DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(ACADEMIC YEAR: 2022-2023)

EE8702 -POWER SYSTEM OPERATION AND CONTROL

(Regulation 2017)

IV YEAR
Semester-VII

FIVE UNITS MATERIAL

Prepared by
R. ABIRAMI , AP/EEE

NAME :
REG NO :

MOHAMED SATHAK A.J COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ODD SEMESTER 2022-2023

EE8702 -POWER SYSTEM OPERATION AND CONTROL

IV YEAR / VII SEMESTER 2017 REGULATION

SYLLABUS

OBJECTIVES:

To impart knowledge on the following topics

- Significance of power system operation and control.
- Real power-frequency interaction and design of power-frequency controller.
- Reactive power-voltage interaction and the control actions to be implemented for
- maintaining the voltage profile against varying system load.
- Economic operation of power system.
- SCADA and its application for real time operation and control of power systems

UNIT I PRELIMINARIES ON POWER SYSTEM OPERATION AND

 CONTROLPower scenario in Indian grid - National and Regional load dispatching centers -requirements of good power system - necessity of voltage and frequency regulation - real power vs frequency and reactive power vs voltage control loops - system load variation, load curves and basic concepts of load dispatching - load forecasting - Basics of speed governing mechanisms and modeling - speed load characteristics - regulation of two generators in parallel.

UNIT II REAL POWER - FREQUENCY CONTROL 9

Load Frequency Control (LFC) of single area system-static and dynamic analysis of uncontrolled and controlled cases - LFC of two area system - tie line modeling - block diagram representation of two area system - static and dynamic analysis - tie line with frequency bias control - state variability model - integration of economic dispatch control with LFC.

UNIT III REACTIVE POWER - VOLTAGE CONTROL 9

Generation and absorption of reactive power - basics of reactive power control - Automatic Voltage Regulator (AVR) - brushless AC excitation system - block diagram representation of AVR loop - static and dynamic analysis - stability compensation - voltage drop in transmission line - methods of reactive power injection - tap changing transformer, SVC (TCR + TSC) and STATCOM for voltage control.

UNIT IV ECONOMIC OPERATION OF POWER SYSTEM 9

Statement of economic dispatch problem - input and output characteristics of thermal plant incremental cost curve - optimal operation of thermal units without and with transmission losses (no derivation of transmission loss coefficients) - base point and participation factors method statement of unit commitment (UC) problem - constraints on UC problem - solution of UC problem using priority list - special aspects of short term and long term hydrothermal problems.

UNIT V COMPUTER CONTROL OF POWER SYSTEMS 9

Need of computer control of power systems-concept of energy control centers and functions PMU - system monitoring, data acquisition and controls - System hardware configurations SCADA and EMS functions - state estimation problem - measurements and errors - weighted least square estimation - various operating states - state transition diagram.
TOTAL: 45 PERIODS

- Ability to understand the day-to-day operation of electric power system.
- Ability to analyze the control actions to be implemented on the system to meet the
- minute-to-minute variation of system demand.
- Ability to understand the significance of power system operation and control.
- Ability to acquire knowledge on real power-frequency interaction.
- Ability to understand the reactive power-voltage interaction.
- Ability to design SCADA and its application for real time operation.

TEXT BOOKS:

1. Olle.I.Elgerd, 'Electric Energy Systems theory - An introduction', McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
2. Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control', John Wiley \& Sons, Inc., 2016.
3. Abhijit Chakrabarti and Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

REFERENCES

1. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.
2. Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
3. Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.

> UNIT I - PRELIMINARIES ON POWER SYSTEM OPERATION AND CONTROL

Treq requlation:-
MNTRODUCTION
Moltage requlation

1. Normal operation of.syn. 1. Lighting loadu-very vensitine unit in p.s. tovoltage
flucitur fluctlation
2. 80% of the IM is used to $2 . \eta \downarrow$, wfe \downarrow get the Constant speed
3. ηJ, lifetime qequiment
4. $50 \% I M \downarrow T \alpha V^{2} \psi$ powar coads ho tranifer
5. Electrical elocke-Syn. motor 4. Power over transmiession
6. $50 \mathrm{~Hz}, \pm 2 \%$ tollerence lines-vottage lenstant

System-load variation:-
Load hirne:-
The curue. dracon b/w load and time.

i) Maximum demand.
ii) Average demand
iii) variation of load wort time
iv) unit gen / day, Mwhr
v) rating gigen sturn oN

Load Curve:-

$$
\begin{aligned}
& 12-4 A M-200 \mathrm{MW} \\
& 4 \mathrm{AM}-10 \mathrm{AM}-800 \mathrm{MW} \\
& 10 \mathrm{AM}-2 P M-600 \mathrm{MW} \\
& 2 P M-B P M=1200 \mathrm{~mW} \\
& 8 P M-12-800 \mathrm{MW}
\end{aligned}
$$

Load duration Curve

| 1200 MW |
| :--- | :--- | :--- |
| 1000 |
| 800 |
| 600 |
| 400 |
| 200 |

1) Max demand $=1200 \mathrm{~mW}$
2) $\begin{aligned} & \text { ADD }=\frac{\text { Area }}{\text { time }}=\frac{\text { No. qunit qenlday }}{\text { time }} \\ & \frac{800+4800+7200+3200+2400}{2 h}=\frac{18300}{2 h}=766.67 \mathrm{\omega s}\end{aligned}$

Load duration Curve:-

$$
\begin{aligned}
& 80 \mathrm{~mW} \text { - } 4 \mathrm{hrs} \\
& 75 . \mathrm{MW} \text { - } 4 \mathrm{hrs} \\
& 50 \mathrm{MW} \text { - } 4 \mathrm{hrs} \\
& 45^{5} \mathrm{~mW} \text { - } 6 \mathrm{hrs} \\
& 35 \mathrm{MW} \text { - } 2 \mathrm{hrs} \\
& 25 \mathrm{MW} \text { - } 2 \mathrm{hrs} \\
& 26 \mathrm{~mW} \text { - } 2 \mathrm{hrs}
\end{aligned}
$$

Maximum demand

$$
M D=80 \mathrm{MW}
$$

Average demand:-

$$
\begin{aligned}
& A D=\frac{\text { No. units genlday }}{\text { Time }} \\
& \text { No. g units gen| clay }=(80 \times 4)+(75 \times 4)+(50 \times 4)+(45 \times 1) \\
& +(35 \times 2)+(25 \times 2)+(20 \times 2) \\
& =320+300+200+270+70+50+40 \\
& =1250 \\
& \text { Average demand }=\frac{1250}{24}=52.09 \mathrm{MW}
\end{aligned}
$$

No. of generator:-

$$
\begin{aligned}
& 2 g \mathrm{gm}-2 \quad 6,4, \\
& 50 \mathrm{mw}-1 \quad 43
\end{aligned}
$$

$$
\begin{aligned}
& 0-6-G_{3} O N \\
& 6-8-G_{3} O N \\
& 8-12-G_{3} G_{1} G_{2} \text { ON } \\
& 12-14-G_{1} O N_{1} G_{2} G_{3} \text { OFF } \\
& 14-18-G_{1} G_{2} G_{3} \text { ON } \\
& 18-20-G_{3 O N} G_{1} G_{2} \text { OFF } \\
& 20-24-G_{3} G_{1} \text { ON, ON OFF }
\end{aligned}
$$

(3) A Generating Station has the following daily Cycle:-
Time (Hours) of 6-10 $\quad 10-12 \quad 12-16 \quad 16-20 \quad 20-2$ load (MW) $20 \quad 25 \quad 30 \quad 25 \quad 35 \quad 20$
Draw the load curve \& Calculate

1) Max demand
2) units generated per day

Load duration Curve:-

$$
\begin{aligned}
& 35 \mathrm{MW}-4 \mathrm{hr} \\
& 80 \mathrm{MW} \text { - } 2 \mathrm{hr} \\
& 25 \mathrm{MW}=4 \mathrm{hr} \\
& 25 \mathrm{MW} \text { - } 4 \mathrm{hr} \\
& 20 \mathrm{MW} \text { - } 6 \mathrm{hr} \\
& 20 \mathrm{MW} \text { - } 4 \mathrm{hr}
\end{aligned}
$$ in hers.

$$
\text { Maximum demand }=35 \mathrm{mw}
$$

Arg demand $=\frac{\text { No. unit generated/day }}{\text { tie }}$

$$
\text { No. quit generated } \begin{aligned}
\text { Nay } & =(85 \times 4)+(80 \times 2)+(25 \times 8)+(\text { for } \\
& =140+60+200+200 \\
& =600 \mathrm{MWhr}
\end{aligned}
$$

$$
\text { Avg demand }=\frac{600}{2 y}=25 \mathrm{~mW}
$$

No. q generator

$$
\begin{aligned}
& 20 \mathrm{~mW}-1 G_{1} \\
& 10 \mathrm{~mW}-2 G_{1} G_{3} \\
& 5 \mathrm{~mW}-1 G_{4}
\end{aligned}
$$

$$
\begin{aligned}
& 0-4-G_{1}, G_{2}, G_{3} O N \\
& 4-6-G_{1}, G_{2}, G_{4} O N \\
& 6-14-G_{1}, G_{2} O N \\
& 14-24-G_{1}, G_{4} O N
\end{aligned}
$$

Connected Woad:-
The Sum of the Centinuous rating of all the equipment connected to the supply Drystem
is known as connected woad.
Maximum demand:-
The greatest g all short time interval averaged, during a given period on the power station is Called the maximum demand. If is the maximum demand which determines the size and the cost of the installation.
Demand factor :-
The ratio of actual max demand on the
System to the total rated load commented to the system is called the demand factor. It is always less than unity.

$$
\text { demand factor }=\frac{\text { Maximum demand }}{\text { Connected load. }}
$$

Average Load:-
The aurage load on the power station is the aurage or load occuring at various events.

Load factor:-
Coad factor is defined as the ratio average load to the man- demand dur a certain period of time such as day or month or year is called a load factor

Coal factor $=\frac{\text { Average demand }}{\text { Man demand }}$
(1) inversity factor:-

The ratio of sum of the individuals maximum. Idemands of the consumers Supplied by it to the maximum deme If the power station is called the
(1inesity factor=
Sum of the in dividual m domain

Man demand power 8

A power station has to meet the following damar
Group A: 200 kw b/w 8 AM \& 6 PM
Group B: 100 kw b/w 6 AM \& 10 AM
Group C: 50 kW b/w 6 AM \& 10 AM
Group D: 100 kw b/w 10 AM \& 6 PM \& then b/wo

$$
\text { WPM \& } 6 A M
$$

Plot the daily load curve $\$$ determine diversity factor, unite generated/day \& load factor.

$$
\begin{aligned}
& 200 \mathrm{~kW}-8 A M-6 P M \\
& 100 \mathrm{~kW}-6 A M-10 \mathrm{AM} \\
& 50 \mathrm{~kW}-6 A M-10 \mathrm{AM} \\
& 100 \mathrm{~kW} \mathrm{~F}-10 \mathrm{AM}-6 \mathrm{FM} \\
& 6 \mathrm{PM}-6 \mathrm{AM}
\end{aligned}
$$

Tipein load
hrs
in lew

hoad duration Curue:-
load Jime
$\operatorname{im}_{k=0}$ inhrs
350 kw 2 hors
3cokw shoss.
150 kW 2 hrs
100 lew 12 hass.

$$
\begin{aligned}
& \text { Maxelemand }=350 \mathrm{kw} \\
& \text { Load factor }=\frac{\text { Average demand }}{\text { Max demand }}
\end{aligned}
$$

$$
\text { Average demand }=\frac{\text { No. } q_{M}^{m i n} \operatorname{men}_{\text {numerator }} \mid \text { day }}{\text { time }}
$$

$$
\text { No qunit generator } / d a y=\begin{array}{r}
(350 \times 2)+(300 \times 8)+(150 \times 2) \\
(100 \times 12)
\end{array}
$$

$$
(100 \times 12)
$$

$$
=700+24.00+300+1200
$$

$$
\begin{aligned}
\text { No. qunit geveratorper } & =4600 \mathrm{kw} \mid \\
\text { Average demand } & =\frac{4600}{24} \\
& =191.66 \mathrm{kw} \\
A \cdot D & =191.6 \mathrm{kw}
\end{aligned}
$$

$$
\begin{aligned}
& \text { load factor }=\frac{191.6}{350} \\
& \text { load factor }=0.54
\end{aligned}
$$

$$
\begin{aligned}
\text { Diversity factor } & =\frac{\text { Sum of individual max }- \text { demand }}{\text { Max demand } f \text { power Station }} \\
& =\frac{450}{350}
\end{aligned}
$$

Diversity factor $=1.28$
W) A diesel station supplies the following loads various consumers
Industrial consumer $=1500 \mathrm{kw}$
Commerical establishment $=750 \mathrm{~kW}$
Domestic power $=100 \mathrm{~km}$
Domestic light $=450 \mathrm{~km}$
I) the max demand on the station is 280 and the number of kwh generated per is 45×10^{6}, determine

1) diversity factors
2) Annual load factors.
sol
3)

Diversity factor $=\frac{\text { Sum of the ondirebele }}{\text { mane-den }}$ Man demand of
Diversity factor $=\frac{1500+750+100+450}{2500}$
Diversity factor $=1.12$
2) Ameral load factor $=$ No of that gherat.

$$
\begin{aligned}
& \text { 12-2 unitgen | Hear }=\frac{0.4 \times 100 \times 24 \times 31 / 5}{25} \\
&=3.504 \times 10 \\
&=\frac{45 \times 10^{6}}{2500 \times 24 \times 365} \\
& \text { in }
\end{aligned}
$$

QThe Max demand on a power station is $10^{\circ} \mathrm{Mm}$.
(I) the annual load factor is 40%, calculate the total energy generated in a year:

$$
\begin{aligned}
& \text { Man demand }=100 \mathrm{MW} \\
& \text { Annual load factor }=40 \% \\
&=0.4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Annual load factor }=\frac{\text { unit gen } / \text { year }}{M \cdot D \times 24 \times 365} \\
& \text { unit gen year }=0.4 \times 100 \times 8760 \\
& \text { nog unit gm/ year }=3.504 \times 10^{5} \mathrm{mp} / \mathrm{r}
\end{aligned}
$$

(1) A Generating station supplies the following
loads.
$15000 \mathrm{ko}, 12000 \mathrm{kw}, 8500 \mathrm{klo}, 6000 \mathrm{kw}$ 650 km
The station has a max demand of 220 The annual load factor of the station is 48%. Calculate
i) the no. g units supplied
ii) the diversity factor
iii) the clemand factor

Sol Max demand $=22000 \mathrm{kw}$
Annual) lond factor $=48 \%$

$$
\begin{aligned}
& 0.48=\frac{A \cdot D}{M \cdot D} \\
& 0.48=\frac{\text { unit gen year }}{M \cdot D \times 24 \times 365}
\end{aligned}
$$

i) unit gen \mid Year $=0.48 \times 22000 \times 24 \times 365$

$$
\text { whit gen year }=9.25 \times 10^{7} \mathrm{kwhr}
$$

$$
\begin{aligned}
& \text { ii) Divinity factor }=\text { Sumgte individual man de } \\
& \text { Man demand of power sta } \\
&=\frac{15000+12000+8500+6000}{22000}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{41950}{22000} \\
& \text { Dimity }=1.90 \\
& \text { factor }
\end{aligned}
$$

$$
\text { iii) Demand factor } \begin{aligned}
& =\frac{\text { Man demand }}{\text { Connected load }} . \\
& =\frac{22000}{41950}
\end{aligned}
$$

Demand factor: $=0.52$
I A daily demand of three Consumer are given
below
lime
12 midnight to $8 A Y$
8 AM to 2 PH

Consumer	Consumer 2	C_{3}
600 wW	200 W	-
2000 W	1000 W	200 W
800 mW	-	1200 W
-	200 W	200 W

Draw the Coed Curve, load duration curve, man demand of an individual consumer, load factor of indsuidual consumer s dinurity. factor

Time
has.
42 MN to 8 Am
SAM to $2 P M$
2PM to 4 PM
4 PN to 10 PM
IOPM to MH2 Midnight 400 W
Load Curve:
load duration cure.

$$
\begin{aligned}
& 2400 \mathrm{w}-2 \mathrm{hrs} \\
& 800 \mathrm{w}-12 \mathrm{hrs} \\
& 400 \mathrm{~h}-2 \mathrm{hrs} \\
& 200 \mathrm{w}
\end{aligned}
$$

Max demand of Conner $1=800 \mathrm{w}$
Man demand ga_{g} Consume 2 $=1000 \mathrm{~W}$
Max demand of Consumer $3=1200 \mathrm{w}$
Load factor $=\frac{\text { Average demand }}{M . D}$

$$
A \cdot D=\frac{\text { No. quit of generator per day }}{\infty 2 y}
$$

$$
\text { Load factor for Consumer } 1=\frac{(600 \times 6)+(200 \times 2)+(800 \times 6}{800 \times 24}
$$

Load faclorfor Consumer $1=0.45$
load factor for Consumers $=\frac{(200 \times 8)+(1000 \times 2)+(200 \times 2}{1000 \times 24}$
load factor for Consumer $2=0166$

$$
\text { Plant Capacity factor }=\frac{\text { Actual energy produced }}{\text { Max energy that could have }} \text { been produced }
$$

$$
=\frac{\text { Average demand }}{\text { plant Capacity }}
$$

$$
\text { Pederve Capacity } \left.=\begin{array}{c}
\text { Installed capacity } \\
\text { plant capacity }
\end{array}\right\} \text { - Max } \text { demand }
$$

$$
\text { Plant wage factor }=\frac{\text { Station output }}{\text { Plant Capacity } \times \text { No. o hero is use }}
$$

Q A Generating Station max demand of 25 MW, a load factor of 60%, A plant capacity factor of 50% p plant use factor of 72%. Find the reserved capacity of plant, the dailycherqy use, the max energy that could be prouduced. that plant novelly loaded.
bol

$$
\begin{align*}
& \text { Reserve capacity }=\text { plant Capacity. Max demand } \tag{1}\\
& =\text { plant cap }-25 \mathrm{MW}
\end{align*}
$$

$$
\begin{aligned}
& \text { Coal factor }=\frac{\text { Average demand }}{M \cdot D} \\
& \begin{aligned}
\text { Average demand } & =\text { Loaddertor } \times M \cdot D \\
& =250
\end{aligned}
\end{aligned}
$$

$$
=0.6 \times 25=15 \mathrm{MW}
$$

$$
\text { Plant capacity }=\frac{\text { Average demand }}{\text { Plant capacity factor }}
$$

$$
=\frac{15}{0.5}
$$

$$
\text { plant Capacity }=30 \mathrm{mw}
$$

$$
\begin{aligned}
\text { Reserve Capacity } & =30-25 \\
\text { Reserve capacity } & =5 \mathrm{~mW}
\end{aligned}
$$

Dailyenerqy produced:-
Daily energy produced = No. o units gan day

$$
\begin{aligned}
& \text { Average demand }=\frac{N(0 . g \text { units gen } \mid \text { den }}{2 y} \\
& 15 \times 24=N 0 . g \text { unite gen } \mid \text { day } \\
& 260 \mathrm{MW} \text { hr }=\text { No. g units qen } \mid \text { allay }
\end{aligned}
$$

Plant Capacity factor. $\frac{\text { Actual energy produced }}{\text { Man- energy that cont t }}$
Man-lnergy that could ha produced
Man. leary that could $\}=$ Actual energy prod have been prodivadho

Resorues:-

1. firm power \Rightarrow emerginey
2. Dump power /(hodo dectrir plinits
3. Sbill power $\stackrel{\text { ngam }}{\longrightarrow}$ flen d

F 4. Spinning Reserve $\rightarrow 7 h-70-\pi L$.
5. Snstalled Capacity
6. Cold Recerue \rightarrow noei in uparation but anait
\& 7 . Hot rewerve \rightarrow in operalion not-anaible? sume
$\frac{\text { Looad fore cabling: - }}{\longrightarrow}$
\rightarrow Prediel-

- Predicting the future demand gonemabon
- generahan
- for proper financing
- TSD.

