
 introduces Object Oriented

Programming.

 OOP is a relatively new

approach to programming

which supports the creation

of new data types and

operations to manipulate

those types.

 This presentation introduces

OOP.

Object Oriented

Programming

What is this Object ?

 There is no real

answer to the question,

but we’ll call it a

“thinking cap”.

 The plan is to describe

a thinking cap by

telling you what

actions can be done to

it.

Using the Object’s Slots

 You may put a piece of

paper in each of the two

slots (green and red), with a

sentence written on each.

 You may push the green

button and the thinking cap

will speak the sentence

from the green slot’s paper.

 And same for the red

button.

Example

Example

That test was

a breeze !

Example

I should

study harder !

Thinking Cap Implementation

 We can implement the

thinking cap using a

data type called a

class.

class thinking_cap

{

. . .

};

Thinking Cap Implementation

 The class will have

two components called

green_string and

red_string. These

compnents are strings

which hold the

information that is

placed in the two slots.

 Using a class permits

two new features . . .

class thinking_cap

{

. . .

char green_string[50];

char red_string[50];

};

Thinking Cap Implementation

 The two components

will be private

member variables.

This ensures that

nobody can directly

access this

information. The

only access is through

functions that we

provide for the class.

class thinking_cap

{

. . .

private:

char green_string[50];

char red_string[50];

};

Thinking Cap Implementation

 In a class, the

functions which

manipulate the class

are also listed.

class thinking_cap

{

public:

. . .

private:

char green_string[50];

char red_string[50];

};
Prototypes for the

thinking cap

functions go here,

after the word

public:

Thinking Cap Implementation

 In a class, the

functions which

manipulate the class

are also listed.

class thinking_cap

{

public:

. . .

private:

char green_string[50];

char red_string[50];

};
Prototypes for the

thinking cap

member functions

go here

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

Our thinking cap has at least three member functions:

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

The keyword const appears after two prototypes:

Files for the Thinking Cap

 The thinking_cap class

definition, which we have

just seen, is placed with

documentation in a file called

thinker.h, outlined here.

 The implementations of the

three member functions will

be placed in a separate file

called thinker.cxx, which we

will examine in a few

minutes.

Documentation

Class definition:

• thinking_cap class

definition which we

have already seen

Using the Thinking Cap

 A program that

wants to use the

thinking cap

must include the

thinker header

file (along with

its other header

inclusions).

#include <iostream.h>

#include <stdlib.h>

#include "thinker.h"

...

Using the Thinking Cap

 Just for fun, the

example program

will declare two

thinking_cap

variables named

student and fan.

#include <iostream.h>

#include <stdlib.h>

#include "thinker.h"

int main()

{

thinking_cap student:

thinking_cap fan;

Using the Thinking Cap

 Just for fun, the

example program

will declare two

thinking_cap

objects named

student and fan.

#include <iostream.h>

#include <stdlib.h>

#include "thinker.h"

int main()

{

thinking_cap student;

thinking_cap fan;

Using the Thinking Cap

 The program

starts by

calling the

slots member

function for

student.

#include <iostream.h>

#include <stdlib.h>

#include "thinker.h"

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

Using the Thinking Cap

 The program

starts by

activating the

slots member

function for

student.

#include <iostream.h>

#include <stdlib.h>

#include "thinker.h"

int main()

{

thinking_cap student:

thinking_cap fan;

student.slots("Hello", "Goodbye");

Using the Thinking Cap

The member

function

activation

consists of four

parts, starting

with the object

name.

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

Using the Thinking Cap

 The instance

name is followed

by a period. int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

Using the Thinking Cap

After the period

is the name of

the member

function that you

are activating.

int main() {

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

Using the Thinking Cap

 Finally, the

arguments for

the member

function. In this

example the first

argument

(new_green) is

"Hello" and the

second argument

(new_red) is

"Goodbye".

#include "thinker.h"

int main() {

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

A Quiz

How would you
activate student's
push_green
member function ?

What would be the

output of student's

push_green

member function

at this point in the

program ?

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

A Quiz

Notice that the

push_green member

function has no

arguments.

At this point,

activating
student.push_green

will print the string

Hello.

int main() {

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

student.push_green();

A Quiz

Trace through this
program, and tell
me the complete
output.

int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

fan.slots("Go Cougars!", "Boo!");

student.push_green();

fan.push_green();

student.push_red();

. . .

A Quiz

Hello

Go Cougars!

Goodbye
int main()

{

thinking_cap student;

thinking_cap fan;

student.slots("Hello", "Goodbye");

fan.slots("Go Cougars!", "Boo!");

student.push_green();

fan.push_green();

student.push_red();

. . .

What you know about Objects

Class = Data + Member Functions.

You know how to define a new class type, and

place the definition in a header file.

You know how to use the header file in a

program which declares instances of the class

type.

You know how to activate member functions.

 But you still need to learn how to write the

bodies of a class’s member functions.

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green();

void push_red();

private:

char green_string[50];

char red_string[50];

};

Remember that the member function’s bodies

generally appear in a separate .cxx file.

Thinking Cap Implementation

class thinking_cap

{

public:

void slots(char new_green[], char new_red[]);

void push_green();

void push_red();

private:

char green_string[50];

char red_string[50];

};

We will look at the body of slots, which must copy its

two arguments to the two private member variables.

Thinking Cap Implementation

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

For the most part, the function’s body is no different

than any other function body.

But there are two special features about a

member function’s body . . .

Thinking Cap Implementation

 In the heading, the function's name is preceded by the

class name and :: - otherwise C++ won't realize this

is a class’s member function.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

Thinking Cap Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

Thinking Cap Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

But, whose member

variables are

these? Are they

student.green_string

student.red_string

fan.green_string

fan.red_string
?

Thinking Cap Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

If we activate student.slots:

student.green_string

student.red_string

Thinking Cap Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

void thinking_cap::slots(char new_green[], char new_red[])

{

assert(strlen(new_green) < 50);

assert(strlen(new_red) < 50);

strcpy(green_string, new_green);

strcpy(red_string, new_red);

}

If we activate

fan.slots:

fan.green_string

fan.red_string

Thinking Cap Implementation

void thinking_cap::push_green

{

cout << green_string << endl;

}

Here is the implementation of the push_green

member function, which prints the green message:

Thinking Cap Implementation

void thinking_cap::push_green

{

cout << green_string << endl;

}

Here is the implementation of the push_green

member function, which prints the green message:

Notice how this member function implementation

uses the green_string member variable of the object.

A Common Pattern

 Often, one or more member functions will

place data in the member variables...

class thinking_cap {

public:

void slots(char new_green[], char new_red[]);

void push_green() const;

void push_red() const;

private:

char green_string[50];

char red_string[50];

};

 ...so that other member functions may use that

data.

slots push_green & push_red

 Classes have member variables and member

functions. An object is a variable where the data

type is a class.

 You should know how to declare a new class type,

how to implement its member functions, how to

use the class type.

 Frequently, the member functions of an class type

place information in the member variables, or use

information that's already in the member variables.

 In the future we will see more features of OOP.

Summary

THE END

Presentation copyright 2010, Addison Wesley Longman

For use with Data Structures and Other Objects Using C++

by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club

Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using C++ are

welcome to use this presentation however they see fit, so long as this copyright notice

remains intact.

