2(2.000)+2(2.993)) \\ & =0.997 \end{aligned}$	$\begin{aligned} z_{6} & =\frac{1}{3}\left(6+x_{5}+y_{5}\right) \\ & =\frac{1}{3}(6+2.000+0.981) \\ & =2.994 \end{aligned}$
	VII	$\begin{aligned} x_{7} & =\frac{1}{8}\left(18+y_{6}-z_{6}\right) \\ & =\frac{1}{8}(18+0.997-2.99 \\ & =2.000 \end{aligned}$	$\begin{aligned} y_{7} & =\frac{1}{5}\left(3-2 x_{6}+2 z_{6}\right) \\ & =\frac{1}{5}(3-2(1.999)+2(2.994)) \\ & =0.998 \end{aligned}$	$\begin{aligned} z_{7} & =\frac{1}{3}\left(6+x_{6}+y_{6}\right) \\ & =\frac{1}{3}(6+1.999+0.997) \\ & =2.999 \end{aligned}$
	VIII	$\begin{aligned} x_{8} & =\frac{1}{8}\left(18+y_{7}-z_{7}\right) \\ & =\frac{1}{8}(18+0.998-2.99 \\ & =2.000 \end{aligned}$	$\begin{aligned} y_{8} & =\frac{1}{5}\left(3-2 x_{7}+2 z_{7}\right) \\ & =\frac{1}{5}(3-2(2.000)+2(2.999)) \\ & =1.000 \end{aligned}$	$\begin{aligned} z_{8} & =\frac{1}{3}\left(6+x_{7}+y_{7}\right) \\ & =\frac{1}{3}(6+2.000+0.998) \\ & =2.999 \end{aligned}$
	IX	$\begin{aligned} x_{9} & =\frac{1}{8}\left(18+y_{8}-z_{8}\right) \\ & =\frac{1}{8}(18+1.000-2.99 \\ & =2.000 \end{aligned}$	$\begin{aligned} y_{9} & =\frac{1}{5}\left(3-2 x_{8}+2 z_{8}\right) \\ & =\frac{1}{5}(3-2(2.000)+2(2.999)) \\ & =1.000 \end{aligned}$	$\begin{aligned} z_{9} & =\frac{1}{3}\left(6+x_{8}+y_{8}\right) \\ & =\frac{1}{3}(6+2.000+1.000) \\ & =3.000 \end{aligned}$
	X	$\begin{aligned} x_{10} & =\frac{1}{8}\left(18+y_{9}-z_{9}\right) \\ & =\frac{1}{8}(18+1.000-3.00 \\ & =2.000 \end{aligned}$	$\begin{aligned} y_{10} & =\frac{1}{5}\left(3-2 x_{9}+2 z_{9}\right) \\ & =\frac{1}{5}(3-2(2.000)+2(3.000)) \\ & =1.000 \end{aligned}$	$\begin{aligned} z_{9} & =\frac{1}{3}\left(6+x_{8}+y_{8}\right) \\ & =\frac{1}{3}(6+2.000+1.000) \\ & =3.000 \end{aligned}$
	Hence			
	$\begin{gathered} \text { (ii). Fi } \\ x-2 \end{gathered}$	solution of the syste $=12,5 x+2 y-z=6,$	ollowing equations by Ga $y-3 z=5$	
	Solution The give $x-2 y+$ $5 x+2 y$ $2 x+6 y$ Intercha Clearly Seidel m From (1)	system is $\begin{aligned} & z=12 \\ & z=6 \\ & 3 z=5 \end{aligned}$ ing the equations $\begin{gather*} 5 x+2 y-z=6 \tag{1}\\ 2 x+6 y-3 z=5 \tag{2}\\ x-2 y+5 z=12 \end{gather*}$ $\text { e coefficient matrix }\left[\begin{array}{cc} 5 & 2 \\ 2 & 6 \\ 1 & -2 \end{array}\right.$ hod without any difficulty (2) and (3) we get	(3) $\left.\begin{array}{l}-1 \\ -3\end{array}\right]$ is diagonally dominant.	e we can apply Gauss-

	$\begin{align*} x & =\frac{1}{5}(6-2 y+z) \tag{4}\\ y & =\frac{1}{6}(5-2 x+3 z) \tag{5}\\ z & =\frac{1}{5}(12-x+2 y) \tag{6} \end{align*}$			
	Itera tion	$x=\frac{1}{5}(6-2 y+z)$	$y=\frac{1}{6}(5-2 x+3 z)$	$z=\frac{1}{5}(12-x+2 y)$
	I	$\begin{aligned} x_{1} & =\frac{1}{5}\left(6-2 y_{0}+z_{0}\right) \\ & =\frac{1}{5}(6-0+0) \\ & =1.200 \end{aligned}$	$\begin{aligned} y_{1} & =\frac{1}{6}\left(5-2 x_{1}+3 z_{0}\right) \\ & =\frac{1}{6}(5-2(1.200)+0) \\ & =0.433 \end{aligned}$	$\begin{aligned} z_{1} & =\frac{1}{5}\left(12-x_{1}+2 y_{1}\right) \\ & =\frac{1}{5}(12-1.200+2(0.433)) \\ & =2.333 \end{aligned}$
	II	$\begin{aligned} x_{2} & =\frac{1}{5}\left(6-2 y_{1}+z_{1}\right) \\ & =\frac{1}{5}(6-2(0.433)+2.333) \\ & =1.493 \end{aligned}$	$\begin{aligned} y_{2} & =\frac{1}{6}\left(5-2 x_{2}+3 z_{1}\right) \\ & =\frac{1}{6}(5-2(1.493)+ \\ & =1.502 \end{aligned}$	$\begin{aligned} z_{2} & =\frac{1}{5}\left(12-x_{2}+2 y_{2}\right) \\ & =\frac{1}{5}(12-1.493+2(1.502) \\ & =2.702 \end{aligned}$
	III	$\begin{aligned} x_{3} & =\frac{1}{5}\left(6-2 y_{2}+z_{2}\right) \\ & =\frac{1}{5}(6-2(1.502)+2.702) \\ & =1.140 \end{aligned}$	$\begin{aligned} y_{3} & =\frac{1}{6}\left(5-2 x_{3}+3 z_{2}\right) \\ & =\frac{1}{6}(5-2(1.140)+ \\ & =1.804 \end{aligned}$	$\begin{aligned} z_{3} & =\frac{1}{5}\left(12-x_{3}+2 y_{3}\right) \\ & =\frac{1}{5}(12-1.140+2(1.804) \\ & =2.894 \end{aligned}$
	IV	$\begin{aligned} x_{4} & =\frac{1}{5}\left(6-2 y_{3}+z_{3}\right) \\ & =\frac{1}{5}(6-2(1.804)+2.892 \\ & =1.057 \end{aligned}$	$\begin{aligned} 4 & =\frac{1}{6}\left(5-2 x_{4}+3 z_{3}\right) \\ & =\frac{1}{6}(5-2(1.057)+3 \\ & =1.928 \end{aligned}$	$\begin{aligned} z_{4} & =\frac{1}{5}\left(12-x_{4}+2 y_{4}\right) \\ & =\frac{1}{5}(12-1.057+2(1.928) \\ & =2.960 \end{aligned}$
	V	$\begin{aligned} x_{5} & =\frac{1}{5}\left(6-2 y_{4}+z_{4}\right) \\ & =\frac{1}{5}(6-2(1.928)+2.960) \\ & =1.021 \end{aligned}$	$\begin{aligned} y_{5} & =\frac{1}{6}\left(5-2 x_{5}+3 z_{4}\right) \\ & =\frac{1}{6}(5-2(1.021)+3 \\ & =1.973 \end{aligned}$	$\begin{aligned} z_{5} & =\frac{1}{5}\left(12-x_{5}+2 y_{5}\right) \\ & =\frac{1}{5}(12-1.021+2(1.973) \\ & =2.985 \end{aligned}$
	VI	$\begin{aligned} x_{6} & =\frac{1}{5}\left(6-2 y_{5}+z_{5}\right) \\ & =\frac{1}{5}(6-2(1.973)+2.985) \\ & =1.008 \end{aligned}$	$\begin{aligned} y_{6} & =\frac{1}{6}\left(5-2 x_{6}+3 z_{5}\right) \\ & =\frac{1}{6}(5-2(1.008)+3 \\ & =1.990 \end{aligned}$	$\begin{aligned} z_{6} & =\frac{1}{5}\left(12-x_{6}+2 y_{6}\right) \\ & =\frac{1}{5}(12-1.008+2(1.990)) \\ & =2.994 \end{aligned}$

	VII	$\begin{aligned} x_{7} & =\frac{1}{5}\left(6-2 y_{6}+z_{6}\right) \\ & =\frac{1}{5}(6-2(1.990)+2.994) \\ & =1.003 \end{aligned}$	$\begin{aligned} y_{7} & =\frac{1}{6}\left(5-2 x_{7}+3 z_{6}\right) \\ & =\frac{1}{6}(5-2(1.003)+3(2.994) \\ & =1.996 \end{aligned}$	$\begin{aligned} z_{7} & =\frac{1}{5}\left(12-x_{7}+2 y_{7}\right) \\ & =\frac{1}{5}(12-1.003+2(1.996) \\ & =2.998 \end{aligned}$
	VIII	$\begin{aligned} x_{8} & =\frac{1}{5}\left(6-2 y_{7}+z_{7}\right) \\ & =\frac{1}{5}(6-2(1.996)+2.998) \\ & =1.001 \end{aligned}$	$\begin{aligned} y_{8} & =\frac{1}{6}\left(5-2 x_{8}+3 z_{7}\right) \\ & =\frac{1}{6}(5-2(1.001)+3(2.998) \\ & =1.999 \end{aligned}$	$\begin{aligned} z_{8} & =\frac{1}{5}\left(12-x_{8}+2 y_{8}\right) \\ & =\frac{1}{5}(12-1.001+2(1.999)) \\ & =2.999 \end{aligned}$
	IX	$\begin{aligned} x_{9} & =\frac{1}{5}\left(6-2 y_{8}+z_{8}\right) \\ & =\frac{1}{5}(6-2(1.999)+2.999) \\ & =1.000 \end{aligned}$	$\begin{aligned} y_{9} & =\frac{1}{6}\left(5-2 x_{9}+3 z_{8}\right) \\ & =\frac{1}{6}(5-2(1.000)+3(2.999) \\ & =2.000 \end{aligned}$	$\begin{aligned} z_{9} & =\frac{1}{5}\left(12-x_{9}+2 y_{9}\right) \\ & =\frac{1}{5}(12-1.000+2(2.000) \\ & =3.000 \end{aligned}$
	X	$\begin{aligned} x_{10} & =\frac{1}{5}\left(6-2 y_{9}+z_{9}\right) \\ & =\frac{1}{5}(6-2(2.000)+3.000) \\ & =1.000 \end{aligned}$	$\begin{aligned} y_{10} & =\frac{1}{6}\left(5-2 x_{10}+3 z_{9}\right) \\ & =\frac{1}{6}(5-2(1.000)+3(3.000) \\ & =2.000 \end{aligned}$	$\begin{aligned} z_{10} & =\frac{1}{5}\left(12-x_{10}+2 y_{10}\right) \\ & =\frac{1}{5}(12-1.000+2(2.000) \\ & =3.000 \end{aligned}$

Hence $x=1, y=2, z=3$
5. (i). Find the numerically largest Eigen value of $\mathrm{A}=$
$\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ and the corresponding Eigen
vector.
Solution: Let the initial eigenvector be $X^{(0)}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
$A X(0)=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}25 \\ 1 \\ 2\end{array}\right)=25\left(\begin{array}{c}1 \\ 0.04 \\ 0.08\end{array}\right)=25 X^{(1)}$.
$\mathrm{AX}^{(1)}=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]\left(\begin{array}{c}1 \\ 0.04 \\ 0.08\end{array}\right)=\left(\begin{array}{l}25.2 \\ 1.12 \\ 1.68\end{array}\right)=25.2\left(\begin{array}{c}1 \\ 0.0444 \\ 0.0667\end{array}\right)=25.2 X^{(2)}$.(ie) $X^{(2)}=\left(\begin{array}{c}1 \\ 0.0444 \\ 0.0667\end{array}\right)$
Repeating this, we get $25.1778\left(\begin{array}{c}1 \\ 0.0450 \\ 0.06888\end{array}\right), 25.1826\left(\begin{array}{c}1 \\ 0.0451 \\ 0.0685\end{array}\right), 25.1821\left(\begin{array}{c}1 \\ 0.0451 \\ 0.0685\end{array}\right)$.
Therefore, the largest eigenvalue is 25.182

	$\begin{aligned} & X_{10}=A X_{9}=\left[\begin{array}{ccc} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ 0.95 \end{array}\right]=\left[\begin{array}{c} 5.95 \\ 0 \\ 5.75 \end{array}\right]=5.95\left[\begin{array}{c} 1 \\ 0 \\ 0.97 \end{array}\right]=5.95 X_{10} \\ & X_{11}=A X_{10}=\left[\begin{array}{ccc} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ 0.97 \end{array}\right]=\left[\begin{array}{c} 5.97 \\ 0 \\ 5.83 \end{array}\right]=5.97\left[\begin{array}{c} 1 \\ 0 \\ 0.98 \end{array}\right]=5.97 X_{11} \\ & X_{12}=A X_{11}=\left[\begin{array}{lcl} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ 0.98 \end{array}\right]=\left[\begin{array}{c} 5.98 \\ 0 \\ 5.89 \end{array}\right]=5.98\left[\begin{array}{c} 1 \\ 0 \\ 0.98 \end{array}\right]=5.98 X_{12} \\ & X_{13}=A X_{12}=\left[\begin{array}{ccc} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ 0.98 \end{array}\right]=\left[\begin{array}{c} 5.98 \\ 0 \\ 5.92 \end{array}\right]=5.98\left[\begin{array}{c} 1 \\ 0 \\ 0.99 \end{array}\right]=5.98 X_{13} \end{aligned}$ Two successive iterations are equal that is $X_{12}=X_{13}$ Therefore, the dominant eigenvalue is 5.98 and corresponding eigenvector is $X=\left[\begin{array}{c}1 \\ 0 \\ 0.99\end{array}\right]$
	UNIT IV - INTERPOLATION AND APPROXIMATION
	PART A
1.	What is meant by Interpolation and Extrapolation?
	Solution: Interpolation is the process of computing intermediate values of a function from a given set of tabular values of the function (i.e.) inside the interval $\left(x_{0}, x_{n}\right)$. Extrapolation is the process of finding the values outside the interval $\left(x_{0}, x_{n}\right)$.
2.	Find $f(x)$ as a polynomial through the points (0,0), (1, 1) and (2, 20).
	Solution: Let $x_{0}=0, x_{1}=1, x_{2}=2$ and $y_{0}=0, y_{1}=1, y_{2}=20$ Lagrange's interpolation formula $y=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{o}-x_{1}\right)\left(x_{o}-x_{2}\right)} y_{o}+\frac{\left(x-x_{o}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{o}\right)\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{o}\right)\left(x_{2}-x_{1}\right)} y_{2}$ $\begin{aligned} y=f(x) & =\frac{(x-1)(x-2)}{(0-1)(0-2)}(0)+\frac{(x-0)(x-2)}{(1-0)(1-2)}(1)+\frac{(x-0)(x-1)}{(2-0)(2-1)}(20) \\ y & =0-x(x-2)+10 x(x-1)=9 x^{2}-8 x \end{aligned}$
3.	Write down Lagrange's Inverse Interpolation formula.
	Solution: $\begin{aligned} & x=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right) \ldots .\left(y-y_{n}\right)}{\left(y_{o}-y_{1}\right)\left(y_{o}-y_{2}\right) \ldots .\left(y_{o}-y_{n}\right)} x_{o}+\frac{\left(y-y_{o}\right)\left(y-y_{2}\right) \ldots .\left(y-y_{n}\right)}{\left(y_{1}-y_{o}\right)\left(y_{1}-y_{2}\right) \ldots .\left(y_{1}-y_{n}\right)} x_{l}+\ldots . . \\ &+\frac{\left(y-y_{o}\right)\left(y-y_{1}\right) \ldots .\left(y-y_{n-l}\right)}{\left(y_{n}-y_{o}\right)\left(y_{n}-y_{l}\right) \ldots .\left(y_{n}-y_{n-l}\right)} x_{n} \end{aligned}$
4.	State the assumption for Lagrange's method
	Solution: Lagrange's interpolation formula can be used whether the values of x, the independent variable are equally spaced or not whether the difference of y become smaller or not.
5.	What are the advantages of Lagrange's Interpolation method over Newton's method?
	Solution:

20. \quad State the properties of the cubic spline.

Solution: A cubic spline $S(x)$ is defined by the following properties.
(i) $S\left(x_{i}\right)=y_{i}, i=0,1, \ldots, n$
(ii) $S(x), S^{\prime}(x), S^{\prime \prime}(x)$ are continuous in [a, b]
(iii) $S(x)$ is a cubic polynomial in each subinterval $\left(x_{i}, x_{i+1}\right), i=0,1, \ldots, n-1$

PART-B

1. \quad (i). Find $y(10)$ given $y(5)=12, y(6)=13, y(9)=14$ and $y(11)=16$ by Lagrange's formula.

Solution:

The Lagrange's interpolation formula is,

$$
\begin{aligned}
y=f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1}+ \\
& \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
y=f(x)= & \frac{(x-6)(x-9)(x-11)}{(5-6)(5-9)(5-11)}(12)+\frac{(x-5)(x-9)(x-11)}{(6-5)(6-9)(6-11)}(13) \\
& +\frac{(x-5)(x-6)(x-11)}{(9-5)(9-6)(9-11)}(14)+\frac{(x-5)(x-6)(x-9)}{(11-5)(11-6)(11-9)}(16)
\end{aligned}
$$

Put $x=10$

$$
\begin{aligned}
& y(10)=f(10)=\frac{(4)(1)(-1)}{(-1)(-4)(-6)}(12)+\frac{(5)(1)(-1)}{(1)(-3)(-5)}(13)+\frac{(5)(4)(-1)}{(4)(3)(-2)}(14)+\frac{(5)(4)(1)}{(6)(5)(2)}(16) \\
& y(10)=14.6666
\end{aligned}
$$

(ii). Using Lagrange's inverse interpolation formula, find the value of \boldsymbol{x} when $y=13.5$ from the given data

x	93.0	96.2	100.0	104.2	108.7
y	11.38	12.80	14.70	17.07	19.91

Solution: The Lagrange's inverse interpolation formula is,

$$
\begin{aligned}
x= & \frac{\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)\left(y-y_{4}\right)}{\left(y_{o}-y_{1}\right)\left(y_{o}-y_{2}\right)\left(y_{0}-y_{3}\right)\left(y_{0}-y_{4}\right)} x_{o}+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)\left(y-y_{4}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{1}-y_{4}\right)} x_{1} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{3}\right)\left(y-y_{4}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)\left(y_{2}-y_{3}\right)\left(y_{2}-y_{4}\right)} x_{2}+\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{4}\right)}{\left(y_{3}-y_{0}\right)\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)\left(y_{3}-y_{4}\right)} x_{3} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)}{\left(y_{4}-y_{0}\right)\left(y_{4}-y_{1}\right)\left(y_{4}-y_{2}\right)\left(y_{4}-y_{3}\right)} x_{4}
\end{aligned}
$$

Here $x_{0}=93.0 ; x_{1}=96.2 ; x_{2}=100 ; x_{3}=104.2 ; x_{4}=108.7$;

$$
y=13.5 ; y_{0}=11.38 ; y_{1}=12.80 ; y_{2}=14.70 ; \mathrm{y}_{3}=17.07 ; y_{4}=19.91
$$

$$
x=\frac{(13.5-12.80)(13.5-14.70)(13.5-17.07)(13.5-19.91)}{(11.38-12.80)(11.38-14.70)(11.38-17.07)(11.38-19.91)} 93.0
$$

$$
+\frac{(13.5-11.38)(13.5-14.70)(13.5-17.07)(13.5-19.91)}{(12.80-11.38)(12.80-14.70)(12.80-17.07)(12.80-19.91)} 96.0
$$

$$
+\frac{(13.5-11.38)(13.5-12.80)(13.5-17.07)(13.5-19.91)}{(14.70-11.38)(14.70-12.80)(14.70-17.07)(14.70-19.91)} 100
$$

	$\begin{aligned} f(x) & =f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+\ldots \ldots . . \\ & =1+(x-1) 4+(x-1)(x-2)\left(\frac{-4}{6}\right)+(x-1)(x-2)(x-7)\left(\frac{1}{14}\right) \\ & =1+4 x-4-\frac{2}{3}(x-1)(x-2)+\frac{1}{14}(x-1)(x-2)(x-7) \\ & =\frac{1}{42}\left[168 x-126-28 x^{2}+84 x-56\right]+3\left[x^{3}-3 x^{2}+2 x-7 x^{2}+21 x-14\right] \\ & =\frac{1}{42}\left[-28 x^{2}+252 x-182+3 x^{3}-9 x^{2}+6 x-21 x^{2}+63 x-42\right] \\ & =\frac{1}{42}\left[3 x^{3}-58 x^{2}+321 x-224\right] \\ f(6) & =\frac{1}{42}\left[3(6)^{3}-58(6)^{2}+321(6)-224\right]=6.2381 \end{aligned}$
	(ii). From the following table find the value of $\tan 45^{\circ} 15^{\prime}$
	Solution: Here $\mathrm{h}=1, \mathrm{u}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{45^{\circ} 15^{\prime}-45^{\circ}}{1}=15^{\prime}=\frac{1^{0}}{4}=0.25(\mathrm{u}$ is dimensionless) The difference table is $\begin{aligned} y(x)= & \mathrm{y}_{0}+\frac{u}{1!} \Delta y_{0}+\frac{\mathrm{u}(\mathrm{u}-1)}{2!} \Delta^{2} y_{0}+\frac{\mathrm{u}(\mathrm{u}-1)(\mathrm{u}-2)}{3!} \Delta^{3} y_{0}+\frac{\mathrm{u}(\mathrm{u}-1)(\mathrm{u}-2)(\mathrm{u}-3)}{4!} \Delta^{4} y_{0} \\ & +\frac{\mathrm{u}(\mathrm{u}-1)(\mathrm{u}-2)(\mathrm{u}-3)(\mathrm{u}-4)}{5!} \Delta^{5} y_{0} \end{aligned}$