Reserves:-
c. Spinning Reserve:-

Spinning reserve is that generating capacity which is connected to the bus and is ready to tale load.
2. Installed capacity:-

Installed reserve is that generating capacity which is the power intended to be always available Installed rewire can be kept low by the achievement o good diursity fallor
(3) Spinning lerorucs:to
3. Cold reserve:-

Cold revenue is that revolve generating capacity which is available for price but is not on operation.
4. Hot resumes:-

Hot reserve is that resume generating. Capacity which is in operation bul is not in service
5. Firm power i- Af is the power intended to be alwody available (cutin under energenay lendie
6. Dump power:-
7. Spill power:-

Load forecasting:-
The load an their Systems should be estimated in advance. This estimation in advance is lenown us load forecasting.
Classification of loud forecasting :-
Forecast Lead Time Application
 oral time sew evaluation

Short term Half an how to a Allocation II spic
few hows revere un)
few hows revorne, unit commitment, mai - ance schedulive

Medium term few daylto a few planning or season
cells peat winter, sums
longtorm few months to a foplan the growth
few years the generation capo
deed for coed forecasting: -

* Jo meet out the future clemand
* long-term forecasting is required for prepar maintenance schedule of the generating un planning future expareson. of the by term.
* For day-to-day operation, shortterm lo forecasting is needed in order to commits enough generating capacity Morgvisit: wpw.LearnEngneentorin the fore

Onerriew of Control of poicer system:-
Power Quality
Constancy of freq
Cartancy of voltage.
luel oretiability.
tachor affeching powes quality

- bwitchirg sunge.
- lighfring.
\rightarrow fliclleering g voitage
wad capocitance
- Glectrovid interferences.
- weldiry machive

3 main Control

- Plantileuel control
- System genuation control
- Trarsmiscion control
- Plant-lauel centril

1) Prime mover control
2) Automatic voltage conhort (AVR)

UNIT - II REAL POWER - FREQUENCY

Modeling of speed gavering m

Modelling if speed gouring mechanism

* When the freq decreases, raise command is given to the speed changes (dow nard movement)
* As the speed changer moves 1 A move ψ_{4}, B_{4} sC T
* When B山, fly ball pred governed expands.
* As $C \uparrow, D \uparrow$ \& $E \downarrow$
when $D \uparrow$, the pilot or piston value moues up as a result, the high pressure $0 i 1$ flowers to the pilot value opening \& pushes the main piston
* As a result EJ \& hence more amount of stream is infected into the turbine option
* The vice-verse, happen when frequency inerearce

Construchicm
(1) Speed changer
(2) flybull speed govemor
(8) then di Hydraulic Amplifier
(4) Linleage mechanism
(1) Speed changer:- Af is used to change the speed
as high or low which is depend as high or low which is depends
on the frequency. on the frequency.
(2) Thy ball speed governer:-

Yalcing cexplace transform of (1), (2) (3) \&

$$
\begin{align*}
& \Delta x_{A}(s)=k_{C} \Delta P_{C}(s) \rightarrow(s) \\
& \Delta x_{C}(s)=k_{s} \Delta F(s)-k_{2} \Delta P_{C}(s) \rightarrow \tag{b}\\
& \Delta x_{D}(s)=k_{3} \Delta x_{C}(s)+k_{4} \Delta x_{E}(s) \tag{7}\\
& \Delta x_{E}(s)=k_{5}\left(-\frac{\Delta x_{\Delta}(s)}{s}\right)>(8)
\end{align*}
$$

Sub (7) in (8)

$$
\begin{aligned}
& \Delta x_{F}(s)=\frac{-k_{5}}{s}\left\{k_{3} \Delta x_{c}(s)+k_{4} \Delta x_{E}(s)\right\} \\
& \Delta x_{E}(s)+\frac{k_{4} k_{5}}{s} \Delta x_{E}(s)=\frac{-k_{3} k_{5}}{s} \Delta x_{c}(s) \\
& \Delta x_{E} k_{s}\left\{1+\frac{k_{4} k 5}{s}\right\}=-\frac{k k_{3} k_{5}}{s} \Delta x_{c}(s) \rightarrow G
\end{aligned}
$$

Sub(6) in (9)

$$
\begin{aligned}
& \Delta x_{F}(s)\left\{1+\frac{k_{4} k_{5}}{s}\right\}=\frac{-k_{3} k_{5}}{s}\left\{k_{1} \Delta F(s)-k_{2} \Delta P_{c}(\right. \\
& \begin{aligned}
& \Delta x_{E}(s)\left\{1+\frac{k_{4} k_{5}}{s}\right\}=\frac{k_{2} k_{3} k_{5}}{s} \Delta P_{c}(s)-\frac{k_{1} k_{3} k_{5}}{s} \Delta \\
&=\frac{k_{3} k_{5}}{s}\left\{k_{2} \Delta P_{c}(s)-k_{1} \Delta F(s)\right\} \\
& \Delta x_{E}(s)=\frac{k_{3} k_{5}}{s}\left\{k_{2} \Delta P_{c}(s)-k_{1} s F(s)\right\} \\
& \frac{s+k_{4} k_{5}}{s}
\end{aligned}
\end{aligned}
$$

Let:

$$
\frac{k_{2} k_{3}}{k_{4}}=k_{4} \rightarrow \text { Gain of speed governor }
$$

$$
k_{2} / k_{1}=R-\text { speed regulation. }
$$

${ }^{\text {Wy ks }}$ - Vg - Time corstent

$$
\Delta r_{E}(s)=\frac{k_{a}\left\{P_{c}(s)-\eta_{R} \Delta L(s)\right\}}{(1 k+s+g)}
$$

$$
\begin{aligned}
& \therefore b y k_{5} \left\lvert\, \Delta x_{E}(s)=\frac{k_{3}\left\{k_{2} \Delta P_{C}(s)-k_{1} \Delta F(s)\right\}}{k_{4}+s \mid k_{5}}\right. \\
& \therefore \text { by } k, \\
& \Delta x_{E}(s)=\frac{\frac{k_{2} k_{3}}{k_{4}} \Delta P_{2}(s)-\frac{k_{1} k_{3}}{k_{4}} \Delta F(s)}{1+x / k_{4} k_{5}} \\
& x \&: k_{2} \\
& \Delta x_{E}(s)=\frac{\frac{k_{2} k_{3}}{k_{4}} \Delta P(s)-\frac{k_{1} k_{2} k_{3}}{k_{4} k_{2}} \Delta F(s)}{1+s / k_{4} k_{5}}
\end{aligned}
$$

$\Delta x d d>$ Steam value setting
$\Delta P_{T}(s) \rightarrow$ Turbine prow er of
$\Delta P_{G}(s)$ - Generator power op
k_{T} - Turbine Gain constant.
T_{T} - Time Constant qturbive
Modelling γ Generator / Power systema/wad
A change in increament in power $\Delta P_{G}-\Delta P_{D}$, depends on a factor
i) rate g change of $k E\left(\frac{d}{d t}\left(\omega_{k E}\right)\right)$
ii) change of demand wot frequency $\left(\frac{\partial P_{D}}{\partial t}\right)$ we lenow that ICE is directly proportional vo rotor power

$$
\begin{align*}
& \omega_{\text {ce }} \propto P_{r} \\
& \omega_{\text {ice }}=H_{r} P_{r} \tag{1}
\end{align*}
$$

Also

$$
\begin{aligned}
& \left.\omega_{k \in \alpha}^{0} \alpha f^{0}\right)^{2} \\
& \omega_{k i} \propto\left(f^{0}+\Delta\right)^{2} \\
& \frac{\omega_{k E}}{\omega_{k E}^{0}} \propto\left(\frac{f^{0}+\Delta f}{f^{0}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\omega_{k E} & \propto \omega_{k E}^{0}\left(1+\frac{\Delta f}{f^{0}}\right)^{2} \\
\omega_{k E} & \propto \omega_{k E}^{0}\left(1+\left(\frac{\Delta f}{f^{0}}\right)^{2}+\frac{2 \Delta f}{f^{0}}\right) \\
& =\omega_{k E}^{0}\left(1+\frac{2 \Delta f}{f^{0}}\right) \\
\frac{d \omega_{k c}}{d t} & =\omega_{k E}^{0}\left(0+\frac{2}{f^{0}} \cdot \frac{d \Delta f}{d t}\right) \\
& =\frac{2 \omega_{k e}^{0}}{f^{0}} \cdot \frac{d}{d t} \Delta f \\
\frac{d \omega_{k E}}{d t} & \left.=\frac{2 H P_{r}}{f^{0}} \frac{d}{d t} \Delta f\right) \\
\frac{\partial \cdot P_{D}}{\Delta f} & =B \Delta f_{f} \\
\Delta P_{q}-\Delta P_{D} & =\frac{2 H P_{r}}{f_{0}} \frac{d(\Delta f)}{d t}+B \Delta f
\end{aligned}
$$

\therefore by Br

$$
\underset{\left(\rho_{i}\right)}{\Delta P_{q}}-\Delta P_{D}=\frac{2 H}{f_{0}} \frac{d}{\left(p_{u}\right)}(\Delta t)+B \Delta f
$$

- Static Analynis

Ipramic Analysis ii) incontrolled. 1
i) Stati' Analysix of Singharea system: Cunlontrolled Co

Since it is a static analysis

$$
\begin{aligned}
\frac{\Delta F(s)}{-\Delta P_{D}(s)} & =\frac{G(s)}{1+G(s) K(s)} \\
& =\frac{\frac{k_{p s}}{1+s^{T} p s}}{1+\left(\frac{k_{p s}}{1+s^{T} s s}\right)\left(\frac{k y}{1+s^{T} q}\right)\left(\frac{k_{T}}{1+s_{4}}\right)(1 / 1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cet } k_{y}=k_{T}=1 \\
& \frac{\Delta F(s)}{-\Delta P_{P}(s)}=\frac{\text { lCPS }}{\frac{\left(1+s T_{P S}\right)\left(1+S T_{7}\right)\left(1+S T_{g}\right) R+\text { lCPS }}{\left(+s T_{g}\right)\left(1+S T_{F}\right) R}}
\end{aligned}
$$

for slep i|P, $g P(s)=\Delta P D P \cdot s$

$$
\begin{aligned}
& \Delta f_{\text {static }}=L t s F(s) \\
& =L_{s \rightarrow 0} \frac{s<x p s}{\frac{c_{p s}}{(1+s T g)\left(1+s T_{T}\right)(1+s T p s) R+p_{p s}}} x-\frac{\Delta p}{\left(1+s 7_{T}\right)\left(1+s T_{p}\right) R} \\
& \Delta E_{\text {stahic }}=\frac{-K P S \Delta P_{D}}{R+k P S} \\
& \Delta F_{\text {Stahec }}=\frac{-1 B_{B} \cdot \Delta P_{D}}{1+1 / B R}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\alpha t}{s \rightarrow 0} \leqslant \frac{K_{P s}}{\frac{\left(1+s T_{q}\right)\left(1+s T_{T}\right)\left(1+s T_{P s}\right) R+K_{p s}}{R}} \times \frac{\Delta P C}{s} \\
& =\frac{k_{P_{d}} \cdot \Delta P_{C}}{\frac{R+k_{P S}}{R}}=\frac{k_{P_{S}} \cdot \Delta P_{S}}{1+\frac{k_{P S}}{R}} \\
& \Delta \text { Fistatic }=\frac{1 / B \Delta P_{C}}{1+1 / B R} \\
& =\frac{\Delta P C}{B+1 / R} \\
& B \ll 1 / R \\
& \Delta F_{\text {static }}=R \cdot \Delta P_{C}
\end{aligned}
$$

Dynamic Analysis of Single area bytom for uncontrolled case

$$
\triangle P_{C}=0
$$

ΔI

$$
k_{g}=k_{T}=1
$$

$$
T_{g}=T_{T}=0
$$

$$
\begin{aligned}
& \frac{\Delta F(s)}{-\Delta P_{D}(s)}=\frac{\frac{K_{P S}}{1+\Delta T_{P S}}}{1+\left[\frac{K_{P S}}{1+s T_{P S}}\right][1 / R]} \\
& -\frac{\Delta F(s)}{\triangle P D(s)}=\frac{K_{P S}}{\frac{\left(1+s T_{P S}\right) R+K_{P S}}{R}} \frac{\Delta B p}{D} \\
& =\frac{K P S}{(\text { 1tsTPS })+\frac{k P S}{R}} \\
& \Delta F(s)=-\frac{1(P S}{\left(1+S^{T P S}\right)+\frac{\text { kPS }}{R}} \frac{\Delta P_{D}}{s} \\
& \Delta F(S)=\frac{K_{P S} \Delta P_{D}}{\lambda\left(\left(1+\frac{C C P S}{R}\right)+S T P_{S}\right)} \\
& =-\frac{K_{P S} \cdot \Delta D_{D} / T_{D S}}{\left.l\left(\frac{1+\frac{k p s}{T p}}{T_{\rho S}}\right)+s\right)}
\end{aligned}
$$

$$
\begin{align*}
& \Delta F(s)=\frac{-k_{P S} \cdot \Delta P_{D} / T_{P S}}{s\left(s+\frac{R+k_{P S}}{R_{T} S}\right)} \\
& \Delta f(s)=\left(-\frac{K_{P S}, \Delta P_{D}}{T_{P S}}\right) \cdot \frac{1}{S\left(S+\frac{R+K_{P S}}{R_{P S}}\right)} \\
& =\left(\frac{K_{P S} \triangle P_{D}}{T_{P S}}\right) \cdot \frac{A}{s}+\frac{B}{S+\frac{R+K_{P S}}{R_{T P S}}} \tag{1}\\
& \frac{A}{s}+\frac{B}{s+\frac{R+K p s}{R_{T P S}}=A\left(s+\frac{R+K P S}{R T p s}\right)+B s=1.1010101}=(\\
& \text { Put } s=0, \quad A\left(\frac{R+k P S}{\text { RTpS }}\right)=1 \\
& A=\frac{R_{\text {TPS }}}{R+\text { EPS }^{\prime}} \\
& \text { Put } s=-\left(\frac{\text { Rakps }}{\text { RTps }}\right) \\
& B\left(-\left(\frac{R+K_{P S}}{\text { RTPS }}\right)\right)=1 \\
& \begin{array}{l}
\left.B=-\frac{R T_{P S}}{R+K_{P S}} \right\rvert\, \\
=\frac{-K_{P P} \Delta P_{D}}{T_{P S}}\left\{\frac{R T_{P S}}{\left(R+K_{P S}\right) s}-\frac{R T_{P S}}{\left(R+K_{P S}\right)\left(S+\frac{R+k_{P S}}{R T_{P S}}\right)}\right.
\end{array} \\
& \Delta f(s)=-\frac{K_{p s} \Delta P_{D} R}{\left(R+K_{p s}\right)}\left\{1 / s-\frac{1}{s+\left(\frac{R+K_{q s}}{R_{q S}}\right)}\right\}
\end{align*}
$$

IT:-

$$
\Delta f=-\frac{K_{P S S} R_{k} \Delta P_{D}}{\left(R+R_{P S}\right)}\left\{1-e^{-\left(\frac{R+K P S}{R T_{P S}}\right) t}\right\}
$$

Dynamic analysis of sos for Controlled care

$$
\begin{aligned}
& =\frac{k p s /\left(1+S T_{p S}\right)}{\frac{\left(1+S T_{p S}\right) R+R_{P S}}{\left(1+S T_{p S}\right)}} \\
& =\frac{k p s}{(1+s T p s) R+k p s} \\
& \Delta F(s)=\frac{k p s}{\frac{\left(1+s T_{p s}\right) R+k p s}{R}} \Delta P_{c}(s) \\
& =\frac{K p s}{\left(1+\frac{K p s}{R}\right)+S T_{p s}} \Delta P_{C}(s) \\
& \Delta F(B)=\frac{\text { Kps }}{\left(1+\frac{\text { Eps }}{R}\right)+\operatorname{sips}} \cdot \frac{\Delta P_{c}}{\Omega} \\
& =\frac{K_{p s} \Delta P C / T_{P S}}{s\left(\frac{1+\frac{K_{P S}}{R}}{T_{P S}}+s\right)} \\
& =\frac{K_{P C} \Delta P_{C} / T_{P S}}{\Delta\left(\frac{\left.R+\frac{K_{P S}}{R T_{P S}}+s\right)}{R}\right.} \\
& =\frac{k_{p s} \Delta P_{C}}{T_{p S}}\left(\frac{A}{s}+\frac{B}{\frac{s+R_{p s}+k_{p s}}{R T_{p s}}}\right) \\
& \frac{A}{S}+\frac{B}{S+\frac{R_{P S}+k_{p S}}{R_{T S}}}=A\left(S+\frac{R_{p s}+k_{p s}}{R_{T P S}}\right)+B(S)=1
\end{aligned}
$$

