
IT3401 Web Essentials

Unit-1 Website Basics

1. Explain Internet overview?

Internet

Internet is defined as an Information super Highway, to access information over the
web. However, It can be defined in many ways as follows:

 Internet is a world-wide global system of interconnected computer networks.
 Internet uses the standard Internet Protocol (TCP/IP).
 Every computer in internet is identified by a unique IP address.
 IP Address is a unique set of numbers (such as 110.22.33.114) which

identifies a computer location.
 A special computer DNS (Domain Name Server) is used to give name to the

IP Address so that user can locate a computer by a name.
 For example, a DNS server will resolve a name http://www.flipkart.com to a

particular IP address to uniquely identify the computer on which this website is
hosted.

 Internet is accessible to every user all over the world.

Evolution
The concept of Internet was originated in 1969 and has undergone several
technological & Infrastructural changes as discussed below:

 The origin of Internet devised from the concept of Advanced Research
Project Agency Network (ARPANET).

 ARPANET was developed by United States Department of Defense.
 Basic purpose of ARPANET was to provide communication among the various

bodies of government.
 Initially, there were only four nodes, formally called Hosts.
 In 1972, the ARPANET spread over the globe with 23 nodes located at

different countries and thus became known as Internet.
 By the time, with invention of new technologies such as TCP/IP protocols,

DNS, WWW, browsers, scripting languages etc.,Internet provided a medium
to publish and access information over the web.



Advantages
Internet covers almost every aspect of life, one can think of. Here, we will discuss
some of the advantages of Internet:

 Internet allows us to communicate with the people sitting at remote locations.
There are various apps available on the wed that uses Internet as a medium
for communication. One can find various social networking sites such as:

o Facebook
o Twitter
o Yahoo

o Google+
o Flickr
o Orkut

 One can surf for any kind of information over the internet. Information
regarding various topics such as Technology, Health & Science, Social
Studies, Geographical Information, Information Technology, Products etc can
be surfed with help of a search engine.

 Apart from communication and source of information, internet also serves a
medium for entertainment. Following are the various modes for entertainment
over internet.

o Online Television
o Online Games
o Songs
o Videos
o Social Networking Apps

 Internet allows us to use many services like:
o Internet Banking
o Matrimonial Services
o Online Shopping
o Online Ticket Booking
o Online Bill Payment
o Data Sharing
o E-mail

 Internet provides concept of electronic commerce, that allows the business
deals to be conducted on electronic systems

Disadvantages
However, Internet has prooved to be a powerful source of information in almost
every field, yet there exists many disadvanatges discussed below:

 There are always chances to loose personal information such as name,
address, credit card number. Therefore, one should be very careful while
sharing such information. One should use credit cards only through
authenticated sites.

 Another disadvantage is the Spamming.Spamming corresponds to the
unwanted e-mails in bulk. These e-mails serve no purpose and lead to
obstruction of entire system.

 Virus can easily be spread to the computers connected to internet. Such virus
attacks may cause your system to crash or your important data may get
deleted.

 Also a biggest threat on internet is pornography. There are many
pornographic sites that can be found, letting your children to use internet
which indirectly affects the children healthy mental life.

 There are various websites that do not provide the authenticated information.
This leads to misconception among many people.

2. Describe the Fundamentals of computer networking?

This tutorial will discover the definition of computer networking, its types, computer
networks work, networking concepts, commonly used terms, networking and
internet, how it works, and network topologies.

Computer Network
"A Computer Network is defined as a set of two or more computers that are linked
together?either via wired cables or wireless networks i.e., WiFi?with the purpose of
communicating, exchanging, sharing or distributing data, files and resources."

Computer Networks are built using a collection of hardware (such as routers,
switches, hubs, and so forth) and networking software (such as operating systems,
firewalls, or corporate applications).

Though one can also define the computer networks based on their geographic
location, a LAN (local area network) connects computers in a definite physical
dimension, such as home or within an office.

In contrast, a MAN (Metropolitan area network) connects computers ranging
between multiple buildings in a city.

The Internet is the most significant example of WAN (Wide Area
Network), connecting billions of networking devices across the world.

One can also describe the concept of computer networking by its communicating
protocols, the physical arrangement of its networking elements, how it manages
network traffic, and it's functioning.

Computer networks are globally used by businesses, the entertainment industry,
education in the research field for communication and transferring their data from
source to destination node.

All the other technologies, including the internet, Google search, instant
messaging apps, online video streaming, social media, email, cloud kitchen,
cloud data storage, etc., all exist because of computer networks.

Computer Network Types
Below are the most common computer network types that are frequently used these
days:

o LAN [Local Area Network}

o WLAN [Wireless local area network]

o CAN [Campus Area Network]

o MAN [Metropolitan Area Network]

o PAN [Personal Area Network]

o SAN [Storage Area Network]

o VPN [Virtual Private Network]

o WAN [Wide Area Network]

1. LAN

LAN or Local Area Network is a group of devices connecting the computers and
other devices such as switches, servers, printers, etc., over a short distance such as
office, home. The commonly used LAN is Ethernet LAN. This network is used as it
allows the user to transfer or share data, files, and resources.

2. MAN

MAN or Metropolitan Area Network is typically a more extensive network when
compared to LANs but is smaller than WANs. This network ranges between several
buildings in the same city. Man networks are connected via fiber optic cable (usually
high-speed connection). Cities and government bodies usually manage MANs.

3.WAN

WAN or Wide Area Network is the most significant network type connecting
computers over a wide geographical area, such as a country, continent. WAN
includes several LANs, MANs, and CANs. An example of WAN is
the Internet, which connects billions of computers globally.

Networking terms and concepts
Some of the most commonly used terms in day-to-day networking life are as
discussed below:

1. IP address

An IP address or Internet Protocol is a unique number that represents the
address where you live on the Internet. Every device that is connected to the
network has a string of numbers or IP addresses unlike house addresses.

You won't find two devices connected to a network with an identical IP address.
When your computer sends data to another different, the sent data contains a
'header' that further contains the devices' IP address, i.e., the source computer and
the destination device.

2. Nodes

A node refers to a networking connection point where a connection occurs inside
a network that further helps in receiving, transmitting, creating, or storing files
or data.

Multiple devices could be connected to the Internet or network using wired or
wireless nodes. To form a network connection, one requires two or more nodes
where each node carries its unique identification to obtain access, such as an
IP address. Some examples of nodes are computers, printers, modems, switches,
etc.

3. Routers

A router is a physical networking device, which forwards data packets between
networks. Routers do the data analysis, perform the traffic directing functions on
the network, and define the top route for the data packets to reach their destination
node. A data packet may have to surpass multiple routers present within the
network until it reaches its destination.

4. Switches

In a computer network, a switch is a device that connects other devices and helps
in node-to-node communication by deciding the best way of transmitting data
within a network (usually if there are multiple routes in a more extensive
network).

Though a router also transmits information, it forwards the information only
between networks, whereas a switches forwards data between nodes present in a
single network.

Switching is further classified into three types, which are as follows:

o Circuit Switching

o Packet Switching

o Message Switching

o Circuit Switching: In this switching type, a secure communication path is
established between nodes (or the sender and receiver) in a network. It
establishes a dedicated connection path before transferring the data, and this
path assures a good transmission bandwidth and prevents any other traffic
from traveling on that path. For example, the Telephone network.

o Packet Switching:With this technique, a message is broken into independent
components known as packets. Because of their small size, each packet is sent
individually. The packets traveling through the network will have their source
and destination IP address.

o Message Switching: This switching technique uses the store and forward
mechanism. It sends the complete unit of the message from the source node,
passing from multiple switches until it reaches its intermediary node. It is not
suitable for real-time applications.

5. Ports

A port allows the user to access multiple applications by identifying a
connection between network devices. Each port is allocated a set of string
numbers. If you relate the IP address to a hotel's address, you can refer to ports as
the hotel room number. Network devices use port numbers to decide which
application, service, or method is used to forward the detailed information or the
data.

6. Network cable types

Network cables are used as a connection medium between different computers
and other network devices. Typical examples of network cable types are Ethernet
cables, coaxial, and fiber optic. Though the selection of cable type usually depends
on the size of the network, the organization of network components, and the
distance between the network devices.

Computer Networks and the Internet

The Internet is the major example of a WAN, which connects billions of computers
globally. Internet follows standard protocols that facilitate communication between
these network devices. Those protocols include:

1. HTTP (Hypertext Transfer Protocol)

2. IP (Internet protocol or IP addresses)

3. TCP (Transmission Control Protocol)

4. UDP (User Datagram Protocol)

5. FTP (File Transfer Protocol)

ISPs (Internet Service Providers) NSPs (Network Service Providers) effectively
support the internet infrastructure. The infrastructure allows the transportation of
data packets to the recipient device over the Internet.

Internet is a giant hub of information, but this information is not sent to every
computer connected to the Internet. The protocols and infrastructure are responsible
for managing to share the precise information the user has requested.

Network Topology
"Network topology is defined as the arrangement of computers or nodes of a
computer network to establish communication among all."

A node refers to a device that can transmit, receive, create, or store information. The
nodes are connected via a network link that could be either wired (cables, Ethernet)
or wireless (Bluetooth, Wi-Fi).

To help build a successful network in different situations, topologies are further
classified into several types.
Though there are several topologies but in this tutorial, we will discuss the
commonly used ones, which are as follows:

1. Bus Topology

o A Bus network topology supports a common transmission medium where
each node is directly connected with the main network cable.

o The data is transmitted through the main network cable and is received by all
nodes simultaneously.

o A signal is generated through the source machine, which contains the address
of the receiving machine. The signal travels in both the direction to all the
nodes connected to the bus network until it reaches the destination node.

o Bus topology is not fault-tolerant and has a limited cable length.

2. Ring Topology

o A Ring topology is a modified version of bus topology where every node is
connected in a closed-loop forming peer-to-peer LAN topology.

o Every node in a ring topology has precisely two connections. The Adjacent
node pairs are connected directly, whereas the non-adjacent nodes are
indirectly connected via various nodes.

o Ring topology supports a unidirectional communication pattern where
sending and receiving of data occurs via TOKEN.