	Here $\mathrm{h}=1 ; \mathrm{n}=3$ Let $M_{o}=M_{3}=0$, We have $M_{i-1}+4 M_{i}+M_{i+1}=\frac{6}{h^{2}}\left[y_{i-1}-2 y_{i}+y_{i+1}\right]$ for $i=1,2$ $\begin{aligned} & M_{0}+4 M_{1}+M_{2}=6\left[y_{0}-2 y_{1}+y_{2}\right] \\ & M_{1}+4 M_{2}+M_{3}=6\left[y_{1}-2 y_{2}+y_{3}\right] \end{aligned}$ This reduces to, (taking $M_{0}, M_{3}=0$) $\begin{aligned} & 4 \mathrm{M}_{1}+M_{2}=180 \rightarrow(1) \\ & M_{1}+4 M_{2}=1080 \rightarrow(2) \end{aligned}$ solving (1) \& (2) we get $M_{1}=-24, M_{2}=276$ The cubic spline for $\mathrm{x}_{\mathrm{i}-1} \leq \mathrm{x} \leq \mathrm{x}_{\mathrm{i}}$ is given by $f(x)=y(x)=\frac{1}{6 h}\left[\left(x_{i}-x\right)^{3} M_{i-1}+\left(x-x_{i-1}\right)^{3} M_{i}\right]+\frac{1}{h}\left[\left(x_{i}-x\right)\left[y_{i-1}-\frac{h^{2}}{6} M_{i-1}\right]+\frac{1}{h}\left(x-x_{i-1}\right)\left[y_{i}-\frac{h^{2}}{6} M_{i}\right] \rightarrow(3)\right.$ For $i=1, \mathrm{f}(\mathrm{x})=-4 \mathrm{x}^{3}+5 x+1 ; 0 \leq x \leq 1 \rightarrow(4)$ For $i=2, f(x)=50 x^{3}-162 x^{2}+167 x-53 ; 1 \leq x \leq 2 \rightarrow$ (5) For $i=3, f(x)=-46 x^{3}+414 x^{2}-985 x-715 ; 2 \leq x \leq 3 \rightarrow$ (6) Equation(4), (5) \& (6) give the cubic spline in each sub-interval $\begin{aligned} & \text { Hence } \mathrm{f}(x)=\left\{\begin{array}{c} -4 \mathrm{x}^{3}+5 x+1 ; 0 \leq x \leq 1 \\ 50 x^{3}-162 x^{2}+167 x-53 ; 1 \leq x \leq 2 \\ -46 x^{3}+414 x^{2}-985 x-715 ; 2 \leq x \leq 3 \end{array}\right\} \\ & \mathrm{f}(x)=50 x^{3}-162 x^{2}+167 x-53 ; 1 \leq x \leq 2 \\ & \mathrm{f}^{\prime}(x)=150 x^{2}-324 x+167 \\ & \mathrm{f}^{\prime}(1.5)=150\left(1.5^{2}\right)-324(1.5)+167=18.5 \\ & \mathrm{f}(x)=-4 \mathrm{x}^{3}+5 x+1 ; 0 \leq x \leq 1 \\ & \mathrm{f}(0.35)=-4\left(0.35^{3}\right)+5(0.35)+1=2.26 \end{aligned}$
	UNIT III - NUMERICAL DIFFERENTIATION AND INTEGRATION
	PART - A
1.	Define Numerical Differentiation.
	Solution: Numerical differentiation is the process of computing the values of $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}} \ldots$. For some particular values of x from the given data $\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)$ where y is not known explicitly.
2.	State Newton's formula to find the derivatives $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=\mathrm{x}_{0}$ using forward differences.
	Solution: $\begin{aligned} & y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{1}{h}\left[\Delta y_{o}-\frac{1}{2} \Delta^{2} y_{o}+\frac{1}{3} \Delta^{3} y_{o}-\ldots \ldots . .\right] \\ & y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{o}-\Delta^{3} y_{o}+\frac{11}{12} \Delta^{4} y_{o}-\ldots \ldots . .\right] \end{aligned}$

	$\begin{aligned} \left(\frac{d y}{d x}\right)_{x=0.4}=\left(\frac{d y}{d x}\right)_{v=0} & =\frac{1}{h}\left[\nabla y_{n}+\frac{1}{2} \nabla^{2} y_{n}+\frac{1}{3} \nabla^{3} y_{n}+\ldots \ldots \ldots\right) \\ & =\frac{1}{0.1}\left[0.14196+\frac{1}{2}(0.0135)+\frac{1}{3}(0.00127)\right)=1.4913 \end{aligned}$				
7.	Define Quadrature.				
	Solution: The process of evaluating a definite integral from a set of tabulated values of function is called as quadrature.				
8.	What is the Geometrical interpretation of Trapezoidal rule?				
	Solution: The area of the region enclosed by the curve $y=f(x)$, the $x-$ axis, the ordinates $x=a$ and $x=b$ is approximated by the sum of the area of n trapeziums.				
9.	Write the formula for trapezoidal rule.				
	Solution: $\mathrm{I}=\int_{x_{0}}^{x_{n}} \mathrm{f}(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right]$, where $h=\frac{x_{n}-x_{0}}{n}, \mathrm{n}$ is no. of sub intervals				
10.	State Simpson's one-third rule.				
	Solution: $\mathrm{I}=\int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{2 n}\right)+2\left(y_{2}+y_{4}+\ldots \ldots \ldots . .+y_{2 n-2}\right)+4\left(y_{1}+y_{3}+\ldots \ldots \ldots \ldots \ldots y_{2 n-1}\right)\right]$				
11.	Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ by taking $\mathbf{h}=\mathbf{1}$ by Simpson's $\frac{3}{8}{ }_{t}$ rule.				
	Solution:				
	\mathbf{X} 0 1 2 3 4 5 6 \mathbf{Y} 1 0.5 0.2 0 0.05824 0.03846 0.027027				
	$\begin{aligned} & \int_{a}^{b} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2\left(y_{3}\right)\right] \\ & I=\int_{0}^{6} \frac{1}{1+x^{2}} d x=\frac{3}{8}[(1+0.027027)+3(0.5+0.2+0.058824+0.038462)+2(0.1)]=1.35708 \end{aligned}$				
12.	Evaluate $\int_{\frac{1}{2}}^{1} \frac{d x}{x}$ Trapezoidal rule, dividing the range into 4 equal parts.				
	Solution: $\mathrm{h}=\frac{\text { upper limit }- \text { lower limit }}{\text { no.of int ervals }}=\frac{1-\frac{1}{2}}{4}=0.125$				
	X	0.625	0.75	0.875	1
	$\begin{array}{l\|l} \hline y=\frac{1}{x} & 2 \\ \hline \end{array}$	1.6	1.333	1.142	1
	$I=\int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right]=\frac{0.125}{2}[(2+1)+2(1.6+1.333+1.142)]=0.696$				
13.	Compare Trapezoidal rule and Simpson's one-third rule.				

Newton's divided difference formula.

$$
\begin{aligned}
& \begin{aligned}
y= & f(x)=f\left(x_{o}\right)+\left(x-x_{o}\right) f\left(x_{o}, x_{1}\right)+\left(x-x_{o}\right)\left(x-x_{1}\right) f\left(x_{o}, x_{1}, x_{2}\right)+\ldots . . \\
& =4+(x-0)(11)+(x-0)(x-2)(7)+(x-0)(x-2)(x-3)(1) \\
y & =4+11 x+7 x^{2}-14 x+x^{3}-5 x^{2}+6 x x^{3}+2 x^{2}+3 x+4 \\
\Rightarrow \mathrm{y}^{\prime} & =3 \mathrm{x}^{2}+4 \mathrm{x}+3
\end{aligned} \\
& \text { put } \mathrm{x}=6, \mathrm{y}^{\prime}(6)=3(6)^{2}+4(6)+3=135
\end{aligned}
$$

2. (i). Find the first two derivatives of $(x)^{\frac{1}{3}}$ at $\mathbf{x}=50$ and $\mathbf{x}=56$, for the following table.

\mathbf{X}	50	51	52	53	54	55	56
$\mathbf{y}=(x)^{\frac{1}{3}}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

	$\begin{aligned} & \mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{1}{(0.05)^{2}}\left[-0.001+(1)(0.001)+\left(\frac{6(1)^{2}-18(1)+11}{12}\right)(-0.001)\right] \\ & \mathrm{f}^{\prime \prime}(\mathrm{x})=0.0333 \end{aligned}$
3.	(i). The table given below reveals the velocity v of a body during the time ' t '. Find its acceleration at $\mathrm{t}=1.1$
	Solution: $\begin{array}{lll}1.3 & 56.4 & -0.1\end{array}$ 4.4 $1.4 \quad 60.8$ Acceleration $=\frac{d v}{d t}$ Use Newton's forward difference formula, $\begin{aligned} & \frac{d v}{d t}=\frac{1}{h}\left[\Delta y_{o}+\frac{(2 u-1)}{2!} \Delta^{2} y_{o}+\frac{\left(3 u^{2}-6 u+2\right)}{3!} \Delta^{3} y_{o}+\ldots\right] \\ & u=\frac{x-x_{0}}{h}=\frac{1.1-1.0}{0.1}=1 \\ & \frac{d v}{d t}=\frac{1}{0.1}\left[4.6+\frac{(2(1)-1)}{2!}(-0.2)+\frac{\left(3(1)^{2}-6(1)+2\right)}{3!}(0.1)+\frac{\left(4(1)^{3}-18(1)^{2}+22(1)-6\right)}{4!}(0.1)\right] \\ & \frac{d v}{d t}=44.9167 \end{aligned}$ Acceleration when $\mathrm{t}=1.1$ is 44.9167
	(ii). Find the value of $\log 2^{1 / 3}$ from $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x$ using Simpson's $\frac{1}{3}$ rule with $h=0.25$

Solution: Here $\mathrm{h}=0.25 \quad y=\frac{x^{2}}{1+x^{3}}$

x	0	0.25	0.5	0.75	1
y	0	0.0615	0.2222	0.3956	0.5

By Simpson's rule,

$$
\begin{aligned}
I & =\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2\left(y_{2}\right)+4\left(y_{1}+y_{3}\right)\right] \\
& =\frac{0.25}{3}[(0+0.5)+2(0.2222)+4(0.0615+0.3956)]=0.2311
\end{aligned}
$$

Actual Integration:

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}}{1+x^{3}} & =\left[\frac{1}{3} \log \left(1+x^{3}\right)\right]_{0}^{1} \\
& =\left[\frac{1}{3}\left[\log \left(1+(1)^{3}\right)-\log \left(1+(0)^{3}\right)\right]\right]=\frac{1}{3} \log 2=0.2311
\end{aligned}
$$

(iii). By dividing the range into 10 equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by using Trapezoidal rule

Verify your results by actual integration.

Solution:
Here $\mathrm{a}=0 ; \mathrm{b}=\pi ; \mathrm{n}=10$
$h=\frac{b-a}{n}=\frac{\pi-0}{10}=\frac{\pi}{10}$

\boldsymbol{x}	0	$\frac{\pi}{10}$	$\frac{2 \pi}{10}$	$\frac{3 \pi}{10}$	$\frac{4 \pi}{10}$	$\frac{5 \pi}{10}$	$\frac{6 \pi}{10}$	$\frac{7 \pi}{10}$	$\frac{8 \pi}{10}$	$\frac{9 \pi}{10}$	π
$\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$	0	0.3090	0.5878	0.8090	0.9511	1	0.9511	0.8090	0.5878	0.3090	0

By Trapezoidal rule, $\int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots+y_{n-1}\right)\right]$
$\int_{x_{o}}^{x_{n}} y(x) d x=\frac{h}{2}\left[\begin{array}{l}(0+0)+2(0.3090+0.5878+0.8090 \\ +0.9511+1+0.9511+0.8090+0.5878+0.3090\end{array}\right]=1.9843$
Actual Integration:

$$
\int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}=[-\cos \pi+\cos 0]=2
$$

Simpson's rule:

$\mathrm{I}=\frac{h k}{9}$ \{sum of values of f at the four corners +2 (sum of the values of f at odd position on the boundary except corners) +4 (sum of the values of f at even position on the boundary except corners) +4 (sum of the values of f at odd position on odd row) +8 (sum of the values of f at even position on odd row) + 8(sum of the values of fat odd position on even row) + 16 (sum of the values of f at even position on even row)\}
$=\frac{0.5 \times 0.5}{9}[(0.0625+0.04+0.04+0.0278)$

$$
+4(0.0494+0.0331+0.0331+0.0494)+16(0.04)]
$$

$\mathrm{I}=0.0408$

UNIT - IV

Interpolation,Numerical Differentiation and Numerical Integration

Interpolating Function:

Let a set of tabular values of a function $y=f(x)$, where the explicit nature of the function is not known, then $\mathrm{f}(\mathrm{x})$ is replaced by a similar function $\emptyset(x)$, such that $\mathrm{f}(\mathrm{x})$ and $\emptyset(x)$ agree with set of tabulated points. Any other value may be calculated from $\emptyset(x)$. This function $\emptyset(x)$ is known as an interpolating function

Inverse interpolation

It is the process of finding the values of x corresponding to a value of y, not present in the table.

Remark:

The process of computing the value of a function inside the given range is called interpolation. The process of computing the value of a function outside the given range is called extrapolation

Interpolation with unequal intervals:

Lagrange's interpolation:

Suppose $x_{1}, x_{2}, x_{3}, \ldots x_{n}$, and the corresponding $y_{1}, y_{2}, y_{3} \ldots y_{n}$ given then

$$
\begin{aligned}
y=f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots \ldots .\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right) \ldots \ldots .\left(x_{0}-x_{n}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots \ldots .\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \ldots \ldots .\left(x_{1}-x_{n}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right) \ldots \ldots .\left(x-x_{n}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \ldots \ldots .\left(x_{2}-x_{n}\right)} y_{2} \\
& \quad+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .+ \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots \ldots .\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right)\left(x_{n}-x_{2}\right)\left(x_{n}-x_{3}\right) \ldots \ldots .\left(x_{n}-x_{n-1}\right)} y_{n}
\end{aligned}
$$

Remark:

Newton's formula can be used only when the values of the independent 1.
variable x are equally spaced. But Lagrange's interpolation formula can be used whether the values of the independent variable x are equally spaced or not. Lagrange's formula can be used for inverse interpolation also, while Newton's formula cannot be used.
2. Lagrange's interpolation formula can be used for equal intervals.

The Lagrange's formula for inverse interpolation.

Sol. $\quad x=f(y)=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right) \ldots \ldots .\left(y-y_{n}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right)\left(y_{0}-y_{3}\right) \ldots \ldots\left(y_{0}-y_{n}\right)} x_{0}$

$$
\begin{aligned}
& +\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)\left(y-y_{3}\right) \ldots \ldots .\left(y-y_{n}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right) \ldots \ldots\left(y_{1}-y_{n}\right)} x_{1} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{3}\right) \ldots \ldots\left(y-y_{n}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)\left(y_{2}-y_{3}\right) \ldots \ldots\left(y_{2}-y_{n}\right)} x_{2} \\
& +\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .+ \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right) \ldots \ldots .\left(y-y_{n-1}\right)}{\left(y_{n}-y_{0}\right)\left(y_{n}-y_{1}\right)\left(y_{n}-y_{2}\right)\left(y_{n}-y_{3}\right) \ldots \ldots .\left(y_{n}-y_{n-1}\right)} x_{n}
\end{aligned}
$$

Examples:

1. Find the quadratic polynomial that fits $y(x)=x^{4}$ at $x=0,1,2$.

Sol. The following data is

$$
\begin{array}{rrrr}
\mathrm{x} & : & 0 & 1 \\
\mathrm{y}=\mathrm{x}^{4}: & 0 & 1 & 16
\end{array}
$$

By Lagrange's formula

$$
\begin{aligned}
y=f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0} & +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2}
\end{aligned}
$$

$$
\begin{aligned}
y=f(x) & =\frac{(x-1)(x-2)}{(0-1)(0-2)} \cdot 0+\frac{(x-0)(x-2)}{(1-0)(1-2)} \cdot 1+\frac{(x-0)(x-1)}{(2-0)(2-1)} \cdot 16 \\
y & =-x(x-2)+8 x(x-1) \\
y(x) & =7 \mathrm{x}^{2}-6 \mathrm{x} .
\end{aligned}
$$

2. Use Lagrange's formula to find the quadratic polynomial that takes

these values

$$
\begin{aligned}
& x:
\end{aligned}: 0
$$

Then find $y(2)$.
Sol.
By Lagrange's formula

$$
\begin{array}{rl}
y=f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1} \\
y=f(x) & =\frac{(x-1)(x-3)}{(0-1)(0-3)} \cdot 0+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2} \\
(1-0)(1-3) \\
y & 1+\frac{(x-0)(x-1)}{(3-0)(3-1)} \cdot 0 \\
\mathrm{y}(\mathrm{x}) & =\frac{x^{2}-3 x}{-2}
\end{array}
$$

Hence $y(2)=1$.
3. Using Lagrange's interpolation formula calculate the profit in the year 2000 from the following data

Year: 1997 199920012002
$\left.\begin{array}{c}\text { Profit in lakhs } \\ \text { of Rs. }\end{array}\right\}:$ $43 \quad 65 \quad 159 \quad 248$

Sol. Lagrange's interpolation formula is

$$
y=f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}
$$

$$
\begin{aligned}
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}
\end{aligned}
$$

Here $\mathrm{x}=2000$

$$
\begin{aligned}
\therefore y=f(x) & =\frac{(2000-1999)(2000-2001)(2000-2002)}{(1997-1999)(1997-2001)(1997-2002)} 43 \\
& +\frac{(2000-1997)(2000-2001)(2000-2002)}{(2000-1997)(2000-2001)(2000-2002)} 65 \\
& +\frac{(2000-1997)(2000-1999)(2000-2002)}{(2001-1997)(2001-1999)(2001-2002)} 159 \\
& +\frac{(2000-1997)(2000-1999)(2000-2001)}{(2002-1997)(2002-1999)(2002-2001)} 248 \\
y=f(x)= & \frac{(1)(-1)(-2)}{(-2)(-4)(-5)} 43+\frac{(3)(-1)(-2)}{(2)(-2)(-3)} 65 \\
& +\frac{(3)(1)-2)}{(4)(2)(-1)} 159+\frac{(3)(1)(-1)}{(5)(3)(1)} 248 \\
y= & -2.15+32.5+119.25-49.6 \\
y= & 100 .
\end{aligned}
$$

4. Given the values x : $14 \quad 17 \quad 31 \quad 35$

$$
f(x): 68.7 \quad 64.0 \quad 44.0 \quad 39.1
$$

Find the value of $f(x)$ when $x=27$.

Sol.

Lagrange's interpolation formula is

$$
y=f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}
$$

$$
\begin{aligned}
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}
\end{aligned}
$$

Given $\mathrm{x}=27$

$$
\begin{aligned}
\therefore y=f(x)= & \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)} 68.7 \\
& +\frac{(27-14)(27-31)(27-35)}{(17-14)(17-31)(17-35)} 64 \\
& +\frac{(27-14)(27-17)(27-35)}{(31-14)(31-17)(31-35)} 44 \\
& \left.+\frac{(27-14)(27-17)(27-31)}{(35-14)(35-17)(35-31)} 39.1\right) \\
y=f(x)= & \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} 68.7+\frac{(13)(-4)(-8)}{(3)(-14)(-18)} 64 \\
& +\frac{(13)(10)(-8)}{(17)(14)(-4)} 44+\frac{(13)(10)(-4)}{(21)(18)(4)} 39.1 \\
\mathrm{f}(\mathrm{x})= & -20.5266+35.2169+48.0672-13.4471 \\
(\mathrm{i} . \mathrm{e} .) \mathrm{f}(\mathrm{x}) & =49.3104
\end{aligned}
$$

5. Using Lagrange's interpolation formula fit a polynomial to the
following data

$$
\begin{array}{lcccr}
x: & -1 & 0 & 2 & 3 \\
y: & -8 & 3 & 1 & 12
\end{array}
$$

and hence find y at $x=1.5$

Sol.

Lagrange's interpolation formula is

$$
\begin{aligned}
y=f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
y=f(x)= & \frac{(x-0)(x-2)(x-3)}{(-1-0)(-1-2)(-1-3)}(-8) \\
& +\frac{(x+1)(x-2)(x-3)}{(0+1)(0-2)(0-3)}(3) \\
& +\frac{(x+1)(x-0)(x-3)}{(2+1)(2-0)(2-3)}(1) \\
& +\frac{(x+1)(x-0)(x-2)}{(3+1)(3-0)(3-2)}(12)
\end{aligned}
$$

$$
y=\frac{2}{3} x\left(x^{2}-5 x+6\right)+\frac{1}{2}(x+1)\left(x^{2}-5 x+6\right)-\frac{1}{6} x\left(x^{2}-2 x-3\right)
$$

$$
+x\left(x^{2}-x-2\right)
$$

$$
y=\frac{1}{6}\left[\left(4 x^{3}-20 x^{2}+24 x\right)+\left(3 x^{3}-12 x^{2}+3 x+18\right)\right.
$$

$$
\left.+\left(-x^{3}+2 x^{2}+3 x\right)+\left(6 x^{3}-6 x^{2}-12 x\right)\right]
$$

$$
y=\frac{1}{6}\left(12 x^{3}-36 x^{2}+18 x+18\right)
$$

$$
y=2 x^{3}-6 x^{2}+3 x+3 .
$$

$$
\begin{aligned}
y(1.5) & =2(1.5)^{3}-6(1.5)^{2}+3(1.5)+3 \\
& =0.75
\end{aligned}
$$

6. Given $\log _{10} 654=2.8156, \log _{10} 658=2.8182, \log _{10} 659=2.8189$, $\log _{10} 661=2.8202$. Find $\log _{10} 656$ by using Lagrange's formula.

Sol.

Let $\mathrm{y}=\log _{10} x$
The following data is

$\mathrm{x}:$	654	658	659	661
$\log _{10} x$	$: 2.8156$	2.8182	2.8189	2.8202
Here x	$=656$.			

Lagrange's interpolation formula is

$$
\begin{aligned}
& \begin{aligned}
y=f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
y= & \frac{(656-658)(656-659)(656-661)}{(654-658)(654-659)(654-661)} 2.8156 \\
+ & \frac{(656-654)(656-659)(656-661)}{(658-654)(658-659)(658-661)} 2.8182 \\
+ & \frac{(656-654)(656-658)(656-661)}{(659-654)(659-658)(659-661)} 2.8189 \\
& +\frac{(656-654)(656-658)(656-659)}{(661-654)(661-658)(661-659)} 2.8202 \\
y= & \frac{(-2)(-3)(-5)}{(-4)(-5)(-7)} 2.8156+\frac{(2)(-3)(-5)}{(4)(-1)(-3)} 2.8182
\end{aligned} \\
&+\frac{(2)(-2)(-5)}{(5)(1)(-2)} 2.8189+\frac{(2)(-2)(-3)}{(7)(3)(2)} 2.8202
\end{aligned}
$$

$$
\begin{aligned}
& y=0.6033+7.0455-5.6378+0.8058 \\
& y=2.8168
\end{aligned}
$$

(i.e.) $\log _{10} 656=2.8168$
7. Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for $x: \begin{array}{llll}0 & 1 & 2 & 5\end{array}$

$$
f(x): \begin{array}{llll}
2 & 3 & 12 & 147
\end{array}
$$

Sol. Lagrange's interpolation formula is

$$
\begin{aligned}
y=f(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
y=f(x) & =\frac{(x-1)(x-2)(x-5)}{(0-1)(0-2)(0-5)}(2) \\
& +\frac{(x-0)(x-2)(x-5)}{(1-0)(1-2)(1-5)}(3) \\
& +\frac{(x-0)(x-1)(x-5)}{(2-0)(2-1)(2-5)}(12) \\
& +\frac{(x-0)(x-1)(x-2)}{(5-0)(5-1)(5-2)}(147)
\end{aligned}
$$

$$
y=\frac{-1}{5}(x-1)\left(x^{2}-7 x+10\right)+\frac{3}{4} x\left(x^{2}-7 x+10\right)-2 x\left(x^{2}-6 x+5\right)
$$

$$
+\frac{49}{20} x\left(x^{2}-3 x+2\right)
$$

$$
y=\frac{1}{20}\left[\left(-4 x^{3}+32 x^{2}-68 x+40\right)+\left(15 x^{3}-105 x^{2}+150 x\right)\right.
$$

$$
\left.+\left(-40 x^{3}+240 x^{2}-200 x\right)+\left(49 x^{3}-147 x^{2}+98 x\right)\right]
$$

$y=\frac{1}{20}\left(20 x^{3}+20 x^{2}-20 x+40\right)$
$y=x^{3}+x^{2}-x+2$.

Now, $f(3)=3^{3}+3^{2}-3+2$
(i.e.) $f(3)=35$.