Put. $\rho=0$

$$
A\left(\frac{R+K_{P S}}{R T P S}\right)=1, \quad A=\frac{R T_{P S}}{R+i_{P S}}
$$

31 Intergge controler added to Load frequency control of SAS (Controlled Care)

Since two paths are parallel os

$$
\begin{aligned}
& \frac{\Delta F(s)}{-\Delta P_{D}}=\frac{G(s)}{1+H(s) G(s)} \\
& =\frac{\frac{k_{P S}}{1+\Delta T_{P S}}}{1+\frac{K_{P}}{1+\Delta T_{P S}} \cdot \frac{k_{q} k_{T}}{\left(1+\Delta T_{q}\right)\left(1+s T_{T}\right)} \times\left(\frac{k_{i}}{s}+\frac{1}{P}\right)} \\
& F=\frac{-\frac{k P s}{1+\Delta T_{P S}}}{\frac{\left(1+s T_{P s}\right)\left(1+s T_{q}\right)\left(1+s T_{T}\right)(s P)+}{\left(1+s T_{P s} k k_{q} k_{T}\left(\frac{\left.k_{P} R+s\right)}{b R}\right)\left(1+s T_{q}\right)\left(1+s T_{T}\right)\right.} \times \frac{\Delta P D}{s}}(1 s
\end{aligned}
$$

$$
\begin{aligned}
& \Delta F=\operatorname{Lt}_{s \rightarrow 0} s \Delta F(s) \\
& \Delta F=L_{s \rightarrow 0}^{L t} s \cdot \frac{-k_{p s} \cdot \Delta P_{D}\left(1+s T_{T}\right)\left(1+s T_{p}\right) \cdot \Delta s R}{\left(1+s T_{p s}\right)\left(1+s T_{q}\right)\left(1+\Delta T_{T}\right) \Delta R+k_{p s s} k_{g} k_{7}\left(k_{i}\right.} \\
& \Delta F_{\text {static }}=0
\end{aligned}
$$

Control case \rightarrow Modelling g gen, twosome s in

Load frequmey Control g two area System \quad (uncontrolled (uncontrolled) 6

I- Modelling of the governor:-

* Assume the system work under steady Condition
* under steady state condition
i) Linkage mechanism

2) Generator op P P is constant
3) Turbine speed is constant
a) Steam value is opened for a define magnitude

* under Steady state condition, let
$f^{0} \rightarrow$ be Aleady State frequmel
$P_{4}^{0} \rightarrow$ Steady State generator power vo $/ p$.
$x_{E}^{0} \rightarrow$ Steam wall sitting
Movement $f A\left(\Delta x_{\Delta}\right)$
When a small rive command is given to a spec Changes, the point B move doonnoard

$$
\frac{\Delta x_{A} \propto \Delta P_{C}}{\Delta X_{A}=k_{C} \Delta P_{C}}
$$

Movement oC:
Movement of C is Contributes by 2 fachis
(1) The $1^{\text {st }}$ factor is the movement $\% A\left(\Delta x_{A} \cdot \alpha \Delta P C\right.$ the-vesign in eq due to the upioand movement of c
(2) The $2^{\text {nd }}$ factor due to the operatic expansis of loped ball gowning which is given
(3) The net movement

$$
\begin{equation*}
\Delta x_{c}=k_{c} \Delta f-k_{2} \Delta P_{c} \tag{2}
\end{equation*}
$$

(4) Movement of D

Movement of D is contributed by both the moverrent $c\left(\Delta x_{c}\right)$ \& movement of $(\Delta x$ Hence.

$$
\begin{equation*}
\Delta x_{D}=k_{3} \Delta x_{C}+k_{4} \Delta x_{E} \tag{B}
\end{equation*}
$$

(3) Movement ${ }^{\text {of }} \mathrm{E}$:-

The movement $q E$ in contribul by the amount y high presumes ail flown threegh the main piston

Hene

$$
\Delta x_{E}=k_{5} \int_{0}^{k}-\Delta x_{p}
$$

Taking laplace transform of (1), (1), (8)

$$
\begin{align*}
& \Delta x_{A}(s)=k_{C} \Delta P_{C}(s) \rightarrow(s) \\
& \Delta x_{C}(s)=k_{3} \Delta F(s)-k_{2} \Delta P_{C}(s) \rightarrow(6) \tag{6}\\
& \Delta x_{D}(s)=k_{3} \Delta x_{C}(s)+k_{4} \Delta x_{E}(s) \rightarrow(7) \tag{7}\\
& \Delta x_{E}(s)=k_{5}-\frac{\Delta x_{D}(s)}{s} \rightarrow \text { (8) }
\end{align*}
$$

Sub-(7) in (8)

$$
\begin{aligned}
& \Delta x_{F}(s)=-\frac{k_{5}}{s}\left\{k_{3} \Delta x_{c}(s)+k_{4} \Delta x_{E}(s)\right\} \\
& \Delta x_{E}(s)+\frac{k_{4} k_{5}}{s} \Delta x_{E}(s)=-\frac{k_{3} k_{5}}{s} \Delta x_{c}(s) \\
& \Delta x_{E}(s)\left\{1+\frac{k_{4} k_{5}}{s}\right\}=-\frac{k_{3} k_{5}}{s} \Delta x_{c}(s) \\
& \text { sub(b) in (\$) }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta x_{F}(s)\left\{1+\frac{k_{4} k_{5}}{s}\right\}=-\frac{k_{3} k_{5}}{s}\left\{k_{1} \Delta F(s)-k_{2}\right. \\
& \Delta x_{E}(s)\left\{1+\frac{k_{4} k_{5}}{s}\right\}=\frac{k_{2} k_{3} k_{5}}{s} \Delta P_{c}(s)-s \\
& =\frac{k_{3} k_{5}}{s}\left\{k_{2} \Delta p_{1}(s)-k_{1} \perp\right. \\
& \Delta x_{E}(s)=\frac{b_{3} k_{5}}{s}\left\{\frac{k_{2} \Delta P_{c}(s)-k_{1} s}{s+k_{i} k_{5}}\right.
\end{aligned}
$$

$$
\left.\div b y, k_{5}, \Delta x_{E}(s)=\frac{k_{3}\left\{k_{2} \Delta P_{c}(s)-k_{1} \Delta F(s)\right\}}{k_{4}+s \mid k_{5}}\right\}
$$

$\therefore b_{1} k_{4}$

$$
\Delta x_{E}(s)=\frac{\frac{k_{2} k_{3}}{k_{4}} \Delta P C(s)-\frac{k_{1} k_{3}}{k_{4}} \Delta F(s)}{1+s / k_{4} k_{5}}
$$

a Mult p dinid by K_{2}

$$
\begin{aligned}
& \Delta x_{E}(s)=\frac{\frac{k_{2} k_{3}}{k_{4}}, \Delta p_{1}(s)-\frac{k_{1} k_{2} k_{3}}{k_{4} k_{2}} \Delta F(s)}{1+\lambda / k_{4} k_{5}} \\
& =\frac{\frac{k_{3} k_{2}}{k_{4}}\left\{\Delta P_{4}(s)-\frac{k_{1}}{k_{2}} \Delta F(s)\right\}}{1+s \mid k_{4} k_{5}}
\end{aligned}
$$

Let
$\frac{k_{2} k_{3}}{k_{4}}=k_{4} \rightarrow$ Gain of speed governer
$k_{1} K_{1}=l \rightarrow$ lopeed regulation $1 k_{c_{4} k_{5}}-T_{g}$-Time corstent

$$
\Delta x_{E_{0}}(s)=\frac{k_{q_{0}}\left(P_{c}(s)-1 / R_{4} \Delta F_{0}(s)\right\}}{\left(1+s T g_{a}\right)}
$$

IIIly for control areaII

$$
\Delta X_{E 1}(s)=\frac{K_{c_{1}}\left(P c_{1}(s)-1 / R_{f} \Delta F_{1}(s)\right)}{\left(1+s T_{g_{1}}\right)}
$$

Modelling turbine

The dynamic response of the turbine upon two factor

1) Amount of steam prevent bff steamed. Controller d \& kP turbine
ii) amount of Steam is send to reheat

$$
\begin{aligned}
& \Delta x_{E}(s)-\frac{K_{T}}{1+S T_{T}} \Delta P_{T}(s)=\Delta P_{S} \\
& \Delta P_{T_{A}}(s)=\left(\frac{K_{T_{B}}}{1+S_{T}}\right) \Delta x_{E_{E}}(s)
\end{aligned}
$$

$\Delta x_{0}(s)$ - Steam value Setting
$\Delta P_{T}(s)$ - Turbme power of
$\Delta P_{u}(s)$ - Generator power of p
K_{T} - Turbine Gain constant
T_{T} - Time constant of turbtre
111 y for Controller (2)

$$
\Delta P_{T_{F}}(s)=\left(\frac{k T_{I}}{\left(1+s T_{1}\right)} \Delta X_{E_{F}}(s)\right)
$$

Modelling of Generator Power System load
A change in increment in power $\triangle P_{C}-\triangle P_{D}$, depends on 2 factor
i) rate of change of $k_{E}\left(\frac{d}{a t t}\left(\omega_{E}\right)\right)$
ii) change q demand wort frequency $\left(\frac{\partial P_{D}}{\partial f}\right)$ we know that K_{E} is directly proporkiemal to rotor power

$$
\frac{\omega_{k e} \alpha P_{r}}{\omega_{k e}=H \cdot P_{r}}
$$

Also, $\omega_{K E}^{0} \propto\left(b^{0}\right)^{2}$

$$
\begin{aligned}
& \omega_{R E} \propto\left(f^{0}+\Delta \gamma\right)^{2} \\
& \frac{\omega k_{E}}{\omega_{k^{\theta} E}^{\theta^{*}}} \propto\left(f^{0} \frac{\Delta t}{f^{0}}\right)^{2} \\
& \omega_{K E-} \propto \omega_{\text {ME }}^{\theta}\left(1+\frac{\Delta 1}{f^{\circ}}\right)^{2} \\
& w_{L E} \quad \alpha \omega_{\text {tEE }}^{0}\left(1+\left(\frac{\Delta f}{6^{\circ}}\right)^{2}+\frac{2 s f}{b^{2}}\right) \\
& =\omega_{k \in}^{0}\left(\frac{1+\frac{\alpha g f}{\gamma^{0}}}{2}\right) \\
& \frac{d \omega K E}{d t}=\text { OlE }_{\circ}^{\circ}\left(0+\frac{2}{b^{0}}+\frac{d \Delta t}{d t}\right) \\
& =\frac{2 \omega_{M e}^{0}}{f^{0}} \cdot \frac{d}{d t} \Delta t \\
& \frac{d \omega k E}{\partial t}=\frac{2+P_{r}}{t_{0}} \frac{d}{d t} \Delta f
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial P_{D}}{\Delta f}=B \Delta f \\
& \Delta P_{q}-\Delta P_{D}=\frac{2 H P_{r}}{f_{0}} \frac{d(\Delta f)}{d t}+B \Delta f \\
& \therefore b y P_{r} \\
& \Delta P_{q}-\Delta P_{D}=\frac{2 H}{f^{0}} \frac{d}{d t}(\Delta f)+B \Delta f
\end{aligned}
$$

Taking LT

$$
\begin{aligned}
\Delta P_{q}(s)-\Delta P_{D}(s) & =\frac{2 H s}{f^{\circ}} \Delta f(s)+B \Delta F l \\
& =F(s)\left\{B+\frac{\Delta 2 H}{f^{\circ}}\right\} \\
\frac{\Delta F(s)}{\Delta P_{q}(6)-\Delta P_{D}(s)} & =\frac{1}{B+\frac{s 2 H}{f^{\circ}}} \\
\frac{\Delta F(s)-\Delta P_{q}(s)-\Delta P_{D}(s)}{\Delta P_{q}} & =\frac{1 / B}{\frac{2 H(s)}{f 0}}
\end{aligned}
$$

inly for controller (D)

$$
\frac{A F_{1}(s)}{\Delta P_{G_{1}}(s)-\Delta P_{P_{1}}(t)}=\frac{1 / B_{1}}{\frac{2 H_{1}(s)}{f_{i}}}
$$

Modelling of Tre-line:-

Conseder a 2 lontrol area Connected by Tieline as shown.
The amount olectrical powar thal-get transunt from one area to another wrea using poues angle equation

$$
\begin{align*}
& P=\frac{V_{1} V_{2}}{x_{12}} \sin \left(\delta_{1}-\delta_{2}\right) \\
& \frac{\delta_{P}}{\partial \delta}=\left(\frac{v_{1} v_{2}}{x_{12}} \cos \left(\delta_{1}-\delta_{2}\right)\left(\Delta \delta_{1}-\Delta \delta_{2}\right)\right. \\
& x_{12} \div b_{1} P_{r} \quad \Delta p_{P 1}\left(P_{1}\right)=\frac{v_{1} v_{1}}{x_{12} P_{1}} \cos \left(\delta_{1}-\delta_{2}\right)\left(\Delta \delta_{1}-\Delta \delta_{2}\right) \\
& \Delta P_{\text {eic } 12}=T_{12}\left(\Delta d_{1}-\Delta \delta_{2}\right)
\end{align*}
$$

$\begin{aligned} & \text { lorque } \\ & \text { loteff }\end{aligned}$
111^{4} for Area 2

$$
\begin{array}{r}
\Delta P_{\text {tiec } 211}=T_{21}\left(\Delta \delta_{2}-\Delta \delta_{1}\right) \tag{3}\\
\text { where } \\
T_{21}=\frac{v_{2} v_{1}}{x_{21} P_{r_{2}}} \cos \left(\delta_{2}-\delta_{1}\right)
\end{array}
$$

$$
\begin{aligned}
& \frac{T_{21}}{T_{12}}=\frac{P_{r_{1}}}{P_{r_{2}}} . \\
& \frac{T_{21}}{T_{12}}=\frac{\frac{V_{2} v_{1}}{x_{21} P_{12}} \cos \left(f_{2}-f_{1}\right)}{\frac{v_{1} v_{2}}{x_{12} P_{r_{1}}} \cdot \cos \left(\delta_{1}-f_{2}\right)} \\
& =\frac{P_{r}}{P_{r_{2}}} \\
& \frac{T_{21}}{T_{12}}=a_{12} \\
& \tau_{21}=a_{12} T_{12} \\
& \Delta P_{G_{1}}-\Delta P_{D_{1}}=\frac{2 H_{1}}{f_{0}} \frac{d \Delta f_{1}}{d t}+B \Delta f_{1}+\Delta P_{\text {re12 }} \\
& \begin{array}{r}
\Delta P_{c}(s)-\Delta P_{1}(s)=\frac{2 H_{1}}{f_{0}} \text { \& } \Delta f(s)+B \Delta F_{1}(s)+ \\
\Delta P_{r e l, 2}(s)
\end{array} \\
& \Delta P_{q_{1}}(s)-\Delta P_{D}(s)-\Delta P_{\text {fre }}, 2(s)=\Delta F_{1}(s)\left\{\frac{2 H_{1} s}{f_{0}}+B_{1}\right\}
\end{aligned}
$$

$111^{l y}$ Area-II

$$
\begin{aligned}
& \text { Area-II } \\
& \Delta P_{G_{2}}(s)-\Delta P_{D_{2}}(s)-\Delta P_{\text {re } 2,1}(s)=\Delta F_{2}(s)\left\{\frac{2 H_{2} s}{f_{0}}+B_{2}\right\} \text {, }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\omega & =2 \pi f \\
\omega & =\frac{d \delta}{d t} \\
\frac{d \delta}{d t} & =2 \pi f \\
d \delta & =2 \pi f d t \\
\Delta \delta_{1} & =2 \pi \int \Delta f_{1} d t \\
\Delta d_{2} & =2 \pi \int \Delta f_{2} d t
\end{array}\right\}
$$

1114
from eq (i)

$$
\begin{align*}
\Delta P_{\text {tie } 12} & =T_{12}\left(\Delta \delta_{1}-\Delta \delta_{2}\right) \\
\Delta P_{\text {tie } 1,2}(s) & =T_{12}\left(\Delta \delta_{1}(s)-\Delta \delta_{2}(s)\right) \\
& =T_{12}\left(\frac{2 \pi \Delta F_{1}(s)}{s}-2 \pi \frac{\Delta F_{2}(s)}{2}\right) \\
\Delta P_{\text {tie }}{ }^{\prime} 12(s) & =\frac{2 \pi T_{12}}{s}\left(\Delta F_{1}(s)-\Delta F_{2}(s)-7\right. \tag{7}
\end{align*}
$$

IIly for Area-II

$$
\begin{align*}
\Delta P_{\text {hee }}^{2}, 1(s) & =\frac{2 \pi T_{21}}{s}\left(\Delta F_{2}(s)-\Delta F_{1}(s)\right) \\
& \rightarrow(s) \\
& =\frac{-2 \pi T_{2}}{s}\left(\Delta F_{1}(s)-\Delta F_{2}(s)\right) \\
P_{\text {He }^{2}, 1} 2(s) & =\frac{-2 \pi a_{12} T 12}{s}\left(\Delta F_{1}(s)-\Delta F_{2}(s)\right) \rightarrow \theta
\end{align*}
$$

from eq (4)

$$
\begin{aligned}
& \Delta P_{G}(s)-\Delta P_{D_{1}}(s)-\Delta P_{\text {tie } 1,2(s)}=\Delta F_{1}(s)\left\{\frac{2 H, \delta}{f_{0}}+B_{1}\right. \\
& =\Delta F_{1}(\Delta) \quad B\left\{\frac{1+\frac{2 H_{1} s}{f_{0} B}}{}\right. \\
& \Delta f_{1}(s)=\frac{\Delta P_{p_{1}}(s)-\Delta P_{p_{1}}(s)-\Delta P_{H_{i} P_{1,2}}(s)}{B\left\{1+\frac{2 H_{1} s}{f_{0} B_{1}}\right\}} \\
& g F_{1}(s)=\left(a P a_{1}(s)-\Delta P Q_{1}(s)-\Delta P P_{\text {He }} 1,2(s)!\right.
\end{aligned}
$$

III for Area II

$$
\begin{aligned}
& \text { T114 for Area II } \\
& \Delta F_{2}(s)=\left(\Delta P G_{2}(s)-S P D_{2}(s)-\Delta P_{\text {tic }} 2_{1}(s)\right) \text {. }
\end{aligned}
$$

Q. Iwo Synchronous generator, operate in parallel with Capacities $300 \& 400 \mathrm{MW}$. The characteristics of
4% \& 5% NO load toul load. how 4% \& 5% no loud to full load how would a load if boone be shared sw o them.

