
Theory of Computation
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Computability Theory  1930s – 1950s

- What is computable…  or not? 

- Examples: 
program verification, mathematical truth

- Models of Computation:
Finite automata, Turing machines, …

Complexity Theory  1960s – present 

- What is computable in practice? 

- Example: factoring problem 

- P versus NP problem

- Measures of complexity:  Time and Space

- Models:  Probabilistic and Interactive computation 

Course Outline

2



Course Mechanics

Zoom Lectures
- Live and Interactive via Chat 

- Live lectures are recorded for later viewing 

Zoom Recitations 
- Not recorded

- Two convert to in-person 

- Review concepts and more examples 

- Optional unless you are having difficulty
Participation can raise low grades

- Attend any recitation

Text
- Introduction to the Theory of Computation

Sipser, 3rd Edition US.  (Other editions ok but 
are missing some Exercises and Problems).

Homework bi-weekly – 35%

- More information to follow 

Midterm (15%) and Final exam (25%) 

- Open book and notes

Check-in quizzes for credit – 25% 

- Distinct Live and Recorded versions

- Complete either one for credit within 48 hours

- Initially ungraded; full credit for participation
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Course Expectations

Prerequisites

Prior substantial experience and comfort with 
mathematical concepts, theorems, and proofs.  
Creativity will be needed for psets and exams. 

Collaboration policy on homework

- Allowed. But try problems yourself first.  

- Write up your own solutions.

- No bibles or online materials.
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Role of Theory in Computer Science

1. Applications

2. Basic Research

3. Connections to other fields

4. What is the nature of computation?
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Input: finite string
Output: Accept or Reject

Computation process:  Begin at start state,
read input symbols, follow corresponding transitions, 
Accept if end with accept state, Reject if not. 

Examples: 01101 → Accept 
00101 → Reject

𝑀1 accepts exactly those strings in 𝐴 where
𝐴 = {𝑤| 𝑤 contains substring 11}.

Let’s begin:  Finite Automata

𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

10

States:  𝑞1 𝑞2 𝑞3

Transitions:  

Start state:  

Accept states:  

1

Say that 𝐴 is the language of 𝑀1 and that 𝑀1 recognizes 𝐴 and that 𝐴 = 𝐿(𝑀1).

6



Finite Automata – Formal Definition

Defn:  A finite automaton𝑀 is a 5-tuple (𝑄,Σ, 𝛿, 𝑞0, 𝐹)

𝑄 finite set of states

Σ finite set of alphabet symbols

𝛿 transition function  𝛿: 𝑄 × Σ → 𝑄

𝑞0 start state

𝐹 set of accept states

𝛿 (𝑞, 𝑎) = 𝑟 means  𝑞 𝑟a
𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

1
0

𝑀1 = (𝑄, Σ,𝛿, 𝑞1, 𝐹)

𝑄 = {𝑞1, 𝑞2, 𝑞3}

Σ = {0, 1}

𝐹 = {𝑞3}

0 1

𝑞1 𝑞1 𝑞2

𝑞2 𝑞1 𝑞3

𝑞3 𝑞3 𝑞3

𝛿 =

Example:
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Finite Automata – Computation

Strings and languages

- A string is a finite sequence of symbols in Σ

- A language is a set of strings (finite or infinite)

- The empty string ε is the string of length 0

- The empty language ø is the set with no strings

Defn:  𝑀 accepts string 𝑤 = 𝑤1𝑤2 … 𝑤𝑛 each 𝑤𝑖 𝜖 Σ
if there is a sequence of states 𝑟0, 𝑟1, 𝑟2, , … , 𝑟𝑛 𝜖 𝑄
where:  

- 𝑟0 = 𝑞0
- 𝑟𝑖 = 𝛿(𝑟𝑖−1,𝑤𝑖) for  1 ≤ 𝑖 ≤ 𝑛
- 𝑟𝑛 𝜖 𝐹

Recognizing languages

- 𝐿(𝑀) = {𝑤| 𝑀 accepts 𝑤}

- 𝐿(𝑀) is the language of 𝑀

- 𝑀 recognizes 𝐿(𝑀)

Defn:  A language is regular if some 
finite automaton recognizes it.
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Regular Languages – Examples 

𝐿 𝑀1 = {𝑤| 𝑤 contains substring 11} = 𝐴

Therefore 𝐴 is regular 

More examples:

Let 𝐵 = 𝑤 𝑤 has an even number of 1s}
𝐵 is regular (make automaton for practice).