8. Using Lagrange's formula, Prove that

$$
y_{0}=\frac{1}{2}\left(y_{1}+y_{-1}\right)-\frac{1}{8}\left[\frac{1}{2}\left(y_{-3}-y_{-1}\right)-\frac{1}{2}\left(y_{1}-y_{3}\right)\right]
$$

Sol. The following data is

$$
\left.\begin{array}{cccc}
\mathrm{x}: & 1 & -1 & -3
\end{array}\right] 3
$$

Here $\mathrm{x}=0$.
Lagrange's interpolation formula is

$$
\begin{aligned}
y_{x}=f(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}
\end{aligned}
$$

Given $\mathrm{x}=0$
$\therefore y_{0}=\frac{(0+1)(0+3)(0-3)}{(1+1)(1+3)(1-3)} y_{1}+\frac{(0-1)(0+3)(0-3)}{(-1-1)(-1+3)(-1-3)} y_{-1}$

$$
+\frac{(0-1)(0+1)(0-3)}{(-3-1)(-3+1)(-3-3)} y_{-3}+\frac{(0-1)(0+1)(0+3)}{(3-1)(3+1)(3+3)} y_{3}
$$

$$
\begin{aligned}
& y_{0}=\frac{9}{16} y_{1}+\frac{9}{16} y_{-1}-\frac{1}{16} y_{-3}-\frac{1}{16} y_{3} \\
& y_{0}=\left(\frac{1}{2}+\frac{1}{16}\right) y_{1}+\left(\frac{1}{2}+\frac{1}{16}\right) y_{-1}-\frac{1}{16} y_{-3}-\frac{1}{16} y_{3} \\
& y_{0}=\frac{1}{2}\left(y_{1}+y_{-1}\right)-\frac{1}{8}\left[\frac{1}{2}\left(y_{-3}-y_{-1}\right)-\frac{1}{2}\left(y_{1}-y_{3}\right)\right]
\end{aligned}
$$

9. Applying Lagrange's formula to find the roots of the equation $f(x)=0$ when $f(30)=-30, f(34)=-13, f(38)=3, f(42)=18$.

Sol.

To find x [(i.e.) the roots of the equation $f(x)=0$], we have to use Lagrange's inverse interpolation formula.

The following data is

$$
\begin{array}{rrrrr}
\mathrm{x}: & 30 & 34 & 38 & 42 \\
\mathrm{f}(\mathrm{x}): & -30 & -13 & 3 & 18
\end{array}
$$

Lagrange's inverse interpolation formula is

$$
\begin{aligned}
x=f(y)= & \frac{\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right)\left(y_{0}-y_{3}\right)} x_{0} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)} x_{1} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)\left(y_{2}-y_{3}\right)} x_{2} \\
& +\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)}{\left(y_{3}-y_{0}\right)\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)} x_{3}
\end{aligned}
$$

Here $y=0$ [since given $f(x)=0$ (i.e.) $y=0$]

$$
\therefore x=\frac{(0+13)(0-3)(0-18)}{(-30+13)(-30-3)(-30-18)} 30
$$

$$
\begin{aligned}
+ & \frac{(0+30)(0-3)(0-18)}{(-13+30)(-13-3)(-13-18)} 34 \\
& +\frac{(0+30)(0+13)(0-18)}{(3+30)(3+13)(3-18)} 38 \\
& +\frac{(0+30)(0+13)(0-3)}{(18+30)(18+13)(18-3)} 42 \\
x=- & \frac{21060}{26928}+\frac{55080}{8432}+\frac{266760}{7920}-\frac{49140}{22320} \\
x=- & 0.7821+6.5323+33.6818-2.2016
\end{aligned}
$$

$$
x=37.2304
$$

Newton's divided difference table:

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ which takes the values $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ corresponding to the arguments $x_{0}, x_{1}, \ldots x_{n}$

$$
f\left(x_{0}, x_{1}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{x_{0}-x_{1}}=f\left(x_{1}, x_{0}\right)=\Delta f
$$

The second divided difference is

$$
f\left(x_{0}, x_{1}, x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)-f\left(x_{0}, x_{1}\right)}{x_{2}-x_{0}}=\Delta^{2} f
$$

The third divided difference is

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\frac{f\left(x_{1}, x_{2}, x_{3}\right)-f\left(x_{0}, x_{1}, x_{2}\right)}{x_{2}-x_{0}}=\Delta^{3} f
$$

X	$y=f(x)$	$\Delta \mathbf{f}$	$\Delta^{2} \mathrm{f}$	$\Delta^{3} \mathrm{f}$
X_{0}	$f\left(x_{0}\right)$	$f\left(x_{0}, x_{1}\right)$		$f\left(x_{0}, x_{1}, x_{2}\right)$
X_{1}	$f\left(x_{1}\right)$	$f\left(x_{1}, x_{1}, x_{2}, x_{3}\right)$		
X_{2}	$f\left(x_{2}\right)$	$f\left(x_{1}, x_{2}\right)$	$f\left(x_{1}, x_{2}, x_{3}\right)$	$f\left(x_{0}, x_{3}\right)$
X_{3}	$f\left(x_{3}\right)$	$f\left(x_{2}, x^{2}\right.$		

Examples:

1. Given $u_{0}=1, u_{1}=11, u_{2}=21, u_{3}=28, u_{4}=29$.Find $\Delta^{4} u_{0}$.

Sol.

x	$\mathrm{y}=\mathrm{u}_{\mathrm{x}}$	$\Delta \mathbf{u}_{\mathrm{x}}$	$\Delta^{2} \mathbf{u}_{\mathrm{x}}$	$\Delta^{3} \mathbf{u}_{\mathrm{x}}$	$\Delta^{4} \mathbf{u}_{\mathrm{x}}$
0	1	10			
1	11	10	0		
2	21	10	-3	-3	0
3	28	7	-6	-3	
4	29	1			
Hence $\Delta^{4} \mathbf{u}_{0}=0$					

2. If $u_{1}=1, u_{3}=17, u_{4}=43, u_{5}=89$. Find the value of u_{2}.

Sol.

Let the missing term be y_{1}.

x	$\mathrm{y}=\mathrm{u}_{\mathrm{x}}$	$\Delta \mathrm{u}_{\mathrm{x}}$	$\Delta^{2} \mathbf{u}_{\mathrm{x}}$	$\Delta^{3} \mathbf{u}_{\mathrm{x}}$	$\Delta^{4} \mathbf{u}_{\mathrm{x}}$
1	1				
2	y_{1}	$\mathrm{y}_{1}-1$	$-2 \mathrm{y}_{1}+18$		
3	17	$17-\mathrm{y}_{1}$	$\mathrm{y}_{1}-43$	$3 \mathrm{y}_{1}-61$	$-4 \mathrm{y}_{1}+124$
4	43	26	20	$-\mathrm{y}_{1}+63$	
5	89	46			

By assumption, we have

$$
\begin{aligned}
-4 y_{1}+124 & =0 \\
y_{1} & =31
\end{aligned}
$$

3.Find the second divided differences with arguments a, b, c if $f(x)=1 / x$.

Sol. The divided difference table is

x	$\mathrm{y}=1 / \mathrm{x}$	Δy	$\Delta^{2} y$
a	$1 / \mathrm{a}$	$-1 / \mathrm{ab}$	$1 / \mathrm{abc}$
b	$1 / \mathrm{b}$		
c	$1 / \mathrm{c}$	$-1 / \mathrm{bc}$	

4.If $f(x)=1 / x^{2}$, find $f(a, b)$ and $f(a, b, c)$ by using divided differences.

Sol. The divided difference table is

x	$\mathrm{y}=1 / \mathrm{x}^{2}$	Δy	$\Delta^{2} y$
a	$1 / \mathrm{a}^{2}$		
b	$1 / \mathrm{b}^{2}$	$-(\mathrm{a}+\mathrm{b}) / \mathrm{a}^{2} \mathrm{~b}^{2}$	$(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}) / \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}$
c	$1 / \mathrm{c}^{2}$	$-(\mathrm{b}+\mathrm{c}) / \mathrm{b}^{2} \mathrm{c}^{2}$	

Newton's Divided difference Formula for Unequal Intervals:

Suppose $y=f(x)$ takes the values $f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right), \ldots f\left(x_{n}\right)$ for the corresponding arguments $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ then

$$
y=y_{0}+\left(x-x_{0}\right) \Delta y_{0}+\left(x-x_{0}\right)\left(x-x_{1}\right) \Delta^{2} y_{0}+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \Delta^{3} y_{0}+\ldots
$$

Examples:

1.Using Newton divided difference formula find $u(3)$ given

$$
u(1)=-26, u(2)=12, u(4)=256, u(6)=844 .
$$

Sol.

The divided difference table is

x	$\mathrm{y}=\mathrm{u}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$
1	-26	38		
2	12	28	3	
4	256	122	43	
6	844	294		

Newton divided difference formula is

$$
y=y_{0}+\left(x-x_{0}\right) \Delta y_{0}+\left(x-x_{0}\right)\left(x-x_{1}\right) \Delta^{2} y_{0}
$$

$$
+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \Delta^{3} y_{0}+
$$

Here $\mathrm{x}=3$

$$
\begin{aligned}
y & =-26+(3-1) \cdot(38)+(3-1)(3-2)(28)+(3-1)(3-2)(3-4)(3) \\
& =-26+76+56-6 \\
& =132-32 \\
& =100
\end{aligned}
$$

(i.e.) $u(3)=100$.
2. Using Newton divided difference method find $f(1.5)$ using the data
$f(1.0)=0.7651977, f(1.3)=0.6200860, f(1.6)=0.4554022$,
$f(1.9)=0.2818186, f(2.2)=0.1103623$.

Sol.

The divided difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
1	0.7651977				
1.3	0.6200860	-0.4837057			
1.6	0.4554022	-0.548946	-0.1087338		
1.9	0.2818186	-0.578612	-0.0494433		0.0680684
2.2	0.1103623	-0.571521			

Newton divided difference formula is

$$
\begin{aligned}
y=y_{0}+\left(x-x_{0}\right) \Delta y_{0} & +\left(x-x_{0}\right)\left(x-x_{1}\right) \Delta^{2} y_{0} \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \Delta^{3} y_{0} \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \Delta^{4} y_{0}+
\end{aligned}
$$

Here $\mathrm{x}=1.5$

$$
\begin{aligned}
& y=0.7651977+(1.5-1)(-0.4837057) \\
&+(1.5-1)(1.5-1.3)(-0.1087338) \\
&+(1.5-1)(1.5-1.3)(1.5-1.6)(0.0658783) \\
&+(1.5-1)(1.5-1.3)(1.5-1.6)(1.5-1.9)(0.0018251) \\
&=0.7651977-0.2418529-0.0108734-0.0006588+0.0000073 \\
&=0.5118199
\end{aligned}
$$

(i.e.) $f(1.5)=0.5118199$
3. Given $u_{0}=-4, u_{1}=-2, u_{4}=220, u_{5}=546, u_{6}=1148$

Find u_{2} and u_{3}.

Sol.

The divided difference table is

x	$\mathrm{y}=u_{x}$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
0	-4				
1	-2	2			
4	220	74	18		9
5	546	326	63	15	1
6	1148	602	138		

Newton divided difference formula is

$$
\begin{aligned}
& y=y_{0}+\left(x-x_{0}\right) \Delta y_{0}+\left(x-x_{0}\right)\left(x-x_{1}\right) \Delta^{2} y_{0} \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \Delta^{3} y_{0} \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \Delta^{4} y_{0}+. \\
& y=-4+(x-0)(2)+(x-0)(x-1)(18) \\
& +(x-0)(x-1)(x-4)(9) \\
& +(x-0)(x-1)(x-4)(x-5)(1) \\
& u_{2}=-4+(2)(2)+(2)(1)(18)+(2)(1)(-2)(9)+(2)(1)(-2)(-3)(1) \\
& =-4+4+36-36+12 \\
& =12 \text {. } \\
& u_{3}=-4+(3)(2)+(3)(2)(18)+(3)(2)(-1)(9)+(3)(2)(-1)(-2)(1)
\end{aligned}
$$

$$
\begin{aligned}
& =-4+6+108-54+12 \\
& =68 .
\end{aligned}
$$

Newton's Forward and Backward Interpolation Formula:

Forward differences:

If $\mathrm{y}_{0}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots \mathrm{y}_{\mathrm{n}}$ denote the set of values of $y=f(x)$ for the following $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ then $\Delta y_{n-1}=y_{n}-y_{n-1}$ and the arguments are equally spaced then the Newton's Forward Interpolation Formula is

$$
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+. .
$$

Where $u=\frac{x-x_{0}}{h}$

Examples:

1 Obtain the interpolation quadratic polynomial for the given data by using Newton forward difference formula

$X:$	0	2	4	6
$Y:$	-3	5	21	45

Sol. The difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	$y \Delta y$	$\Delta^{2} y$	$\Delta^{3} y$
0	-3	8		
2	5		8	0
4	21	16	8	
6	45	24		

Newton Forward Interpolation formula is

$$
\begin{aligned}
& \begin{array}{l}
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+. \\
\quad \text { where } u=\frac{x-x_{0}}{h}=\frac{x-0}{2}=\frac{x}{2} \\
y=-3+(x / 2)(8)+\frac{(x / 2)(x / 2-1)}{2!}(8)+0 \\
y=-3+4 x+x(x-2) \\
y=x^{2}+2 x-3 .
\end{array} .
\end{aligned}
$$

2.Using Newton's Forward Interpolation formula find the polynomial $f(x)$ satisfying the following data. Hence find f(2).

$$
x: 0 \quad 10 \quad 5 \quad 10 \quad 15
$$

$$
f(x): 14 \quad 379 \quad 1444 \quad 3584
$$

Sol.

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
The difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$
0	14	365		
5	379		700	
10	1444		1075	
15	3584	2140		

Newton Forward Interpolation formula is

$$
\begin{gathered}
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+. \\
\text { where } u=\frac{x-x_{0}}{h}=\frac{x-0}{5}=\frac{x}{5}
\end{gathered}
$$

$$
\begin{aligned}
y= & 14+\frac{x}{5}(365)+\frac{(x / 5)(x / 5-1)}{2!}(700)+\frac{(x / 5)(x / 5-1)(x / 5-2)}{3!}(375) \\
& =14+73 x+x(x-5)(14)+x(x-5)(x-10) \cdot \frac{1}{2}
\end{aligned}
$$

(i.e.) $f(x)=\frac{1}{2}\left[x^{3}+13 x^{2}+56 x+28\right]$
$\therefore f(2)=\frac{1}{2}\left[2^{3}+13(2)^{2}+56(2)+28\right]=100$.

3. Construct Newton's forward interpolation polynomial for the following data.

$x:$	4	6	8	10
$y:$	1	3	8	16

Use it to find the value of y for $x=5$.
Sol.
The difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$
4	1	2	3	
6	3		0	0
8	8	8	3	
10	16			

Newton Forward Interpolation formula is

$$
\begin{aligned}
\begin{aligned}
& y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots \ldots \\
& \text { where } u=\frac{x-x_{0}}{h}=\frac{x-4}{2} \\
& y=1+\frac{x-4}{2}(2)+\frac{1}{2!}\left(\frac{x-4}{2}\right)\left(\frac{x-4}{2}-1\right)(3)+0 \\
&=1+(x-4)+\frac{3}{8}(x-4)(x-6) \\
&=\frac{8+8 x-32+3\left(x^{2}-10 x+24\right)}{8}=\frac{1}{8}\left(3 x^{2}-22 x+48\right) \\
& \therefore y(5)=\frac{1}{8}\left[3(5)^{2}-22(5)+48\right]=\frac{13}{8}=1.625
\end{aligned}
\end{aligned}
$$

4.Given $\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192, \sin 60^{\circ}=0.8660$ Find sin 52^{0} by Newton's formula.

Sol.

To find $\sin 52^{0}$, we use Newton's forward formula. Let $y=\sin x^{0}$
The difference table is

x	$\mathrm{y}=\sin \mathrm{x}^{0}$	Δy	$\Delta^{2} y$	$\Delta^{3} y$
45	0.7071	0.0589	-0.0057	
50	0.7660			
55	0.8192	0.0532	-0.0064	
60	0.8660			

Newton Forward Interpolation formula is

$$
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+.
$$

where $u=\frac{x-x_{0}}{h}=\frac{52-45}{5}=\frac{7}{5}=1.4$

$$
y=0.7071+(1.4)(0.0589)+\frac{(1.4)(1.4-1)}{2!}(-0.0057)
$$

$$
+\frac{(1.4)(1.4-1)(1.4-2)}{3!}(-0.0007)
$$

$$
y=0.7880
$$

(i.e.) $\sin 52^{\circ}=0.7880$
5. From the following data, estimate the number of persons earning weekly wages between 60 and 70 rupees.

Wage Below 40 40-60 $60-80 \quad 80-100 \quad 100-120$ (in Rs.)

No. of person	250	120	100	70	50
(in thousands)					

Sol.

The difference table is

Wage	No. of persons y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
Below 40	250	120			
Below 60	370	100	-20	-10	20
Below 80	470	70	-30	10	
Below 100	540	50	-20		
Below 120	590				

Let us calculate the number of persons whose weekly wages below 70 .
So we will use Newton's forward formula.
Newton Forward Interpolation formula is

$$
\begin{aligned}
& y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots \ldots \ldots \ldots . \\
& \text { where } u=\frac{x-x_{0}}{h}=\frac{70-40}{20}=1.5 \\
& \begin{aligned}
& y=250+(1.5)(120)+\frac{(1.5)(1.5-1)}{2!}(-20)+\frac{(1.5)(1.5-1)(1.5-2)}{3!}(-10) \\
&+\frac{(1.5)(1.5-1)(1.5-2)(1.5-3)}{4!}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{y}=423.59 \approx 424
$$

\therefore Number of person whose weekly wages below $70=424$
Number of person whose weekly wages below $60=370$
$\left.\begin{array}{rl}\therefore & \text { Number of persons whose weekly } \\ & \text { wages between Rs. } 60 \text { and Rs. } 70\end{array}\right\}=424-370=54$ thousands.
6. From the following table, find the value of tan $45^{\circ} 15$ ' by Newton's Forward Interpolation formula.

$x^{\circ}: 45$		46	47	48	49	50
$\tan x^{o}:$	1	1.03553	1.07237	1.11061	1.15037	1.19175

Sol.

X^{0}	$y=\tan \mathrm{x}^{\circ}$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
45	1		\square			
46	1.03553	-	0.00131			
		0.03684		0.00009	0.00003	
47	1.07237		0.00140			
		0.03824		0.00012	-0.00002	-0.00005
48	1.11061		0.00152			
		0.03976		0.00010		
49	1.15037		0.00162			
		0.04138				
50	1.19175					

Newton Forward Interpolation formula is

$$
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+.
$$

where $u=\frac{x-x_{0}}{h}=\frac{45^{\circ} 15^{\prime}-45^{\circ}}{1^{\circ}}=0.25$

$$
\begin{aligned}
& y=1+(0.25)(0.03553)+\frac{(0.25)(0.25-1)}{2!}(0.00131) \\
&+\frac{(0.25)(0.25-1)(0.25-2)}{3!}(0.00009) \\
&+\frac{(0.25)(0.25-1)(0.25-2)(0.25-3)}{4!}(0.00003) \\
&+\frac{(0.25)(0.25-1)(0.25-2)(0.25-3)(0.25-4)}{5!}(-0.00005)
\end{aligned}
$$

$$
y=1+0.00888-0.00012+0.0000049-
$$

(i.e.) $\tan 45^{\circ} 15^{\prime}=1.00876$

Backward differences:

If $\mathrm{y}_{0}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots \mathrm{y}_{\mathrm{n}}$ denote the set of values of $y=f(x)$ for the following $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ then $\nabla y_{n-1}=y_{n}-y_{n-1}$ and the arguments are equally spaced then the Newton's Backward Interpolation Formula is $y=y_{n}+u \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+$. Where $u=\frac{x-x_{n}}{h}$

Examples.

1. Given $x: 0 \quad 0.1$
0.2
0.3
0.4

$$
\begin{array}{lllll}
e^{x}: 1 & 1.1052 & 1.2214 & 1.3499 & 1.4918
\end{array}
$$

Find the value of $y=e^{x}$ when $x=0.38$.

Sol.

To find $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ when $\mathrm{x}=0.38$, we use Newton's Backward formula .

x	$\mathrm{y}=\mathrm{e}^{\mathrm{x}}$	∇y	$\nabla^{2} y$	$\nabla^{3} y$	$\nabla^{4} y$
0	1				
0.1	1.1052		0.011		
0.2	1.2214	0.1162		0.0013	-0.0002
0.3	1.3499	0.1285		0.0123	
0.4	1.4918	0.1419			

Newton Backward Interpolation formula is

$$
\begin{gathered}
y=y_{n}+u \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+. \\
\text { where } u=\frac{x-x_{n}}{h}=\frac{0.38-0.4}{0.1}=-0.2 \\
y=1.4918+(-0.2)(0.1419)+\frac{(-0.2)(-0.2+1)}{2!}(0.0134)
\end{gathered}
$$

$$
\begin{aligned}
& +\frac{(-0.2)(-0.2+1)(-0.2+2)}{3!}(0.0011) \\
& +\frac{(-0.2)(-0.2+1)(-0.2+2)(-0.2+3)}{4!}(-0.0002)
\end{aligned}
$$

$$
y=1.4623
$$

2. The following data are taken from the steam table

$$
\begin{array}{llllll}
\text { Temp }^{0} c: ~ & 140 & 150 & 160 & 170 & 180
\end{array}
$$

$\begin{array}{llllll}\text { Pressure } k g f / \mathrm{cm}^{2}: & 3.685 & 4.854 & 6.302 & 8.076 & 10.225\end{array}$
Find the pressure at temperature $\boldsymbol{t}=\mathbf{1 7 5}^{\circ}$.
Sol. To find the pressure $f(t)$ at temperature $t=175^{0}$, we use Newton's Backward formula.

The difference table is

t	$\mathrm{y}=\mathrm{f}(\mathrm{t})$	$\nabla f(t)$	$\nabla^{2} f(t)$	$\nabla^{3} f(t)$	$\nabla^{4} f(t)$
140	3.685				
150	4.854	1.169		0.279	
160	6.302	1.448		0.047	0.002
170	8.076	1.774	0.326		
180	10.225	2.149	0.375		

Newton Backward Interpolation formula is

$$
\begin{aligned}
& y=y_{n}+u \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+\ldots \ldots \ldots . . . \\
& \text { where } u=\frac{x-x_{n}}{h}=\frac{175-180}{10}=-0.5 \\
& y=10.225+(-0.5)(2.149)
\end{aligned} \begin{aligned}
& \frac{(-0.5)(-0.5+1)}{2!}(0.375) \\
& +\frac{(-0.5)(-0.5+1)(-0.5+2)}{3!}(0.049) \\
& +\frac{(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)}{4!}(0.002)
\end{aligned}
$$

$$
y=9.1005
$$

3.Use Newton Backward formula to construct an interpolating polynomial of degree 3 for the data : $f(-0.75)=-0.07181250, f(-0.5)=-0.024750$,

$$
f(-0.25)=0.33493750, f(0)=1.10100 \text { Hence find } f\left(-\frac{1}{3}\right) .
$$

Sol. The difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	∇y	$\nabla^{2} y$	$\nabla^{3} y$
-0.75	-0.07181250			
-0.5	-0.024750	0.0470625	0.312625	
-0.25	0.33493750			0.09375
0	1.10100	0.3596875	0.406375	
0				

Newton Backward Interpolation formula is

$$
\begin{aligned}
& y=y_{n}+u \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+ \\
& \text { where } u=\frac{x-x_{n}}{h}=\frac{x-0}{0.25}=4 x \\
& y=1.10100+4 x(0.7660625)+\frac{(4 x)(4 x+1)}{2!}(0.406375) \\
& +\frac{(4 x)(4 x+1)(4 x+2)}{3!}(0.09375) \\
& y=1.10100+3.06425 x+3.251 x^{2}+0.81275 x+x^{3}+0.75 x^{2}+0.125 x \\
& y=f(x)=x^{3}+4.001 x^{2}+4.002 x+1.10100 \\
& \therefore f\left(-\frac{1}{3}\right)=(-1 / 3)^{3}+4.001(-1 / 3)^{2}+4.002(-1 / 3)+1.10100 \\
& =0.174519
\end{aligned}
$$

4. From the given table, the values of y are consecutive terms of a series of which 23.6 is the sixth term. Find the first and tenth terms of the series.

$$
\begin{array}{rrrrrrrr}
x: & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
y: & 4.8 & 8.4 & 14.5 & 23.6 & 36.2 & 52.8 & 73.9
\end{array}
$$

Sol.

