Theory of Computation

Course Outline

Computability Theory 1930s - 1950s

- What is computable... or not?
- Examples:
program verification, mathematical truth
- Models of Computation:

Finite automata, Turing machines, ...

Complexity Theory 1960s - present

- What is computable in practice?
- Example: factoring problem
- P versus NP problem
- Measures of complexity: Time and Space
- Models: Probabilistic and Interactive computation

Course Mechanics

Zoom Lectures

- Live and Interactive via Chat
- Live lectures are recorded for later viewing

Zoom Recitations

- Not recorded
- Two convert to in-person
- Review concepts and more examples
- Optional unless you are having difficulty Participation can raise low grades
- Attend any recitation

Text

- Introduction to the Theory of Computation Sipser, $3^{\text {rd }}$ Edition US. (Other editions ok but are missing some Exercises and Problems).

Homework bi-weekly - 35\%

- More information to follow

Midterm (15\%) and Final exam (25\%)

- Open book and notes

Check-in quizzes for credit - 25\%

- Distinct Live and Recorded versions
- Complete either one for credit within 48 hours
- Initially ungraded; full credit for participation

Course Expectations

Prerequisites

Prior substantial experience and comfort with mathematical concepts, theorems, and proofs. Creativity will be needed for psets and exams.

Collaboration policy on homework

- Allowed. But try problems yourself first.
- Write up your own solutions.
- No bibles or online materials.

Role of Theory in Computer Science

1. Applications
2. Basic Research
3. Connections to other fields
4. What is the nature of computation?

Let's begin: Finite Automata

States: $q_{1} q_{2} q_{3}$
Transitions: $\xrightarrow{1}$
Start state:

Accept states:

Input: finite string
Output: Accept or Reject
Computation process: Begin at start state, read input symbols, follow corresponding transitions, Accept if end with accept state, Reject if not.

Examples: $01101 \rightarrow$ Accept
$00101 \rightarrow$ Reject
M_{1} accepts exactly those strings in A where $A=\{w \mid w$ contains substring 11$\}$.

Say that A is the language of M_{1} and that M_{1} recognizes A and that $A=L\left(M_{1}\right)$.

Finite Automata - Formal Definition

Defn: A finite automaton M is a 5-tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
Q finite set of states
Σ finite set of alphabet symbols
δ transition function $\delta: Q \times \Sigma \rightarrow Q$
q_{0} start state

F set of accept states

Example:

$$
\begin{aligned}
& M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right) \\
& Q=\left\{q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& F=\left\{q_{3}\right\}
\end{aligned}
$$

Finite Automata - Computation

Strings and languages

- A string is a finite sequence of symbols in Σ
- A language is a set of strings (finite or infinite)
- The empty string ε is the string of length 0
- The empty language \varnothing is the set with no strings

Recognizing languages

- $L(M)=\{w \mid M$ accepts $w\}$
- $L(M)$ is the language of M
- M recognizes $L(M)$
if there is a sequence of states $r_{0}, r_{1}, r_{2}, \ldots, r_{n} \in Q$ where:
$-r_{0}=q_{0}$
- $r_{i}=\delta\left(r_{i-1}, w_{i}\right)$ for $1 \leq i \leq n$
- $r_{n} \in F$

Defn: A language is regular if some finite automaton recognizes it.

Regular Languages - Examples

$L\left(M_{1}\right)=\{w \mid w$ contains substring 11 $\}=A$
Therefore A is regular

More examples:

Let $B=\{w \mid w$ has an even number of 1 s$\}$ B is regular (make automaton for practice).

Let $C=\{w \mid w$ has equal numbers of 0 s and 1 s$\}$ C is not regular (we will prove).

Goal: Understand the regular languages

Regular Expressions

Regular operations. Let A, B be languages:

- Union: $\quad A \cup B=\{w \mid w \in A$ or $w \in B\}$
- Concatenation: $A \circ B=\{x y \mid x \in A$ and $y \in B\}=A B$
- Star: $\quad A^{*}=\left\{x_{1} \ldots x_{k} \mid\right.$ each $x_{i} \in A$ for $\left.k \geq 0\right\}$

Note: $\varepsilon \in A^{*}$ always

Regular expressions

- Built from Σ, members $\Sigma, \emptyset, \varepsilon$ [Atomic]
- By using U,o,* [Composite]

Examples:

- $\quad(0 \cup 1)^{*}=\Sigma^{*}$ gives all strings over Σ
- $\quad \sum^{*} 1$ gives all strings that end with 1
- $\quad \Sigma^{*} 11 \Sigma^{*}=$ all strings that contain $11=L\left(M_{1}\right)$

Closure Properties for Regular Languages

Theorem: If A_{1}, A_{2} are regularlanguages, so is $A_{1} \cup A_{2}$ (closure under U)
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1} $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2}
Construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ recognizing $A_{1} \cup A_{2}$
M should accept input w if either M_{1} or M_{2} accept w.

Check-in 1.1

In the proof, if M_{1} and M_{2} are finite automata where M_{1} has k_{1} states and M_{2} has k_{2} states Then how many states does M have?
(a) $k_{1}+k_{2}$
(b) $\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}$
(c) $k_{1} \times k_{2}$

Components of M :

$$
\begin{aligned}
& \imath=Q_{1} \times Q_{2} \\
&=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1} \text { and } q_{2} \in Q_{2}\right\} \\
& x_{0}=\left(q_{1}, q_{2}\right) \\
& s((q, r), a)=\left(\delta_{1}(q, a), \delta_{2}(r, a)\right) \\
& \vec{F}=F_{1} \wedge F_{2} \mathrm{NO}!\text { [gives intersection] } \\
& F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)
\end{aligned}
$$

Closure Properties continued

Theorem: If A_{1}, A_{2} are regular languages, so is $A_{1} A_{2}$ (closure under o)
Proof: Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}

$$
M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right) \text { recognize } A_{2}
$$

Construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ recognizing $A_{1} A_{2}$

M should accept input w
if $w=x y$ where
M_{1} accepts x and M_{2} accepts y.

