ST ()

O introduces Object Oriented
Programming.

B . B coorisarelatively new
approach to programming
which supports the creation
of new data types and
operations to manipulate
those types.

O This presentation introduces
OORP.

What Is this Object ?

O There is no real
answer to the question,
but we’ll call it a Y
“thinking cap”.

O The plan is to describe
a thinking cap by
telling you what
actions can be done to
It.

Using the Object’s Slots

O You may put a piece of
paper in each of the two o
slots (green and red), with a
sentence written on each.

O You may push the green
button and the thinking cap
will speak the sentence
from the green slot’s paper.

o And same for the red
button.

That test was
abreeze'!

Example

| should
study-harder !

Thinking Cap Implementation

W

O We can implement the [P thinking_cap
thinking cap usinga [B
data type called a
class.

Thinking Cap Implementation

O The class will have class thinking_cap
two components called -
green_string and

. These
compnents are strings char red_string[50];
which hold the
Information that is
placed in the two slots.

0 Using a class permits
two new features . . .

Thinking Cap Implementation

2 The two components [EEsEe thinking_cap

will be private {

member variables. ol

This ensures that private:

nobody can directly char green_string[50];

access this char red_string[50];
information. The ;

only access Is through
functions that we
provide for the class.

Thinking Cap Implementation

X Ina C_|aSS’ the_ class thinking_cap
functions which {

manipulate the class [NqsI¥{s]{fe
are also listed.

private:
char green_string[50];

h tring[50];
Prototypes for the 1 char red_string[>0]

thinking cap
functions go here,
after the word
public:

Thinking Cap Implementation

X Ina C_|aSS’ the_ class thinking_cap
functions which {

manipulate the class [NqsI¥{s]{fe
are also listed.

private:
char green_string[50];

h tring[50];
Prototypes for the 1 char red_string[>0]

thinking cap
member functions
go here

Thinking Cap Implementation

Our thinking cap has at least three member functions:

class thinking_cap
{
public:
void slots(char new, green[-], char new red[]);
void push_green() const;
void push_red() eonst;
private:
char green_string[50];
char red_string[50];

%

Thinking Cap Implementation

The keyword const appears after two prototypes:

class thinking_cap
{
public:
void slots(char new_green|[], char new ¢);
void push_green() const;

void push_red() const; tunctions wiy] ¢ cha
nge

private: | the data storeq iy ,
char green_string[50]; thinking_cap,
char red_string[50];

&

This means that these

Files for the Thinking Cap

W

O The thinking_cap class 7

definition, which we have

just seen, Is placed with Documentation

documentation in a file called

t'unker.h, outlined here. """ """’
0 The implementations of the Class definition:

three member functions will * thinking_cap class

)) definition which we
be placed in a separate file have already seen

called thinker.cxx, which we
will examine In a few
minutes.

Using the Thinking Cap

0 A program that #include <iostream.h>
WETRICR ORI R1a: #include <stdlib.h>
thinking cap #include "thinker.h"
must Include the
thinker header
file (along with
Its other header
Inclusions).

Using the Thinking Cap

O Just for fun’ the #include <iostream.h>
EERgele]elag] #include <stdlib.h>
will declare two #include "thinker.h"
thinking_cap int I
variables named [
student and fan. thinking_cap student:

thinking_cap fan;

Using the Thinking Cap

0 Just for fun’ the #include <iostream.h>
EERgele]elag] #include <stdlib.h>
will declare two #include "thinker.h"
thinking_cap int I
objects named {
student and fan. thinking_cap student;

thinking_cap fan;

Using the Thinking Cap

~ TTN— \ |
O The program #include <iostream.h>
starts by #include <stdlib.h>
calling the #include "thinker.n"'
slots member int I
function for {

student. thinking_cap student;

thinking_cap fan;
student.slots(""Hello", ""Goodbye");

Using the Thinking Cap

~ TTN— \ |
O The program #include <iostream.h>
starts by #include <stdlib.h>
activatinq the #include "thinker.n"'
slots member int I
function for {

student thinking_cap student:
' thinking_cap fan;

student.slots(""Hello™, ""Goodbye");

Using the Thinking Cap

2 The member

function -

activation 'f{“ mai()

consists Of_ four thinking_cap student;
parts, starting thinking_cap fan;

with the ObjeCt student.slots('"Hello™, "*Goodbye™);

Using the Thinking Cap

3¢ The Instance
name Is followed

by a2 period. Int main()
{
thinking_cap student;

thinking_cap fan;

student.slots(""Hello", ""Goodbye™);

Using the Thinking Cap

After the period
IS the name of
the member Int maf(N
f R thinking. cap student;
unction that you thinking_cap fan;

are activating. student.slots(""Hello", ""Goodbye™);

Using the Thinking Cap

EE—_

@ Finally, the sinclude "thinker.h"
arguments for
the member INt Maf A

.] thinking cap student;

example the first
argument
(new_green) Is
"Hello" and the
second argument
(new_red) Is
"Goodbye".

student.slots("*Hello", ""Goodbye");

A Quiz

How would you
activate student's
push_green int main()
member function ?

thinking_cap student;

thinking_cap fan;

What would be the
output of student's
push_green
member function
at this point in the
program ?

student.slots(""Hello", ""Goodbye™);

A Quiz

Notice that the
push_green member

function has no Int main()4

thinking. cap student;
arguments- thinking_cap fan;

student.slots(""Hello™, "Goodbye™);
At this point, student.push_green();

activating
student.push_green

will print the string

Hello.