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$	$\Delta^{6} y$
3	4.8						
4	8.4	3.6					
5	14.5		2.5				
6	23.6	9.1		0.5	0		
7	36.2	12.6	3.5	0.5	0	0	0
8	52.8	16.6	4	0.5		0	
9	73.9	21.1					

To find $y(1)$, we use Newton's forward interpolation formula
To find $y(10)$, we use Newton's backward interpolation formula
Newton Forward Interpolation formula is

$$
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+.
$$

where $u=\frac{x-x_{0}}{h}=\frac{1-3}{1}=-2$

$$
\begin{aligned}
y & =4.8+(-2)(3.6)+\frac{(-2)(-2-1)}{2!}(2.5)+\frac{(-2)(-2-1)(-2-2)}{3!}(0.5)+0 \\
& =4.8-7.2+7.5-2
\end{aligned}
$$

$$
y(1)=3.1
$$

Newton Backward Interpolation formula is

$$
\begin{gathered}
y=y_{n}+u \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+. \\
\text { where } u=\frac{x-x_{n}}{h}=\frac{10-9}{1}=1
\end{gathered}
$$

$$
\begin{aligned}
y & =73.9+(1)(21.1)+\frac{(1)(1+1)}{2!}(4.5)+\frac{(1)(1+1)(1+2)}{3!}(0.5)+0 \\
& =73.9+21.1+4.5+0.5 \\
y(10) & =100
\end{aligned}
$$

Remark:

1. The nth divided difference of a polynomial of nth degree is constant.
2. Forward, backward, central differences and divided difference.

$$
\Delta \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})
$$

$$
\nabla \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{x}-\mathrm{h})
$$

$$
\delta \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x}-\mathrm{h})
$$

$$
\Delta \mathrm{f}(\mathrm{x})=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Numerical Differentiation \& Integration

Numerical differentiation is used to find the derivatives of $f(x)$ by using Newton's divided difference interpolation formula or Newton's forward interpolation formula and Newton's backward interpolation formula

Note:

1. Numerical differentiation can be used only when the difference of some order are constant.
2. When the function is given in the form of table of values instead of giving analytical expression we use numerical differentiation

Numerical Differentiation:

Derivatives Using Divided Differences (Unequal):

First fit a polynomial for the given data using Newton's divided difference interpolation formula and computing the derivatives with respect to given variable.

Example:

\section*{1. Find $y^{\prime}(6)$ from the following data
 $\boldsymbol{x}:$| 0 | 2 | 3 | 4 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 $y: 4 \quad 26 \quad 58 \quad 112 \quad 466 \quad 922$}

Sol. Since the arguments are not equally spaced, we will use Newton's divided
difference formula.
The divided difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
0	4					
2	26	11				
3	58	32		1		
4	112	54		1	0	
7	466	118	16		0	0
9	922	228				

Newton divided difference formula is

$$
y=y_{0}+\left(x-x_{0}\right) \Delta y_{0}+\left(x-x_{0}\right)\left(x-x_{1}\right) \Delta^{2} y_{0}
$$

$$
+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \Delta^{3} y_{0}+
$$

\qquad

$$
\begin{aligned}
& y(x)=4+(x-0)(11)+(x-0)(x-2)(7)+(x-0)(x-2)(x-3)(1) \\
& y(x)=x^{3}+2 x^{2}+3 x+4 \\
& y^{\prime}(x)=3 x^{2}+4 x+3 \\
& \therefore y^{\prime}(6)=3(6)^{2}+4(6)+3 \\
& \quad=\mathbf{1 3 5}
\end{aligned}
$$

First Derivatives Using Newton forward and backward difference formula:
Newton's forward interpolation formula is

$$
\begin{gathered}
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+ \\
\text { where } u=\frac{x-x_{0}}{h}
\end{gathered}
$$

$\frac{d y}{d x}=\frac{1}{h}\left[\Delta y_{0}+\frac{2 u-1}{2} \Delta^{2} y_{0}+\frac{3 u^{2}-6 u+2}{6} \Delta^{3} y_{0}+\frac{2 u^{3}-9 u^{2}+11 u-3}{12} \Delta^{4} y_{0}+\ldots \ldots.\right]$
Newton's backward interpolation formula is

$$
y=y_{n}+u \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+.
$$ where $u=\frac{x-x_{n}}{h}$

$$
\frac{d y}{d x}=\frac{1}{h}\left[\nabla y_{n}+\frac{2 u+1}{2} \nabla^{2} y_{n}+\frac{3 u^{2}+6 u+2}{6} \nabla^{3} y_{n}+\frac{2 u^{3}+9 u^{2}+11 u+3}{12} \nabla^{4} y_{n}+\ldots \ldots .\right]
$$

Derivatives Using Newton forward and backward difference formula:

First and second derivative formula at $x=x_{0}$

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{1}{3} \Delta^{3} y_{0}-\frac{1}{4} \Delta^{4} y_{0}+\ldots \ldots \ldots . . .\right] \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{0}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\ldots \ldots \ldots \ldots \ldots\right]
\end{aligned}
$$

First and second derivative formula at $x=x_{n}$

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)_{x=x_{n}}=\frac{1}{h}\left[\nabla y_{n}+\frac{1}{2} \nabla^{2} y_{n}+\frac{1}{3} \nabla^{3} y_{n}+\frac{1}{4} \nabla^{4} y_{n}+\ldots \ldots \ldots \ldots . .\right] \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{n}}=\frac{1}{h^{2}}\left[\nabla^{2} y_{n}+\nabla^{3} y_{n}+\frac{11}{12} \nabla^{4} y_{n}+\ldots \ldots \ldots \ldots \ldots \ldots\right.
\end{aligned}
$$

Example:

1. Find the error in the derivative of $f(x)=\cos x$ by computing directly and using the approximation $f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}$ at $\boldsymbol{x}=\mathbf{0 . 8}$ choosing $h=0.1$

Sol. $\quad f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x \Rightarrow f^{\prime}(0.8)=-0.717$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(x+h)-f(x-h)}{2 h} \\
f^{\prime}(0.8) & =\frac{f(0.8+0.1)-f(0.8-0.1)}{2(0.1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{f(0.9)-f(0.7)}{0.2} \\
& =\frac{\cos (0.9)-\cos (0.7)}{0.2} \\
& =-0.716
\end{aligned}
$$

Error $=-0.001$
2.. If $f(x)=a^{x}(a \neq 0)$ is given for $x=0,0.5,1$. Show by numerical differentiation that $f^{\prime}(0)=4 \sqrt{a}-a-3$.

Sol. For $\mathrm{x}=0,0.5,1$, the values of $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{a}^{\mathrm{x}}$ are $\mathrm{a}^{0}, a^{0.5}, \mathrm{a}^{1}$

$$
\text { (i.e.) } 1, \sqrt{a}, \mathrm{a}
$$

$$
\begin{aligned}
& =\frac{1}{0.5}\left[\sqrt{a}-1-\frac{1}{2}(a-2 \sqrt{a}+1)\right] \\
& =2\left[2 \sqrt{a}-\frac{a}{2}-\frac{3}{2}\right] \\
& =4 \sqrt{a}-a-3 \text {. }
\end{aligned}
$$

3.Find $f^{\prime}(3)$ and $f^{\prime \prime}(3)$ for the following data:

x	3.0	3.2	3.4	3.6	3.8
4.0					
$f(x):$	-14	-10.032	-5.296	-0.256	6.672

Sol. The difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
3.0	-14					
3.2	-10.032	3.968				
3.4	-5.296		0.768			
3.6	-0.256	5.304	-0.464			
3.8	6.672	6.928	1.888		-1.488	
4.0	14	7.328				

Newton Forward Interpolation formula is
$y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots$
where $u=\frac{x-x_{0}}{h}$

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{1}{3} \Delta^{3} y_{0}-\frac{1}{4} \Delta^{4} y_{0}+\frac{1}{5} \Delta^{5} y_{0}-\ldots \ldots \ldots . .\right] \\
& \left(\frac{d y}{d x}\right)_{x=3}=\frac{1}{0.2}\left[3.968-\frac{1}{2}(0.768)+\frac{1}{3}(-0.464)-\frac{1}{4}(2.048)+\frac{1}{5}(-5.12)\right]
\end{aligned}
$$

(i.e.) $f^{\prime}(3)=\mathbf{9 . 4 6 6 5}$

$$
\begin{aligned}
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{0}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\frac{5}{6} \Delta^{5} y_{0}+\ldots \ldots \ldots . .\right] \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x=3}=\frac{1}{(0.2)^{2}}\left[0.768-(-0.464)+\frac{11}{12}(2.048)-\frac{5}{6}(-5.12)\right]
\end{aligned}
$$

(i.e.) $f^{\prime \prime}(3)=\mathbf{1 8 4 . 4}$
4.The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the initial acceleration using the entire data time (sec.) : $\begin{aligned} & 0 \\ & 5\end{aligned} 10$

velocity (m/sec.) : | 0 |
| :--- |

Sol. The difference table is

t	v	Δv	$\Delta^{2} v$	$\Delta^{3} v$	$\Delta^{4} v$
0	0				
5	3	3			
10	14	11	8		
15	69	55		36	60
20	228	159		24	

$$
\text { Initial Accleration }=\frac{d v}{d t} \text { at } \mathrm{t}=0
$$

$$
\left(\frac{d v}{d t}\right)_{t=t_{0}}=\frac{1}{h}\left[\Delta v_{0}-\frac{1}{2} \Delta^{2} v_{0}+\frac{1}{3} \Delta^{3} v_{0}-\frac{1}{4} \Delta^{4} v_{0}+\ldots \ldots \ldots \ldots .\right]
$$

$$
\left(\frac{d v}{d t}\right)_{t=0}=\frac{1}{5}\left[3-\frac{1}{2}(8)+\frac{1}{3}(36)-\frac{1}{4}(24)\right]
$$

$$
=1 \mathrm{~m} / \sec ^{2}
$$

5.Find $\frac{d \theta}{d t}$ at $t=3$ and $t=8$ given

$$
t: 1 \begin{array}{lllll}
: & 3 & 5 & 7 & 9
\end{array}
$$

$\theta: 85.3 \quad 74.5 \quad 67 \quad 60.5 \quad 54.3$

Sol. The difference table is

t	θ	$\Delta \theta$	$\Delta^{2} \theta$	$\Delta^{3} \theta$	$\Delta^{4} \theta$
1	85.3				
3	74.5	-10.8			
5	67	-7.5	3.3		-2.3
7	60.5	-6.5	1		
9	54.3	-6.2		-0.7	

$\left(\frac{d \theta}{d t}\right)_{t=t_{0}}=\frac{1}{h}\left[\Delta \theta_{0}-\frac{1}{2} \Delta^{2} \theta_{0}+\frac{1}{3} \Delta^{3} \theta_{0}-\frac{1}{4} \Delta^{4} \theta_{0}+\ldots \ldots \ldots \ldots\right]$

$$
\left(\frac{d \theta}{d t}\right)_{t=3}=\frac{1}{2}\left[-10.8-\frac{1}{2}(3.3)+\frac{1}{3}(-2.3)-\frac{1}{4}(1.6)\right]
$$

$$
=-4.1167
$$

To find $\frac{d \theta}{d t}$ at $\mathrm{t}=8$, we use Newton backward interpolation formula.
Newton Backward Interpolation formula is

$$
\begin{aligned}
& \theta=\theta_{n}+u \nabla \theta_{n}+\frac{u(u+1)}{2!} \nabla^{2} \theta_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} \theta_{n}+. \\
& \quad \text { where } u=\frac{t-t_{n}}{h}=\frac{8-9}{2}=-0.5 \\
& \frac{d \theta}{d t}=\frac{d \theta}{d u} \cdot \frac{d u}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\frac{1}{h}\left[\nabla y_{n}+\frac{2 u+1}{2} \nabla^{2} y_{n}+\frac{3 u^{2}+6 u+2}{6} \nabla^{3} y_{n}+\frac{2 u^{3}+9 u^{2}+11 u+3}{12} \nabla^{4} y_{n}+\ldots . .\right] \\
& \begin{aligned}
\left(\frac{d \theta}{d t}\right)_{t=8}= & \frac{1}{2}\left[-6.2+\frac{2(-0.5)+1}{2}(0.3)+\frac{3(-0.5)^{2}+6(-0.5)+2}{6}(-0.7)\right. \\
& \left.+\frac{2(-0.5)^{3}+9(-0.5)^{2}+11(-0.5)+3}{12}(1.6)\right]
\end{aligned} \\
& \quad=-\mathbf{3 . 1 1 8 8}
\end{aligned}
$$

6.Find the value of sec 31^{0} from the following data :
$\theta(\mathrm{deg})$ $31{ }^{0}$ 32^{0} 33^{0} 34^{0} $\tan \theta: 0.6008 \quad 0.6249 \quad 0.6494 \quad 0.6745$

Sol. Let $\mathrm{y}=\tan \theta$
The difference table is

$$
\sec ^{2} 31^{0}=\frac{1}{1^{0}}\left[0.0241-\frac{1}{2}(0.0004)+\frac{1}{3}(0.0002)\right]
$$

$$
\begin{array}{ll}
=\frac{1}{1^{0}}[0.02396666] & \left(\because \pi=180^{0}\right. \\
=\frac{0.02396666}{0.017453292} & \left.\frac{\pi}{180}=1^{0}\right)
\end{array}
$$

$$
\sec ^{2} 31^{0}=1.373188852
$$

(i.e.) $\sec 31^{0}=\mathbf{1 . 1 7 1 8}$
7.Consider the following table of data :
$\begin{array}{llllll}x: & 0.2 & 0.4 & 0.6 & 0.8 & 1.0\end{array}$
$f(x): 0.9798652 \quad 0.9177710 \quad 0.8080348 \quad 0.63860930 .3843735$
Find $f^{\prime}(0.25)$ using Newton Forward interpolation formula and $f^{\prime}(0.95)$ using Newton Backward interpolation formula.

Sol. The difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
0.2	0.9798652				
0.4	0.9177710				
0.6	0.8080348		-0.047642		
0.8	0.6386093	-0.0620942		-0.0120473	
1.0	0.3843735	-0.1694255		-0.025121	
		-0.0848103			

Newton Forward Interpolation formula is

$$
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+.
$$

where $u=\frac{x-x_{0}}{h}=\frac{0.25-0.2}{0.2}=\frac{0.05}{0.2}=0.25$

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{d y}{d u} \cdot \frac{d u}{d x} \\
= & \frac{1}{h}\left[\Delta y_{0}+\frac{2 u-1}{2} \Delta^{2} y_{0}+\frac{3 u^{2}-6 u+2}{6} \Delta^{3} y_{0}\right. \\
& \left.+\frac{2 u^{3}-9 u^{2}+11 u-3}{12} \Delta^{4} y_{0}+\ldots \ldots\right]
\end{aligned}
$$

$$
\left(\frac{d y}{d x}\right)_{x=0.25}=\frac{1}{0.2}\left[-0.0620942+\frac{2(0.25)-1}{2}(-0.047642)\right.
$$

$$
+\frac{3(0.25)^{2}-6(0.25)+2}{6}(-0.0120473)
$$

$$
\left.+\frac{2(0.25)^{3}-9(0.25)^{2}+11(0.25)-3}{12}(-0.0130737)\right]
$$

$$
=\frac{1}{0.2}[-0.0620942+0.0119105-0.0013804+0.0008512]
$$

(i.e.) $f^{\prime}(0.25)=-\mathbf{0 . 2 5 3 5 6 4 5}$

Newton Backward Interpolation formula is

$$
y=y_{n}+u \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+\ldots \ldots \ldots \ldots
$$

where $u=\frac{x-x_{n}}{h}=\frac{0.95-1.0}{0.2}=\frac{-0.05}{0.2}=-0.25$

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{d y}{d u} \cdot \frac{d u}{d x} \\
= & \frac{1}{h}\left[\nabla y_{n}+\frac{2 u+1}{2} \nabla^{2} y_{n}+\frac{3 u^{2}+6 u+2}{6} \nabla^{3} y_{n}\right. \\
& \left.+\frac{2 u^{3}+9 u^{2}+11 u+3}{12} \nabla^{4} y_{n}+\ldots . .\right]
\end{aligned}
$$

$$
\left(\frac{d y}{d x}\right)_{x=0.95}=\frac{1}{0.2}\left[-0.2542358+\frac{2(-0.25)+1}{2}(-0.0848103)\right.
$$

$$
\begin{aligned}
& +\frac{3(-0.25)^{2}+6(-0.25)+2}{6}(-0.025121) \\
& \left.+\frac{2(-0.25)^{3}+9(-0.25)^{2}+11(-0.25)+3}{12}(-0.0130737)\right] \\
= & \frac{1}{0.2}[-0.2542358-0.0212026-0.0028784-0.0008512]
\end{aligned}
$$

(i.e.) $f^{\prime}(0.95)=-\mathbf{1 . 3 9 5 8 4}$

8. Find the maximum and minimum value of y tabulated below

$x:$	-2	-1	0	1	2	3	4
$y:$	2	-0.25	0	-0.25	2	15.75	56

Sol. The difference table is

Newton Forward Interpolation formula is

$$
y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+. .
$$

$$
\text { where } u=\frac{x-x_{0}}{h}
$$

$$
\begin{aligned}
& \frac{d y}{d u}=\left[\Delta y_{0}+\frac{2 u-1}{2} \Delta^{2} y_{0}+\frac{3 u^{2}-6 u+2}{6} \Delta^{3} y_{0}\right. \\
&\left.\quad+\frac{2 u^{3}-9 u^{2}+11 u-3}{12} \Delta^{4} y_{0}+\ldots . . .\right] \\
&=-2.25+\frac{2 u-1}{2}(2.5)+\frac{3 u^{2}-6 u+2}{6}(-3) \\
& \quad+\frac{2 u^{3}-9 u^{2}+11 u-3}{12}(6) \\
&= \frac{-4.5+5 u-2.5-3 u^{2}+6 u-2+2 u^{3}-9 u^{2}+11 u-3}{2} \\
&=\frac{2 u^{3}-12 u^{2}+22 u-12}{2} \\
& \frac{d y}{d u}=u^{3}-6 u^{2}+11 u-6
\end{aligned}
$$

For maximum or minimum,$\frac{d y}{d x}=0$

$$
\begin{aligned}
& \Rightarrow \frac{1}{h} \cdot \frac{d y}{d u}=0 \\
& \Rightarrow \frac{d y}{d u}=0 \\
& \text { (i.e.) } u^{3}-6 u^{2}+11 u-6=0
\end{aligned}
$$

Solving, we get $u=1,2,3$.

$$
\begin{aligned}
\text { Now, } & u=\frac{x-x_{0}}{h} \Rightarrow x=x_{0}+u h \\
\quad \Rightarrow & x=-1,0,1 \text { corresponding to } \mathrm{u}=1,2,3 .
\end{aligned}
$$

$\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}} \frac{d^{2} y}{d u^{2}}$
$\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}+(u-1) \Delta^{3} y_{0}+\frac{6 u^{2}-18 u+11}{12} \Delta^{4} y_{0}+\ldots \ldots ..\right]$
At $\mathrm{u}=1$ and $3, \frac{d^{2} y}{d x^{2}}>0$ and at $\mathrm{u}=2, \frac{d^{2} y}{d x^{2}}<0$
$\therefore \mathrm{y}$ has maximum at $\mathrm{x}=0$ and has minimum at $\mathrm{x}=-1,1$.

Hence maximum value of $\mathbf{y}=0$ at $\mathbf{x}=0$
and minimum value of $y=-0.25$ at $x=-1,1$.
9.Find $f^{\prime}(4)$ and $f^{\prime \prime}(4)$ from the following data

$\mathrm{x}:$	0	2	3
$\mathrm{y}: 8$	6	20	108

Sol. Since the arguments are not equally spaced, we will use Newton's divided difference formula.

The divided difference table is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	Δy	$\Delta^{2} y$	$\Delta^{3} y$
0	8			
2	6	-1		
3	20		5	
5	108	44	10	1

Newton divided difference formula is

$$
\begin{aligned}
& \quad y=y_{0}+\left(x-x_{0}\right) \Delta y_{0}+\left(x-x_{0}\right)\left(x-x_{1}\right) \Delta^{2} y_{0} \\
& \qquad \quad+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \Delta^{3} y_{0}+\ldots \ldots \\
& y(x)=8+(x-0)(-1)+(x-0)(x-2)(5)+(x-0)(x-2)(x-3)(1) \\
& y(x)=8-x+5 x^{2}-10 x+x^{3}-5 x^{2}+6 x \\
& y(x)=x^{3}-5 x+8 \\
& y^{\prime}(x)=3 x^{2}-5, y^{\prime \prime}(x)=6 x \\
& \therefore f^{\prime}(4)=3(4)^{2}-5=43 \\
& \quad f^{\prime \prime}(4)=6(4)=24 .
\end{aligned}
$$

\qquad

Numerical Integration:

Numerical integration is used to find the integration value of function $f(x)$ from the tabulated values

Trapezoidal rule:

Suppose the arguments $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ equally spaced and also the corresponding $y_{0,} y_{1}, y_{2}, . ., y_{n}$ has given
$\int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots \ldots \ldots y_{n-1}\right]\right.$
$\int_{a}^{b} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots \ldots \ldots . y_{n-1}\right]\right.$
Where ${ }^{h=\frac{b-a}{n}} \quad \mathrm{n}=$ number of intervals

Remark:

1. The Trapezoidal rule is so called, because it approximates the integral by the sum of n trapezoids.
2. in deriving the Trapezoidal formula, the arc of the curve $y=f(x)$ over each sub interval is replaced by its chord.

Examples:

1. Using Trapezoidal rule evaluate $\int_{0}^{\pi} \sin x d x$ by dividing the range into 6

equal parts.

