

INTRODUCTION TO C
PROGRAMMING

Table of Contents

Course Objectives

Syllabus

Course Outcomes (Cos)

CO-PO Mapping

??== for each unit

Lecture Plan

Activity based learning

Lecture notes

Assignments

Part A Q&A

Part B Qs

List of Supportive online Certification courses

Real time applications in day to day life and to industry

Contents beyond Syllabus

??====

Assessment Schedule (proposed and actual date)

Prescribed Text Books & Reference Books

Mini Project Suggestions

Course Objectives

OCS752 INTRODUCTION TO C PROGRAMMING L T P C

3 0 0 3

OBJECTIVES

To develop C Programs using basic programming constructs

To develop C programs using arrays and strings

To develop applications in C using functions and structures

Syllabus
OCS752 INTRODUCTION TO C PROGRAMMING L T P C 3 0 0 3

UNIT I INTRODUCTION 9

Structure of C program – Basics: Data Types – Constants –Variables - Keywords –
Operators: Precedence and Associativity - Expressions - Input/output statements,
Assignment statements –Decision-making statements - Switch statement - Looping
statements – Pre-processor directives -Compilation process – Exercise Programs:
Check whether the required amount can be withdrawn based on the available
amount – Menu-driven program to find the area of different shapes – Find the sum
of even numbers

UNIT II ARRAYS 9

Introduction to Arrays – One dimensional arrays: Declaration – Initialization -
Accessing elements –Operations: Traversal, Insertion, Deletion, Searching - Two
dimensional arrays: Declaration –Initialization - Accessing elements – Operations:
Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive
and negative values present in the array – Sort the numbers using bubble sort - Find
whether the given is matrix is diagonal or not.

UNIT III STRINGS 9

Introduction to Strings - Reading and writing a string - String operations (without
using built-in string functions): Length – Compare – Concatenate – Copy – Reverse
– Substring – Insertion – Indexing – Deletion – Replacement – Array of strings –
Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise
programs: To find the frequency of a character in a string - To find the number of
vowels, consonants and white spaces in a given text - Sorting the names.

UNIT IV FUNCTIONS 9

Introduction to Functions – Types: User-defined and built-in functions - Function
prototype – Function definition - Function call - Parameter passing: Pass by value -
Pass by reference - Built-in functions (string functions) – Recursive functions –
Exercise programs: Calculate the total amount of power consumed by „n‟ devices
(passing an array to a function) – Menu-driven program to count the numbers which
are divisible by 3, 5 and by both (passing an array to a function) – Replace the
punctuations from a given sentence by the space character (passing an array to a
function)

UNIT V STRUCTURES 9

Introduction to structures – Declaration – Initialization – Accessing the members –
Nested Structures – Array of Structures – Structures and functions – Passing an
entire structure – Exercise programs: Compute the age of a person using structure
and functions (passing a structure to a function) – Compute the number of days an
employee came late to the office by considering his arrival time for 30 days (Use
array of structures and functions)

TOTAL:45 PERIODS

Course Outcomes

CO 1 - Develop algorithmic solutions to simple computational

problems K1

CO 2 - Read, write, execute by hand simple C programs. K2

CO 3 - Structure simple C programs for solving problems using
statements K2

CO 4 – Represent data using arrays and strings operations K3

CO 5 - Decompose a C program into functions and pointers K3

CO 6 - Represent and write program using structure and union K3

CO – PO Mapping

CO PO
Mapping

Level
Justification

CO PO Mapping Level Justification

CO1 PO1 2 Apply simple mathematical concepts for writing algorithms

CO1 PO2 2 Identify formulae for the given problem

CO1

PO3

2

Design algorithmic way of problem solving

CO1

PO5

2

Recognize the need of algorithm in implementation

CO1

PO12

1

Apply logic to solve simple problem statement

CO2

PO1

3

Identify the data type and operators to solve the problem

CO2

PO2

3

Design the expression in an efficient way

CO2

PO3

2

Recognize the need of basic data types and operators

CO2 PO5 2 Apply control flow statement for solving the problem

CO2

PO12

1

Formulate the algorithm into executable c code

CO3 PO1 3 Develop a complete program in a simple way

CO3

PO2

3

Recognize the need of control flow statements

CO3 PO3 3 Apply the knowledge to find the possible code for function

CO3

PO5

2

Identify the code for decomposition as function

CO3

PO12

1

Develop functions and reuse it whenever required to reduce the

lines of code

CO4 PO1 2 Recognize the need of function concepts

CO4

PO2

2

Apply compound data knowledge to select any one

CO4

PO3

2

Apply the concept of pointers

CO4

PO5

2

Design and Develop program using the selected compound data

CO4

PO12

1

Recognize the need of structure

CO5 PO1 2 Apply the basic idea of handling with union

CO5

PO2

2

Identify the number of modes and operations on structure in

detail

CO5 PO3 2 Develop programs using structure and union

Lecture Plan
Unit I

Unit I - Introduction

S.N
o

Topics No.

of
Peri

ods

Propos

ed
Date

Actual

Lecture
Date

Pertain

ing CO

Taxon

omy
Level

Mode of

Delivery

1 Structure of C program-

Basics: Datatypes

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

2 Constants, Variables,

Keywords, Operators,

Precedence and
Associativity

1 CO1 K2 PPT, Chalk &

Talk

3 Expressions,

Input/Output

statements,

Assignment statements

1 CO1 K2 PPT, Chalk &

Talk

4 Decision-making

statements, Switch

statement,

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

5.6 Looping statements,

Pre-processor directives

2 CO1 K2 PPT, Chalk &

Talk

7 Compilation process

Exercise Programs- Ex.
Prog 1 : Check whether
the required amount can
be withdrawn based on
the available balance

1 CO1 K2 PPT, Chalk &

Talk

8,9 Exercise Programs:
Ex. Prog. 2 : Menu
driven program to find
the area of different
shapes.

Ex. Prog. 3 : Find the
sum of even numbers.

2 CO1 K2 PPT, Chalk &

Talk

Activity Based Learning
Unit I

Activity Based Learning

Learn by solving problems – Tutorial Sessions can be conducted

– Tutorial sessions available in Skillrack

for practice

Learn by questioning

Learn by doing hands-on IN VIRTUAL LAB.

Lecture Notes
UNIT I INTRODUCTION 9

Structure of C program – Basics: Data Types – Constants –Variables - Keywords –
Operators: Precedence and Associativity - Expressions - Input/output statements,
Assignment statements –Decision-making statements - Switch statement - Looping
statements – Pre-processor directives -Compilation process – Exercise Programs:
Check whether the required amount can be withdrawn based on the available
amount – Menu-driven program to find the area of different shapes – Find the sum
of even numbers

UNIT I
INTRODUCTION

Structure of C Program

A C program is divided into different sections. There are six main sections to

a basic c program.

The six sections are,
• Documentation
• Link
• Definition
• Global Declarations
• Main functions
• Sub programs

The whole code follows this outline. Each code has a similar outline. Now
let us learn about each of this layer in detail.

Fig1: Basic Structure of a C Program

Documentation Section
The documentation section is the part of the program where the programmer
gives the details associated with the program. He usually gives the name of the
program, the details of the author and other details like the time of coding and
description. It gives anyone reading the code the overview of the code.

Link Section

This part of the code is used to declare all the header files that will be used in
the program. This leads to the compiler being told to link the header files to the
system libraries.

Definition Section
In this section, we define different constants. The keyword define is used in this
part.

Example:

#define PI= 3.14

Global Declaration Section

This part of the code, where the global variables are declared. All the global
variable used are declared in this part. The user-defined functions are also
declared in this part of the code.

Example:

float a (float rd);

int x;

Main Function Section
Every C-programs has the main function. Each main function contains 2 parts.
A declaration part and an Execution part. The declaration part is the part
where all the variables are declared. The execution part begins with the curly
brackets and ends with the curly close bracket. Both the declaration and
execution part are inside the curly braces.

Example:

void main ()

{

float x=10.9;
printf(“%f”,x);
}

Sub Program Section

All the user-defined functions are defined in this section of the program.

Example:

int sum (int x, int y)
{
Return x+y;
}

Sample Program

The C program here will find the area of a square

Example:

File Name: areaofasquare.c

Aim: A C program to find the area of a square (user enters the value of a
side)

#include<stdio.h>

#include<conio.h>

void main()

{

int side,area;

printf(“Enter the value of side”);

scanf(“%d”,&side);

area=side*side;

printf(“The area of a Square is %d”,area);

getch();

}

Basic Data Types

C language provides very few basic datatypes. The datatypes are

specified by a standard keyword. The data types are used to define the type of

data for particular variable. Various data types that are used in C is enlisted in the

following table.

Type Size Range

char 1 byte -127 to 127 or 0 to 255

unsigned 1 byte 0 to 255

signed char 1 byte -127 to 127

int 4 bytes -2147483648 to 2147483647

unsigned int 4 bytes 0 to 4294967295

signed int 4 bytes -2147483648 to 2147483647

short int 2 bytes -32768 to 32767

unsigned short
int

2 bytes 0 to 65535

signed short int 2 bytes -32768 to 32767

long int 4 bytes -21147483647 to 2147483647

signed long int 4 bytes -21147483647 to 2147483647

unsigned long int 4 bytes 0 to 4294967295

float 4 bytes +/-3.4e +/-38

double 8 bytes +/-1.7e +/-308

long double 8 bytes +/-1.7e +/-308

https://www.youtube.com/watch?v=bS6uNMmIoQ0

https://www.youtube.com/watch?v=bS6uNMmIoQ0

Constants:

Constants are identifiers whose value does not change.

Integer type Constant

A constant of integer type consists of a sequence of digits.

Example:

1,34,546,8909 etc. are valid integer constants.

Floating point type constant

Integer numbers are inadequate to express numbers that have a fractional

point. A floating point constant therefore consistent of an integer part, a decimal

point, a fractional part, and an exponent field containing an e or E (e means

exponents) followed by an integer where the fraction part and integer part are a

sequence of digits.

Example:

Floating point numbers are 0.02, -0.23, 123.345, +0.34 etc.

Character Constant

A character constant consists of a single character enclosed in single

quotes. For example, „a‟, „@‟ are character constants. In computers, characters are

stored using machine character set using ASCII codes.

String Constant

A string constant is a sequence of characters enclosed in double quotes.

So “a” is not the same as „a‟. The characters comprising the string constant are stored in

successive memory locations. When a string constant is encountered in a C program,
the compiler records the address of the first character and appends a null character
(„\0‟) to the string to mark the end of the string.

Declaring Constant

#define PI 3.14159
#define service_tax 0.12

Rules for declaring constant

Rule 1: Constant names are usually written in capital letters to visually
distinguish them from other variable names which are normally written in
lower case characters

Rule 2: No blank spaces are permitted in between the # symbol and define
keyword

Rule 3: Blank space must be used between #define and constant name and
constant value

Rule 4: #define is a pre-processor compiler directive and not a statement.
Therefore, it does not end with a semi-colon.

Variables:

A variable is defined as a meaningful name given to the data storage
location

in computer memory. C language supports two basic kinds of variables

• Numeric Variable

• Character Variable

Numeric Variable:

Numeric variable can be used to store either integer value or floating point

values. While an integer value is a whole number without a fraction part or
decimal point a floating point value can have a decimal point.

Numeric variables may also be associated with modifiers like short,
long, signed, and unsigned. The difference between signed and unsigned numeric
variable is that signed variable can be either negative or positive but unsigned
variables can only be positive.

Character Variable:

Character variable can include any letter from the alphabet or from

the ASCII chart and numbers 0 – 9 that are given with in single quotes.

Example:

int emp_num;

float salary;

double balance;

In C variable are declared at three basic places as follows

• When a variable is declared inside a function it is known as a local variable.

• When a variable is declared in the definition of function parameter it is known
as formal parameter.

• When the variable is declared outside all functions, it is known as a global
variable.

Keywords:

Keywords are special reserved words associated with some meaning.

auto double int struct

continue if volatile break

else long switch default

signed while case enum

register typedef do sizeof

char extern return union

for static const float

short unsigned goto void

Operators

C provides a rich set of operators to manipulate data. We can

divide all the C operators into the following groups

• Arithmetic Operators

• Unary Operator

• Relational Operators

• Logical Operators

• Assignment Operator

• Bitwise Operators

Arithmetic Operators

The following table list arithmetic operators

Operator Description Example

+ Addition A + B

- Subtraction A - B

* Multiplication A * B

/ Division A/B

% Modulus A%B

/* Example to understand Arithmetic operator */
#include<stdio.h>
#include<conio.h>
void main()
{
int a = 10, b=3;
printf("a + b = ", (a + b));
printf("a - b = ",(a - b));

printf("a / b = ",(a / b));
printf("a % b = ",(a % b));
}

printf("a * b = ",(a * b));

Output:

a + b = 13
a - b = 7
a * b = 30
a / b = 3 a
a% b = 1

Unary Operators

The following are the unary operators

Operator Description Example

+ Unary plus operator +A

- Unary minus operator -A

++ Increment operator ++A or A++

-- Decrement operator --A or A--

++ and - - works in two different modes

i. Pre increment/decrement – When it is part of a statement,

increment/decrement gets evaluated first, followed by the execution of

the statement.

ii. Post increment/decrement – When the operator is part of a statement,

the statement gets processed first, followed by increment/decrement

operation.

// Example for pre increment/decrement

#include<stdio.h>
#include<conio.h>
void main()
{

int a = 10, b=3;
printf("a++ = ", (a ++));
printf("a - - = " , (a - -));
}

Output:
a++ = 11
b-- = 2

Relational Operators

Relational operators are used to test condition and results true or false

value, The following table lists relational operators

Operator Description Exampl
e

== Two values are checked, and if equal, then the
condition becomes true

(A ==
B)

!= Two values are checked to determine whether they are
equal or not, and if not equal, then the condition becomes
true

(A != B)

> Two values are checked and if the value on the left is
greater than the value on the right, then the condition
becomes true.

(A > B)

< Two values are checked and if the value on the left is less
than the value on the right, then the condition becomes
true

(A < B)

>= Two values are checked and if the value on the left is
greater than equal to the value on the right, then the
condition becomes true

(A >=
B)

<= Two values are checked and if the value on the left is less
than equal to the value on the right, then the condition
becomes true

(A <=
B)

/* Example to understand Relational operator */

#include<stdio.h>
#include<conio.h>
void main()
{
int a = 10, b=20;
printf("a= = b=", (a ==b));
printf("a !=b= " , (a!=b));
printf(“a>b=”,(a>b));
printf(“a>=b=”,(a>=b));
printf(“a<b=”,(a<b));
printf(“a<=b=”,(a<=b))
}

Output:
a == b = false
a != b = true
a > b = false
a < b = true
b >= a = true
b <= a = false

Logical Operators

Logical operators are used to combine more than one condition.

The following table lists logical operators

Operator Description Example

&&

This is known as Logical AND & it combines two
variables or expressions and if and only if both the
operands are true, then it will return true

(A && B) is false

||

This is known as Logical OR & it combines two
variables or expressions and if either one is true or
both the operands are true, then it will return true

(A || B) is true

! Called Logical NOT Operator. It reverses the value
of a Boolean expression

!(A && B) is true

Example

#include<stdio.h>
void main()
{

boolean a = true;
boolean b = false;
printf("a && b = " + (a&&b));
printf("a || b = " + (a||b));
printf("!(a && b) = " + !(a && b));
}

Assignment Operator

Simple Assignment
=, assigns right hand side value to left hand side variable
Ex:
int a;
a = 10;

Output:
a && b = false
a || b = true
!(a && b) = true

Compound Assignment

+=, -=, *=, /=, %=, &=, |=, ^=, >>=, <<=, assigns right

hand side value after the computation to left hand side variable

Ex:

int a;
int b;
a += 10; // means a = a + 10;
a &= b; // means a = a & b;

Bitwise Operators

Bitwise operator act on integral operands and perform binary operations. The
lists of bitwise operators are

i.

ii.

Bitwise AND

Bitwise OR

&

|

iii. Bitwise EXOR ^

iv. Bitwise NOT ~ (unary operator)

v. Shift Left <<

vi. Shift Ri >>

Bitwise AND

The & operator compares corresponding bits between two numbers and if

both the bits are 1, only then the resultant bit is 1. If either one of the bits

is 0, then the resultant bit is 0.

Example :
int x = 5; int y = 9; x & y = 1

5 - > 0 1 0 1

9 - > 1 0 0 1

 0 0 0 1

Bitwise OR

The | operator will set the resulting bit to 1 if either one of them is 1.

It will return 0 only if both the bits are 0.

Example :

int x = 5;
int y = 9;
x | y = 13

Bitwise EXOR

The ^ operator compares two bits to check whether these bits are

different. If they are different, the result is 1.Otherwise, the result is 0.

This operator is also known as XOR operator.

Example :

int x = 5;
int y = 9;
x | y = 12

#include<stdio.h>
void main()
{

int x = 5;
int y = 9;
int a = x & y; int b = x | y; int c = x ^ y;
printf("x & y = "+a);
printf(" x | y = "+b);
printf("x ^ y = "+c);
}

Output:
x & y = 1
x | y = 13
x ̂ y = 12

5 - > 0 1 0 1

9 - > 1 0 0 1

 1 1 0 1

5 - > 0 1 0 1

9 - > 1 0 0 1

 1 1 1 0

Bitwise NOT

The negation ~ operators complements all the bits, 1 are converted to 0

and 0s are converted to 1s.

For Eg.

int a =5;

~a = -5

5 -> 0 1 0 1
~5 - > 1 0 1 0

Shift Operators

The shift operators (<< and >>) shift the bits of a number to the left

or right, resulting in a new number. They are used only on integral

numbers (and not on floating point numbers, i.e. decimals).

Shift Right

The right shift operator(>>) is used to divide a number in the multiples

of 2, while the left shift operator(<<) is used to multiply a number in

the multiples of 2.

For Eg.

int x = 16; x = x >> 3;

right shift operator >>, divides by 2 to the power of number specified

after the operator. In this case, we have 3 as the value after the right

shift operator. So, 16 will be divided by the value 2 to the power of 3,

which is 8.

The result is 2.

When we represent 16 in binary form, we will get the following binary value :

0 1 0 0 0 0

When we apply >> which is the right shift operator,

the positions to the right (represented by the

number after the binary digit 1, we will get :

bit represented by 1 moves by

3 right shift operator). After

shifting

0 1 0

x = 2

Shift Left

Eg.

int x = 8;

x = x << 4;

left shift operator <<, multiplies by 2 to the power of number specified

after the operator. In this case, we have 4 as the value after the left shift

operator. So, 8 will be multiplied by the value 2 to the power of 4, which is

16.

The result is 128.

When we represent 8 in binary form, we will get the following binary value:

0 1 0 0 0

When we apply << which is the left shift operator,

the positions to the left (represented by the number

after the binary digit 1, we will get :

bit represented by

right shift

operator).

1 moves by

4 After

shifting

0 1 0 0 0 0 0 0 0

X=128

#include<stdio.h>

Void main()

{

int x =8;
printf("The original value of x is “,x);

printf("After using << 2, the new value is “,x << 2);
printf("After using >> 4, the new value is “, x >> 4);

}

Output:
The original value of x is 8

After using << 2, the new value is 2

After using >> 4, the new value is 128

Precedence and Associativity

OP

ASSO

OP

ASSO

OP

ASSO

OP

ASSO

()

[]

.

->

++ —

left-to-right

<<

>>

left-to-right

^

left-to-right

? :

right-to-left

++ —

+ –

! ~

(type

)

*

&

sizeof

right-to-left

< <

=

> >

=

left-to-right

|

left-to-right

=

+= -=

*= /=

%= &

=

^= |=

<<=

>>=

right-to-left

* /

%

left-to-right

==

!=

left-to-right

&&

left-to-right

,

left-to-right

+ –

left-to-right

& left-to-right || left-to-right

Expression

An expression is a formula in which operands are linked to each other by the use

of operators to compute a value. An operand can be a function reference, a

variable, an array element or a constant.

Example: x = 9/2 + a-b;

Input /Output Statements:

Input means to provide the program with some data to be used in the program
and Output means to display data on screen or write the data to a printer or a file.

C programming language provides many built-in functions to read any given input
and to display data on screen when there is a need to output the result.

Streams

A stream act in two ways. It is the source of data as well as the

destination of the data. C programs input and output data from a stream. It is
associated with a physical devices such as the monitor or with a file stored on the
secondary memory. C use two forms of streams Text and Binary.

We can do input/output from the keyboard from any file. Consider input of data is

the keyboard and output data is the monitor.

Printf() and Scanf () functions

The standard input-output header file, named stdio.h contains the definition of the
functions printf() and scanf(), which are used to display output on screen and to
take input from user respectively.

#include<stdio.h>
#include<conio.h>
void main()
{
float i;

printf(“Enter the value”);
scanf(“%f”,&i);
printf(“The value is %f=“,i);
getch();
}

Format String Meaning

%d Scan or print an integer as signed decimal
number

%f Scan or print a floating point number

%c To scan or print a character

%s To scan or print a character string.

Putchar() & getchar() functions

The getchar() function reads a character from the terminal and returns it as an integer.
This function reads only single character at a time. The putchar() function displays the
character passed to it on the screen and returns the same character.

#include<stdio.h>
void main()
{
char q;

Printf(“Enter a Character”);
q=getchar();
putchar(q);
}

Assignment Statement

An assignment statement sets the value stored in the storage location denoted by
a variable_name. In other words, it copies a value into the variable.

Syntax:

variable = expression;

Decision Making Statement

Decision making statements are mainly three type.

• if
• if…else
• if…else…if

Simple if

syntax :

if(Booleanexpressio)

{

statement–block;

}

Next statement;

#includ<stdio.h>
void main()
{

int n=5;
if(n<25)
{
printf(“This is if statement”);
}
}

if .. else statement

Syntax

if(boolean expression)

{

True-block statements;

}

else

{

False-block statements;

}

Next statement;

Output:
This is if statement

#include<stdio.h>
void main()
{
int age;

printf(“Enter the age”);
scanf(%d”,&age);
if(age>18)
{
printf(“Eligible to vote”);
}
else
{
printf(“Not eligible to vote”);
}
}

Cascading if..else

Syntax:

if (condition1)

{

statement-1

}

….

else if(conditio-n)

{

statement-n

}

Else

{

default statement

}

next statement

//program to find largest three number

#include<stdio.h>

void main()

{

int n1,n2,n3;

printf(“Enter the number”);

scanf(“%d%d%d”,&n1,&n2,&n3);

if(n1>n2 && n1>n3)

{

printf(“%d is largest number”,n1);

}

else If(n2>n3)

{

printf(“%d is the largest number”,n2);

}

else

{

printf(“%d is the largest number”,n3);

}

}

Switch Statement

The switch-case conditional construct is a more structured way of testing

for multiple conditions rather than resorting to a multiple if statement

Syntax:

switch(expression)

{

case 1: case 1 block

break;

case 2: case 2 block

break;

default: default block;

break;

}

statement;

/* This is an example of a switch case statement*/

#include<stdio.h>
Void main()
{
int w;

printf(“Enter the week”);
scanf(“%d”,&w);
switch(w)
{

case 1:
printf(“Sunday”);
break;
case 2:
printf(“Monday”);
break;
case 3:
printf(“Tuesday”);
break;
case 4:
printf(“Wednesday”);
break;
case 5:
printf(“Thursday”);
break;
case 6:
printf(“Friday”);
break;

case 7:

printf(“Saturday”);
break;
Default:
Printf(“Invalid input please enter number between (1 – 7)”);
}
}

Looping Statement

A loop execute the sequence of statements many times until the

stated condition becomes false.

Looping statements are

• for

• while

• do …. while

for Loop

The for loop initialize the value before the first step. Then checking the

condition against the current value of variable and execute the loop statement

and then perform the step taken for each execution of loop body. For-loops

are also typically used when the number of iterations is known before entering

the loop.

Syntax

for(initialization; condition; increment/decrement)

{

Body of the loop

}

/* This is an example of a for loop */

#include<stdio.h>
void main()
{

int i;
for(i=0;i<=5;i++)
{
printf(“i:”,i);
}

While Loop

It‟s a entry controlled loop, the condition in the while loop is evaluated,

and if the condition is true, the code within the block is executed. This

repeats until the condition becomes false

Syntax
while(condition)
{
Body of the loop
}

/* This is an example for a while loop */

#include<stdio.h>
void main()
{

int i = 0;
while (i < 5)
{
printf("i: “,i);
i = i + 1;
}
}

Output:
i: 1
i: 2
i: 3
i: 4
i: 5

Output:
i: 0

I: 1

i: 2

i: 3

i: 4

do.. while Loop

It‟s a exit controlled loop, the body of the loop gets executed first

followed by checking the condition. Continues with the body if the condition is

true, else loops gets terminated.

Syntax

do

{

body of the loop

}

while(Boolean expression);

/* This is an example of a do-while loop */

#include<stdio.h>
void main()
{

int i=5;
do
{
println("i: “,i);
i = i + 1;
}
while (i < 5);
}

Output:
I: 5

Pre-processor Directives

This preprocessor is a macro processor this is used automatically by the C
compiler to transform your program before actual compilation. It is called macro
processor because it allows you to define macros, which are brief abbreviations of
longer constructs. A macro is a segment of code which is replaced by the value of
macro. Macro is defined by #define directive.

Preprocessing directives are lines in your program that start with #. The # is
followed by an identifier that is the directive name. For example, #define is the
directive that defines a macro. Whitespace is also allowed before and after the #.

The # and the directive name cannot come from a macro expansion. For
example, if foo is defined as a macro expanding to define, that does not make #foo a
valid preprocessing directive.

Some of the preprocessor directives are:

#include
#define
#undef
#ifdef
#ifndef
#if
#else
#elif
#endif
#error
#pragma

#include

The #include preprocessor directive is used to paste code of given file into
current file. It is used include system-defined and user-defined header files.

#define

A macro is a segment of code which is replaced by the value of macro. Macro is
defined by #define directive.

Syntax:

#define token value

#undef

To undefine a macro means to cancel its definition. This is done with
the #undef directive.

Syntax: #undef token

#include<stdio.h>

#define PI 3.1415

#undef PI

Main()

{

Printf(“%f”,PI);

}

#ifdef

The #ifdef preprocessor directive checks if macro is defined by #define. If yes, it
executes the code.

Syntax:

#ifdef MACRO

//code

#endif

#ifndef

The #ifndef preprocessor directive checks if macro is not defined by #define. If yes, it

executes the code.

Syntax:

#if

#ifndef MACRO

//code

#endif

The #if preprocessor directive evaluates the expression or condition. If condition is
true, it executes the code

Syntax:

#if expression

//code

#endif

#else

The #else preprocessor directive evaluates the expression or condition if condition
of #if is false. It can be used with #if, #elif, #ifdef and #ifndef directives.

Syntax:

#error

#if

//code

#else

//else code

#endif

The #error preprocessor directive indicates error. The compiler gives fatal error
if #error directive is found and skips further compilation process.

#include<stdio.h>

#ifndef _MATH_

#error First include then compile

#else

void main()

{

int a;

a=sqrt(9);

printf(“%f”,a);

}

#endif

#pragma

The #pragma preprocessor directive is used to provide additional information to the
compiler. The #pragma directive is used by the compiler to offer machine or operating-
system feature. Different compilers can provide different usage of #pragma directive.

Syntax:

#pragma token

Compilation Process:

The compilation is a process of converting the source code into object code. It is
done with the help of the compiler. The compiler checks the source code for the
syntactical or structural errors, and if the source code is error-free, then it generates
the object code.

The c compilation process converts the source code taken as input into the object
code or machine code. The compilation process can be divided into four steps, i.e.,
Pre-processing, Compiling, Assembling, and Linking.

Preprocessor

The source code is the code which is written in a text editor and the source code file is

given an extension ".c". This source code is first passed to the preprocessor, and then the

preprocessor expands this code. After expanding the code, the expanded code is passed

to the compiler.

Compiler

The code which is expanded by the preprocessor is passed to the compiler. The compiler

converts this code into assembly code. Or we can say that the C compiler converts the

pre-processed code into assembly code.

Assembler

The assembly code is converted into object code by using an assembler. The name of the

object file generated by the assembler is the same as the source file. The extension of

the object file in DOS is '.obj,' and in UNIX, the extension is 'o'. If the name of the source

file is ‘welcome.c', then the name of the object file would be 'hello.obj'.

Linker

Mainly, all the programs written in C use library functions. These library functions are pre-

compiled, and the object code of these library files is stored with '.lib' (or '.a') extension.

The main working of the linker is to combine the object code of library files with the

object code of our program. Sometimes the situation arises when our program refers to

the functions defined in other files; then linker plays a very important role in this. It links

the object code of these files to our program. Therefore, we conclude that the job of the

linker is to link the object code of our program with the object code of the library files

and other files. The output of the linker is the executable file. The name of the

executable file is the same as the source file but differs only in their extensions. In DOS,

the extension of the executable file is '.exe', and in UNIX, the executable file can be

named as 'a.out'. For example, if we are using printf() function in a program, then the

linker adds its associated code in an output file.

Exercise:

Check whether the required amount can be withdrawn based on

the available amount

#include <stdio.h>

unsigned long amount=1000, deposit, withdraw;
int ch, pin, l;

char transaction ='y';
void main()
{
while (pin != 9090)
{
printf("ENTER YOUR SECRET PIN NUMBER:");

scanf("%d", &pin);
if (pin != 9090)
printf("PLEASE ENTER VALID PASSWORD\n");
}
do
{

printf("********Welcome to ATM Service**************\n");
printf("1. Check Balance\n");
printf("2. Withdraw Cash\n");
printf("3. Deposit Cash\n");
printf("4. Quit\n");
printf("***?*\n\n");
printf("Enter your choice: ");
scanf("%d", &ch);
switch (ch)
{
case 1:

printf("\n YOUR BALANCE IN Rs : %lu ", amount);
break;
case 2:
printf("\n ENTER THE AMOUNT TO WITHDRAW: ");

scanf("%lu", &withdraw);
if (withdraw % 100 != 0)
{
printf("\n PLEASE ENTER THE AMOUNT IN MULTIPLES OF 100");
}
else if (withdraw >(amount - 500))
{
printf("\n INSUFFICENT BALANCE");
}

else

{

amount = amount - withdraw;

printf("\n\n PLEASE COLLECT CASH");
printf("\n YOUR CURRENT BALANCE IS%lu", amount);
}

break;
case 3:
printf("\n ENTER THE AMOUNT TO DEPOSIT");

scanf("%lu", &deposit);
amount = amount + deposit;
printf("YOUR BALANCE IS %lu", amount);
break;
case 4:
printf("\n THANK U USING ATM");

break;
default:
printf("\n INVALID CHOICE");
}

printf("\n\n\n DO U WANT TO CONTINUE?(y/n): \n");
flush(stdin);
scanf("%c", &transaction);

if (transaction == 'n'|| transaction == 'N')
l = 1;
}
while (!l);
printf("\n\n THANKS FOR USING OUT ATM SERVICE");
}

Menu – driven program to find the area of different shape

#include <stdio.h>
void main ()
{

int ch,rad,length,width,breadth,height;
float area;
printf("Input 1 for area of circle\n");
printf("Input 2 for area of rectangle\n");
printf("Input 3 for area of triangle\n");
printf("Input your choice : ");
scanf("%d",&ch);

switch(ch)

{

case 1:

printf("Input radius of the circle : ");

scanf("%d",&rad);

area=3.14*rad*rad;

break;

case 2:

printf("Input length and width of the rectangle : ");

scanf("%d%d",&length,&width);

area=length*width;

break;

case 3:

printf("Input the base and height of the triangle :");
scanf("%d%d",&breadth,&height);
area=.5*breadth*height;
break;
}
printf("The area is : %f\n",area);
}

Find the sum of even numbers

#include <stdio.h>
void main()
{

int i, x, sum=0;

/* Input upper limit from user */
printf("Enter upper limit: ");
scanf("%d", &x);
for(i=2; i<=x; i+=2)
{

/* Add current even number to sum */
sum = sum+i;

}
printf("Sum of all even number between 1 to %d = %d", x, sum);

}

Assignment
Unit I

Assignment Questions

CO 1 Develop C program solutions to simple computational problems

1. Write a C program to check whether the number is palindrome number or not

a palindrome number.

Test Data :

Input a three digit number : 121

Expected Output :

The given number is :

121

The given number is palindrome number

K2 CO1

2. Write a program in C to calculate factorial of a given number.

Test Data :

Input the given number :5

Expected Output :

The factorial of a given number is : 120

K2 CO1

Part A
Question & Answer

PART A QUESTION & ANSWERS

1. What is Token? (CO1)(K2)

Token is a building block of a program. A C program consists of various tokens

and a token is either a keyword, an identifier, a constant, a string literal, or a

symbol.

2. What is Keyword? (CO1)(K2)

Keywords are special reserved words associated with some meaning.

3. What is keyword auto for? (CO1)(K2)

By default, every local variable of the function is automatic (auto). In the

below function both the variables „x‟ and „y‟ are automatic variables.

void fun()

{

int x,

auto int q;

}

4. What are main characteristics of C language? (CO1)(K2)

C is a procedural language. The main features of C language include low-level
access to memory, simple set of keywords, and clean style. These features
make it suitable for system programming like operating system or compiler
development.

5. What are reserved words? (CO1)(K2)

Reserved words are words that are part of the standard C language library.
This means that reserved words have special meaning and therefore cannot be
used for purposes other than what it is originally intended for. Examples of
reserved words are float, default, and return.