3. Star Topology

o In a Star network topology, every node is connected using a single central
hub or switch.

o The hub or switch performs the entire centralized administration. Each node
sends its data to the hub, and later hub shares the received information to the
destination device.

o Two or more-star topologies can be connected to each other with the help of
a repeater.

4. Mesh Topology

o In a Mesh topology, every node in the network connection is directly
connected to one other forming overlapping connections between the nodes.

o This topology delivers better fault tolerance because if any network device
fails, it won't affect the network, as other devices can transfer information.

o The Mesh networks self-configure and self-organize, finding the quickest,
most secure way to transmit the data.

o One can forpm a full mesh topology by connecting every single node to
another node in the network. Full mesh is expensive and is only used in the
networks, which demands high data redundancy.

o Another type of mesh topology is partial mesh topology, where only a few
devices are connected, and few are connected to the devices with which they
share the most information. This mesh type is applicable in the networks,
requiring less redundancy or a cost-effective network topology that is easy to
execute.

3. Explain the Types of Network protocols and their uses?

, there are vast numbers of users' communicating with different devices in different
languages. That also includes many ways in which they transmit data along with the
different software they implement. So, communicating worldwide will not be
possible if there were no fixed 'standards' that will govern the way user

communicates for data as well as the way our devices treat those data. Here we will
be discussing these standard set of rules.

Yes, we're talking about "protocols" which are set of rules that help in governing the
way a particular technology will function for communication. In other words, it can
be said that the protocols are digital languages implemented in the form of
networking algorithms. There are different networks and network protocols, user's
use while surfing.

Types of Protocols

There are various types of protocols that support a major and compassionate role in
communicating with different devices across the network. These are:

1. Transmission Control Protocol (TCP)
2. Internet Protocol (IP)
3. User Datagram Protocol (UDP)
4. Post office Protocol (POP)
5. Simple mail transport Protocol (SMTP)
6. File Transfer Protocol (FTP)
7. Hyper Text Transfer Protocol (HTTP)
8. Hyper Text Transfer Protocol Secure (HTTPS)
9. Telnet
10.Gopher

Let's discuss each of them briefly:

1. Transmission Control Protocol (TCP): TCP is a popular communication
protocol which is used for communicating over a network. It divides any
message into series of packets that are sent from source to destination and
there it gets reassembled at the destination.

2. Internet Protocol (IP): IP is designed explicitly as addressing protocol. It is
mostly used with TCP. The IP addresses in packets help in routing them
through different nodes in a network until it reaches the destination system.
TCP/IP is the most popular protocol connecting the networks.

3. User Datagram Protocol (UDP): UDP is a substitute communication protocol to
Transmission Control Protocol implemented primarily for creating loss-
tolerating and low-latency linking between different applications.

4. Post office Protocol (POP): POP3 is designed for receiving incoming E-mails.

5. Simple mail transport Protocol (SMTP): SMTP is designed to send and
distribute outgoing E-Mail.

6. File Transfer Protocol (FTP): FTP allows users to transfer files from one
machine to another. Types of files may include program files, multimedia files,
text files, and documents, etc.

7. Hyper Text Transfer Protocol (HTTP): HTTP is designed for transferring a
hypertext among two or more systems. HTML tags are used for creating links.
These links may be in any form like text or images. HTTP is designed on
Client-server principles which allow a client system for establishing a
connection with the server machine for making a request. The server
acknowledges the request initiated by the client and responds accordingly.

8. Hyper Text Transfer Protocol Secure (HTTPS): HTTPS is abbreviated as Hyper
Text Transfer Protocol Secure is a standard protocol to secure the
communication among two computers one using the browser and other
fetching data from web server. HTTP is used for transferring data between the
client browser (request) and the web server (response) in the hypertext format,
same in case of HTTPS except that the transferring of data is done in an
encrypted format. So it can be said that https thwart hackers from
interpretation or modification of data throughout the transfer of packets.

9. Telnet: Telnet is a set of rules designed for connecting one system with
another. The connecting process here is termed as remote login. The system
which requests for connection is the local computer, and the system which
accepts the connection is the remote computer.

10.Gopher: Gopher is a collection of rules implemented for searching, retrieving
as well as displaying documents from isolated sites. Gopher also works on the
client/server principle.

Some Other Protocols
Some other popular protocols act as co-functioning protocols associated with these
primary protocols for core functioning. These are:

 ARP (Address Resolution Protocol)
 DHCP (Dynamic Host Configuration Protocol)
 IMAP4 (Internet Message Access Protocol)
 SIP (Session Initiation Protocol)
 RTP (Real-Time Transport Protocol)
 RLP (Resource Location Protocol)
 RAP (Route Access Protocol)
 L2TP (Layer Two Tunnelling Protocol)

 PPTP (Point To Point Tunnelling Protocol)
 SNMP (Simple Network Management Protocol)
 TFTP (Trivial File Transfer Protocol)

4. Explain Web Essentials briefly?

Web Essentials:

Server:

The software that distributes the information and the machine where the
information and software reside is called the server.

•provides requested service to client

• e.g., Web server sends requested Web page

Client:

The software that resides on the remote machine, communicates with the
server, fetches the information, processes it, and then displays it on the remote
machine is called the client.

• initiates contact with server (“speaks first”)

• typically requests service from server

•Web: client implemented in browser

Web server:

Software that delivers Web pages and other documents to browsers using the
HTTP protocol

Web Page:

A web page is a document or resource of information that is suitable for the
World Wide Web and can be accessed through a web browser.

Website:

A collection of pages on the World Wide Web that are accessible from the
same URL and typically residing on the same server.

URL:

Uniform Resource Locator, the unique address which identifies a resource on the
Internet for routing purposes.

Client-server paradigm:

The Client-Server paradigm is the most prevalent model for distributed
computing protocols. It is the basis of all distributed computing paradigms at a
higher level of abstraction. It is service-oriented, and employs a request-response
protocol.

A server process, running on a server host, provides access to a service. A
client process, running on a client host, accesses the service via the server
process.The interaction of the process proceeds according to a protocol.

The primary idea of a client/server system is that you have a central
repository of information—some kind of data, often in a database—that you want
to distribute on demand to some set of people or machines.

The Internet:
•Medium for communication and interaction in inter connected network.

• Makes information constantly and instantly available to anyone with a
connection.

Web Browsers:

• User agent for Web is called a
browser: o Internet Explorer

o Firefox

Web Server:

• Server for Web is called Web
server: o Apache (public
domain)
o MS Internet Information Server

Protocol:

Protocols are agreed formats for transmitting data
between devices. The protocol determines:

i.The error checking required

ii.Data compression method used

iii.The way the end of a message is signaled

iv.The way the device indicates that it has received the message

Internet Protocol:

There are many protocols used by the Internet and the WWW:

o TCP/IP

o HTTP

o FTP

o Electronic mail protocols IMAP

o POP

TCP/IP

The Internet uses two main protocols (developed by Vincent Cerf and Robert Kahn)
Transmission control protocol (TCP):Controls disassembly of message into
packets at the origin reassembles at the destination

Internet protocol (IP):Specifies the addressing details for each packet Each
packet is labelled with its origin and destination.

Hypertext Transfer Protocol (HTTP)

• The hypertext transfer protocol (HTTP) was developed by Tim Berners-
Lee in 1991

•HTTP was designed to transfer pages between machines

• The client (or Web browser) makes a request for a given page and the
Server is responsible for finding it and returning it to the client

•The browser connects and requests a page from the server

• The server reads the page from the file system, sends it to the client and
terminates the connection.

Electronic Mail Protocols:

•Electronic mail uses the client/server model

• The organisation has an email server devoted to
handling email o Stores and forwards email
messages

• Individuals use email client software to read and send email

o (e.g. Microsoft Outlook, or Netscape Messenger)

• Simple Mail Transfer Protocol (SMTP)

o Specifies format of mail messages

• Post Office Protocol (POP) tells the email server to:

o Send mail to the user’s computer and delete it from the server

o Send mail to the user’s computer and do not delete it from
the server o Ask whether new mail has arrived.

Interactive Mail Access Protocol (IMAP)

Newer than POP, provides similar functions with additional features.

o e.g. can send specific messages to the client rather than all the
messages. A user can view email message headers and the
sender’s name before

downloading the entire message.

Allows users to delete and search mailboxes held on the email server.

The disadvantage of POP: You can only access messages from one PC.

The disadvantage of IMAP :Since email is stored on the email server, there is a
need for more and more expensive (high speed) storage space.

World Wide Web: comprises software (Web server and browser) and data
(Web sites).

Internet Protocol (IP) Addresses:

- Every node has a unique numeric address

- Form: 32-bit binary number

- New standard, IPv6, has 128 bits (1998)

- Organizations are assigned groups of IPs for their computers

- Domain names

- Form: host-name. domain-names

- First domain is the smallest (Google)

- Last domain specifies the type of organization (.com)

- Fully qualified domain name - the host name and all of the domain names

- DNS servers - convert fully qualified domain names to IPs

HTTP:
Hypertext Transfer Protocol (HTTP) is the communication protocol
used by the Internet to transfer hypertext documents.

A protocol to transfer hypertext requests and information between
servers and browsers

Hypertext is text, displayed on a computer, with references (hyperlinks)
to

other text that the reader can immediately follow, usually by a mouse HTTP is
behind every request for a web document or graph, every click of a hypertext link,
and every submission of a form.

HTTP specifies how clients request data, and how servers respond to
these requests.

The client makes a request for a given page and the server is
responsible for finding it and returning it to the client.

The browser connects and requests a page from the server.

The server reads the page from the file system and sends it to the client
and then terminates the connection

HTTP Transactions

HTTP Message:

HTTP message is the information transaction between the client and server.