Sol. $\quad h=\frac{\pi-0}{6}=\frac{\pi}{6}$
When $h=\frac{\pi}{6}$, the values of $y=\sin x$ are

$$
\begin{array}{rlcccccc}
\mathrm{x}: & 0 & \frac{\pi}{6} & \frac{2 \pi}{6} & \frac{3 \pi}{6} & \frac{4 \pi}{6} & \frac{5 \pi}{6} & \pi \\
\mathrm{y}=\sin \mathrm{x}: & 0 & 0.5 & .8660 & 1 & .8660 & 0.5 & 0
\end{array}
$$

Trapezoidal rule is

$$
\begin{aligned}
\int_{0}^{\pi} \sin x d x & =\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots \ldots \ldots y_{n-1}\right]\right. \\
& =\frac{\pi}{6(2)}[(0+0)+2(0.5+0.8660+1+0.8660+0.5)] \\
& =0.9770
\end{aligned}
$$

2. Write down the Trapezoidal rule to evaluate $\int_{1}^{6} f(x) d x$ with $\boldsymbol{h}=0.5$

Sol. Trapezoidal rule is

$$
\begin{aligned}
\int_{1}^{6} f(x) d x & =\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots \ldots . . y_{n-1}\right]\right. \\
& =\frac{0.5}{2}\left[\left(y_{0}+y_{10}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots \ldots . . y_{9}\right)\right]
\end{aligned}
$$

3.Using Trapezoidal rule, evaluate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$ taking 8 intervals.

Sol. $h=\frac{1-(-1)}{8}=\frac{2}{8}=0.25$
When $\mathrm{h}=0.25$, the values of $\mathrm{y}=\frac{1}{1+x^{2}}$ are

$$
\begin{array}{lcccccccc}
\mathrm{x}:-1 & -0.75 & -0.50 & -0.25 & 0 & 0.25 & 0.50 & 0.75 & 1 \\
\mathrm{y}: 0.5 & 0.64 & 0.8 & 0.9412 & 1 & 0.9412 & 0.8 & 0.64 & 0.5
\end{array}
$$

Trapezoidal rule is

$$
\begin{aligned}
\int_{x_{0}}^{x_{n}} f(x) d x & =\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots \ldots \ldots y_{n-1}\right]\right. \\
\int_{-1}^{1} \frac{d x}{1+x^{2}} & =\frac{0.25}{2}[(0.5+0.5)+2(0.64+0.8+0.9412+1+0.9412 \\
& +0.8+0.64)] \\
& =0.125[1+11.5248] \\
& =0.125(12.5248) \\
& =\mathbf{1 . 5 6 5 6}
\end{aligned}
$$

4. Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by dividing the range of integration into four equal parts using Trapezoidal rule.

Sol. $h=\frac{1-0}{4}=0.25$
When $\mathrm{h}=0.25$, the values of $y=e^{-x^{2}}$ are

$$
\begin{array}{cccccc}
\mathrm{x}: & 0 & 0.25 & 0.50 & 0.75 & 1 \\
\mathrm{y}: & 1 & 0.9394 & 0.7788 & 0.5698 & 0.3679
\end{array}
$$

Trapezoidal rule is

$$
\begin{aligned}
\int_{x_{0}}^{x_{n}} f(x) d x & =\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots \ldots . . y_{n-1}\right]\right. \\
\int_{0}^{1} e^{-x^{2}} d x & =\frac{0.25}{2}[(1+0.3679)+2(0.9394+0.7788+0.5698)] \\
& =0.125[1.3679+4.576] \\
& =0.125(5.9439) \\
& =\mathbf{0 . 7 4 3 0}
\end{aligned}
$$

Simpson's 1/3 rd Rule:

$\int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\ldots .+y_{n-1}.\right)\right.$
$\left.+2\left(y_{2}+y_{4}+y_{6}+\ldots+y_{n-2}\right)\right]$

Simpson's 3/8 th rule:

$\int_{x_{0}}^{x_{n}} f(x) d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}+\ldots \ldots \ldots\right)\right.$
$\left.+2\left(y_{3}+y_{6}+y_{9}+\ldots \ldots \ldots \ldots \ldots \ldots\right)\right]$

Remark:

1. The condition for Simpson's $3 / 8$ rule is the number of sub-intervals should be a multiple of 3 .
2. In Trapezoidal rule, there is no restriction on the number of intervals whereas in Simpson's $1 / 3^{\text {rd }}$ rule, the number of intervals should be even.
3. by Simpson's $1 / 3^{\text {rd }}$ rule as well as by Simpson's $3 / 8^{\text {th }}$ rule, the number of intervals should be a multiple of 6 .

Examples:

1. Can you use Simpson's rule for the following data:

$$
\begin{array}{rccccc}
x: 7.47 & 7.48 & 7.49 & 7.50 & 7.51 & 7.52 \\
f(x): 1.93 & 1.95 & 1.98 & 2.01 & 2.03 & 2.06
\end{array}
$$

Why?
Sol. We cannot use Simpson's rule, since the number of ordinates is 6 (even).
2. Using Simpson's rule find $\int^{4} e^{x} d x$ given $e^{0}=1, e^{1}=2.72, e^{2}=7.39$,

$$
e^{3}=20.09, e^{4}=54.6
$$

Sol. The following data is

$\mathrm{x}:$	0	1	2	3	4
$\mathrm{y}:$	1	2.72	7.39	20.09	54.6

Simpson's $1 / 3^{\text {rd }}$ rule is

$$
\begin{aligned}
& \int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\ldots \ldots \ldots\right)\right. \\
&\left.\quad+2\left(y_{2}+y_{4}+y_{6}+\ldots \ldots \ldots \ldots \ldots \ldots .\right)\right] \\
& \begin{aligned}
\int_{0}^{4} e^{x} d x & =\frac{1}{3}[(1+54.6)+4(2.72+20.09)+2(7.39)] \\
& =53.8733
\end{aligned}
\end{aligned}
$$

3.Find an approximate value of \log e 5 by calculating to four decimal places by Simpson's rule the integral $\int_{0}^{5} \frac{d x}{4 x+5}$ dividing the range into 10 equal parts.
Sol. $h=\frac{5-0}{10}=0.5$
When $\mathrm{h}=0.5$, the values of $\mathrm{y}=\frac{1}{4 x+5}$ are
$\begin{array}{lllllllllll}\mathrm{x}: & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5\end{array}$
y: 0.20 .14290 .11110 .09090 .07690 .06670 .05880 .05260 .04760 .04350 .04

Simpson's $1 / 3^{\text {rd }}$ rule is

$$
\begin{aligned}
& \int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\ldots \ldots .\right)\right. \\
&\left.+2\left(y_{2}+y_{4}+y_{6}+\ldots \ldots \ldots \ldots \ldots \ldots\right)\right] \\
& \int_{0}^{5} \frac{d x}{4 x+5}= \frac{0.5}{3}[(0.2+0.04)+4(0.1429+0.0909+0.0667 \\
&+0.0526+0.0435)+2(0.1111+0.0769+0.0588+0.0476)] \\
& \begin{aligned}
\int_{0}^{5} \frac{d x}{4 x+5} & =\frac{0.5}{3}[0.24+1.5864+0.5888]
\end{aligned} \\
&= \frac{0.5}{3}(2.4152) \\
&=\mathbf{0 . 4 0 2 5}
\end{aligned}
$$

To find $\log _{\text {e }} \underline{5}$
We have $\int_{0}^{5} \frac{d x}{4 x+5}=0.4025$
Integrating we get

$$
\left[\frac{\log (4 x+5)}{4}\right]_{0}^{5}=0.4025
$$

$$
\begin{aligned}
& \frac{1}{4}[\log 25-\log 5]=0.4025 \\
& \log 5=4(0.4025) \\
& \text { (i.e.) } \log 5=\mathbf{1 . 6 1 0 0}
\end{aligned}
$$

4.Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ take $h=0.125$. Hence find π using Simpson's rule.

Sol. When $\mathrm{h}=0.125$, the values of $\mathrm{y}=\frac{1}{1+x^{2}}$ are

$$
\begin{array}{ccccccccc}
\mathrm{x}: 0 & 0.125 & 0.25 & 0.375 & 0.5 & 0.625 & 0.75 & 0.875 & 1 \\
\mathrm{y}: 1 & 0.9846 & 0.9412 & 0.8767 & 0.8 & 0.7191 & 0.64 & 0.5664 & 0.5
\end{array}
$$

Simpson's $1 / 3^{\text {rd }}$ rule is

$$
\begin{aligned}
& \int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\ldots \ldots \ldots\right)\right. \\
&\left.+2\left(y_{2}+y_{4}+y_{6}+\ldots \ldots \ldots \ldots \ldots \ldots\right)\right] \\
& \begin{aligned}
\int_{0}^{1} \frac{d x}{1+x^{2}}= & \frac{0.125}{3}[(1+0.5)+4(0.9846+0.8767+0.7191
\end{aligned} \\
& \begin{aligned}
\int_{0}^{1} \frac{d x}{1+x^{2}}= & \frac{0.125}{3}[1.5+12.5872+4.7624] \\
= & \frac{0.125}{3}[18.8496] \\
= & \mathbf{0 . 7 8 5 4}
\end{aligned}
\end{aligned}
$$

To find π
We have $\int_{0}^{1} \frac{d x}{1+x^{2}}=0.7854$

$$
\begin{aligned}
& {\left[\frac{1}{1} \tan ^{-1}\left(\frac{x}{1}\right)\right]_{0}^{1}=0.7854} \\
& \frac{\pi}{4}-0=0.7854
\end{aligned}
$$

$$
\text { (i.e.) } \pi=3.1416
$$

5.Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by dividing the range into 6 equal parts using Simpson's rule.

Sol. $h=\frac{6-0}{6}=1$
When $\mathrm{h}=1$, the values of $\mathrm{y}=\frac{1}{1+x^{2}}$ are

$$
\begin{array}{cccccccc}
\mathrm{x}: & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\mathrm{y}: & 1 & 0.5 & 0.2 & 0.1 & 0.0588 & 0.0385 & 0.0270
\end{array}
$$

Since we are dividing the range into 6 equal parts, we use Simpson's $3 / 8^{\text {th }}$ rule.

Simpson's $3 / 8$ rule is

$$
\begin{aligned}
& \begin{aligned}
\int_{x_{0}}^{x_{n}} f(x) d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}+\ldots \ldots \ldots\right)\right. \\
& \left.+2\left(y_{3}+y_{6}+y_{9}+\ldots \ldots \ldots \ldots \ldots . .\right)\right]
\end{aligned} \\
& \begin{aligned}
\int_{0}^{6} \frac{d x}{1+x^{2}}= & \frac{3(1)}{8}[(1+0.0270)+3(0.5+0.2+0.0588+0.0385)+2(0.1)] \\
= & \frac{3}{8}[1.0270+2.3919+0.2] \\
= & \mathbf{1 . 3 5 7 1}
\end{aligned}
\end{aligned}
$$

6. Evaluate $\int_{4}^{5.2} \log _{e} x d x$ using Simpson's rule.

Sol. We can divide the range into 6 equal parts and use Simpson's $3 / 8^{\text {th }}$ rule.

$$
h=\frac{5.2-4}{6}=0.2
$$

When $\mathrm{h}=0.2$, the values of $\mathrm{y}=\log _{\mathrm{e}} \mathrm{x}$ are
x: 4
4.2
4.4
4.6
$4.8 \quad 5$
5.2
$\begin{array}{lllllll}\mathrm{y}: 1.3863 & 1.4351 & 1.4816 & 1.5261 & 1.5686 & 1.6094 & 1.6487\end{array}$

Simpson's $3 / 8$ rule is

$$
\begin{aligned}
& \int_{x_{0}}^{x_{n}} f(x) d x= \frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)\right. \\
&+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}+\ldots \ldots \ldots\right) \\
&\left.+2\left(y_{3}+y_{6}+y_{9}+\ldots \ldots \ldots \ldots \ldots \ldots\right)\right] \\
& \begin{aligned}
\int_{4}^{5.2} \log _{e} x d x= & \frac{3(0.2)}{8}[(1.3863+1.6487)+3(1.4351+1.4816
\end{aligned} \\
&+1.5686+1.6094)+2(1.5261)] \\
&= \frac{3(0.2)}{8}[3.035+18.2841+3.0522] \\
&= \mathbf{1 . 8 2 7 8}
\end{aligned}
$$

7. By dividing the range into 10 equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by using

Simpson's $1 / 3^{\text {rd }}$ rule. It is possible to evaluate the same by Simpson's $3 / 8^{\text {th }}$ rule. Justify your answer.

Sol. $h=\frac{\pi-0}{10}=\frac{\pi}{10}$
When $\mathrm{h}=\frac{\pi}{10}$, the values of $\mathrm{y}=\sin \mathrm{x}$ are
$\begin{array}{clllllllllllll}\mathrm{x}: 0 & \pi / 10 & 2 \pi / 10 & 3 \pi / 10 & 4 \pi / 10 & 5 \pi / 10 & 6 \pi / 10 & 7 \pi / 10 & 8 \pi / 10 & 9 \pi / 10 & \pi\end{array}$ y: $00.30900 .58780 .8090 \quad 0.9511 \quad 1 \quad 0.9511 \quad 0.8090 \quad 0.5878 \quad 0.3090 \quad 0$

Simpson's $1 / 3^{\text {rd }}$ rule is

$$
\begin{aligned}
\int_{x_{0}}^{x_{n}} f(x) d x= & \frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\ldots \ldots \ldots\right)\right. \\
& \left.+2\left(y_{2}+y_{4}+y_{6}+\ldots \ldots \ldots \ldots \ldots \ldots\right)\right]
\end{aligned}
$$

$$
+2(0.5878+0.9511+0.9511+0.5878)]
$$

$$
\begin{aligned}
& =\frac{\pi}{30}[0+12.944+6.1556] \\
& =\mathbf{2 . 0 0 0 1}
\end{aligned}
$$

8. A river is 80 meters wide. The depth ' d ' in meters at a distance x meters from one bank is given by the following table. Calculate the area of cross-section of the river using Simpson's one third rule.

$\mathrm{x}:$	0	10	20	30	40	50	60	70
d: 0	4	7	9	12	15	14	8	3

Sol. Simpson's $1 / 3^{\text {rd }}$ rule is

$$
\begin{aligned}
& \begin{aligned}
\int_{x_{0}}^{x_{n}} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\ldots \ldots \ldots\right)\right.
\end{aligned} \\
& \left.\quad+2\left(y_{2}+y_{4}+y_{6}+\ldots \ldots \ldots \ldots \ldots . .\right)\right] \\
& \begin{aligned}
\int_{0}^{80} y d x & =\frac{10}{3}[(0+3)+4(4+9+15+8)+2(7+12+14)] \\
& =710 \text { sq. meters. }
\end{aligned}
\end{aligned}
$$

UNIT V

Numerical Solution of
 Ordinary Differential Equations

Single step method:

In one-step methods, we use the data of just one preceding step..
Suppose the ordinary differential equation has given. we can
find the numerical solution by using

1. Taylors series method
2. Euler method
3. Euler modified method
4. Runge - Kutta $4^{\text {th }}$ order method

These methods are called single steps method.
Taylor series method:
Consider the ordinary differential equation $\frac{d y}{d x}=f(x, y)$ With $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ then

$$
y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y^{i v}+\ldots \ldots .
$$

Examples

1. Solve the differential equation $\frac{d y}{d x}=x+y+x y, y(0)=1$ by Taylor series method to get the value of y at $x=h$.
Sol. Given

$$
\begin{array}{ll}
& y^{\prime}=x+y+x y \\
& x_{0}=0, y_{0}=1 \\
& \\
y^{\prime}=x+y+x y & y_{0}^{\prime}=0+1+0=1 \\
y^{\prime \prime}=1+y^{\prime}+x y^{\prime}+y & y_{0}^{\prime \prime}=1+1+0+1=3 \\
y^{\prime \prime \prime}=y^{\prime \prime}+x y^{\prime \prime}+y^{\prime}+y^{\prime} & y_{0}^{\prime \prime \prime}=3+1+0+1=5 \\
y^{\prime \prime \prime}=y^{\prime \prime \prime}+2 y^{\prime \prime}+x y^{\prime \prime \prime}+y^{\prime \prime} & y_{0}^{\prime \prime \prime \prime}=5+6+0+3=14
\end{array}
$$

Taylor's series is

$$
\begin{aligned}
& y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y^{i v}+\ldots \ldots . \\
& y(h)=1+(h-0)(1)+\frac{(h-0)^{2}}{2}(3)+\frac{(h-0)^{3}}{6}(5)+\frac{(h-0)^{4}}{24}(14)+\ldots \ldots . . \\
& y(h)=1+h+\frac{3}{2} h^{2}+\frac{5}{6} h^{3}+\frac{7}{12} h^{4}+\ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

2.Using Taylor's series find \boldsymbol{y} at $\boldsymbol{x}=0.1$ if $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.

Sol. Given $x_{0}=0, y_{0}=1$

$$
\begin{aligned}
& y^{\prime}=x^{2} y-1 \Rightarrow y_{0}^{\prime}=x_{0}^{2} y_{0}-1=0-1=-1 \\
& y^{\prime \prime}=x^{2} y^{\prime}+y \cdot 2 x \Rightarrow y_{0}^{\prime \prime}=x_{0}^{2} y_{0}^{\prime}+2 x_{0} y_{0}=0+0=0 \\
& y^{\prime \prime \prime}=x^{2} y^{\prime \prime}+y^{\prime} .2 x+2 x \cdot y^{\prime}+2 y \cdot 1 \\
& \Rightarrow y_{0}^{\prime \prime \prime}=x_{0}^{2} y_{0}^{\prime \prime}+4 x_{0} y_{0}^{\prime}+2 y_{0}=0+0+2=2 \\
& y^{i v}=x^{2} y^{\prime \prime \prime}+y^{\prime \prime} .2 x+4 x . y^{\prime \prime}+4 y^{\prime} .1+2 y^{\prime} \\
& \Rightarrow y_{0}^{i v}=x_{0}^{2} y_{0}^{\prime \prime \prime}+2 x_{0} y_{0}^{\prime \prime}+4 x_{0} y_{0}^{\prime \prime}+6 y_{0}^{\prime} \\
& \Rightarrow y_{0}^{i v}=0+0+0+(-6)=-6
\end{aligned}
$$

Taylor's series about $x=x_{0}$ is given by

$$
\begin{aligned}
& y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+ \\
& y(x)=1+(x-0)(-1)+\frac{(x-0)^{2}}{2!}(0)+\frac{(x-0)^{3}}{3!}(2)+\frac{(x-0)^{4}}{4!}(-6)+\ldots \ldots . . \\
& y(x)=1-x+0+\frac{x^{3}}{6}(2)+\frac{x^{4}}{24}(-6)+\ldots \ldots \ldots \ldots \\
& y(x)=1-x+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \ldots \ldots \ldots .
\end{aligned}
$$

$$
\begin{aligned}
y(0.1) & =1-(0.1)+\frac{(0.1)^{3}}{3}-\frac{(0.1)^{4}}{4}+. \\
& =1-0.1+0.00033-0.000025 \\
& =\mathbf{0 . 9 0 0 3}
\end{aligned}
$$

3.By means of Taylor series expansion, find y at $x=0.1$ and $x=0.2$ correct to three decimal places, given $\frac{d y}{d x}-2 y=3 e^{x}, y(0)=0$.
Sol. Given $x_{0}=0, y_{0}=0$

$$
\begin{aligned}
& y^{\prime}=2 y+3 e^{x} \Rightarrow y_{0}^{\prime}=2 y_{0}+3 e^{x_{0}}=0+3(1)=3 \\
& y^{\prime \prime}=2 y^{\prime}+3 e^{x} \Rightarrow y_{0}^{\prime \prime}=2 y_{0}^{\prime}+3 e^{x_{0}}=2(3)+3(1)=9 \\
& y^{\prime \prime \prime}=2 y^{\prime \prime}+3 e^{x} \Rightarrow y_{0}^{\prime \prime \prime}=2 y_{0}^{\prime \prime}+3 e^{x_{0}}=2(9)+3(1)=21 \\
& y^{i v}=2 y^{\prime \prime \prime}+3 e^{x} \Rightarrow y_{0}^{i v}=2 y_{0}^{\prime \prime \prime}+3 e^{x_{0}}=2(21)+3(1)=45
\end{aligned}
$$

Taylor's series about $x=x_{0}$ is given by

$$
y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+.
$$

$$
y(x)=0+(x-0)(3)+\frac{(x-0)^{2}}{2!}(9)+\frac{(x-0)^{3}}{3!}(21)+\frac{(x-0)^{4}}{4!}(45)+\ldots \ldots .
$$

$$
y(x)=3 x+\frac{9 x^{2}}{2}+\frac{7 x^{3}}{2}+\frac{15 x^{4}}{8}+
$$

$$
y(0.1)=3(0.1)+\frac{9(0.1)^{2}}{2}+\frac{7(0.1)^{3}}{2}+\frac{15(0.1)^{4}}{8}+
$$

$$
=0.3+0.045+0.0035+0.0001875
$$

$$
=0.3487
$$

$$
y(0.2)=3(0.2)+\frac{9(0.2)^{2}}{2}+\frac{7(0.2)^{3}}{2}+\frac{15(0.2)^{4}}{8}+.
$$

$$
=0.6+0.18+0.028+0.003
$$

$$
=0.811
$$

4. Use Taylor series solution to solve numerically $\frac{d y}{d x}=x y^{\frac{1}{3}}, \boldsymbol{y}(1)=1$. Tabulate \boldsymbol{y} for $x=1.1,1.2$
Sol. Given $x_{0}=1, y_{0}=1$

$$
\begin{aligned}
& y^{\prime}=x y^{\frac{1}{3}} \Rightarrow y_{0}^{\prime}=x_{0} y_{0} \frac{1}{3}=1(1)=1 \\
& y^{\prime \prime}=x \frac{1}{3} y^{-\frac{2}{3}} \cdot y^{\prime}+y^{\frac{1}{3}} \Rightarrow y_{0}^{\prime \prime}=x_{0} \frac{1}{3} y_{0}^{-\frac{2}{3}} \cdot y_{0}^{\prime}+y_{0}^{\frac{1}{3}}=\frac{1}{3}+1=\frac{4}{3} \\
& y^{\prime \prime \prime}=x y^{\prime}\left(\frac{-2}{9}\right) y^{-5 / 3} y^{\prime}+\frac{1}{3} x y^{-2 / 3} y^{\prime \prime}+\frac{1}{3} y^{-2 / 3} y^{\prime} \cdot 1+\frac{1}{3} y^{-2 / 3} y^{\prime} \\
& \Rightarrow y_{0}^{\prime \prime \prime}=\frac{-2}{9}+\frac{4}{9}+\frac{1}{3}+\frac{1}{3}=\frac{8}{9}
\end{aligned}
$$

Taylor's series about $x=x_{0}$ is given by

$$
\begin{aligned}
y(x) & =y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}{ }^{i v}+\ldots \ldots . \\
y(x)=1 & +(x-1)(1)+\frac{(x-1)^{2}}{2!}\left(\frac{4}{3}\right)+\frac{(x-1)^{3}}{3!}\left(\frac{8}{9}\right)+\ldots . . \\
y(1.1) & =1+(1.1-1)(1)+\frac{(1.1-1)^{2}}{2!}\left(\frac{4}{3}\right)+\frac{(1.1-1)^{3}}{3!}\left(\frac{8}{9}\right)+\ldots . . \\
& =1+0.1+\frac{2(0.1)^{2}}{3}+\frac{4(0.1)^{3}}{27}+\ldots \ldots . . \\
& =1+0.1+0.0067+0.00014 \\
& =1.1068 \\
y(1.2) & =1+(1.2-1)(1)+\frac{(1.2-1)^{2}}{2!}\left(\frac{4}{3}\right)+\frac{(1.2-1)^{3}}{3!}\left(\frac{8}{9}\right)+\ldots . . \\
& =1+0.2+\frac{2(0.2)^{2}}{3}+\frac{4(0.2)^{3}}{27}+\ldots \ldots . . \\
& =1+0.2+0.0267+0.0012 \\
& =1.2279
\end{aligned}
$$

Taylor's series method for simultaneous first order differential equation:

Suppose the differential equation is of the form

$$
\begin{aligned}
& \frac{d y}{d x}=f(x, y, z) ; \frac{d z}{d x}=g(x, y, z) \quad \text { with } \mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}, \mathrm{z}\left(\mathrm{x}_{0}\right)=\mathrm{z}_{0} \text { then } \\
& y=y_{0}+\frac{h}{1!} y_{0}^{1}+\frac{h^{2}}{2!} y_{0}^{11}+\frac{h^{3}}{3!} y_{0}^{111}+\ldots \\
& z=z_{0}+\frac{h}{1!} z_{0}^{1}+\frac{h^{2}}{2!} z_{0}^{11}+\frac{h^{3}}{3!} z_{0}^{111}+\ldots .
\end{aligned}
$$

Taylor's series for second order differential equation:

Consider differential equation is $\frac{d^{2} y}{d x^{2}}=f\left(x, y, \frac{d y}{d x}\right), y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$ which are known values put $y^{\prime}=p, y^{\prime \prime}=p^{\prime}=f(x, y, p)$ and also

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{h}{1} y_{0}^{\prime}+\frac{h^{2}}{2} y_{0}^{\prime \prime}+\ldots . \\
& y_{2}=y_{1}+\frac{h}{1} y_{1}^{\prime}+\frac{h^{2}}{2} y_{1}^{\prime \prime}+\ldots
\end{aligned}
$$

Examples:

1. Find the value of $y(1.1)$ and $y(1.2)$ from $\frac{d^{2} y}{d x^{2}}+y^{2} \frac{d y}{d x}=x^{3}, y(1)=1, y^{\prime}(1)=1$ by using Taylor's series method.