6. What are the types of C tokens? (CO1)(K2)

C tokens are of six types. They are,

Keywords (eg: int, while),

Identifiers (eg: main, total),

Constants (eg: 10, 20),

Strings (eg: “total”, “hello”),

Special symbols (eg: (), {}),

Operators (eg: +, /,-,*)

7. What is the use of printf() and scanf()? (CO1)(K2)

printf(): The printf() function is used to print the integer, character, float and string

values on to the screen.

Following are the format specifier:

• %d: It is a format specifier used to print an integer value.

• %s: It is a format specifier used to print a string.

• %c: It is a format specifier used to display a character value.

• %f: It is a format specifier used to display a floating point value.

scanf(): The scanf() function is used to take input from the user.

8. What is data types in C? (CO1)(K2)

• Data types in C language are defined as the data storage format that a variable

can store a data to perform a specific operation.

• Data types are used to define a variable before to use in a program.

• Size of variable, constant and array are determined by data types.

9. What is typecasting? (CO1)(K2)

The typecasting is a process of converting one data type into another is known as

typecasting. If we want to store the floating type value to an int type, then we will

convert the data type into another data type explicitly.

(type-name) expression

10. What is the difference between variable declaration and variable definition?

(CO1)(K2)

Declaration associates type to the variable whereas definition gives the value to the

variable.

11. What are global variable and how do you declare them? (CO1)(K1)

Global variables are variables that can be accessed and manipulated anywhere in the

program. To make a variable global, place the variable declaration on the upper

portion of the program, just after the pre_processor directives section.

12. What is local variable in C (CO1)(K2)

· The variables which are having scope/life only within the function are called local

variables.

· These variables are declared within the function and can‟t be accessed outside the
function.

13. What is constant in C (CO1)(K2)

• Constants refer to fixed values. They are also called as literals.

• C Constants are also like normal variables. But, only difference is, constant

values can‟t be modified by the program once they are defined. Constants may

be belonging to any of the data type.

14. What are the types of constants in C? (CO1)(K2)

• Integer constants

• Real or Floating point constants

• Octal & Hexadecimal constants

• Character constants

• String constants

• Backslash character constants

15. What is the difference between = and == symbol? (CO1)(K2)

The = symbol is often used in mathematical operations. It is used to assign a value

to a given variable. On the other hand, the == symbol, also known as "equal to" or

"equivalent to", is a relational operator that is used to compare two values.

16. Describe the order of precedence with regards of operator in C. (CO1)(K2)

Order of precedence determines which operation must first take place in an operation

statement or conditional statement. On the top most level of precedence are the

unary operators !, +, – and &. It is followed by the regular mathematical operators

(*, / and modulus % first, followed by + and -). Next in line are the relational

operators <, <=, >= and >. This is then followed by the two equality operators ==

and !=. The logical operators && and || are next evaluated. On the last level is the

assignment operator =.

17. What is the difference between pre-increment operator and post increment

operator? (CO1)(K2)

• Pre increment operator is used to increment variable value by 1 before

assigning the value to the variable.

• Post increment operator is used to increment variable value by 1 after assigning

the value to the variable.

18. What are all decision control statement in C? (CO1)(K2)

There are 3 types of decision making control statements in C language. They are,

1. if statements

2. if else statements

3. nested if statements

19. What will happen if break statement is not used in switch case in C? (CO1)(K2)

• Switch case statements are used to execute only specific case statements

based on the switch expression.

• If we do not use break statement at the end of each case, program will execute

all consecutive case statements until it finds next break statement or till the

end of switch case block.

20. What is nested loop? (CO1)(K2)

A nested loop is a loop that runs within another loop. Put it in another sense, you

have an inner loop that is inside an outer loop. In this scenario, the inner loop is

performed a number of times as specified by the outer loop. For each turn on the

outer loop, the inner loop is first performed.

21. What is the difference between while and do…while loop in C? (CO1)(K2)

• While loop is executed only when given condition is true.

• Whereas, do-while loop is executed for first time irrespective of the condition.

After executing while loop for first time, then condition is checked.

Part B
Questions

PART B QUESTION BANK

1. Explain in detail about Datatypes in C. (CO1)(K2)

2. Explain about structure of a C program. (CO1)(K2)

3. Explain in detail about Arithmetic and Relational operators in C. (CO1)(K2)

4. Explain in detail about Bitwise and logical operators in C. (CO1)(K2)

5. Explain in detail about operator precedence. (CO1)(K2)

6. Illustrate about Conditional statement with example program. (CO1)(K2)

7. Describe iterative statement with example program. (CO1)(K1)

8. Write a program using for loop to calculate factorial of a number. (CO1)(K1)

9. Write a program to check whether the given number is Armstrong or not.

(CO1)(K3)

10. Write a program to find the sum of a digit. (CO1)(K1)

11. Write a program to find the given number is positive or negative or zero.

(CO1)(K2)

12. Write a program if the word is “Programming in C” display it in reverse

manner. (CO1)(K1)

13. Write a program to display the month in order using switch case. (CO1)(K2)

14. Write a program to print the following pattern (CO1)(K1).

*

**

15. Write a program to check whether the required amount can be withdrawn

based on the available amount. (CO1)(K1)

16. Write a menu driven program to find the area of different shapes.

(CO1)(K2)

17. Write a program to find the sum of even number. (CO1)(K3)

Supportive Online
Certification
Unit I

Certification Courses

NPTEL

Problem solving through Programming in C

https://nptel.ac.in/courses/106/105/106105171/

Coursera

1) C for Everyone: Structured Programming

https://www.coursera.org/learn/c-structured-programming

2) C for Everyone: Programming Fundamentals

https://www.coursera.org/learn/c-for-everyone

https://nptel.ac.in/courses/106/105/106105171/
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone

Real time Applications
Unit I

Real-Time implementation in C programming

1. Operating Systems

2. Development of New Language

3. Computation Platforms

4. Embedded Systems

5. Graphics and Games

Content beyond syllabus
Unit I

Content beyond syllabus

Problem Solving and Algorithms

Learn a basic process for developing a solution to a problem. This process can

be used to solve a wide variety of problems.

An algorithm development process

Obtain a description of the problem.

Analyze the problem

Develop a high-level algorithm

Refine the algorithm by adding more details

Review the algorithm.

Assessment Schedule
Unit I

Prescribed Text book &
References
Unit I

Text books & References

TEXT BOOK

1. Reema Thareja, "Programming in C", Oxford University Press,
Second Edition, 2016

REFERENCES:

1. Kernighan, B.W and Ritchie, D. M, "The C Programming
language", Second Edition, Pearson Education, 2006

2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh
edition, Pearson Publication

3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE
Learning India pvt. Ltd., 2011

4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and
Programming in C", First Edition, Oxford University Press, 2009

Mini Project Suggestions
Unit I

Mini_Projects in C Language

1. Cricket Score Board Project

2. Customer Billing System

3. Hospital Management System

4. Calendar Application

5. Medical Store Management System

Thank you

Disclaimer:

This document is confidential and intended solely for the educational purpose of RMK Group of
Educational Institutions. If you have received this document through email in error, please notify the
system manager. This document contains proprietary information and is intended only to the
respective group / learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender immediately by e-mail if you
have received this document by mistake and delete this document from your system. If you are not
the intended recipient you are notified that disclosing, copying, distributing or taking any action in
reliance on the contents of this information is strictly prohibited.

Please read this disclaimer before proceeding:

This document is confidential and intended solely for the educational purpose of
RMK Group of Educational Institutions. If you have received this document
through email in error, please notify the system manager. This document
contains proprietary information and is intended only to the respective group /
learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender
immediately by e-mail if you have received this document by mistake and delete
this document from your system. If you are not the intended recipient you are
notified that disclosing, copying, distributing or taking any action in reliance on
the contents of this information is strictly prohibited.

OCS752
INTRODUCTION TO C

PROGRAMMING
Department: : Electrical and Electronics Engineering

Batch/Year: 2017-2021
Created by: Dr. S. Meenakshi

Date: 13-07-2020

Table of Contents

Course Objectives

Syllabus

Course Outcomes (Cos)

CO-PO Mapping

Lecture Plan

Activity based learning

Lecture notes

Assignments

Part A Q&A

Part B Qs

List of Supportive online Certification courses

Real time applications in day to day life and to industry

Contents beyond Syllabus

Assessment Schedule (proposed and actual date)

Prescribed Text Books & Reference Books

Mini Project Suggestions

Course Objectives

OCS752 INTRODUCTION TO C PROGRAMMING L T P C

3 0 0 3

OBJECTIVES

To develop C Programs using basic programming constructs

To develop C programs using arrays and strings

To develop applications in C using functions and structures

Syllabus
OCS752 INTRODUCTION TO C PROGRAMMING L T P C 3 0 0 3

UNIT I INTRODUCTION 9

Structure of C program – Basics: Data Types – Constants –Variables - Keywords –
Operators: Precedence and Associativity - Expressions - Input/output statements,
Assignment statements –Decision-making statements - Switch statement - Looping
statements – Pre-processor directives -Compilation process – Exercise Programs:
Check whether the required amount can be withdrawn based on the available
amount – Menu-driven program to find the area of different shapes – Find the sum
of even numbers

UNIT II ARRAYS 9

Introduction to Arrays – One dimensional arrays: Declaration – Initialization -
Accessing elements –Operations: Traversal, Insertion, Deletion, Searching - Two
dimensional arrays: Declaration –Initialization - Accessing elements – Operations:
Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive
and negative values present in the array – Sort the numbers using bubble sort - Find
whether the given is matrix is diagonal or not.

UNIT III STRINGS 9

Introduction to Strings - Reading and writing a string - String operations (without
using built-in string functions): Length – Compare – Concatenate – Copy – Reverse
– Substring – Insertion – Indexing – Deletion – Replacement – Array of strings –
Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise
programs: To find the frequency of a character in a string - To find the number of
vowels, consonants and white spaces in a given text - Sorting the names.

UNIT IV FUNCTIONS 9

Introduction to Functions – Types: User-defined and built-in functions - Function
prototype – Function definition - Function call - Parameter passing: Pass by value -
Pass by reference - Built-in functions (string functions) – Recursive functions –
Exercise programs: Calculate the total amount of power consumed by ‘n’ devices
(passing an array to a function) – Menu-driven program to count the numbers which
are divisible by 3, 5 and by both (passing an array to a function) – Replace the
punctuations from a given sentence by the space character (passing an array to a
function)

UNIT V STRUCTURES 9

Introduction to structures – Declaration – Initialization – Accessing the members –
Nested Structures – Array of Structures – Structures and functions – Passing an
entire structure – Exercise programs: Compute the age of a person using structure
and functions (passing a structure to a function) – Compute the number of days an
employee came late to the office by considering his arrival time for 30 days (Use
array of structures and functions)

TOTAL:45 PERIODS

Course Outcomes

CO 1 - Develop algorithmic solutions to simple computational

problems K1

CO 2 - Read, write, execute by hand simple C programs. K2

CO 3 - Structure simple C programs for solving problems using
statements K2

CO 4 – Represent data using arrays and strings operations K3

CO 5 - Decompose a C program into functions and pointers K3

CO 6 - Represent and write program using structure and union K3

CO – PO Mapping

CO PO
Mapping

Level
Justification

CO PO Mapping Level Justification

CO1 PO1 2 Apply simple mathematical concepts for writing algorithms

CO1 PO2 2 Identify formulae for the given problem

CO1

PO3

2

Design algorithmic way of problem solving

CO1

PO5

2

Recognize the need of algorithm in implementation

CO1

PO12

1

Apply logic to solve simple problem statement

CO2

PO1

3

Identify the data type and operators to solve the problem

CO2

PO2

3

Design the expression in an efficient way

CO2

PO3

2

Recognize the need of basic data types and operators

CO2 PO5 2 Apply control flow statement for solving the problem

CO2

PO12

1

Formulate the algorithm into executable c code

CO3 PO1 3 Develop a complete program in a simple way

CO3

PO2

3

Recognize the need of control flow statements

CO3 PO3 3 Apply the knowledge to find the possible code for function

CO3

PO5

2

Identify the code for decomposition as function

CO3

PO12

1

Develop functions and reuse it whenever required to reduce the

lines of code

CO4 PO1 2 Recognize the need of function concepts

CO4

PO2

2

Apply compound data knowledge to select any one

CO4

PO3

2

Apply the concept of pointers

CO4

PO5

2

Design and Develop program using the selected compound data

CO5

PO12

1

Recognize the need of structure

CO5 PO1 2 Apply the basic idea of handling with union

CO6

PO2

2

Identify the number of modes and operations on structure in

detail

CO6 PO3 2 Develop programs using structure and union

Lecture Plan
Unit II

Unit II - Arrays in C

S.N
o

Topics No.

of

Peri
ods

Propos

ed

Date

Actual

Lecture

Date

Pertain

ing CO

Taxon

omy

Level

Mode of

Delivery

1 Introduction to Arrays

– One dimensional
arrays: Declaration –

Initialization -

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

2 Accessing elements

Operations: Traversal,

Selection,

1 CO1 K2 PPT, Chalk &

Talk

3 Insertion, Deletion,

Searching

1 CO1 K2 PPT, Chalk &

Talk

4 Two dimensional

arrays: Declaration –

Initialization -

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

5.6 Accessing elements,

Operations: Read – Print
– Sum – Transpose

2 CO1 K2 PPT, Chalk &

Talk

7
Sorting operations

1 CO1 K2 PPT, Chalk &

Talk

8,9 Exercise Programs:

Ex. Prog. 1 : Print the

number of positive and
negative values present

in the array –
Ex. Prog. 2 :Sort the
numbers using bubble
sort –

Ex. Prog. 3 : Find
whether the given is

matrix is diagonal or
not. and industrial case

studies

2 CO1 K2 PPT, Chalk &

Talk

Activity Based Learning
Unit II

Activity Based Learning

Learn by solving problems – Tutorial Sessions can be conducted

– Tutorial sessions available in Skillrack

for practice

Learn by questioning

Learn by doing hands-on IN ONLINR / VIRTUAL LAB.

Lecture Notes
UNIT II ARRAYS 9

Introduction to Arrays – One dimensional arrays: Declaration – Initialization -
Accessing elements –Operations: Traversal, Insertion, Deletion, Searching - Two
dimensional arrays: Declaration –Initialization - Accessing elements – Operations:
Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive
and negative values present in the array – Sort the numbers using bubble sort - Find
whether the given is matrix is diagonal or not.

Unit II - Arrays in C : LEARNING PLAN
Topic 2.0 and 2.1

Sl. No. Topics Learning
Content
(hh.mm)

Post-Session
(Quiz +
Assignment)
(hh:mm)

2.0 and
2.1

Introduction to Arrays – One
dimensional arrays: Declaration –
Initialization - Accessing elements
Operations: Traversal, Insertion,
Deletion, Searching

3.00 1.00

2.2 Two dimensional arrays:
Declaration –Initialization -
Accessing elements, Operations:
Read – Print – Sum – Transpose,
Sorting

3.00 0.50

2.3 Exercise Programs:

Ex. Prog 1 : Print the number of
positive and negative values
present in the array –
Ex. Prog 2 :Sort the numbers using
bubble sort - Ex. Prog 3 : Find
whether the given is matrix is
diagonal or not. and More
programs on C, Industrial case
studies

3.00 1.00

 Total 9.00 2.50

Introduction to
Arrays
Topic. 2.0

 Introduction to Array

Array Intro.
An array is a collection of similar data elements.
These data elements have the same data type.
The elements of the array are stored in consecutive memory locations and are
referenced by an index (also known as the subscript). If one subscript, then we call
as one dimensional array.

Memory representation in an array
The array elements are stored in contiguous memory location.s
For the array, int stuMark[]={43,70,56}; the memory representation shown as
follows:

By using an array, we just declare like this,
int studMark[1000];

This will reserve 1000 contiguous memory locations for storing the students’ marks.
Graphically, this can be depicted as in the following figure.

Compared to the basic data type (int, float, char and double) it is an aggregate or
derived data type.

All the elements of an array occupy a set of contiguous memory locations.
Why need to use array type?

Consider the following issue:

"We have a list of 1000 students' marks of an integer type. If using the
basic data type (int), we will declare something like the following…"
int studMark0, studMark1, studMark2, ..., studMark999

Can you imagine how long we have to write the declaration part by using normal
variable declaration?

int main(void){

int studMark1, studMark2, studMark3, studMark4, …, …,
studMark998, stuMark999, studMark1000;

…

…

return 0;}

This absolutely has simplified our declaration of the variables.
We can use index or subscript to identify each element or
location in the memory.

Hence, if we have an index of jIndex, studMark[jIndex] would
refer to the jIndexth element in the array of studMark.

For example, studMark[0] will refer to the first element of the
array.
Thus by changing the value of jIndex, we could refer to any
element in the array.

So, array has simplified our declaration and of course,
manipulation of the data.

One Dimensional
Arrays
Topic 2.1
Declaration

Initialization

Accessing elements

Operations

Traversal, (*+selection)

Insertion,

Deletion,

Searching

* TO BE COVERED FOR THE TOPICS

 One Dimensional Array

One/Single Dimensional array
Dimension refers to the array's size, which is how big the array is.

Declaration of One Dimensional array

Declaring an 1D dimnl. array means specifying three things:

The data type- what kind of values it can store ex, int, char, float

Name- to identify name of the array

The size- the maximum number of values that the array can hold

Arrays are declared using the following syntax.

type name[size];

For example, to declare an array of 30 characters, that construct a people name, we
could declare,

char cName[30];

Which can be depicted as follows,

In this statement, the array character can store up to 30 characters with the first
character occupying location cName[0] and the last character occupying cName[29].

Note that the index runs from 0 to 29. In C, an index always starts from 0 and ends
with array's (size-1).
So, take note the difference between the array size and subscript/index terms.

Examples of the one-dimensional array declarations,

int xNum[20], yNum[50];
float fPrice[10], fYield;
char chLetter[70];

The first example declares two arrays named xNum and yNum of type int. Array
xNum can store up to 20 integer numbers while yNum can store up to 50 numbers.
The second line declares the array fPrice of type float. It can store up to 10
floating-point values, fYield is basic variable which shows array type can be declared
together with basic type provided the type is similar.
The third line declares the array chLetter of type char. It can store a string up to 69
characters.

Note: Why 69 instead of 70? Remember, a string has a null terminating character
(\0) at the end, so we must reserve for it.

Initialization of an array
An array may be initialized at the time of declaration.
Giving initial values to an array.
Initialization of an array may take the following form,

type array_name[size] = {a_list_of_value};
For example:

int idNum[7] = {1, 2, 3, 4, 5, 6, 7};
float fFloatNum[5] = {5.6, 5.7, 5.8, 5.9, 6.1};
char chVowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

The first line declares an integer array idNum and it immediately assigns the values
1, 2, 3, ..., 7 to idNum[0], idNum[1], idNum[2],..., idNum[6] respectively.
The second line assigns the values 5.6 to fFloatNum[0], 5.7 to fFloatNum[1], and
so on.
Similarly the third line assigns the characters 'a' to chVowel[0], 'e' to chVowel[1],
and so on.

Note: again, for characters we must use the single apostrophe/quote (') to enclose
them.
Also, the last character in chVowel is NULL character ('\0').

2) Inputting Values for the elements

1) Initialize the elements

2) Inputting Values for the elements

3) Assigning Values to the elements

Initialization of an array of type char for holding strings may take the following form,

char array_name[size] = "string_lateral_constant";

For example, the array chVowel in the previous example could have been written
more compactly as follows,

char chVowel[6] = "aeiou";

When the value assigned to a character array is a string (which must be enclosed in
double quotes), the compiler automatically supplies the NULL character but we still
have to reserve one extra place for the NULL.
For unsized array (variable sized), we can declare as follow,

char chName[] = "Mr. Dracula";

C compiler automatically creates an array which is big enough to hold all the
initializer.

Store values in the array
(3 possible ways) →

int idNum[7] = {1, 2, 3, 4, 5, 6, 7};

float fFloatNum[5] = {5.6, 5.7, 5.8, 5.9, 6.1};
char chVowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

int i, marks[10];
for(i=0;i<10;i++)

scanf("%d", &marks[i]);

int i, arr1[10], arr2[10];
for(i=0;i<10;i++)

arr2[i] = arr1[i];

3) Assigning Values to the elements

1) Initialize the elements

Accessing elements

To access all the elements of the array, you must use a loop. That is, we can access
.

all the elements of the array by varying the value of the subscript into the array. But

note that the subscript must be an integral value or an expression that evaluates to

an integral value.
int i, marks[10];
for(i=0;i<10;i++)

marks[i] = -1;

Calculating the address of array elements

Address of data element, A[k] = BA(A) + w(k – lower_bound)

Here, A is the array

k is the index of the element of which we have to calculate the address

BA is the base address of the array A.

w is the word size of one element in memory, for example, size of int is 2.

99 67 78 56 88 90 34 85

Marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7]
1000 1002 1004 1006 1008 1010 1012 1014

Marks[4] = 1000 + 2(4 – 0)
= 1000 + 2(4) = 1008

Calculating the length of the array
Length = upper_bound – lower_bound + 1

Where, upper_bound is the index of the last element

and lower_bound is the index of the first element in the array

99 67 78 56 88 90 34 85

Marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7]]

Here, lower_bound = 0, upper_bound = 7
Therefore, length = 7 – 0 + 1 = 8

Program example 1: Write A program to read and display n numbers using an array
#include<stdio.h>
#include<conio.h>
int main()
{

int i=0, n, arr[20];
printf("\n Enter the number of elements : ");
scanf("%d", &n);

for(i=0;i<n;i++)
{

printf("\n arr[%d] = ", i);
scanf("%d",&arr[i]);

OUTPUT:

}
printf("\n The array elements are ");
for(i=0;i<n;i++)

printf("arr[%d] = %d\t", i, arr[i]);
return 0;

}

Arrays allow programmers to group related items of the same data type in one
variable. However, when referring to an array, one has to specify not only the array
or variable name but also the index number of interest.

Program example 2: Sum of array’s elements

// finding sum of array's element
#include <stdio.h>
// replace every nSize occurrences with 10
#define nSize 10

int main(void){
int iCount, nSum = 0, iNum[nSize] = {6,4,2,3,5,10,12};

f.or (iCount=0; iCount<nSize; iCount++) {

// display the array contents
printf("%d ",iNum[iCount]);
// do the summing up
nSum = nSum + iNum[iCount];

}
// display the sum

printf("\nSum of %d numbers is = %d\n", iCount, nSum);
return 0;

}

OUTPUT:

Note: the array's element which is not
initialized is set to 0 automatically

i) C has no bounds checking on arrays. One could overwrite either

end of an array and write into some other variable’s data or even into the program’s
code.
E.g. int count[10],i;

for (i=0;i<100;i++)
count[i] = i;

This code will compile without error, but it is incorrect because the for loop will
cause the array count to be overrun.

ii) e.g. int aiArrayOfIntegers[10];
That is, the ten elements of the array can be referenced as

aiArrayOfIntegers[0],aiArrayOfIntegers[1],
aiArrayOfIntegers[2], ... , aiArrayOfIntegers[9].
These values may be accessed as shown below.

Var1 = aiArrayOfIntegers[0];
Note that in the declaration statement, aiArrayOfIntegers[10]means that there are

10 elements in the array; but in an assignment statement,
aiArrayOfIntegers[10]refers to the 11th element of a 10-element array. That is, if
there are ten elements in an array, the subscript of the last element of the
array is 9, and not 10. This is a common programming mistake and results
in some indeterminate value being returned by aiArrayOfIntegers[10],
which is very likely to cause program failure.

iii) In the declaration statement, the subscript can be a named constant;
however, it cannot be a variable.
IV) The amount of storage required to hold an array is directly related to its
type and size.

For a single dimensional array,
the total size in bytes is computed as:
total-bytes = sizeof(data-type) * length of array.

GUIDED ACTIVITY1 – Arrays

Operations

Operation on array includes: 1) Traversal, 2) selectiion, 3) Insertion, 4)
Deletion 5) Searching

1) Traversal

Traversal is an operation in which each element of a list, stored in an array, is
visited..

The travel proceeds from the zeroth element to the last element of the list.

Exercise Program 1 : Traverse on the list and Print the number of positive and
negative values present in the array -as <0,=0,>0)

Algorithm:

Step 1: get the elements

Step 2: visit all the elements from oth element to the last element.

Step 3. chk for element is <0 =0 and >0, if so do count of each criteria.

Step 4: count of negative, zero and positive in which travel proceeds from oth to
last.

Step 5. print the count for each criteria.

#include <stdio.h>

void main()

{

int list[10];

int n;

int i, neg=0, zero=0, pos=0;

printf("\n enter the size of the list\n");

scanf("%d",&n);

printf("Enter the elements one by one");

for(i=0;i<n;i++)
{

printf("\n Enter number %d number",i);

scanf("%d", &list[i]);
}

OUTPUT:

for(i=0;i<n;i++)

{

if(list[i]<0)

neg=neg+1;

else

if(list[i]==0)

zero=zero+1;

else

}

pos=pos+1;

printf("No of Negative numbers in given list are %d", neg);

printf("No of Zeros in given list are %d", zero);

printf("No of Positive numbers in given list are %d", pos);

}

2) Selection

An array allows selection of an element for given index.

Array is called as random access data structure.

Algorithm:

Step 1: enter size of the list

Step 2: enter the merit list one by one

Step 3: get into menu of two choice 1-querya and 2. quit

Step 4: get the pos value and find the value in that pos value

Step 5. print that value

#include<stdio.h>
#include<conio.h>
void main()
{

float merit[10];
int size,i,pos,choice;
float percentage;
printf("\n Enter the size of the list");
scanf("%d", &size);
printf("\n Enter the merit list one by one");
for(i=0; i < size; i++)
{

printf("\n Enter Data:");
scanf("%f", &merit[i]);

}
do
{
printf("\n menu");
printf("\n Querry…….1");
printf("\n Quit… 2");
printf("\n Enter your choice");
scanf("%d",&choice);
switch(choice)
{
case 1:
printf("\n Enter position");
scanf("%d", &pos);
percentage=merit[pos];
printf("\n percentage=%4.2f", percentage);
break;

case 2:
printf("\n Quitting");

}
printf("\n press a key to continue…:");}
while(choice!=2);}

OUTPUT:

3) Insertion

Insertion is the operation that inserts an element at a given location of the list.

To insert an element at ith location of the list, then all elements from the right of
i+ 1th location have to be shifted one step towards right.

Algorithm:
Step 1: Set upper_bound = upper_bound + 1
Step 2: Set A[upper_bound] = VAL
Step 3; EXIT

Step 1: [INITIALIZATION] SET I = N
Step 2: Repeat Steps 3 and 4 while I >= POS
Step 3: SET A[I + 1] = A[I]
Step 4: SET I = I – 1

[End of Loop]
Step 5: SET N = N + 1
Step 6: SET A[POS] = VAL
Step 7: EXIT

#include <stdio.h>
int main()

{ int array[100], position, i, n, value;
printf("Enter number of elements in array\n");
scanf("%d", &n);
printf("Enter %d elements\n", n);
for (i = 0; i < n; i++)
scanf("%d", &array[i]);
printf("Enter the location where you wish to insert an element\n");
scanf("%d", &position);
printf("Enter the value to insert\n");
scanf("%d", &value);
for (i = n - 1; i >= position - 1; i--)

array[i+1] = array[i];array[position-1] = value;
printf("Resultant array is\n");
for (i = 0; i <= n; i++) printf("%d\n", array[i]);
return 0;
}

OUTPUT:

4) Deletion

Deletion is the operation that removes an element from a given location of the list.
To delete an element from the ith location of the list, then all elements from the
right of i+ 1th location have to be shifted one step towards left to preserve
contiguous locations in the array.

Algorithm:
Step 1: Set upper_bound = upper_bound - 1
Step 2: EXIT

Step 1: [INITIALIZATION] SET I = POS
Step 2: Repeat Steps 3 and 4 while I <= N - 1
Step 3: SET A[I] = A[I + 1]
Step 4: SET I = I + 1

[End of Loop]
Step 5: SET N = N - 1
Step 6: EXIT

#include <stdio.h>

int main()

{

int array[100], position, i, n;

printf("Enter number of elements in array\n");

scanf("%d", &n);

printf("Enter %d elements\n", n);

for (i = 0 ; i< n ; i++)

scanf("%d", &array[i]);

printf("Enter the location where you wish to delete element\n");

scanf("%d", &position);

if (position >= n+1)

printf("Deletion not possible.\n");

else

{

for (i= position - 1 ; i < n - 1 ; i++)

array[i] = array[i+1];

printf("Resultant array is\n");

for(i = 0 ; i < n - 1 ; i++)

printf("%d\n", array[i]);

OUTPUT:

}

return 0;

}

5) Searching

Search is an operation in which a given list is searched for a particular value. A list
can be searched sequentially wherein the search for the data item starts from the
beginning and continues till the end of the list. This method is called linear Search..
It is straightforward and works as follows: we compare each element with the
element to search until we find it or the list ends.

linear Search
#include<stdio.h>
void main(){

int numlist[20];
int n,pos, val,i;
printf("\n enter the size of the list");
scanf("%d", &n);
printf("\n Enter the elements one by one");

for(i=0;i<n;i++){
scanf("%d", &numlist[i]);}

printf("\n Enter the value to be searched");
scanf("%d", &val);

for(i=0;i<n;i++){
if(val== numlist[i]) {

printf("%d is present at location %d.\n",val,i+1);
break; }

if(i==n)
printf("%d isn't present in the array.\n",val);

}}

OUTPUT:

Binary Search

Binary search in C language to find an element in a sorted array. If the array isn't
sorted, you must sort it using a sorting technique such as bubble sort, insertion or
selection sort. If the element to search is present in the list, then we print its
location. The program assumes that the input numbers are in ascending order.
#include<stdio.h>
int main(){

int c, first, last, midd, n, search, array[100];
printf("Enter number of elements:\n");
scanf("%d",&n);
printf("Enter %d integers:\n", n);

for (c = 0; c < n; c++)
scanf("%d",&array[c]);

printf("Enter the value to find:\n");
scanf("%d", &search);
first = 0;
last = n - 1;

while (first <= last) {
midd = (first+last)/2;
if (array[midd] == search)

break;

else if (search < array[midd])
last = midd - 1;

else

first = midd + 1; }
if (first > last)

printf("Element not found");
else

printf("Element is at positoin %d",midd+1);}

ONE DIMENSIONAL ARRAYS FOR INTER FUNCTION COMMUNICATION are 1)
Passing individual elements and 2) Passing entire array

OUTPUT:

Test Yourself –2.0 & 2.1 Topics
(Arrays in C - Introduction to Arrays – One dimensional arrays)

1) Which of the following correctly declares an array?
A. int anarray[10];
B. int anarray;
C. anarray{10};
D. array anarray[10];

2. What is the index number of the last element of an array with 29 elements?
A. 29
B. 28
C. 0
D. Programmer-defined

3. You need to decide on an optimal search algorithm to be used to search for a data which
is to be stored in an alphabetically sorted order. Which method would you use?
a) Linear Search
b) Binary Search
c) Radix Search
d) None of the above

4. Which of the following correctly accesses the seventh element stored in foo, an array with
100 elements?
A. foo[6];
B. foo[7];
C. foo(7);
D. foo;

5. Which of the following gives the memory address of the first element in array foo, an
array with 100 elements?
A. foo[0];
B. foo;
C. &foo;
D. foo[1];

6. Does array bound checking happen in C language?

7. What does the subscript of an array indicate?

8. Consider the following declaration:
int aiNum[]={10,20,30,40,50};

Assume that the starting address is 1000 as an analogy, what is the address of the fourth
element of the array?

9. Double adNumber[4];
How many bytes are allocated for the above array declaration?

10. Int aiNum[4];
Which of the following is the CORRECT statement to get the value into the index2.
Scanf("%d",aiNum[2]);
Scamf("%d",&aiNum[2];

REVIEW questions and answers – 2.0 & 2.1 Topics
(Arrays in C - Introduction to Arrays – One dimensional
arrays)

i) State Whether the following statement are true or false:

a) The type of all elements in an array must be the same

True

b) When an array is declared, c automatically initializes its elements to zero

True

c) Accessing an array outside its range is a compile time error

True

ii) Identify the errors, if any in each of declaration, by assumption ROW and
COLUMN are declared as symbolic constants.

a) Float values [10,14];

incorrect

b) Int sum[];

correct

c) Double salary[i+ROW]

incorrect

iii) Fill in the blanks in the following statements

a) The variable used as a subscript in an array is popularly known as
 variable

index variable

b) An array can be initialized either at run time or at

compile time

c) Purpose of array is to

a collection of variables of the same type

A Summary on 1D Arrays

• Before using an array, its type and size must be declared

• The first element in the array is numbered 0, so the last element is 1 less than
the size of the array

• The elements of the array are always stored in contiguous memory locations

• An array can be initialized at the same place where it is declared.

Example: int num[6] = {2,4,12,5,45,5}

if the array is initialized at the time of declaration, mentioning the dimension of
array is optional.

Example: double dNum[] = {12.3, 34.2, -23.4, -11.3};

• If the array elements are not given any specific values, they are supposed to
contain garbage values.

• In C there is no check to see if the subscript used for an array exceeds the size of
the array. Data entered with a subscript exceeding the array size will simply be
placed in memory outside the array. This will lead to unpredictable results, to say
the least, and there will be no error messages to warn the programmer.