801
Let ' x ' be the load shared by machine A Let ' $600-x$ ' be the load Shared by machine B

For machine A: From machine B iFrom from

$$
\begin{array}{lr}
\triangle A C D, \triangle F G D & \Delta B C E, \Delta \\
\frac{A C}{F G}=\frac{C D}{G D} & \frac{B C}{G H}=\frac{C E}{E G} \\
\frac{300}{x}=\frac{2}{2-h} & \frac{400}{600-x}=\frac{2.5}{2.5-h} \\
300(2-h)=2 x & 400(2.5-h)=2.5(600-x) \\
x=150(2-h) & 160(2-5-h)=600-x \\
x=300-150 h & 400-180 h=600-x \\
x & x=200+160 h
\end{array}
$$

Q Two generates rated at 400 \& 100 MW for operatic in rel. The droop characteristic 8 governors dire 3% \& no-load to full load. Anuming the governor are operated at 50 Hz at no load. How would the load g leoorm be shared b/w them. Wt will be the system freq at this load.
Sol Let ' x ' be the load shared by machine A Let 'l000-x'be the load shared by machine B.

$$
\begin{aligned}
& 3 \% \text { of } 500=1.5 \mathrm{~Hz}=48.5 \mathrm{kz} \\
& 4 \% q 50=2 \mathrm{~Hz}=48 \mathrm{~Hz}
\end{aligned}
$$

Formachire A
For machine B
from $\triangle A C D, \triangle F G D$
from $\triangle B C E, \triangle H G E$

$$
\begin{array}{ll}
\frac{A C}{F G}=\frac{C D}{D G} & \frac{B C}{H G}=\frac{C E}{E G} \\
\frac{400}{x}=\frac{1.5}{1.5-h} & \frac{700}{1000-x}=\frac{2}{2-h} \\
400(1.5-h)=1.5 x & 700(2-h)=2(1000-x) \\
2466.66 \sigma(1.5-h)=x & 350(2-h)=1000-x \\
399.99-266.66 h=x & 700-300 h=1000-x \\
x+266-66 h-399-99=0 \rightarrow 1) & \begin{array}{l}
x-350 h=300 \\
x-350 h-300=0
\end{array}
\end{array}
$$

$$
\begin{gathered}
x+266.66 h-399.99=0 \\
x-380 h-300=0 \\
616.66 h-99.99=0 \\
h=\frac{99.94}{616.66} \\
h=0.162
\end{gathered}
$$

put the value g h in ${ }^{\prime}$ (2)

$$
\begin{array}{r}
x-350(0.162)-300=0 \\
x-56.7-300=0 \\
x=356.7 \mathrm{mw}
\end{array}
$$

The load Supplied by machine $A=35 t$ The load supplied by machine $B=$

$$
\begin{aligned}
& =1000-x \\
& =1000-356.7 \\
& =643.3 \mathrm{Mn}
\end{aligned}
$$

System frequency $=50-h$

$$
\begin{aligned}
& =50-0.162 \\
& =49.838 \mathrm{kz}
\end{aligned}
$$

Q2. Two 750 kw alternator operation parallel. The Speed regulation of let each 100 -103\% from full load to no-load β the other is $100-104 \%$. How will the 2 alternators Share a load of cerolcw
Bol Let ' x ' be the load Shared by machine. A let $1000-x$ be the load shared by machine B

For machine A.
$\triangle A C D \& \triangle G F D$

$$
\begin{aligned}
& \frac{G F}{A C}=\frac{D F}{D C} \\
& \frac{x}{450}=\frac{3-h}{3} \\
& 3 x=750(3-h) \\
& x=250(3-h) \\
& x=750-6250 \mathrm{~h} \\
& 2500 \mathrm{~h} \\
& x+250 \rightarrow 1
\end{aligned}
$$

Formachire. B

$$
\begin{aligned}
& \frac{F H}{C B}=\frac{E F}{E C} \\
& \frac{(000-x}{750}=\frac{4-h}{4} \\
& 4(1000-x)=750(4-h) \\
& (000-x=187.5(4-h) \\
& 1000-x=750-187.5 \mathrm{~h} \\
& x-187.5 h=250 \rightarrow 2
\end{aligned}
$$

$$
h=1.14 \cdot 2
$$

Sub hoalue in -9 (1)

$$
\begin{gathered}
x+1(250)=750 \\
x=750-285.5 \\
x=464.5
\end{gathered}
$$

$$
1000-x \Rightarrow 1000-464.5
$$

$$
=534.5
$$

The loud share by machine ${ }^{\prime} A^{\prime}=464.5$ The loud Share machine B^{\prime} ' $=535.5$
Q) Two 1500 kw alternator operator in 11 l . The speed regulation inst come from COO- 103% from full load so no-load s levee- 104% for other. How will. the alferma thane a load gre kew.
Let x be the loud shared by machine' Let $200+x$ be the load thered/hymachine

formachine A

$$
\begin{aligned}
& \frac{G F}{A C}=\frac{D F}{D C} \\
& \frac{x}{1500}=\frac{3-h}{3} \\
& 3 x=1500(3-h) \\
& x=500(3-h) \\
& x+500 h=1500 \rightarrow 0 \\
& x+500 h=1500 \\
& x-375 h=-1300 \\
&=+ \\
& 875 h=2800 \\
& h=3.2
\end{aligned}
$$

formachione B

$$
\frac{F H}{B C}=\frac{E F}{E C}
$$

$$
\frac{200-x}{1500}=\frac{4-h}{4}
$$

$$
\begin{aligned}
& 1500 \\
& 4(200-x)=1500(4-h) \\
& 200-x=325(4-h)
\end{aligned}
$$

$$
\begin{aligned}
4(200-x) & =1500(4-h) \\
200-x & =375(4-h
\end{aligned}
$$

$$
200-x=325(4-h)
$$

$$
\begin{aligned}
200-x & =1500-375 h \\
x-375 h & =-1300 \rightarrow(2)
\end{aligned}
$$

$$
x-375 h=-1300 \rightarrow(2)
$$

Q. Two looolaw alternators operate in .1R . The regulation first alternator is 100% to 10 from full load to no-load and that of $100 \% \mathrm{~N} 105 \%$. H ow will the two alterneh Share a load of reopen.
Let the load shave by machine 'A' ben let the load Share My machive Boone be

Formachine 4 :-
Formachin B

$$
\begin{aligned}
& \frac{G F}{D C}=\frac{D F}{D C} \\
& \frac{x}{1000}=\frac{3-h}{3} \\
& 3 x=1000(3-\mathrm{h}) \\
& x=\$ 000-33.3 \mathrm{~h}
\end{aligned}
$$

$$
\frac{F H}{B C}=\frac{E F}{E C}
$$

$$
\frac{1200-x}{1000}=\frac{5-h}{5}
$$

$$
5(1200-x)=1000(5
$$

$$
9200-x=1000-20
$$

$x+353 x=000 \rightarrow$ (1)

$$
x-2200 h=200 \rightarrow 2
$$

$$
\begin{aligned}
x+333.3 h & =1000 \\
x-200 h & =200 \\
\hdashline+ & - \\
533.3 h & =800 \\
h & =\frac{800}{533.3} \\
h & =1.5
\end{aligned}
$$

Sub he value in eq (i)

$$
\begin{gathered}
x+333.3(1.5)=1000 \\
x=1000-499.95 \\
x=500.05
\end{gathered}
$$

Lett the

$$
120-x \Rightarrow 1200-500.05=699.95 \mathrm{kw}
$$

The load share by machine ' A ' be 500.01 . The lowed thine by machine B be 699.95 m
Que Two synchronous generator operating in 11 l. Their Capacities 200 MW \& 600 MW . The droop characteristics of their governor are $4 \% \$ 5 \%$ from nowad. to full loerd. Assuming that the generators. operating at bothy atnolload, how would be a load on soon share b/w them. What will be the system frequmey at this load.
Let x be the loud shaved by machine ' A ' Let $800-x$ be the load shared by machine B'

$$
\begin{aligned}
& 4 \% 76=2.4 \mathrm{~Hz} \\
& 5 \%=60=3 \mathrm{~Hz}
\end{aligned}
$$

let for macline A
$\triangle A C D, \triangle F G D$

$$
\begin{aligned}
& \frac{A C}{G F}=\frac{C D}{D F} \\
& \frac{700}{x}=\frac{2 \cdot 4}{2 \cdot 4-h} \\
& 700(2 \cdot 4-h)=2 \cdot 4 x \\
& x=\frac{700(2 \cdot 4-h)}{2 \cdot 4}
\end{aligned}
$$

Formachine B $\triangle B C z$ \& $\triangle E E F$

$$
\begin{aligned}
& \frac{B C}{F H}=\frac{E C}{E F} \\
& \frac{B 00}{800-x}=\frac{3}{3 h}
\end{aligned}
$$

$$
600(3-h)=2400-3 x
$$

$$
1800-6001=2400-3 x
$$

$$
3 x=600(1-h)
$$

$$
x=200(1+h) \rightarrow
$$

$$
\begin{aligned}
200(1+h) & =\frac{700(2.4-h)}{2.4} \\
4.8(1+h) & =16.8-7 h \\
4.8+4.8 h & =16.8-7 h \\
11.8 k & =12 \\
h & =\frac{12}{11.8}=1.017
\end{aligned}
$$

$$
\begin{gathered}
x=200(2.019) \\
x=403.2 \\
800-x=396.8
\end{gathered}
$$

Coad shared bymenachire A is $x=403.2$
loend thared by m $/ C B$ is $810-n=3968$.
$\begin{aligned} \text { System frequncy } & =60 \mathrm{~h} \\ & =60-1 .\end{aligned}$

$$
\begin{aligned}
& =60-1.017 \\
& =58.9834 \mathrm{z}
\end{aligned}
$$

if) Two ychronous Generaher operates in 11.1 s supplied loud of 200 Mw . The Capdufine of machine was 1004 w \& 200 mw . bo the the governor has grouping facilities of no-load to full food. Calculated the load taken by two racachines

Let x be the load shared by machine ' A ' Let doo-x be the coed sheree by maxine B.

$$
4 \% \neq 50=2 \%
$$

For machine A

$$
\begin{align*}
& \frac{A C}{E F}=\frac{C D}{F D} \\
& \frac{100}{x}=\frac{2}{2-h} \\
& 2(1000 \\
& 100(2-h)=2 x \\
& x=100-50 h \tag{1}\\
& x+50 h=100 \rightarrow
\end{align*}
$$

$$
\begin{aligned}
& \frac{C B}{F G}=\frac{C D}{F D} \\
& \frac{200}{200-x}=\frac{2}{2-h} \\
& 200(2-h)=2(200-x) \\
& 200-100 h=200-x \\
& x-100 h=0 \rightarrow(2)
\end{aligned}
$$

$$
\begin{aligned}
x+50 h & =100 \\
x-100 h & =0 \\
=+150 h & =100 \\
h & =2 / 3 \\
h & =0.66 .
\end{aligned}
$$

Put the value f h in $-g$ (D)

$$
\begin{aligned}
& x-\cos (0.66)=0 \\
& x=66.6 \mathrm{MW} \\
& 200-x \Rightarrow 200-66.6=133.4 \mathrm{Mm}
\end{aligned}
$$

- Thus the laod shered Hy machive At

Qtatic Analysis of Fwo areo system (ancontolle $\begin{gathered}\text { case }\end{gathered}$ (ase)

$$
\begin{aligned}
& \quad \Delta P_{c_{1}}=0 \\
& \Delta P_{c_{2}}=0
\end{aligned}
$$

$$
\begin{aligned}
& =B_{1} \text { If statace } \frac{2 H_{1}}{\text { fotahe }} \Delta f \text { statie } \\
& =B_{1} \Delta f \text { otahec }+\frac{2 H 1}{f \Delta t a t e r} \frac{d}{d t}\left(f M-h_{0}+0\right) \\
& \Delta P_{G_{1}}-\Delta P_{D_{1}}-\Delta P_{\text {tie }_{1}}=B_{1} \Delta f_{\text {stahec }} \rightarrow \text { (D) }
\end{aligned}
$$

1114

$$
\Delta P_{G_{2}}-\Delta P_{D 2}-\Delta P_{\text {Hie }_{2}}=B_{2} \Delta f_{\text {Natic } \rightarrow \text { (2) }}
$$

from © (1)

$$
\Delta P_{\text {tie1 }}=\Delta P_{a_{1}}-\Delta P_{D_{1}}-B_{1} \Delta f_{\text {stahe }}
$$

from eq (B)

$$
\begin{aligned}
& \Delta P_{G_{2}}-\Delta P_{D_{2}}=B_{2} \Delta f_{\text {thater }}+\Delta P_{\text {tie 2 }} \\
& =B_{2} \Delta \|_{\text {smen }}-a_{12} \Delta P_{\text {tiol }} \\
& \Delta P G_{2}-\Delta P_{D}=B_{2} D f_{\text {mhere }}-a_{P}\left\{\Delta P_{n_{1}}-\Delta P_{D 1}-B_{1} \Delta f_{\text {stan }}\right. \\
& \text { foneq(1) } \\
& -1_{R_{2}} \Delta f_{\text {rtahir }}-\Delta P_{D_{2}}=B_{2} \Delta f_{\text {Mahir }} \theta_{12}\left\{\varepsilon_{B_{1}}\right. \\
& -\Delta P_{1}-B_{2} D
\end{aligned}
$$

$$
\begin{align*}
& -\Delta P_{D_{2}}-a_{12} \Delta P_{D}=\Delta f D_{\text {ahic }}\left(B_{2}+1 / R_{2}\right)+\Delta \text { fstahec }\left(a_{12} k_{2}\right. \\
& \ldots a_{11} \\
& =\Delta f \operatorname{stahc}\left[\left(\left(B_{2}+1 / R_{2}\right)+a_{12}\left(B_{1}+/ / R_{1}\right)\right)\right. \\
& \text { Sfrstatic }=\frac{-\Delta P_{D_{2}}-a_{12} \Delta P_{D}}{\left(B_{2}+1 / R_{2}\right)+a_{12}\left(B_{1}+1 / R_{1}\right)}
\end{align*}
$$

$3 u b$

$$
\begin{gather*}
\left(B_{2}+\psi_{R_{2}}\right)=\beta_{2} \\
\text { Ully } \\
\left(B_{1}+1 / R_{1}\right)=\beta_{1} \\
\Delta f_{\text {static }}=-\frac{\Delta P_{D_{2}}-a_{12} \Delta P_{D_{1}}}{\beta_{2}+a_{12} \beta_{1}} \rightarrow \text { (} \tag{B}\\
\Delta P_{\text {tie, }}= \\
=-1 P_{h_{1}}-\Delta P_{D_{1}}-B_{1} \Delta f_{1 \text { static }}-\Delta P_{D_{1}}-B_{1} \Delta f_{\text {sitatic }} \\
=-\Delta P_{D_{1}}-\left(B_{1}+1 / R_{1}\right) \Delta f \text { static } \rightarrow(7) \tag{7}
\end{gather*}
$$

sub (8) in (7)

$$
\Delta P_{+i e_{1}}=-\Delta P D_{1}-\left(B_{1}+1 / R_{1}\right)\left\{-\frac{\Delta P_{D_{2}}-a_{12} \Delta P_{D_{1}}}{\left(B_{2}+1 / R_{2}\right)+a_{12}\left(B_{1}+1 / e_{1}\right)}\right\}
$$

$$
\begin{aligned}
& \Delta P_{\text {tie }}=\frac{-\Delta P_{D_{1}}\left\{\left(B_{2}+1 / R_{2}\right)+a_{12}\left(B_{1}+1 / R_{1}\right)\right\}-\left(B_{1}+1 / R_{1}\right) /-\Delta P_{1}}{\left(B_{2}+1 / R_{2}\right)+\left(B_{1}+1 / R_{1}\right) a_{12}} \\
& =\frac{-\Delta P D_{1}\left(B_{2}+1 / R_{2}\right)-a_{12}\left(B_{1}+1 / R_{1}\right) \Delta P_{D_{1}}+\Delta P_{D_{2}}\left(B_{1}\right.}{+a_{12}\left(B_{1}+1 R_{1}\right) D} \\
& \left(B_{2}+1 / R_{2}\right)+\left(B_{1}+1 / R_{1}\right) a_{12} \\
& \Delta P_{L_{1+1}}=-\frac{\Delta P_{1} B_{2}+\Delta P_{D_{2}} \beta_{1}}{\beta_{2}+a_{12} B_{1}}
\end{aligned}
$$

Stale variable model

$$
\dot{x}=A x+B u+C P
$$

$$
\begin{aligned}
& \Delta P_{y} \\
& A E
\end{aligned}
$$

$$
\Delta F^{\prime}
$$

$$
\begin{aligned}
& \dot{x}=A x+B u+{ }^{u}=\Delta P C \\
& x=A x+B u+C P \\
& \longrightarrow P=I P_{D} \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 / T g & 0 & -\left.k_{g}\right|_{R r_{g}} \\
k_{T} / T \tau & -1 / T_{T} & 0 \\
0 & k P s / T_{P S} & -1 / T_{P s}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
k q / r_{g} \\
0 \\
0
\end{array}\right] \Delta P_{c}+\left[\begin{array}{c}
0 \\
0 \\
\frac{-k_{P S}}{T_{P S}}
\end{array}\right] \Delta P_{D}}
\end{aligned}
$$