Sol. Given $y^{\prime \prime}+y^{2} y^{\prime}=x^{3}$

$$
\begin{equation*}
\text { Put } y^{\prime}=z \ldots(2) \text { then } y^{\prime \prime}=z^{\prime} \tag{1}
\end{equation*}
$$

Sub (2) and (3) in (1), we get

$$
\begin{align*}
& z^{\prime}+y^{2} z=x^{3} \\
& z^{\prime}=x^{3}-y^{2} z \tag{4}
\end{align*}
$$

\qquad
The initial conditions are $y(1)=1, y^{\prime}(1)=1$

$$
\begin{aligned}
& \text { (i.e.) } y(1)=1, z(1)=1\left(\text { since } y^{\prime}=z\right) \\
& \text { (i.e.) } x_{0}=1, y_{0}=1, z_{0}=1
\end{aligned}
$$

Now to solve (1), it is enough if we solve the two first order differential equations (2) and (4).

$$
\begin{array}{rlrl}
& y^{\prime}=z & z^{\prime}=x^{3}-y^{2} z \\
\Rightarrow y_{0}^{\prime}=z_{0}=1 & \Rightarrow z_{0}^{\prime}=x_{0}{ }^{3}-y_{0}{ }^{2} z_{0}=1-1=0 \\
& y^{\prime \prime}=z^{\prime} & z^{\prime \prime}=3 x^{2}-y^{2} z^{\prime}-z \cdot 2 y \cdot y^{\prime} \\
\Rightarrow y_{0}^{\prime \prime}=z_{0}^{\prime}=0 & \Rightarrow z_{0}^{\prime \prime}=3(1)-0-2(1)(1)(1)=1 \\
y^{\prime \prime \prime}=z^{\prime \prime} & z^{\prime \prime \prime}=6 x-y^{2} z^{\prime \prime}-z^{\prime} \cdot 2 y \cdot y^{\prime}-2\left[y z \cdot y^{\prime \prime}+y y^{\prime} \cdot z^{\prime}+y^{\prime} z \cdot y^{\prime}\right] \\
\Rightarrow y_{0}^{\prime \prime \prime}=z_{0}^{\prime \prime}=1 & \Rightarrow z_{0}^{\prime \prime \prime}=6(1)-(1)(1)-0-2[0+0+1]=6-1-2=3 \\
& y^{i v}=z^{\prime \prime \prime} & \\
\Rightarrow & y_{0}^{i v}=z_{0}^{\prime \prime \prime}=3 &
\end{array}
$$

Taylor's series about $x=x_{0}$ is given by

$$
\begin{aligned}
y(x) & =y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\ldots \ldots . \\
y(x) & =1+(x-1)(1)+\frac{(x-1)^{2}}{2!}(0)+\frac{(x-1)^{3}}{3!}(1)+\frac{(x-1)^{4}}{4!}(3)+\ldots \ldots \ldots . . \\
y(1.1) & =1+(1.1-1)(1)+\frac{(1.1-1)^{3}}{6}+\frac{(1.1-1)^{4}}{24}(3)+\ldots \ldots \\
& =1+0.1+\frac{(0.1)^{3}}{6}+\frac{(0.1)^{4}}{8}+\ldots \ldots . . \\
& =1+0.1+0.00017+0.0000125 \\
& =1.1002 \\
y(1.2) & =1+(1.2-1)(1)+\frac{(1.2-1)^{3}}{6}+\frac{(1.2-1)^{4}}{24}(3)+\ldots . . \\
& =1+0.2+\frac{(0.2)^{3}}{6}+\frac{(0.2)^{4}}{8}+\ldots \ldots . . \\
& =1+0.2+0.0013+0.0002 \\
& =1.2015
\end{aligned}
$$

2.Using Taylor series method find correct to four decimal places, the value of $\mathbf{y}(0.1)$ given $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.

Sol. Hint:

$$
\begin{aligned}
& y_{0}^{\prime}=1, \quad y_{0}^{\prime \prime}=2, \quad y_{0}^{\prime \prime \prime}=8, \quad y^{\prime v}{ }_{0}=28 \\
& y(x)=1+x+x^{2}+\frac{4}{3} x^{3}+\frac{7}{6} x^{4}+. \\
& \mathbf{y}(\mathbf{0 . 1})=\mathbf{1 . 1 1 1 4 5}
\end{aligned}
$$

3. Find by Taylor series method, the values of y at $x=0.1$ and $x=0.2$ to four decimal places from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.

Sol. Hint:

$$
\begin{aligned}
& y_{0}^{\prime}=-1, \quad y_{0}^{\prime \prime}=0, y_{0}^{\prime \prime \prime}=2, \quad y^{\prime v}{ }_{0}=-6 \\
& y(x)=1-x+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \ldots \ldots . \\
& \mathbf{y}(\mathbf{0 . 1})=\mathbf{1 . 8 3 4 4}, \quad y(\mathbf{0 . 2})=\mathbf{0 . 8 0 2 3}
\end{aligned}
$$

Euler's method:

Suppose $f(x, y)$ and also the initial condition $y\left(x_{0}\right)=y_{0}$ has given then $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ where $n=0,1,2,3 \ldots$ and also $f(x, y)=d y / d x$

Examples:

1. Use Euler's method to approximate \boldsymbol{y} when $\boldsymbol{x}=0.1$ given that $\frac{d y}{d x}=\frac{y-x}{y+x}$ with \boldsymbol{y} $=1$ for $x=0$.
Sol. We break up the interval 0.1 into five subintervals, we get the answer in more accurate form. So take $\mathrm{h}=0.02$

Given $f(x, y)=\frac{y-x}{y+x}$.
Also given $x_{0}=0, y_{0}=1$ and $\mathrm{h}=0.02$

$$
\begin{aligned}
& y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right) \\
& y_{1}=y_{0}+h\left[\frac{y_{0}-x_{0}}{y_{0}+x_{0}}\right]=1+(0.02)\left[\frac{1-0}{1+0}\right] \\
&=1.02
\end{aligned}
$$

$$
\text { (i.e.) } \mathbf{y}(0.02)=1.02
$$

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
& =0+0.02 \\
& =0.02
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right) \\
& y_{2}=y_{1}+h\left[\frac{y_{1}-x_{1}}{y_{1}+x_{1}}\right]=1.02+(0.02)\left[\frac{1.02-0.02}{1.02+0.02}\right] \\
&=1.0392 \\
&(\text { i.e. }) \mathbf{y}(\mathbf{0 . 0 4})=\mathbf{1 . 0 3 9 2} \\
& x_{2}=x_{1}+h \\
&=0.02+0.02 \\
&=0.04 \\
& y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right) \\
& y_{3}=y_{2}+h\left[\frac{y_{2}-x_{2}}{y_{2}+x_{2}}\right]=1.0392+(0.02)\left[\frac{1.0392-0.04}{1.0392+0.04}\right] \\
&=1.0577 \\
&(\text { i.e. }) \mathbf{y}(\mathbf{0 . 0 6})=1.0577 \\
& x_{3}=x_{2}+h \\
&=0.04+0.02 \\
&=0.06
\end{aligned}
$$

$$
y_{4}=y_{3}+h f\left(x_{3}, y_{3}\right)
$$

$$
y_{4}=y_{3}+h\left[\frac{y_{3}-x_{3}}{y_{3}+x_{3}}\right]=1.0577+(0.02)\left[\frac{1.0577-0.06}{1.0577+0.06}\right]
$$

$$
=1.0756
$$

$$
\text { (i.e.) } \mathbf{y}(\mathbf{0 . 0 8})=\mathbf{1 . 0 7 5 6}
$$

$$
\begin{aligned}
& x_{4}=x_{3}+h \\
&= 0.06+0.02 \\
&= 0.08 \\
& y_{5}=y_{4}+h f\left(x_{4}, y_{4}\right) \\
& y_{5}=y_{4}+h\left[\frac{y_{4}-x_{4}}{y_{4}+x_{4}}\right]=1.0756+(0.02)\left[\frac{1.0756-0.08}{1.0756+0.08}\right] \\
&=1.0928 \\
& \text { (i.e.) } \mathbf{y}(\mathbf{0 . 1})
\end{aligned}=\mathbf{1 . 0 9 2 8} .
$$

modified Euler's method:

$$
\begin{array}{r}
\operatorname{suppose} f(x, y)=d y / d x, \quad y\left(x_{0}\right)=y_{0} \\
y_{n+1}=y_{n}+h f\left(x_{n}+h / 2, y_{n}+h / 2 f\left(x_{n}, y_{n}\right)\right)
\end{array}
$$

Examples:

1.Using modified Euler's method, find $y(0.1)$ if $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.

Sol. Given $f(x, y)=x^{2}+y^{2}, x_{0}=0, y_{0}=1, h=0.1$

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{h}{2}\left\{f\left(x_{0}, y_{0}\right)+f\left[x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right]\right\}\right. \\
& f\left(x_{0}, y_{0}\right)=x_{0}^{2}+y_{0}^{2}=0+1=1 \\
& y_{1}=1+\frac{0.1}{2}\{1+f[0+0.1,1+0.1(1)]\} \\
& y_{1}=1+\frac{0.1}{2}\{1+f[0.1,1.1]\} \\
& y_{1}=1+\frac{0.1}{2}\{1+1.22\} \\
& y_{1}=1.111
\end{aligned}
$$

2.Solve $\frac{d y}{d x}=1-y$ with the initial condition $x=0, y=0$. Using Euler's algorithm, tabulate the solutions at $x=0.1,0.2,0.3,0.4$. Get the solutions by Euler's modified method also.
Sol. Given $f(x, y)=1-y$.

Also given $x_{0}=0, y_{0}=0$ and $\mathrm{h}=0.1$

Euler's method

$$
\begin{aligned}
& \begin{aligned}
& y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right) \\
& y_{1}=y_{0}+h\left[1-y_{0}\right]=0+(0.1)[1-0] \\
&=0.1 \\
& \text { (i.e.) } \mathbf{y}(\mathbf{0 . 1})=\mathbf{0 . 1} \\
& x_{1}=x_{0}+h \\
&=0+0.1 \\
&=0.1 \\
& y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right) \\
& y_{2}=y_{1}+h\left[1-y_{1}\right]=0.1+(0.1)[1-0.1 \\
&=0.19 \\
&(\text { i.e. }) \mathbf{y}(\mathbf{0 . 2})=\mathbf{0 . 1 9} \\
& x_{2}=x_{1}+h \\
&= 0.1+0.1 \\
&=
\end{aligned}
\end{aligned}
$$

$$
y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right)
$$

$$
y_{3}=y_{2}+h\left[1-y_{2}\right]=0.19+(0.1)[1-0.19]
$$

$$
=0.271
$$

$$
\text { (i.e.) } \mathbf{y}(0.3)=0.271
$$

$$
x_{3}=x_{2}+h
$$

$$
=0.2+0.1
$$

$$
=0.3
$$

$$
y_{4}=y_{3}+h f\left(x_{3}, y_{3}\right)
$$

$$
y_{4}=y_{3}+h\left[1-y_{3}\right]=0.271+(0.1)[1-0.271]
$$

$$
=0.3439
$$

$$
\text { (i.e.) } \mathbf{y}(0.4)=0.3439
$$

Euler's modified method

$$
\begin{aligned}
& y_{2}=0.095+\frac{0.1}{2}\{0.905+f[0.1+0.1,0.095+(0.1)(0.905)]\} \\
& \begin{aligned}
y_{2}=0.095+\frac{0.1}{2}\{0.905+f[0.2,0.1855]\} & =0.095+\frac{0.1}{2}\{0.905+(1-0.1855)\} \\
& =0.095+\frac{0.1}{2}\{0.905+0.8145\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{h}{2}\left\{f\left(x_{0}, y_{0}\right)+f\left[x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right]\right\} \\
& f\left(x_{0}, y_{0}\right)=1-y_{0} \\
& =1-0 \\
& =1 \\
& y_{1}=0+\frac{0.1}{2}\{1+f[0+0.1,0+(0.1)(1)]\}=0+\frac{0.1}{2}\{1+f[0.1,0.1]\} \\
& =0+\frac{0.1}{2}\{1+(1-0.1)\} \\
& =0.095 \\
& \text { (i.e.) } \mathbf{y}(\mathbf{0 . 1})=\mathbf{0 . 0 9 5} \\
& x_{1}=x_{0}+h \\
& =0+0.1 \\
& =0.1 \\
& y_{2}=y_{1}+\frac{h}{2}\left\{f\left(x_{1}, y_{1}\right)+f\left[x_{1}+h, y_{1}+h f\left(x_{1}, y_{1}\right)\right]\right\} \\
& f\left(x_{1}, y_{1}\right)=1-y_{1} \\
& =1-0.095 \\
& =0.905
\end{aligned}
$$

$=0.18098$
(i.e.) $\mathbf{y}(0.2)=0.18098$

$$
\begin{aligned}
& x_{2}=x_{1}+h \\
& =0.1+0.1 \\
& =0.2 \\
& y_{3}=y_{2}+\frac{h}{2}\left\{f\left(x_{2}, y_{2}\right)+f\left[x_{2}+h, y_{2}+h f\left(x_{2}, y_{2}\right)\right]\right\} \\
& f\left(x_{2}, y_{2}\right)=1-y_{2} \\
& =1-0.18098 \\
& =0.81902 \\
& y_{3}=0.18098+\frac{0.1}{2}\{0.81902+f[0.2+0.1,0.18098+(0.1)(0.81902)]\} \\
& y_{3}=0.18098+\frac{0.1}{2}\{0.81902+f[0.3,0.2629]\} \\
& =0.18098+\frac{0.1}{2}\{0.81902+(1-0.2629)\}=0.18098+\frac{0.1}{2}\{0.81902+0.7371\} \\
& =0.2588 \\
& \text { (i.e.) } \mathbf{y}(0.3)=\mathbf{0 . 2 5 8 8} \\
& x_{3}=x_{2}+h \\
& =0.2+0.1 \\
& =0.3 \\
& y_{4}=y_{3}+\frac{h}{2}\left\{f\left(x_{3}, y_{3}\right)+f\left[x_{3}+h, y_{3}+h f\left(x_{3}, y_{3}\right)\right]\right\} \\
& f\left(x_{3}, y_{3}\right)=1-y_{3} \\
& =1-0.2588 \\
& =0.7412
\end{aligned}
$$

$$
\begin{aligned}
y_{4} & =0.2588+\frac{0.1}{2}\{0.7412+f[0.3+0.1,0.2588+(0.1)(0.2588)]\} \\
y_{4} & =0.2588+\frac{0.1}{2}\{0.7412+f[0.4,0.3329]\} \\
y_{4} & =0.2588+\frac{0.1}{2}\{0.7412+(1-0.3329)\} \\
y_{4} & =0.2588+\frac{0.1}{2}\{0.7412+0.6671\} \\
& =0.3292
\end{aligned}
$$

(i.e.) $\mathbf{y}(\mathbf{0 . 4})=\mathbf{0 . 3 2 9 2}$
3.Given that $\frac{d y}{d x}=\log _{10}(x+y)$ with the initial condition that $\boldsymbol{y}=1$ when $\boldsymbol{x}=0$, use Euler's modified method to find y for $x=0.2$ and $x=0.5$ in more accurate form. Sol. Given $f(x, y)=\log _{10}(x+y)$.

Also given $x_{0}=0, y_{0}=1$. Take $\mathrm{h}=0.1$
By Euler modified method,

$$
\begin{aligned}
& \begin{aligned}
& y_{1}=y_{0}+\frac{h}{2}\left\{f\left(x_{0}, y_{0}\right)+f\left[x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right]\right\} \\
& f\left(x_{0}, y_{0}\right)=\log _{10}\left(x_{0}+y_{0}\right) \\
&=\log _{10}(0+1) \\
&=0
\end{aligned} \\
& \begin{aligned}
y_{1}=1+\frac{0.1}{2}\{0+f[0+0.1,1+(0.1)(0)]\} & =1+\frac{0.1}{2}\{0+f[0.1,1]\} \\
& =1+\frac{0.1}{2}\left\{0+\log _{10}(0.1+1)\right\} \\
& =1.0021
\end{aligned}
\end{aligned}
$$

$$
\text { (i.e.) } \mathbf{y}(\mathbf{0 . 1})=\mathbf{1 . 0 0 2 1}
$$

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
& =0+0.1
\end{aligned}
$$

$$
\begin{aligned}
& =0.1 \\
& y_{2}=y_{1}+\frac{h}{2}\left\{f\left(x_{1}, y_{1}\right)+f\left[x_{1}+h, y_{1}+h f\left(x_{1}, y_{1}\right)\right]\right\} \\
& f\left(x_{1}, y_{1}\right)=\log _{10}\left(x_{1}+y_{1}\right) \\
& =\log _{10}(0.1+1.0021) \\
& =0.0422 \\
& y_{2}=1.0021+\frac{0.1}{2}\{0.0422+f[0.1+0.1,1.0021+(0.1)(0.0422)]\} \\
& y_{2}=1.0021+\frac{0.1}{2}\{0.0422+f[0.2,1.0063]\} \\
& y_{2}=1.0021+\frac{0.1}{2}\left\{0.0422+\log _{10}(0.2+1.0063)\right\} \\
& =1.0083 \\
& \text { (i.e.) } \mathbf{y}(\mathbf{0 . 2})=\mathbf{1 . 0 0 8 3} \\
& x_{2}=x_{1}+h \\
& =0.1+0.1 \\
& =0.2 \\
& y_{3}=y_{2}+\frac{h}{2}\left\{f\left(x_{2}, y_{2}\right)+f\left[x_{2}+h, y_{2}+h f\left(x_{2}, y_{2}\right)\right]\right\} \\
& f\left(x_{2}, y_{2}\right)=\log _{10}\left(x_{2}+y_{2}\right) \\
& =\log _{10}(0.2+1.0083) \\
& =0.0822 \\
& y_{3}=1.0083+\frac{0.1}{2}\{0.0822+f[0.2+0.1,1.0083+(0.1)(0.0822)]\} \\
& y_{3}=1.0083+\frac{0.1}{2}\{0.0822+f[0.3,1.0165]\} \\
& y_{3}=1.0083+\frac{0.1}{2}\left\{0.0822+\log _{10}(0.3+1.0165)\right\} \\
& =1.0184
\end{aligned}
$$

(i.e.) $\mathbf{y}(0.3)=\mathbf{1 . 0 1 8 4}$

$$
\begin{gathered}
x_{3}=x_{2}+h \\
=0.2+0.1 \\
=0.3 \\
y_{4}=y_{3}+\frac{h}{2}\left\{f\left(x_{3}, y_{3}\right)+f\left[x_{3}+h, y_{3}+h f\left(x_{3}, y_{3}\right)\right]\right\} \\
f\left(x_{3}, y_{3}\right)=\log _{10}\left(x_{3}+y_{3}\right) \\
=\log _{10}(0.3+1.0184) \\
=0.12005 \\
y_{4}=1.0184+\frac{0.1}{2}\{0.12005+f[0.3+0.1,1.0184+(0.1)(0.12005)]\} \\
\left.y_{4}=1.0184+\frac{0.1}{2}\{0.12005+f[0.4,1.0304]\}\right) \\
y_{4}=1.0184+\frac{0.1}{2}\left\{0.12005+\log _{10}(0.4+1.0304)\right\} \\
=1.0322 \\
(\text { i.e. }) \mathbf{y}(\mathbf{0 . 4})= \\
x_{4}=
\end{gathered}
$$

$$
y_{5}=1.0322+\frac{0.1}{2}\{0.1560+f[0.4+0.1,1.0322+(0.1)(0.1560)]\}
$$

$$
\begin{aligned}
y_{5} & =1.0322+\frac{0.1}{2}\{0.1560+f[0.5,1.0478]\} \\
y_{5} & =1.0322+\frac{0.1}{2}\left\{0.1560+\log _{10}(0.5+1.0478)\right\} \\
& =1.0495
\end{aligned}
$$

$$
\text { (i.e.) } \mathbf{y}(\mathbf{0 . 5})=\mathbf{1 . 0 4 9 5}
$$

Runge kutta method of $4^{\text {th }}$ order for first order Equations :

Suppose

$\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$ has given then $\quad y_{n+1}=y_{n}+\Delta y$
Where $\Delta y=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$
$k_{1}=h f\left(x_{n}, y_{n}\right)$
$k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right)$
$k_{3}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right)$
$k_{4}=h f\left(x_{n}+h, y_{n}+k_{3}\right)$

Examples:

1. Using R-K method of fourth order, solve $y^{\prime}=3 x+\frac{1}{2} y$ with $y(0)=1$ at $x=0.2$ taking $h=0.1$
Sol. Given $f(x, y)=3 x+\frac{1}{2} y$
Also given $x_{0}=0, y_{0}=1$. Take $\mathrm{h}=0.1$

To find $y(0.1)$

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right)=(0.1)\left(3 x_{0}+\frac{y_{0}}{2}\right)=(0.1)\left(3(0)+\frac{1}{2}\right) \\
&=0.05 \\
& k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)=(0.1) f\left(0+\frac{0.1}{2}, 1+\frac{0.05}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=(0.1) f(0.05,1.025)=0.1\left(3(0.05)+\frac{1.025}{2}\right) \\
&=0.0663 \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)=(0.1) f\left(0+\frac{0.1}{2}, 1+\frac{0.0663}{2}\right) \\
&=(0.1) f(0.05,1.0332)=0.1\left(3(0.05)+\frac{1.0332}{2}\right) \\
& k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right)=(0.1) f(0+0.1,1+0.0667) \\
&=(0.1)\left(3(0.1)+\frac{1.0667}{2}\right) \\
&=0.0833 \\
& \Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
&=\frac{1}{6}[0.05+2(0.0663)+2(0.0667)+0.0833] \\
&=0.0666 \\
& y_{1}=y_{0}+\Delta y \\
&=1+0.0666 \\
&=1.0666
\end{aligned}
$$

(i.e.) $y(0.1)=\mathbf{1 . 0 6 6 6}$

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
& =0+0.1 \\
& =0.1
\end{aligned}
$$