Two types of HTTP Message:

1.Requests

a.Client to server

2.Responses

a.Server to client

Fields

·Request line or Response line

·General header

·Request header or Response header

·Entity header

·Entity body

Request Message:

Request Line:

• A request line has three parts, separated by
spaces o a method name

o the local path of the requested
resource o the version of HTTP
being used

•A typical request line is:

o GET /path/to/file/index.html HTTP/1.1

• Notes:

o GET is the most common HTTP method; it says "give me this
resource". Other methods include POST and HEAD. Method names are
always uppercase

o The path is the part of the URL after the host name, also called
the request URI o The HTTP version always takes the form
"HTTP/x.x", uppercase.

Request Header:

Response Message:
Response Line:

• A request line has three parts, separated
by spaces o the HTTP version,

o a response status code that gives the result of the
request, and o an English reason phrase describing
the status code

•Typical status lines are:

o HTTP/1.0 200 OK or

o HTTP/1.0 404 Not Found

• Notes:

o The HTTP version is in the same format as in the request line,
"HTTP/x.x".

o The status code is meant to be computer-readable; the reason phrase
is meant to be human-readable, and may vary.

HTTP Request Header:

EXAMPLE

HTTP Method:

• HTTP method is supplied in the request line and specifies the operation
that the client has requested.

Some common methods:

•Options

•Get

•Head

•Post

•Put

•Move

•Delete

Two methods that are mostly used are the GET
and POST: o GET for queries that can be safely
repeated

o POST for operations that may have side effects (e.g. ordering a book from an on-
line store).

The GET Method

• It is used to retrieve information from a specified URI and is assumed to
be a safe, repeatable operation by browsers, caches and other HTTP aware
components

•Operations have no side effects and GET requests can be re-issued.

• For example, displaying the balance of a bank account has no effect on the
account and can be safely repeated.

• Most browsers will allow a user to refresh a page that resulted from a GET,
without displaying any kind of warning

• Proxies may automatically retry GET requests if they encounter a
temporary network connection problem.

• GET requests is that they can only supply data in the form of parameters
encoded in the URI (known as a Query String) – [downside]

Cannot be unused for uploading files or other operations that require large amounts
of data to be sent to the server.

The POST Method

•Used for operations that have side effects and cannot be safely repeated.

• For example, transferring money from one bank account to another has
side effects and should not be repeated without explicit approval by the user.

If you try to refresh a page in Internet Explorer that resulted from a POST, it
displays the following message to warn you that there may be side effects:

The POST request message has a content body that is normally
used to send parameters and data

• The IIS server returns two status codes in its response for a POST request

o The first is 100 Continue to indicate that it has successfully
received the POST

request

o The second is 200 OK after the request has been processed.

HTTP response status codes

• Informational (1xx)

•Successful (2xx)

•Redirection (3xx)

o 301: moved permanently

• Client error (4xx)

o 403 :
forbidden o
404: Not
found

• Server error (5xx)

o 503: Service unavailable

o 505: HTTP version not supported

5. Describe client side scripting?

Client side scripting is a process in which the code along with HTML web
page is sent to the client by the server. Here, the code refers to the script.
In other simple words, client side scripting is a process in which scripts are
executed by browsers without connecting the server.

The code executes on the browser of client’s computer either during the
loading of web page or after the web page has been loaded.

Client side scripting is mainly used for dynamic user interface elements,
such as pull-down menus, navigation tools, animation buttons, data
validation purpose, etc.

Today, it is rapidly growing and evolving day by day. As a result, writing
client side web programming is now easier and faster, thereby, reducing
load on the server.

JavaScript and jQuery are by far the most important client-side scripting
languages or web scripting languages and widely used to create a
dynamic and responsive webpage and websites.
The browser (temporarily) downloads the code in the local computer and
starts processing it without the server. Therefore, the client side scripting is
browser dependent.

A client-side script is a small program (or set of instructions) that is
embedded (or inserted) into a web page. It is processed within the client
browser instead of the web server.

The client side script downloads at the client end from the server along with
the HTML web page it is embedded in. The web browser interprets and
executes the code and then displays the results on the monitor.

The script that executes on the user’s computer system is called client. It is
embedded (or inserted) within the HTML document or can be stored in an
external separate file (known as external script).
The script files are sent to the client machine from the web server (or severs)
when they are requested. The client’s web browser executes the script, then
displays the web page, including any visible output from the script.

Look at the below figure to understand better.

Client side scripts may also have some instructions for the web browser to
follow in response to certain user actions, such as pressing a page button.
They can often be looked if client want to view the source code of web
page.

Popular Client side Scripting Language

A language in which a client side script or program is written using syntax is
called client side scripting language or client side programming.
The most popular client side scripting languages is as follows:

1. JavaScript: It is the most widely client side scripting or programming
language. It is based on ECMAScript standard language.

JavaScript is an object based oriented, dynamically typed (or also called
weakly typed) scripting language. It runs directly on the browser with the
help of an inbuilt interpreter.
Here, weakly typed means the variables are easily converted implicitly from
one data type to another.

2. VBScript: This scripting language is developed by Microsoft, based on
the Visual Basic. It is basically used to enhance the features of web pages in
Internet Explorer. VBScript is interpreted by Internet Explorer web browser.
3. jQuery: jQuery is a fast, small, lightweight JavaScript library. It is used to
facilitate a lot of JavaScript code into simple-to-use-functionality.
Most of the biggest companies such as Google, Microsoft, IBM, Netflix, etc.
on the Web are using jQuery language.

Client side Scripting Language Example

Let’s take a very simple example of JavaScript client side script. In this
example, a simple JavaScript client side script will run in the browser to
display the name of cities.

The HTML file located on the server will be the same one sent to the
browser, but JavaScript changes the HTML web page that is loaded in the
browser.

Program code:
<DOCTYPE html>

<html>

<head>

<title>List of cities</title>

<script>

function displayCities()

{

var cities = ["New York", "Dhanbad", "Paris", "London", "Mumbai"];

var ulElement = document.getElementById("cityList");

for(var city in cities)

{

var listItem = ulElement.appendChild(document.createElement("li"));

listItem.appendChild(document.createTextNode(cities[city]));

}

}

</script>

</head>

<body onload = "displayCities()">

<ul id = "cityList">

</body>

</html>

Look at the below diagram that shows the flow of data between server and
browser.

Application of Client side Scripting

Client side scripting is used to make web pages or website more interactive.
It is primarily used at the frontend, where the user can see using the
browser. Some important applications of client side scripting are listed, as
below:

 To retrieve data from web browser or user’s screen.
 Used in the field of online games.
 To customize the web page without reloading the page.
 Client side scripting is used for validation purpose. If the user enters
incorrect credentials on the login page, the web page displays an
error message on the client machine without submitting it to the web
server.

 To create ad banners that interact with the user, rather than simply
displaying graphics.

 To create animated images that change when we move the mouse
over them.

 Client side script can be used to detect installed plug-ins and notify
the user if a plugin is required.

Advantage of Client side Scripting

There are several great advantages of client side scripting that are as
follows:

1. The client side scripting language is quite easy to learn and use. It
requires minimum programming knowledge or experienced required.

2. The main advantage of client side scripting is that it is lightweight and
relatively easy to implement (syntax not too complex). The editing and
executing the code is fast.

3. Data processing is done on the client side from the server, which makes it
easier to scale applications with large numbers of users. Thereby, load on
the server reduces.

4. The client side data validation can be possible using the client side
scripting language like JavaScript.

5. The execution of client side script is more quickly because once the script
is downloaded from the server, it is executed by the browser directly on the
user’s computer.

6. Mathematical assessment is also possible using client side scripting.

7. The client side programming helps to perform the complex tasks in
relatively few steps.

8. Script code only executed by the browser without connecting the server.

9. It takes too less time to execute script code.

10. Browser respond immediately when user presses any key, mouse
movement, clicks, etc.

Disadvantage of Client side Scripting

There are certain disadvantages of client side scripting that are as follows:

1. The main disadvantage of client side scripting is that it is unsecure
because the code is sent as is to the client and, therefore, visible to it if the
client looks at the sources of his web page. In short, code is usually visible.

2. Client side programming cannot be used if we need to access databases
or needs to transmit sensitive data over the internet.

3. There is no guarantee that user has enabled JavaScript on his computer’s
browser. Therefore, any required functionality must be loaded on the server
despite the possibility that it could be offloaded.

4. The smooth running of the script (or program) depends entirely on the
client’s browser, its configuration, and security level.

5. The web application based on the heavy JavaScript can be complicated
to debug and maintain.

6. Client side scripting languages are usually more limited in functionality
than server side scripting languages.

Client side Web Attacks

In this section, we will understand web attacks on the client side. They are
as follows:

1. Malicious HTML tags embedded in web request can cause the server to
generate malformed pages. It can be dangerous if run on the server side.
Malformed pages sent back to the client may produce the further problems
if executes on the client side.

2. Malicious code can be sent to the server from the attackers in a
discussion group website. An example of malicious code can be like this:
Hello Group — Here is my message!

<script>Malicious code</script>

If JavaScript is enabled on the victim client’s browser, the browser will run
this code unexpectedly.

3. An attacker can send a file to a client and encourage him to post it to the
server. The file may contain malicious code that can hack the website.

4. When a client visits a website, a small text file called a cookie is often
placed in the client’s computer. At the next visiting, the web server scans
that cookie. If it found on the computer, the attacker can use the cookie
data to trigger the download of malicious code.

5. Tags like <FORM> can trouble if they are inserted at the wrong place.
These HTML tags can change the appearance of the web page.

6. Browsers interpret the information according to the character set chosen
by the client. If the client does not specify the character set, the web
browser uses the default setting, that can display the garbled appearing or
unintended meanings.

General Client side Attack Prevention

There are the following general measures to prevent client side attacks.
They are as follows:

1. Client can use client side scripting to clean up form data before it is
transmitted.

2. Users can turn off JavaScript functions in the browser. It may disable
some web functionality.

3. They should set the security level high in the browser and lower it only
for those users you are sure will not violate that trust.

4. Scan all the files including cookie for viruses to prevent the injection of
malicious code.

5. Client should declare their character set when configuring browsers.

UNIT-2 Web Desigining

1. Explain the structure of the html webpage with an example?

• HTML stands for Hyper Text Markup Language

• HTML is the standard markup language for creating Web pages

• HTML describes the structure of a Web page

• HTML consists of a series of elements

• HTML elements tell the browser how to display the content

• HTML elements label pieces of content such as "this is a heading", "this is a paragraph", "this is a

link", etc.