Stale variable model for two area system

ΔD

$$
\begin{aligned}
& \Delta x_{E}(s) \neq\left(\frac{k_{91}}{1+s T_{g 1}}\right) \Delta P_{c_{1}}(s)-1 / R_{1} \Delta F_{1}(s) \\
& \Delta x_{E_{2}}\left(\frac{1)}{}=\left(\frac{K_{q_{2}}}{\left.1+s T_{a}\right)}\right) \Delta P C_{2}(s)-1 / R_{2} \Delta F_{2}(s)\right. \\
& \Delta P_{q_{1}}(s)=\left(\frac{k_{T_{1}}}{1+s T_{1}}\right) \Delta x_{E_{1}}(s) \\
& \Delta P_{G_{2}}(b)=\left(\frac{K_{T_{2}}}{1+s T_{T_{2}}}\right) \Delta X_{E_{2}}(8) \\
& \Delta F_{1}(B)=\left(\frac{K_{P S} 1}{1+\Delta T P_{S 1}}\right)\left(\Delta P_{G_{1}}(s)-\Delta P_{D_{1}}(s) g-\Delta P_{\text {Hiel } 2} / \Delta\right. \\
& \begin{array}{l}
\Delta F_{2}(s)=\left(\frac{K P_{S_{2}}}{1+s T_{P_{s}} 2}\right)\left(\Delta P_{G_{2}}(s)-\Delta P_{D_{2}}(s) d+f_{12} \Delta P_{\text {trei, }}\right. \\
\Delta P_{\text {tie } 1,2}=\frac{2 \pi_{12}}{s}\left[\Delta F_{1}(s)-\Delta F_{2}(s)\right]
\end{array} \\
& \Delta x_{E_{1}}(s)+\Delta x E_{1}(s) \Delta T_{g_{1}}=k g_{1} \Delta P_{C_{1}}(s)-k g_{1} \cdot / R_{R_{1}} \Delta F_{1}(s) \\
& \Delta X_{E_{2}}(s)+\Delta X_{E_{2}}(s) \Delta T_{2}=k_{g_{2}} \Delta P C_{2}(s)-\log _{2}-1 / R_{2} \Delta F_{2}(s) \\
& \Delta P_{G_{1}}(s)+\Delta P_{H_{1}}(s) \Delta T_{T_{1}}=k_{T_{1}} \Delta \times E_{1}(s) \\
& \Delta P_{G_{2}}(s)+\Delta P_{G_{2}}(s) \Delta T_{2}=K T_{2} \Delta X E_{2}(s) \\
& \begin{array}{l}
\Delta F_{1}(s)+\Delta F_{1}(s) \Delta T_{P_{1}}=k P_{s_{1}} \Delta P_{4_{1}}(s)-k P_{s_{1}} \Delta P_{D_{1}}(s) \\
\Delta F_{2}(s)+\Delta F_{2}(s) \Delta T P_{s_{2}}=k P_{s_{2}} \Delta P_{G_{2}}(s)-k P_{s_{2}} \Delta P_{D_{2}}(s) \\
\Delta P_{1+i 1_{1}, 2}-s=2 \pi T_{12} \Delta F_{1}(s)-2 \pi T_{12} \Delta F_{2}(s)
\end{array} \\
& \begin{array}{l}
\Delta P_{\text {tic } 1,2}-S=2 \pi T_{12} \Delta F_{1}(s)-2 \pi T_{12} \Delta F_{2}(s) \\
\Delta x_{E_{1}}(s) \Delta g_{1}=k g_{1} \Delta P_{c_{1}}(s)-\Delta x_{E_{1}}-\frac{k g_{1}}{R_{1}} \Delta F_{1}(s)
\end{array} \\
& \Delta x_{E_{2}}(s) s T g_{2}=k g_{2} \Delta P c_{2}(s)-\Delta x_{E}(s)-\frac{k g_{2}}{R_{2}} \Delta F_{2}(s) \\
& \Delta P G_{1}(s) \Delta T_{T_{1}}=K T_{1} \Delta X E_{1}(s)-\Delta P G_{1}(s) \\
& \Delta P_{G_{2}}(s) \Delta T T_{2}=K T_{2} \Delta X E_{2}(s)-\Delta P_{h_{2}}(s) \\
& \Delta F_{1}(s) \Delta T P_{s_{1}}=\Delta P_{s_{1}} \Delta P_{h_{1}}(s)-K P_{s_{1}} \Delta P_{D_{1}}(s)-\Delta P_{s_{1}} \Delta P_{1}(s)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Delta F_{2}(s) \Delta T P_{S_{2}}=K P_{S_{2}} \Delta P_{S_{2}}(s)-K P_{S_{2}} \Delta P_{D_{2}} / \Delta\right)^{+}-\Delta P_{S_{2}} a_{12} \Delta P_{\text {terti2 }}(s) \\
& \Delta P_{\text {iel } 1,2, S}=2 \pi T_{12} \Delta F_{1}(s)-2 \pi T_{12} \Delta F_{22}(\mathrm{BP})
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \vec{x}_{E_{1}}=\frac{1}{\operatorname{Tg}_{1}}\left\{k_{g_{1}} \Delta P_{c_{1}} \operatorname{RO}_{1}-\Delta x_{E_{1}}-\frac{k_{g_{1}}}{R_{1}} \Delta F_{1}\right\} \\
& \Delta \dot{x}_{E_{2}}=\frac{1}{T_{g_{2}}}\left\{\mathrm{Kg}_{2} \Delta P_{c_{2}}-\Delta X_{E_{2}}-\frac{k_{g_{2}}}{R_{2}} \Delta F_{2}\right\} \\
& \Delta \dot{P}_{G_{1}}=\frac{1}{T_{T_{1}}}\left\{K_{T_{1}} \Delta X E_{1}-\Delta \dot{P}_{G_{1}}\right\} \\
& \Delta \dot{P}_{G}=\frac{1}{T_{T_{2}}}\left\{k T_{2} \Delta X_{E_{2}}-\Delta P_{G_{2}}\right\} \\
& \dot{\Delta F_{1}}=\frac{1}{T_{P_{S 1}}}\left\{K P_{S_{1}} \Delta P_{G_{1}}-K P_{S_{1}} \Delta P_{D_{1}}-\Delta F_{1},-K P_{1}, \Delta 1\right. \\
& \left.\dot{\Delta F_{2}}=\frac{1}{T P_{S_{2}}}\left\{K P_{S_{2}} \Delta P_{G_{2}}-K P_{S_{2}} \Delta P_{D_{2}}-\Delta F_{2}+K P_{S_{2}} a_{12} \Delta P_{\text {treli, }}\right\}\right\} \\
& \Delta P_{\text {tie }} 1_{12}=2 \pi T_{12} \Delta F_{1}-2 \pi T_{12} \Delta F_{2} \\
& \text { Let } x_{1}=\Delta X_{E_{1}}, \quad x_{2}=\Delta x_{E_{2}} \\
& x_{3}=\Delta P G_{1}, x_{4}=\Delta P q_{2} \\
& x_{5}=\Delta F_{1}, x_{6}=\Delta F_{2} \\
& x_{7}=\Delta P_{\text {tre }}^{1,2}
\end{aligned}
$$

Determine ALFC parameters for the control are having the follocoing data

1) Total rated area capacity $=2000 \mathrm{Ni}$
ii) Normal operating Lodi $=1000 \mathrm{MW}$
iii) interia constant :5
iv) Speed regulation, $R=2.4 \mathrm{Hg} \mid P_{4} \mathrm{MW}$ we should assume that wad frequenting depends linearly.
i.e load would increase by 1% for 1 increase in frequency
Sd

$$
\begin{aligned}
P_{r} & =2000 \mathrm{~mW} \\
P_{D} & =1000 \mathrm{MW} \\
H & =5.0 \\
R & =2 \cdot 4 \mathrm{~Hz} \mid P u \cdot \mathrm{MW} \\
T \Delta f & =1 \%, \Delta P_{D}=1 \% \\
K_{G} & =K_{T}=1 \\
T_{g} & =T_{T}=0 \\
K_{P S} & =1 / B \\
B & =\frac{\partial P_{D}}{\partial f} \\
& =\frac{\frac{1}{100} \times 1000}{1} \times 50
\end{aligned}
$$

Q1 An isolated power System has the following

1) Turbine rated $0 / P=30 \mathrm{~mW}$
2) Nominal frequency $=50 \mathrm{~Hz}$
3) Governor frequey sptedrequiakin
4) Interkia covenant $=5$
5) Turbine fire lovetant $=0.5 \mathrm{sec}$
6) Governor time constant $=0.2 \mathrm{sec}$
7) Speed change $=60 \mathrm{mu}$ Assume the wad varies by 0.8% for Change in frequm.
Determine a steady state freq
deubatien
sol Given danu:-

$$
\begin{aligned}
P_{r} & =300 \mathrm{mw} \\
H & =5 \\
R & =0.055 \mathrm{me} P \mathrm{Pu} \\
T_{T} & =0.5 \mathrm{sec} \\
T_{g} & =0.2 \mathrm{sec} \\
\Delta P_{D} & =60 \mathrm{mw} \\
\Delta f^{r} & =1 \%, \Delta P_{D}=0.8 \%
\end{aligned}
$$

$$
\begin{aligned}
& \Delta F_{\text {static }}=\underset{\Delta \rightarrow 0}{L t} \cdot s \Delta F(s) \\
& \frac{\Delta F(s)}{-\Delta P_{D}(s)}=\frac{G(s)}{1+G_{1}(s) H(s)} \\
& \frac{\Delta F(S)}{-\Delta P_{D}(s)}=\frac{\frac{k_{P S}}{1+s T_{P S}}}{1+\left[\frac{k_{9}}{1+s+g}\right]\left(\frac{k_{T}}{1+s T_{T}}\right)(1 / P)\left(\frac{K_{P S}}{1+s T_{P S}}\right)} \\
& \Delta F(s)=\frac{\frac{k_{p s}}{1+s T p s}}{1+\frac{k_{q} k T T_{p s}}{\left(1+s T_{q}\right)\left(1+s_{T}\right)\left(1+s T_{p s}\right)} \times 1 / R} \times\left(\frac{\Delta p}{s}\right) \\
& \Delta f_{\text {static }}=\operatorname{Lt}_{S \rightarrow 0} s \cdot \Delta F(S) \\
& =\operatorname{Lit}_{s \rightarrow 0} . \& 8 \times \frac{\frac{K_{p S}}{1+s p p s}}{1+\frac{K_{p s} k q k q}{\left(1+s T_{q}\right)\left(1+s s_{7}\right)(1+s p p s}} \times 1 / 2 \\
& \Delta F_{\text {stake }}=\frac{K_{P S}}{1+\left(K_{P S} \times \frac{1}{R}\right)} \times(-\Delta P)
\end{aligned}
$$

$$
\begin{aligned}
& k_{p s}=1 / B \\
& B=\frac{\partial P_{r}}{\partial f}=\frac{\frac{0.8}{200} \times 60}{\frac{1}{100} \times 50} \\
& B=0.96 \mathrm{MW} / \mathrm{Hz} \\
& \text { Binpu }=3.2 \times 10^{-3} \text { pu } \mathrm{MW} / \mathrm{Hz} \\
& F_{P S}=\frac{2 H}{B f} \\
& =\frac{2(5)}{3.2 \times 10^{-3} \times 50} \\
& T_{p s}=62.5 \mathrm{sec} \\
& k_{p s}=1 / B \\
& =1 / 3.2 \times 10^{-3} \\
& K_{p s}=0.3125 \times 10^{3} \mathrm{~Hz} \text { pumm } \\
& k_{p s}=812.5 \mathrm{kz} / P_{4} \mu \mathrm{w} \\
& \Delta P=\frac{60}{300} \\
& \Delta P=0.2 \mathrm{Fpg} \mathrm{Mogq} \text { Xisit: www/LearnEngineering. in }
\end{aligned}
$$

$$
\begin{aligned}
\Delta F_{\text {stab. }} & =\frac{312.5(-0.2)}{1+\left(312.5 \times \frac{1}{0.05}\right)} \\
& =\frac{-62.5}{1+6250}=\frac{-62.5}{6251} \\
\Delta F_{\text {stake }} & =-9.99 \times 10^{-8}
\end{aligned}
$$

Data. Cutain 10 single ara power system with linear power frequemy.

1) Rated Capacity $=2000 \mathrm{MW}$
2) System Coed $=1000 \mathrm{MM}$
B) Inderia Constant 5
3) Speed reg $=0.3 p 4$
4) Coed damping factor $=1$ per pu
b) nominal frequent $=150 \mathrm{~Hz}$
5) Anime $T_{g}=T_{T}=0$

For sudden thanet in load of 20 rw , determine a Steady stated yrequmy deviation * Change ion queration
sof Gium data
$P_{D}=1000 \mathrm{M} \mathrm{\omega}$
$H=5$
$R=0.3 \mathrm{pu}$
$F=S 0 \mathrm{H}_{3}$
$T_{g}=T_{F}=0$
$\Delta P_{P}=20 \mathrm{~mW}$
Loud dampiry fattor $=1 P 4$

$$
\Delta I(S)=\frac{\frac{K_{P S}}{1+S T P S}}{1+\frac{K_{q} k_{T} K_{P S}}{\left(1+S T_{y}\right)\left(1+S T_{+}\right)(i+S T P S)^{R}}}
$$

$$
\begin{aligned}
\Delta F_{\text {statec }} & =(\epsilon \text { S } \rightarrow 0 \Delta F(s) \\
& =\text { Br }_{\text {Br }} \frac{k p s}{1+k p s / R} \times(-\Delta P)
\end{aligned}
$$

$$
B=\frac{\partial p_{r}}{\partial f_{\text {for More Vist: : www.LearnEngineering.in }}}=\frac{20}{{ }^{2}}
$$

$$
\begin{aligned}
& B=0.4 \\
& B=0.4 \quad \mu \omega / \mathrm{Hz} \\
& B=\times 10^{-4} p 4 \mathrm{~mm} / \mathrm{zz} \\
& K_{p s}=\frac{1}{B} \\
& =1 / 4 \times 10^{-4} \\
& K_{p s}=2500.0 \mathrm{~Hz} \text { /Purw } \\
& T_{P S}=\frac{2 H}{B f} \\
& =\frac{2 \times 5}{4 \times 10^{-4} \times 50} \\
& T_{P S}=500 \mathrm{sec} \\
& \Delta f_{\text {stataie }}=\frac{k_{P S}\left(-\Delta P_{D}\right)}{1+\operatorname{KPS} \times 1 / R} \\
& =\frac{25000(-0.2)}{1+2500 / 0.02} \\
& \Delta F_{\text {stahe }}=-000002.59 \times 10^{-A} \\
& \Delta P_{G}=-\frac{1}{0.03} \times(- \text { FFr MOPQ X X̌sitl: Www.Learyengineering. in } \\
& \Delta P_{j}=0.019 p 4
\end{aligned}
$$

UNIT III REACTIVE POWER -

VOLTAGE CONTROL

Function f excitationslystem

1. It aet as the control cirmit for the qemerabor i.e it regulates the $0 / P$ q generator terminal
2. If junes as a protection cit of a generator It enures the capacitive cimite of the generator
Types of excitation system
Dc excitation System -
here de generation is wee
to give $D C$ supply to the field winding.
Ac excitation System:-
Here an alternator is use to produce a require $A C$ supply. This $D C$ Supply is Convicted into $D C$ with the help of we Nip ring s then fed

Basic block diagram $\}$

Examples z excitation systemi-
Rectifier controller excitation system

i) The exciter transformer is used as a protechice device
ii) The $A C$ regulator regulates he $A C$ voltage s it. given to conunter. \& it is fed to the field

Modelling of excitation system (or)
Modelling of Avr[Automatre voltage]

i) Modelling of Comparator

$$
\begin{equation*}
\Delta e=V_{r y}-\Delta r \tag{1}
\end{equation*}
$$

Taking L.T

$$
\Delta E(s)=V_{r e f}(s)-\Delta V(s)
$$

ii) Modelling io error amplifier

$$
\begin{gather*}
\Delta r_{A} \propto \Delta e \\
\Delta r_{A}=k_{A} \Delta e \tag{2}
\end{gather*}
$$

iii) Modelling of cmiter:-

ilP equahion :-

$$
\begin{aligned}
& \Delta v_{e}=\Delta l_{e} R_{e}+l_{e} \frac{d_{i e}}{d t} \rightarrow(3) \\
& T_{a} k_{i n g ~ L . T ~ o f ~ e q ~(B) ~}^{\text {(B) }}
\end{aligned}
$$

of p equatiani
$\Delta v_{\mu} \propto \Delta i e$

$$
\begin{aligned}
& \frac{\Delta V_{f}(s)}{\Delta V_{e}(s)}=\frac{K_{e} \Delta I_{e}(s)}{\Delta I_{e}(s) R_{e}+l_{e} s s_{e}(s)} \\
& \frac{\Delta V_{F}(s)}{\Delta V_{e}(s)}=\frac{K_{e} \Delta T_{e}(s)}{\Delta F_{e}(s) R_{e}\left(1+\frac{l_{e} s}{R_{s}}\right)} \\
& \frac{\Delta V_{F}(s)}{\Delta v_{e}(s)}=\frac{K_{e} / R_{e}}{\left(1+s l_{e} / R_{e}\right)} \Delta V_{e}(s) \\
& \Delta V_{f}(s)=\frac{K_{e}}{1+s T_{e}} \Delta V_{e}(s) \\
& K_{e}=\frac{K_{e} / R_{e}}{T_{e}=l e / R_{e}} \\
& \Delta V_{A} \\
& \frac{K_{e}}{1+s s_{e}} \Delta \Delta v
\end{aligned}
$$

Modelling of AVr :-
Modelling of sychronous gen:-

lake L.T

$$
\begin{aligned}
& \Delta V_{F}(s)=R_{F} \Delta I_{F(s)}+L_{f} s I_{F}(s) \\
& \Delta V_{F}(s)=\left(R_{F}+s L_{1}\right) \Delta I_{F(s)} \rightarrow(s)
\end{aligned}
$$

$$
\Delta t=\Delta V \rightarrow \text { (6) }
$$

$$
\begin{align*}
& \Delta I_{f}=\frac{\sqrt{2} \Delta E}{L \omega} \\
& \Delta I f=\frac{\sqrt{2} \Delta V}{L \omega}
\end{align*}
$$

subeq (7) in eq (5)

$$
\begin{aligned}
& \Delta V_{F}(s)=\left(R_{F}+s L_{f}\right) \frac{r_{2} \Delta V}{L \omega} \\
& \frac{\Delta V}{\Delta V_{F}(s)}=\frac{L \omega}{\sqrt{2}\left(R_{F}+s L_{f}\right)} \\
& \frac{\Delta V}{\Delta V_{F}(s)}=\frac{L \omega}{\sqrt{2} R_{F}\left(1+\frac{\Delta c_{f}}{R_{f}}\right)} \\
& \frac{\Delta V}{\Delta V_{F}}=\frac{k_{f}}{1 L_{s} T_{f}} \\
& k_{f}=L \omega / V_{2} R_{f} \\
& T_{f}=L_{f} / R_{f}
\end{aligned}
$$

$$
\begin{aligned}
& T \cdot F=\frac{G(s)}{1+G(s) r(s)} \\
& \frac{\Delta r}{\Delta k_{r y}}=\frac{\frac{k_{A} k_{e} k_{f}}{\left(1+s T_{A}\right)\left(1+s T_{e}\right)\left(1+s T_{f}\right)}}{1+\frac{k_{A} k_{e} k_{f}}{\left(1+\Delta T_{A}\right)\left(1+s T_{e}\right)\left(1+s T_{p}\right)} \times 1} \\
& \frac{\Delta r}{v_{r y}}=\frac{k_{A} k_{e} k_{f}}{\left(1+s T_{A}\right)\left(1+s T_{C}\right)\left(1+s T_{f}\right)+\left(k_{A} k_{e} k_{f}\right)}
\end{aligned}
$$