Unit II - Arrays in C : LEARNING PLAN
Topic 2.2

Sl. No. Topics Learning
Content
(hh.mm)

Post-Session
(Quiz +

Assignment)
(hh:mm)

2.0 and
2.1

Introduction to Arrays – One
dimensional arrays: Declaration –
Initialization - Accessing elements
Operations: Traversal, Insertion,
Deletion, Searching

3.00 1.00

2.2 Two dimensional arrays:
Declaration –Initialization -
Accessing elements, Operations:
Read – Print – Sum – Transpose,
Sorting

3.00 0.50

2.3 Exercise Programs:

Ex. Prog 1 : Print the number of
positive and negative values
present in the array –
Ex. Prog 2 :Sort the numbers using
bubble sort - Ex. Prog 3 : Find
whether the given is matrix is
diagonal or not. and industrial case
studies

3.00 1.00

 Total 9.00 2.50

Two Dimensional
Arrays
Topic. 2.2
Multi and Two dimensional arrays
Declaration
Initialization
Accessing elements
Operations:

Read – Print – Sum – Transpose
(*+sorting, addition, subtraction, multiplication, determinant, sum of principal diagonal

element)

* To be covered for the 2D matrix operations

Second

Dimension

 Multi Dimensional Arrays (array of arrays)

Two Dimensional/2D Arrays

C looks a two dimensional array as an array of a one dimensional array. The 2-D
array be visualized as a rectangular grid of rows and columns.

Declaration of two Dimensional/2D Arrays
A two dimensional array has two subscripts/indexes.
The first subscript refers to the row, and the second, to the column.
Its declaration has the following form,
data_type array_namer[row_size][column size];

For examples,
int xInteger[3][4];
float matrixNum[20][25];

The first line declares xInteger as an integer array with 3 rows and 4 columns.
Second line declares a matrixNum as a floating-point array with 20 rows and 25
columns.

Therefore, a two dimensional mXn array is an array that contains m*n data elements

and each element is accessed using two subscripts, i and j where i<=m and j<=n

int marks[3][5]

Rows/Colum
ns

Col 0

Col 1

Col2

Col 3

Col 4

Row 0
Marks[0][0] Marks[0][1] Marks[0][2] Marks[0][3] Marks[0][4]

Row 1
Marks[1][0] Marks[1][1] Marks[1][2] Marks[1][3] Marks[1][4]

Row 2
Marks[2][0] Marks[2][1] Marks[2][2] Marks[2][3] Marks[2][4]

R/C

Col
0

Col
1

C

ol
2

C

ol
3

Col
4

Row
0

Row
1

Row
2

Memory representation of a two dimensional array

There are two ways of storing a 2-D array can be stored in memory. The first way is
row major order and the second is column major order.

The 2D array can be represented in two ways:
1. Row major order of storage
2. Column major order of storage

Raw Major Order
In row-major order, array elements are stored row-wise
In C Language, row-major order is used
For example, i

int a[2][3]={{2,3,4},{1,2,3}};
memory representation is

Column Major Order
In column-major order, array elements are stored column-wise
For example, I

int a[3][2]={{2,1},{3,2},{4,3}};
memory representation is

2 3 4 1 2 3

2 1 3 2 4 3

3000 3002 3004 3006 3008 3010
a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

3000 3002 3004 3006 3008 3010
a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

Initialization of two Dimensional/2D Arrays

A two dimensional array is initialized in the same was as a single dimensional array
is initialized.

The general form for initializing a 2D array is

datatype
arrayname[rowsize][colsize]={{row0element},{row1element}…{rownel
emnt}}

For example,

int marks[2][3]={90, 87, 78, 68, 62, 71};
int marks[2][3]={{90,87,78},{68, 62, 71}};

row0 row1

Write a program to print the elements of a 2D array
#include<stdio.h>
#include<conio.h>
main(){

int arr[2][2] = {12, 34, 56,32};

int i, j;
for(i=0;i<2;i++) {

printf("\n");
for(j=0;j<2;j++)

printf("%d\t", arr[i][j]);
}
return 0;}

If we assign initial string values for the 2D array it will look something like the
following,

char Name[6][10] = {"Mr. Bean", "Mr. Bush", "Nicole", "Kidman", "Arnold",
"Jodie"};

Here, we can initialize the array with 6 strings, each with maximum 9 characters
long.
If depicted in rows and columns it will look something like the following and can be
considered as contiguous arrangement in the memory.

Take note that for strings the null character (\0) still needed.
From the shaded square area of the figure we can determine the size of the array.
For an array Name[6][10], the array size is 6 x 10 = 60 and equal to the number of
the colored square. In general, for

array_name[x][y];

The array size is = First index x second index = xy.
This also true for other array dimension, for example three dimensional array,

array_name[x][y][z]; => First index x second index xy third index = xyz

For example,

ThreeDimArray[2][4][7] = 2 x 4 x 7 = 56.

And if you want to illustrate the 3D array, it could be a cube with wide, long and
height dimensions.

Accessing of two Dimensional/2D Arrays

The element of a 2D-Array can be accssed using 2 subscripts [][], a[0][0] to access
the element at the 0th row and oth column.

To access all the elements of a 2D array, use two for loops.

for(i=0;i<row;i++) {

for(j=0;j<col;;j++)

scanf("%d", &arr[i][j]);

//accessing elemnet of ith row and jth col.

}

Advantages and limitations

Advantages:

Arrays support direct indexing: the time taken to access any array element the
same.

Limitations:

Arrays are static: size of array cannot be expanded or squeezed at run time.

Application areas of an array

An array is an example of a static storage structure. It is used when a list of similar
data needs to be stored and the number of items is known. It is frequently used in
various data structure programs

 GUIDED ACTIVITY 1 – 2D Arrays

The contents of the array in memory
after the three strings are read in the
array.

Re-run the program, enter the
following data: "you", "my" and
"lav". lustrates the content as done
previously.

Does your output agree?
How is the null character, '\0' printed?
Is there a garbage character in a[1][3]? If so, why?

23/25

Operations on 2D array

Operations in 2D arrays include: 1) Read – 2) Print – 3) Sum – 4) Transpose
etc.

1) Read – 2) Print – 3) Sum of a matrix

#include <stdio.h>
void main()
{
int arr1[2][2],i,j;

printf("\n\nRead a 2D array of size 2x2 - print the matrix and sum of the
matrix:\n");
/* Stored values into the array*/
printf("Read elements in the matrix :\n");
for(i=0;i<2;i++) {

for(j=0;j<2;j++) {
printf("element - [%d],[%d] : ",i,j);
scanf("%d",&arr1[i][j]);

} }

printf("\nPrint the matrix is : \n");
int sum=0;
for(i=0;i<2;i++) {

printf("\n");
for(j=0;j<2;j++){

sum=sum+arr1[i][j];
printf("%d\t",arr1[i][j]);

} }
printf("\n\n");
printf("Sum of the array is %d",sum);
}

OUTPUT

4) Transpose

Transpose of a matrix in C language: This C program prints transpose of a matrix. It
is obtained by interchanging rows and columns of a matrix. For example, consider
the following 3 X 2 matrix:
1 2
3 4
5 6
Transpose of the matrix:
1 3 5
2 4 6
When we transpose a matrix then its order changes, but for a square matrix, it
remains the same.

#include <stdio.h>
void main(){
int arr1[50][50],brr1[50][50],i,j,r,c;

printf("\n\nTranspose of a Matrix :\n");
printf(" \n");
printf("\nInput the rows and columns of the matrix : ");
scanf("%d %d",&r,&c);
printf("Input elements in the first matrix :\n");
for(i=0;i<r;i++) {

for(j=0;j<c;j++) {
printf("element - [%d],[%d] : ",i,j);
scanf("%d",&arr1[i][j]);

} }

printf("\nThe matrix is :\n");
for(i=0;i<r;i++) {

printf("\n");
for(j=0;j<c;j++)
printf("%d\t",arr1[i][j]); }

for(i=0;i<r;i++) {
for(j=0;j<c;j++) {

brr1[j][i]=arr1[i][j]; } }
printf("\n\nThe transpose of a matrix is : ");
for(i=0;i<c;i++){
printf("\n");
for(j=0;j<r;j++){

printf("%d\t",brr1[i][j]); } }
printf("\n\n");}

OUTPUT

Swap without temp
variable

Swap with temp
variable

#include<stdio.h>
#include <conio.h>
void main ()
{

int a,b;
clrscr();
printf(" \nEnter the value of a:");
scanf("%d",&a);
printf(" \nEnter the value of b:");
scanf("%d",&b);
a=a+b;
b=a-b;
a=a-b;

printf(" \nThe value of a is:%d",a);
printf(" \nThe value of b is:%d",b);
getch();
}

Output:

Enter the value of a:5
Enter the value of b:6

The value of a is:6
The value of b is:5

#include<stdio.h>
#include <conio.h>
void main ()
{
int a,b,temp;
clrscr();
printf(" \nEnter the value of a:");
scanf("%d",&a);
printf(" \nEnter the value of b:");
scanf("%d",&b);
temp=a;
a=b;
b=temp;
printf(" \nThe value of a is:%d",a);
printf(" \nThe value of b is:%d",b);
getch();
}

Output:
Enter the value of a:5
Enter the value of b:4

The value of a is:4
The value of b is:5

GUIDED ACTIVITY 2 – SWAP 2 VARIABLES

5) Sorting

Sorting is a technique to rearrange the elements of a list in ascending or descending
order, which can be numerical, lexicographical, or any user-defined order.
Ranking of students is the process of sorting in descending order.

EMCET Ranking is an example for sorting with user-defined order.
EMCET Ranking is done with the following priorities.
i) First priority is marks obtained in EMCET.

ii) If marks are same, the ranking will be done with comparing marks obtained
in the Mathematics subject.

iii) If marks in Mathematics subject are also same, then the date of births will
be compared.

Internal Sorting :

If all the data that is to be sorted can be accommodated at a time in memory is
called internal sorting.

External Sorting :

It is applied to Huge amount of data that cannot be accommodated in memory all
at a time. So data in disk or file is loaded into memory part by part. Each part that is
loaded is sorted separately, and stored in an intermediate file and all parts are
merged into one single sorted list.

Types of Internal Sorting's

Bubble Sort
Insertion Sort
Selection Sort
Quick Sort
Merge Sort

10

47

12

54

19

23

54

47

23

19

12

10

Sorted

Bubbles up the highest

Unsorted

54

10

47

12

23

19

47

10

19

12

23

54

23

10

12

19

47

54

19

10

12

23

47

54

Exercise Program 2: Sort the numbers using bubble sort

Bubble_Sort (A [] , N)

Step 1 : Repeat For P = 1 to N – 1

Begin
Step 2 : Repeat For J = 1 to N – P

Begin
Step 3 : If (A [J] < A [J – 1])

Swap (A [J] , A [J – 1]
)

End For
End For

Step 4 : Exit

After

Pass 5

After
Pass 4

After
Pass 3

After
Pass 2

After
Pass 1

Original
List

Complexity of Bubble_Sort

The complexity of sorting algorithm

is depends upon the number of
comparisons that are made.
Total comparisons in Bubble sort is

n (n – 1) / 2 ≈ n 2 – n

Complexity = O (n 2)

#include<stdio.h>

int main() {

int count,num[50],i ;

printf ("How many elements to be sorted
: ");

scanf ("%d", &count);

printf("Enter the elements : \n");

for (i = 0; i < count; i++) {

printf ("num[%d] : ", i); scanf("%d",
&num[i]);

}

printf("\n Array Before Sorting : \n");

for (i=0;i<count ; i++)
printf("%5d",num[i]);

int pass, current, temp;

for (pass=1;(pass<count);pass++) {

for (current=1;current<=count-
pass;current++){

if (num[current-1]>num[current])

{

temp = num[current-1];

num[current-1] = num[current];

num[current] = temp;

} } }

printf("\nArray After Sorting : \n");

for (i=0;i<count ; i++)
printf("%5d",num[i]);

}

Bubble Sort

For pass = 1 to N - 1

For J = 1 to N - pass

A [J – 1] > A [J]

T

F

Return

Temp = A [J – 1]
A [J – 1] = A [J]

A [J] = Temp

8 23

45 78 32 56

32

 GUIDED ACTIVITY 2 – SELECTION SORT

Smallest
Selection Sort (Select the smallest and Exchange)

23 78 45 8 32 56

8 23 32 45 56 78

Selection_Sort (A [] , N)

Step 1 : Repeat For K = 0 to N – 2

Begin
Step 2 : Set POS = K
Step 3 : Repeat for J = K + 1 to N – 1

Begin
If A[J] < A [POS]

Set POS = J
End For

Step 5 : Swap A [K] with A [POS]
End For

Step 6 : Exit

 selection_sort (int A[] , int n) {
int k , j , pos , temp ;
for (k = 0 ; k < n - 1 ; k++) {

pos = k ;

for (j = k + 1 ; j <= n ; j ++) {
if (A [j] < A [pos])

pos = j ; }
temp = A [k] ;
A [k] = A [pos] ;
A [pos] = temp ;

}}

Complexity of Selection Sort
Best Case : O (n2)
Average Case : O (n2)
Worst Case : O (n2)

8 23 32

78 45 56

45

56

23

8

8

78 45 23 32 56

8 23 32 45

78 56

TEMP

23

36

23 78 45 8 32 36

Insertion Sort

45

 GUIDED ACTIVITY 3 –INSERTION SORT

78

23 45 8 32 36

8 23 32 36 45 78

Insertion_Sort (A [] , N)

Step 1 : Repeat For K = 1 to N – 1
Begin

Step 2 : Set Temp = A [K]
Step 3 : Set J = K – 1
Step 4 : Repeat while Temp < A [J] AND J >= 0

Begin
Set A [J + 1] = A [J]
Set J = J - 1

End While

Step 5 : Set A [J + 1] = Temp
End For

Step 4 : Exit

insertion_sort (int A[] , int n) {
int k , j , temp ;
for (k = 1 ; k < n ; k++) {

temp = A [k] ;
j = k - 1;

while ((temp < A [j]) && (j >= 0)) {
A [j + 1] = A [j] ;
j - - ;

}
A [j + 1] = temp ;

} }

Best Case : O (n)
Average Case : O (n2)
Worst Case : O (n2)

Complexity of Insertion Sort

8

32

23 45 78 8 32 36

8 23 45 78 32 36

8 23 32 45 78 36

a [j + 1] = a [j]

j = j - 1

temp < a [j] && j >= 0

Selection sort

k = 0; k < n - 1 ; k++

j = k + 1 ; j < n ; j++

a[j] < a[pos]

pos = j

return

temp = a[k]

a [k] = a [pos]

a [pos] = temp

pos = k

Insertion sort

k = 1; k < n ; k++

a [j + 1] = temp

return

temp = a [k]

j = k - 1

Comparison : Bubble sort – Insertion sort – Selection sort

Bubble Sort :

-- very primitive algorithm like linear search, and least efficient .

-- No of swapping are more compare with other sorting techniques.

-- It is not capable of minimizing the travel through the array like
insertion sort.

Insertion Sort :

-- sorted by considering one item at a time.

-- efficient to use on small sets of data.

-- twice as fast as the bubble sort.

-- 40% faster than the selection sort.

-- no swapping is required.

-- It is said to be online sorting because it continues the sorting a list as
and when it receives

new elements.

-- it does not change the relative order of elements with equal keys.

-- reduces unnecessary travel through the array.

-- requires low and constant amount of extra memory space.

-- less efficient for larger lists.

Selection sort :

-- No of swapping will be minimized. i.e., one swap on one pass.

-- generally used for sorting files with large objects and small keys.

-- It is 60% more efficient than bubble sort and 40% less efficient than
insertion sort.

-- It is preferred over bubble sort for jumbled array as it requires less
items to be exchanged.

-- uses internal sorting that requires more memory space.

-- It cannot recognize sorted list and carryout the sorting from the
beginning, when new elements

are added to the list.

OUTPUT

Topics to be covered – matrix operations (* addition,
subraction, multiplicaion, inverse, determinent, sum of
principal diagonal element)

addition and subtraction of two Matrices

/*Program to add two add matrices*/
#include<stdio.h> // include stdio.h
#define ROW 2
#define COL 3
int main(){

int i, j, arr1[ROW][COL], arr2[ROW][COL];
printf("Enter first matrix: \n");
for(i = 0; i < ROW; i++){

for(j = 0; j < COL; j++){
scanf("%d", &arr1[i][j]);}}

printf("\nEnter second matrix: \n");
for(i = 0; i < ROW; i++){

for(j = 0; j < COL; j++){
scanf("%d", &arr2[i][j]);}}

printf("\narr1 + arr2 = \n");
// add two matrices
for(i = 0; i < ROW; i++){

for(j = 0; j < COL; j++){
printf("%5d ", arr1[i][j]+arr2[i][j]);}

printf("\n");}
return 0;}

How it Works
To add or subtract matrices we simply add or subtract corresponding entries
in each matrix resp.

Multiplication of two matrices

/*Program to multiply two matrices*/
#include<stdio.h> // include stdio.h
#define ROW1 2
#define COL1 2
#define ROW2 COL1
#define COL2 3
int main(){

int i, j, arr1[ROW1][COL1],
arr2[ROW2][COL2],
arr3[ROW1][COL2];

printf("Enter first matrix (%d x %d): \n", ROW1, COL1);
// input first matrix

for(i = 0; i < ROW1; i++) {
for(j = 0; j < COL1; j++) {

scanf("%d", &arr1[i][j]); } }
printf("\nEnter second matrix (%d x %d): \n", ROW2, COL2);
// input second matrix

for(i = 0; i < ROW2; i++){
for(j = 0; j < COL2; j++){

scanf("%d", &arr2[i][j]);} }
printf("\narr1 * arr2 = ");
// multiply two matrices

for(i = 0; i < ROW1; i++) {
for(j = 0; j < COL2; j++){

arr3[i][j] = 0;

for(int k = 0; k < COL1; k++){
arr3[i][j] += arr1[i][k] * arr2[k][j]; } }

printf("\n"); }
// print the result

for(i = 0; i < ROW2; i++) {
for(j = 0; j < COL2; j++) {

printf("%d ", arr3[i][j]); }
printf("\n"); }

return 0; }

How it Works

Two matrices can be multiplied only if the number of columns in the first matrix is equal to
the number of rows in the second matrix.
Let A be the matrix of size 2x3 and B be the matrix of size 3x2. then, A*B is given by. In
general, if matrix A is of size mxn, and B is of size nxp, then the size of marix A*B will be
m x p.

Determinant of a 2D matrix
For eg1. a = a b | a | = ad-bc

c d

eg2. a = a b c |a| = a(ei-fh)-b(di-gf)+c(dh-eg)
d e f
g h i

#include<stdio.h>
void main(){
int a[3][3],i,j,det;
printf("enter 3x3 matrix:\n");
for (i=0;i<3;i++){
for (j=0;j<3;j++){

scanf("%d",&a[i][j]);}}
det=a[0][0]*(a[1][1]*a[2][2]-a[2][1]*a[1][2])

-a[0][1]*(a[1][0]*a[2][2]-a[2][0]*a[1][2])
+a[0][2]*(a[1][0]*a[2][1]-a[2][0]*a[1][1]);

printf("\ndeterminant is %d", det);
}

sum of principal diagonal element of a squre matrix.
#include<stdio.h>
void main(){
int a[10][10],n,sum=0,i,j;

printf("Enter order of the square matrix:");
scanf("%d",&n);
printf("\nEnter matrix elements:\n");
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
scanf("%d",&a[i][j]); } }

for (i=0; i<n; i++)
sum=sum+a[i][i];

printf("sum of principal diagonal element is %d", sum);
}

Do it yourself : Inverse - assignment 1 – 2D array

Exercise Program 3 : Find whether given is matrix is
diagonal or not.

/* Matrix Diagonal - Program to check whether a given matrix is diagonal matrix */

/* A diagonal matrix is that square matrix whose diagonal elements from upper left
to lower right are non-zero and all other elements are zero. For example,
2 0 0
0 4 0
0 0 6
*/

#include <stdio.h>
void main(){

int x[10][10], nr, nc, r, c, flag ;
printf("Enter the number of rows and columns: ") ;
scanf("%d %d", &nr, &nc) ;

if(nr==nc){ /* checking for square matrix */
printf("Enter elements of the matrix:\n") ;
for(r=0 ; r<nr ; r++)

for(c=0 ; c<nc ; c++)
scanf("%d", &x[r][c]) ;

flag=1 ;

for(r=0 ; r<nr ; r++)
for(c=0 ; c<nc ; c++)

if(r==c)/*{true for diagonal elements */
if(x[r][c]==0)

flag=0; }
else{

if(flag==1)

if(x[r][c]!=0)
flag=0;}

}
else

printf("The matrix is diagonal") ;
else

printf("The matrix is not diagonal") ;

printf("The matrix is not a sqaure matrix") ;}

Multi dimensional array

A multi dimensional array is an array of arrays. Like we have

one index in a single dimensional array, two indices in a two

dimensional array, in the same way we have n indices in a n-

dimensional array or multi dimensional array.

Conversely, an n dimensional array is specified using n

indices.

An n dimensional m1 x m2 x m3 x ….. mn array is a

collection m1*m2*m3* ….. *mn elements. In a multi

dimensional array, a particular element is specified by using n

subscripts as A[I1][I2][I3]…[In], where,

I1<=M1 I2<=M2 I3 <= M3

……… In <= Mn

Program To Read And Display A 2x2x2 Array

#include<stdio.h>
int main() { int array1[3][3][3], i, j, k;

printf("\n Enter the elements of the matrix");
printf("\n ******************************");
for(i=0;i<2;i++){

for(j=0;j<2;j++){
for(k=0;k<2;k++){

printf("\n array[%d][%d][%d] =

", i, j, k);

}}

scanf("%d", &array1[i][j][k]);}

printf("\n The matrix is : ");

printf("\n *********************************")l
for(i=0;i<2;i++){

printf("\n\n");
for(j=0;j<2;j++){

printf("\n");
for(k=0;k<2;k++)
printf("\t array[%d][%d][%d] = %d", i,

j, k, array1[i][j][k]);
}}

}

OUTPUT

Across
1) Array[size] & Array[]
refer to the same element
2) Elements can be accessed
randomly by giving the
respective
3) Array consists of a set of

Down
1) In array, each block
 the same data type.
2) Language does not
array bound checking
3) 2D array can be declared
without specifying the

physically memory
size.

 locations
4) The position of each array
element is known as array
index or

4)

 are a group of similar
elements.

GUIDED ACTIVITY 2 – Here is the

crossword for you on Arrays

Test Yourself – 2.2 Topics
(Arrays in C - Two dimensional arrays)

1. 2D array initialized with Employee Id and Salary

int aiEmployeeInfo[][2]=

{1001, 25000, 1002, 20000, 1003, 15000};

Write a printf statement to display 2nd Employee ID and salary from

the above array declaration

2. float aiEmployeeInfo[2][5];

How many bytes are allocated for the above array declaration?

3. Int aiEmployeeInfo[2][5];

Which of the following is the CORRECT statement to read value to

array element at row 0 and column 1.

Scanf(":%d", aiEmployeeInfo[0])

Scanf(":%d", &aiEmployeeInfo[0])

Scanf(":%d", aiEmployeeInfo[0][1])

Scanf(":%d", &aiEmployeeInfo[0][1])

4. Which of the following is a two-dimensional array?

A. array anarray[20][20];

B. int anarray[20][20];

C. int array[20, 20];

D. char array[20];

5. Consider the following array declared in C. Which of the following

operations is the most appropriate for looping through the elements

of the array? Int matrix[3][2][1];

A. While loop

B. Nested for loop (3 levels)

C. Nested for loop (2 levels)

D. Do… while

REVIEW questions and answers – 2.2 Topic
(Arrays in C - Two dimensional arrays)

i) State Whether the following statement are true or false:

a) In c, by default, the first subscript and second subscript is zero

True

b) When initializing a multidimensional array, not specifying all its dimensions is
an error.

True

c) In C, we can use a maximum of 4 dimensions of an array

False

ii) Identify the errors, if any in each of declaration, by assumption
ROW and COLUMN are declared as symbolic constants.

a) Float average[ROW],[COLUMN];

Incorrect

b) Long int number[ROW]

Incorrect

c) int sum[][]

Incorrect

iii) Fill in the blanks in the following statements

a) An array that uses more than two subscripts is referred to as array.

Multidimensional

b) is he process of arranging the elements of an array in order.

Sorting

iv) Discussion on writing a for loop statement that initializes all the diagonal
elements of an array to one and other to zero to be shown. Assume 5 rows and
5 columns.

for (i-0;i<5;i++)
for (j=0;j<5;j++)

{

if (i==j)

else

}

printf("1");

printf("0");

Assignment
Unit II

Assignment Questions

CO 1 Develop C program solutions to simple computational problems

1. Write a program in C to read n number of values in an array and display it in

reverse order.

Test Data :

Input the number of elements to store in the array :3

Input 3 number of elements in the array :

element - 0 : 2

element - 1 : 5

element - 2 : 7

Expected Output :

The values store into the array are :

2 5 7

The values store into the array in reverse are :

7 5 2

K2 CO1

2. Write a program in C to merge two arrays of same size sorted in decending

order. Test Data :

Input the number of elements to be stored in the first array :3

Input 3 elements in the array :

element - 0 : 1

element - 1 : 2

element - 2 : 3

Input the number of elements to be stored in the second array :3

Input 3 elements in the array :

element - 0 : 1

element - 1 : 2

element - 2 : 3

Expected Output :

The merged array in decending order is :

3 3 2 2 1 1

K2 CO1

3. Write a program in C to separate odd and even integers in separate arrays.

Test Data :

Input the number of elements to be stored in the array :5

Input 5 elements in the array :

element - 0 : 25

element - 1 : 47

element - 2 : 42

element - 3 : 56

element - 4 : 32

Expected Output :

The Even elements are :

42 56 32

The Odd elements are :

25 47

K2 CO1

Part A
Question & Answer

Part A

1) What is an Array in C language.? CO4)(K3)

A group of elements of same data type.

2) In genral what is correct statement about C language arrays.

An array address is the address of first element of array itself.

An array size must be declared if not initialized immediately.

Array size is the sum of sizes of all elements of the array.

3) What are the Types of Arrays.?

Types of arrays includes; A) int, long, float, double B) struct, enum and
C) char

4) How do An array Index starts with?

It always starts with 0.

6) What is the output of C Program.? int main() { int a[]; a[4] =
{1,2,3,4}; printf("%d", a[0]); }

Output will be a Compiler error

7) What is the output of C Program.? int main() { int a[] = {1,2,3,4}; int
b[4] = {5,6,7,8}; printf("%d,%d", a[0], b[0]); }

Output will be 1,5

8) What is the output of C Program.? int main() { char grade[] =
{'A','B','C'}; printf("GRADE=%c, ", *grade); printf("GRADE=%d",
grade); }

Output will be GRADE=A, GRADE=some address of array

9) What is the output of C program.? int main() { char grade[] =
{'A','B','C'}; printf("GRADE=%d, ", *grade); printf("GRADE=%d",
grade[0]); }

The output will be 65 65

10) What is the output of C program.? int main() { float marks[3] =
{90.5, 92.5, 96.5}; int a=0; while(a<3) { printf("%.2f,", marks[a]);
a++; } }

The resultant value will be 90.5 92.5 96.5

11) What is the output of C Program.? int main() { int a[3] =
{10,12,14}; a[1]=20; int i=0; while(i<3) { printf("%d ", a[i]); i++; }
}

The output will be 10 20 14

Explanation: a[i] is (i+1) element. So a[1] changes the second element.

12) What is an array Base Address in C language.?

Base address in c include A) Base address is the address of 0th index
element.

B) An array b[] base address is &b[0]

C) An array b[] base address can be printed with printf("%d", b);

13) What is the output of C Program with arrays and pointers.? void
change(int[]); int main() { int a[3] = {20,30,40}; change(a);
printf("%d %d", *a, a[0]); } void change(int a[]) { a[0] = 10; }

Output: 10 10

Explanation: Notice that function change() is able to change the value of
a[0] of main(). It uses Call By Reference. So changes in called
function affected the original values.

14) Define an 2D array in C with two difference egs.? (CO4)(K3)

C looks a two dimensional array as an array of a one dimensional array.
The 2-D array be visualized as a rectangular grid of rows and columns.

15) What is multi-dimensional array? (CO4)(K3)

An array with more than one subscript is called multi-dimensional array.
In General an array with n subscripts is called n-dimensional array.

Part B
Questions

Part B

1. What is an Array and How to create an Array, adv and disadv.of array.
(CO4)(K3)
2. What will happen when you access the array more than its
dimension? (CO4)(K3)
3. Define arrays. Explain the array types with an example program for
each type. (CO4)(K3)
4. Why use arrays and need of an array with eg.? (CO4)(K3)
5. What are the limitations of arrays. (CO4)(K3)
6. Describe how to declare one dimensional array in detail. (CO4)(K3)
7. Can we change the size of an array at run time? (CO4)(K3)

8. Can you declare an array without assigning the size of an array?
(CO4)(K3)
9. What is the default value of Array in detail and why so? (CO4)(K3)
10.How to print element of Array? (CO4)(K3)
12. What is a two dimensional array. Explain its declaration, assignment
and various initialization methods with examples. (CO4)(K3)
13. Is it practically possible to implement multi-dimensional array. If so
justify your answer. (CO4)(K3)

14. Write a C program to arrange the numbers in ascending order..
(CO4)(K3)

15. Write a C program to subtract two matrices and display the resultant
matrices. (CO4)(K3)
16. Write a C program to search an element using binary search.
(CO4)(K3)
17. Write a C program to sort the given names [bubble sort]. (CO4)(K3)
18.Write a program in C to count a total number of duplicate elements in
an array. (CO4)(K3)
Test Data :

Input the number of elements to be stored in the array :3
Input 3 elements in the array :
element - 0 : 5
element - 1 : 1
element - 2 : 1
Expected Output :
Total number of duplicate elements found in the array is :

19. Advantages and disadvantages of Array? (CO4)(K3)
20. How to find the missing number in integer array of 1 to 100? (CO4)(K3)
21. How to find largest and smallest number in unsorted array? (CO4)(K3)

22. How to find all pairs on integer array whose sum is equal to given
number? (CO4)(K3)
23. How to rearrange array in alternating positive and negative number?
(CO4)(K3)
24. How to reverse array in place. (CO4)(K3)
25. Write a program to read and display the elements using 1-D array.
(CO4)(K3)

26. Write a C program to sort the given array elements in Ascending order.
Discuss with examples. (CO4)(K3)
27. Write a C program to find the largest and smallest element given in an
array of elements. (CO4)(K3)
28. Write a C program to read N integers into an array A and to find the (i)sum
of odd numbers,(ii) sum of even numbers,(iii) average of all numbers. Output
the results computed with appropriate headings. (CO4)(K3)

29. Write a C program to search an element using linear and binary
techniques. (CO4)(K3)

30. Write a C program for [consider integer data] (i) Bubble sort (ii) Linear
search (CO4)(K3)

31. Write a C program to read N numbers into an array & perform Linear
search (CO4)(K3)

32. Write an algorithm and develop a C program that reads N integer numbers
and arrange them in ascending order using selection Sort (CO4)(K3)

33. Write a C program to print the sum of diagonal elements of 2-D matrix.
(CO4)(K3)

34. Write an algorithm and develop a C program to search an integer from N
numbers in ascending order using binary searching technique. (CO4)(K3)

35. Write a C program to multiply two matrices of different order. (CO4)(K3)
36. Write a C program to add 2 matrices of size n by n. (CO4)(K3)
37. How 2-D array elements are stored in memory/ Explain with example
(CO4)(K3)
38. Perform scalar matrix multiplication. (CO4)(K3)
39. Check whether two matrices are equal or not. (CO4)(K3)
40. Sum of the main diagonal elements of a matrix. (CO4)(K3)
41. Find the sum of minor diagonal elements of a matrix.

42. Possible way to Identity matrix in C. (CO4)(K3)
43. Write a C program to Check the sparse matrix. (CO4)(K3)
44. Check the symmetric matrix. (CO4)(K3)
45. Find the sum of each row and column of a matrix.
(CO4)(K3)
46. Interchange diagonals of a matrix. (CO4)(K3)
47. Write a C program to determine the upper triangular
matrix. (CO4)(K3)
48. Find a lower triangular matrix. (CO4)(K3)
49. Sum of the upper triangular matrix. (CO4)(K3)
50. Write a C program to Find the sum of a lower triangular
matrix. (CO4)(K3)
51. Write a C program to find the transpose of a matrix.
(CO4)(K3)
52. Write a C program to Find determinant of a matrix.
(CO4)(K3)

Supportive Online
Certification
Unit II

Certification Courses

NPTEL

Problem solving through Programming in C

https://nptel.ac.in/courses/106/105/106105171/

Coursera

1) C for Everyone: Structured Programming

https://www.coursera.org/learn/c-structured-programming

2) C for Everyone: Programming Fundamentals

https://www.coursera.org/learn/c-for-everyone

https://nptel.ac.in/courses/106/105/106105171/
https://nptel.ac.in/courses/106/105/106105171/
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone
https://www.coursera.org/learn/c-for-everyone

Real time Applications
Unit II

Arrays are used at many places in real life applications and some
applications are listed here.

2D Arrays, generally called Matrices are mainly used in Image
processing

RGB image is a n*n*3 array

It is used in Speech Processing where each speech signal is an array
of Signal Amplitudes

Stacks are used for storing intermediate results in Embedded
systems

The filters that are used to remove noise in a recording are also
arrays

Playfair-cipher is an old encrypting algorithm that uses a 2D array
of alphabets as key to encrypt/decrypt text.