A Simple HTML Document

Example

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>

</html>

Example explanation:

• The <!DOCTYPE html> declaration defines that this document is an HTML5 document

• The <html> element is the root element of an HTML page

• The <head> element contains meta information about the HTML page

• The <title> element specifies a title for the HTML page (which is shown in the browser's title bar

or in the page's tab)

• The <body> element defines the document's body, and is a container for all the visible contents,

such as headings, paragraphs, images, hyperlinks, tables, lists, etc.

• The <h1> element defines a large heading

• The <p> element defines a paragraph

HTML Element

An HTML element is defined by a start tag, some content, and an end tag:

<tagname> Content goes here... </tagname>

The HTML element is everything from the start tag to the end tag:

<h1>My First Heading</h1>

<p>My first paragraph.</p>

Web Browsers

The purpose of a web browser (Chrome, Edge, Firefox, Safari) is to read HTML documents and display

them correctly.

A browser does not display the HTML tags, but uses them to determine how to display the document:

HTML Page Structure

2. Define form tag. Design a registration page by using all form controls?

 The form is basically used for the registration process, logging into your profile on a website or to

create your profile on a website, etc … The information that is collected from the form is -1. Name 2.Email

Addresses etc. Now the form will take input from the form and post that data in backend applications (like

PHP). So the backend application will process the data which is received by them. There are various form

elements that we can use like text fields, text area, drop-down list, select, checkboxes, radio, etc.

Syntax:

<form> Form Content... </form>

Registration page

Use a <form> element to process the input.

 Example:

<form>

<div class="container">

<h1>Register Here</h1>

<p>Please fill in the details to create an account with us.</p>

<hr>

<label for="email">Enter Email</label>

<input type="text" placeholder="Enter Email" name="email">

<label for="pwd">Password</label>

<input type="password" placeholder="Enter Password" name="pwd">

<label for="confirm">Confirm Password</label>

<input type="password" placeholder="Confirm Password" name="confirm">

<hr>

<p>By creating an account you agree to our Terms & Privacy.</p>

<button type="submit" class="registerbtn">Register</button>

</div>

<div class="container signin">

<p>Already have an account? Sign in.</p>

</div>

</form>

Output:

3. Explain about Cascading Style Sheet with an example?

 Cascading Style Sheets (CSS) is used to format the layout of a webpage.

With CSS, you can control the color, font, the size of text, the spacing between elements, how elements

are positioned and laid out, what background images or background colors are to be used, different

displays for different devices and screen sizes, and much more!

 CSS can be added to HTML documents in 3 ways:

• Inline - by using the style attribute inside HTML elements

• Internal - by using a <style> element in the <head> section

• External - by using a <link> element to link to an external CSS file

CSS Example

<style>

body {background-color:lightblue; text-align:center;}
h1 {color:blue; font-size:40px;}
p {font-family:verdana; font-size:20px;}

</style>

CSS Syntax

A CSS rule consists of a selector and a declaration block:

The selector points to the HTML element to style (h1).

The declaration block (in curly braces) contains one or more declarations separated by
semicolons.

Each declaration includes a CSS property name and a value, separated by a colon.

In the following example all <p> elements will be center-aligned, red and have a font size of 32
pixels:

Example

<style>
p {font-size:32px; color:red; text-align:center;}
</style>

Same example can also be written like this:

<style>
p {
 font-size: 32px;
 color: red;
 text-align: center;
}
</style>

CSS Background

CSS background property is used to define the background effects on element. There are 5 CSS
background properties that affects the HTML elements:

1. background-color

2. background-image

3. background-repeat

4. background-attachment

5. background-position

1) CSS background-color

The background-color property is used to specify the background color of the element.

2) CSS background-image

The background-image property is used to set an image as a background of an element. By
default the image covers the entire element. You can set the background image for a page like
this.

3) CSS background-repeat

By default, the background-image property repeats the background image horizontally and
vertically. Some images are repeated only horizontally or vertically.

The background looks better if the image repeated horizontally only.

4) CSS background-attachment

The background-attachment property is used to specify if the background image is fixed or
scroll with the rest of the page in browser window. If you set fixed the background image then
the image will not move during scrolling in the browser.

5) CSS background-position

The background-position property is used to define the initial position of the background
image. By default, the background image is placed on the top-left of the webpage.

You can set the following positions:

1. center

2. top

3. bottom

4. left

5. right

4. How to create CSS animation and briefly explain about user interface.?

CSS animation:

Animation is a way using which we can create the illusion of motion by placing still images one
after another in a typical format. For example, we can have a ball rising up at some instant than
falling down as an animation effect. CSS provides us some properties to control the animation
effect by changing some of its variables like timing and key frames etc.

• @keyframes
• animation-name
• animation-duration
• animation-delay

• animation-iteration-count
• animation-direction
• animation-timing-function
• animation-fill-mode
• animation

The @keyframes

When you specify CSS styles inside the @keyframes rule, the animation will gradually change

from the current style to the new style at certain times.

@keyframes example {

 from {background-color: red;}

 to {background-color: yellow;}

}

div {

 width: 100px;

 height: 100px;

 background-color: red;

 animation-name: example;

 animation-duration: 4s;

}

Animation-duration

 The animation-duration property defines how long an animation should take to complete.

If the animation-duration property is not specified, no animation will occur, because the default

value is 0s

Delay an Animation

The animation-delay property specifies a delay for the start of an animation.

div {

 width: 100px;

 height: 100px;

 position: relative;

 background-color: red;

 animation-name: example;

 animation-duration: 4s;

 animation-delay: 2s;

}

Animation-iteration-count:

 The animation-iteration-count property specifies the number of

times an animation should run.

div {

 width: 100px;

 height: 100px;

 position: relative;

 background-color: red;

 animation-name: example;

 animation-duration: 4s;

 animation-iteration-count: 3;

}

Animation-direction:

 The animation-direction property specifies whether an animation should be played

forwards, backwards or in alternate cycles.

The animation-direction property can have the following values:

• normal - The animation is played as normal (forwards). This is default

• reverse - The animation is played in reverse direction (backwards)

• alternate - The animation is played forwards first, then backwards

• alternate-reverse - The animation is played backwards first, then forwards

The Speed Curve of the Animation:

The animation-timing-function property specifies the speed curve of the animation.

The animation-timing-function property can have the following values:

• ease - Specifies an animation with a slow start, then fast, then end slowly (this is default)

• linear - Specifies an animation with the same speed from start to end

• ease-in - Specifies an animation with a slow start

• ease-out - Specifies an animation with a slow end

• ease-in-out - Specifies an animation with a slow start and end

• cubic-bezier(n,n,n,n) - Lets you define your own values in a cubic-bezier function

#div1 {animation-timing-function: linear;}

#div2 {animation-timing-function: ease;}

#div3 {animation-timing-function: ease-in;}

#div4 {animation-timing-function: ease-out;}

#div5 {animation-timing-function: ease-in-out;}

The fill-mode For an Animation:

CSS animations do not affect an element before the first keyframe is played or after the last

keyframe is played. The animation-fill-mode property can override this behavior.

The animation-fill-mode property specifies a style for the target element when the animation is

not playing (before it starts, after it ends, or both).

The animation-fill-mode property can have the following values:

• none - Default value. Animation will not apply any styles to the element before or after it

is executing

• forwards - The element will retain the style values that is set by the last keyframe

(depends on animation-direction and animation-iteration-count)

• backwards - The element will get the style values that is set by the first keyframe

(depends on animation-direction), and retain this during the animation-delay period

• both - The animation will follow the rules for both forwards and backwards, extending

the animation properties in both directions

Animation Shorthand Property:

div {

 animation: example 5s linear 2s infinite alternate;

}

User interface:

User Interface (UI) defines the way humans interact with the information systems. In Layman’s
term, User Interface (UI) is a series of pages, screens, buttons, forms and other visual elements
that are used to interact with the device. Every app and every website has a user interface.
The user interface property is used to change any element into one of several standard user
interface elements.

• resize

• outline-offset

Resize Property: The resize property is used to resize a box by user. This property does not
apply to inline elements or block elements where overflow is visible. In this property, overflow
must be set to “scroll”, “auto”, or “hidden”.

Syntax:

resize: horizontal,vertical,both;

• horizontal: This property is used to resize the width of the element.

Syntax:

resize: horizontal;

Supported Browsers: The browser supported by resize property are listed below:

• Apple Safari 4.0

• Google Chrome 4.0

• Firefox 5.0 4.0 -moz-

• Opera 15.0

• Internet Explorer Not Supported

outline-offset: The outline-offset property in CSS is used to set the amount of space between an outline

and the edge or border of an element. The space between the element and its outline is transparent.

Syntax:

outline-offset: length;

Supported Browsers: The browser supported by outline-offset property are listed below:

• Apple Safari 3.1

• Google Chrome 4.0

• Firefox 3.5

• Opera 10.5

• Internet Explorer 15.0

UNIT-3

Introduction to JavaScript

Part-b

1. Explain in details about variables and data types in java Script.?

 JavaScript provides different data types to hold different types of values. There are two

types of data types in JavaScript.

1. Primitive data type

2. Non-primitive (reference) data type

JavaScript is a dynamic type language, means you don't need to specify type of the variable because it is

dynamically used by JavaScript engine. You need to use var here to specify the data type. It can hold any

type of values such as numbers, strings etc. For example:

1. var a=40;//holding number

2. var b="Rahul";//holding string

JavaScript primitive data types

There are five types of primitive data types in JavaScript. They are as follows:

Data Type Description

String represents sequence of characters e.g. "hello"

Number represents numeric values e.g. 100

Boolean represents boolean value either false or true

Undefined represents undefined value

Null represents null i.e. no value at all

JavaScript non-primitive data types

The non-primitive data types are as follows:

Data Type Description

Object represents instance through which we can access members

Array represents group of similar values

RegExp represents regular expression

Variable:

A JavaScript variable is simply a name of storage location. There are two types of variables in JavaScript :

local variable and global variable.