Steady state rexponse of AVR
O|p reacher is as $t \rightarrow \infty$

$$
\Delta v=l_{s \rightarrow 0} s \cdot \Delta v(s) \rightarrow(1)
$$

$$
T \cdot F=q(s)
$$

$$
\begin{aligned}
& \frac{\Delta v}{\Delta v_{r y}}=\frac{k_{A} k_{e} k_{f}}{\left(1+\Delta T_{A}\right)\left(1+s k_{e}\right)\left(1+s T_{f}\right)+k_{A} k_{C} l_{f}} \\
& \text { If } \Delta v_{\text {rej }}(s)=1 / s \\
& \Delta r=\frac{k_{A} k_{e} k_{f}}{\left(1+5 T_{A}\right)\left(1+s_{e}\right)\left(1+5 T_{f}\right)+k_{A} k_{e} k_{f}} \times 1 / s \rightarrow \text { (2) } \\
& \operatorname{Sub} \text { (2) in (1) } \\
& \Delta V=L_{s \rightarrow 0} \frac{s \cdot k_{A} k_{C} k_{f}}{\left(1+s T_{0}\right)\left(1+s r_{e}\right)\left(1+s \sigma_{f}\right)+k_{A} k_{e} k_{f}} \times 1 / \mathrm{s} \\
& \Delta V=\frac{k_{A} k_{e} k_{f}}{1+k_{A} k_{e} k_{f}} \\
& \Delta v(s)=\frac{k}{1+k}
\end{aligned}
$$

Dynamic Pespance of AVR
op changes wort time

$$
\begin{aligned}
& \Delta V(t)=? \rightarrow(3 \\
& \Delta V(s)=\frac{K_{A} k_{e} k_{f}}{\left(1+s T_{A}\right)\left(1+s t_{e}\right)\left(1+s T_{f}\right)+k_{A} k_{e} k_{f}} \times \frac{1}{s}
\end{aligned}
$$

INT

$$
\begin{aligned}
& \Delta v(s)=k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}+k_{2} e^{s_{3} t} \text { rule are real } \beta \\
& \Delta v(t)=A e^{a t} \sin (\alpha+\beta) t \Rightarrow \text { complex }
\end{aligned}
$$

Stability Compensation
Consider open loop TF of ArR.

$$
\begin{gathered}
G(s)=\frac{k_{A} k_{e} k_{f}}{\left(1+s T_{A}\right)\left(1+s T_{e}\right)\left(1+s T_{1}\right)} \\
\text { No. F four }=n=0 \\
\text { poles }=m=3 \\
m-n=3-0=3
\end{gathered}
$$

If we take a test point b/w-1/TA \& the to right of text point, there is odd l. no. I Bower s poler bo means, therefore the region $3 / \omega-1 / \overbrace{A} \& \infty$ wo
the test point is loverider $-1 /$ res $-1 / \%$, he root locule from the both the pola collide each other move to ter right half of the s-plans that naleing the system instable.

Let the TF of Series Compensator be

$$
q(S)=\left(1+S T_{e}\right)
$$

Here

$$
T_{C}=T_{e}
$$

\therefore the open coop If of Ave after compersoten is

$$
\begin{aligned}
& G(s)=\frac{k_{A} k_{e} l_{f}}{\left(1+\Delta T_{n}\right)\left(1+s T_{C}\right)\left(1+s T_{l}\right)} \times\left(1+s T_{a}\right) \\
& G(s)=\frac{K_{A} r_{e} l_{f}}{\left(1+s T_{A}\right)\left(1+s T_{f}\right)} \\
& \text { no. \& zeros }=0 \\
& \text { no. of poles o } m^{\prime}=2 \\
& m-n=2-0=2 \\
& T_{6}>T_{A}=-1 / T_{V}>-1 T_{A}
\end{aligned}
$$

Relation bow Voltage , Real power s
Reactive power at a node

$$
\begin{aligned}
& V=f(p, Q) \\
& d v=\frac{\partial v}{\partial p} \cdot d p+\frac{\partial v}{\partial \theta} d Q \\
& \Delta v=\frac{d p}{\left(\frac{\partial p}{\partial v}\right)}+\frac{d e}{(\partial Q / \partial v)} \\
& E=V+d r o p \\
& E=V+I Z \\
& E=V+I(R+j x) \\
& S=V I^{*} \\
& S^{*}=V^{*} I \\
& I=\frac{S^{*}}{1 *}=\underline{P-j Q}
\end{aligned}
$$

$$
\begin{aligned}
& E-v=\left(\frac{P-j \theta}{v}\right)(R+j x) \\
&=\frac{P R-j Q R+j P x-j^{2} Q x}{v} \\
&=\frac{P R-j Q R+j P x+Q x}{v} \\
& E-v=\left(\frac{P R+Q x}{v}\right)+\left(\frac{j P x-j Q R}{v}\right) \\
& E v-v^{2}=P R+Q x \\
& \frac{E v-v^{2}-Q x}{R}=P \\
& \frac{E-2 v}{R}=\frac{\partial P}{\partial v} \\
& \frac{E v-v^{2}-P R}{x}=Q . \\
& \frac{E-2 v}{x}=\frac{\partial Q}{\partial v} \\
& \Delta v=\frac{d P}{(\partial P / \partial v)}+\frac{d Q}{\left(\frac{\partial \theta}{\partial v}\right)}
\end{aligned}
$$

Care :-

$$
T \frac{\partial Q}{\partial v}=\frac{E-2 v}{x \perp}
$$

If w increase the Q reactive power for that we decreac. tu inductance x Core 2:-

$$
\begin{aligned}
\frac{\partial Q}{\partial V} & =\frac{E-2 E \quad \epsilon=V}{X} . \\
& =\frac{-E}{X} \\
& =-I .
\end{aligned}
$$

OLTC:-
Tap changing transformer:-
STUDENTSFOCUS. COM

Let r_{1} \& r_{2} be the primary \& secondary voltage of
OLTC
Let t_{1} \& t_{2} be the tap thampor of he traspomerratio of the outs.
Assume

$$
\begin{align*}
t_{1} t_{2} & =1 \Rightarrow t_{1}=1 / t_{2} \tag{1}\\
v_{1} & =v_{2}+\text { drop } \\
t_{1} v_{1} & =t_{2} v_{2}+\text { drop } \\
\text { drop } & =I z \\
& =I\left(R+\mu^{x}\right)
\end{align*}
$$

WIT,

$$
\begin{array}{r}
I=\frac{P-j Q}{V_{2}} \\
I=\frac{P-j Q}{t_{2} V_{2}} \\
\text { (hop }=\frac{P-j Q}{t_{2} r_{2}}(R+j x)
\end{array}
$$

Teactive \times ower Bolance $\times I \times$ it's effects,
$G @$
leow

$$
\begin{aligned}
V_{1} & =V_{2}+\text { drop } \\
& =V_{2}+I z \\
& =V_{2}+I(R+i x)
\end{aligned}
$$

Wkt

$$
\begin{aligned}
& S=P_{2}+i Q_{2} \\
& V_{1} I_{1}^{*}=P_{2}+j Q_{2} \\
& I_{1}^{*}=\frac{P_{2}+i Q_{2}}{V_{1}} \\
& I=\frac{P_{2}-j Q_{2}}{V_{1}^{*}} \\
& I=\frac{P_{2}-j Q_{2}}{V_{1}} \\
& V_{1}=V_{2}+\left(\frac{P_{2}-i Q_{2}}{V_{1}}\right)(R+i x)
\end{aligned}
$$

The OLTC control the of voltage only, 20% variation in the voltage.
If the voltage variation increase beyond 20%, OLTC has to wed along with anyone of the devices which inject reachinie power. there the 0/P voltage Can lesitroll by using OCTC along with syn. lenderuer as known in fig above

$$
\begin{aligned}
V_{1} & =V_{n}+d r o p \\
& =V_{n}+I z \\
& =V_{n}+I(R+j x) \\
& =V_{n}+\left(\frac{P_{2}-j Q_{2}}{V_{m}}\right)(R+i x) \\
& =V_{n}+\left(\frac{P_{2} R+j P x-j Q_{2} R-j^{2} Q_{2} x}{V_{n}}\right) \\
& =V_{n}+\left(\frac{P_{2} R+j P x-j Q_{2} R+Q_{2} x}{V_{m}}\right) \\
& =V_{n}+\left(\frac{P_{2} R+Q_{2} x}{V_{n}}\right)+j\left(\frac{P x-Q_{2} R}{V_{m}}\right)
\end{aligned}
$$

$$
\delta_{v}=\frac{P_{2} x-Q_{2} R}{v_{n}}
$$

If Resistance is neg

$$
\begin{aligned}
& \Delta v=Q_{2} \times / v_{n} \\
& f_{v}=P_{2} \times / V_{n}
\end{aligned}
$$

; Resistance is neg,

$$
\begin{aligned}
& V_{1}=V_{n}+\frac{Q_{2} x}{V_{n}}+\frac{j P_{2} x}{V_{n}} \\
& Q_{2}=Q_{2}-Q_{n} \\
& V_{1}=\sqrt{\left(V_{n}+\frac{Q_{2} x}{V_{n}}\right)^{2}+\left(\frac{P_{2} v}{V_{n}}\right)^{2}} \\
& V_{1}^{2}=\left(V_{n}+\frac{Q_{2} x}{V_{n}}\right)^{2}+\left(\frac{P_{2} x}{V_{n}}\right)^{2}
\end{aligned}
$$

Sub, $\theta_{2}=\theta_{2}-\theta_{C}$

$$
V_{1}^{2}=\left(\frac{V_{n}+\left(Q_{2}-\theta_{c}\right) x}{V_{n}}\right)^{2}+\left(\frac{P_{2} x}{V_{n}}\right)^{2}
$$

$$
\begin{aligned}
& \tan \phi=\frac{Q}{P} \\
& Q=P \tan \phi \\
& \operatorname{Cos} \phi=0.8 \\
& \phi=86.86^{\circ} \\
& \tan \phi=0.75 \\
& Q_{2}=P_{2} \times 0.75 \\
& =8.333 \times 0.75 \\
& \theta_{2}=6.247 \mathrm{HW} \\
& v_{2}=33 / \sqrt{3} \\
& v_{2}=19.05 \mathrm{~V} \\
& 0=P_{2}^{2} R^{2}+\left(\theta_{2}-\theta_{e}\right)^{2} x^{2}+2 v_{2}^{2}\left(P_{2} R+\left(\theta_{2}-\theta_{C}\right)^{2} x^{2}\right. \\
& +P_{2}^{2} x^{2}+\left(Q_{2}-Q_{C}\right)^{2} R^{2} \\
& 0=P_{2}^{2} R^{2}+\left(Q_{2}^{2} x^{2}+Q_{c}^{2} x^{2}-2 Q_{2} Q_{c} x^{2}+2 v_{2}^{2}\left(P_{2} R+\left(Q_{2}-Q_{2}\right)\right.\right. \\
& +P_{2}^{2} x^{2}+\left(Q_{2}^{2}+Q_{c}^{2}-2 \theta_{2} \theta_{c}\right) R^{2}
\end{aligned}
$$

A 3ϕ overhead line has resistance and reactance of 5 \& 200 hms resp. Thelood at the receiving end is 30 Hm , 0.85 pf lagging at 33 le c . Find the voltage at the ending end. What will be the lCOAR rating of the compensating
equipment inserted at the receiccied end as as to equipment inserted at the receicied end aso as to maintain a voltage of 33 kv at each end? Find also the man load that can be fransmitted.

$$
\begin{aligned}
V_{1} & =V_{2}+\text { drop } \\
W_{1} & =V_{2}+I R \\
\text { drop } & =I z \\
& =I(R+j x) \\
& =\left(\frac{P_{2}-\theta_{2} j}{V_{2}}\right)(R+j x) \\
\text { drop } & =\frac{P_{2} R+j P_{2} x-Q_{2} R j+Q_{2} x}{V_{2}} \\
& =\frac{\left(P_{2} R+Q_{2} x\right)+j\left(P_{2} x-Q_{2} R\right)}{V_{2}} \\
& =\frac{P_{2} R+Q_{2} x}{}+\dot{\tau}\left(\underline{\left.P_{2} x-Q_{2} R\right)}\right.
\end{aligned}
$$

Sub (2) in (1)

$$
\begin{aligned}
& v_{1}=v_{2}+\Delta v+j \delta v \\
& V_{1}^{2}=v_{2}^{2}+(\Delta r+j d v)^{2} \\
& v_{1}^{2}=\left(r_{2}^{2}+\Delta r\right)^{2}+(\Delta d r)^{2} \\
& =\left(V_{2}+\left(\frac{P_{2} R+Q_{2} x}{r_{2}}\right)\right)^{2}+\left(\frac{P_{2} x-Q_{2} R}{v_{2}}\right)^{2} \\
& V_{1}^{2} V_{2}^{2}=V_{2}^{2}+\left(P_{2} P+\theta_{2} \theta_{2} x\right)^{2}+2\left(P_{2} R+\theta_{2} x\right)^{V^{7}}\left(P_{2} x\right)^{2}+\left(\theta_{2} R\right)^{2} \\
& V_{1}^{2} V_{2}^{2}=\left(V_{2}^{2}+\left(P_{2} R+Q_{2} x\right)\right)^{2}+\left(P_{2} x-Q_{2} R\right)^{2} \\
& V_{1}^{2} V_{2}^{2}=V_{2}^{4}+\left(P_{2} R+Q_{2} x\right)^{2}+2 V_{2}^{2}\left(P_{2} R+O_{2} x\right)+\left(P_{2} x\right)^{2}+\left(Q_{2} R\right)^{2} \\
& -2 P_{2} \times D_{2} R \\
& 1_{1}^{2} v_{2}^{2}=U_{2}^{4}+\left(P_{2} R\right)^{2}+\left(Q_{2} x\right)^{2}+2\left(P_{2} R\right)\left(Q_{2} x\right)+2 v_{2}^{2}\left(P_{2} R+Q_{2} x\right) \\
& \text { mthe problem } \\
& v_{1}=v_{2} \\
& +\left(P_{2} x\right)^{2}+\left(O_{2} R\right)^{2} \\
& -2 P_{2} * \theta_{2} R \\
& \text { प }=y_{2}^{4}+\left(P_{2} R\right)^{2}+\left(\theta_{2} x\right)^{2}+2 v_{2}^{2}\left(P_{2} R+\theta_{2} x\right)+\left(P_{2} x\right)^{2}+\left(\theta_{2} R\right)^{2} \\
& R=5 \Omega \\
& x=20 \Omega \\
& P_{2}=30 / 8=10 \mathrm{~mW} \\
& Q_{2}=P_{2} \tan \phi \\
& =10 \tan (31.78) \\
& Q_{2}=6.19 \mathrm{I}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(P_{2} R\right)^{2}+\left(Q_{2}-Q_{C}\right)^{2} x^{2}+2 v_{2}^{2}\left(P_{2} R+\left(Q_{2}-Q_{C}\right) x\right) \\
& +P_{2}^{2} x^{2}+\left(\theta_{2}^{2}+Q_{c}^{2}-2 Q_{2} \theta_{C}\right) R^{2} \\
& 0=\left(P_{2} R\right)^{2}+\left(\theta_{2}^{2}+\theta_{c}^{2}-2 \theta_{c} \theta_{2}\right) x^{2}+2 v_{2}^{2}\left(P_{2} R+\theta_{2} x-\theta_{c} x\right) \\
& +P_{2}^{2} x^{2}+O_{2}^{2} R^{2}+Q_{c}^{2} R^{2}-2 Q_{2} Q_{C} R^{2} \\
& =(10 \times 5)^{2}+\left(6.195^{2}+Q_{c}^{2}-2(6.195) Q_{c}\right)(20)^{2}+2(19.05)^{2}(50+(6.15) 20 \\
& \left.-\theta_{c}(20)\right)+\left(10^{2} \times 20^{2}\right)+\left(6.195^{2} \times 5^{2}\right)+\left(\theta_{2}^{2}(5)^{2}\right) \\
& -2(6.195) \theta_{C}(5)^{2} \\
& =2500+\left(38.378+\theta_{c}^{2}-1239 \theta_{c}\right) 400+425.805\left(173.9-20 Q_{c}\right) \\
& +500+959.45+25 Q_{C}^{2}-309.75 Q_{C} \\
& =2500+15351 \cdot 2+400 Q_{c}^{2}-4956 Q_{c}+126217.49 \\
& -14516.1 \theta_{c}+1459.45+25 \theta_{c}^{2}-309.75 \theta_{C} \\
& -425 a_{c}^{2}+145528.14-19781.85
\end{aligned}
$$

$$
\begin{aligned}
& t_{1}=0.64 \\
& t_{1}=1 / t_{2} \\
& t_{2}=1 / t_{1} \\
& t_{2}=1.5625
\end{aligned}
$$

A 132 kV line is fed through an $11 / 132 \mathrm{kV}$ transformer from a constant 11 kv supply. At the load end y the
line the voltage is reduced by another tractprner line the voltage is reduced by another tranporner I nominal ratio $132 / 1 \mathrm{kV}$. The total impedance of the cine \& transformer at 132 kV is $25+j^{666} \Omega$ Both transformer are equiped with tap changing facilificu which one arranged so that the product I the two off-nominal Settings is unity. If load on the system is 100 mw at 0.9 P lamp Calculate the setting of Sap chomper required to maintain the voltage of the coed bulbar at 11 kV . we bine MVA of 100 MVA .

