
Theory of Computation

1

Computability Theory 1930s – 1950s

- What is computable… or not?

- Examples:
program verification, mathematical truth

- Models of Computation:
Finite automata, Turing machines, …

Complexity Theory 1960s – present

- What is computable in practice?

- Example: factoring problem

- P versus NP problem

- Measures of complexity: Time and Space

- Models: Probabilistic and Interactive computation

Course Outline

2

Course Mechanics

Zoom Lectures
- Live and Interactive via Chat

- Live lectures are recorded for later viewing

Zoom Recitations
- Not recorded

- Two convert to in-person

- Review concepts and more examples

- Optional unless you are having difficulty
Participation can raise low grades

- Attend any recitation

Text
- Introduction to the Theory of Computation

Sipser, 3rd Edition US. (Other editions ok but
are missing some Exercises and Problems).

Homework bi-weekly – 35%

- More information to follow

Midterm (15%) and Final exam (25%)

- Open book and notes

Check-in quizzes for credit – 25%

- Distinct Live and Recorded versions

- Complete either one for credit within 48 hours

- Initially ungraded; full credit for participation

3

Course Expectations

Prerequisites

Prior substantial experience and comfort with
mathematical concepts, theorems, and proofs.
Creativity will be needed for psets and exams.

Collaboration policy on homework

- Allowed. But try problems yourself first.

- Write up your own solutions.

- No bibles or online materials.

4

Role of Theory in Computer Science

1. Applications

2. Basic Research

3. Connections to other fields

4. What is the nature of computation?

5

Input: finite string
Output: Accept or Reject

Computation process: Begin at start state,
read input symbols, follow corresponding transitions,
Accept if end with accept state, Reject if not.

Examples: 01101 → Accept
00101 → Reject

𝑀1 accepts exactly those strings in 𝐴 where
𝐴 = {𝑤| 𝑤 contains substring 11}.

Let’s begin: Finite Automata

𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

10

States: 𝑞1 𝑞2 𝑞3

Transitions:

Start state:

Accept states:

1

Say that 𝐴 is the language of 𝑀1 and that 𝑀1 recognizes 𝐴 and that 𝐴 = 𝐿(𝑀1).

6

Finite Automata – Formal Definition

Defn: A finite automaton𝑀 is a 5-tuple (𝑄,Σ, 𝛿, 𝑞0, 𝐹)

𝑄 finite set of states

Σ finite set of alphabet symbols

𝛿 transition function 𝛿: 𝑄 × Σ → 𝑄

𝑞0 start state

𝐹 set of accept states

𝛿 (𝑞, 𝑎) = 𝑟 means 𝑞 𝑟a
𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

1
0

𝑀1 = (𝑄, Σ,𝛿, 𝑞1, 𝐹)

𝑄 = {𝑞1, 𝑞2, 𝑞3}

Σ = {0, 1}

𝐹 = {𝑞3}

0 1

𝑞1 𝑞1 𝑞2

𝑞2 𝑞1 𝑞3

𝑞3 𝑞3 𝑞3

𝛿 =

Example:

7

Finite Automata – Computation

Strings and languages

- A string is a finite sequence of symbols in Σ

- A language is a set of strings (finite or infinite)

- The empty string ε is the string of length 0

- The empty language ø is the set with no strings

Defn: 𝑀 accepts string 𝑤 = 𝑤1𝑤2 … 𝑤𝑛 each 𝑤𝑖 𝜖 Σ
if there is a sequence of states 𝑟0, 𝑟1, 𝑟2, , … , 𝑟𝑛 𝜖 𝑄
where:

- 𝑟0 = 𝑞0
- 𝑟𝑖 = 𝛿(𝑟𝑖−1,𝑤𝑖) for 1 ≤ 𝑖 ≤ 𝑛
- 𝑟𝑛 𝜖 𝐹

Recognizing languages

- 𝐿(𝑀) = {𝑤| 𝑀 accepts 𝑤}

- 𝐿(𝑀) is the language of 𝑀

- 𝑀 recognizes 𝐿(𝑀)

Defn: A language is regular if some
finite automaton recognizes it.

8

Regular Languages – Examples

𝐿 𝑀1 = {𝑤| 𝑤 contains substring 11} = 𝐴

Therefore 𝐴 is regular

More examples:

Let 𝐵 = 𝑤 𝑤 has an even number of 1s}
𝐵 is regular (make automaton for practice).