Every string that you see in this answer is an array of characters

An array of strings that gives some meaning is a sentence.

A simple question Paper is an array of numbered questions with
each of them mapped to some marks/points

If had written this answer with numbered bullets, the answer
would consist an array of numbered bullet points. But now, the
answer consists of an array of un-numbered bullet points.

Content beyond syllabus
Unit II

Content beyond syllabus

1) Sorting- Topics covered for Insertion and selection sort.

2) Analysis of algorithms can be done for searching and

sorting

Analysis of algorithm is the process of analyzing the problem-solving capability

of the algorithm in terms of the time and size required (the size of memory for

storage while implementation). However, the main concern of analysis of

algorithms is the required time or performance. Generally, we perform the

following types of analysis −

Worst-case − The maximum number of steps taken on any instance of size a.

Best-case − The minimum number of steps taken on any instance of size a.

Average case − An average number of steps taken on any instance of size a.

Amortized − A sequence of operations applied to the input of size a averaged

over time.

Assessment Schedule
Unit II

Prescribed Text book &
References
Unit II

Text books & References

TEXT BOOK

1. Reema Thareja, "Programming in C", Oxford University Press,
Second Edition, 2016

REFERENCES:

1. Kernighan, B.W and Ritchie,D.M, "The C Programming
language", Second Edition, Pearson Education, 2006

2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh
edition, Pearson Publication

3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE
Learning India pvt. Ltd., 2011

4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and
Programming in C", First Edition, Oxford University Press, 2009

Mini Project Suggestions
Unit II

1) Safe Standard Library Containers

2) Simple encryption algorithm

3) Univ. Students Record System

Thank you

Disclaimer:

This document is confidential and intended solely for the educational purpose of RMK Group of
Educational Institutions. If you have received this document through email in error, please notify the
system manager. This document contains proprietary information and is intended only to the
respective group / learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender immediately by e-mail if you
have received this document by mistake and delete this document from your system. If you are not
the intended recipient you are notified that disclosing, copying, distributing or taking any action in
reliance on the contents of this information is strictly prohibited.

Please read this disclaimer before proceeding:

This document is confidential and intended solely for the educational purpose of
RMK Group of Educational Institutions. If you have received this document
through email in error, please notify the system manager. This document
contains proprietary information and is intended only to the respective group /
learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender
immediately by e-mail if you have received this document by mistake and delete
this document from your system. If you are not the intended recipient you are
notified that disclosing, copying, distributing or taking any action in reliance on
the contents of this information is strictly prohibited.

OCS752
INTRODUCTION TO C

PROGRAMMING
Department: : Electrical and Electronics Engineering

Batch/Year: 2017-2021
Created by: Dr. S. Meenakshi and A.S. Vibith

Date: 21-08-2020

Table of Contents

Course Objectives

Syllabus

Course Outcomes (Cos)

CO-PO Mapping

Lecture Plan

Activity based learning

Lecture notes

Assignments

Part A Q&A

Part B Qs

List of Supportive online Certification courses

Real time applications in day to day life and to industry

Contents beyond Syllabus

Assessment Schedule (proposed and actual date)

Prescribed Text Books & Reference Books

Mini Project Suggestions

Course Objectives

OCS752 INTRODUCTION TO C PROGRAMMING L T P

3 0 0 3

OBJECTIVES

To develop C Programs using basic programming constructs

To develop C programs using arrays and strings

To develop applications in C using functions and structures

Syllabus
OCS752 INTRODUCTION TO C PROGRAMMING L T P C 3 0 0 3UNIT I

INTRODUCTION 9

Structure of C program – Basics: Data Types – Constants –Variables - Keywords –
Operators: Precedence and Associativity - Expressions - Input/output statements,
Assignment statements –Decision-making statements - Switch statement - Looping
statements – Pre-processor directives -Compilation process – Exercise Programs:
Check whether the required amount can be withdrawn based on the available
amount – Menu-driven program to find the area of different shapes – Find the sum
of even numbers

UNIT II ARRAYS 9

Introduction to Arrays – One dimensional arrays: Declaration – Initialization -
Accessing elements –Operations: Traversal, Insertion, Deletion, Searching - Two
dimensional arrays: Declaration –Initialization - Accessing elements – Operations:
Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive
and negative values present in the array – Sort the numbers using bubble sort - Find
whether the given is matrix is diagonal or not.

UNIT III STRINGS 9

Introduction to Strings - Reading and writing a string - String operations (without
using built-in string functions): Length – Compare – Concatenate – Copy – Reverse
– Substring – Insertion – Indexing – Deletion – Replacement – Array of strings –
Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise
programs: To find the frequency of a character in a string - To find the number of
vowels, consonants and white spaces in a given text - Sorting the names.

Unit IV FUNCTIONS 9

Introduction to Functions – Types: User-defined and built-in functions - Function
prototype – Function definition - Function call - Parameter passing: Pass by value -
Pass by reference - Built-in functions (string functions) – Recursive functions –
Exercise programs: Calculate the total amount of power consumed by ‘n’ devices
(passing an array to a function) – Menu-driven program to count the numbers which
are divisible by 3, 5 and by both (passing an array to a function) – Replace the
punctuations from a given sentence by the space character (passing an array to a
function)

UNIT V STRUCTURES 9

Introduction to structures – Declaration – Initialization – Accessing the members –
Nested Structures – Array of Structures – Structures and functions – Passing an
entire structure – Exercise programs: Compute the age of a person using structure
and functions (passing a structure to a function) – Compute the number of days an
employee came late to the office by considering his arrival time for 30 days (Use
array of structures and functions)

TOTAL:45 PERIODS

Course Outcomes

CO 1 - Develop algorithmic solutions to simple computational

problems using basic constructs K1

CO 2 - Develop simple applications in C using Control Constructs K2

CO 3 - Design and implement applications using arrays K2

CO 4 – Represent data using string and string operations K3

CO 5 - Decompose a C program into functions and pointers K3

CO 6 - Represent and write program using structure and union K3

CO – PO Mapping

CO PO
Mapping

Level
Justification

CO PO Mapping Level Justification

CO1 PO1 2 Identify the data type and operators to solve the problem

CO1 PO2 2 Design the expression in an efficient way

CO1

PO3

2

Recognize the need of basic c Tokens-variables-constants

CO1

PO5

2

Apply the concept of control statements for simple solving the

problem

CO1

PO12

1

Formulate the iterative statements for problem solving

CO2

PO1

3

Develop a complete program s for preprocessor directives

CO2

PO2

3

Recognize the implementation of simple problem solving with

above concepts

CO3

PO3

2

Apply simple mathematical concepts for writing 1D arrays and

its operations

CO3

PO5

2

Identify and formulate for the given problem using 2D and its

operations

CO3

PO12

1

Design way of problem solving in Multi Dimensional arrays

CO4 PO1 3 Recognize the need of implementation in string

CO4

PO2

3

Apply logic to solve simple problem statement using string

operations

CO4

PO3

3

Apply the knowledge to find the possible code for string

manipulations

CO5

PO5

2

Identify the code for decomposition as function

CO5

PO12

1

Develop functions and reuse it whenever required to reduce the

lines of code

CO5 PO1 2 Recognize the need of function concepts

CO5

PO2

2

Apply compound data knowledge to select any one

CO5

PO3

2

Apply the concept of pointers

CO5

PO5

2

Design and Develop program using the selected compound data

CO6

PO12

1

Recognize the need of structure

CO6 PO1 2 Apply the basic idea of handling with union

CO6

PO2

2

Identify the number of modes and operations on structure in

detail

CO6 PO3 2 Develop programs using structure and union

Lecture Plan
Unit III

CO-PO/PSO MAPPING

COU

RSE

OUT

COM

E

LEV

EL

OF

COU

RSE

OUT

CO

ME

PROGRAM OUTCOME (PO)

PROGRAM SPECIFIC OUTCOME (PSO)

PO1

PO

2

PO3

PO4

PO5

PO6

PO7

PO8

PO9

PO

10

PO

11

PO

12

PSO1

PSO2

PSO3

PSO4

CO1

K1

2 2 2 - 2 - - - - -

-

1

1

CO2

K2

3 3 2 - 2 - - - - -

-

1

1

CO3

K2

3 3 3 - 2 - - - - -
- 1

1

CO4

K3

2 2 2 - 2 - - - - -
- 1

1

CO5

K3

2 2 2 - - - - - - -
- 1

1

CO6

K3
3 3 3 2

1

1

Unit III - STRINGS

S.No Topics No.

of

Peri
ods

Propos

ed

Date

Actual

Lecture

Date

Pertain

ing CO

Taxon

omy

Level

Mode of

Delivery

1 Introduction to Strings -

Reading and writing a
string -

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

2 String operations
(without using built-in

string functions): Length
– Compare – Concatenate
– Copy – Reverse –

1 CO1 K2 PPT, Chalk &
Talk

3 Substring – Insertion –

Indexing – Deletion –
Replacement

1 CO1 K2 PPT, Chalk &

Talk

4 Array of strings –

Introduction to Pointers

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

5.6 Pointer operators –

Pointer arithmetic -

2 CO1 K2 PPT, Chalk &

Talk

7 Exercise programs: To find
the frequency of a
character in a string

1 CO1 K2 PPT, Chalk &

Talk

8,9 To find the number of

vowels, consonants and

white spaces in a given
text - Sorting the names.

2 CO1 K2 PPT, Chalk &

Talk

Activity Based Learning
Unit III

Activity Based Learning

Learn by solving problems – Tutorial Sessions can be conducted

– Tutorial sessions available in Skillrack

for practice

Learn by questioning

Learn by doing hands-on IN ONLINR / VIRTUAL LAB.

Lecture Notes
UNIT III STRINGS 9

Introduction to Strings - Reading and writing a string - String operations (without using built-
in string functions): Length – Compare – Concatenate – Copy – Reverse – Substring –
Insertion – Indexing – Deletion – Replacement – Array of strings – Introduction to Pointers –
Pointer operators – Pointer arithmetic - Exercise programs: To find the frequency of a
character in a string - To find the number of vowels, consonants and white spaces in a given
text - Sorting the names.

 Introduction to Strings
A string is a null-terminated character array. This means that after the last

character, a null character (‘\0’) is stored to signify the end of the character array.

For example:

char c[] = "c string"; When the compiler encounters a sequence of characters
enclosed in the double quotation marks, it appends a null character \0 at the end
by default.

How to declare a string?

Here's how you can declare strings:

char str[size];

char s[5];

Here, we have declared a string of 5 characters.

A string can be declared as a character array or with a string pointer.

How to initialize strings?

You can initialize strings in a number of ways.

char c[] = "abcd";

char c[5] = {'a','b','c','d','\0'};

char *c="abcd";

Let's take another example:

char c[5] = "abcde";

Here, we are trying to assign 6 characters (the last character is'\0') to a char array
having 5 characters. This is bad and you should never do this.

Assigning Values to Strings

Arrays and strings are second-class citizens in C; they do not support the
assignment operator once it is declared. For example,

char c[100];

c = "C programming"; // Error! array type is not assignable.

Note: Use the strcpy() function to copy the string instead

For example if we write,

char str[] = "HELLO";

We are declaring a character array with 5 characters namely, H, E, L, L and O.

Besides, a null character (‘\0’) is stored at the end of the string. So, the internal

representation of the string becomes- HELLO’\0’. Note that to store a string of length 5, we

need 5 + 1 locations (1 extra for the null character).

The name of the character array (or the string) is a pointer to the beginning of

the string.

We can also declare a string with size much larger than the number of elements that
are initialized.
For example, consider the statement below.
char str [10] = "HELLO";

In such cases, the compiler creates an array of size 10; stores "HELLO" in it and
finally terminates the string with a null character. Rest of the elements in the array
are automatically initialized to NULL.

Now consider the following statements:
char str[3]; str = "HELLO";

The above initialization statement is illegal in C and would generate a compile-time
error because of two reasons. First, the array is initialized with more elements than it
can store. Second, initialization cannot be separated from declaration.

Note: When allocating memory space for a string, reserve space to hold the
null character also.

Let us try to print above mentioned string:

#include <stdio.h>

#include <conio.h>

int main()

{

char str[10]={'H',’E',‘L',‘L',‘O','\0'};

printf("Greeting string message : %s", str);

return 0;

}

When the above code is compiled and executed It produces result
something as follows:

Note: %s is used to print the string in C

 Reading and writing a string

READING STRINGS

If we declare a string by writing

char str[100];

Then str can be read from the user by using three ways

use scanf function

using gets() function

using getchar(),getch()or getche() function repeatedly

The string can be read using scanf() by writing

scanf("%s", str);

Although the syntax of using scanf() function is well known and easy to use, the
main pitfall of using this function is that the function terminates as soon as it finds
a blank space (white space, newline, tab, etc.).. For example, if the user enters
Hello World, then the str will contain only Hello. This is because the moment a
blank space is encountered, the string is terminated by the scanf() function. You
may also specify a field width to indicate the maximum number of characters that
can be read. Remember that extra characters are left unconsumed in the input
buffer.

Unlike int, float, and char values, %s format does not require the ampersand before
the variable str.

Note: Using & operand with a string variable in the scanf statement generates an
error.

The string can be read by writing

gets(str);

gets() is a simple function that overcomes the drawbacks of the scanf() function.

gets() takes the starting address of the string which will hold the input. The string

inputted using gets() is automatically terminated with a null character.

Note: that in this method, you have to deliberately append the string with a null

character. The other two functions automatically do this

The string can also be read by calling the getchar() repeatedly to

read a sequence of single characters (unless a terminating

character is entered) and simultaneously storing it in a character

array.

i=0;

getchar(ch);

while(ch !='*’)

{ str[i] = ch;

i++;

getchar(ch);

} str[i] ='\0';

WRITING STRINGS

The string can be displayed on screen using three ways

use printf() function

using puts() function

using putchar()function repeatedly

The string can be displayed using printf() by writing

printf("%s", str);

We use the format specifier %s to output a string. Observe carefully that
there is no'&’ character used with the string variable. We may also use
width and precision specifications along with %s. The width specifies the
minimum output field width. If the string is short, the extra space is either
left padded or right padded. A negative width left pads short string rather
than the default right justification. The precision specifies the maximum
number of characters to be displayed, after which the string is truncated.
For example,

printf ("%5.3s", str);

The above statement would print only the first three characters in a total
field of five characters. Also these characters would be right justified in the
allocated width. To make the string left justified, we must use a minus
sign. For example,

printf ("%–5.3s", str);

The string can be displayed by writing

puts(str);

puts() is a simple function that overcomes the drawbacks of the printf()

function.

Note: When the field width is less than the length of the string, the entire

string will be printed, if the number of characters to be printed is specified

as zero, then nothing is printed on the screen.

The string can also be written by calling the putchar() repeatedly to

print a sequence of single characters

i=0;

while(str[i] !='\0*)

{ putchar(str[i]);

i++;

}

Reading A Line Of Text

gets() and puts() are two s t r i n g functions to take s t r i n g

input from user and display s t r i n g respect ively

int main()
{

char name[30];
printf("Enter name: ");
gets(name); //Function to read string from user.
printf("Name: ");
puts(name); //Function to display string.
return 0;

}

Note: Though, gets() and puts() function handle strings, both these
functions are defined in "stdio.h" header file.

SUPPRESSING INPUT

scanf() can be used to read a field without assigning it to any

variable. This is done by preceding that field's format code with a *.

For example, given:

scanf("%d*c%d", &hr, &min);

The time can be read as 9:05 as a pair. Here the colon would be read

but not assigned to anything.

Using a Scanset

The ANSI standard added the new scanset feature to the C

language. A scanset is used to define a set of characters which may

be read and assigned to the corresponding string. A scanset is

defined by placing the characters inside square brackets prefixed

with a %

int main()

{

char str[10];

printf("\n Enter string: ");

scanf(""%[aeiou]", str);

printf("The string is : %s", str);

return 0;

}

The code will stop accepting character as soon as the user will enter

a character that is not a vowel.

However, if the first character in the set is a ^ (caret symbol), then

scanf() will accept any character that is not defined by the scanset.

For example, if you write

scanf("%[^aeiou]", str);

String operations (using built-in
string functions)
In this section, we will learn about different operations that can be

performed on strings using built in functions.

C provides string manipulating functions in the "string.h" library.

String in C – Library Functions

Function Purpose Example

strlen Returns the number of
characters in a string

strlen("Hi") returns 2.

strlwr Converts string to all
lowercase

strlwr("Hi") returns hi.

strupr Converts s to all
uppercase

strupr("Hi");

strrev Reverses all characters
in s1 (except for the terminating
null)

strrev(s1, "more");

strtok Breaks a string into
tokens by delimiters.

strtok("Hi, Chao", " ,");

strcpy Makes a copy of a string strcpy(s1, "Hi");

Strncpy Copy the specified
number of characters

strncpy(s1, "SVN",2);

strcat Appends a string to the
end of another string

strcat(s1, "more");

Strncat Appends a string to the
end of another string up to n
characters

strncat(s1, "more",2);

Function Purpose Example

strcmp Compare two strings
alphabetically

strcmp(s1, "Hu");

Strncmp Compare two string upto
given n character

strncmp("mo", "more",2);

Stricmp Compare two strings
alphabetically without case
sensitivity.

stricmp("hu", "Hu");

strchr() Find first occurrence of a given
character in the string

strchr(str1,c);
Where c is the character
variable

strrchr() Find the last occurrence of a given
character in the string

strrchr(str1,c)

strstr() Finds the first occurrence of a given
string in another string

strstr(str1,str2);
Where str2 is the string to
be searched in str1

strset() sets all characters of a string to a given
character

strset(str1,c);

strnset() Sets first character of a string to a
given character

Strnset(str1,c,n)

i) Length – reverse – upper case & lower case

Length of the string

The number of characters in the string constitutes the length of the string.

For example, LENGTH("C PROGRAMMING IS FUN") will return 20. Note that even
blank spaces are counted as characters in the string. LENGTH(‘0’) = 0 and
LENGTH(‘’) = 0 because both the strings does not contain any character.

strlen() function in C gives the length of the given string. Syntax for strlen()
function is given below.

size_t strlen (const char * str);

strlen() function counts the number of characters in a given string and returns
the integer value.

It stops counting the character when null character is found. Because, null
character indicates the end of the string in C.

Reversing a String

If S1 = "HELLO", then reverse of S1 = "OLLEH". To reverse a string, we just need to
swap the first character with the last, second character with the second last
character, and so on. Figure 4.7 shows an algorithm that reverses a string.

strrev() function reverses a given string in C language. Syntax for strrev()
function is given below.

char *strrev(char *string);

strrev() function is non-standard function which may not available in standard
library in C.

Upper Case of a String

strupr() function converts a given string into uppercase. Syntax for strupr()
function is given below.

char *strupr(char *string);

strupr() function is non-standard function which may not available in standard
library in C.

Lower Case of a String

strlwr() function converts a given string into lowercase. Syntax for strlwr()
function is given below.

char *strlwr(char *string);

strlwr() function is non-standard function which may not available in standard
library in C.

Example: C program to illustrate

strlen() , strupr() , strlwr() , strrev()

#include<stdio.h>

#include<string.h> //c header file for string library functions

void main(){

char str1[10]="DeNnis" , str2[10]="RitChiE";

int len;

len=strlen(str1);

//strupr(str1);

//strlwr(str2);

printf("\n Length of string is %d", len);

//printf("\n upper case is %s" , str1);

//printf("\n lower case is %s" ,str2);

strrev(str1);

printf("\n Reverse of string is %s", str1);

}

OUTPUT:

Length of string is 6

Reverse of string is sinNeD

Note: strupr() strlwr() - This is a non-standard function that works only with
older versions of Microsoft C.

ii) Concatenate – copy & append

Concatenating two strings to form a new string

strcat() function in C language concatenates two given strings. It
concatenates source string at the end of destination string. Syntax
for strcat() function is given below.
char * strcat (char * destination, const char * source);

Example:
strcat (str2, str1); – str1 is concatenated at the end of str2.
strcat (str1, str2); – str2 is concatenated at the end of str1.

As you know, each string in C is ended up with null character (‘\0’).

In strcat() operation, null character of destination string is
overwritten by source string’s first character and null character is
added at the end of new destination string which is created after
strcat() operation.

Copy One string to Another String

strcpy() function copies contents of one string into another string.
Syntax for strcpy function is given below.
char * strcpy (char * destination, const char * source);

Example:
strcpy (str1, str2) – It copies contents of str2 into str1.
strcpy (str2, str1) – It copies contents of str1 into str2.

If destination string length is less than source string, entire source
string value won’t be copied into destination string.

For example, consider destination string length is 20 and source
string length is 30. Then, only 20 characters from source string will
be copied into destination string and remaining 10 characters
won’t be copied and will be truncated.

Example: C program to illustrate

strcat() , strncat() , strcpy() , strncpy()

#include<stdio.h>

#include<string.h> //c header file for string library functions

void main(){

char str1[10]="mic" , str2[10]="mouse";

char str3[10]="donald" , str4[10]="duck";

char str5[10]="denny", str6[10];

strcat(str1 ,str2);

printf("\n After concatenating strings: %s" , str1);

strncat(str3 ,str4 ,2); //appends first two char of str4 to str3

printf("\n After concatenating first two characters: %s" , str3);

strcpy(str6 ,str5);

printf("\n Copied string is %s" , str6);

}

OUTPUT:

iii) Comparing two strings

Comparing the twos strings

If S1 and S2 are two strings, then comparing the two strings will
give either of the following results:

S1 and S2 are equal

S1>S2, when in dictionary order, S1 will come after S2

S1<S2, when in dictionary order, S1 precedes S2

To compare the two strings, each and every character is compared
from both the strings. If all the characters are the same, then the
two strings are said to be equal.

strcmp() function in C compares two given strings and returns zero
if they are same.

If length of string1 < string2, it returns < 0 value. If length of string1
> string2, it returns > 0 value. Syntax for strcmp() function is given
below.
int strcmp (const char * str1, const char * str2);

strcmp() function is case sensitive. i.e, "A" and "a" are treated as
different characters.

Example: C program to illustrate

strcmp() , stricmp() , strncmp() , strnicmp()

#include<stdio.h>

#include<string.h> //c header file for string library functions

void main(){

char str1[10]="Charles" , str2[10]="charles";

char str3[10]="charlie";

If (strcmp(str1 , str2)==0)

printf("\n Equal strings");

else

printf("\n Strings are different");

If (stricmp(str1 , str2)==0)

printf("\n Equal strings");

else

printf("\n Strings are different");

If (strncmp(str2 , str3 , 4)==0)

printf("\n First four characters are same");

else

printf("\n First four characters are different");

}

OUTPUT:

Strings are different

Equal strings

First four characters are different

iv) Substring /find out occurrence?

C substring program to find substring of a string and its all subsrngs.
A substring is itself a string that is part of a longer string. For
example, substrings of string "the" are "" (empty string), "t", "th",
"the", "h", "he" and "e."

strchr() , strrchr() , strstr()

strchr() function returns pointer to the first occurrence of the
character in a given string. Syntax for strchr() function is given
below.
char *strchr(const char *str, int character);

strrchr() function in C returns pointer to the last occurrence of the
character in a given string. Syntax for strrchr() function is given
below.
char *strrchr(const char *str, int character);

strstr() function returns pointer to the first occurrence of the string
in a given string. Syntax for strstr() function is given below.
char *strstr(const char *str1, const char *str2);

Note:
The header file "string.h" does not contain any library function
to find a substring directly like substr() but can find either
using strchr /strnchr/strstr() or by manually by applying logic
and similarly for Insertion and Deletion as well.

Example: C program to illustrate strchr() , strrchr() , strstr()

#include<stdio.h>

#include<string.h> //c header file for string library functions

void main(){

char str1[15]="Miscky Vickys";

printf("\n Using strchr : %s" , strchr(str1 ,'i'));

printf("\n Using strrchr : %s" , strrchr(str1 ,'i'));

printf("\n Using strstr : %s" , strstr(str1 ,'ky'));

}

OUTPUT:

Using strchr : iscky Vickys

Using strrchr : iscky

Using strstr : ky Vickys

v) Indexing
vi) replacement

strset() function sets all the characters in a string to given character.
Syntax for strset() function is given below.
char *strset(char *string, int c);

strnset() function sets portion of characters in a string to given
character. Syntax for strnset() function is given below.
char *strnset(char *string, int c);

strnset() function is non standard function which may not available
in standard library in C.

C program to illustrate strset() , strnset()

#include<stdio.h>

#include<string.h> //c header file for string library functions

void main(){

char str1[15]="mypassword";

char str2[15]="8754538560";

strnset(str2 ,’*’);

strnset(str2 ,’*’ ,8);

printf("\n Using strset : %s" , str1);

printf("\n Using strnset : %s" , str2);

}

OUTPUT:

Using strset : **********

Using strnset : ********60

Note: strset() function is non standard function which may not
available in standard library in C.

String operations (without using string
built-in/lib functions)

In this section, we will learn about different operations that can be performed on
strings without using built in functions which includes :
i) Length – ii) Compare – *iii) Concatenate – *iv) Copy – v) Reverse – vi) Substring
– vii) Insertion – viii) Indexing – ix) Deletion – x) Replacement

i) Length - Finding Length of a String

The number of characters in the string constitutes the length of the string.

For example, LENGTH(“C PROGRAMMING IS FUN”) will return 20.

LENGTH(‘0’) = 0 and LENGTH(‘’) = 0 because both the strings does not contain any
character.

Algorithm to calculate the length of a string

shows an algorithm that calculates the length of a string. In this algorithm, I is used
as an index for traversing string STR. To traverse each and every character of
STR, we increment the value of I. Once we encounter the null character, the
control jumps out of the while loop and the length is initialized with the value of
I.

Note: that even blank spaces are counted as characters in the

string and for remembering in this string – index is from 0
and position is from 1

index = position-1 or index+1 = position

Write a program to find the length of a string.

#include <stdio.h>

#include <conio.h>

int main()

{

char str[100], i = 0, length=0;

printf("\n Enter the string : ");

gets(str);

/*while(str[i] != '\0') // using while loop

i++;

length = i;*/

for (i=0;str[i]!='\0';i++)

length = length+1;

printf("\n The length of the string is : %d", length);

return 0;

}

OUTPUT

ii) Compare

If S1 and S2 are two strings, then comparing the two strings will give
either of the following results:

S1 and S2 are equal

S1>S2, when in dictionary order, S1 will come after S2

S1<S2, when in dictionary order, S1 precedes S2

To compare the two strings, each and every character is compared
from both the strings. If all the characters are the same, then the
two strings are said to be equal. Figure shows an algorithm that
compares two strings.

In this algorithm, we first check whether the two strings are of the
same length. If not, then there is no point in moving ahead, as it
straight away means that the two strings are not the same. However,
if the two strings are of the same length, then we compare character
by character to check if all the characters are same. If yes, then the
variable SAME is set to 1. Else, if SAME = 0, then we check which
string precedes the other in the dictionary order and print the
corresponding message.

Algorithm to compare two strings

Write a program to compare two strings.
#include <stdio.h> #include <conio.h> #include <string.h>
int main()
{
char str1[50], str2[50];
int i=0, len1=0, len2=0, same=0; clrscr();
printf("\n Enter the first string : "); gets(str1);
printf("\n Enter the second string : "); gets(str2);
len1 = strlen(str1); len2 = strlen(str2); if(len1 == len2)
{
while(i<len1)
{
if(str1[i] == str2[i])
i++;
else break;
}
if(i==len1)
{
same=1;
printf("\n The two strings are equal");
}
}
if(len1!=len2)
printf("\n The two strings are not equal"); if(same == 0)
{
if(str1[i]>str2[i])
printf("\n String 1 is greater than string 2"); else if(str1[i]<str2[i])
printf("\n String 2 is greater than string 1");
}
getch(); return 0;
}
OUTPUT:
Enter the first string : Hello Enter the second string : Hello The two
strings are equal

#include <stdio.h>
int main()
{

int i, diff=0;

char str1[100], str2[100];
printf("\n Enter the string1 : ");
gets(str1);
printf("\n Enter the string2 : ");
gets(str2);

for (i=0;str1[i]!='\0'||str2[i]!='\0';i++)
if (str1[i]!=str2[i])
{

}
if (diff==0)

diff=str1[i]-str2[i];
break;

else

printf("Strings are equal");

printf("Strings are not equal and their diff is %d",diff);

return 0;

}

OUTPUT

iii) Concatenate
CONCATENATING TWO STRINGS TO FORM A NEW STRING

IF S1 and S2 are two strings, then concatenation operation produces a string which
contains characters of S1 followed by the characters of S2.

#include <stdio.h>
int main()
{

int i,j=0,len=0;

char str1[100], str2[100];
printf("\nEnter the string1 : ");
gets(str1);
printf("Enter the string2 : ");
gets(str2);
for (i=0;str1[i]!='\0';i++)

len=len+1; // lengthof the first string
j=len;
for (i=0;str2[i]!='\0';i++){

str1[j]=str2[i]; // 2nd string copied to 1st string //from jth
position

j=j+1;}
str1[j]='\0';

printf("The concatenated string is %s",str1);

}

OUTPUT

Note : concatenate or append have same implementation in C

Appending a String to Another String

Appending one string to another string involves copying the contents
of the source string at the end of the destination string. For
example, if S1 and S2 are two strings, then appending S1 to S2
means we have to add the contents of S1 to S2. So, S1 is the source
string and S2 is the destination string. The appending operation
would leave the source string S1 unchanged and the destination
string S2 = S2 + S1.

Figure shows an algorithm that appends two strings.

In this algorithm, we first traverse through the destination string to
reach its end, that is, reach the position where a null character is
encountered. The characters of the source string are then copied
into the destination string starting from that position. Finally, a null
character is added to terminate the destination string.

Write a program to append a string to another string.

#include <stdio.h>
#include <conio.h>
int main()
{
char Dest_Str[100], Source_Str[50];
int i=0, j=0;
printf("\n Enter the source string : ");
gets(Source_Str);
printf("\n Enter the destination string : ");
gets(Dest_Str);

while(Dest_Str[i] != '\0')
i++;
while(Source_Str[j] != '\0')
{
Dest_Str[i] = Source_Str[j];
i++;
j++;
}
Dest_Str[i] = '\0';
printf("\n After appending, the destination string is : ");

puts(Dest_Str);
return 0;
}
OUTPUT
Enter the source string : How are you?
Enter the destination string : Hello,
After appending, the destination string is : Hello,How are you?

iv) Copy

Copying the contens of one string to another string.

#include <stdio.h>
int main()
{

int i;

char str1[100], str2[100];
printf("\n Enter the string1 : ");
gets(str1);

for (i=0;str1[i]!='\0';i++)
str2[i]=str1[i];

str2[i]='\0';

printf("The copied string is %s",str2);
return 0;

}

OUTPUT

v) Reverse

If S1 = "HELLO", then reverse of S1 = "OLLEH". To reverse a string, we
just need to swap the first character with the last, second character
with the second last character, and so on.

Figure shows an algorithm that reverses a string.

In Step 1, I is initialized to zero and J is initialized to the length of the

string –1. In Step 2, a while loop is executed until all the characters
of the string are accessed. In Step 4, we swap the ith character of
STR with its jth character. As a result, the first character of STR will
be replaced with its last character, the second character will be
replaced with the second last character of STR, and so on. In Step
4, the value of I is incremented and J is decremented to traverse
STR in the forward and backward directions, respectively.

Write a program to reverse a given string.

#include <stdio.h>

int main()

{

int i,j=0,len=0;

char str1[100], rev[100];

printf("\nEnter the string1 : ");

gets(str1);

for (i=0;str1[i]!='\0';i++)

len=len+1;

for (i=len-1;i>=0;i--)

{

rev[j]=str1[i];

j=j+1;

}

rev[j]='\0';

printf("The reversed string is %s",rev);

return 0;

}

Outpt

vi) Substring

To extract a substring from a given string, we need the following
three parameters:

the main string,
the position of the first character of the substring in the given string,

and
the maximum number of characters/length of the substring.

For example, if we have a string

str[] = "Welcome to the world of programming";

Then, SUBSTRING(str, 15, 5) = world

Figure shows an algorithm that extracts a substring from the middle
of a string.

In this algorithm, we initialize a loop counter I to M, that is, the
position from which the characters have to be copied. Steps 3 to 6
are repeated until N characters have been copied. With every
character copied, we decrement the value of N. The characters of
the string are copied into another string called the SUBSTR. At the
end, a null character is appended to SUBSTR to terminate the
string.

Write a program to extract a substring from the middle of a given
string.

#include <stdio.h>
#include <conio.h>
int main()
{
char str[100], substr[100];
int i=0, j=0, n, m;
printf("\n Enter the main string : ");
gets(str);
printf("\n Enter the position from which to start the substring: ");
scanf("%d", &m);
printf("\n Enter the length of the substring: ");
scanf("%d", &n);

i=m;
while(str[i] != '\0' && n>0)
{
substr[j] = str[i];
i++; j++; n--;
}
substr[j] = '\0';
printf("\n The substring is : "); puts(substr);
return 0;
}
OUTPUT
Enter the main string : Hi there
Enter the position from which to start the substring: 1
Enter the length of the substring: 4
The substring is : i th

viii) Indexing –program
Pattern Matching

This operation returns the position in the string where the string

pattern first occurs. For example,

INDEX("Welcome to the world of programming", "world") = 15

However, if the pattern does not exist in the string, the INDEX

function returns 0.