$$
z_{p u}=\frac{k\left\langle V A^{2}\right.}{K N N A_{2}} \quad=\frac{11^{2}}{100}=1.21
$$

$$
\begin{aligned}
& P F_{2}=\frac{1 / 0.00388}{1 / 0.003124+1 / 0.00388+1 / 0.0964} \\
& P F_{2}=0.318 \\
& \Delta P_{2}=50 \times 0.378 \\
& \Delta P_{2}=18.90 \\
& P_{2}=334.6+18.90 \\
& P_{2}=3535 \mathrm{~m} \mathrm{\omega} \\
& P F_{3}=1 / 0.0964 \\
& P F_{1}=0.1521 .0 .003124+1 / 0.00358+1 / 0.0964 \\
& \Delta P_{3}=7.60 \\
& P_{3}=122.2 .7 .60 \\
& P_{3}=122.2+7.80 \\
& P_{3}=12.8 .8 \mathrm{~m} \mathrm{\omega}
\end{aligned}
$$

a Coad 7
ed frosh lude

$$
\begin{aligned}
& \frac{\partial L_{i}}{\partial P_{G i}}=\frac{\partial F_{F}\left(P_{C_{i}}\right)}{\partial P_{c_{i} i}}+0+\lambda \frac{\partial P_{L i}}{P_{G i}}-\lambda=0 \\
& \int \frac{\partial F_{T}\left(P_{L_{i} i}\right)}{\partial P_{G_{i}}}+\frac{\lambda}{} \frac{\partial P_{C i}}{\partial P_{L i}}=\lambda \rightarrow 3
\end{aligned}
$$

Solution of econornic dipatch using d-iterahon D method (with comen)

$$
\frac{\partial F_{T}\left(P_{G i}\right)}{\partial P_{G i}}+\frac{\lambda P_{L_{i}}}{\partial P_{G i}}=\lambda
$$

Stept Set itrahon Count $k=0$, ANsume the valuy
81-rp6 - Susstitute thevalue $? A$ is co-ordiratey eque s hence oblainn $P_{G_{1}}, P G_{2}, P G_{3}, \ldots P_{4}$ no

$$
P_{m}=\frac{1-\frac{B_{m}}{\lambda}-\sum_{i-i}^{\ldots}}{\neq m} \frac{G_{m}}{\lambda}+2 B_{\text {mum }}
$$

Step3:-

$$
\sum_{i=1}^{n} P_{i i}=P_{0}+P_{c}
$$

Sub $P_{n_{1}}, P_{c_{21}} \ldots P_{n_{3}}$ in prower batence en n if the eqme is sathified go wo skep(4)

$$
\sum_{i=1}^{n} P_{G i}<P_{\text {oft }}^{0} P_{i}, \uparrow \lambda
$$

Yov a 2 unit plant-a power loss es giran by

$$
P_{L}=B_{11} P_{1}^{2}+2 B_{12} P_{1} P_{2}+B_{22} P_{2}^{2}
$$

with luss
Start
$\frac{\text { Count } k=0}{J}$
Asumerand
Sab the value $P G_{G_{11}} P G_{2}, P G_{3}, \ldots P G_{n}$

$$
\begin{gathered}
P_{m}=1-\frac{B_{m}}{\lambda}-\sum_{\substack{i=1 \\
\sim m}}^{N} 2 B_{m n} P_{n} \\
\sigma_{m} \mid \lambda+2 B_{m n} \\
1
\end{gathered}
$$

Sub $P_{1}, P_{2} \ldots P_{n}$ in power
Galance q^{\sim}

$$
u=(x)
$$

$$
\mid
$$ vabus

Cheote for
inequatíy
Constrinter
No

witheret loys

Asrume value by λ

Sub the value $P_{G 1}, P_{G_{2}}, P_{G_{3}}, \ldots P_{C_{n}}$

Chect for eonequality lenstreint

(Sase Construct the priority list for the knits given below
 The over in whichothe unit is commit

$$
\begin{aligned}
& 2 \\
& 2,1 \\
& 2,1,3
\end{aligned}
$$

For a two unit system the last coefficient, for

$$
\begin{aligned}
& B_{11}=\left[\begin{array}{cc}
0.001 & -0.0005 \\
-0.0005 & 0.0024
\end{array}\right] \rightarrow \text { lew co.effricent } \\
& \frac{d c_{1}}{d p_{1}}=0.08 p_{1}+16 \mathrm{Rs} / \mathrm{H} \mathrm{\omega hr} \\
& \frac{d c_{2}}{d p_{2}}=0.08 p_{2}+12 \mathrm{Rs} / H \omega \mathrm{hr}
\end{aligned}
$$

Find the Generation o $P_{1} \& P_{2}$ for $\lambda=50$ \& also Compete the transmission loss \& resultant poon

$$
\frac{P_{m}=\frac{1-\frac{B_{m}}{\lambda}-\sum_{i=1}^{n} 2 B_{m n} P_{n}}{\frac{\sigma m}{\lambda}+2 B_{m m}}}{B_{11} P_{1}^{2}+2 B_{1 n} P_{1} P_{2}+B_{22} P_{2}^{2}}
$$

$$
P_{L}=B_{11} P_{1}^{2}+2 B_{12} P_{1} P_{2}+B_{22} P_{2}^{2}
$$

$$
\sigma_{1}=0.08, \quad \beta_{i}=16
$$

$$
\sigma_{2}=0.08, B_{2}=12
$$

$$
\begin{aligned}
P_{1} & =\frac{1-\frac{B_{1}}{1}-2 B_{12} P_{2}}{\frac{\sigma_{1}}{50}+2 B_{11}} \\
& =0.68+0.001 P_{2}
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}=\frac{1-\frac{B_{2}}{1}-2 B_{2}, P_{1}}{\frac{\sigma_{2}}{A}+2 B_{22}} \\
& P_{2}=\frac{1-\frac{12}{50}-2(2.005) P_{1}}{\frac{0.08}{50}+(2 \times 0.0024)} \\
& P_{2}=\frac{0.76+0.001 P_{1}}{6.4 \times 107^{3}} \\
& P_{2}=118.75+0.756 P_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+3289+0.043 P_{1}\right) \\
& 2221-18+0.0439 \\
& \left.P_{1}=0.043 P^{2}\right) \\
& P_{1}(0.957
\end{aligned}
$$

Oteral	P_{1}	P_{2}
0	0	0
1	18869	$44 P_{2}$
2	229.94	154.62
3	231.9	154.89
4	231.79	154.9

$$
\begin{aligned}
& P_{1}=231.7, P_{2}=154.9 \\
& P_{L}=B_{11} P_{1}^{2}+2 B_{12} P_{1} P_{2}+B_{22} P_{2}^{2} \\
& =0.001(231.79)^{2}+2(-0.0005 \times 237.29 \times 154.9) \\
& +\left(0.0029(1550154.9)^{2}\right. \\
& P_{L}=75.4 \mathrm{MV}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
k & P_{1} & P_{2} \\
0 & 0 & 0 \\
1 & 33.33 & 49.21 \\
2 & 41.54 & 50.14 \\
3 & 41.70 & 50.16 \\
4 & 41.70 & 50.16
\end{array} \\
& P_{1}=41.7 \mathrm{MW} \\
& P_{2}=50.16 \mathrm{NHO} \\
& P_{L}=B_{11} P_{1}^{2}+2 B_{12} P_{1} P_{2}+B_{22} P_{2}^{2} \\
& =(0.001)(41.7)^{2}+2(-0.0005)(41.7)(50.16) \\
& P_{l}=5.68 \mathrm{NW} \\
& P_{G}-P_{L}=P_{D} \\
& 41.7+50.16-5.08=86.18 \mathrm{Mm}
\end{aligned}
$$

T the λ value from (3)

$$
\frac{A-24 /}{P_{m}=\frac{1-\frac{\beta_{m}}{\lambda}-\sum_{i=1}^{n} 2 B_{m n P}}{\frac{\sigma m}{n}+2 B_{m m}}}
$$

$$
\begin{aligned}
& P_{1}=\frac{1-20 / 27-2(-0.0005) P_{2}}{1+2(0.001)} \\
& \frac{0.1}{27}+2(0.001) \\
& P_{1}=\frac{0.26+0.001 P_{2}}{0.0037+0.002} \\
& P_{1}=\frac{0.26+0.001 P_{2}}{0.0057} \\
& P_{1}=45.61+0.175 P_{2} \\
& P_{2}=\frac{1-\frac{\beta_{2}}{\lambda}-2 B_{21} P_{1}}{\frac{\sigma_{2}}{\lambda}+2 B_{22}} \\
& =\frac{1-\frac{15}{27}-2(-0.0005) P_{1}}{\frac{0.1}{27}+2(0.0024)} \\
& =\frac{0.44+0.001 P 1}{0.0037+0.0048} \\
& =\frac{0.44+0.00(P)}{0.00 .85} \\
& P_{2}=\left(-52.2,3+0.117 P_{1}\right) \\
& \begin{array}{llll}
k & P_{1} & P_{2} \\
0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
P_{L} & =B_{11} P_{1}^{2}+2 B_{12} P_{1} P_{L}+B_{22} P_{2}^{2} \\
& =B_{1117 \mathrm{MW}}
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}+P_{2}-P_{C}=P_{D} \\
& 58 \cdot 76+58 \cdot 75-8 \cdot 117=100 \\
& 106.3>100 \\
& \lambda=25-\frac{25-27}{86.18-106.3}(100-8618) \\
& \lambda=26.37 \\
& \text { - } P_{m}=1-\frac{\beta_{m}-\sum_{i=1}^{n} 2 B_{m n} P_{n}}{\frac{\sigma_{m}}{\lambda}+2 B_{m m}} \\
& P_{1}=\frac{1-\frac{\beta_{1}}{1}-2 B_{12} P_{2}}{\frac{\sigma_{1}}{1}+2 B_{11}} \\
& =\frac{1-\frac{20}{26.37}-2(-0.0005) P_{2}}{\frac{0.1}{25.37}+2(0.001)} \\
& =\frac{0.24+0.001 P_{2}}{\operatorname{sinn} 2+a}
\end{aligned}
$$

$$
\begin{aligned}
& P_{L}=\frac{1-\frac{\beta_{2}}{\lambda}-2 B_{21} P_{1}}{\frac{\sigma_{2}}{\lambda}+2 B_{22}} \\
& =\frac{0.43+0.001 P_{1}}{0.0637+0.0048} \\
& =\frac{0.43+0.001 P_{1}}{0.0005} \\
& P_{2}=50.58+0.1176 P_{1} \\
& \begin{array}{llll}
k & P_{1} & P_{2} & \\
0 & 0 & 0 & 0
\end{array} \\
& 1=41.45 \quad 54.96 \\
& 250.85 \quad 56.05 \\
& 3 \quad 51.04 \quad 56.08 \\
& 4 \quad 81.04 \quad 56.08 \\
& P_{1}=55.76 \mathrm{~km} \\
& P_{2}=55.75 \mathrm{~m} \mathrm{\omega} \\
& P_{l}=B_{1} P_{1}^{2}+2 B_{12} P_{1} P_{2}+B_{22} P_{2}^{2} \\
& =7.21 \mathrm{HW} \\
& P_{D}=P_{1}+P_{L}-P_{L}=51.04+56.08-7.21 \\
& P_{D}=99.91 \mu \omega
\end{aligned}
$$

Sase point s participation factor:-
if the demand is increases means, the un also participation to fullfill the demand

The Change in the demand load is equal A The unit power which are all participates \& make equal to I

$$
\begin{aligned}
P F & =\frac{\Delta P_{i}}{\Delta P_{D}} \\
& =\frac{\Delta P_{1}}{\Delta P_{0}}+\frac{\Delta P_{2}}{\Delta P_{D}}+\cdots+\frac{\Delta P_{n}}{\Delta P_{\Xi}} \\
& =\frac{\Delta P}{\Delta P_{D}} \\
& =1
\end{aligned}
$$

Wot :..

$$
\begin{aligned}
& F_{T_{i}}=a_{i} p_{i}^{2}+b_{i} P_{i}+c_{i} \quad R_{\&} \mid h_{r} \\
& \frac{\partial F_{i}}{\partial P_{i}}=2 a_{i} P_{i}+b_{i}=\lambda
\end{aligned}
$$

From the fig, $\left.\left.\frac{d y}{d s e}-\frac{d}{1} \right\rvert\, \frac{\partial F_{i} \theta}{n}\right)=\frac{d}{1}\left(F_{i}^{\prime}\right)$

$$
\begin{aligned}
& \sum_{i=1}^{n} \Delta P_{i}=\frac{\Delta \lambda}{F_{i}^{\prime \prime}} \\
& \Delta P_{1}=\frac{\Delta 1}{F_{1}^{\prime \prime}}, \Delta P_{2}=\frac{\Delta \lambda}{F_{2}^{\prime \prime}} \\
& \Delta P_{n}=\frac{\Delta \lambda}{F_{n}^{\prime \prime}} \\
& \Delta P_{1}+\Delta P_{2}+\cdots+\Delta P_{n}=\frac{\Delta \lambda}{F_{i}^{\prime \prime}}+\frac{\Delta \lambda}{F_{2}^{\prime \prime}}+\cdots+\frac{\Delta \lambda}{F_{n}^{\prime \prime}} \\
& \Delta P_{D}=\Delta \lambda\left(\sum_{i=1}^{n} 1 / F_{i}^{\prime \prime}\right)
\end{aligned}
$$

Perticipation factor (PF)

$$
\begin{aligned}
& P F_{1}=\frac{\Delta P_{1}}{\Delta P_{D}}=\frac{\Delta \lambda / F_{i}^{\prime \prime}}{\Delta \lambda\left(\sum_{i=1}^{n} / F_{i}^{\prime \prime}\right)} \\
& \Delta P F_{2}=\frac{\Delta P_{1}}{\Delta P_{D}}-\frac{\Delta \lambda / F_{i}^{\prime \prime}}{\Delta \lambda\left(\sum_{i=1}^{n} / F_{i}^{\prime \prime}\right)} \\
& P F_{i}=\frac{\Delta P_{i}}{\Delta P_{D}}=\frac{\Delta \lambda / F_{i}^{\prime \prime}}{\Delta \lambda\left(\sum_{i=1}^{n} / / F_{i}^{\prime \prime}\right)} \\
& \text { in gemeral } \\
& P_{i=1}=\frac{1 / F_{i}^{\prime \prime}}{\sum_{i=1}^{n} / F_{i}^{\prime \prime}}
\end{aligned}
$$

$$
\begin{aligned}
& =574+0.58(1.3) \\
& D_{0}=575.5 \\
& P_{1}=72.75 \mathrm{MW} \\
& D_{2}=360 . \mathrm{m} \\
& D_{3}=9.2 .5 \mathrm{~mm}
\end{aligned}
$$

Solution $q \frac{\text { economic dinpatch problem (with losies }}{\text { ion }}$ Using Co-ordination squation method Objechise funchion

Obifn ine $T_{T}(P G i) \rightarrow(1)$
The aboue optimaisuhien problem Subjected to the following Constratint
i) $\sum_{i=1}^{n} P_{4 i}=P_{D}+P_{L}-$ eqvality $\Rightarrow P_{D}+P_{i}-\sum_{i=1}^{n} P_{4 i}$
ii) $P_{\text {mir }} \leqslant P_{\text {Gi }} \leqslant P_{\text {himan }}$ - inequality The above ophimaikiohion proplem is solued by Cagrangian funchoon method

The above equality constraist connintteng

$$
P_{D}+P_{i} d-\sum_{i=1}^{\infty} P_{i i}=0
$$

UNIT - IV ECONOMIC OPERATION OF POWER SYSTEM

Spinning reserve describes total generation obtain for all the units synchronized to power system minus total demand minus total loses
Usually $10-15 \%$ peale demand is tatcen Spinning revere
Spinning rescues supply power for the follow Hoo condition
i) Temporary loss f or 2 units in P.S
ii) lass of heavily loaded unit..