Let 𝐶 = 𝑤 𝑤 has equal numbers of 0s and 1s}
𝐶 is not regular (we will prove).

𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

10

Goal: Understand the regular languages

9

Regular Expressions

Regular operations. Let 𝐴, 𝐵 be languages:

- Union: 𝐴 ∪ 𝐵 = 𝑤 𝑤 ∈ 𝐴 or 𝑤 ∈ 𝐵}

- Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵} = 𝐴𝐵

- Star: 𝐴∗ = 𝑥1… 𝑥𝑘 each 𝑥𝑖 ∈ 𝐴 for 𝑘 ≥ 0}
Note: ε ∈ 𝐴∗ always

Example. Let 𝐴 = {good, bad} and 𝐵 = {boy, girl}.

- 𝐴 ∪ 𝐵 = {good, bad, boy, girl}

- 𝐴 ∘ 𝐵 = 𝐴𝐵 = {goodboy, goodgirl, badboy, badgirl}

- 𝐴∗ = {ε, good, bad, goodgood, goodbad, badgood,
badbad, goodgoodgood, goodgoodbad, … }

Regular expressions

- Built from Σ, members Σ, ∅, ε [Atomic]

- By using ∪,∘,∗ [Composite]

Examples:

- 0 ∪ 1 ∗ = Σ∗ gives all strings over Σ

- Σ∗1 gives all strings that end with 1

- Σ∗11Σ∗ = all strings that contain 11 = 𝐿 𝑀1

Goal: Show finite automata equivalent to regular expressions
10

Closure Properties for Regular Languages

Theorem: If 𝐴1, 𝐴2 are regular languages, so is 𝐴1 ∪ 𝐴2 (closure under ∪)

Proof: Let 𝑀1 = (𝑄1, Σ, 𝛿1 , 𝑞1 , 𝐹1) recognize𝐴1
𝑀2 = (𝑄2, Σ, 𝛿2 , 𝑞2 , 𝐹2) recognize𝐴2

Construct 𝑀 = (𝑄 , Σ , 𝛿 , 𝑞0, 𝐹) recognizing𝐴1 ∪ 𝐴2

𝑀 should accept input 𝑤 if either 𝑀1 or 𝑀2 accept 𝑤.

𝑀2

𝑟

𝑀1

𝑞 𝑀

𝑞, 𝑟

Components of 𝑴:

𝑄 = 𝑄1 × 𝑄2
= 𝑞1, 𝑞2 𝑞1 ∈ 𝑄1 and 𝑞2 ∈ 𝑄2}

𝑞0 = (𝑞1, 𝑞2)

𝛿 𝑞, 𝑟 ,𝑎 = 𝛿1 𝑞, 𝑎 ,𝛿2 𝑟,𝑎

𝐹 = 𝐹1 × 𝐹2

𝐹 = 𝐹1 × 𝑄2 ∪ 𝑄1 × 𝐹2

NO! [gives intersection]

Check-in 1.1

?

Check-in 1.1

In the proof, if 𝑀1 and 𝑀2 are finite automata
where 𝑀1 has 𝑘1 states and 𝑀2 has 𝑘2 states
Then how many states does 𝑀 have?
(a) 𝑘1 + 𝑘2
(b) 𝑘1

2 + 𝑘2
2

(c) 𝑘1 × 𝑘2

11

Closure Properties continued

Theorem: If 𝐴1, 𝐴2 are regular languages, so is 𝐴1𝐴2 (closure under ∘)

Proof: Let 𝑀1 = (𝑄1, Σ, 𝛿1 , 𝑞1 , 𝐹1) recognize𝐴1
𝑀2 = (𝑄2, Σ, 𝛿2 , 𝑞2 , 𝐹2) recognize𝐴2

Construct 𝑀 = (𝑄 , Σ , 𝛿 , 𝑞0, 𝐹) recognizing𝐴1𝐴2

𝑀2𝑀1

𝑀 should accept input 𝑤
if 𝑤 = 𝑥𝑦 where

𝑀1 accepts 𝑥 and 𝑀2 accepts 𝑦.
𝑀

𝑤
𝑥 𝑦

Doesn’t work: Where to split 𝑤?
12