Figure shows an algorithm to find the index of the first occurrence of

a string within a given text

In this algorithm, MAX is initialized to length(TEXT) – Length(STR) + 1.

For example, if a text contains 'Welcome To Programming' and the

string contains 'World', in the main text, we will look for at the

most 22 – 5 + 1 = 18 characters because after that there is no

scope left for the string to be present in the text.

Steps 3 to 6 are repeated until each and every character of the text

has been checked for the occurrence of the string within it. In the

inner loop in Step 3, we check the n characters of string with the n

characters of text to find if the characters are same. If it is not the

case, then we move to Step 6, where I is incremented. If the string

is found, then the index is initialized with I, else it is set to –1.

For example, if TEXT = WELCOME TO THE WORLD

STRING = COME

In the first pass of the inner loop, we will compare COME with WELC

character by character. As W and C do not match, the control will

move to Step 6 and then ELCO will be compared with COME. In the

fourth pass, COME will be compared with COME.

We will be using the programming code of pattern matching

operation in the operations that follow.

vii) Insertion

The insertion operation inserts a string S in the main text T at the
kth position. The general syntax of this operation is INSERT(text,
position, string). For example, INSERT("XYZXYZ", 3, "AAA") =
"XYZAAAXYZ"

Figure shows an algorithm to insert a string in a given text at the
specified position.

This algorithm first initializes the indices into the string to zero. From
Steps 3 to 5, the contents of NEW_STR are built. If I is exactly equal
to the position at which the substring has to be inserted, then the
inner loop copies the contents of the substring into NEW_STR.
Otherwise, the contents of the text are copied into it.

Write a program to insert a string in the main text.

#include <stdio.h>

int main() {

char text[100], str[20], ins_text[100]; int i=0, j=0, k=0,pos;

printf("\n Enter the main text : ");

gets(text);

printf("\n Enter the string to be inserted : ");

gets(str);

printf("\n Enter the place at which the string has to be inserted: ");

scanf("%d", &pos);

while(text[i] != '\0‘){

if(i==pos) {

while(str[k] != '\0‘) {

ins_text[j] = str[k];

j++;

k++;

}

} else {

ins_text[j] = text[i];

j++; }

i++;}

ins_text[j] = '\0';

printf("\n The new string is : ");

puts(ins_text);

return 0;}
OUTPUT
Enter the main text : newsman
Enter the string to be inserted : paper

Enter the place at which the string has to be inserted: 4
The new string is: newspaperman

ix) Deletion –

Deleting a Substring from the Main String

The deletion operation deletes a substring from a given text. We can
write it as DELETE(text, position, length). For example,
DELETE("ABCDXXXABCD", 4, 3) = "ABCDABCD“

Figure shows an Algorithm to delete a substring from a text

In this algorithm, we first initialize the indices to zero. Steps 3 to 6 are
repeated until all the characters of the text are scanned. If I is
exactly equal to M (the position from which deletion has to be
done), then the index of the text is incremented and N is
decremented. N is the number of characters that have to be
deleted starting from position M. However, if I is not equal to M,
then the characters of the text are simply copied into the
NEW_STR.

Write a program to delete a substring from a text.

#include <stdio.h>

int main() {

char text[200], str[20], new_text[200];

int i=0, j=0, found=0, k, n=0, copy_loop=0;

printf("\n Enter the main text : ");

gets(text);

printf("\n Enter the string to be deleted : ");

gets(str);

while(text[i]!='\0‘){

j=0, found=0, k=i;

while(text[k]==str[j] && str[j]!='\0')

{

k++;

j++;

}

if(str[j]=='\0')

copy_loop=k;

new_text[n] = text[copy_loop];

i++;

copy_loop++;

n++;

}

new_text[n]='\0';

printf("\n The new string is : ");

puts(new_text);

getch();

return 0;

}

OUTPUT

x) Replacement

Replacing a Pattern with Another Pattern in a String

The replacement operation is used to replace the pattern P1 by

another pattern P2 . This is done by writing REPLACE(text, pattern ,

pattern).

For example,

("AAABBBCCC", "BBB", "X") = AAAXCCC

("AAABBBCCC", "X", "YYY")= AAABBBCC

In the second example, there is no change as X does not appear in

the text.

Figure shows an algorithm to replace a pattern P1 with another

pattern P2 in the text.

The algorithm is very simple, where we first find the position POS, at

which the pattern occurs in the text, then delete the existing

pattern from that position and insert a new pattern there.

Write a program to replace a pattern with another pattern in the text.

#include <stdio.h>

int main() {

char str[200], pat[20], new_str[200], rep_pat[100]; int i=0, j=0, k, n=0,

copy_loop=0, rep_index=0;

printf("\n Enter the string : ");

gets(str);

printf("\n Enter the pattern to be replaced: ");

gets(pat);

printf("\n Enter the replacing pattern: ");

gets(rep_pat);

while(str[i]!='\0'){

j=0,k=i;

while(str[k]==pat[j] && pat[j]!='\0'){

k++;

j++;}

if(pat[j]=='\0'){

copy_loop=k;

while(rep_pat[rep_index] !='\0'){

new_str[n] = rep_pat[rep_index];

rep_index++;

n++;}}

new_str[n] = str[copy_loop];

i++;

copy_loop++;

n++;}

new_str[n]='\0';

printf("\n The new string is : ");

puts(new_str);

return 0;

}

OUTPUT

ARRAY OF STRINGS

Till now we have seen that a string is an array of characters. For
example, if we say char name[] = "Mohan", then the name is a
string (character array) that has five characters.

Now, suppose that there are 5 students in a class and we need a
string that stores the names of all the 5 students. How can this be
done? Here, we need a string of strings or an array of strings.

Such an array of strings would store 5 individual strings. An array of
strings is declared as char names[5][10];

Here, the first index will specify how many strings are needed and
the second index will specify the length of every individual string.
So here, we will allocate space for 5 names where each name can
be a maximum 10 characters long.

Let us see the memory representation of an array of strings. If we
have an array declared as

char name[5][10] = {"Ram", "Mohan", "Shyam", "Hari", "Gopal"};

Then in the memory, the array will be stored as shown in Fig.

By declaring the array names, we allocate 50 bytes. But the actual memory
occupied is 27 bytes. Thus, we see that about half of the memory allocated is
wasted.

Figure shows an algorithm to process individual string from an array of strings.

In Step 1, we initialize the index variable I to zero. In Step 2, a while loop is
executed until all the strings in the array are accessed. In Step 3, each individual
string is processed.

WRITE A PROGRAM TO READ AND PRINT THE NAMES OF N STUDENTS OF A CLASS

#include<stdio.h>

#include<conio.h>

main()

{

char names[5][10];

int i, n;

clrscr();

printf(“\n Enter the number of students : “);

scanf(“%d”, &n);

for(i=0;i<n;i++)

{

printf(“\n Enter the name of %dth student : “, i+1);

gets(names[i]);

}

printf(“\n Names of the students are : \n”);

for(i=0;i<n;i++)

puts(names[i]);

getch();

return 0;

}

This program

takes a string

from user

and for loop

executed

until all

characters of

string is

checked. If

any

character

inside a

string is not a

alphabet, all

characters

after it

including null

character is

shifted by 1

position

backwards.

GUIDED ACTIVITY – Here is HOW TO REMOVE CHARACTERS IN
STRING EXCEPT ALPHABETS

 Introduction to Pointers

Understanding The Computer’s Memory

Every computer has a primary memory. All our data and programs need to be

placed in the primary memory for execution.

The primary memory or RAM (Random Access Memory which is a part of the

primary memory) is a collection of memory locations (often known as cells) and

each location has a specific address. Each memory location is capable of storing 1

byte of data

Generally, the computer has four areas of memory each of which is used for a

specific task. These areas of memory include- stack, heap and global memory.

Stack- A fixed size of stack is allocated by the system and is filled as needed

from the bottom to the top, one element at a time. These elements can be

removed from the top to the bottom by removing one element at a time. That is,

the last element added to the stack is removed first.

Heap- Heap is a contiguous block of memory that is available for use by the

program when need arise. A fixed size heap is allocated by the system and is

used by the system in a random fashion.

When the program requests a block of memory, the dynamic allocation technique

carves out a block from the heap and assigns it to the program.

When the program has finished using that block, it returns that memory block to

the heap and the location of the memory locations in that block is added to the

free list.

Global Memory- The block of code that is the main() program (along with other functions

in the program) is stored in the global memory. The memory in the global area is

allocated randomly to store the code of different functions in the program in such a way

that one function is not contiguous to another function. Besides, the function code, all

global variables declared in the program are stored in the global memory area.

Other Memory Layouts- C provides some more memory areas like- text segment, BSS and

shared library segment.

 The text segment is used to store the machine instructions corresponding to the compiled

program. This is generally a read-only memory segment

 BSS is used to store un-initialized global variables

 Shared libraries segment contains the executable image of shared libraries that are being

used by the program.

Intro to pointers

Every variable in C has a name and a value associated with it. When a variable is
declared, a specific block of memory within the computer is allocated to hold the
value of that variable. The size of the allocated block depends on the type of the
data.
int x = 10;

When this statement executes, the compiler sets aside 2 bytes of memory to hold
the value 10. It also sets up a symbol table in which it adds the symbol x and the
relative address in memory where those 2 bytes were set aside.

Thus, every variable in C has a value and an also a memory location (commonly
known as address) associated with it. Some texts use the term rvalue and lvalue
for the value and the address of the variable respectively.

The rvalue appears on the right side of the assignment statement and cannot be
used on the left side of the assignment statement. Therefore, writing 10 = x; is
illegal.

#include<stdio.h>

void main(){

int x=10;

printf("\n The Address of x = %u",&x);

printf("\n The Value of x = %d",x);}

OUTPUT

The Address of x = 1002

The Value of x = 10

Declaring Pointer Variables

Actually pointers are nothing but memory addresses.
A pointer is a variable that contains the memory location of another
variable.
The general syntax of declaring pointer variable is

data_type *ptr_name;

Here, data-type - Type of the data to which the pointer points.
pointer-name - Name of the pointer

For example:
int *pnum; char *pch; float *pfnum;

Accessing Variable through Pointer

If a pointer is declared and assigned to a variable, then the variable can
be accessed through the pointer.

Example:

int *ptr;
int x= 10;
ptr = &x;

The '*' informs the compiler that ptr is a pointer variable and the int
specifies that it will store the address of an integer variable.
The & operator retrieves the lvalue (address) of x, and copies that to
the contents of the pointer ptr.

Example:
#include<stdio.h>
#include<conio.h>
void main()
{
int x=5;
int *a;
a=&x;
printf("\n The Value of x = %d",x);
printf("\n The Address of x = %u",&x);
printf("\n The Value of a = %d",a);
printf("\n The Value of x = %d",*a);
}
The Value of x = 5

The Address of x = 8758
The Value of a = 8758
The Value of x = 5

Example:
#include<stdio.h>
#include<conio.h>
void main(){

int y=10;

int *a;

a=&y;

printf("\n The Value of y = %d",y);

printf("\n The Address of y = %u",&y);

printf("\n The Value of a = %d",a);

printf("\n The Address of a = %u",&a);}
The Value of y = 10
The Address of y = 5001
The Value of a = 5001
The Address of a = 8000

De-referencing A Pointer Variable

We can "dereference" a pointer, i.e. refer to the value of the

variable to which it points by using unary '*' operator as in

*ptr. That is, *ptr = 10, since 10 is value of x.

#include<stdio.h>
int main()
{

int num, *pnum;
pnum = #
printf("\n Enter the number : ");
scanf("%d", &num);
printf("\n The number that was entered is : %d", *pnum);
return 0;

}

OUTPUT:

Enter the number : 10
The number that was entered is : 10

4042
Memory Address of variable

‘option’

‘Y’

char option =
‘Y’;

Allots some memory

location

4042 (for example)

with a name option

and

stores value ‘Y’ in it

4042

‘Y’ 4042

4042

‘N’ 4042

Variable

Value in
‘option’

option

ptr

ptr
option

ptr
option

*ptr = ‘N’;

The value ‘N’ is
stored in the

variable
which has the

memory address
4042

ptr = &option;

Memory address
of

Variable ‘option’
Is copied to the

Pointer ‘ptr’

char *ptr =
NULL;

Creates a pointer
variable with a name

‘ptr’
Which can hold a
Memory address

LL
NU

6 3

q

3 6

q

7 6

When two pointers are referencing with one variable, both pointers
contains address of the same variable, and the value changed
through with one pointer will reVAfCl-eC/Cc+t+ TtRoG both of them.

n1 n2
p q

n1 n2

p q

n1 n2

p

n1 n2

p

int main() {

int n1, n2 ;

int *p = "NULL", *q = "NULL";

n1 = 6 ;

p = & n1;

printf ("\n%d value1 %d", n1,*p);

printf ("\n%ld value2 %ld",&n1, p);

q = & n2;

*q = 3 ;

printf ("\n %d value3 %d ", *p , *q) ;

p = q ;

printf ("\n %d value4 %d ", *p , *q) ;

*p = 7 ;

printf ("\n %d value5 %d ", *p , *q) ;

}

Prints 7 7

Prints 3 3

pointer ‘q’ assigned with

pointer ‘q’

Prints 6 3

Prints address of

n1

Prints 6 6

pointer variables are

declared
LL
NU

Pointer variables can also be used in expressions. For ex,

int num1=2, num2= 3, sum=0, mul=0, div=1;

int *ptr1, *ptr2;

ptr1 = &num1, ptr2 = &num2;

sum = *ptr1 + *ptr2;

mul = sum * *ptr1;

*ptr2 +=1;

div = 9 + *ptr1/*ptr2 - 30;

We can add integers to or subtract integers from pointers as well as

to subtract one pointer from the other.

We can compare pointers by using relational operators in the

expressions. For example p1 > p2 , p1==p2 and p1!=p2 are all valid

in C.

When using pointers, unary increment (++) and decrement (--)

operators have greater precedence than the dereference operator (*).

Therefore, the expression

*ptr++ is equivalent to *(ptr++).

So the expression will increase the value of ptr so that it now points to

the next element.

In order to increment the value of the variable whose address is stored

in ptr, write (*ptr)++

Pointer operators / expressions

};

int main() {

int arr [5] = { 12, 31, 56, 19, 42
int *p;

p = arr + 1;
printf("%d \n", *p);
printf("%d %d %d\n", *(p-1), *(p), *(p + 1));
--p;
printf("%d", *p);

nts 12 31 56 Pri

Prints 31

#include <stdio.h>

Prints 12

arr[0] or *(arr + 0)

arr[1] or *(arr + 1)

arr[2] or *(arr + 2)

arr[3] or *(arr + 3)

arr[4] or *(arr + 4)

p - 1

p

p + 1

p + 2

p + 3

Subscript operator [] used to access an element of array implements address
arithmetic, like pointer.

Pointer arithmetic and arrays

42

19

56

31

12

Null Pointers

1) A null pointer which is a special pointer value that is known not to

point anywhere. This means that a NULL pointer does not point to

any valid memory address.

To declare a null pointer you may use the predefined constant

NULL,

int *ptr = NULL;

You can always check whether a given pointer variable stores

address of some variable or contains a null by writing,

if (ptr == NULL)

{ Statement block;

}

Null pointers are used in situations if one of the pointers in the

program points somewhere some of the time but not all of the

time. In such situations it is always better to set it to a null pointer

when it doesn't point anywhere valid, and to test to see if it's a null

pointer before using it.

2) A pointer is said to be null pointer if zero is assigned to the pointer.

Example

int *a,*b;

a=b=0;

Generic Pointers / void pointers
A generic pointer is pointer variable that has void as its data type.

The generic pointer, can be pointed at variables of any data type.

It is declared by writing

void *ptr;

You need to cast a void pointer to another kind of pointer before using it.

Generic pointers are used when a pointer has to point to data of different types at
different times.

For example 1 ,

#include<stdio.h>

int main()

{ int x=10;

char ch = ‘A’;

void *gp;

gp = &x;

printf("\n Generic pointer points to the integer value = %d", *(int*)gp);

gp = &ch;

printf("\n Generic pointer now points to the character %c", *(char*)gp);

return 0;

}

OUTPUT:

Generic pointer points to the integer value = 10

Generic pointer now points to the character = A

For example 2 ,

‘void’ type pointer is a generic pointer, which can be assigned to any data type without cast
during compilation or runtime. ‘void’ pointer cannot be dereferenced unless it is cast.

int main() {
void* p;
int x = 7;
float y = 23.5;
p = &x;
printf("x contains : %d\n", *((int *)p));
p = &y;
printf("y contains : %f\n", *((float *)p));

}
OUTPUT
x contains 7
y contains 23.500000

Pointers And Arrays

Pointers And One Dimensional Array

The elements of the array can also be accessed through a pointer.

Example

int a[3]={2,3,7};

int *b;

b=a;

Example:
#include<stdio.h>
#include<conio.h>
void main()
{
int a[3]={2,3,7};

int *b;
b=a;
printf("\n The Value of a[0] = %d",a[0]);
printf("\n The Address of a[0] = %u",&a[0]);
printf("\n The Value of b = %d",b);
}

OUTPUT
The Value of a[0] = 2

The Address of a[0] = 8744
The Value of b = 8744

Even though pointers and arrays work alike and strongly related, they are not
synonymous. When an array is assigned with pointer, the address of first
element of the array is copied into the pointer.

Guided Activity : Pointer and Arrays

#include<stdio.h>
int main()
{

int a[3] = { 12, 5 ,7}, b[3];
int *p ,*q;

p = a;
printf("%d %d\n", *p, *a);

q = p;
printf("%d %d",*p,*q);

b = a; /* error */
}

Prints 12 12

Prints 12 12

Array name is an address
constant, initialized with the
address of the first element
(base address)in the array. The
address stored in array name
cannot be changed in the
program.

Pointer is an address variable,
having no initialized value by
default. The address stored in
the pointer can be changed
time to time in the program.

base_address Array name contains base address

Pointers And Two Dimensional Array
a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2] a[3][0] a[3][1] a[3][2]

Individual elements of the array mat can be accessed using either:
mat[i][j] or *(*(mat + i) + j) or*(mat[i]+j);

See pointer to a one dimensional array can be declared as,
int arr[]={1,2,3,4,5};
int *parr;
parr=arr;

Similarly, pointer to a two dimensional array can be declared as,
int arr[2][2]={{1,2},{3,4}};
int (*parr)[2];
parr=arr;

Look at the code given below which illustrates the use of a pointer to a two
dimensional array.

#include<stdio.h>
main()
{ int arr[2][2]={{1,2}.{3,4}};

int i, (*parr)[2];
parr=arr;
for(i=0;i<2;i++)
{ for(j=0;j<2;j++)

printf(" %d", (*(parr+i))[j]);
}

}

OUTPUT
1 2 3 4

Address of a[i] [j] = *(* (base_address + i) + j) = * (* (a + i) + j)

Pointers And Strings

 Now, consider the following program that prints a text.

#include<stdio.h>

main()

{ char str[] = "Oxford";

char *pstr = str;

printf("\n The string is : ");

while(*pstr != ‘\0’)

{ printf("%c’, *pstr);

pstr++;

}

}

 In this program we declare a character pointer *pstr to show the string on
the screen. We then "point" the pointer pstr at str. Then we print each
character of the string in the while loop. Instead of using the while loop, we
could have straight away used the function puts(), like puts(pstr);

 Consider here that the function prototype for puts() is:

 int puts(const char *s); Here the "const" modifier is used to assure the user
that the function will not modify the contents pointed to by the source
pointer. Note that the address of the string is passed to the function as an
argument.

Array Of Pointers

An array of pointers can be declared as

int *ptr[10]

The above statement declares an array of 10 pointers where each of the

pointer points to an integer variable. For example, look at the code

given below.

int *ptr[10];

int p=1, q=2, r=3, s=4, t=5;

ptr[0]=&p;

ptr[1]=&q;

ptr[2]=&r;

ptr[3]=&s;

ptr[4]=&t

Can you tell what will be the output of the following statement?

printf("\n %d", *ptr[3]);

Yes, the output will be 4 because ptr[3] stores the address of integer

variable s and *ptr[3] will therefore print the value of s that is 4.

The advantage of pointer array is that the length of each row in the
array may be different. The important application of pointer array is to
store character strings of different length. Example :

char *day[] = { "Sunday", "Monday", "Tuesday", "Wednesday",
Thursday", "Friday", "Saturday" };

Pointers To Pointers (Double Indirection)

You can use pointers that point to pointers. The pointers in turn, point to data (or

even to other pointers). To declare pointers to pointers just add an asterisk (*) for

each level of reference.

Here one pointer stores the address of another pointer variable.

Example:

int x=10,*a,**b;

a=&x;

b=&a;

Example
#include<stdio.h>
#include<conio.h>
void main()
{
int a=10;
int *b,**c;
b=&a;
c=&b;
printf("\n The Value of a = %d",a);
printf("\n The Address of a = %u",&a);
printf("\n The Value of b = %d",b);
printf("\n The Address of b = %u",&b);
printf("\n The Value of c = %d",c);
printf("\n The Address of c = %u",&c);
}

OUTPUT

The Value of a = 10

The Address of a = 5001
The Value of b = 5001
The Address of b = 8000
The Value of c = 8000
The Address of c = 9000

Drawbacks of Pointers

Although pointers are very useful in C, they are not free from
limitations. If used incorrectly, pointers can lead to bugs that
are difficult to unearth. For example, if you use a pointer to
read a memory location but that pointer is pointing to an
incorrect location, then you may end up reading a wrong
value. An erroneous input always leads to an erroneous
output. Thus however efficient your program code may be,
the output will always be disastrous. Same is the case when
writing a value to a particular memory location.

Let us try to find some common errors when using pointers.

int x, *px;

x=10;

*px = 20;

Error: Un-initialized pointer. px is pointing to an unknown
memory location. Hence it will overwrite that location’s
contents and store 20 in it.

int x, *px;

x=10;

px = x;

Error: It should be px = &x;

int x=10, y=20, *px, *py; px = &x, py = &y; if(px<py)

printf("\n x is less than y"); else

printf("\n y is less than x");

Error: It should be if(*px< *py)

Exercise Programs

 Exercise Programs:

Exercise program1 : To find the frequency of a character in a
string

we will learn how to find occurrence of a particular character in a string
using C program?

Here, we are reading a character array/string (character array is declaring with
the maximum number of character using a Macro MAX that means maximum
number of characters in a string should not more than MAX (100), then we are
reading a character to find the occurrence and counting the characters which are
equal to input character.

For example:

If input string is "Hello world!" and we want to find occurrence of 'l' in the
string, output will be 'l' found 3 times in "Hello world!".

#include <stdio.h>
#define MAX 100
int main(){

char str[MAX]={0};
char ch;
int count,i;

//input a string
printf("Enter a string: ");
scanf("%[^\n]s",str); //read string with spaces

getchar(); // get extra character (enter/return key)

//input character to check frequency
printf("Enter a character: ");
ch=getchar();

//calculate frequency of character
count=0;
for(i=0; str[i]!='\0'; i++)
{

if(str[i]==ch)
count++;

}
printf("%c found %d times in %s",ch,count,str);
return 0;}

Output:

To find the frequency of all character s in a string

This program counts the frequency of characters in a string, i.e., which character is
present how many times in the string. For example, in the string "code" each of the

characters 'c,' 'd,' 'e,' and 'o' has occurred one time. Only lower case alphabets
are considered, other characters (uppercase and special characters) are ignored. You
can modify this program to handle uppercase and special symbols.

Explanation of "count[string[c]-'a']++", suppose input string begins with 'a' so c is 0
initially and string[0] = 'a' and string[0] - 'a' = 0 and we increment count[0], i.e., 'a'
has occurred one time and repeat this until the complete string is scanned.

#include <stdio.h>
#include <string.h>
int main()
{

char string[100];
int c = 0, count[26] = {0}, x;
printf("Enter a string\n");
gets(string);
while (string[c] != '\0') {
/** Considering characters from 'a' to 'z' only and ignoring others. */

if (string[c] >= 'a' && string[c] <= 'z') {
x = string[c] -'a';
count[x]++;

}
c++;

}
for (c = 0; c < 26; c++)

printf("%c occurs %d times in the string.\n", c +'a', count[c]);
return 0;

}
OUTPUT

Exercise program 2: To find the number of vowels, consonants
and white spaces in a given text

#include <stdio.h>

int main() {

char line[150];

int vowels, consonant, digit, space;

vowels = consonant = digit = space = 0;

printf("Enter a line of string: ");

gets(line);

//fgets(line, sizeof(line), stdin);

for (int i = 0; line[i] != '\0'; ++i) {

if (line[i] == 'a' || line[i] == 'e' || line[i] == 'i' ||

line[i] == 'o' || line[i] == 'u' || line[i] == 'A' ||

line[i] == 'E' || line[i] == 'I' || line[i] == 'O' ||

line[i] == 'U') {

++vowels;

} else if ((line[i] >= 'a' && line[i] <= 'z') || (line[i] >= 'A' && line[i] <= 'Z')) {

++consonant;

} else if (line[i] >= '0' && line[i] <= '9') {

++digit;

} else if (line[i] == ' ') {

++space;

} }

printf("Vowels: %d", vowels);

printf("\nConsonants: %d", consonant);

printf("\nDigits: %d", digit);

printf("\nWhite spaces: %d", space);

return 0;}

OUTPUT

/* C Program to Sort array of nos ascending and descending order */

#include <stdio.h>
#include <string.h>

void main()
{

int a[10], t ;
int i, j, n;

printf("Enter the value of n \n");
scanf("%d", &n);

printf("Enter %d numbers: \n" , n);
for (i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}
for (i = 0; i < n - 1 ; i++)
{

for (j = i + 1; j < n; j++)
{

if (a[i]>a[j])
{

t=a[i];
a[i]=a[j];
a[j]=t;

}
}

}

OUTPUT

printf("Ascending Order Nos\n");
for (i = 0; i < n; i++)
{

printf("%d\t", a[i]);
}
printf("\nDescending Order Nos\n");

for (i = n-1; i >= 0; i--)
{

printf("%d\t", a[i]);
}

}

Exercise program3: Sorting the names
/* C Program to Sort Names in Alphabetical Order */

#include <stdio.h>
#include <string.h>

void main()
{

char name[10][8], tname[10][8], temp[8];
int i, j, n;

printf("Enter the value of n \n");
scanf("%d", &n);

printf("Enter %d names: \n" , n);
for (i = 0; i < n; i++)
{

scanf("%s", name[i]);
strcpy(tname[i], name[i]);

}
for (i = 0; i < n - 1 ; i++)
{

for (j = i + 1; j < n; j++)
{

if (strcmp(name[i], name[j]) > 0)
{

strcpy(temp, name[i]);
strcpy(name[i], name[j]);
strcpy(name[j], temp);

}
}

}

OUTPUT

printf("\n \n");
printf("Input NamestSorted names\n");
printf(" \n");
for (i = 0; i < n; i++)
{

printf("%s\t\t%s\n", tname[i], name[i]);
}
printf(" \n");

}

Assignment
Unit III

Assignment Questions

CO 1 Develop C program solutions to simple computational

problems

1. Write a program in C that removes leading and trailing spaces
from a string.

K2 CO4

2. Write a program in C that replaces a given character with
another character in a string.

K2 CO4

Part A
Question & Answer

Part A

1. What is the difference between „a‟ and “a”?
„a‟ is a character constant and “a” is a string.

2. What is the use of „\0‟ character?
When declaring character arrays (strings), „\0‟ (NULL) character is
automatically added at end. The „\0‟ character acts as an end of
character array.

3. Define Strings.
The group of characters, digit and symbols enclosed within quotes is
called as String (or) character Arrays. Strings are always terminated
with „\0‟ (NULL) character. The compiler automatically adds „\0‟ at
the end of the strings.

Example for character arrays [strings].
#include <stdio.h> main()
{
static char name1[] = {'H','e','l','l','o'}; static char name2[] = "Hello";
printf("%s\n", name1);
printf("%s\n", name2);}

4. List the different methods for reading and writing a string.
The different methods for reading a string are,

scanf()
gets()
getchar()

getch() or getche()

5. The different methods for writing a string are,

printf()

puts()

putchar()

6. Write a C program to get a string input and print it.

#include<stdio.h> #include<conio.h> void main()

{ Output:

Excellent

char str[20]; The given string

Excellent

gets(str);

printf("The given string\n"); printf("%s",str);

}

7. What is the use of gets() function?

The gets() function allows a full line entry from the user. When the
user presses the enter key to end the input, the entire line of
characters is stored to a string variable.

8. Write a C program to find the length of given string.

#include <stdio.h> int main()

{

char s[1000], i; Output:

printf("Enter a string: "); Enter a string: hai

Programming in C

scanf("%s", s); Length of string:16

for(i = 0; s[i] != '\0'; ++i); printf("Length of string: %d", i); return 0;

}

9. Write a C program to get a string input and print it.

#include<st

dio.h>
#include<co
nio.h> void
main()

{ Output:

Excellent

char str[20]; The given string

Excellent

gets(str);

printf("The given
string\n");
printf("%s",str);

}

10. Why is it necessary to give the size of an array in an array declaration?

When an array is declared, the compiler allocates a base address and reserves
enough space in the memory for all the elements of the array. The size is required
to allocate the required space. Thus, the size must be mentioned.

11. What is the use of gets() function?

The gets() function allows a full line entry from the user. When the user
presses the enter key to end the input, the entire line of characters is
stored to a string variable.

12. What is pointer?

Every variable in C has a name and a value associated with it. When a
variable is declared, a specific block of memory within the computer is
allocated to hold the value of that variable. The size of the allocated
block depends on the data type. A pointer is a variable that contains the
address of another variable.
13. How to declaring pointer variables?
The general syntax of declaring pointer variables can be given as below.

14. Define pointer to pointer.

The pointers in turn point to data or even to other pointers. To declare
pointer to pointer, just add an asterisk * for each level of reference

15. Write the drawbacks of pointers.

Pointers are very useful in C, they are not free from limitations. If used
incorrectly, pointers can lead to bugs that are difficult to unearth.

Example: If you use a pointer to read a memory location but that
pointer is pointing to an incorrect location, then you may end up reading
a wrong value. An erroneous input always leads to an erroneous output.
Thus however efficient our program code may be, the output will always
be disastrous.

16. Differentiate * and &.

* Value at operator Gives value stored at particular address

& Address operator Gives address of variable

data_type *ptr_name;

Part B
Questions

Part B
1. Write a C program to count number of words in a sentence.
2. Write a C program to check whether a string is palindrome.
3. Explain the standard string functions with example to support each type.
4. Explain how strings can be displayed on the screen.
5. Explain the syntax of printf() and scanf().

6. List all the substrings that can be formed from the
string ‘ABCD’.
7. What do you understand by pattern matching? Give an algorithm for it.
8. Write a short note on array of strings.
9. Explain with an example how an array of strings is stored in the main memory.

10. Explain how pointers and strings are related to each other with the help of a
suitable program.
11. If the substring function is given as SUBSTRING (string, position, length), then
find S(5, 9) if S = "Welcome to World of C Programming"
If the index function is given as INDEX(text, pattern), then find index(T, P) where T
="Welcome to World of C Programming" and P = "of"
12. Differentiate between gets() and scanf().
13. Give the drawbacks of getchar() and scanf().

14. Which function can be used to overcome the
shortcomings of getchar() and scanf()?
15. How can putchar() be used to print a string?
16. Differentiate between a character and a string.

17. Differentiate between a character array and a
string.
18. Write a program in which a string is passed as an argument to a function.

19. Write a program in C to concatenate first n characters of a string with another
string.
20. Write a program in C that compares first n characters of one string with first n
characters of another string.
21. Explain in detail about pointers with example.
22. Write a C program to access array elements using Pointers
23. Write a C program to sort a list in alphabetic order using pointers.

Supportive Online
Certification
Unit III

Certification Courses

NPTEL

Problem solving through Programming in C

https://nptel.ac.in/courses/106/105/106105171/

Coursera

1) C for Everyone: Structured Programming

https://www.coursera.org/learn/c-structured-programming

2) C for Everyone: Programming Fundamentals

https://www.coursera.org/learn/c-for-everyone

https://nptel.ac.in/courses/106/105/106105171/
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-for-everyone

Real time Applications
Unit III

1) Phonebook application

a small phonebook code challenge to build the shortest : Functions
include add contact, remove contact, search contact and display
contacts.

Content beyond syllabus
Unit III

Content beyond syllabus

1) Character manipulation functions in c using Ctype.h library file

Assessment Schedule
Unit III

Prescribed Text book &
References
Unit III

Text books & References

TEXT BOOK

1. Reema Thareja, "Programming in C", Oxford University Press,
Second Edition, 2016

REFERENCES

1. Kernighan, B.W and Ritchie,D.M, "The C Programming
language", Second Edition, Pearson Education, 2006

2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh
edition, Pearson Publication

3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE
Learning India pvt. Ltd., 2011

4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and
Programming in C", First Edition, Oxford University Press, 2009

5. ER and ETA , “CC Foundation Program Reference materials”
Infosys Ltd.

Mini Project Suggestions
Unit III

1) Contact Management System

2) Personal diary Management system

Thank you

Disclaimer:

This document is confidential and intended solely for the educational purpose of RMK Group of
Educational Institutions. If you have received this document through email in error, please notify the
system manager. This document contains proprietary information and is intended only to the
respective group / learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender immediately by e-mail if you
have received this document by mistake and delete this document from your system. If you are not
the intended recipient you are notified that disclosing, copying, distributing or taking any action in
reliance on the contents of this information is strictly prohibited.