There are some rules while declaring a JavaScript variable (also known as identifiers).

1. Name must start with a letter (a to z or A to Z), underscore(_), or dollar($) sign.

2. After first letter we can use digits (0 to 9), for example value1.

3. JavaScript variables are case sensitive, for example x and X are different variables.

Correct JavaScript variables

1. var x = 10;

2. var _value="sonoo";

Example of JavaScript variable

Let’s see a simple example of JavaScript variable.

<script>

var x = 10;

var y = 20;

var z=x+y;

document.write(z);

</script>

Output of the above example

30

JavaScript local variable

A JavaScript local variable is declared inside block or function. It is accessible within the function or block

only. For example:

<script>

function abc(){

var x=10;//local variable

}

</script>

JavaScript global variable

A JavaScript global variable is accessible from any function. A variable i.e. declared outside the function

or declared with window object is known as global variable. For example:

<script>

var data=200;//gloabal variable

function a(){

document.writeln(data);

}

function b(){

document.writeln(data);

}

a();//calling JavaScript function

b();

</script>

2. Explain in detail about operators and operator precedence in java Script.?

JavaScript Operators

 JavaScript operators are symbols that are used to perform operations on operands. For example:

var sum=10+20;

Here, + is the arithmetic operator and = is the assignment operator.

There are following types of operators in JavaScript.

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Bitwise Operators

4. Logical Operators

5. Assignment Operators

6. Special Operators

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on the operands. The following operators

are known as JavaScript arithmetic operators.

Operator Description Example

+ Addition 10+20 = 30

- Subtraction 20-10 = 10

* Multiplication 10*20 = 200

/ Division 20/10 = 2

% Modulus (Remainder) 20%10 = 0

++ Increment var a=10; a++; Now a = 11

-- Decrement var a=10; a--; Now a = 9

JavaScript Comparison Operators

The JavaScript comparison operator compares the two operands. The comparison operators are as

follows:

Operator Description Example

== Is equal to 10==20 = false

=== Identical (equal and of same type) 10==20 = false

!= Not equal to 10!=20 = true

!== Not Identical 20!==20 = false

> Greater than 20>10 = true

>= Greater than or equal to 20>=10 = true

< Less than 20<10 = false

<= Less than or equal to 20<=10 = false

JavaScript Bitwise Operators

The bitwise operators perform bitwise operations on operands. The bitwise operators are as follows:

Operator Description Example

& Bitwise AND (10==20 & 20==33) = false

| Bitwise OR (10==20 | 20==33) = false

^ Bitwise XOR (10==20 ^ 20==33) = false

~ Bitwise NOT (~10) = -10

<< Bitwise Left Shift (10<<2) = 40

>> Bitwise Right Shift (10>>2) = 2

>>> Bitwise Right Shift with Zero (10>>>2) = 2

JavaScript Logical Operators

The following operators are known as JavaScript logical operators.

Operator Description Example

&& Logical AND (10==20 && 20==33) = false

|| Logical OR (10==20 || 20==33) = false

! Logical Not !(10==20) = true

JavaScript Assignment Operators

The following operators are known as JavaScript assignment operators.

Operator Description Example

= Assign 10+10 = 20

+= Add and assign var a=10; a+=20; Now a = 30

-= Subtract and assign var a=20; a-=10; Now a = 10

= Multiply and assign var a=10; a=20; Now a = 200

/= Divide and assign var a=10; a/=2; Now a = 5

%= Modulus and assign var a=10; a%=2; Now a = 0

JavaScript Special Operators

The following operators are known as JavaScript special operators.

Operator Description

(?:) Conditional Operator returns value based on the condition. It is like if-else.

, Comma Operator allows multiple expressions to be evaluated as single statement.

Delete Delete Operator deletes a property from the object.

In In Operator checks if object has the given property

instanceof checks if the object is an instance of given type

New creates an instance (object)

Typeof checks the type of object.

Void it discards the expression's return value.

Yield checks what is returned in a generator by the generator's iterator.

Operator precedence:

Operator precedence describes the order in which operations are performed in an arithmetic expression.

Multiplication (*) and division (/) have higher precedence than addition (+) and subtraction (-).

Expressions in parentheses are computed before the rest of the expression

Function are executed before the result is used in the rest of the expression

3. Brief about various date and math related object with examples?

 Math Object

• Math object is a built-in static object.

• It is used for performing complex math operations.

Math Properties

Math Property Description

SQRT2 Returns square root of 2.

PI Returns Π value.

E \ Returns Euler's Constant.

LN2 Returns natural logarithm of 2.

LN10 Returns natural logarithm of 10.

LOG2E Returns base 2 logarithm of E.

LOG10E Returns 10 logarithm of E.

Math Methods

Methods Description

abs() Returns the absolute value of a number.

acos() Returns the arccosine (in radians) of a number.

ceil() Returns the smallest integer greater than or equal to a number.

cos() Returns cosine of a number.

floor() Returns the largest integer less than or equal to a number.

log() Returns the natural logarithm (base E) of a number.

max() Returns the largest of zero or more numbers.

min() Returns the smallest of zero or more numbers.

pow() Returns base to the exponent power, that is base exponent.

Example: Simple Program on Math Object Methods

<html>

 <head>

 <title>JavaScript Math Object Methods</title>

 </head>

 <body>

 <script type="text/javascript">

 var value = Math.abs(20);

 document.write("ABS Test Value : " + value +"
");

 var value = Math.acos(-1);

 document.write("ACOS Test Value : " + value +"
");

 var value = Math.asin(1);

 document.write("ASIN Test Value : " + value +"
");

 var value = Math.atan(.5);

 document.write("ATAN Test Value : " + value +"
");

 </script>

 </body>

</html>

Output

ABS Test Value : 20

ACOS Test Value : 3.141592653589793

ASIN Test Value : 1.5707963267948966

ATAN Test Value : 0.4636476090008061

2. Date Object

• Date is a data type.

• Date object manipulates date and time.

• Date() constructor takes no arguments.

• Date object allows you to get and set the year, month, day, hour, minute, second and

millisecond fields.

Syntax:

var variable_name = new Date();

Example:

var current_date = new Date();

Date Methods

Methods Description

Date() Returns current date and time.

getDate() Returns the day of the month.

getDay() Returns the day of the week.

getFullYear() Returns the year.

getHours() Returns the hour.

getMinutes() Returns the minutes.

getSeconds() Returns the seconds.

getMilliseconds() Returns the milliseconds.

getTime() Returns the number of milliseconds since January 1, 1970 at 12:00 AM.

getTimezoneOffset() Returns the timezone offset in minutes for the current locale.

getMonth() Returns the month.

setDate() Sets the day of the month.

setFullYear() Sets the full year.

setHours() Sets the hours.

setMinutes() Sets the minutes.

setSeconds() Sets the seconds.

setMilliseconds() Sets the milliseconds.

setTime() Sets the number of milliseconds since January 1, 1970 at 12:00 AM.

setMonth() Sets the month.

toDateString() Returns the date portion of the Date as a human-readable string.

toLocaleString() Returns the Date object as a string.

toGMTString() Returns the Date object as a string in GMT timezone.

valueOf() Returns the primitive value of a Date object.

Example : JavaScript Date() Methods Program

<html>

 <body>

 <center>

 <h2>Date Methods</h2>

 <script type="text/javascript">

 var d = new Date();

 document.write("Locale String: " + d.toLocaleString()+"
");

 document.write("Hours: " + d.getHours()+"
");

 document.write("Day: " + d.getDay()+"
");

 document.write("Month: " + d.getMonth()+"
");

 document.write("FullYear: " + d.getFullYear()+"
");

 document.write("Minutes: " + d.getMinutes()+"
");

 </script>

 </center>

 </body>

</html>

Output:

4. Write a JavaScript code for validating new user registration form which includes the fields like

username, password, confirm password, gender, date of birth, contact number and mail id.

<!DOCTYPE html>

<html>

<head>

 <title>Reg Form</title>

 <style type="text/css">

 body{

 font-family: Calibri;

 }

 input[type="text"] {

 width: 250px;

 }

 input[type="submit"], input[type="reset"] {

 width: 77px;

 height: 27px;

 position: relative;left: 180px;

 }

 form{

 text-align: center;

 font-family: Calibri;

 font-size: 20px;

 border: 3px solid black;

 width: 600px;

 margin: 20px auto;

 }

 td {

 padding: 10px;

 }

 td:first-child {

 text-align: right;

 font-weight: bold;

 }

 td:last-child {

 text-align: left;

 </style>

 <script>

 function validate() {

 var fname = document.reg_form.fname;

 var lname = document.reg_form.lname;

 var address = document.reg_form.address;

 var gender = document.reg_form.gender;

 var email = document.reg_form.email;

 var mobile = document.reg_form.mobile;

 var course = document.reg_form.course;

 if (fname.value.length <= 0) {

 alert("Name is required");

 fname.focus();

 return false;

 }

 if (lname.value.length <= 0) {

 alert("Last Name is required");

 lname.focus();

 return false;

 }

 if (address.value.length <= 0) {

 alert("Address is required");

 address.focus();

 return false;

 }

 if (gender.value.length <= 0) {

 alert("Gender is required");

 gender.focus();

 return false;

 }

 if (email.value.length <= 0) {

 alert("Email Id is required");

 email.focus();

 return false;

 }

 if (mobile.value.length <= 0) {

 alert("Mobile number is required");

 mobile.focus();

 return false;

 }

 if (course.value == "select course") {

 alert("Course is required");

 course.focus();

 return false;

 }

 return false;