Let 𝐶 = 𝑤 𝑤 has equal numbers of 0s and 1s}
𝐶 is not regular (we will prove).

𝑀1

𝑞1 𝑞2 𝑞3
1

0,1

0

10

Goal:   Understand the regular languages
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Regular Expressions

Regular operations.  Let 𝐴, 𝐵 be languages:

- Union: 𝐴 ∪ 𝐵 = 𝑤 𝑤 ∈ 𝐴 or  𝑤 ∈ 𝐵}

- Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 and  𝑦 ∈ 𝐵} = 𝐴𝐵

- Star: 𝐴∗ = 𝑥1… 𝑥𝑘 each 𝑥𝑖 ∈ 𝐴 for 𝑘 ≥ 0}
Note: ε ∈ 𝐴∗ always

Example.  Let 𝐴 = {good, bad} and 𝐵 = {boy, girl}.

- 𝐴 ∪ 𝐵 = {good, bad, boy, girl}

- 𝐴 ∘ 𝐵 = 𝐴𝐵 = {goodboy, goodgirl, badboy, badgirl}

- 𝐴∗ = {ε, good, bad, goodgood, goodbad, badgood, 
badbad, goodgoodgood, goodgoodbad, … }

Regular expressions

- Built from  Σ, members Σ, ∅, ε [Atomic]

- By using  ∪,∘,∗ [Composite]

Examples: 

- 0 ∪ 1 ∗ = Σ∗ gives all strings over Σ

- Σ∗1 gives all strings that end with 1

- Σ∗11Σ∗ = all strings that contain 11 = 𝐿 𝑀1

Goal:   Show finite automata equivalent to regular expressions
10



Closure Properties for Regular Languages

Theorem:  If 𝐴1, 𝐴2 are regular languages, so is 𝐴1 ∪ 𝐴2 (closure under ∪)  

Proof:   Let 𝑀1 = (𝑄1, Σ, 𝛿1 , 𝑞1 , 𝐹1 ) recognize𝐴1
𝑀2 = (𝑄2, Σ, 𝛿2 , 𝑞2 , 𝐹2) recognize𝐴2

Construct 𝑀 = (𝑄 , Σ , 𝛿 , 𝑞0, 𝐹 ) recognizing𝐴1 ∪ 𝐴2

𝑀 should accept input  𝑤 if either 𝑀1 or  𝑀2 accept 𝑤.

𝑀2

𝑟

𝑀1

𝑞 𝑀

𝑞, 𝑟

Components of 𝑴: 

𝑄 = 𝑄1 × 𝑄2
= 𝑞1, 𝑞2 𝑞1 ∈ 𝑄1 and 𝑞2 ∈ 𝑄2}

𝑞0 = (𝑞1, 𝑞2)

𝛿 𝑞, 𝑟 ,𝑎 = 𝛿1 𝑞, 𝑎 ,𝛿2 𝑟,𝑎

𝐹 = 𝐹1 × 𝐹2

𝐹 = 𝐹1 × 𝑄2 ∪ 𝑄1 × 𝐹2

NO!  [gives intersection]

Check-in  1.1

?

Check-in 1.1

In the proof, if 𝑀1 and 𝑀2 are finite automata
where 𝑀1 has 𝑘1 states and 𝑀2 has 𝑘2 states 
Then how many states does 𝑀 have? 
(a)   𝑘1 + 𝑘2
(b)   𝑘1

2 + 𝑘2
2

(c)    𝑘1 × 𝑘2
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Closure Properties continued

Theorem:  If 𝐴1, 𝐴2 are regular languages, so is 𝐴1𝐴2 (closure under ∘)  

Proof:   Let 𝑀1 = (𝑄1, Σ, 𝛿1 , 𝑞1 , 𝐹1 ) recognize𝐴1
𝑀2 = (𝑄2, Σ, 𝛿2 , 𝑞2 , 𝐹2) recognize𝐴2

Construct 𝑀 = (𝑄 , Σ , 𝛿 , 𝑞0, 𝐹 ) recognizing𝐴1𝐴2

𝑀2𝑀1

𝑀 should accept input  𝑤
if 𝑤 = 𝑥𝑦 where 

𝑀1 accepts 𝑥 and  𝑀2 accepts 𝑦.    
𝑀

𝑤
𝑥 𝑦

Doesn’t work:  Where to split 𝑤?
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