To find $y(0.2)$

$$
\begin{aligned}
k_{1}=h f\left(x_{1}, y_{1}\right)=(0.1)\left(3 x_{1}+\frac{y_{1}}{2}\right) & =(0.1)\left(3(0.1)+\frac{1.0666}{2}\right) \\
& =0.0833
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right)=(0.1) f\left(0.1+\frac{0.1}{2}, 1.0666+\frac{0.0833}{2}\right) \\
&=(0.1) f(0.15,1.1083)=0.1(3(0.15)+ \\
&=0.1004 \\
& k_{3}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right)=(0.1) f\left(0.1+\frac{0.1}{2}, 1.0666+\frac{0.1004}{2}\right) \\
&=(0.1) f(0.15,1.1168)=0.1(3(0.15) \\
& k_{4}=h f\left(x_{1}+h, y_{1}+k_{3}\right)=(0.1) f(0.1+0.1,1.0666+0.1008) \\
&=(0.1)\left(3(0.2)+\frac{1.1674}{2}\right) \\
&=0.1184 \\
& \begin{aligned}
\Delta y & =\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.0833+2(0.1004)+2(0.1008)+0.1184]
\end{aligned} \\
&==0.1007 \\
& y_{2}=y_{1}+\Delta y \\
&=1.0666+0.1007 \\
&=1.1673
\end{aligned}
$$

$$
=(0.1) f(0.15,1.1083)=0.1\left(3(0.15)+\frac{1.1083}{2}\right)
$$

$$
=0.1004
$$

$$
=(0.1) f(0.15,1.1168)=0.1\left(3(0.15)+\frac{1.1168}{2}\right)
$$

$$
=0.1008
$$

(i.e.) $y(0.2)=\mathbf{1 . 1 6 7 3}$
2. Use $4^{\text {th }}$ order R-K method to solve $y^{\prime}=x y$ for $x=1.2,1.4,1.6$ Initially $x=1, y=2($ take $h=0.2)$

Sol. Given $f(x, y)=x y$
Also given $x_{0}=1, y_{0}=2$. Take $\mathrm{h}=0.2$

To find $y(1.2)$

$$
k_{1}=h f\left(x_{0}, y_{0}\right)=(0.2)\left(x_{0} y_{0}\right)=(0.2)[(1)(2)]
$$

$$
\begin{aligned}
& =0.4 \\
& k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)=(0.2) f\left(1+\frac{0.2}{2}, 2+\frac{0.4}{2}\right) \\
& =(0.2) f(1.1,2.2)=(0.2)[(1.1)(2.2)] \\
& =0.484 \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)=(0.2) f\left(1+\frac{0.2}{2}, 2+\frac{0.484}{2}\right) \\
& =(0.2) f(1.1,2.242)=(0.2)[(1.1)(2.242)] \\
& =0.4932 \\
& k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right)=(0.2) f(1+0.2,2+0.4932) \\
& =(0.2) f(1.2,2.4932)=(0.2)[(1.2)(2.4932)] \\
& \Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.4+2(0.484)+2(0.4932)+0.5984] \\
& =0.4921 \\
& y_{1}=y_{0}+\Delta y \\
& =2+0.4921 \\
& =2.4921 \\
& \text { (i.e.) } \mathbf{y}(1.2)=\mathbf{2 . 4 9 2 1} \\
& x_{1}=x_{0}+h \\
& =1+0.2 \\
& =1.2
\end{aligned}
$$

To find $y(1.4)$

$$
\begin{aligned}
k_{1}=h f\left(x_{1}, y_{1}\right)=(0.2)\left(x_{1} y_{1}\right) & =(0.2)[(1.2)(2.4921)] \\
& =0.5981
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right)=(0.2) f\left(1.2+\frac{0.2}{2}, 2.4921+\frac{0.5981}{2}\right) \\
& =(0.2) f(1.3,2.7912)=(0.2)[(1.3)(2.7912)] \\
& =0.7257 \\
& k_{3}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right)=(0.2) f\left(1.2+\frac{0.2}{2}, 2.4921+\frac{0.7257}{2}\right) \\
& =(0.2) f(1.3,2.8550)=(0.2)[(1.3)(2.8550)] \\
& =0.7423 \\
& k_{4}=h f\left(x_{1}+h, y_{1}+k_{3}\right)=(0.2) f(1.2+0.2,2.4921+0.7423) \\
& =(0.2) f(1.4,3.2344)=(0.2)[(1.4)(3.2344)] \\
& =0.9056 \\
& \Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.5981+2(0.7257)+2(0.7423)+0.9056] \\
& =0.74 \\
& y_{2}=y_{1}+\Delta y \\
& =2.4921+0.74 \\
& =3.2321 \\
& \text { (i.e.) } \mathbf{y}(\mathbf{1 . 4})=\mathbf{3 . 2 3 2 1} \\
& x_{2}=x_{1}+h \\
& =1.2+0.2 \\
& =1.4
\end{aligned}
$$

To find $y(1.6)$

$$
\begin{aligned}
k_{1}=h f\left(x_{2}, y_{2}\right)=(0.2)\left(x_{2} y_{2}\right) & =(0.2)[(1.4)(3.2321)] \\
& =0.9050
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& k_{2}=h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{1}}{2}\right)=(0.2) f\left(1.4+\frac{0.2}{2}, 3.2321+\frac{0.9050}{2}\right) \\
&=(0.2) f(1.5,3.6846)=(0.2)[(1.5)(3.6846)] \\
&=1.1054
\end{aligned} \\
& \begin{aligned}
& k_{3}=h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right)=(0.2) f\left(1.4+\frac{0.2}{2}, 3.2321+\frac{1.1054}{2}\right) \\
&=(0.2) f(1.5,3.7848)=(0.2)[(1.5)(3.7848)] \\
&=1.1354
\end{aligned} \\
& \begin{aligned}
k_{4}=h f\left(x_{2}+h, y_{2}+k_{3}\right)=(0.2) f(1.4+0.2,3.2321+1.1354)
\end{aligned} \\
& = \\
& \begin{aligned}
\Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right]
\end{aligned} \\
& \quad=\frac{1}{6}[0.9050+2(1.6,4.3675)=(0.2)[(1.6)(4.3675)] \\
& \quad=1.1307
\end{aligned} \quad=1.3976
$$

Multistep Method:

In multi step methods, where in each step, we use data from more than one of the preceding steps
multistep methods available for solving ordinary differential equation
i) Milne's predictor - corrector method
ii) Adam's Bashforth predictor - corrector method.

Milne's predictor and corrector Method:

Consider $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$ has given

$$
\begin{aligned}
& y_{n+1, p}=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right] \\
& y_{n+1, c}=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
\end{aligned}
$$

Examples:

1. Solve $y^{\prime}=x-y^{2}, 0 \leq x \leq 1, \boldsymbol{y}(0)=\mathbf{0}, \boldsymbol{y}(0.2)=0.02, \boldsymbol{y}(0.4)=0.0795$, $y(0.6)=0.1762$ by Milne's method to find $y(0.8)$ and $y(1)$.

Sol. Given $y^{\prime}=x-y^{2}$ and $\mathrm{h}=0.2$

$$
\begin{array}{ll}
x_{0}=0 & y_{0}=0 \\
x_{1}=0.2 & y_{1}=0.02 \\
x_{2}=0.4 & y_{2}=0.0795 \\
x_{3}=0.6 & y_{3}=0.1762 \\
x_{4}=0.8 & y_{4}=? \\
x_{5}=1 & y_{5}=?
\end{array}
$$

By Milne's predictor formula, we have

$$
y_{n+1, p}=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

To get y_{4}, put $\mathrm{n}=3$ we get
$y_{4, p}=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right]$

$$
\text { Now, } \begin{aligned}
& y_{1}^{\prime}=x_{1}-y_{1}{ }^{2} \\
&=0.2-(0.02)^{2} \\
&=0.1996 \\
& y_{2}^{\prime}=x_{2}-y_{2}^{2} \\
&=0.4-(0.0795)^{2} \\
&=0.3937 \\
& y_{3}^{\prime}=x_{3}-y_{3}^{2} \\
&=0.6-(0.1762)^{2} \\
&=0.5690 \\
& y_{4, p}=0+\frac{4(0.2)}{3}[2(0.1996)-(0.3937)+2(0.5690)] \\
& y(0.8)_{p}=\mathbf{0 . 3 0 4 9}
\end{aligned}
$$

By Milne's corrector formula, we have

$$
y_{n+1, c}=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
$$

To get y_{4}, put $\mathrm{n}=3$ we get

$$
y_{4, c}=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right]
$$

Now, $y_{4}^{\prime}=x_{4}-y_{4}{ }^{2}$

$$
\begin{aligned}
& =0.8-(0.3049)^{2} \\
& =0.7070 \\
y_{4, c} & =0.0795+\frac{0.2}{3}[0.3937+4(0.5690)+0.7070] \\
y(0.8)_{c} & =0.3046
\end{aligned}
$$

Again, $\quad y_{4}^{\prime}=x_{4}-y_{4}^{2}=0.8-(0.3046)^{2}$

$$
=0.7072
$$

$$
\begin{aligned}
& y_{4, c}=0.0795+\frac{0.2}{3}[0.3937+4(0.5690)+0.7072] \\
& y(0.8)_{c}{ }^{(2)}=\mathbf{0 . 3 0 4 6}
\end{aligned}
$$

To find y_{5} (or) $\mathrm{y}(1)$, put $\mathrm{n}=4$ in the Milne's formula.
To get y_{5}, put $\mathrm{n}=4$ in Milne's predictor formula, we get

$$
\begin{aligned}
y_{5, p} & =y_{1}+\frac{4 h}{3}\left[2 y_{2}^{\prime}-y_{3}^{\prime}+2 y_{4}^{\prime}\right] \\
& =0.02+\frac{4(0.2)}{3}[2(0.3937)-0.5690+2(0.7070)] \\
y(1)_{p} & =\mathbf{0 . 4 5 5 3}
\end{aligned}
$$

Now put $\mathrm{n}=4$ in Milne's corrector formula, we get

$$
\begin{aligned}
& y_{5, c}=y_{3}+\frac{h}{3}\left[y_{3}^{\prime}+4 y_{4}^{\prime}+y_{5}^{\prime}\right] \\
& y_{5}^{\prime}=x_{5}-y_{5}^{2}=1-(0.4553)^{2}=0.7927 \\
& y_{5, c}=0.1762+\frac{0.2}{3}[0.5690+4(0.7070)+0.7927] \\
& y(1)_{c}=0.4555
\end{aligned}
$$

Again, $y_{5}^{\prime}=x_{5}-y_{5}{ }^{2}=1-(0.4555)^{2}=0.7925$

$$
y_{5, c}=0.1762+\frac{0.2}{3}[0.5690+4(0.7070)+0.7925]
$$

$y(1)_{c}{ }^{(2)}=\mathbf{0 . 4 5 5 5}$
2. Given $\frac{d y}{d x}=x^{3}+y, y(0)=2$
i) Compute $y(0.2), y(0.4)$ and $y(0.6)$ by $R-K$ method of $4^{\text {th }}$ order.
ii) Hence find $\mathbf{y}(0.8)$ by Milne's predictor corrector method taking $\boldsymbol{h}=0.2$

Sol. Given $f(x, y)=x^{3}+y$
Also given $x_{0}=0, y_{0}=2$. Take $\mathrm{h}=0.2$

To find $y(0.2)$

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right)=(0.2)\left(x_{0}{ }^{3}+y_{0}\right)=(0.2)[0+2] \\
& =0.4 \\
& k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)=(0.2)\left[\left(x_{0}+\frac{h}{2}\right)^{3}+\left(y_{0}+\frac{k_{1}}{2}\right)\right] \\
& =(0.2)\left[\left(0+\frac{0.2}{2}\right)^{3}+\left(2+\frac{0.4}{2}\right)\right] \\
& =0.4402 \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)=(0.2)\left[\left(x_{0}+\frac{h}{2}\right)^{3}+\left(y_{0}+\frac{k_{2}}{2}\right)\right] \\
& =(0.2)\left[\left(0+\frac{0.2}{2}\right)^{3}+\left(2+\frac{0.4402}{2}\right)\right] \\
& =0.4442 \\
& k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right)=(0.2)\left[\left(x_{0}+h\right)^{3}+\left(y_{0}+k_{3}\right)\right] \\
& =(0.2)\left[(0+0.2)^{3}+(2+0.4442)\right] \\
& =0.4904 \\
& \Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.4+2(0.4402)+2(0.4442)+0.4904] \\
& =0.4432 \\
& y_{1}=y_{0}+\Delta y=2+0.4432 \\
& =2.4432 \\
& \text { (i.e.) } \mathbf{y}(0.2)=2.4432 \\
& x_{1}=x_{0}+h \\
& =0+0.2
\end{aligned}
$$

$$
=0.2
$$

To find $y(0.4)$

$$
\begin{aligned}
& k_{1}=h f\left(x_{1}, y_{1}\right)=(0.2)\left(x_{1}^{3}+y_{1}\right) \\
& =(0.2)\left[(0.2)^{3}+2.4432\right] \\
& =0.4902 \\
& k_{2}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right)=(0.2)\left[\left(x_{1}+\frac{h}{2}\right)^{3}+\left(y_{1}+\frac{k_{1}}{2}\right)\right] \\
& =(0.2)\left[\left(0.2+\frac{0.2}{2}\right)^{3}+\left(2.4432+\frac{0.4902}{2}\right)\right] \\
& =0.5431 \\
& k_{3}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right)=(0.2)\left[\left(x_{1}+\frac{h}{2}\right)^{3}+\left(y_{1}+\frac{k_{2}}{2}\right)\right] \\
& =(0.2)\left[\left(0.2+\frac{0.2}{2}\right)^{3}+\left(2.4432+\frac{0.5431}{2}\right)\right] \\
& =0.5484 \\
& k_{4}=h f\left(x_{1}+h, y_{1}+k_{3}\right)=(0.2)\left[\left(x_{1}+h\right)^{3}+\left(y_{1}+k_{3}\right)\right] \\
& =(0.2)\left[(0.2+0.2)^{3}+(2.4432+0.5484)\right] \\
& =0.6111 \\
& \Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.4902+2(0.5431)+2(0.5484)+0.6111] \\
& =0.5474 \\
& y_{2}=y_{1}+\Delta y=2.4432+0.5474 \\
& =2.9906 \\
& \text { (i.e.) } \mathbf{y}(0.4)=\mathbf{2 . 9 9 0 6}
\end{aligned}
$$

$$
\begin{aligned}
x_{2}=x_{1}+h & =0.2+0.2 \\
& =0.4
\end{aligned}
$$

To find $y(0.6)$

$$
\begin{aligned}
& k_{1}=h f\left(x_{2}, y_{2}\right)=(0.2)\left(x_{2}^{3}+y_{2}\right)=(0.2)\left[(0.4)^{3}+2.9906\right] \\
& =0.6109 \\
& k_{2}=h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{1}}{2}\right)=(0.2)\left[\left(x_{2}+\frac{h}{2}\right)^{3}+\left(y_{2}+\frac{k_{1}}{2}\right)\right] \\
& =(0.2)\left[\left(0.4+\frac{0.2}{2}\right)^{3}+\left(2.9906+\frac{0.6109}{2}\right)\right] \\
& =0.6842 \\
& k_{3}=h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right)=(0.2)\left[\left(x_{2}+\frac{h}{2}\right)^{3}+\left(y_{2}+\frac{k_{2}}{2}\right)\right] \\
& =(0.2)\left[\left(0.4+\frac{0.2}{2}\right)^{3}+\left(2.9906+\frac{0.6842}{2}\right)\right] \\
& =0.6915 \\
& k_{4}=h f\left(x_{2}+h, y_{2}+k_{3}\right)=(0.2)\left[\left(x_{2}+h\right)^{3}+\left(y_{2}+k_{3}\right)\right] \\
& =(0.2)\left[(0.4+0.2)^{3}+(2.9906+0.6915)\right] \\
& =(0.2)[3.8981] \\
& =0.7796 \\
& \Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.6109+2(0.6842)+2(0.6915)+0.7796] \\
& =0.6903 \\
& y_{3}=y_{2}+\Delta y=2.9906+0.6903 \\
& =3.6809
\end{aligned}
$$

(i.e.) $\mathbf{y}(0.6)=\mathbf{3 . 6 8 0 9}$

$$
\begin{aligned}
x_{3} & =x_{2}+h \\
& =0.4+0.2 \\
& =0.6
\end{aligned}
$$

To find $y(0.8)$

Given $y^{\prime}=x^{3}+y$ and $\mathrm{h}=0.2$

$$
\begin{array}{ll}
x_{0}=0 & y_{0}=2 \\
x_{1}=0.2 & y_{1}=2.4432 \\
x_{2}=0.4 & y_{2}=2.9906 \\
x_{3}=0.6 & y_{3}=3.6809 \\
x_{4}=0.8 & y_{4}=?
\end{array}
$$

By Milne's predictor formula, we have

$$
y_{n+1, p}=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

To get y_{4}, put $\mathrm{n}=3$ we get

$$
y_{4, p}=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right]
$$

Now, $y_{1}^{\prime}=x_{1}^{3}+y_{1}=(0.2)^{3}+2.4432$

$$
=2.4512
$$

$$
\begin{aligned}
& y_{2}^{\prime}=x_{2}^{3}+y_{2}=(0.4)^{3}+2.9906 \\
&=3.0546 \\
& y_{3}^{\prime}=x_{3}^{3}+y_{3}=(0.6)^{3}+3.6809 \\
&=3.8969 \\
& y_{4, p}=2+\frac{4(0.2)}{3}[2(2.4512)-(3.0546)+2(3.8969)] \\
& y(0.8)_{p}= \mathbf{4 . 5 7 1 1}
\end{aligned}
$$

By Milne's corrector formula, we have

$$
y_{n+1, c}=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
$$

To get y_{4}, put $\mathrm{n}=3$ we get
$y_{4, c}=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right]$
Now, $y_{4}^{\prime}=x_{4}{ }^{3}+y_{4}=(0.8)^{3}+4.5711$

$$
=5.0831
$$

$$
y_{4, c}=2.9906+\frac{0.2}{3}[3.0546+4(3.8969)+5.0831]
$$

$$
y(0.8)_{c}=4.5723
$$

Again, $y_{4}^{\prime}=x_{4}^{3}+y_{4}=(0.8)^{3}+4.5723$

$$
\begin{gathered}
=5.0843 \\
y_{4, c}=2.9906+\frac{0.2}{3}[3.0546+4(3.8969)+5.0843] \\
y(0.8)_{c}{ }^{(2)}=\mathbf{4 . 5 7 2 4}
\end{gathered}
$$

3. Given that $y^{\prime \prime}+x y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=0$. Obtain for $\boldsymbol{x}=0.1,0.2,0.3$ by Taylor's series method and find the solution for $\mathbf{y}(0.4)$ by Milne's method.

Sol. Given $y^{\prime \prime}+x y^{\prime}+y=0$
Put $y^{\prime}=z$ \qquad (2) then $y^{\prime \prime}=z^{\prime}$

Sub (2) and (3) in (1), we get

$$
\begin{equation*}
z^{\prime}+x z+y=0 \Rightarrow z^{\prime}=-x z-y \tag{4}
\end{equation*}
$$

The initial conditions are $y(0)=1, y^{\prime}(0)=0$

$$
\begin{aligned}
& \text { (i.e.) } \mathrm{y}(0)=1, \mathrm{z}(0)=0 \text { (since } y^{\prime}=z \text {) } \\
& \text { (i.e.) } x_{0}=0, y_{0}=1, z_{0}=0, \mathrm{~h}=0.1
\end{aligned}
$$

Now to solve (1), it is enough if we solve the two first order differential equations (2) and (4).

$$
\begin{array}{rlrl}
y^{\prime} & =z & & z^{\prime}=-x z-y \\
\Rightarrow y_{0}^{\prime} & =z_{0}=0 & \Rightarrow & z_{0}^{\prime}=-x_{0} z_{0}-y_{0}=0-1=-1 \\
y^{\prime \prime} & =z^{\prime} & z^{\prime \prime}=-x . z^{\prime}-z .1-y^{\prime} \\
\Rightarrow y_{0}^{\prime \prime} & =z_{0}^{\prime}=-1 & \Rightarrow z_{0}^{\prime \prime}=0-0-0=0 \\
y^{\prime \prime \prime} & =z^{\prime \prime} & z^{\prime \prime \prime}=-x z^{\prime \prime}-z^{\prime} \cdot 1-z^{\prime}-y^{\prime \prime} \\
\Rightarrow y_{0}^{\prime \prime \prime} & =z_{0}^{\prime \prime}=0 & \Rightarrow z_{0}^{\prime \prime \prime}=0-(-1)-(-1)-(-1)=3 \\
y^{i v} & =z^{\prime \prime \prime} & & \\
\Rightarrow y_{0}^{i v} & =z_{0}^{\prime \prime \prime}=3 & &
\end{array}
$$

Taylor's series about $x=x_{0}$ is given by

$$
\begin{aligned}
& y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\frac{\left.\left(x-x_{0}\right)^{3}\right)^{\prime \prime \prime}}{3!} y_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{4}}{4!} y_{0}^{i v}+\ldots \ldots . \\
& y(x)=1+(x-0)(0)+\frac{(x-0)^{2}}{2!}(-1)+\frac{(x-0)^{3}}{3!}(0)+\frac{(x-0)^{4}}{4!}(3)+\ldots \ldots \ldots \ldots \\
& y(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{8}+\ldots \ldots \ldots . . \\
& y(0.1)=1-\frac{(0.1)^{2}}{2}+\frac{(0.1)^{4}}{8}+\ldots \ldots . . \\
& \quad=\mathbf{0 . 9 9 5 0}
\end{aligned}
$$

$$
y(0.2)=1-\frac{(0.2)^{2}}{2}+\frac{(0.2)^{4}}{8}+\ldots \ldots \ldots
$$

$$
=0.9802
$$

$$
y(0.3)=1-\frac{(0.3)^{2}}{2}+\frac{(0.3)^{4}}{8}+\ldots \ldots \ldots
$$

$$
=0.9560
$$

Now Taylor's series for $\mathrm{z}(\mathrm{x})$ is

$$
\begin{aligned}
& z(x)=z_{0}+\left(x-x_{0}\right) z_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} z_{0}^{\prime \prime}+\frac{\left(x-x_{0}\right)^{3}}{3!} z_{0}^{\prime \prime \prime}+\ldots \ldots \\
& z(x)=0+(x-0)(-1)+\frac{(x-0)^{2}}{2!}(0)+\frac{(x-0)^{3}}{3!}(3)+\ldots . \\
& z(x)=-x+\frac{x^{3}}{2}+\ldots \ldots \ldots . . \\
& \begin{aligned}
z_{1}=z(0.1)= & -(0.1)+\frac{(0.1)^{3}}{2}+\ldots \ldots \ldots . . \\
& =-0.0995 \\
z_{2}=z(0.2)= & -(0.2)+\frac{(0.2)^{3}}{2}+\ldots \ldots \ldots \ldots \\
& =-0.1960 \\
z_{3}=z(0.3)= & -(0.3)+\frac{(0.3)^{3}}{2}+\ldots \ldots \ldots . . \\
& =-0.2865
\end{aligned} \\
& \begin{aligned}
z_{4}=z(0.4)= & -(0.4)+\frac{(0.4)^{3}}{2}+\ldots \ldots \ldots . .
\end{aligned} \\
& \quad=-0.3680
\end{aligned}
$$

Hence $y_{1}^{\prime}=z_{1}=-0.0995$

$$
\begin{aligned}
& y_{2}^{\prime}=z_{2}=-0.1960 \\
& y_{3}^{\prime}=z_{3}=-0.2865 \\
& y_{4}^{\prime}=z_{4}=-0.3680
\end{aligned}
$$

By Milne's predictor formula, we have

$$
y_{n+1, p}=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

To get y_{4}, put $\mathrm{n}=3$ we get

$$
y_{4, p}=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right]
$$

$$
\begin{aligned}
& y_{4, p}=1+\frac{4(0.1)}{3}[2(-0.0995)-(-0.1960)+2(-0.2865)] \\
& y(0.4)_{p}=\mathbf{0 . 9 2 3 2}
\end{aligned}
$$

By Milne's corrector formula, we have

$$
y_{n+1, c}=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
$$

To get y_{4}, put $\mathrm{n}=3$ we get

$$
\begin{aligned}
& y_{4, c}=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right] \\
& y_{4, c}=0.9802+\frac{0.2}{3}[-0.1960+4(-0.2865)-0.3680] \\
& y(0.4)_{c}=\mathbf{0 . 9 2 3 2}
\end{aligned}
$$

5. Consider the initial value problem $\frac{d y}{d x}=y-x^{2}+1, y(0)=0.5$
i) Using the modified Euler method find y(0.2)
ii) Using $4^{\text {th }}$ order R-K method, find $y(0.4)$ and $y(0.6)$

Sol.