Please read this disclaimer before proceeding:

This document is confidential and intended solely for the educational purpose of
RMK Group of Educational Institutions. If you have received this document
through email in error, please notify the system manager. This document
contains proprietary information and is intended only to the respective group /
learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender
immediately by e-mail if you have received this document by mistake and delete
this document from your system. If you are not the intended recipient you are
notified that disclosing, copying, distributing or taking any action in reliance on
the contents of this information is strictly prohibited.

OCS752
INTRODUCTION TO C

PROGRAMMING
Department: : Electrical and Electronics Engineering

Batch/Year: 2017-2021
Created by: Dr. S. Meenakshi and A.S. Vibith

Date: 21-08-2020

Table of Contents

Course Objectives

Syllabus

Course Outcomes (Cos)

CO-PO Mapping

Lecture Plan

Activity based learning

Lecture notes

Assignments

Part A Q&A

Part B Qs

List of Supportive online Certification courses

Real time applications in day to day life and to industry

Contents beyond Syllabus

Assessment Schedule (proposed and actual date)

Prescribed Text Books & Reference Books

Mini Project Suggestions

Course Objectives

OCS752 INTRODUCTION TO C PROGRAMMING L T P C

3 0 0 3

OBJECTIVES

To develop C Programs using basic programming constructs

To develop C programs using arrays and strings

To develop applications in C using functions and structures

Syllabus
OCS752 INTRODUCTION TO C PROGRAMMING L T P C 3 0 0 3

UNIT I INTRODUCTION 9

Structure of C program – Basics: Data Types – Constants –Variables - Keywords –
Operators: Precedence and Associativity - Expressions - Input/output statements,
Assignment statements –Decision-making statements - Switch statement - Looping
statements – Pre-processor directives -Compilation process – Exercise Programs:
Check whether the required amount can be withdrawn based on the available
amount – Menu-driven program to find the area of different shapes – Find the sum
of even numbers

UNIT II ARRAYS 9

Introduction to Arrays – One dimensional arrays: Declaration – Initialization -
Accessing elements –Operations: Traversal, Insertion, Deletion, Searching - Two
dimensional arrays: Declaration –Initialization - Accessing elements – Operations:
Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive
and negative values present in the array – Sort the numbers using bubble sort - Find
whether the given is matrix is diagonal or not.

UNIT III STRINGS 9

Introduction to Strings - Reading and writing a string - String operations (without
using built-in string functions): Length – Compare – Concatenate – Copy – Reverse
– Substring – Insertion – Indexing – Deletion – Replacement – Array of strings –
Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise
programs: To find the frequency of a character in a string - To find the number of
vowels, consonants and white spaces in a given text - Sorting the names.

UNIT IV FUNCTIONS 9

Introduction to Functions – Types: User-defined and built-in functions - Function
prototype – Function definition - Function call - Parameter passing: Pass by value -
Pass by reference - Built-in functions (string functions) – Recursive functions –
Exercise programs: Calculate the total amount of power consumed by ‘n’ devices
(passing an array to a function) – Menu-driven program to count the numbers which
are divisible by 3, 5 and by both (passing an array to a function) – Replace the
punctuations from a given sentence by the space character (passing an array to a
function)

UNIT V STRUCTURES 9

Introduction to structures – Declaration – Initialization – Accessing the members –
Nested Structures – Array of Structures – Structures and functions – Passing an
entire structure – Exercise programs: Compute the age of a person using structure
and functions (passing a structure to a function) – Compute the number of days an
employee came late to the office by considering his arrival time for 30 days (Use
array of structures and functions)

TOTAL:45 PERIODS

Course Outcomes

CO 1 - Develop algorithmic solutions to simple computational

problems using basic constructs K1

CO 2 - Develop simple applications in C using Control Constructs K2

CO 3 - Design and implement applications using arrays K2

CO 4 – Represent data using string and string operations K3

CO 5 - Decompose a C program into functions and pointers K3

CO 6 - Represent and write program using structure and union K3

CO – PO Mapping

CO PO
Mapping

Level
Justification

CO PO Mapping Level Justification

CO1 PO1 2 Identify the data type and operators to solve the problem

CO1 PO2 2 Design the expression in an efficient way

CO1

PO3

2

Recognize the need of basic c Tokens-variables-constants

CO1

PO5

2

Apply the concept of control statements for simple solving the

problem

CO1

PO12

1

Formulate the iterative statements for problem solving

CO2

PO1

3

Develop a complete program s for preprocessor directives

CO2

PO2

3

Recognize the implementation of simple problem solving with

above concepts

CO3

PO3

2

Apply simple mathematical concepts for writing 1D arrays and

its operations

CO3

PO5

2

Identify and formulate for the given problem using 2D and its

operations

CO3

PO12

1

Design way of problem solving in Multi Dimensional arrays

CO4 PO1 3 Recognize the need of implementation in string

CO4

PO2

3

Apply logic to solve simple problem statement using string

operations

CO4

PO3

3

Apply the knowledge to find the possible code for string

manipulations

CO5

PO5

2

Identify the code for decomposition as function

CO5

PO12

1

Develop functions and reuse it whenever required to reduce the

lines of code

CO5 PO1 2 Recognize the need of function concepts

CO5

PO2

2

Apply compound data knowledge to select any one

CO5

PO3

2

Apply the concept of pointers

CO5

PO5

2

Design and Develop program using the selected compound data

CO6

PO12

1

Recognize the need of structure

CO6 PO1 2 Apply the basic idea of handling with union

CO6

PO2

2

Identify the number of modes and operations on structure in

detail

CO6 PO3 2 Develop programs using structure and union

Lecture Plan
Unit IV

CO-PO/PSO MAPPING

COU

RSE

OUT

COM

E

LEV

EL

OF

COU

RSE

OUT

CO

ME

PROGRAM OUTCOME (PO)

PROGRAM SPECIFIC OUTCOME (PSO)

PO1

PO

2

PO3

PO4

PO5

PO6

PO7

PO8

PO9

PO

10

PO

11

PO

12

PSO1

PSO2

PSO3

PSO4

CO1

K1

2 2 2 - 2 - - - - -

-

1

1

CO2

K2

3 3 2 - 2 - - - - -

-

1

1

CO3

K2

3 3 3 - 2 - - - - -
- 1

1

CO4

K3

2 2 2 - 2 - - - - -
- 1

1

CO5

K3

2 2 2 - - - - - - -
- 1

1

CO6

K3
3 3 3 2

1

1

Unit IV - FUNCTIONS

S.N
o

Topics No.

of

Peri
ods

Propos

ed

Date

Actual

Lecture

Date

Pertain

ing CO

Taxon

omy

Level

Mode of

Delivery

1 Introduction to

Functions

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

2 Types: User-defined
and built-in functions

1 CO1 K2 PPT, Chalk &
Talk

3 Function prototype –

Function definition -
Function call

1 CO1 K2 PPT, Chalk &

Talk

4 Parameter passing:

Pass by value - Pass by
reference

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

5.6 Built-in functions (string
functions) – Recursive
functions

2 CO1 K2 PPT, Chalk &

Talk

7 Exercise programs 1:
Calculate the total
amount of power

1 CO1 K2 PPT, Chalk &

Talk

 consumed by ‘n’ devices

 (passing an array to a

 function)

8,9 Exercise Programs:

Ex. Prog. 2 : Menu-

driven program to count
the numbers which are

divisible by 3, 5 and by
both (passing an array

to a function) – Replace

the punctuations from a
given sentence by the

space character

2 CO1 K2 PPT, Chalk &

Talk

 (passing an array to a
function)

Activity Based Learning
Unit IV

Activity Based Learning

Learn by solving problems – Tutorial Sessions can be conducted

– Tutorial sessions available in Skillrack

for practice

Learn by questioning

Learn by doing hands-on IN ONLINR / VIRTUAL LAB.

Lecture Notes
UNIT IV FUNCTIONS 9

Introduction to Functions – Types: User-defined and built-in functions - Function
prototype – Function definition - Function call - Parameter passing: Pass by value -
Pass by reference - Built-in functions (string functions) – Recursive functions –
Exercise programs: Calculate the total amount of power consumed by ‘n’ devices
(passing an array to a function) – Menu-driven program to count the numbers which
are divisible by 3, 5 and by both (passing an array to a function) – Replace the
punctuations from a given sentence by the space character (passing an array to a
function)

Unit IV - Functions : LEARNING PLAN

Sl. No. Topics Learning
Content
(hh.mm)

Post-Session
(Quiz +
Assignment)
(hh:mm)

4.0 and
4.1

Introduction to Functions – Types:
User-defined and built-in functions
- Function prototype – Function
definition

3.00 1.00

4.2 Function call - Parameter passing:
Pass by value - Pass by reference -
Built-in functions (string functions)
– Recursive functions.

3.00 0.50

4.3 Exercise programs: Calculate the
total amount of power consumed
by ‘n’ devices (passing an array to
a function) – Menu-driven program
to count the numbers which are
divisible by 3, 5 and by both
(passing an array to a function) –
Replace the punctuations from a
given sentence by the space
character (passing an array to a
function)

3.00 1.00

 Total 9.00 2.50

Introduction to
Functions

Introduction to Functions

A function is a group of statements that together perform a task. Every C program has
at least one function, which is main(), and all the most trivial programs can define
additional functions.

You can divide up your code into separate functions. How you divide up your code
among different functions is up to you, but logically the division is such that each
function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and
parameters. A function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call.
For example, strcat() to concatenate two strings, memcpy() to copy one memory
location to another location, and many more functions.

A function can also be referred as a method or a sub-routine or a procedure, etc.

Modular programming is a software design technique that emphasizes

separating the functionality of a program into independent, interchangeable modules,
such that each contains everything necessary to execute only one aspect of the desired
functionality.

Concept of Modularization
One of the most important concepts of programming is the ability to group some lines
of code into a unit that can be included in our program. The original wording for this
was a sub-program. Other names include: macro, sub-routine, procedure, module and
function. We are going to use the term function for that is what they are called in most
of the predominant programming languages of today. Functions are important because
they allow us to take large complicated programs and to divide them into smaller
manageable pieces. Because the function is a smaller piece of the overall program, we
can concentrate on what we want it to do and test it to make sure it works properly.
Generally, functions fall into two categories:

1. Program Control – Functions used to simply sub-divide and control the program.
These functions are unique to the program being written. Other programs may use
similar functions, maybe even functions with the same name, but the content of the
functions are almost always very different.

2. Specific Task – Functions designed to be used with several programs. These
functions perform a specific task and thus are usable in many different programs
because the other programs also need to do the specific task. Specific task functions are
sometimes referred to as building blocks. Because they are already coded and tested,
we can use them with confidence to more efficiently write a large program.

Why we need functions in C

Functions are used because of following reasons
–

a) To improve the readability of code.

b) Improves the reusability of the code, same function can be used in any program
rather than writing the same code from scratch

.

c) Debugging of the code would be easier if you use functions, as errors are easy
to be traced.

d) Reduces the size of the code, duplicate set of statements are replaced by
function calls.

Terminologies of Functions

• A function f that uses another function g, is known as the calling function and g
is known as the called function

• The input that the function takes are known as argument / parameter.

• When a called function returns some result back to the calling function, it is said
to return that result.

• The calling function may or may not pass parameters to the called function. If
the called function accepts arguments, the calling function will pass parameters,
else it will not do so.

Scope of a Function:

A scope in any programming is a region of the program where a defined variable can
have its existence and beyond that variable it cannot be accessed. There are three
places where variables can be declared in C programming language −

• Inside a function or a block which is called local variables.

• Outside of all functions which is called global variables.

• In the definition of function parameters which are called formal parameters.

Let us understand what are local and global variables, and formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables. They

can be used only by statements that are inside that function or block of code. Local

variables are not known to functions outside their own. The following example shows

how local variables are used. Here all the variables a, b, and c are local to main()

function.

#include <stdio.h>

int main ()

/* local variable declaration */

int a, b;

int c;

/* actual initialization */

a = 20;

b = 10;

c = a + b;

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

return 0;

}

Global Variables

Global variables are defined outside a function, usually on top of the program. Global

variables hold their values throughout the lifetime of your program and they can be

accessed inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available
for use throughout your entire program after its declaration. The following program
show how global variables are used in a program.

#include <stdio.h>

/* global variable declaration */

int x;

int main () {

/* local variable declaration */

int a, b;

/* actual initialization */

a = 20;

b = 10;

x = a + b;

printf ("value of a = %d, b = %d and x = %d\n", a, b, x);

return 0;

}

A program can have same name for local and global variables but the value

of local variable inside a function will take preference.

Example

#include <stdio.h>

/* global variable declaration */

int x = 30;

int main ()

/* local variable declaration */

int x = 10;

printf ("value of x = %d\n", x);

return 0;

}

Types of Functions

Types of function

There are two types of function in C programming:

• Standard library functions

• User-defined function

Standard library functions

The standard library functions are built-in functions in C programming.

These functions are defined in header files. For example,

• The printf() is a standard library function to send formatted output to the screen

(display output on the screen). This function is defined in the stdio.h header file.

Hence, to use the printf()function, we need to include the stdio.h header file

using #include <stdio.h>.

The sqrt() function calculates the square root of a number. The function is defined in

the math.h header file.

Example:

Square root using sqrt() function

#include<stdio.h>

#include<math.h>

void main()

{

float number, root;

printf(“Enter the number”);

scanf(“%f”,&number);

root=sqrt(number);

printf(“Square root of %.2f=%.2f”,number,root);

}

Output

Enter the number 12
Square root of 12.00 = 3.46

Library Functions in Different Header Files

C Header Files Purpose

<assert.h> Program assertion functions

<ctype.h> Character type functions

<locale.h> Localization functions

<math.h> Mathematics functions

<setjmp.h> Jump functions

<signal.h> Signal handling functions

<stdarg.h> Variable arguments handling functions

<stdio.h> Standard Input/Output functions

<stdlib.h> Standard Utility functions

<string.h> String handling functions

<time.h> Date time functions

Advantages of Using C library functions

1. The functions are optimized for performance

Since, the functions are "standard library" functions, a dedicated group of developers

constantly make them better. In the process, they are able to create the most efficient

code optimized for maximum performance.

2. It saves considerable development time

Since the general functions like printing to a screen, calculating the square root, and

many more are already written. You shouldn't worry about creating them once again.

https://www.programiz.com/c-programming/library-function/ctype.h
https://www.programiz.com/c-programming/library-function/math.h
https://www.programiz.com/c-programming/library-function/string.h

3. The functions are portable

With ever-changing real-world needs, your application is expected to work every time,
everywhere. And, these library functions help you in that they do the same thing on
every computer.

User-defined function

The functions that we create in a program are known as user defined functions or in
other words you can say that a function created by user is known as user defined
function.

Syntax

return_type function_name(argument list)
{

set of statement block of code
}

Example:

// Creating a user defined function addition()

#include <stdio.h>

int addition(int number1, int number2)

{

int sum;

/* Arguments are used here*/

sum = number1+number2;

/* Function return type is integer so we are returning

* an integer value, the sum of the passed numbers.

*/

return sum;

}

int main()

{

int variable1, variable2;

printf("Enter number 1: ");

scanf("%d",&variable1);

printf("Enter number 2: ");

scanf("%d",&variable2);

/* Calling the function here, the function return type

* is integer so we need an integer variable to hold the

* returned value of this function.

*/

int res = addition(variable1, variable2);

printf ("Output: %d", res);

return 0;

}

Advantages of user-defined function

1. The program will be easier to understand, maintain and debug.

2. Reusable codes that can be used in other programs

3. A large program can be divided into smaller modules. Hence, a large project can

be divided among many programmers.

Function Prototype

Function Prototype:

The function prototypes are used to tell the compiler about the number of
arguments and about the required datatypes of a function parameter, it also tells
about the return type of the function. By this information, the compiler cross-checks
the function signatures before calling it. If the function prototypes are not
mentioned, then the program may be compiled with some warnings, and sometimes
generate some strange output.
If some function is called somewhere, but its body is not defined yet, that is defined
after the current line, then it may generate problems. The compiler does not find
what is the function and what is its signature. In that case, we need to function
prototypes. If the function is defined before then we do not need prototypes.

Example:

Without using prototype

#include<stdio.h>

main() {

function(50);

}

void function(int x) {

printf("The value of x is: %d", x);

}

Output:

The value of X is : 50

This shows the output, but it is showing some warning like below

[Warning] conflicting types for 'function'

[Note] previous implicit declaration of 'function' was here :

Example:

Using Prototype:

#include<stdio.h>

void function(int); //prototype

main() {

function(50);

}

void function(int x) {

printf("The value of x is: %d", x);

}

Output:

The value of x is: 50

Function Definition

Function Definition:

A function definition in C programming consists of a function header and

a function body. Here are all the parts of a function −

• Return Type − A function may return a value. The return_type is the data

type of the value the function returns. Some functions perform the desired

operations without returning a value. In this case, the return_type is the

keyword void.

• Function Name − This is the actual name of the function. The function

name and the parameter list together constitute the function signature.

• Parameters − A parameter is like a placeholder. When a function is invoked,

you pass a value to the parameter. This value is referred to as actual

parameter or argument. The parameter list refers to the type, order, and

number of the parameters of a function. Parameters are optional; that is, a

function may contain no parameters.

Function Body − The function body contains a collection of statements that
define what the function does.

Syntax:

Return_data_type function_name(data_type variable1, data_type variable2,…)

{

………………………………………..
statements
………………………………….......
return (variable);

}

The number of arguments and the order of arguments in the function header must
be same as that given in the function declaration statement.

While return data_type function_name(data_type variable1, data_type variable2,…)
is known as the function header, the rest of the portion comprising of program
statements within { } is the function body which contains the code to perform the
specific task.

The function header is same as that of function declaration. The only difference
between the two is that a function header is not followed by a semicolon. The list
of variable in the function header is known as the formal parameter list. The
parameter list may have zero or more parameters of any datatype. The function
body contains instructions to perform the desired computation in a function.

The function definition itself can act as an implicit function declaration. So the
programmer may skip the function declaration statement in case the function is
defined before being used.

Example:

/* function returning the min between two numbers */

int min(int numb1, int numb2) {

/* local variable declaration */

int result;

if (numb1 < numb2)

result = numb1

else

result = numb2;

return result;

}

Function Call

Function Call

The function call statement invokes the function. When a function is invoked the

compiler jumps to the called function to execute the statements that are a part of

that function. Once the called function is executed, the program control passes back

to the calling function.

Function call statement has the following syntax:

Function_name(varaible1, variable2,…);

When the function declaration is present before the function call, the compiler can

check if the correct number and type of arguments are used in the function call and

the returned value, if any, is being used reasonably.

Function definitions are often placed in a separate header file which can be included

in other C source files that wish to use the functions. For example, the header file

stdio.h, contains the definition of scanf and printf functions. We simply include this

header file and call these functions without worrying about the code to implement

their functionality.

List of Variable used in function call is known as actual parameter list. The actual

parameter list may contain variable names, expressions, or constants.

Important points while calling a function:

1. Function name and the number and type of arguments in the function call must

be same as that given in the function declaration and function header of the

function definition.

2. If by mistake the parameters passed to a function are more than what it is

specified to accept then the extra arguments will be discarded.

3. If by mistake the parameters passed to a function are less than what it is

specified to accept then the unmatched argument will be initialized to some

garbage value.

4. Names of variables in function declaration, function call, and header of function

definition may vary.

5. If the data type of the argument passed does not match with that specified in

the function declaration then either the unmatched argument will be initialized

to some garbage value or compile time error will be generated.

6. Argument may be passed in the form of expressions to the called function. In

such cases, arguments are first evaluated and converted to the type of formal

parameter and then the body of the function gets executed.

7. The parameter list must be separated with commas.

8. If the return type of the function is not void, then the value returned by the

called function may be assigned to some variable as shown below

variable_name = function_name(variable1, variable2,…);

Example:

Write a program to find product of two integer using functions.

#include<stdio.h>

//function declaration

int mul (int a, int b);

int main()

{

int n1,n2,product=1;

printf(“Enter the first number”);

scanf(“%d”,&n1);

printf(“Enter the second number”);

scanf(“%d”,&n2);

product = mul(n1,n2);

//function call

printf(“\n Product = %d”,product);

return 0;

}

//function definition

int sum(int a, int b) // function header

{ // function body

int result;

result = a+b;

return result;

}

Output:

Enter the first number : 30

Enter the second number : 30

product = 90

The variable declared within the function and its parameters are local to that

function. The programmer may use same names for variable in other functions.

This eliminates the need for thinking and keeping unique names for variable

declared in all the function in the program.

In the function mul(), we have declared variable result just like any other

variable. Variable declared within a function are called automatic local variables

because of two reasons.

• First, they are local to the function. So, their effect is limited to the function.

Any change made to these variables is visible only in that function.

• Second, they are automatically created whenever the function is called and

they cease to exist at the end of the function.

Parameter Passing

Function arguments

Basically, there are two types of arguments:

Actual arguments

Formal arguments

Categories of functions

A function, depending on whether arguments are present or not and whether a value

is returned or not, may belong to one of the following categories.

1. Function with no argument and no return value

2. Function with argument and no return value

3. Function with no argument and return value

4. Function with argument and return value

Function with no argument and no return value

When a function has no argument, it does not receive any data from the calling

function, similarly, when it does not return a value, the calling function does not

receive any data from the calling function. In effect, there is no data transfer between

the calling function and the called function

Example:

#include <stdio.h>

void value(void);

void main()

{

value();

}

void value(void)

{

int year = 1, period = 5, amount = 5000, inrate = 0.12;

float sum;

sum = amount;

while (year <= period) {

sum = sum * (1 + inrate);

year = year + 1;

}

printf(" The total amount is %f:", sum);

}

Function with argument and no return value

In category 1, the main function has no control over the way of function receive

input data, we could make the calling function to read data from the terminal and

pass it on the called function. This approach seems to be wiser because the calling

function can check for the validity of data, if necessary, before it is handed over to

the called function.

Example:

void function(int, int[], char[]);

int main()

{

int a = 20;

int ar[5] = { 10, 20, 30, 40, 50 };

char str[30] = "geeksforgeeks";

function(a, &ar[0], &str[0]);

return 0;

}

void function(int a, int* ar, char* str)

{

int i;

printf("value of a is %d\n\n", a);

for (i = 0; i < 5; i++) {

printf("value of ar[%d] is %d\n", i, ar[i]);

}

printf("\nvalue of str is %s\n", str);

}

Function with no argument and return value

There could be occasions where we may need to design functions that may not take

any arguments but returns a value to the calling function. A example for this is

getchar function it has no parameters but it returns an integer an integer type data

that represents a character.

Example:

#include <math.h>

#include <stdio.h>

int sum();

int main()

{

int num;

num = sum();

printf("\nSum of two given values = %d", num);

return 0;

}

int sum()

{

int a = 50, b = 80, sum;

sum = sqrt(a) + sqrt(b);

return sum;

}

Function with argument and return value

In this category, it receive data from the calling function through arguments and

send back value.

Example:

#include <stdio.h>

#include <string.h>

int function(int, int[]);

int main()

{

int i, a = 20;

int arr[5] = { 10, 20, 30, 40, 50 };

a = function(a, &arr[0]);

printf("value of a is %d\n", a);

for (i = 0; i < 5; i++) {

printf("value of arr[%d] is %d\n", i, arr[i]);

}

return 0;

}

int function(int a, int* arr)

{

int i;

a = a + 20;

arr[0] = arr[0] + 50;

arr[1] = arr[1] + 50;

arr[2] = arr[2] + 50;

arr[3] = arr[3] + 50;

arr[4] = arr[4] + 50;

return a;

}

Passing Parameters to the function

When a function is called, the calling, function may have to pass some values to the

called function. We have been doing this in the programming examples given so far.

We will now learn the technicalities involved in passing arguments/parameters to the

called function.

Basically, there are two types of arguments. They are

• Actual arguments

• Formal arguments

The variables declared in the function prototype or definition are known as Formal

arguments and the values that are passed to the called function from the main

function are known as Actual arguments.

Basically, arguments or parameters can be passed to the called function. They

include:

• Call by value in which values of the variables are passed by the calling

function to the called function. The programs that we have written so far

all call the function using call by value method of passing parameters.

• Call by reference in which address of the variables are passed by the

calling function to the called function.

Pass by Value:

The call by value method of passing arguments to a function copies the actual value
of an argument into the formal parameter of the function. In this case, changes
made to the parameter inside the function have no effect on the argument.
By default, C programming uses call by value to pass arguments. In general, it means
the code within a function cannot alter the arguments used to call the function.
Consider the function swap() definition as follows.

/* function definition to swap the values */

void swap(int x, int y) {

int temp;

temp = x; /* save the value of x */

x = y; /* put y into x */

y = temp; /* put temp into y */

return;

}

Example:

call the function swap() by passing actual values

#include<stdio.h>

/* function declaration */

void swap(int x, int y);

int main () {

/* local variable definition */

int a = 100;

int b = 200;

printf("Before swap, value of a : %d\n", a);

printf("Before swap, value of b : %d\n", b);

/* calling a function to swap the values */

swap(a, b);

printf("After swap, value of a : %d\n", a);

printf("After swap, value of b : %d\n", b);

return 0;

}

Output:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

Pass by Reference:

The Pass by reference method of passing arguments to a function copies the
address of an argument into the formal parameter. Inside the function, the address
is used to access the actual argument used in the call. It means the changes made
to the parameter affect the passed argument.

To pass a value by reference, argument pointers are passed to the functions just
like any other value. So accordingly you need to declare the function parameters as
pointer types as in the following function swap(), which exchanges the values of
the two integer variables pointed to, by their arguments.

/* function definition to swap the values */

void swap(int *x, int *y) {

int temp;

temp = *x; /* save the value at address x */

*x = *y; /* put y into x */

y = temp; / put temp into y */

return;

}

Example:
call the function swap() by passing values by reference

#include <stdio.h>

/* function declaration */

void swap(int *x, int *y);

int main () {

/* local variable definition */

int a = 100;

int b = 200;

printf("Before swap, value of a : %d\n", a);

printf("Before swap, value of b : %d\n", b);

/* calling a function to swap the values.

* &a indicates pointer to a ie. address of variable a and

* &b indicates pointer to b ie. address of variable b.

*/

swap(&a, &b);

printf("After swap, value of a : %d\n", a);

printf("After swap, value of b : %d\n", b);

return 0;

}

Output:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

Advantages of passing by reference:

• References allow a function to change the value of the argument, which is
sometimes useful. Otherwise, constant references can be used to guarantee
the function won’t change the argument.

• Because a copy of the argument is not made, pass by reference is fast, even
when used with large structs or classes.

• References can be used to return multiple values from a function (via out
parameters).

• References must be initialized, so there’s no worry about null values.

Disadvantages of passing by reference:
• Because a non-constant reference cannot be initialized with a constant l-value

or an reference value (e.g. a literal or an expression), arguments to non-
constant reference parameters must be normal variables.

• It can be hard to tell whether an argument passed by non-constant reference
is meant to be input, output, or both. Judicious use of constant and a naming
suffix for out variables can help.

• It’s impossible to tell from the function call whether the argument may change.
An argument passed by value and passed by reference looks the same. We can
only tell whether an argument is passed by value or reference by looking at the
function declaration. This can lead to situations where the programmer does
not realize a function will change the value of the argument.

Built-in Functions
(String Functions)

Built-In function (String Function)

string.h header file supports all the string functions in C language. All the string

functions are given below.

String functions Description

strcat () Concatenates str2 at the end of str1

strncat () Appends a portion of string to another

strcpy () Copies str2 into str1

strncpy () Copies given number of characters of one string to another

strlen () Gives the length of str1

strcmp () Returns 0 if str1 is same as str2. Returns <0 if strl < str2. Returns >0 if

str1 > str2

strcmpi () Same as strcmp() function. But, this function negotiates case. “A” and
“a” are treated as same.

strchr () Returns pointer to first occurrence of char in str1

strrchr () last occurrence of given character in a string is found

strstr () Returns pointer to first occurrence of str2 in str1

strrstr () Returns pointer to last occurrence of str2 in str1

strdup () Duplicates the string

strlwr () Converts string to lowercase

strupr () Converts string to uppercase

strrev () Reverses the given string

strset () Sets all character in a string to given character

strnset () It sets the portion of characters in a string to given character

strtok () Tokenizing given string using delimiter

strcat():
strcat() function in C language concatenates two given strings. It concatenates
source string at the end of destination string.
Syntax for strcat() function is given below.

char * strcat (char * destination, const char * source);

http://fresh2refresh.com/c/c-strings/c-strcat-function/
http://fresh2refresh.com/c/c-strings/c-strcat-function/
http://fresh2refresh.com/c/c-strings/c-strncat-function/
http://fresh2refresh.com/c/c-strings/c-strcpy-function/
http://fresh2refresh.com/c/c-strings/c-strncpy-function/
http://fresh2refresh.com/c/c-strings/c-strlen-function/
http://fresh2refresh.com/c/c-strings/c-strcmp-function/
http://fresh2refresh.com/c/c-strings/c-strcmpi-function/
http://fresh2refresh.com/c/c-strings/c-strchr-function/
http://fresh2refresh.com/c/c-strings/c-strrchr/
http://fresh2refresh.com/c/c-strings/c-strrchr/
http://fresh2refresh.com/c/c-strings/c-strstr-function/
http://fresh2refresh.com/c/c-strings/c-strrstr-function/
http://fresh2refresh.com/c/c-strings/c-strdup-function/
http://fresh2refresh.com/c/c-strings/c-strlwr-function/
http://fresh2refresh.com/c/c-strings/c-strlwr-function/
http://fresh2refresh.com/c/c-strings/c-strupr-function/
http://fresh2refresh.com/c/c-strings/c-strupr-function/
http://fresh2refresh.com/c/c-strings/c-strrev-function/
http://fresh2refresh.com/c/c-strings/c-strrev-function/
http://fresh2refresh.com/c/c-strings/c-strset-function/
http://fresh2refresh.com/c/c-strings/c-strnset-function/
http://fresh2refresh.com/c/c-strings/c-strtok-function/
http://fresh2refresh.com/c/c-strings/c-strtok-function/

Example:
strcat (str2, str1); – str1 is concatenated at the end of str2.
strcat (str1, str2); – str2 is concatenated at the end of str1.
• As you know, each string in C is ended up with null character (‘\0’).

• In strcat() operation, null character of destination string is overwritten by source
string’s first character and null character is added at the end of new destination string
which is created after strcat() operation.

Example Program:

#include <stdio.h>

#include <string.h>

int main()

{

char source[] = “Welcome to " ;

char target[]= " C Programming" ;

printf ("\nSource string = %s", source) ;

printf ("\nTarget string = %s", target) ;

strcat (target, source) ;

printf ("\nTarget string after strcat() = %s", target) ;

}

Output:

Source string = Welcome to

Target string = C Programming

Target string after strcat() = C Programming Welcome to

Strncat()

strncat() function in C language concatenates (appends) portion of one string at the
end of another string.
Syntax for strncat() function is given below.

char * strncat (char * destination, const char * source, size_t num);

Example :
strncat (str2, str1, 3); – First 3 characters of str1 is concatenated at the end of str2.
strncat (str1, str2, 3); – First 3 characters of str2 is concatenated at the end of str1.
• As you know, each string in C is ended up with null character (‘\0’).

• In strncat() operation, null character of destination string is overwritten by source
string’s first character and null character is added at the end of new destination string
which is created after strncat() operation.

Example:
#include <stdio.h>

#include <string.h>

int main()

{

char source[] = " fresh2refresh" ;

char target[]= "C tutorial" ;

printf ("\nSource string = %s", source) ;

printf ("\nTarget string = %s", target) ;

strncat (target, source, 5) ;

printf ("\nTarget string after strncat() = %s", target) ;

}

Output:

Source string = Welcome
Target string = C Programming
Target string after strncat() = C Programming Welc

Strcpy()

strcpy() function copies contents of one string into another string.
Syntax for strcpy function is given below.

char * strcpy (char * destination, const char * source);
Example:
strcpy (str1, str2) – It copies contents of str2 into str1.
strcpy (str2, str1) – It copies contents of str1 into str2.

• If destination string length is less than source string, entire source string value won’t
be copied into destination string.

For example, consider destination string length is 10 and source string length is 20.
Then, only 10 characters from source string will be copied into destination string and
remaining 10 characters won’t be copied and will be truncated.

Example:
#include <stdio.h>

#include <string.h>

int main()

{

char source[] = “Welcome" ;

char target[20]= "" ;

printf ("\nsource string = %s", source) ;

printf ("\ntarget string = %s", target) ;

strcpy (target, source) ;

printf ("\ntarget string after strcpy() = %s", target) ;

return 0;

}

Output:

Sourcestring = Welcome
target string =
target string after strcpy() = Welcome

Strlen():

strlen() function in C gives the length of the given string.
Syntax for strlen() function is given below.

size_t strlen (const char * str);

• strlen() function counts the number of characters in a given string and returns the
integer value.
• It stops counting the character when null character is found. Because, null character
indicates the end of the string in C.

Example:

#include <stdio.h>

#include <string.h>

int main()

{

int len;

char array[20]=“Programming" ;

len = strlen(array) ;

printf ("\string length = %d \n" , len) ;

return 0;

}

Output:

String Length = 11

Strcmp():

strcmp() function in C compares two given strings and returns zero if they are
same.
If length of string1 < string2, it returns < 0 value. If length of string1 > string2, it
returns > 0 value.
Syntax for strcmp() function is given below.

int strcmp (const char * str1, const char * str2);

strcmp() function is case sensitive. i.e, “A” and “a” are treated as different
characters.