 }

 </script>

</head>

<body>

 <center><h1>Form Validation using HTML,CSS,JavaScript</h1></center>

 <hr>

 <form method="" action="" name="reg_form" onsubmit="return validate()">

 <h2>Registration Form</h2>

 <table>

 <tr>

 <td><label>First Name: </label></td>

 <td>

 <input type="text" name="fname" placeholder="First Name">

 </td>

 </tr>

 <tr>

 <td><label>Last Name: </label></td>

 <td>

 <input type="text" name="lname" placeholder="Last Name">

 </td>

 </tr>

 <tr>

 <td><label>Address: </label></td>

 <td>

 <input type="textarea" size="50" name="address" placeholder="Address">

 </td>

 </tr>

 <tr>

 <td><label>Gender: </label></td>

 <td>

 <input type="radio" name="gender" value="male">Male

 <input type="radio" name="gender" value="femele">Female

 </td>

 </tr>

 <tr>

 <td><label>Email Id: </label></td>

 <td>

 <input type="text" name="email" placeholder="example@gmail.com">

 </td>

 </tr>

 <tr>

 <td><label>Mobile: </label></td>

 <td>

 <input type="number" name="mobile">

 </td>

 </tr>

 <tr>

 <td><label>Course: </label></td>

 <td>

 <select name="course">

 <option value="select course">select course</option>

 <option value="HTML">HTML</option>

 <option value="CSS">CSS</option>

 <option value="JavaScript">JAVASCRIPT</option>

 <option value="Java">JAVA</option>

 </select>

 </td>

 </tr>

 <tr>

 <td>

 <input type="submit" name="submit" value="Submit">

 <input type="reset" name="reset" value="Reset">

 </td>

 </tr>

 </table>

 </form>

</body>

</html>

Output

UNIT-IV

 SERVER-SIDE PROCESSING AND SCRIPTING-PHP

PART-B

1. What is PHP and how it works explain with example?

 PHP is an open source programming and server scripting language that is particularly well

adapted to Create Dynamic web pages and can be includes in HTML codes. It’s used to handle complex

content, databases, and session logging, as well as to create entire e-commerce websites. PHP is generally

known as Hypertext preprocessor but it was first known as Personal Home Page. It was Designed in 1994

by the programmer named Rasmus Lerdorf. PHP would be relatively simple .PHP is compatible with a

variety of databases, including MySQL, PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server,

and can communicate with other services through protocols including LDAP, POP3, HTTP, IMAP, and COM.

And, PHP operates on a variety of platforms, including Windows, Linux, Unix, and Mac OS X,etc.

 Example of PHP Code!

<!DOCTYPE html>

<html>

<body>

<?php

echo "My first PHP script!";

?>

</body>

</html>

PHP Works:

The PHP program interacts with the site server, which is the program that sends out web pages to the rest

of the world. When you type a URL into the address bar of your web browser, you’re telling the web server

at that URL to email you an HTML file. The requested file is sent by the web server in response. The HTML

file is read by your browser, and then shows the web page. When you press a source on a web page,

you’re also requesting a file from the web server. Additionally, when you press a web page button that

submits a form, the web server processes a file. When PHP is mounted, the procedure is exactly the same.

You submit a file, and the web server, which happens to be running PHP, responds with HTML, because

of PHP it all happens.

Step 1 – Client send a page request to the web server.

Step 2 – Web server forwards that request to the PHP interpreter.

Step 3 – Now PHP interpreter will take the Date from Database and responce it back to the Web server.

Step 4 – At last Web server responce to the client who has asked for the page request.

2. Explain PHP variables and constants?

 Variables are "containers" for storing information.

PHP Variables

In PHP, a variable starts with the $ sign, followed by the name of the variable

Example:

<?php

$txt = "Hello world!";

$x = 5;

$y = 10.5;

?>

After the execution of the statements above, the variable $txt will hold the value Hello world!, the

variable $x will hold the value 5, and the variable $y will hold the value 10.5.

PHP Variables

A variable can have a short name (like x and y) or a more descriptive name (age, carname, total_volume).

Rules for PHP variables:

• A variable starts with the $ sign, followed by the name of the variable

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

• Variable names are case-sensitive ($age and $AGE are two different variables)

• PHP variable names are case-sensitive!

Output variables:

The PHP echo statement is often used to output data to the screen.

The following example will show how to output text and a variable:

Example:

<?php

$txt = "Msajce";

echo "I love $txt!";

?>

PHP Variables :

In PHP, variables can be declared anywhere in the script.

The scope of a variable is the part of the script where the variable can be referenced/used.

PHP has three different variable :

• local

• global

• static

PHP Constants

A constant is an identifier (name) for a simple value. The value cannot be changed during the script.

A valid constant name starts with a letter or underscore (no $ sign before the constant name).

 Unlike variables, constants are automatically global across the entire script.

Constants are like variables except that once they are defined they cannot be changed or undefined.

Create a PHP Constant:

To create a constant, use the define() function.

Syntax

define(name, value, case-insensitive)

Parameters:

• name: Specifies the name of the constant

• value: Specifies the value of the constant

• case-insensitive: Specifies whether the constant name should be case-insensitive. Default is false

Example:

<?php

// case-sensitive constant name

define("GREETING", "Welcome to msajce!");

echo GREETING;

?>

o/p:

Welcome to msajce!

3. Explain PHP operators with example?

PHP Operators:

Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Increment/Decrement operators

• Logical operators

• String operators

• Array operators

• Conditional assignment operators

PHP Arithmetic Operators

The PHP arithmetic operators are used with numeric values to perform common arithmetical operations,

such as addition, subtraction, multiplication etc.

PHP Assignment Operators:

The PHP assignment operators are used with numeric values to write a value to a variable.

The basic assignment operator in PHP is "=". It means that the left operand gets set to the value of the

assignment expression on the right.

PHP Comparison Operators

The PHP comparison operators are used to compare two values (number or string):

PHP Increment / Decrement Operators

The PHP increment operators are used to increment a variable's value.

The PHP decrement operators are used to decrement a variable's value.

PHP Logical Operators

The PHP logical operators are used to combine conditional statements.

PHP String Operators

PHP has two operators that are specially designed for strings.

PHP Array Operators

The PHP array operators are used to compare arrays.

PHP Conditional Assignment Operators

The PHP conditional assignment operators are used to set a value depending on conditions:

4. Explain Flow controls and Looping in PHP? With examples.

 Conditional statements are used to perform different actions based on different conditions.

Conditional statements are flow controls.

PHP Conditional Statements

In PHP we have the following conditional statements:

• if statement - executes some code if one condition is true

• if...else statement - executes some code if a condition is true and another code if that condition

is false

• if...elseif...else statement - executes different codes for more than two conditions

• switch statement - selects one of many blocks of code to be executed

Example:

o/p:

o/p:

o/p:

o/p:

5. Explain arrays and strings in PHP?

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables could look

like this:

An array can hold many values under a single name, and you can access the values by referring to an index

number.

Create an Array in PHP

In PHP, the array() function is used to create an array:

array();

In PHP, there are three types of arrays:

• Indexed arrays - Arrays with a numeric index

• Associative arrays - Arrays with named keys

• Multidimensional arrays - Arrays containing one or more arrays

PHP String Functions:

6. Explain the functions in PHP?

 The real power of PHP comes from its functions.

PHP has more than 1000 built-in functions, and in addition you can create your own custom functions.

PHP Built-in Functions

PHP has over 1000 built-in functions that can be called directly, from within a script, to perform a specific

task.

PHP User Defined Functions

Besides the built-in PHP functions, it is possible to create your own functions.

• A function is a block of statements that can be used repeatedly in a program.

• A function will not execute automatically when a page loads.

• A function will be executed by a call to the function.

Create a User Defined Function in PHP

A user-defined function declaration starts with the word function:

Syntax

function functionName(){

 code to be exeuted;

}

A function name must start with a letter or an underscore. Function names are NOT case-sensitive.

In the example below, we create a function named "writeMsg()". The opening curly brace ({) indicates

the beginning of the function code, and the closing curly brace (}) indicates the end of the function. The

function outputs "Hello world!". To call the function, just write its name followed by brackets ():

7. Explain File Handling and uploading in PHP?

PHP file handling:

 File handling is an important part of any web application. You often need to open and process a

file for different tasks.

PHP Manipulating Files:

PHP has several functions for creating, reading, uploading, and editing files.

:

PHP Read File - fread()

The fread() function reads from an open file.

The first parameter of fread() contains the name of the file to read from and the second parameter

specifies the maximum number of bytes to read.

The following PHP code reads the "webdictionary.txt" file to the end:

fread($myfile,filesize("webdictionary.txt"));

PHP Close File - fclose()

The fclose() function is used to close an open file.

It's a good programming practice to close all files after you have finished with them. You don't want an

open file running around on your server taking up resources!

The fclose() requires the name of the file (or a variable that holds the filename) we want to close:

PHP Read Single Line - fgets()

The fgets() function is used to read a single line from a file.

The example below outputs the first line of the "webdictionary.txt" file:

Example

PHP Check End-Of-File - feof()

The feof() function checks if the "end-of-file" (EOF) has been reached.

The feof() function is useful for looping through data of unknown length.

The example below reads the "webdictionary.txt" file line by line, until end-of-file is reached:

PHP Read Single Character - fgetc()

The fgetc() function is used to read a single character from a file.

The example below reads the "webdictionary.txt" file character by character, until end-of-file is reached:

PHP Create File - fopen()

The fopen() function is also used to create a file. Maybe a little confusing, but in PHP, a file is created using

the same function used to open files.

If you use fopen() on a file that does not exist, it will create it, given that the file is opened for writing (w)

or appending (a).

The example below creates a new file called "testfile.txt". The file will be created in the same directory

where the PHP code resides:

PHP Write to File - fwrite()

The fwrite() function is used to write to a file.

The first parameter of fwrite() contains the name of the file to write to and the second parameter is the

string to be written.

The example below writes a couple of names into a new file called "newfile.txt":

PHP Overwriting

Now that "newfile.txt" contains some data we can show what happens when we open an existing file for

writing. All the existing data will be ERASED and we start with an empty file.

PHP Append Text

You can append data to a file by using the "a" mode. The "a" mode appends text to the end of the file,

while the "w" mode overrides (and erases) the old content of the file.

PHP File Upload:

With PHP, it is easy to upload files to the server.

However, with ease comes danger, so always be careful when allowing file uploads!