Given $f(x, y)=y-x^{2}+1$.
Also given $x_{0}=0, y_{0}=0.5$. Take $\mathrm{h}=0.2$
By Euler modified method,

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{h}{2}\left\{f\left(x_{0}, y_{0}\right)+f\left[x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right]\right\} \\
& f\left(x_{0}, y_{0}\right)=y_{0}-x_{0}{ }^{2}+1=0.5-0+1 \\
& =1.5 \\
& y_{1}=0.5+\frac{0.2}{2}\{1.5+f[0+0.2,0.5+(0.2)(1.5)]\} \\
& =0.5+\frac{0.2}{2}\{1.5+f[0.2,0.8]\}
\end{aligned}
$$

$$
\begin{aligned}
& =0.5+\frac{0.2}{2}\left\{1.5+\left[0.8-(0.2)^{2}+1\right]\right\} \\
& =0.826
\end{aligned}
$$

(i.e.) $\mathbf{y}(\mathbf{0 . 2})=\mathbf{0 . 8 2 6}$

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
& =0+0.2 \\
& =0.2
\end{aligned}
$$

To find $\mathrm{y}(0.4)$

Given $f(x, y)=y-x^{2}+1$
Also we have $x_{1}=0.2, y_{1}=0.826$ Take $\mathrm{h}=0.2$

$$
\begin{aligned}
k_{1}=h f\left(x_{1}, y_{1}\right) & =(0.2)\left(y_{1}-x_{1}^{2}+1\right) \\
& =(0.2)\left[\left(0.826-(0.2)^{2}+1\right]\right. \\
& =0.3572
\end{aligned}
$$

$$
k_{2}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right)=(0.2)\left[\left(y_{1}+\frac{k_{1}}{2}\right)-\left(x_{1}+\frac{h}{2}\right)^{2}+1\right]
$$

$$
=(0.2)\left[\left(0.826+\frac{0.3572}{2}\right)-\left(0.2+\frac{0.2}{2}\right)^{2}+1\right]
$$

$$
=0.3829
$$

$$
k_{3}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right)=(0.2)\left[\left(y_{1}+\frac{k_{2}}{2}\right)-\left(x_{1}+\frac{h}{2}\right)^{2}+1\right]
$$

$$
=(0.2)\left[\left(0.826+\frac{0.3829}{2}\right)-\left(0.2+\frac{0.2}{2}\right)^{2}+1\right]
$$

$$
=0.3855
$$

$$
k_{4}=h f\left(x_{1}+h, y_{1}+k_{3}\right)=(0.2)\left[\left(y_{1}+k_{3}\right)-\left(x_{1}+h\right)^{2}+1\right]
$$

$$
=(0.2)\left[(0.826+0.3855)-(0.2+0.2)^{2}+1\right]
$$

$$
=0.4103
$$

$$
\begin{aligned}
\Delta y & =\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.3572+2(0.3829)+2(0.3855)+0.4103] \\
& =0.3841 \\
y_{2} & =y_{1}+\Delta y=0.8260+0.3841 \\
& =1.2101
\end{aligned}
$$

$$
\text { (i.e.) } \mathbf{y}(\mathbf{0 . 4})=\mathbf{1 . 2 1 0 1}
$$

$$
\begin{aligned}
x_{2} & =x_{1}+h \\
& =0.2+0.2 \\
& =0.4
\end{aligned}
$$

To find $y(0.6)$

$$
\begin{aligned}
& k_{1}=h f\left(x_{2}, y_{2}\right)=(0.2)\left(y_{2}-x_{2}^{2}+1\right) \\
&=(0.2) {\left[\left(1.2101-(0.4)^{2}+1\right]\right.} \\
&=0.41002 \\
& k_{2}=h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{1}}{2}\right)=(0.2)\left[\left(y_{2}+\frac{k_{1}}{2}\right)-\left(x_{2}+\frac{h}{2}\right)^{2}+1\right] \\
&=(0.2)\left[\left(1.2101+\frac{0.41002}{2}\right)-\left(0.4+\frac{0.2}{2}\right)^{2}+1\right] \\
&=0.43302 \\
& k_{3}=h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right)=(0.2)\left[\left(y_{2}+\frac{k_{2}}{2}\right)-\left(x_{2}+\frac{h}{2}\right)^{2}+1\right] \\
&=(0.2)\left[\left(1.2101+\frac{0.43302}{2}\right)-\left(0.4+\frac{0.2}{2}\right)^{2}+1\right] \\
&=0.43532 \\
& k_{4}=h f\left(x_{2}+h, y_{2}+k_{3}\right)=(0.2)\left[\left(y_{2}+k_{3}\right)-\left(x_{2}+h\right)^{2}+1\right] \\
&=(0.2)\left[(1.2101+0.43532)-(0.4+0.2)^{2}+1\right]
\end{aligned}
$$

$$
=0.4571
$$

$$
\begin{aligned}
\Delta y & =\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.41002+2(0.43302)+2(0.43532)+0.4571] \\
& =0.4340 \\
y_{3} & =y_{2}+\Delta y=1.2101+0.4340 \\
& =1.6441
\end{aligned}
$$

$$
\text { (i.e.) } \mathbf{y}(0.6)=1.6441
$$

$$
\begin{aligned}
x_{3} & =x_{2}+h \\
& =0.4+0.2 \\
& =0.6
\end{aligned}
$$

6.Given $y^{\prime}=x\left(x^{2}+y^{2}\right) e^{-x}, y(0)=1$ find y at $\boldsymbol{x}=0.1,0.2$ and 0.3 by Taylor's series method and compute $y(0.4)$ by Milne's method.
Sol. Hint: $\quad y_{0}^{\prime}=0, \quad y_{0}^{\prime \prime}=1, \quad y_{0}^{\prime \prime \prime}=-1$
Taylor's series for $\mathrm{y}(\mathrm{x})$ is

$$
y(x)=1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\ldots \ldots . .
$$

$$
\mathrm{y}(0.1)=1.0048, \mathrm{y}(0.2)=1.0187, \mathrm{y}(0.3)=1.0405
$$

To find $\mathbf{y}(0.4)$

$$
\begin{aligned}
& y_{1}^{\prime}=0.0923, \quad y_{2}^{\prime}=0.1765, \quad y_{3}^{\prime}=0.2606 \\
& y(0.4)_{p}=\mathbf{1 . 0 7 0 6} \\
& y_{4}^{\prime}= 0.3502 . \quad y(0.4)_{c}=\mathbf{1 . 0 7 1 0}
\end{aligned}
$$

Revision Problems:

1.Using fourth order Runge kutta method, solve the following equation taking each step of $h=0.1$ Given $\boldsymbol{y}(0)=3, \frac{d y}{d t}=\frac{4 t}{y}-t y$ Calculate y for

$$
x=0.1 \text { and } 0.2
$$

Sol. Hint:

To find $y(0.1)$

$$
\begin{aligned}
\mathrm{k}_{1}=0, \mathrm{k}_{2} & =-0.0083, \mathrm{k}_{3}=-0.0083, \mathrm{k}_{4}=-0.0165, \Delta y=-0.0083 \\
\mathbf{y}(\mathbf{0 . 1}) & =\mathbf{2 . 9 9 1 7}
\end{aligned}
$$

To find $y(0.2)$

$$
\begin{aligned}
& \mathrm{k}_{1}=-0.0165, \mathrm{k}_{2}=-0.0246, \mathrm{k}_{3}=-0.0246, \mathrm{k}_{4}=-0.0324, \Delta y=-0.0246 \\
& \quad \mathbf{y}(\mathbf{0 . 2})=\mathbf{2 . 9 6 7 1}
\end{aligned}
$$

2.Given $y^{\prime}+x y^{2}+y=0, \quad y(0)=1$, find the value of $\mathbf{y}(0.2)$ by using Rungekutta method of $4^{\text {th }}$ order.

Sol. Hint:

To find $\mathbf{y}(0.1)$

$$
\begin{aligned}
& \mathrm{k}_{1}=-0.1, \mathrm{k}_{2}=-0.0995, \mathrm{k}_{3}=-0.0995, \mathrm{k}_{4}=-0.0982, \Delta y=-0.0994 \\
& \quad \mathbf{y}(\mathbf{0 . 1})=\mathbf{0 . 9 0 0 6}
\end{aligned}
$$

To find $y(0.2)$

$\mathrm{k}_{1}=-0.0982, \mathrm{k}_{2}=-0.0960, \mathrm{k}_{3}=-0.0962, \mathrm{k}_{4}=-0.0934, \Delta y=-0.0960$

$$
y(0.2)=0.8046
$$

3.Apply Runge-kutta method to find approximate value of y for $x=0.2$ in steps of 0.1 if $\frac{d y}{d x}=x+y^{2}$ given that $\mathbf{y}=\mathbf{1}$ when $\mathbf{x}=\mathbf{0}$.
Sol. Hint:
To find $y(0.1)$

$$
\begin{aligned}
& \mathrm{k}_{1}=0.1, \mathrm{k}_{2}=0.1153, \mathrm{k}_{3}=0.1169, \mathrm{k}_{4}=0.1347, \Delta y=0.1165 \\
& \quad \mathbf{y}(\mathbf{0 . 1})=\mathbf{1 . 1 1 6 5}
\end{aligned}
$$

To find $y(0.2)$

$$
\begin{aligned}
& \mathrm{k}_{1}=0.1347, \mathrm{k}_{2}=0.1552, \mathrm{k}_{3}=0.1576, \mathrm{k}_{4}=0.1823, \Delta y=0.1571 \\
& \quad \mathbf{y}(\mathbf{0 . 2})=\mathbf{1 . 2 7 3 6}
\end{aligned}
$$

4. Using Euler's method, solve numerically the equation $y^{\prime}=x+y, y(0)=1$, for $x=0.0(0.2)(1.0)$. Check your answer with the exact solution.

Sol. Using Euler's method, to solve y for $\mathrm{x}=0.0(0.2)(1.0)$, we take $\mathrm{h}=0.2$

$$
\begin{aligned}
& y_{1}=y(0.2)=1.2, \quad y_{2}=y(0.4)=1.48, \quad y_{3}=y(0.6)=1.856, \\
& y_{4}=y(0.8)=2.3472, \quad y_{5}=y(1.0)=2.9766
\end{aligned}
$$

Now, $y^{\prime}=x+y$

$$
y^{\prime}-y=x(\text { or }) \frac{d y}{d x}-y=x
$$

The solution is $y e^{\int P d x}=\int Q e^{\int P d x} d x+c$
Here $P=-1, Q=x$
$e^{\int P d x}=e^{\int-d x}=e^{-x}$
$\therefore y e^{-x}=\int x e^{-x} d x+c=\left[x\left(\frac{e^{-x}}{-1}\right)-(1)\left(\frac{e^{-x}}{1}\right)\right]+c$
$y e^{-x}=-x e^{-x}-e^{-x}+c$
$y=-x-1+c e^{x}$
Given $y(0)=1$
$1=0-1+c \quad \Rightarrow c=2$
$\therefore y=2 e^{x}-x-1$

$\mathrm{x}:$	0	0.2	0.4	0.6	0.8	1.0

Euler y:	1	1.2	1.48	1.856	2.3472	2.9766
Exact y:	1	1.2428	1.5836	2.0442	2.6511	3.4366

Boundary Conditions:

The conditions on y or y^{\prime} or their combinations are prescribed at 2 different values of x are called Boundary Conditions.

Boundary value problem:

the differential equation together with boundary conditions are called boundary value problem.

Example: $d y / d x+x y=\sin x$ with $y(0)=1$

Finite Difference Solution of second order ordinary differential equation
Suppose a boundary value problem $y^{\prime \prime}+a(x) y^{\prime}+b(x) y(x)=c(x)---(1)$ together with the boundary conditions $y\left(x_{0}\right)=\alpha, y\left(x_{n}\right)=\beta$ is given when $x \in\left(x_{0}, x_{n}\right)$.

We replace $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ by the difference formula given by

$$
y_{i}^{\prime}=\frac{y_{i+1}-y_{i-1}}{2 h}, \quad y_{i}^{\prime \prime}=\frac{y_{i+1}+y_{i-1}-2 y_{i}}{h^{2}}
$$

Substituting $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ in (1) and simplifying, we get

$$
y_{i+1}\left(1+\frac{h}{2} a_{i}\right)+y_{i}\left(h^{2} b_{i}-2\right)+y_{i-1}\left(1-\frac{h}{2} a_{i}\right)=c_{i} h^{2}-------(2)
$$

where $\mathrm{i}=1,2, \ldots \ldots \mathrm{n}-1$ and $y_{0}=\alpha, y_{n}=\beta, a_{i}=a\left(x_{i}\right), b_{i}=b\left(x_{i}\right), c_{i}=c\left(x_{i}\right)$.
Equation (2) will give ($\mathrm{n}-1$) equations for $\mathrm{i}=1,2, \ldots . . \mathrm{n}-1$ which is a tridiagonal system and together with $y_{0}=\alpha, y_{n}=\beta$, we get $(\mathrm{n}+1)$ equations in the $(\mathrm{n}+1)$ unknowns $y_{0}, y_{1}, y_{2}, \ldots \ldots . y_{n}$. Solving from these $(\mathrm{n}+1)$ equations, we get $y_{0}, y_{1}, y_{2}, \ldots \ldots . y_{n}$ values. (i.e.) the value of y at $\mathrm{x}=x_{0}, x_{1}, x_{2}, \ldots \ldots . x_{n}$.

Problems

1. Using the finite difference method, find $y(0.25), y(0.5)$ and $y(0.75)$ satisfying the differential equation $\frac{d^{2} y}{d x^{2}}+y=x$ subject to the boundary conditions $y(0)=0$, $y(1)=2$.

Sol. Given $x \in(0,1)$
Here $h=0.25=\frac{1}{4}=\frac{1-0}{4}$, then we have $\mathrm{n}=4 . \quad\left[\because h=\frac{b-a}{n}\right]$
Also $\frac{d^{2} y}{d x^{2}}+y=x$
$\Rightarrow \frac{y_{i+1}+y_{i-1}-2 y_{i}}{h^{2}}+y_{i}=x_{i}$

$$
\begin{aligned}
& \Rightarrow 16\left(y_{i+1}+y_{i-1}-2 y_{i}\right)+y_{i}=x_{i} \\
& \Rightarrow 16 y_{i+1}-31 y_{i}+16 y_{i-1}=x_{i}, i=1,2,3 .
\end{aligned}
$$

(i.e.) When $\mathrm{i}=1,2,3$ we have

$$
\begin{aligned}
& 16 y_{2}-31 y_{1}+16 y_{0}=x_{1} \\
& 16 y_{3}-31 y_{2}+16 y_{1}=x_{2} \\
& 16 y_{4}-31 y_{3}+16 y_{2}=x_{3}
\end{aligned}
$$

Given $y_{0}=y(0)=0, y_{4}=y(1)=2$. Also $x_{1}=0.25, x_{2}=0.5, x_{3}=0.75$

$$
\begin{aligned}
& \text { (i.e.) } 16 y_{2}-31 y_{1}+16(0)=0.25 \\
& 16 y_{3}-31 y_{2}+16 y_{1}=0.5 \\
& 16(2)-31 y_{3}+16 y_{2}=0.75 \\
& \text { (i.e.) }-31 y_{1}+16 y_{2}=0.25 \\
& 16 y_{1}-31 y_{2}+16 y_{3}=0.5 \\
& 16 y_{2}-31 y_{3}=0.75-32=-31.25--(3)
\end{aligned}
$$

Solving (1), (2) and (3), we get

$$
y_{1}=0.5443, y_{2}=1.0702, y_{3}=1.5604
$$

Tabulating the values, we have

x	0	0.25	0.5	0.75	1
y	0	0.5443	1.0702	1.5604	2

2. Solve $x y^{\prime \prime}+y=0, y(1)=1, y(2)=2$ with $h=0.25$ by finite difference method.

Sol. Given $x \in(1,2)$
Here $h=0.25=\frac{1}{4}=\frac{2-1}{4}$, then we have $\mathrm{n}=4 . \quad\left[\because h=\frac{b-a}{n}\right]$
Also $x y^{\prime \prime}+y=0$

$$
y^{\prime \prime}+\frac{y}{x}=0 \quad \Rightarrow \frac{y_{i+1}+y_{i-1}-2 y_{i}}{h^{2}}+\frac{y_{i}}{x_{i}}=0
$$

$$
\begin{aligned}
& \Rightarrow 16\left(y_{i+1}+y_{i-1}-2 y_{i}\right)+\frac{y_{i}}{x_{i}}=0 \\
& \Rightarrow 16 y_{i+1}+\left(\frac{1}{x_{i}}-32\right) y_{i}+16 y_{i-1}=0, i=1,2,3 .
\end{aligned}
$$

(i.e.) When $\mathrm{i}=1,2,3$ we have

$$
\begin{aligned}
& 16 y_{2}+\left(\frac{1}{x_{1}}-32\right) y_{1}+16 y_{0}=0 \\
& 16 y_{3}+\left(\frac{1}{x_{2}}-32\right) y_{2}+16 y_{1}=0 \\
& 16 y_{4}+\left(\frac{1}{x_{3}}-32\right) y_{3}+16 y_{2}=0
\end{aligned}
$$

Given $y_{0}=y(1)=1, y_{4}=y(2)=2$. Also $x_{1}=1.25, x_{2}=1.5, x_{3}=1.75$
(i.e.) $16 y_{2}+\left(\frac{1}{1.25}-32\right) y_{1}+16(1)=0$

$$
\begin{aligned}
& 16 y_{3}+\left(\frac{1}{1.5}-32\right) y_{2}+16 y_{1}=0 \\
& 16(2)+\left(\frac{1}{1.75}-32\right) y_{3}+16 y_{2}=0
\end{aligned}
$$

$$
\text { (i.e.) }-31.2 y_{1}+16 y_{2}=-16---------(1)
$$

$$
\begin{aligned}
& 16 y_{1}-31.3333 y_{2}+16 y_{3}=0-----(2) \\
& 16 y_{2}-31.4286 y_{3}+16 y_{2}=-32----(3)
\end{aligned}
$$

Solving (1), (2) and (3), we get

$$
y_{1}=1.3513, y_{2}=1.6350, y_{3}=1.8505
$$

Tabulating the values, we have

x	1	1.25	1.5	1.75	2
y	1	1.3513	1.6350	1.8505	2

3. Solve $y^{\prime \prime}-x y=0$ given $y(0)=-1, y(1)=2$ by finite difference method taking $n=2$.

Sol. Given $x \in(0,1)$
Also given $\mathrm{n}=2$.
So, $h=\frac{1-0}{2}=\frac{1}{2}$.

$$
\text { Also } \begin{aligned}
y^{\prime \prime}-x y=0 & \Rightarrow \frac{y_{i+1}+y_{i-1}-2 y_{i}}{h^{2}}-x_{i} y_{i}=0 \\
& \Rightarrow 4\left(y_{i+1}+y_{i-1}-2 y_{i}\right)-x_{i} y_{i}=0 \\
& \Rightarrow 4 y_{i+1}-\left(8+x_{i}\right) y_{i}+4 y_{i-1}=0, i=1
\end{aligned}
$$

(i.e.) When $\mathrm{i}=1$ we have

$$
4 y_{2}-\left(8+x_{1}\right) y_{1}+4 y_{0}=0
$$

Given $y_{0}=y(0)=-1, y_{2}=y(1)=2$. Also $x_{1}=0.5$

$$
\begin{gathered}
\text { (i.e.) } 4(2)-(8+0.5) y_{1}+4(-1)=0 \\
-8.5 y_{1}=-4 \\
y_{1}=0.4706
\end{gathered}
$$

Tabulating the values, we have

x	0	0.5	1
y	-1	0.4706	2

4. Obtain the finite difference scheme for the differential equation $2 \frac{d^{2} y}{d x^{2}}+y=5$.

Sol. Given $2 \frac{d^{2} y}{d x^{2}}+y=5$.

$$
\begin{aligned}
& 2\left(\frac{y_{i+1}+y_{i-1}-2 y_{i}}{h^{2}}\right)+y_{i}=5 \\
& 2 y_{i+1}+\left(h^{2}-4\right) y_{i}+2 y_{i-1}=5 h^{2}
\end{aligned}
$$

5. Using finite difference method, solve for y given the differential equation $\frac{d^{2} y}{d x^{2}}+y+1=0, x \in(0,1)$ and the boundary conditions $y(0)=y(1)=0$, taking
i) $\mathrm{h}=1 / 2$
ii) $\mathrm{h}=1 / 4$

Sol. Hint:
i) $y_{i+1}-\frac{7}{4} y_{i}+y_{i-1}=-\frac{1}{4}, i=1$.

$$
y_{1}=0.1428
$$

ii) $y_{i+1}-\frac{31}{16} y_{i}+y_{i-1}=-\frac{1}{16}, i=1,2,3$.

$$
y_{1}=y_{3}=0.1047, y_{2}=0.1403
$$

6. Using finite difference method solve $\frac{d^{2} y}{d x^{2}}=y$ in $(0,2)$ given $y(0)=0, y(2)=3.63$ subdividing the range of x into 4 equal parts.

Sol. $\quad y_{i+1}-\frac{9}{4} y_{i}+y_{i-1}=0, i=1,2,3$.

$$
y_{1}=0.5268, \quad y_{2}=1.1853, \quad y_{3}=2.1401
$$

7. Using finite difference method, solve for y given the differential equation $y^{\prime \prime}-64 y+10=0, x \in(0,1)$ given $y(0)=y(1)=0$, subdividing the interval into
i) 4 equal parts
ii) 2 equal parts.

Sol. i) $y_{i+1}-6 y_{i}+y_{i-1}=-\frac{5}{8}, i=1,2,3$.

$$
y_{1}=y_{3}=0.1287, y_{2}=0.1471
$$

ii) $y_{i+1}-18 y_{i}+y_{i-1}=-\frac{5}{2}, i=1$.

$$
y_{1}=0.1389
$$

8. Solve $y^{\prime \prime}-y=x, x \in(0,1)$ given $y(0)=y(1)=0$ using finite differences dividing the interval into 4 equal parts.

Sol. $16 y_{i+1}-33 y_{i}+16 y_{i-1}=x_{i}, \quad i=1,2,3$.

$$
y_{1}=-0.0349, \quad y_{2}=-0.0563, \quad y_{3}=-0.05004
$$