Example:

In this program, strings “fresh” and “refresh” are compared. 0 is returned when

strings are equal. Negative value is returned when str1 < str2 and positive value is

returned when str1 > str2.

#include <stdio.h>

#include <string.h>

int main()

{

char str1[] = "fresh" ;

char str2[] = "refresh" ;

int i, j, k ;

i = strcmp (str1, "fresh") ;

j = strcmp (str1, str2) ;

k = strcmp (str1, "f") ;

printf ("\n%d %d %d", i, j, k) ;

return 0;

}

Output:

0-11

strchr()

strchr() function returns pointer to the first occurrence of the character in a given

string.

Syntax for strchr() function is given below.

char *strchr(const char *str, int character);

Example:

In this program, strchr() function is used to locate first occurrence of the character

‘i’ in the string “This is a string for testing”. Character ‘i’ is located at position 3 and

pointer is returned at first occurrence of the character ‘i’.

#include <stdio.h>

#include <string.h>

int main ()

{

char string[55] ="This is a string for testing";

char *p;

p = strchr (string,'i');

printf ("Character i is found at position %d\n",p-string+1);

printf ("First occurrence of character \"i\" in \"%s\" is" \" \"%s\"",string, p);

return 0;

}

Output:

Character i is found at position 3

First occurrence of character “i” in “This is a string for testing” is “is is a string for

testing”

Strdup():

strdup() function in C duplicates the given string.
Syntax for strdup() function is given below.
char *strdup(const char *string);

strdup() function is non standard function which may not available in standard
library in C.

Example:

In this program, string “Welcome” is duplicated using strdup() function and
duplicated string is displayed as
#include <stdio.h>
#include <string.h>
int main()
{

char *p1 = “Welcome";
char *p2;
p2 = strdup(p1);

printf("Duplicated string is : %s", p2);
return 0;

}

Output:

Duplicated string is : Welcome

Strlwr():

strlwr() function converts a given string into lowercase.
Syntax for strlwr() function is given below.

char *strlwr(char *string);

strlwr() function is non standard function which may not available in stand library in C.

Example:
In this program, string ” PROGRAMMING In C ” is converted into lower case using
strlwr() function and result is displayed as “programming in c”.

#include<stdio.h>

#include<string.h>

int main()

{

char str[] = “PROGRAMMING In C";

printf("%s\n",strlwr (str));

return 0;

}

Output:

programming in c

Strupr():

strupr() function converts a given string into uppercase.
Syntax for strupr() function is given below.
char *strupr(char *string);
strupr() function is non standard function which may not available in stand library in C.

Example:

In this program, string “programming IN c” is converted into uppercase using strupr()
function and result is displayed as “PROGRAMMING IN C”.

#include<stdio.h>

#include<string.h>

int main()

{

char str[] = “programming In C";

printf("%s\n",strupr(str));

return 0;

}

Output:

PROGRAMMING IN C

Strrev():

strrev() function reverses a given string in C language.
Syntax for strrev() function is given below

.
char *strrev(char *string);

strrev() function is non standard function which may not available in standard
library in C.

Example:

In below program, string “Hello” is reversed using strrev() function and output is

displayed as “olleH”.

#include<stdio.h>

#include<string.h>

void main()

{

char name[30] = "Hello";

printf("String before strrev() : %s\n",name);

printf("String after strrev() : %s",strrev(name));

}

Output:

String before strrev() : Hello

String after strrev() : olleH

Strncpy():

strncpy() function copies portion of contents of one string into another string. Syntax

for strncpy() function is given below.

char * strncpy (char * destination, const char * source, size_t num);

Example:
strncpy (str1, str2, 4) – It copies first 4 characters of str2 into str1.

strncpy (str2, str1, 4) – It copies first 4 characters of str1 into str2.

#include <stdio.h>

#include <string.h>

int main()

{

char source[] = “welcome2c" ;

char target[20]= "" ;

printf ("\nsource string = %s", source) ;

printf ("\ntarget string = %s", target) ;

strncpy (target, source, 6) ;

printf ("\ntarget string after strcpy() = %s", target) ;

return 0;

}

Output:

source string = welcome2c

target string =

target string after strncpy() = welcom

Strcmpi()

strcmpi() function in C is same as strcmp() function. But, strcmpi() function is not

case sensitive. i.e, “A” and “a” are treated as same characters. Where as, strcmp()

function treats “A” and “a” as different characters.

strcmpi() function is non standard function which may not available in standard library

in C.

Both functions compare two given strings and returns zero if they are same.

Example:

#include <stdio.h>

#include <string.h>

int main()

{

char str1[] = “welcome" ;

char str2[] = "rewelcome" ;

int i, j, k ;

i = strcmpi (str1, “WELCOME") ;

j = strcmpi (str1, str2) ;

k = strcmpi (str1, "f") ;

printf ("\n%d %d %d", i, j, k) ;

return 0;

}

Output:

0-11

Srttok():

strtok() function in C tokenizes/parses the given string using delimiter.

Syntax for strtok() function is given below.

char * strtok (char * str, const char * delimiters);

#include <stdio.h>
#include <string.h>
int main ()
{
char string[50] ="Test,string1,Test,string2:Test:string3";
char *p;

printf ("String \"%s\" is split into tokens:\n",string);
p = strtok (string,",:");
while (p!= NULL)
{

printf ("%s\n",p);
p = strtok (NULL, ",:");

}
return 0;

}

Output:

String “Test,string1,Test,string2:Test:string3” is split into tokens:

Test
string1
Test
string2
Test
string3

Recursive Functions

Recursive Functions:

A function that calls itself is known as a recursive function. And, this technique is known
as recursion.

The C programming language supports recursion, i.e., a function to call itself. But while
using recursion, programmers need to be careful to define an exit condition from the
function, otherwise it will go into an infinite loop.

Recursive functions are very useful to solve many mathematical problems, such as
calculating the factorial of a number, generating Fibonacci series, etc.

Example:

Write a C program to find Factorial of a number using Recursive
Function

#include <stdio.h>

unsigned long int factorial(unsigned int i) {

if(i <= 1) {

return 1;

}

return i * factorial(i - 1);

}

int main() {

int i = 5;

printf("Factorial of %d is %d\n", i, factorial(i));

return 0;

}

Output:

Factorial of 5 is 120

Write a C Program to find Fibonacci series for a given number

using a recursive function

#include <stdio.h>

int fibo(int i) {

if(i == 0) {

return 0;

}

if(i == 1) {

return 1;

}

return fibo(i-1) + fibo(i-2);

}

int main() {

int x;

for (x = 0; x < 9; x++) {

printf("%d\t\n", fibo(x));

}

return 0;

}

Output:

0

1

1

2

3

5

8

13

21

Exercise Programs

xercise Programs:

Calculate the total amount of power consumed by ‘n’ devices

(Passing an array to a function):

#include <stdio.h>

#include <stdlib.h>

int calc_Electricity();//function prototype

int devices(int n[],int size);

int main()

{

int size,i,n[50],s;

printf("enter the size of an array");

scanf("%d",&size);

s=devices(n ,size);

printf("the value is",s);

return 0;

}

int calc_Electricity(int unit){//function definition

printf("Enter total units consumed\n");

scanf("%d",&unit);

double amount;

if((unit>=1)&&(unit<=50))//between 1 - 50 units

{

amount=unit*1.50;

}

else if((unit>50)&&(unit<=150))//between 50 150 units

{

amount=((50*1.5)+(unit-50)*2.00);

}

else if((unit>150)&&(unit<=250)){//between 150 - 250 units

amount=(50*1.5)+((150-50)*2.00)+(unit-150)*3.00;

}

else if(unit>250){//above 250 units

amount=(50*1.5)+((150-50)*2.00)+((250-150)*3.00)+(unit-250)*4;

}

else{

printf("No usage ");

amount=0;

}

//printf("Electricity bill = Rs. %.2f",amount);

return amount;

}

int devices(int n[],int size)

{

int total=0;

int i;

int unit=0;

int p;

for (i=0;i<size;i++)

{

p=calc_Electricity(unit);

printf("the amount of one bill %d is",p);

n[i]=p;

total=total+n[i];

printf("the total amount of n devices is %d",total);

}

}

Output:

Enter the number of devices : 3

Enter total unit consumed : 200

The total amount of 1 device is 425, Total amount of n device is 425

Enter total unit consumed : 250

The total amount of 1 device is 575, Total amount of n device is 1000

Enter total unit consumed : 200

The total amount of 1 device is 425, Total amount of n device is 1425

Exercise:

Menu-driven program to count the numbers which are divisible

by 3, 5 and both (passing an array to a function)

#include<stdio.h>

int menudriven(int a[]);

int main()

{

int k,s,i;

int a[3]={0,1,2};

menudriven(a);

}

int menudriven(int a[])

{

int i,n,s,p,j;

printf("Enter the value of n");

scanf("%d",&n);

for(j=0;j<3;j++){

switch(a[j])

{

case 0:

for (i=1; i<=n; i++)

{

if(i%5==0)

{

p=p+1;}}

printf("\nthe total numbers divisible by 5 is %d",p);

case 1:

p=0;

for (i=1; i<=n; i++)

{

if (i%3==0)

{

p=p+1;}}

printf("\nthe total numbers divisible by 3 is %d",p);

case 2:

p=0;

for (i=1; i<=n; i++)

{

if (i%3==0&&i%5==0)

{

p=p+1 ;}

}

printf("\nthe total numbers divisible by both are %d",p);

}

}}

Output:

Enter the value of n : 100

The total numbers divisible by 5 is : 20

The total numbers divisible by 3 is : 33

The total numbers divisible by both is : 6

Quiz

1. In C programming, parameters are always

a. Passed by value

b. Passed by reference

c. Non-pointers are passed by value and pointers are passed by reference

d. Passed by value result

2. Which of the following is true about return type of functions in C?

a. Functions can return any type

b. Functions can return any type except array and functions

c. Functions can return any type except array, functions and union

d. Functions can return any type except array, functions, function pointer and union

3. Predict Output.

#include <stdio.h>

int main()

{

printf("%d", main);

return 0;

}

a. Address of main function b. Compiler Error

c. Runtime Error d. Some random value

4. In C program, what is the meaning of following function prototype with

empty parameter list.

void fun()

{

/*…*/

}

a. Function can only be called without any parameter

b. Function can be called with any number of parameters of any types

c. Function can be called with any number of integer parameters.

d. Function can be called with one integer parameter.

5. Output of the following

#include<stdio.h>

void dynamic(int s, ...)
{

printf("%d ", s);
}
int main()
{

dynamic(2, 4, 6, 8);
dynamic(3, 6, 9);
return 0;

}

a. 2 3

b. Compiler Error

c. 4 3

d. 3 2

6. Predict Output.

#include <stdio.h>
int main()
{

int (*ptr)(int) = fun;
(*ptr)(3);
return 0;

}
int fun(int n)
{

for(;n > 0; n--)
printf("C Program");

return 0;
}

a. C Program C Program C program

b. C Program C program

c. Compiler Error

d. Runtime Error

7. Use of function

a. Make the debugging task easier

b. Helps to avoid repeating a set of statements many times

c. Enhance the logical clarity of the program

d. All the above

8. What is function

a. A function is a block of statement that perform some specific task

b. Function is a fundamental modular unit. A function is usually designed to

perform a specific task

c. Function is a block of code that perform a specific task. It has a name and it is

reusable.

d. All the above.

9. Default parameter passing mechanism is

a. Call by value

b. Call by reference

c. Call by value result

d. None of the above.

10. Which of the following is the complete function?

a. int funct();

b. int funct(int x) { return x=x+1; }

c. void funct(int) { printf(“Hello”); }

d. Non of the above

11. The recursive function executed in a

a. Parallel order

b. First in first out order

c. Last in first out order

d. Iterative order

12. Which function will you choose to join two words?

a) strcpy()
b) strcat()
c) strncon()
d) memcon()

13. The function appends not more than n characters.

a) strcat()
b) strcon()
c) strncat()
d) memcat()

14. What will strcmp() function do?

a) compares the first n characters of the object
b) compares the string
c) undefined function
d) copies the string

15. What is the prototype of strcoll() function?

a) int strcoll(const char *s1,const char *s2)
b) int strcoll(const char *s1)
c) int strcoll(const *s1,const *s2)
d) int strcoll(const *s1)

16. What is the function of strcoll()?

a) compares the string, result is dependent on the LC_COLLATE
b) copies the string, result is dependent on the LC_COLLATE
c) compares the string, result is not dependent on the LC_COLLATE
d) copies the string, result is not dependent on the LC_COLLATE

17. Which of the following is the variable type defined in header string. h?

a) sizet
b) size
c) size_t
d) size-t

18. What is the use of function char *strchr(ch, c)?

a) return pointer to first occurrence of ch in c or NULL if not present
b) return pointer to first occurrence of c in ch or NULL if not present
c) return pointer to first occurrence of ch in c or ignores if not present
d) return pointer to first occurrence of cin ch or ignores if not present

19. The mem functions are meant for

a) returning a pointer to the token
b) manipulating objects as character arrays
c) returning a pointer for implemented-defined string
d) returning a pointer to first occurrence of string in another string

20. What is the function of void *memset(s, c, n)?

a) places character s into first n characters of c, return c
b) places character c into first n characters of s, return s
c) places character s into first n characters of c, return s
d) places character c into first n character of s, return c

Crossword

Across
3. Which function returns true only for the characters defined as lowercase letters?
4. What is the default return type if it is not specified in function definition?
5. The default parameter passing mechanism is
8. The recursive functions are executed in a
12. What is the return-type of the function sqrt()?
14. NULL is the macro defined in the header string. h. (true or false)
15. Which of the following is the variable type defined in header string. h?
16. When a function is recursively called all the automatic variables are stored in a
18. Functions can return enumeration constants in C?
Down
1. Which function will you choose to join two words?
2. Functions have
6. Which function tests for any character that is an uppercase letter.
7. The function tests for any hexadecimal-digit character.
9. The function tests for any character for which isalpha or isdigit is true.

10. The value obtained in the function is given back to main by using
keyword.
11. Which among the following is Copying function?
13. Functions can return structure in C?

17. Which header declares several functions useful for testing and mapping
characters?

Assignment
Unit IV

Assignment Questions

CO 1 Develop C program solutions to simple computational

problems

1. Write a program in C to find the Sum and Average of two

numbers using function.

Test Data :

Enter the first number : 10

Enter the second number : 20

Expected Output :

The sum of two number is : 30

The Average of two number is : 15

K2 CO4

2. Write a program in C to swap to numbers using function.

Test Data :

Enter the first number : 10

Enter the second number : 20

Expected Output :

Before swapping : (10,20)

After swapping : (20,10)

K2 CO4

Part A
Question & Answer

Part A

1. What is Function? CO4 (K3)

A function definition in C programming consists of a function header
and a function body. Return Type − A function may return a value.
2. List out the type of function in C programming. CO4 (K3)

Built-in Function
User-Defined Function

3. Give the syntax of function prototype. CO4 (K3)
returnType functionName(type1 argument1, type2 argument2, ...);

4. Give the syntax of calling function. CO4 (K3)
functionName(argument1, argument2, ...);

5. Write a synyax for Function with arguments and return value CO4 (K3)

Function declaration : int function (int);

Function call : function(x);

Function definition:

int function(int x)

{

statements;

return x;

}

6. What is static function? CO4 (K3)

They can directly refer to other static members of the class.
Static member functions do not have this pointer.
Static member function can not be virtual.

7. What is recursion? CO4 (K3)

Recursion is a common method of simplifying a problem into
subproblems of same type. This is called divide and conquer technique. A
basic example of recursion is factorial function.

8. Difference between strcmpi() and strncmp()? CO4 (K3)

strcmp compares both the strings till null-character of either string
comes whereas strncmp compares at most num characters of both strings. But if
num is equal to the length of either string than strncmp behaves similar to strcmp

9. Difference between the formal argument and the actual argument
CO4 (K3)

The major difference between actual and formal arguments is that actual
arguments are the source of information; calling programs pass actual arguments to
called functions. The called functions access the information using corresponding
formal arguments. The following piece of code demonstrates actual and formal
arguments.

10. Write a Syntax of return statement. CO4 (K3)

return (expression);
11. How arguments are passed to functions in C? CO4 (K3)

The call by reference method of passing arguments to a function copies
the address of an argument into the formal parameter. Inside the function, the address
is used to access the actual argument used in the call. It means the changes made to
the parameter affect the passed argument.

12. What is main() function? CO4 (K3)

In C, the "main" function is treated the same as every function, it has
a return type (and in some cases accepts inputs via parameters). The only difference is
that the main function is "called" by the operating system when the user runs the
program.

13. What is pre-defined function? CO4 (K3)

predefined function (plural predefined functions) (computing) Any of a
set of subroutines that perform standard mathematical functions included in a
programming language; either included in a program at compilation time, or called
when a program is executed.

Part B
Questions

Part B
1. What is a user defined function? Why it is used? CO4 (K3)

2. Define Recursion function? CO4 (K3)

3. List the Function Prototypes and explain it with examples CO4 (K3)

4. Tell in detail how an array can be passed as a parameter in user defined

function. Give an example program CO4 (K3)

5. Recall the various types of functions supported by C. Give examples for each of

the C functions. CO4 (K3)

6. Summarize the rules that apply to a function call in C. what relationship must

be maintained between actual arguments and formal argument? CO4 (K3)

7. Outline predefined function and user defined function with example CO4 (K3)

8. Illustrate a program to find the factorial of a number using recursion CO4 (K3)

9. Identify the rules in regard to a function in C and Write a recursive function to

evaluate the factorial of a number n CO4 (K3)

10. Build a function to reverse a given string and use it to check whether the given

string is a palindrome. CO4 (K3)

11. Construct a program to sort the array of elements in ascending order using

functions CO4 (K3)

12. Distinguish the following i)Global and local variables (6) ii)Automatic and static

variables CO4 (K3)

13. Inspect a program to find the biggest of the given three values and use it to

find the total obtained by a student which in turn is the sum of the best of

three test scores and the best of three assignment scores CO4 (K3)

14. Write a c program to assess the reverse() function which accepts a string and

display it in reverse CO4 (K3)

15. Create a C program to replace the punctuations from a given sentence by the

space character using passing an array to a function CO4 (K3)

Supportive Online
Certification
Unit IV

Certification Courses

NPTEL

Problem solving through Programming in C

https://nptel.ac.in/courses/106/105/106105171/

Coursera

1) C for Everyone: Structured Programming

https://www.coursera.org/learn/c-structured-programming

2) C for Everyone: Programming Fundamentals

https://www.coursera.org/learn/c-for-everyone

https://nptel.ac.in/courses/106/105/106105171/
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-for-everyone

Real time Applications
Unit IV

Functions are used at many places in real life applications and some
applications are listed here.

Functions, commonly used in calculation or computation purpose

To repeated use of calculation we can use functions

To calculate area and circumferences of different shapes.

Major imaging activity

String based activity and simple calculation too we are using
functions in the form of built-in or user defined function.

Pointer related calculation

Content beyond syllabus
Unit IV

Content beyond syllabus

1) Comparison between with using string built-in function and without using string

built-in function

2) Argument of Functions

Assessment Schedule
Unit IV

Prescribed Text book &
References
Unit IV

Text books & References

TEXT BOOK

1. Reema Thareja, "Programming in C", Oxford University Press,
Second Edition, 2016

REFERENCES:

1. Kernighan, B.W and Ritchie,D.M, "The C Programming
language", Second Edition, Pearson Education, 2006

2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh
edition, Pearson Publication

3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE
Learning India pvt. Ltd., 2011

4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and
Programming in C", First Edition, Oxford University Press, 2009

5. ER and ETA , “CC Foundation Program Reference materials”
Infosys Ltd.

Mini Project Suggestions
Unit IV

1) Scientific calculator

2) Library Management System

Thank you

Disclaimer:

This document is confidential and intended solely for the educational purpose of RMK Group of
Educational Institutions. If you have received this document through email in error, please notify the
system manager. This document contains proprietary information and is intended only to the
respective group / learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender immediately by e-mail if you
have received this document by mistake and delete this document from your system. If you are not
the intended recipient you are notified that disclosing, copying, distributing or taking any action in
reliance on the contents of this information is strictly prohibited.

Please read this disclaimer before proceeding:

This document is confidential and intended solely for the educational purpose of
RMK Group of Educational Institutions. If you have received this document
through email in error, please notify the system manager. This document
contains proprietary information and is intended only to the respective group /
learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender
immediately by e-mail if you have received this document by mistake and delete
this document from your system. If you are not the intended recipient you are
notified that disclosing, copying, distributing or taking any action in reliance on
the contents of this information is strictly prohibited.

OCS752
INTRODUCTION TO C

PROGRAMMING
Department: : Electrical and Electronics Engineering

Batch/Year: 2017-2021
Created by: Dr. S. Meenakshi and A.S. Vibith

Date: 21-10-2020

Table of Contents

Course Objectives

Syllabus

Course Outcomes (Cos)

CO-PO Mapping

Lecture Plan

Activity based learning

Lecture notes

Assignments

Part A Q&A

Part B Qs

List of Supportive online Certification courses

Real time applications in day to day life and to industry

Contents beyond Syllabus

Assessment Schedule (proposed and actual date)

Prescribed Text Books & Reference Books

Mini Project Suggestions

Course Objectives

OCS752 INTRODUCTION TO C PROGRAMMING L T P C

3 0 0 3

OBJECTIVES

To develop C Programs using basic programming constructs

To develop C programs using arrays and strings

To develop applications in C using functions and structures

Syllabus
OCS752 INTRODUCTION TO C PROGRAMMING L T P C 3 0 0 3

UNIT I INTRODUCTION 9

Structure of C program – Basics: Data Types – Constants –Variables - Keywords –
Operators: Precedence and Associativity - Expressions - Input/output statements,
Assignment statements –Decision-making statements - Switch statement - Looping
statements – Pre-processor directives -Compilation process – Exercise Programs:
Check whether the required amount can be withdrawn based on the available
amount – Menu-driven program to find the area of different shapes – Find the sum
of even numbers

UNIT II ARRAYS 9

Introduction to Arrays – One dimensional arrays: Declaration – Initialization -
Accessing elements –Operations: Traversal, Insertion, Deletion, Searching - Two
dimensional arrays: Declaration –Initialization - Accessing elements – Operations:
Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive
and negative values present in the array – Sort the numbers using bubble sort - Find
whether the given is matrix is diagonal or not.

UNIT III STRINGS 9

Introduction to Strings - Reading and writing a string - String operations (without
using built-in string functions): Length – Compare – Concatenate – Copy – Reverse
– Substring – Insertion – Indexing – Deletion – Replacement – Array of strings –
Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise
programs: To find the frequency of a character in a string - To find the number of
vowels, consonants and white spaces in a given text - Sorting the names.

UNIT IV FUNCTIONS 9

Introduction to Functions – Types: User-defined and built-in functions - Function
prototype – Function definition - Function call - Parameter passing: Pass by value -
Pass by reference - Built-in functions (string functions) – Recursive functions –
Exercise programs: Calculate the total amount of power consumed by ‘n’ devices
(passing an array to a function) – Menu-driven program to count the numbers which
are divisible by 3, 5 and by both (passing an array to a function) – Replace the
punctuations from a given sentence by the space character (passing an array to a
function)

UNIT V STRUCTURES 9

Introduction to structures – Declaration – Initialization – Accessing the members –
Nested Structures – Array of Structures – Structures and functions – Passing an
entire structure – Exercise programs: Compute the age of a person using structure
and functions (passing a structure to a function) – Compute the number of days an
employee came late to the office by considering his arrival time for 30 days (Use
array of structures and functions)

TOTAL:45 PERIODS

Course Outcomes

CO 1 - Develop algorithmic solutions to simple computational

problems using basic constructs K1

CO 2 - Develop simple applications in C using Control Constructs K2

CO 3 - Design and implement applications using arrays K2

CO 4 – Represent data using string and string operations K3

CO 5 - Decompose a C program into functions and pointers K3

CO 6 - Represent and write program using structure and union K3

CO – PO Mapping

CO PO
Mapping

Level
Justification

CO PO Mapping Level Justification

CO1 PO1 2 Identify the data type and operators to solve the problem

CO1 PO2 2 Design the expression in an efficient way

CO1

PO3

2

Recognize the need of basic c Tokens-variables-constants

CO1

PO5

2

Apply the concept of control statements for simple solving the

problem

CO1

PO12

1

Formulate the iterative statements for problem solving

CO2

PO1

3

Develop a complete program s for preprocessor directives

CO2

PO2

3

Recognize the implementation of simple problem solving with

above concepts

CO3

PO3

2

Apply simple mathematical concepts for writing 1D arrays and

its operations

CO3

PO5

2

Identify and formulate for the given problem using 2D and its

operations

CO3

PO12

1

Design way of problem solving in Multi Dimensional arrays

CO4 PO1 3 Recognize the need of implementation in string

CO4

PO2

3

Apply logic to solve simple problem statement using string

operations

CO4

PO3

3

Apply the knowledge to find the possible code for string

manipulations

CO5

PO5

2

Identify the code for decomposition as function

CO5

PO12

1

Develop functions and reuse it whenever required to reduce the

lines of code

CO5 PO1 2 Recognize the need of function concepts

CO5

PO2

2

Apply compound data knowledge to select any one

CO5

PO3

2

Apply the concept of pointers

CO5

PO5

2

Design and Develop program using the selected compound data

CO6

PO12

1

Recognize the need of structure

CO6 PO1 2 Apply the basic idea of handling with union

CO6

PO2

2

Identify the number of modes and operations on structure in

detail

CO6 PO3 2 Develop programs using structure and union

Lecture Plan
Unit V

CO-PO/PSO MAPPING

COU

RSE

OUT

COM

E

LEV

EL

OF

COU

RSE

OUT

CO

ME

PROGRAM OUTCOME (PO)

PROGRAM SPECIFIC OUTCOME (PSO)

PO1

PO

2

PO3

PO4

PO5

PO6

PO7

PO8

PO9

PO

10

PO

11

PO

12

PSO1

PSO2

PSO3

PSO4

CO1

K1

2 2 2 - 2 - - - - -

-

1

1

CO2

K2

3 3 2 - 2 - - - - -

-

1

1

CO3

K2

3 3 3 - 2 - - - - -
- 1

1

CO4

K3

2 2 2 - 2 - - - - -
- 1

1

CO5

K3

2 2 2 - - - - - - -
- 1

1

CO6

K3
3 3 3 2

1

1

Unit V - STRUCTURE

S.N
o

Topics No.

of

Peri
ods

Propos

ed

Date

Actual

Lecture

Date

Pertain

ing CO

Taxon

omy

Level

Mode of

Delivery

1 Introduction to structures
– Declaration –

1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

2 Initialization – Accessing
the members –

1 CO1 K2 PPT, Chalk &
Talk

3 Nested Structures – 1 CO1 K2 PPT, Chalk &
Talk

4 Array of Structures – 1 CO1 K2 PPT, SHORT

VIDEOS,
Chalk & Talk

5.6 Structures and functions –
Passing an entire structure

–

2 CO1 K2 PPT, Chalk &

Talk

7 Exercise programs:
Compute the age of a
person using structure and
functions (passing a
structure to a function) –

1 CO1 K2 PPT, Chalk &

Talk

8,9 Compute the number of
days an employee came
late to the office by
considering his arrival time
for 30 days (Use array of
structures and functions)

2 CO1 K2 PPT, Chalk &

Talk

Activity Based Learning
Unit V

Activity Based Learning

Learn by solving problems – Tutorial Sessions can be conducted

– Tutorial sessions available in Skillrack

for practice

Learn by questioning

Learn by doing hands-on IN ONLINR / VIRTUAL LAB.

Lecture Notes
UNIT V STRUCTURES 9

Introduction to structures – Declaration – Initialization – Accessing the members –
Nested Structures – Array of Structures – Structures and functions – Passing an
entire structure – Exercise programs: Compute the age of a person using structure
and functions (passing a structure to a function) – Compute the number of days an
employee came late to the office by considering his arrival time for 30 days (Use
array of structures and functions)

Unit V - Structure : LEARNING PLAN

Sl. No. Topics Learning
Content
(hh.mm)

Post-Session
(Quiz +
Assignment)
(hh:mm)

5.0 Introduction to structures –
Declaration – Initialization –
Accessing the members –

3.00 1.00

5.1,5.2
,5.3,5.
4

Nested Structures – Array of
Structures – Structures and
functions – Passing an entire
structure –

3.00 0.50

5.5 Exercise programs: Compute the
age of a person using structure
and functions (passing a structure
to a function) – Compute the
number of days an employee came
late to the office by considering his
arrival time for 30 days (Use array
of structures and functions)

3.00 1.00

 Total 9.00 2.50

Introduction to structures – Declaration
– Initialization – Accessing the members
Topic. 5.0

Derived
Types

Union
Type

Array
Type

Function
Type

Pointer
Type

Structure
Type

Introduction to structures–

C Data Types:

Primary data types

Derived data types

User-defined data types

Array – Collection of one or more related variables of similar data type grouped under a

single name

Structure – Collection of one or more related variables of different data types, grouped
under a single name

Need of structures

In a Library, each book is an object, and its characteristics like title, author, no of pages, price
are grouped and represented by one record.

The characteristics are different types and grouped under a aggregate variable of different
types.

A record is group of fields and each field represents one characteristic. In C, a record is
implemented with a derived data type called structure. The characteristics of record are
called the members of the structure.

float

integer

Array of 40
characters

Array of 50 characters

integer book_id 2 bytes

Memory occupied by a Structure
variable

 title

 author

50
bytes

40

 pages 2 bytes
bytes

 price 4 bytes

STRUCTURE- BOOK

struct book {

int book_id ;

char title[50] ;
Structure
tag

char author[40] ;

int pages ;

float price ;

};

Book-3

BookID: 1213

Title : C By Example
Author : Greg Perry
Pages : 498

Price : Rs. 305.00

Book-2

BookID: 1212

Title : The ANSI C Progg.

Author : Dennis Ritchie

Pages : 214

Price : Rs. 125.00

Book-1

BookID: 1211

Title : C Primer Plus

Author : Stephen Prata

Pages : 984

Price : Rs. 585.00

book

price

pages

author

title

bookid

• A Structure is defined to be a collection of different data items, that

are stored under a common name.

• A structure is same as that of records. It stores related information

about an entity. Structure is basically a user defined data type that

can store related information (even of different data types) together.

Declaration of structures

• A structure is declared using the keyword struct followed by a

structure name. All the variables of the structures are declared within

the structure. A structure type is defined by using the given syntax.

• By declaring a stucture type By declaring a structure variable

struct struct-name { struct stru-name Sv1,Sv2,Sv3;

data_type var-name; (or)

data_type var-name; struct stru-name {

…}; data_type var-name;

data_type var-name;

} sv1, sv2 , sv3;

Example :
struct student {

int r_no;

char name[20];
char course[20];
float fees; };

The structure definition does not allocates any memory. It just gives a
template that conveys to the C compiler how the structure is laid out
in memory and gives details of the member names. Memory is
allocated for the structure when we declare a variable of the structure.
For ex., we can define a variable of student by writing as :

struct student stud1;

Here, struct student is a data type and stud1 is a variable. Look at another
way of declaring variables. In the following syntax, the variables are
declared at the time of structure declaration.

struct student{

int r_no;

char name[20]; char course[20]; float fees;

} stud1, stud2;

In this declaration we declare two variables stud1 and stud2 of the
structure student. So if you want to declare more than one variable of the
structure, then separate the variables using a comma. When we declare
variables of the structure, separate memory is allocated for each variable.
This is shown in Fig.

last but not the least, structure member names and names of the structure
follow the same rules as laid down for the names of ordinary variables.
However, care should be taken to ensure that the name of structure and the
name of a structure member should not be the same. Moreover, structure
name and its variable name should also be different.

Note: Structure type and variable declaration of a structure can be either
local or global depending on their placement in the code.

Type def declarations

The typedef (derived from type definition) keyword enables the programmer to create a

new data type name by using an existing data type. By using typedef, no new data is created,

rather an alternate name is given to a known data type. The general syntax of using the

typedef keyword is given as:

typedef existing_data_type new_data_type;

Note that typedef statement does not occupy any memory; it simply defines a new type. For
example, if we write

typedef int INTEGER;

then INTEGER is the new name of data type int. To declare variables using the new data type
name, precede the variable name with the data

type name (new). Therefore, to define an integer variable, we may now write

INTEGER num=5;

When we precede a struct name with typedef keyword, then the struct becomes a

new type. It is used to make the construct shorter with more meaningful names for

types already defined by C or for types that you have declared. With a typedef

declaration, becomes a synonym for the type.

For example, writing

typedef struct student{

int r_no;

char name[20];

char course[20];

float fees;};

Now that you have preceded the structure’s name with the keyword typedef, the

student becomes a new data type. Therefore, now you can straight away declare

variables of this new data type as you declare variables of type int, float, char,

double, etc. to declare a variable of structure student you will just write,

student stud1;

Note that we have not written struct student stud1.

NOTE: Do not forget to place a semicolon after the declaration of structures and

unions.

Accessing the members of a structure

Each member of a structure can be used just like a normal variable, but its

name will be a bit longer. A structure member variable is generally

accessed using a ‘.’ (dot operator).