A Quiz

int main()

{

thinking_cap student;
thinking_cap fan;

student.slots("*Hello", *'Goodbye");

fan.slots(""Go Cougars!*, ""Boo!"");

student.push_green();
fan.push_green();
student.push_red();

Trace through this
program, and tell
me the complete
output.

A Quiz '

Hello
|
int main() Go Cougars!
{ Goodbye

thinking_cap student;
thinking_cap fan;

student.slots("*Hello", *'Goodbye");

fan.slots(""Go Cougars!*, ""Boo!"");

student.push_green();
fan.push_green();
student.push_red();

What you know about Objects

Class = Data + Member Functions.

You know how to define a new class type, and
place the definition in a header file.

You know how to use the header file in a
program which declares instances of the class

type.
You know how to activate member functions.

But you still need to learn how to write the
bodies of a class’s member functions.

class thinking_cap

{

public:
void slots(char new_green|], char new_red[]);
void push_green();
void push_red();
private:
char green_string[50];
char red_string[50];

%

Thinking Cap Implementation

We will look at the vody of slots,

WO arguurrerits to te e rm

class thinking_cap
{
public:
void slots(char newygreen[|, char new_red|]);
void push_green();
void push_red();
private:
char green_string[50];
char red_string[50];

%

Thinking Cap Implementation

or the ot part, th

CRi
thian 20y otner function sody.

volid thinking_cap::slots(char new_green|], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);
strcpy(green_string, new_green);
strcpy(red_string, new_red);

But there are two special features about a
member function’s body . . .

Thinking Cap Implementation

2 In the heading, the function's name Is preceded by the
class name and :: - otherwise C++ won't realize this
1s a class’s member function.

void thinking_cap::slots(char-new _green|], char new _red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);
strcpy(green_string, new_green);
strcpy(red_string, new_red);

Thinking Cap Implementation

3¢ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

void thinking_cap::slots(charnew_green|], char new_red]])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);
strcpy(green_string, new_green);
strcpy(red_string, new_red);

Thinking Cap Implementation

3¢ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

But, whose member
void thinking_cap::slots(charnew | variables are

{ these? Are they
assert(strlen(new _green) < 50 :
student.green_string

assert(strlen(new_red) < 50);

strcpy(green_string, new _gred Student.red_string
strcpy(red string, new_red); fan.green_string

fan.red_string

Thinking Cap Implementation

3¢ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

If we activate student.slots:
student.green_string
student.red_string

void thinking_cap::slots(charnew

{

assert(strlen(new _green) < 50
assert(strlen(new_red) < 50);

strcpy(green _string, new_gres
strcpy(red string, new_red);

Thinking Cap Implementation

3¢ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

If we activate
void thinking_cap::slots(charnew | fan.slots:

{ fan.green_strin
assert(strlen(new _green) < 50 & = :
fan.red_string

assert(strlen(new_red) < 50);

strcpy(green _string, new_gres
strcpy(red string, new_red);

Thinking Cap Implementation

W

Here Is the Implementation of the push_green
member function, which prints the green message:

void thinking_cap::push_green

{

cout << green_string.<< endl;

Thinking Cap Implementation

W

Here Is the Implementation of the push_green
member function, which prints the green message:

void thinking_cap::push_green

{

cout << green_string.<< endl;

Notice how this member function implementation
uses the green_string member variable of the object.

A Common Pattern

O Often, one or more member functions will
place data in the member variables...

class thinking_cap {

public:
void slots(char new green[], char new_red[]);
void push_green(’).const;
void push_red() const;

private:
char green_string[50];
char red_string[50];

0 ...S0 that other member functions may use that
data.

*ummary

O Classes have member variables and member
functions. An object Is a variable where the data
type Is a class.

0 You should know how to declare a new class type,
how to implement its member functions, how to
use the class type.

O Frequently, the member functions of an class type
place information in the member variables, or use
Information that's already in the member variables.

o In the future we will see more features of OOP.

Presentation eopyright 2010, Addisor ‘)7~"P31:cj ONEINES]
For use with Deta Stryetures and Otier Obiects Using C-r-r
s

y Miermel Main and Waler Saviter,

=

SOMme artwors in e presgnarie

(wpyri':f'm Newr Vision Taenn :J gi?s lne.) anad Co‘:c—L GaHa‘y th el (a algg (copyﬂghr
Corgl Carporarion, 3G f_:rapn es Ine., Archive Arns, Cartesia Softwareg, Irnage Clug
Grapties Ine., One Milg U lne., TechPool Studios, Totem Grapnics [ne.).

~per 3 .
ME SLRLE S

SueL they

—1—
1
A
)
3
(G

anel Othier OF‘H..-' ts Usipe -

(L D,

see 11t so long as this copyright notice

THE

END