Configure The "php.ini" File

First, ensure that PHP is configured to allow file uploads.

In your "php.ini" file, search for the file_uploads directive.

8. Explain E-mail basics in PHP?

PHP Mail Introduction

The mail() function allows you to send emails directly from a script.

Requirements

For the mail functions to be available, PHP requires an installed and working email system. The program

to be used is defined by the configuration settings in the php.ini file.

Installation

The mail functions are part of the PHP core. There is no installation needed to use these functions.

Runtime Configuration

The behavior of the mail functions is affected by settings in php.ini:

PHP mail() Function

9. Explain Database with PHP in Detail?

PHP MySQL Database

With PHP, you can connect to and manipulate databases.

MySQL is the most popular database system used with PHP.

MySQL

• MySQL is a database system used on the web

• MySQL is a database system that runs on a server

• MySQL is ideal for both small and large applications

• MySQL is very fast, reliable, and easy to use

• MySQL uses standard SQL

• MySQL compiles on a number of platforms

• MySQL is free to download and use

• MySQL is developed, distributed, and supported by Oracle Corporation

• MySQL is named after co-founder Monty Widenius's daughter: My

The data in a MySQL database are stored in tables. A table is a collection of related data, and it consists

of columns and rows.

Databases are useful for storing information categorically. A company may have a database with the

following tables:

• Employees

• Products

• Customers

• Orders

PHP + MySQL Database System

• PHP combined with MySQL are cross-platform (you can develop in Windows and serve on a Unix

platform)

Database Queries

A query is a question or a request.

We can query a database for specific information and have a recordset returned.

Look at the following query (using standard SQL):

SELECT LastName FROM Employees

The query above selects all the data in the "LastName" column from the "Employees" table.

MySQL is the de-facto standard database system for web sites with HUGE volumes of both data and end-

users (like Facebook, Twitter, and Wikipedia).

Another great thing about MySQL is that it can be scaled down to support embedded database

applications.

PHP 5 and later can work with a MySQL database using:

• MySQLi extension (the "i" stands for improved)

• PDO (PHP Data Objects)

we demonstrate three ways of working with PHP and MySQL:

• MySQLi (object-oriented)

• MySQLi (procedural)

• PDO

UNIT-V

Servlets and Database Connectivity

1. EXPLAIN JAVA SERVLET ARCHITECTURE?

 Java Servlets are programs that run on a Web or

Application server and act as a middle layer between a

requests coming from a Web browser or other HTTP client

and databases or applications on the HTTP server.

Using Servlets, you can collect input from users through web

page forms, present records from a database or another

source, and create web pages dynamically.

Java Servlets often serve the same purpose as programs

implemented using the Common Gateway Interface (CGI). But

Servlets offer several advantages in comparison with the CGI.

• Performance is significantly better.

• Servlets execute within the address space of a Web

server. It is not necessary to create a separate process to

handle each client request.

• Servlets are platform-independent because they are

written in Java.

• Java security manager on the server enforces a set of

restrictions to protect the resources on a server machine.

So servlets are trusted.

• The full functionality of the Java class libraries is

available to a servlet. It can communicate with applets,

databases, or other software via the sockets and RMI

mechanisms that you have seen already.

Servlets Architecture

The following diagram shows the position of Servlets in a Web

Application.

Servlets Tasks

Servlets perform the following major tasks −

• Read the explicit data sent by the clients (browsers). This

includes an HTML form on a Web page or it could also

come from an applet or a custom HTTP client program.

• Read the implicit HTTP request data sent by the clients

(browsers). This includes cookies, media types and

compression schemes the browser understands, and so

forth.

• Process the data and generate the results. This process

may require talking to a database, executing an RMI or

CORBA call, invoking a Web service, or computing the

response directly.

• Send the explicit data (i.e., the document) to the clients

(browsers). This document can be sent in a variety of

formats, including text (HTML or XML), binary (GIF

images), Excel, etc.

• Send the implicit HTTP response to the clients

(browsers). This includes telling the browsers or other

clients what type of document is being returned (e.g.,

HTML), setting cookies and caching parameters, and

other such tasks.

Servlets Packages

Java Servlets are Java classes run by a web server that has an

interpreter that supports the Java Servlet specification.

Servlets can be created using

the javax.servlet and javax.servlet.http packages, which

are a standard part of the Java's enterprise edition, an

expanded version of the Java class library that supports large-

scale development projects.

These classes implement the Java Servlet and JSP

specifications. At the time of writing this tutorial, the versions

are Java Servlet 2.5 and JSP 2.1.

Java servlets have been created and compiled just like any

other Java class. After you install the servlet packages and add

them to your computer's Classpath, you can compile servlets

with the JDK's Java compiler or any other current compiler.

Architecture Diagram

The following figure depicts a typical servlet life-cycle

scenario.

• First the HTTP requests coming to the server are

delegated to the servlet container.

• The servlet container loads the servlet before invoking

the service() method.

• Then the servlet container handles multiple requests by

spawning multiple threads, each thread executing the

service() method of a single instance of the servlet.

Advantages Of Servlets :

1. As servlets support all protocols like FTP, SMTP, HTTP

etc. they can be used to develop any kind of web

applications like E-commerce, Content management

systems, chat based or file based web applications etc.

2. As servlets are fully compatible with Java, you can make

use of wide range of available Java APIs inside the

servlets.

3. As they run on Java enabled servers, You need not to

worry about garbage collection and memory leaks. JVM

handles them for you.

4. Since servlets are written in Java, they are portable and

platform independent. You can run them on any

operating systems and on any web servers available

today.

5. Servlets inherit security features from JVM and web

server.

6. As servlets are written in Java, you can extend them

according to your requirements.

7. As servlets are compiled into bytecodes, they are faster

than any other server-side scripting languages.

2.EXPLAIN SERVLET LIFECYCLE.?

 A servlet life cycle can be defined as the entire process from its

creation till the destruction. The following are the paths followed by a

servlet.

• The servlet is initialized by calling the init() method.
• The servlet calls service() method to process a client's request.
• The servlet is terminated by calling the destroy() method.
• Finally, servlet is garbage collected by the garbage collector of the

JVM.

Now let us discuss the life cycle methods in detail.

The init() Method

The init method is called only once. It is called only when the servlet is
created, and not called for any user requests afterwards. So, it is used
for one-time initializations, just as with the init method of applets.

The servlet is normally created when a user first invokes a URL
corresponding to the servlet, but you can also specify that the servlet
be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets
created, with each user request resulting in a new thread that is handed
off to doGet or doPost as appropriate. The init() method simply creates
or loads some data that will be used throughout the life of the servlet.

The init method definition looks like this −

public void init() throws ServletException {

 // Initialization code...

}

The service() Method

The service() method is the main method to perform the actual task.
The servlet container (i.e. web server) calls the service() method to
handle requests coming from the client(browsers) and to write the
formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns
a new thread and calls service. The service() method checks the HTTP
request type (GET, POST, PUT, DELETE, etc.) and calls doGet,
doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method −

public void service(ServletRequest request, ServletResponse response)

 throws ServletException, IOException {

}

The service () method is called by the container and service method
invokes doGet, doPost, doPut, doDelete, etc. methods as appropriate.
So you have nothing to do with service() method but you override either
doGet() or doPost() depending on what type of request you receive from
the client.

The doGet() and doPost() are most frequently used methods with in
each service request. Here is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an
HTML form that has no METHOD specified and it should be handled by
doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST
as the METHOD and it should be handled by doPost() method.

public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The destroy() Method

The destroy() method is called only once at the end of the life cycle of
a servlet. This method gives your servlet a chance to close database
connections, halt background threads, write cookie lists or hit counts to
disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for
garbage collection. The destroy method definition looks like this −

public void destroy() {

 // Finalization code...

}

3.Explain Form GET and POST actions in servlets?

GET Method

The GET method sends the encoded user information

appended to the page request. The page and the encoded

information are separated by the ? (question mark) symbol as

follows −

http://www.test.com/hello?key1 = value1&key2 = value2

The GET method is the default method to pass information

from browser to web server and it produces a long string that

appears in your browser's Location:box. Never use the GET

method if you have password or other sensitive information

to pass to the server. The GET method has size limitation: only

1024 characters can be used in a request string.

This information is passed using QUERY_STRING header and

will be accessible through QUERY_STRING environment

variable and Servlet handles this type of requests

using doGet() method.

POST Method

A generally more reliable method of passing information to a

backend program is the POST method. This packages the

information in exactly the same way as GET method, but

instead of sending it as a text string after a ? (question mark)

in the URL it sends it as a separate message. This message

comes to the backend program in the form of the standard

input which you can parse and use for your processing.

Servlet handles this type of requests using doPost() method.

Reading Form Data using Servlet

Servlets handles form data parsing automatically using the

following methods depending on the situation −

• getParameter() − You call request.getParameter()

method to get the value of a form parameter.

• getParameterValues() − Call this method if the

parameter appears more than once and returns multiple

values, for example checkbox.

• getParameterNames() − Call this method if you want a

complete list of all parameters in the current request.