Bottling of restrings x

Demand serum
Consider two areas $\theta_{1} \& \theta_{2}$, generates

But Anile tie- line capacity of to HW it to not pornble or ranges. the sinroy of poor in

Area 2
eventhough there is iirculase amount owe cons due in Areal due to limitation in tire lie capacity the prow is not able to be dranof 2 the bredA in
This condition wis preuilling lalled of bother η reserve.
off line revere:-
Thin type Z orevouns is mainly used for mainutainance prepare
Thermal Constraints:-
The Operation of thermal Constraints depends cyorr tho parameter temp \& premme. Band en that, the thermal power plant is Sbbirected to the following constraints
11) Min coon time:-

One the unit is de. Committed in order ho recommit the same unit it requires some time. This lime requi is min. down time
iv) Crew Constraints: for Simulataneous operations twoor mover unit in power system and its requires more member to operators

Shytro Constraints
Here the hydro conits are given
MOSG RON STAFUE that is the unit is allow ho operate through out the day. feel constraints

Here, the unit is openated in such a roy that the cut of the fuel is mains at trod minimum

Plant 1) Cuvirg
2) Bemlung

In the $1^{\text {st }}$ Care, the plant is allowed to cool to a lower temp. \& then heated up to its operatic. temperature
In $2^{\text {and }}$ Cere the plant irs heated directly ho it Operative temperature.
Start up cos t for coring:-

$$
C=C_{C}\left(1-e^{-t / \alpha}\right)+t^{C}+
$$

start up cost for bamlaing

$$
\therefore=c_{c} \times t \times F+e_{f}
$$

Consider a Bunit plant who cost equahin us givenbeh

$$
\begin{aligned}
& C_{1}=561+7.292 P_{1}+0.00156 p_{1}^{2} \\
& C_{2}=310+7.85 P_{2}+0.000194 p_{2}^{2} \\
& C_{0}=7801+
\end{aligned}
$$

prionty list methend.
A unit Commitment froblem by a priovity Ust me then by colculating FLAPC (fult load Avkrige produchion lost) the anit with leak FLAPC is trerned bN' firct \& the crame procedeve ix carriced for emaining unit,
To decommit, the unit with highest FLAPC is turved on first. prionty list Dmetiod can be better
emplain w emplain w
The pest eq of B renit plant is given belo
(1) cmit

$$
C_{1}=561+7.92 p_{1}+0.00156 p_{1}^{2}
$$

$$
c_{2}=3.0+7.86 P_{2}+0.00194 P_{2}^{2}
$$

$$
{ }^{\prime} C_{3}=280+7.97 P_{3}+0.00482 P_{3}^{2}
$$

$$
\begin{aligned}
& 1 \begin{array}{cc}
R_{\text {min }} \text { Pmay } \\
2 & 100 \\
300 & 400 \\
3.50 & 200
\end{array} \\
& \text { CLAPT }=\frac{C_{i}\left(P_{i}\right)}{P_{i}\left(F e_{e}\right)}
\end{aligned}
$$

$$
F\left(\left.A P C_{1}=\frac{C_{1}\left(P_{1}\right)}{P_{1}\left(F_{1}\right)}=\frac{587466}{600}=9.771 \mathrm{Rs} \right\rvert\, \mathrm{Mw}\right.
$$

$$
L L A P C_{2}=\frac{C_{2}\left(P_{2}\right)}{P_{2}\left(F_{2}\right)}=\frac{3780.4}{400} \div 9.401 \mathrm{R} / 4 \mathrm{~W}
$$

oads
MVAR injection of switched capacitor to maintuin accepta voltage froffile and a Hinimize lesses:-
Static Var comperiatos:-
Cocated in recenivin Jabstations \& distributh Systom
Adve
(3) For steplen variation

- Trmpisent stabivity 2 reachive be inporoued syblew trastrimitan capacity car be increaned

$$
x
$$

Solution of ecomomic dimpate heroblem (without Guves) using co-ordination equation method. - bjective fanction
obi fn: $F_{T}\left(P_{G i}\right) \rightarrow(1)$
i) The aboue optinnainalim problen Sutjected to the following conetraints.
i) $\sum_{0}^{N} P_{G i}=P_{D}=$ Equality Constraints $\}$

The a boue equality constrairt con written as

$$
P_{D}-\sum_{i=1}^{N} P_{G i}=0
$$

Therefore Lengrangian

$$
\begin{align*}
\mathcal{L} & =0 b_{j} f\left(n+\lambda\left(E_{P} \cdot \text { Contronti) }\right)\right. \\
& =F_{T}\left(P_{G i}\right)+\lambda\left(P_{D}-\sum_{i=1}^{n} P_{G i}\right) \\
\frac{\partial \mathcal{L}}{\partial P_{G i}} & =\frac{\partial F_{T}\left(P_{G i}\right)}{\partial P_{G i}}+\lambda(0-1) \\
\frac{\partial \mathcal{L}}{\partial P_{G i}} & =0 \\
0 & =\frac{\partial F_{T}\left(P_{G i}\right)}{\partial P_{G i}}-\lambda \\
\lambda & =\frac{\partial E_{T}\left(P_{G i}\right)}{\partial P_{G i}} \tag{3}
\end{align*}
$$

19 3 is known as lo-ordination eqn (withont canus)
oolutions $\frac{\text { on-ordination eqn wing d-iteration }}{}$
$\lambda=\partial F_{T}\left(P_{C}\right)$ Method (without caner)
Stepl:- bet iteration count $k=0$, Ansume the value of A
Step2: Substifute the value of A in cu-ordinates eqn A hence oftain $P_{G_{r}}, P_{G_{2}}, P_{G_{3}}$.... Phan
Shep 3: Subs $P_{h_{1}}, \mathrm{~Pa}_{3}, \ldots . \mathrm{P}_{h_{3}}$ wir powor balance eqn
if the equa a satisferd go ho step (4)

$$
\begin{aligned}
& \sum_{i=1}^{N} P_{G}<P_{D},+1 \\
& \sum_{i=1}^{w} P_{G}>P_{D_{1}}+1
\end{aligned}
$$

go \% steq (4).
Step4:- Check for inequality corstraimlt.

$$
P_{G i m i n} \leqslant P_{G_{i}} \leqslant P_{G_{n} \text { man }}
$$

if salimfied gobol (Aiterahian)
else
Set $P_{\text {Gi }}=P_{G_{r}}$ min
Set $P_{7 i}=P_{\text {Griman }}$
go ho (1)

Qhep 3:-

$$
\begin{aligned}
& \sum_{i=1}^{n} P_{G i}=P_{D} \quad i=1,2,3 \\
& P_{G i}+P_{G_{2}}+P_{G_{3}}=P_{D} \\
& 65+5+85.71=200 \\
& 155.7 \neq 200 \\
& <200
\end{aligned}
$$

increare 1 by 2

$$
\lambda=30
$$

$$
\begin{aligned}
& \lambda=\frac{\partial e_{1}}{\partial P_{1}}=0.1 P_{1}+21.5=30 \Rightarrow P_{1}=85 \mathrm{MW} \\
& \lambda=\frac{\partial c_{2}}{\partial P_{2}}=0.2 P_{2}+27=28 \Rightarrow P_{2}=15 \mathrm{~mW} \\
& \lambda=\frac{\partial c_{3}}{\partial P_{3}}=0 . \mathrm{mP}_{3}+16=28 \Rightarrow P_{3}=00 \mathrm{mw} \\
& P_{1}+P_{2}+P_{3}=200 \\
& \quad 200=200
\end{aligned}
$$

equality contraikts is sa lisfy
Stepu: Check for inequility constraint$P_{\text {Gimina }} \leqslant P_{G i} \leqslant P_{\text {himan }}$

Now the plant is oneducad toy Sumit

$$
\begin{gathered}
P_{0}=200-39=161 \mathrm{MW} \\
P_{1}+P_{3}=161 \mathrm{MW} \\
P_{1}=P_{3}=\frac{161}{2}=80.5 \mathrm{NW}
\end{gathered}
$$

put $P_{1}=80.5$,

$$
\begin{aligned}
& \frac{\partial c_{1}}{\partial P_{1}}=0.1 P_{1}+21.5=80 \\
& \frac{\partial C_{3}}{\partial P_{3}}=0.14 P_{3}+16=30
\end{aligned}
$$

Sib $1=30$

$$
\begin{aligned}
& \text { (8)+8. }\left[\begin{array}{l}
P_{1}=85 \mathrm{MW} \\
P_{2}=100 \mathrm{NW}
\end{array}\right. \\
& P_{1}+P_{3}=161 \\
& 185>161 \\
& 1,1+2 y \\
& 1=28
\end{aligned}
$$

Aubs $1: 28$ in co-ordinabe

$$
\begin{aligned}
& \left.\Rightarrow 0.1 \mathrm{P}+21.5=28 \Rightarrow \mid 8_{1}=65 \mathrm{~mm}\right] \\
& \Rightarrow 0.14 \mathrm{P}_{3}+16=8 \mathrm{P}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=28, \lambda_{0}=30, P_{1}=150.7, P_{0}=185 \\
& \lambda_{1}+\frac{\lambda_{1}-\lambda_{0}}{P_{7}-P_{0}}\left(\lambda_{0}-P_{1}\right) \\
& =\frac{28+28+30}{(150.2-185)}(161-150.2)
\end{aligned}
$$

$$
=28+0.6
$$

$$
=28.6
$$

Bub $t=28.1$ in kor co-ordinahen a,

$$
\begin{aligned}
\lambda=\frac{\partial c_{1}}{\partial P_{1}}=0.11_{1}+21.5=28.6 \Rightarrow P_{1} & =1 / \mathrm{NW} \\
P_{3} & =90 \mathrm{NW} \\
P_{2} & =39 \mathrm{mw}
\end{aligned}
$$

For the abow problem calculate, the net facing by economic toad sharing toy Compare to equal hoad Sharing

$$
\begin{array}{rlrl}
C_{1} & =0.05 P_{1}^{2}+21.5 P_{1}+500 & \\
C_{1} & =2155.64 R 5 / \mathrm{hr} \\
C_{2} & =0.1 P_{2}^{2}+27 P_{2}+500 & \\
& =002744.52 \mathrm{R}_{5} / \mathrm{hr} & \\
C_{3} & =0.07 P_{3}^{2}+16 P_{3}+900 & C_{1}=122.91 \mathrm{k} \\
& =2277.86 \mathrm{R}_{1} / \mathrm{hr} & C_{2}=1089.47 \mathrm{H} \\
C_{1} & =0.05 P_{1}^{2}+21.5 P_{1}+800 & C_{3}=628.45 \mathrm{H}
\end{array}
$$

$$
\begin{aligned}
& 0.2 P_{2}+40=50 \\
& P_{2}=50 \\
& 16667<200 \\
& \lambda=55
\end{aligned}
$$

-d is increane try is

$$
\begin{gathered}
0.3 \cdot P_{1}+15=55 \\
P_{1}=133.33 \mathrm{mw} \\
0.2 P_{2}+40=55 \\
P_{2}=75+\mathrm{HW} \\
208.33>200
\end{gathered}
$$

λ is decrean byl

$$
\begin{gathered}
0.2 P_{1}+15=54 \\
\sqrt{P_{1}=130 \mathrm{~m} \mathrm{\omega}} \\
0.2 P_{2}+40=54 \\
P_{2}=70 \mathrm{~m} \mathrm{\omega} \\
P_{1}+P_{2}=200 \\
200=200
\end{gathered}
$$

Them,$A=54$

Chasdenz Cs

$$
\begin{aligned}
& Q_{1}=0.002 \mathrm{Q}_{1}^{2}+0.8 \mathrm{P} P_{1}+20 \text { tonnes } / \mathrm{hr} \\
& Q_{2}=0.004 P_{2}^{2}+1.08 P_{2}+20 \text { tornes } / \mathrm{hr} \\
& Q_{3} 0.0028 P_{3}^{2}+0.64 P_{3}+36 \text { formens } / \mathrm{hr}
\end{aligned}
$$

if the fuel con. Is tro/tomes the man s min genination lavel each unit 120 mw \& 36 HW. gypu. fores losot? Find the Optimum dchedubin for the iotal load I 200 mm
Sof tuedcost is s00 R.s/honres.
Murtiply the cort fuel un alleq.

$$
\begin{aligned}
& C_{1}=P_{1}^{2}+480 P_{1}+10000 \\
& C_{2}=2 P_{2}^{2}+540 P_{2}+10000 \\
& C_{3}=1.4 P_{3}^{2}+320 P_{3}+18000
\end{aligned}
$$

Srepi-1
Ansume,

$$
\begin{aligned}
& P_{1}+P_{2}+P_{3}=2000 \\
& P_{1}=P_{2}=P_{3}=\frac{d 00}{3}=66.67 \mathrm{M} \mathrm{~W}
\end{aligned}
$$

wht

$$
\lambda=\frac{\partial F_{1}}{10}=0.003 P_{1}+430
$$

Slop $2:-$

$$
i=1,2,3
$$

Co-ordination eq

$$
\begin{aligned}
& \lambda=\frac{\partial C_{1}}{\partial P_{1}}=2 P_{1}+420=563, \mid P_{1}=66.5 \mathrm{MW} \\
& \lambda=\frac{\partial C_{2}}{\partial P_{2}}=4 P_{2}+540=563, P_{2}=5.75 \mathrm{MW} \\
& \lambda=\frac{\partial C_{3}}{\partial P_{3}}=2.8 P_{3}+320=563, P_{3}=86.78 \mathrm{mw}
\end{aligned}
$$

814

$$
\begin{aligned}
& \sum_{i}^{n} P_{G i}=P_{D}, \quad i=1,2,3 \\
& i-1 \\
& P_{G_{i}}+P_{G_{2}}+P_{G_{3}}=P_{D} \\
& 86.5+5.75+86.78=200 \\
& 159.03<200
\end{aligned}
$$

$$
464+29
$$

increace λ by 5

$$
\begin{aligned}
& \lambda= \frac{\partial C_{1}}{\partial P_{1}} \Rightarrow 2 P_{1}+430=568, \mid P_{1}=69 \mathrm{mw} \\
& \frac{\partial C_{2}}{\partial P_{2}} \Rightarrow 4 P_{2} \neq 540=568, P_{2}=7 \mathrm{mw} \\
& \frac{\partial C_{3}}{\partial P_{3}} \Rightarrow 2 . S P_{3}+320=568, P_{3}=88.57
\end{aligned}
$$

$$
164.57<200
$$

$$
\begin{array}{r}
P_{1}+P_{2}+P_{3}=200 \\
84+16+101 \cdot 42=200 \\
204 \cdot 42>200
\end{array}
$$

Step-5
λ decrean by 4

$$
\begin{aligned}
& \frac{\partial c_{1}}{\partial P_{1}}=P_{1}=85 \mathrm{~m} \mathrm{\omega} \\
& \frac{\partial C_{2}}{\partial P_{2}}=P_{2}=15 \mathrm{M} \mathrm{\omega} \\
& \frac{\partial C_{3}}{\partial P_{3}}=P_{3}=100 \mathrm{H} \mathrm{\omega} \\
& 200=200 .
\end{aligned}
$$

Equality anolition is valinficel.
Step 6
Qhecelefor inequaily Constraint $P_{G_{i} \text { min }} \leqslant P_{G_{i}} \leqslant P_{G_{1}}$ man

$$
\begin{aligned}
& P_{\text {Gimin }}=36 \mathrm{MW} \\
& P_{\text {Giman }}=120 \mathrm{~mW} \\
& P_{1}=85 \mathrm{MW} \text { set-as } R_{2}= \\
& P_{2}=15 \mathrm{MW}=36 \mathrm{~mW} \\
& P_{3}=100 \mathrm{~mW}
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=82 \mathrm{\mu w} \\
& \frac{\partial C_{1}}{\partial P_{1}}=2 \cdot P_{1}+430=6594 \\
& \operatorname{sub} \lambda=50005 \\
& \frac{\partial C_{1}}{\partial P_{1}}=2 P_{1}+430=594, P_{1}=82 \mathrm{~mW} \\
& \frac{\partial C_{3}}{\partial P_{3}}=2.8 P_{3}+320=594, P_{3}=97.8 \\
& P_{1}+P_{3}=164 \\
& 82+97.8=164 \\
& 179.8>164
\end{aligned}
$$

1 is decrease by 10

$$
\begin{aligned}
& \frac{\partial C_{1}}{\partial P_{1}}=2 P_{1}+430=584 ; \frac{P_{1}=77 \mathrm{Mm}}{\frac{\partial c_{3}}{\partial P_{3}}=2.8 P_{3}+320=584, P_{3}=944 \cdot \mu \mathrm{~m}} \\
& 171.87164
\end{aligned}
$$

λ is decrean by 10

$$
\begin{aligned}
& \frac{\partial C_{1}}{\partial P_{1}}=2 P_{1}+430=574, \frac{\mid P_{1}=72 \mu \mathrm{w}}{\sqrt{n}}=2.8 P_{3}+920=574, \frac{P_{3}=90.71 \mu \omega}{}
\end{aligned}
$$

UNIT 5 - COMPUTER CONTROL OF POWER SYSTEM

FMS comiste of energy management, Are, security (entry), SCADA, lond management otc.

I ntrasuction :
The use of computers nowadays encompasses al phases -of power system operation:

1. Planning
2. Forecasting 3. Sinatuding
*. Security \leqslant 5. Power sim control
With in the power stations, automation is taking of to a large extent. Self twining requataors using per computers ore being installed for more effective cons and improved efficiency.

The use of modern posset sxystan person computers for proust system viturol function in a control room is also being, advocated, because Their reliability and high functional content.
Energy Control Centre Functions:-
An energy Conked centre (EC) manages the o tasks and provides optimal operation of the system. A kypical untrol centre can perform -the following funckin

1. Load Forecasting.
2. System Planning

3 Unit Commitment
4. Maintanance Scheduling
5. Security Monitoring

Feal time computer Control -f power system:
The computer system involves dual cont with external interfaces to monitor the data.

The first one is a process computer link by telechannels to various generating and sub-stal for data acquisition.

The second one is a larger one where me calculations are curried out and is linked to the process computer.

For a coed time computer control of power -systems, the following basic components are needed:

1. System Wide instrumentation
2. High Speed digital telemetry
3. Central Processing Unit
4. Memory St bulk Storage

5 Interackue dIsplay \&I
6. Software (operating S_{1} Application)

The real tone contret computer consists of moo and interfaces, CPU, memory and bulk storage E 1/p $T / / \mathrm{P}$ devices like display devices, caud-reader,

Leal control contra:
A no of control functions can be performed locally at power generating stations and substation using local equipment and automatic denies. LCC have the following functions.

1. Local monitoring \&i Control
2. Protection
3. Feeder Synchronization
4. Auto-Rectoswre
5. Load shading if:

4 Voltage Regulation
8 Network restoratic
5 Capacitor Switching
Area hood dispatch centre:
A group of generating stations \&i sub-statis along with the associated now and loads may considered as ex unit for control under an aral lead dispatch centre.

The area control centre receives inform and process it for appropriate control actic

Fourth level -interconnected (Toplerel) power systems

Regional control centre.

Supervisory Control AND Data ACquisition (SCADA.
SCADA system is an derangement which consists many equipments which performs controlling and monitoring of a power system or a part of a prier system.
Locations of

1. Master control Centra (National Grid control
2. Zonal (Regional) control centre
3. District (State EB) control centre

4 Control rooms of generating stations \&f Large substations
SCADA requires two -way communication channels the master control centre and remote control centric through
(i) Microwave
(ii) (ables (separate)
(ii) (arris Communitation (PLC)

Featuer of SLADA systeme:

1. Data cellection (Data Acquisition)
2. Data Tranemission (Telenetry)
3. Scanning, Tredicatton, Manitaring rhagging
4. Execution of operating cummands: on (ofr, Ralse liower
5. Network, supervision, Alarms \&f reeport any uncomman charge of state
6. Controi Sy Indication
7. Encure sequential Events

Type 1 : Small distribution systems, smail hydrosta HVDC links.
Type 2 : Meatium sized powere systems, powe - stations, HVDC links distribution syste

Type 3 : Regional control centre
Type 4 : National is Regional contrdLentre

* from rame location \forall from Rencte instruction/information Iretruction / Infoor
operator with the aid of antique and digital control syitem in the plane

The breakers can be operated by remote control from the control som. During -faults and abnormal conditions, the breaker are eloerested by protective relays automatic Thus the primary control in 55 is of a care. SCADA sim in ss: I communication charnels MODEM
 Amperes, hats etc

Unit bevel
From this hovel the lines, $t / f s$ are centre
S Rupervised. The equipment is divided into a no If independent units. This division improves the operating reliability S_{1} esmplifies future extencia much au additional lines.

The foe are

1. Line protection Breaker Failure Protection

2 Auto . Reclosing
3 Syinchratitsing check
4 Energy Metering
5 Cellescion of position indication \&ै measured values.
6. Execution If commands from substation love computer.
7. Back lip Control