The syntax of accessing a structure a member of a structure is:

struct_var.member_name

stud1.r_no

The dot operator is used to select a particular member of the structure. For
example, to assign values to the individual data members of the structure
variable studl, we may write

stud1.r_no = 01;

stud1.name = "Rahul";

stud1.course = "BCA";

stud1.fees = 45000;

To input values for data members of the structure variable stud1, we may write

scanf("%d", &stud1.r_no);

scanf("%s", stud1.name);

Similarly, to print the values of structure variable stud1, we may write

printf("%s", stud1.course);

printf("%f", stud1.fees);

Memory is allocated only when we declare the variables of the structure. In
other words, the memory is allocated only when we instantiate the structure.
In the absence of any variable, structure definition is just a template that will
be used to reserve memory when a variable of type struct is declared.

Once the variables of a structure are defined, we can perform a few operations
on them. For example, we can use the assignment operator (=) to assign the
values of one variable to another.

NOTE: Of all the operators –>, . , (), and [] have the highest priority. This is
evident from the following statement

stud1.fees++ will be interpreted as (stud1.fees)++.

membership operator

Initialization of structures

• Initializing a structure means assigning some constants to the members of the

structure.

• When the user does not explicitly initializes the structure then C automatically
does that. For int and float members, the values are initialized to zero and char
and string members are initialized to the ‘\0’ by default.

• The initializers are enclosed in braces and are separated by commas. Note that
initializers match their corresponding types in the structure definition.

• The general syntax to initialize a structure variable is given as follows.

struct struct_name

{ data_type member_name1;

data_type member_name2;

.......................................

}struct_var = {constant1, constant2, constant 3,...};

OR

struct struct_name

{ data_type member_name1;

data_type member_name2;

.......................................

};

struct struct_name struct_var = {constant1, constant2, ….};

For example, we can initialize a student structure by writing,
struct student
{int r_no;
char name[20]; char course[20]; float fees;
}stud1 = {01, "Rahul", "BCA", 45000};

Or, by writing,
struct student stud1 = {01, "Rahul", "BCA", 45000};
Figure illustrates how the values will be assigned to individual fields of the structure.

Assigning values to structure elements

When all the members of a structure are not initialized, it is called partial
initialization. In case of partial initialization, first few members of the structure are
initialized and those that are uninitialized are assigned default values

To Initialize or assign of structure variable while declaration
struct student stud1= {01, “Rahul”, “BCA”, 45000} ;

To initialize or assign value to the individual data members of the
structure variable Rahul, we may write,
stud1.r_no = 01;
strcpy(stud1.name, “Rahul”);
stud1.course = “BCA”;
stud1.fees = 45000;

Reading values to members at runtime:

struct student stud3;
printf(“\nEnter the roll no”);
scanf(“%d”,&stud3.r_no);
printf(“\nEnter the name”);
scanf(“%s”, stud3.name);
printf(“\nEnter the course”);
scanf(“%s”, stud3.course);
printf(“\nEnter the fees”);
scanf(“%d”,&stud3.fees);

We can initialize / assign a structure to another structure of the same
type. For ex, if we have two structure variables stu1 and stud2 of type
struct student given as

struct student stud1 = {01, "Rahul", "BCA", 45000};
struct student stud2;
Then to assign one structure variable to another we will write,
stud2 = stud1;

Example Program 1: Write a program using structures to read
and display the information about a student

#include <stdio.h>

#include <string.h>

struct employee {

int empid;

char name[35];

int age;

float salary;};

int main() {

struct employee emp1 ;

printf("Enter the details of employee 1 : ");

scanf("%d %s %d %f" , &emp1.empid, emp1.name, &emp1.age, &emp1.salary);

printf("Emp ID:%d\nName:%s\n Age:%d\n Salary:%f",emp1.empid,
emp1.name, emp1.age,emp1.salary);}

Output :

Example program 2: Write a program using structures to read
student 3 marks and display the total and average of the
student.

#include<stdio.h>

#include<conio.h>

struct stud

{

int regno;

char name[10];

int m1;

int m2;

int m3;

};

struct stud s;

void main() {

float tot,avg;

printf("\nEnter the student regno,name,m1,m2,m3:");

scanf("%d%s%d%d%d",&s.regno,&s.name,&s.m1,&s.m2,&s.m3);

tot=s.m1+s.m2+s.m3;

avg=tot/3;

printf("\nThe student Details are:");

printf("\n%d\t%s\t%f\t%f",s.regno,s.name,tot,avg);

}

Output :

Enter the student regno,name,m1,m2,m3:100

aaa

87

98

78

The student Details are:

100 aaa 263.000000 87.666664

&emp2.age,

Initialization of Structure members
individually

#include <stdio.h>

#include <string.h>

struct employee {

int empid;

char name[35];

int age;

float salary;

};

int main() {

struct employee emp1,emp2 ;

struct employee emp3 = { 1213 , "S.Murali" , 31 , 32000.00 } ;

emp1.empid=1211;

strcpy(emp1.name, "K.Ravi");

emp1.age = 27;

emp1.salary=30000.00;

printf("Enter the details of employee 2");

scanf("%d %s %d %f" , &emp2.empid, emp2.name,

&emp2.salary);

if(emp1.age > emp2.age)

printf("Employee1 is senior than Employee2\n");

else

printf("Employee1 is junior than Employee2\n");

printf("Emp ID:%d\n Name:%s\nAge:%d\n Salary:%f",

emp1.empid,emp1.name,emp1.age,emp1.salary);

}

Output:

GUIDED ACTIVITY – Here is the guided activity for you on
(Implementing a Structure – declaration, initialization, accessing for an
employee DB)

Accessing members
of Structure

Reading values to
members of Structure

Declaration and initialization of
Structure variable

Declaration of Structure variables

Declaration of Structure Type

Values of structure variables

Copying and Comparing Structures
We can assign a structure to another structure of the same type. For
example, if we have two structure variables stud1 and stud2 of type
struct student given as

struct student stud1 = {01, "Rahul", "BCA", 45000};

struct student stud2;

Then to assign one structure variable

to another, we will write

stud2 = stud1;

Figure

This statement initializes the members of stud2 with the values
of members of stud1. Therefore, now the values of stud1 and
stud2 can be given as shown in Fig.

C does not permit comparison of one structure variable with
another. However, individual members of one structure can be
compared with individual members of another structure. When
we compare one structure member with another structure’s
member, the comparison will behave like any other ordinary
variable comparison.

For example, to compare the fees of two students, we will write

if(stud1.fees > stud2.fees) //to check if fees of stud1 is greater
than stud2

Note: An error will be generated if you try to compare two
structure variables.

Nested Structures – Array of Structures –
Structures and functions – Passing an entire
structure –Passing Structures Through
Pointers, Self referential structure

Topic. 5.1, 5.2, 5.3, 5.4

 NESTED STRUCTURES
A structure can be placed within another structure. That is, a structure may contain
another structure as its member. Such a structure that contains another structure as
its member is called a nested structure.

Let us now see how we declare nested structures. Although it is possible to declare a nested
structure with one declaration, it is not recommended. The easier and clearer way is to declare
the structures separately and then group them in the higher level structure. When you do this,
take care to check that nesting must be done from inside out (from lowest level to the most
inclusive level), i.e., declare the innermost structure, then the next level structure, working
towards the outer (most inclusive) structure.

typedef struct {

char first_name[20];

char mid_name[20];

char last_name[20];

} NAME;

typedef struct {

int dd;

int mm;

int yy;

} DATE;

typedef struct {

int r_no;

NAME name;

char course[20];

DATE DOB;

float fees;

} student;

In this example, we see that the structure student contains two other structures, NAME and
DATE. Both these structures have their own fields. The structure NAME has three fields:
first_name, mid_name, and last_name. The structure DATE also has three fields: dd, mm, and
yy, which specify the day, month, and year of the date. Now, to assign values to the structure
fields, we will write

struct student stud1;

stud1.name.first_name = "Janak";

stud1.name.mid_name = "Raj";

stud1.name.last_name = "Thareja";

stud1.course = "BCA";

stud1.DOB.dd = 15;

stud1.DOB.mm = 09;

stud1.DOB.yy = 1990;

stud1.fees = 45000;

In case of nested structures, we use the dot operator in conjunction with the structure variables
to access the members of the innermost as well as the outermost structures.

esh ") ;

Inner
Structure

Guided activity on nested structures

#include<stdio.h>
#include<string.h>
struct date {

int day ;
int month ;
int year ;

} ;

struct person {
char name[40];
int age ;
struct date b_day ;

};

int main() {
struct person p1;

Outer

Structure

strcpy (p1.name , "S. Ram
p1. age = 32 ;
p1.b_day.day = 25 ;
p1.b_day. month = 8 ;
p1.b_day. year = 1978 ;

}

OUTPUT:

No output since there is no print statment

Accessing Inner
Structure
members

Write a program to read and display information of a student using
structure within a structure

#include<stdio.h>

int main(){ struct DOB {

int day;

int month;

int year; };

struct student {

int roll_no;

char name[100];

float fees;

struct DOB date; };

struct student stud1;

printf("\n Enter the roll number : ");

scanf("%d", &stud1.roll_no);

printf("\n Enter the name : ");

scanf("%s", stud1.name);

printf("\n Enter the fees : ");

scanf("%f", &stud1.fees);

printf("\n Enter the DOB : ");

scanf("%d %d %d", &stud1.date.day, &stud1.date.month, &stud1.date.year);

printf("\n ********STUDENT’S DETAILS *******");

printf("\n ROLL No. = %d", stud1.roll_no);

printf("\n NAME. = %s", stud1.name);

printf("\n FEES. = %f", stud1.fees);

printf("\n DOB = %d - %d - %d", stud1.date.day, stud1.date.month,

stud1.date.year);

}

OUTPUT:

 Arrays Of Structures
In the above examples, we have seen how to declare a structure and assign values
to its data members. Now, we will discuss how an array of structures is declared. For
this purpose, let us first analyse where we would need an array of structures.

In a class, we do not have just one student. But there may be at least 30 students.
So, the same definition of the structure can be used for all the 30 students. This
would be possible when we make an array of structures. An array of structures is
declared in the same way as we declare an array of a built-in data type.

Another example where an array of structures is desirable is in case of an
organization. An organization has a number of employees. So, defining a separate
structure for every employee is not a viable solution. So, here we can have a
common structure definition for all the employees. This can again be done by
declaring an array of structure employee.
The general syntax for declaring an array of structure can be given as,
struct struct_name struct_var[index];

Consider the given structure definition.

struct student{

int r_no;

char name[20]; char course[20]; float fees;};

A student array can be declared by writing,
struct student stud[30];

Now, to assign values to the ith student of the class, we will write,
stud[i].r_no = 09;
stud[i].name = "RASHI";
stud[i].course = "MCA";
stud[i].fees = 60000;

In order to initialize the array of structure variables at the time of declaration, we can
write as follows:

struct student stud[3] = {{01, "Aman", "BCA", 45000},{02, "Aryan", "BCA", 60000},
{03,"John", "BCA", 45000}};

© Oxford University Press 2015. All rights reserved.

Write a program to read and display
information of all the students in the class
(using Array of structure)

#include<stdio.h>
int main()
{ struct student

{
int roll_no;
char name[80];
float fees;
char DOB[80];

};
struct student stud[50];
int n, i;
printf("\n Enter the number of students : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{ printf("Enter the roll number : ");

scanf("%d", &stud[i].roll_no);
printf("Enter the name : ");
scanf("%s", stud[i].name);
printf("Enter the fees : ");
scanf("%f", stud[i].fees);
printf("Enter the DOB : ");
scanf("%s", stud[i].DOB);

}
for(i=0;i<n;i++)
{ printf("\n*DETAILS OF %dth STUDENT*", i+1);

printf("\n ROLL No. = %d", stud[i].roll_no);
printf("\n NAME. = %s", stud[i].name);
printf("\n ROLL No. = %f", stud[i].fees);
printf("\n ROLL No. = %s", stud[i].DOB);

}
}

OUTPUT:
Enter the number of students : 2

Enter the roll number : 1
Enter the name : ashik
Enter the fees : 3500
Enter the DOB : 12-12-1978
Enter the roll number : 2
Enter the name : asmi
Enter the fees : 4500
Enter the DOB : 12-12-1990

DETAILS OF 1th STUDENT
ROLL No. = 1
NAME. = ashik
ROLL No. = 3500.000000
ROLL No. = 12-12-1978

DETAILS OF 2th STUDENT
ROLL No. = 2
NAME. = asmi
ROLL No. = 4500.000000
ROLL No. = 12-12-1990

...Program finished with exit code 0

struct student
{

int sub[3] ;
int total ;

} ;

int main() {

struct student s[3];
int i,j;
for(i=0;i<3;i++) {

printf("\n\nEnter student %d marks:",i+1);
for(j=0;j<3;j++) {

scanf("%d",&s[i].sub[j]);
}

}

for(i=0;i<3;i++) {
s[i].total =0;
for(j=0;j<3;j++) {

s[i].total +=s[i].sub[j];
}
printf("\nTotal marks of student %d is: %d",

i+1,s[i].total);
}

}

OUTPUT:
OUTPUT:

Enter student 1 marks: 60 60 60

Enter student 2 marks: 70 70 70

Enter student 3 marks: 90 90 90

Total marks of student 1 is: 180

Total marks of student 2 is: 240

Total marks of student 3 is: 270

GUIDED ACTIVITY – Here is the activity you on (arrays and
structures)

 Structure and Functions
For structures to be fully useful, we must have a mechanism to pass them to functions and
return them. A function may access the members of a structure in three ways as shown in
Fig

Passing Individual Structure Members to a Function

To pass any individual member of the structure to a function we must use the
direct selection operator to refer to the individual members for the actual
parameters. The called program does not know if the two variables are ordinary
variables or structure members.

#include<stdio.h>

typedef struct

{

int x;

int y;

}POINT;

void display(int, int);

main()

{

POINT p1 = {2, 3};

display(p1.x, p1.y);

return 0;

}

void display(int a, int b)

{

printf(" The coordinates of the point are: %d %d", a, b);

}

OUTPUT:

The coordinates of the point are: 2 3

© Oxford University Press 2015. All rights reserved.

PASSING A STRUCTURE TO A FUNCTION

When a structure is passed as an argument, it is passed

using call by value method. That is a copy of each member

of the structure is made. No doubt, this is a very inefficient

method especially when the structure is very big or the

function is called frequently. Therefore, in such a situation

passing and working with pointers may be more efficient.

The general syntax for passing a structure to a function and

returning a structure can be given as, struct struct_name

func_name(struct struct_name struct_var);

The code given below passes a structure to the function

using call-by-value method.
#include<stdio.h>

typedef struct

{

int x;

int y;

}POINT;

void display(POINT);

main()

{

POINT p1 = {2, 3};

display(p1);

return 0;

}

void display(POINT p)

{

printf(" The coordinates of the point are: %d %d", p.x, p.y);

}

OUTPUT:

The coordinates of the point are: 2 3

Guided activity on structures and functions

struct fraction {
int numerator ;
int denominator ;

};

void show (struct fraction f)
{

printf (" %d / %d ", f.numerator,
f.denominator) ;

}

int main () {
struct fraction f1 = { 7, 12 } ;
show (f1) ;

}

OUTPUT:
7 / 12

PASSING STRUCTURES THROUGH POINTERS
C allows to crerate a pointer to a structure. Like in other

cases, a pointer to a structure is never itself a
structure, but merely a variable that holds the
address of a structure. The syntax to declare a pointer
to a structure can be given as

struct struct_name
{

data_type member_name1;
data_type member_name2;
.....................................

}*ptr;
OR
struct struct_name *ptr;
For our student structure we can declare a pointer

variable by writing
struct student *ptr_stud, stud;
The next step is to assign the address of stud to the

pointer using the address operator (&). So to assign
the address, we will write

ptr_stud = &stud;
To access the members of the structure, one way is to

write
/* get the structure, then select a member */
(*ptr_stud).roll_no;
An alternative to the above statement can be used by using

‘pointing-to’ operator (->) as shown below.
/* the roll_no in the structure ptr_stud points to */
ptr_stud->roll_no = 01;

The selection operator (->) is a single token, so do not place any
white space between them.

Write a program using pointer to structure
to initialize the members in the structure

#include<stdio.h>
#include<string.h>
struct student
{

};
main()

int r_no;

char name[20];
char course[20];
float fees;

{ struct student stud1, *ptr_stud1;
ptr_stud1 = &stud1;
ptr_stud1->r_no = 01;
strcpy(ptr_stud1->name, "Rahul");
strcpy(ptr_stud1->course, "BCA");
ptr_stud1->fees = 45000;
printf("\n DETAILS OF STUDENT");
printf("\n -- ");

printf("\n ROLL NUMBER = %d", ptr_stud1->r_no);
printf("\n NAME =", puts(ptr_stud1->name));
printf("\n COURSE = ", puts(ptr_stud1->course));
printf("\n FEES = %f", ptr_stud1->fees);

}

OUTPUT:

DETAILS OF STUDENT

ROLL NUMBER = 1

NAME = Rahul

COURSE = BCA

FEES = 45000.000000

Guided activity on Pointer to a structure

Read Product Details :

111 Pen

112 Pencil

113 Book

Print Product Details :

Product ID : 111

Name : Pen

Product ID : 112

Name : Pencil

Product ID : 113

Name : Book

Accessing structure members

through pointer :

i) Using . (dot) operator :

(*ptr) . prodid = 111 ;
strcpy ((*ptr) . Name, "Pen") ;

ii) Using - > (arrow) operator :
ptr - > prodid = 111 ;
strcpy(ptr->name , "Pencil") ;

struct product
{

int prodid;
char name[20];

};
int main()
{

struct product inventory[3];

struct product *ptr;
printf("Read Product Details : \n");

for(ptr = inventory;ptr<inventory +3;ptr++) {

scanf("%d %s", &ptr->prodid, ptr->name);
}

printf("\noutput\n");
for(ptr=inventory;ptr<inventory+3;ptr++)
{

printf("\n\nProduct ID :%5d",ptr->prodid);

printf("\nName : %s",ptr->name);
}

}

A self referential structure is one that includes at least one
member which is a pointer to the same structure type.
With self referential structures, we can create very useful
data structures such as linked -lists, trees and graphs.

Self referential structures are those structures that contain
a reference to data of its same type. That is, a self
referential structure in addition to other data contains a
pointer to a data that is of the same type as that of the
structure. For example, consider the structure node given
below.
struct node
{

int val;
struct node *next;

};

Here the structure node will contain two types of data- an
integer val and next that is a pointer to a node. You must
be wondering why do we need such a structure? Actually,
self-referential structure is the foundation of other data
structures.

5.4 SELF REFERENTIAL STRUCTURES

Self referential structures

struct student_node {
int roll_no ;
char name [25] ;
struct student_node *next ;

} ;
int main()
{
struct student_node s1 ;
struct student_node s2 = { 1111, "B.Mahesh", NULL } ;
s1. roll_no = 1234 ;

strcpy (s1.name , "P.Kiran ") ;

s1. next = & s2 ;

printf (" %s ", s1. name) ;

printf (" %s " , s1.next - > name) ;

}

OUTPUT:

Prints B.Mahesh

Prints P.Kiran

s2 node is linked to s1
node

Creating a Singly Linked List

head 150 n1-node

150

n1-node

720
n2-node

150

n1-node

720
n2-node

910
n3-node

head 150 400 910

n1-node n2-node
720

n4-node

n3-node

head 150 720 910

n1-node

400
n2-node

n4-node
n3-node

102

104 NULL

103 910

101 720

104 NULL

102 720

101 400

104 NULL

102 910

101 720

102 NULL

101 720

101 NULL

150

/* deleting n2 node */

n1->next = n4;

free(n2);

}

GUIDED ACTIVITY – Here is the activity you on (self referential
structure – foundation for linked list)

150

150

150

150

720

struct node {

int rollno; struct node *next;

};

int main() {

struct node *head,*n1,*n2,*n3,*n4;

/* creating a new node */

n1=(struct node *) malloc(sizeof(struct node));

n1->rollno=101;
n1->next = NULL;

/* referencing the first node to head pointer */

head = n1;

/* creating a new node */

n2=(struct node *)malloc(sizeof(struct node));

n2->rollno=102;

n2->next = NULL;

/* linking the second node after first node */

n1->next = n2;

/* creating a new node * /

n3=(struct node *)malloc(sizeof(struct node));
n3->rollno=104;

n3->next=NULL;

/* linking the third node after second node */

n2->next = n3;

/* creating a new node */

n4=(struct node *)malloc (sizeof (struct node));

n4->rollno=103;

n4->next=NULL;

/* inserting the new node between

second node and third node */

n2->next = n4;

n4->next = n3;

103 910

head 150

n1-node
720

n4-node
720 102

910 103 720 101 150

struct node *head=NULL;

head 150 n1-node

150

n1-node
720

n2-node

150

n1-node
720

n2-node
910

n3-node

150

 101 400

 102 720

head 150 400

n1-node n2-node

400
n2-node

720

n4-node

NULL 104 910 102 720 101 150

NULL 102 720 101 150

NULL 101 150

Implementing Singly Linked List

910 103

 #include<stdio.h>
#include<stdlib.h>
struct node {

int data;
struct node *next;

};
struct node *createnode() {

struct node *new;
new = (struct node *) malloc(sizeof(struct node));
//printf("\nEnter the data : ");
//scanf("%d",&new->data);
new->data=101; //102, 104
new->next=NULL;
return new;

}
void append(struct node **h) {

struct node *new,*temp;
new = createnode();
if(*h == NULL) {

*h = new;
return;

}
temp = *h;
while(temp->next!=NULL)
temp = temp->next;
temp->next = new;

}
void display(struct node *p) {

printf("\nContents of the List : \n\n");
while(p!=NULL) {

printf("\t%d",p->data);
p = p->next; } }

int main() {
struct node *head=NULL;
append(&head);
display(head);
append(&head);
display(head);
append(&head);
display(head);
}

104 NUL
L

910
n3-
node

104 NUL
L

910
n3-
node

struct node {

int data;

struct node *next;

};

struct node *createnode() {

struct node *new;

new = (struct node *)malloc(sizeof(struct node));

printf("\nEnter the data : ");

scanf("%d",&new->data);

new->next = NULL;

return new;

}

void append(struct node **h) {

struct node *new,*temp;

new = createnode();

if(*h == NULL) {

*h = new;

return;

}

temp = *h;

while(temp->next!=NULL) temp = temp->next;

temp->next = new;

}

void display(struct node *p) {

printf("\nContents of the List : \n\n");

while(p!=NULL) {

printf("\t%d",p->data);

p = p->next; } }

int main() {

struct node *head=NULL;

int ch;

while(1) {

printf("\n1.Append");

printf("\n2.Display All");

printf("\n8.Exit program");

printf("\n\n\tEnter your choice : ");

scanf("%d",&ch);

switch(ch) {

case 1:append(&head);break;

case 2:display(head);break;

;

case 8:exit(0);break;

default :

printf("Wrong Choice, Enter correct one : ");

}

}

}

Implementing Singly Linked List

Compute the age of a person using structure
and functions (passing a structure to a
function) –Compute the number of days an
employee came late to the office by
considering his arrival time for 30 days (Use
array of structures and functions)

Topic. 5.5

Exercise programs:
Compute the age of a person using structure and

•fuCnctions (passing a structure to a function) –
Compute the number of days an employee came late to
the office by considering his arrival time for 30 days
(Use array of structures and functions)

#include <stdio.h>
struct date {
int dd, mm, yy;} ;

int date_cmp(struct date d1, struct date d2);
void date_print(struct date d);

int main(){

struct date d1 = {7, 3, 2005};

struct date d2 = {24, 10, 2005};
date_print(d1);
int cmp = date_cmp(d1, d2);
if (cmp == 0)

printf(” is equal to”);
else if (cmp > 0)

printf(” is greater i.e. later than “);
else printf(” is smaller i.e. earlier than”);

date_print(d2);
return 0;}

/* compare given dates d1 and d2 */
int date_cmp(struct date d1, struct date d2){

if (d1.dd == d2.dd && d1.mm == d2.mm && d1.yy ==d2.yy)
return 0;

else if (d1.yy > d2.yy || d1.yy == d2.yy && d1.mm > d2.mm || d1.yy == d2.yy
&& d1.mm == d2.mm && d1.dd > d2.dd)

return 1;
else return -1;}

/* print a given date */

void date_print(struct date d) {
printf(“%d/%d/%d”, d.dd, d.mm, d.yy);}

GUIDED ACTIVITY – Here is the activity you on (compare dates
in C)

Compute the age of a person using structure and functions (passing a structure to a function) –

Age Calculator: This program will read your date of birth and print the current age. The logic is behind
to implement this program - Program will compare given date with the current date and print how old
are you?

/*Age Calculator (C program to calculate age).*/
#include<stdio.h>
int date_diff(struct date dt1, struct date dt2);

struct date {
int day, month, year; };

int main() {

struct date dt1 = {05, 10, 2020};

struct date dt2 = {17, 05, 2004};
int cmp = date_diff(dt1, dt2);

return cmp;}

int date_diff(struct date dt1, struct date dt2){
int years,months,days;
if(dt2.year>dt1.year) {
years=0; months=0; days=0;
printf("\n I can't travel in time");}

else if(dt2.year==dt1.year){
years=0;
if(dt2.month>dt1.month){
months=0; days=0;
printf("\n I can't travel in time");}

else if(dt2.month==dt1.month){ months=0;
if(dt2.day>dt1.day){
days=0;
printf("\n I can't travel in time");}

else if(dt2.day==dt1.day){ days=0;
printf("\n Welcome to Earth");}

else

days=dt1.day-dt2.day;}
else{
months=dt1.month-dt2.month;
if(dt2.day>dt1.day) { months--;
days=30-dt2.day+dt1.day; }

else
days=dt1.day-dt2.day;} }

else {
years=dt1.year-dt2.year;
if(dt2.month>dt1.month) {
years--;

months=12-dt2.month+dt1.month;
days=30-dt2.day+dt1.day;}

else {

months=dt1.month-dt2.month;
if(dt2.day>dt1.day) {
months--;

days=30-dt2.day+dt1.day; }
else
days=dt1.day-dt2.day;} }

printf("\n Your age is %d years, %d months, %d days",years,months,days);}

Your age is 16 years, 4 months, 18 days

 GUIDED ACTIVITY – Here is the activity you on (Time in C)

#include <stdio.h>

#include <stdlib.h>
#include <time.h>
// Print current date and time in C
int main(void){

// variables to store date and time components

int hours, minutes, seconds, day, month, year;
// time_t is arithmetic time type
time_t now;
// Obtain current time

// time() returns the current time of the system as a time_t value
time(&now);
// Convert to local time format and print to stdout
printf("Today is : %s", ctime(&now));
// localtime converts a time_t value to calendar time and
// returns a pointer to a tm structure with its members

// filled with the corresponding values
struct tm *local = localtime(&now);

hours = local->tm_hour; // get hours since midnight (0-23)

minutes = local->tm_min; // get minutes passed after the hour (0-59)
seconds = local->tm_sec; // get seconds passed after minute (0-59)

day = local->tm_mday; // get day of month (1 to 31)

month = local->tm_mon + 1; // get month of year (0 to 11)

year = local->tm_year + 1900; // get year since 1900

// print local time
if (hours < 12) // before midday

printf("Time is : %02d:%02d:%02d am\n", hours, minutes, seconds);

else // after midday

printf("Time is : %02d:%02d:%02d pm\n", hours - 12, minutes, seconds);

// print current date

printf("Date is : %02d/%02d/%d\n", day, month, year);

return 0;
}

Compute the number of days an employee came late to the office by considering his
arrival time for 30 days (Use array of structures and functions)

#include <stdio.h>

#include <time.h>

struct student{

int main(){

int n=1;

char lastName[100];

char firstName[100];

char *date;

int age;

int id;};

struct student s[n];

int x;

do{

printf("main menu :\n1.add\n2.delete\n3.diplay\n4.exit\n");

scanf("%d",&x);

switch(x){

case 1:

for(int i=0;i<n;i++){

printf("Enter first name\n");

scanf("%s",s[i].firstName);

printf("Enter last name\n");

scanf("%s",s[i].lastName);

printf("Enter your id\n");

scanf("%d",&s[i].time);

printf("Enter your age\n");

scanf("%d",&s[i].age);

time_t timer;

timer=time(NULL);

s[i].date = asctime(localtime(&timer));

//s[i].time=time(&now);

}

for(int i=0;i<n;i++){

printf("id\tfirstName\tlastName\tage\tdate\n%d\t%s\t%s\t%d\t%s",s[i].id,s[i].firstNa

me,s[i].lastName,s[i].age,s[i].date);

}

break;

case 2:

break;

case 3:

break;

case 4:

break;

default:

break;

}

printf("wrong choice");

}while(x!=4);

return 0;

}

Note: time_t t;

time(&t);

printf("\n current time is : %s",ctime(&t));

Quiz

Test Yourself –5.1 to 5.6 Topics
(quiz)

1) A data structure that can store related information together is called
(a) Array (b) String (c) Structure (d) All of these
2) A data structure that can store related information of different data types
together is called
(a) Array (b) String (c) Structure (d) All of these
3) Memory for a structure is allocated at the time of
Structure definition Structure variable declaration
Structure declaration Function declaration
4) A structure member variable is generally accessed using
(a) Address operator (b) Dot operator
(c) Comma operator (d) Ternary operator
5) A structure that can be placed within another structure is known as
Self-referential structure Nested structure
Parallel structure Pointer to structure
6) A union member variable is generally accessed using the
(a) Address operator (b) Dot operator
(c) Comma operator (d) Ternary operator
7) typedef can be used with which of these data types?
(a) struct (b) union
(c) enum (d) all of these

Assignment
Unit V

Assignment Questions

CO 1 Develop C program solutions to simple computational

problems

1. Declare a structure that represents the following hierarchical

information.

Student

Roll Number
Name

First name
Middle Name
Last Name

Sex

Date of Birth
Day
Month
Year

Marks

English
Mathematics
Computer Science

K2 CO1

2. Define a structure date containing three integers— day, month,

and year. Write a program using functions to read data, to

validate the date entered by the user and then print the date on

the screen. For example, if you enter 29,2,2010 then that is an

invalid date as 2010 is not a leap year. Similarly 31,6,2007 is

invalid as June does not have 31 days.

K2 CO1

3. Write a program to define a union and a structure both having

exactly the same members. Using the sizeof operator, print the

size of structure variable as well as union variable and comment

on the result.

K2 CO1

Part A
Question & Answer

Part A

1. What is Structure? Write the syntax for structure. K3 CO3 S

2. How the members of structure object is accessed? K3 CO3 S

3. What is a nested structure? K3 CO3 S

4. How typedef is used in structure? K3 CO3 A

5. What is meant by Self-referential structures? K3 CO3 A

6. Develop a structure namely Book and create array of Book structure with

size of ten.

K2 CO3 S

7. Invent the application of size of operator to this structure. Consider the

declaration:

struct

{

char name;

int num;

} student;

K2 CO3 S

8. List the use of typedef. K2 CO3 A

9. Differentiate between Structure and Array. K2 CO3 A

10. Define the meaning of Array structure. K2 CO3 A

Part B
Questions

Part B

1. Describe about the functions and structures. (13) K3 CO3 S

2. Explain about the structures and its operations with example programs

(13)

K3 CO3 S

3. Explain about array of structures and nested structures with example.(13) K3 CO3 A

4. Write a C program using structures to prepare the students mark

statement. (13)

K3 CO3 A

5. Write a C program using structures to prepare the employee payroll. (13) K3 CO3 A

6. Compute the number of days an employee came late to the office by

considering his arrival time for 30 days (Use array of structures and function)

K3 CO3 S

Supportive Online
Certification
Unit V

Certification Courses

NPTEL

Problem solving through Programming in C

https://nptel.ac.in/courses/106/105/106105171/

Coursera

1) C for Everyone: Structured Programming

https://www.coursera.org/learn/c-structured-programming

2) C for Everyone: Programming Fundamentals

https://www.coursera.org/learn/c-for-everyone

https://nptel.ac.in/courses/106/105/106105171/
https://www.coursera.org/learn/c-structured-programming
https://www.coursera.org/learn/c-for-everyone

Real time Applications
Unit V

Functions are used at many places in real life applications and some
applications are listed here.

commonly used in calculation or computation purpose

Major imaging activity

Content beyond syllabus
Unit V

Content beyond syllabus

1) Comparison between structure and union

Assessment Schedule
Unit V

Prescribed Text book &
References
Unit V

Text books & References

TEXT BOOK

1. Reema Thareja, "Programming in C", Oxford University Press,
Second Edition, 2016

REFERENCES:

1. Kernighan, B.W and Ritchie,D.M, "The C Programming
language", Second Edition, Pearson Education, 2006

2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh
edition, Pearson Publication

3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE
Learning India pvt. Ltd., 2011

4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and
Programming in C", First Edition, Oxford University Press, 2009

5. ER and ETA , “CC Foundation Program Reference materials”
Infosys Ltd.

Mini Project Suggestions
Unit V

1) Scientific calculator using strcture

2) Employee Management System

Thank you

Disclaimer:

This document is confidential and intended solely for the educational purpose of RMK Group of
Educational Institutions. If you have received this document through email in error, please notify the
system manager. This document contains proprietary information and is intended only to the
respective group / learning community as intended. If you are not the addressee you should not
disseminate, distribute or copy through e-mail. Please notify the sender immediately by e-mail if you
have received this document by mistake and delete this document from your system. If you are not
the intended recipient you are notified that disclosing, copying, distributing or taking any action in
reliance on the contents of this information is strictly prohibited.