GET Method Example using URL

Here is a simple URL which will pass two values to HelloForm

program using GET method.

http://localhost:8080/HelloForm?first_name =

ZARA&last_name = ALI

Given below is the HelloForm.java servlet program to

handle input given by web browser. We are going to

use getParameter() method which makes it very easy to

access passed information −

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class HelloForm extends HttpServlet {

 public void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Set response content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Using GET Method to Read Form Data";

 String docType =

 "<!doctype html public \"-//w3c//dtd html 4.0 " +

"transitional//en\">\n";

 out.println(docType +

 "<html>\n" +

 "<head><title>" + title + "</title></head>\n" +

 "<body bgcolor = \"#f0f0f0\">\n" +

 "<h1 align = \"center\">" + title + "</h1>\n" +

 "\n" +

 " First Name: "

 + request.getParameter("first_name") + "\n" +

 " Last Name: "

 + request.getParameter("last_name") + "\n" +

 "\n" +

 "</body>" +

 "</html>"

);

 }

}

Assuming your environment is set up properly, compile

HelloForm.java as follows −

$ javac HelloForm.java

If everything goes fine, above compilation would

produce HelloForm.class file. Next you would have to copy

this class file in <Tomcat-

installationdirectory>/webapps/ROOT/WEB-INF/classes

and create following entries in web.xml file located in

<Tomcat-installation-directory>/webapps/ROOT/WEB-

INF/

<servlet>

 <servlet-name>HelloForm</servlet-name>

 <servlet-class>HelloForm</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>HelloForm</servlet-name>

 <url-pattern>/HelloForm</url-pattern>

</servlet-mapping>

Now

type http://localhost:8080/HelloForm?first_name=ZARA&last

_name=ALI in your browser's Location:box and make sure

you already started tomcat server, before firing above

command in the browser. This would generate following

result −

Using GET Method to Read Form Data

• First Name: ZARA

• Last Name: ALI

GET Method Example Using Form

Here is a simple example which passes two values using

HTML FORM and submit button. We are going to use same

Servlet HelloForm to handle this input.

<html>

 <body>

 <form action = "HelloForm" method = "GET">

 First Name: <input type = "text" name = "first_name">

 Last Name: <input type = "text" name = "last_name" />

 <input type = "submit" value = "Submit" />

 </form>

 </body>

</html>

Keep this HTML in a file Hello.htm and put it in <Tomcat-

installationdirectory>/webapps/ROOT directory. When you

would access http://localhost:8080/Hello.htm, here is the

actual output of the above form.

First Name: Last Name:

Try to enter First Name and Last Name and then click submit

button to see the result on your local machine where tomcat

is running. Based on the input provided, it will generate

similar result as mentioned in the above example.

POST Method Example Using Form

Let us do little modification in the above servlet, so that it can

handle GET as well as POST methods. Below

is HelloForm.java servlet program to handle input given by

web browser using GET or POST methods.

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class HelloForm extends HttpServlet {

 // Method to handle GET method request.

 public void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Set response content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Using GET Method to Read Form Data";

 String docType =

 "<!doctype html public \"-//w3c//dtd html 4.0 " +

 "transitional//en\">\n";

 out.println(docType +

 "<html>\n" +

 "<head><title>" + title + "</title></head>\n" +

 "<body bgcolor = \"#f0f0f0\">\n" +

 "<h1 align = \"center\">" + title + "</h1>\n" +

 "\n" +

 " First Name: "

 + request.getParameter("first_name") + "\n" +

 " Last Name: "

 + request.getParameter("last_name") + "\n" +

 "\n" +

 "</body>"

 "</html>"

);

 }

 // Method to handle POST method request.

 public void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

Now compile and deploy the above Servlet and test it using

Hello.htm with the POST method as follows −

<html>

 <body>

 <form action = "HelloForm" method = "POST">

 First Name: <input type = "text" name = "first_name">

 Last Name: <input type = "text" name = "last_name" />

 <input type = "submit" value = "Submit" />

 </form>

 </body>

</html>

Here is the actual output of the above form, Try to enter First

and Last Name and then click submit button to see the result

on your local machine where tomcat is running.

First Name: Last Name:

4. Explain Cookies in servlets?

Cookies in Servlet

A cookie is a small piece of information that is persisted

between the multiple client requests.

A cookie has a name, a single value, and optional attributes

such as a comment, path and domain qualifiers, a maximum

age, and a version number.

How Cookie works

By default, each request is considered as a new request. In

cookies technique, we add cookie with response from the

servlet. So cookie is stored in the cache of the browser. After

that if request is sent by the user, cookie is added with request

by default. Thus, we recognize the user as the old user.

Types of Cookie

There are 2 types of cookies in servlets.

PlayNext

Unmute

Current TimeÂ 0:00

/

DurationÂ 18:10

Loaded: 0.37%

Â

Fullscreen

Backward Skip 10sPlay VideoForward Skip 10s

1. Non-persistent cookie

2. Persistent cookie

Non-persistent cookie

It is valid for single session only. It is removed each time

when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time

when user closes the browser. It is removed only if user

logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Note: Gmail uses cookie technique for login. If you disable the

cookie, gmail won't work.

Cookie class

javax.servlet.http.Cookie class provides the functionality of

using cookies. It provides a lot of useful methods for cookies.

Constructor of Cookie class

Constructor Description

Cookie() constructs a cookie.

Cookie(String name,

String value)

constructs a cookie with a

specified name and value.

Useful Methods of Cookie class

There are given some commonly used methods of the Cookie

class.

Method Description

public void

setMaxAge(int

expiry)

Sets the maximum age of

the cookie in seconds.

public String

getName()

Returns the name of the

cookie. The name cannot

be changed after creation.

public String

getValue()

Returns the value of the

cookie.

public void

setName(String

name)

changes the name of the

cookie.

public void

setValue(String

value)

changes the value of the

cookie.

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some

methods provided by other interfaces. They are:

1. public void addCookie(Cookie ck)

2. public Cookie[] getCookies()

To create Cookie

Let's see the simple code to create cookie.

Cookie ck=new Cookie("user","sonoo jaiswal");//creating

cookie object

response.addCookie(ck);//adding cookie in the response

To delete Cookie

Let's see the simple code to delete cookie. It is mainly used to

logout or signout the user.

Cookie ck=new Cookie("user","");//deleting value of cooki

e

ck.setMaxAge(0);//changing the maximum age to 0 secon

ds

response.addCookie(ck);//adding cookie in the response

How to get Cookies?

Let's see the simple code to get all the cookies.

Cookie ck[]=request.getCookies();

for(int i=0;i<ck.length;i++){

 out.print("
"+ck[i].getName()+" "+ck[i].getValue());//

printing name and value of cookie

}

Simple example of Servlet Cookies

In this example, we are storing the name of the user in the

cookie object and accessing it in another servlet. As we know

well that session corresponds to the particular user. So if you

access it from too many browsers with different values, you

will get the different value.

index.html

<form action="servlet1" method="post">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpSer

vletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 Cookie ck=new Cookie("uname",n);//creating cookie ob

ject

 response.addCookie(ck);//adding cookie in the respons

e

 //creating submit button

 out.print("<form action='servlet2'>");

 out.print("<input type='submit' value='go'>");

 out.print("</form>");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServ

letResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 Cookie ck[]=request.getCookies();

 out.print("Hello "+ck[0].getValue());

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

</web-app>

Output

5.Explain Database Connectivity using JDBC?

Database connectivity in servlet. There are different

approaches to communicating with databases through servlet

components. We need to perform the servlet to database

communication due to the following main reasons:-

• To save the inputs coming from the end-user through

forms to database software. Example:- Email Id

registration.

• To save the result generated by servlet Component in

database software. Example:- Bill generation

• To get inputs from the database software to the Servlet

component. Example:- Balance inquiry, account

statement generation

For servlet to database software communication, we need to

place JDBC code/Hibernate code/Spring JDBC/Spring

ORM/Spring Data code in Servlet Component. Since JDBC is

the most basic one therefore here we will discuss servlet to

database communication through JDBC code.

Different Approaches for Database Connectivity in Servlet

There are 4 approaches for Database Connectivity in Servlet.

Approach-1:- Writing logics in multiple methods.

• Create JDBC Connection in the init()

• Use the JDBC Connection in the service(-,-)/doXxx(-,-)

• Close JDBC Connection in the destroy method.

Here JDBC Connection (con) must be taken as an instance

variable of the Servlet Component class.

The disadvantage of this approach:- Since JDBC Connection is

an instance variable, it is not thread-safe by default. So, we

should use the synchronization concept.

Advantage:- All the requests coming to Servlet Component

will use a single JDBC Connection to interact with database

software, due to this the performance will be improved.

Note:- This approach is outdated and nowadays no one is

using this approach (except the maintenance side).

Approach-2:- Write all the logics in service(-,-) or doXxx(-

,-) method.

• Create JDBC Connection in service(-,-)/doXxx(-,-)

method.

• Use JDBC Connection in service(-,-)/doXxx(-,-) method.

• Close JDBC Connection in service(-,-)/doXxx(-,-) method.

Note:- Here JDBC Connection (con) will be a local variable to

service(-,-)/doXxx(-,-) method.

Disadvantage:- The JDBC Connection (con) is a local variable

so, every request which is given to the servlet will create one

JDBC Connection object with database software, hence the

performance will be poor.

Advantage:- Since JDBC Connection is a local variable, it is

thread-safe by default. Hence there is no need to work with

the synchronization concept.

Approach-3:- Use server-managed JDBC connection from

the connection pool.

• Get JDBC Connection object from JDBC Connection pool

being from service(-,-)/doXxx(-,-)

• Use JDBC Connection object in service(-,-)/doXxx(-,-)

• Return JDBC connection back to JDBC connection pool

being from service(-,-)/doXxx(-,-)

Advantage:- Here JDBC connection is local to service(-,-

)/doXxx(-,-) method. So, it becomes thread-safe.

We can get all the advantages of the JDBC connection pool.

The main advantages of the JDBC connection pool are,

• Reusability of JDBC connection objects.

• With minimum JDBC connection objects, we can make

max clients/requests talking with database software.

• Programmer is free from creating connection objects,

managing connection objects, and destroying connection

objects.

Web servers are also supplying existing created JDBC

connections. Therefore programmers should not worry about

how to create JDBC connections, manage them and destroy

them. These tasks will be done by the web server itself. The

programmer will just fetch those JDBC connections and use

them in the servlet component. Moreover, one JDBC

connection can be used for multiple requests, therefore

performance will be good compared to approach2.

Approach4:- Use DAO class for the persistence operation.

What is DAO:- The Java class/component that separates

persistence logic from other logics of the application and

makes that logic as flexible logic to modify and reusable logic

is called DAO (Data access object).

In this approach, we can use either approach-2 or approach-

3 to get the JDBC connection. The main task in this approach,

• Write JDBC code (persistence logic) in DAO class either

by using direct connection object or server-managed

pooled connection object.

• Create a DAO class object in Servlet Component and use

its persistence logic in Servlet Component

