
Digital Logic Circuits

Unit 1

2. Course Objectives

To introduce various number systems and methods to simplify the

logical expressions using Boolean functions

To understand the combinational circuits

To design various synchronous and asynchronous circuits.

To introduce asynchronous sequential circuits and PLDs

To introduce digital simulation for development of application oriented

logic circuits

3. Pre Requisites (Course Names with Code)

The pre requisite course is:

Circuit Theory EE 8251

4. Syllabus (With Subject Code, Name, LTPC details)

EE8351 DIGITAL LOGIC CIRCUITS L T P C

 2 2 0 3

UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 6+6

Review of number systems, binary codes, error detection and correction codes

(Parity and Hamming code) - Digital Logic Families -comparison of RTL, DTL, TTL,

ECL and MOS families -operation, characteristics of digital logic family.

UNIT II COMBINATIONAL CIRCUITS 6+6

Combinational logic - representation of logic functions-SOP and POS forms, K-map

representations - minimization using K maps – simplification and implementation of

combinational logic –multiplexers and de multiplexers – code converters, adders,

subtractors, Encoders and Decoders.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS 6+6

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering –

counters -asynchronous and synchronous type - Modulo counters - Shift registers –

design of synchronous sequential circuits – Moore and Melay models- Counters,

state diagram; state reduction; state assignment.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND
PROGRAMMABILITY

LOGIC DEVICES 6+6

Asynchronous sequential logic circuits-Transition stability, flow stability-race

conditions, hazards &errors in digital circuits; analysis of asynchronous sequential

logic Circuits, introduction to Programmability Logic Devices: PROM – PLA –PAL,

CPLD-FPGA.

UNIT V VHDL 6+6

RTL Design – combinational logic – Sequential circuit – Operators –

Introduction to Packages – Subprograms – Test bench. (Simulation /Tutorial

Examples: adders, counters, flip flops, Multiplexers & De multiplexers).

TOTAL : 60 PERIODS

TEXT BOOKS:

1.James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.

2.M. Morris Mano, „Digital Design with an introduction to the VHDL‟, Pearson

Education, 2013.

3.Comer “Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES

1.Mandal, “Digital Electronics Principles & Application, McGraw Hill Edu, 2013.

2.William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.

3.Thomas L.Floyd, „Digital Fundamentals‟, 11th edition, Pearson Education, 2015.

4.Charles H.Roth, Jr, Lizy Lizy Kurian John, „Digital System Design using VHDL,

Cengage, 2013.

8. Activity based learning

Basic level –

Play with Binary Numbers using Binary Puzzles http://www.binarypuzzle.com/

Binary to create on-off pictures, Binary magic tricks

https://www.digitaltechnologieshub.edu.au

Troubleshooting Logic Gates for

1.Open Input

2. Open Output conditions

Logic Gate Testing using Multisim software

Practice using open source DEEDS: https://www.digitalelectronicsdeeds.com/

http://www.binarypuzzle.com/
http://www.binarypuzzle.com/
https://www.digitaltechnologieshub.edu.au/
https://www.digitaltechnologieshub.edu.au/
https://www.digitaltechnologieshub.edu.au/
https://www.digitalelectronicsdeeds.com/

9. Lecture Notes
Table of Contents

UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

Review of number systems

Binary codes

Error detection and correction codes

Parity and

Hamming code

Digital Logic Families

RTL, DTL, TTL, ECL and MOS -operation, characteristics of digital logic
family

Comparison of RTL, DTL, TTL, ECL and MOS families

Digital System Introduction

We are in the digital era and digital systems are used in the industries, internet,

medical treatment, space applications, communication, and all possible areas of

automation.

A few examples of digital systems start with a basic calculator to digital computer,

digital telephones, digital media, digital money, digital control systems, home

appliances, etc.

A digital system is an interconnection of digital modules to give a required output
or to do a specified operation.

A basic knowledge of digital circuits and their logical function is required to
understand the operation of each digital module.

Digital System manipulates discrete elements of information represented in binary
form.

Discrete elements of information are represented with groups of bits called binary
codes.

The signals in most present‐day electronic digital systems use just two discrete
values 0 and 1 represented by a binary digit, called a bit.

The natural signals generated by the nature are mostly continuous in nature like

Temperature, Voltage, Current (can be converted to discreet)

The processing in a digital system basically has the following sections:

Input: Analog-to-Digital (A/D) converter at the input end.

Processing: Done using a digital system.

Output: Digital-to-Analog (D/A) converter at the output end.

The Hardware Levels of Digital System

The levels of the hardware system from a CPU to a single transistor layout is
shown below.

The design level, logical representation and the elements that form the circuit at
each level are also shown below.

Source: Thomas Floyd- Digital Fundamentals

1. Review of number systems

1.1 Introduction:

1. Number System defines a set of values used to represent a quantity.

2. Number System is a basis for counting various items.

3. Digits: A collection of various symbols in a number system is called digits.

4. Radix / Base: The number of unique digits (including Digit 0) used to represent

the numbers in a positional number system is called radix or base of a number

system.

(or)

The number of values that a digit (one character) can assume in a positional

number system is called radix or base of a number system.

5. The largest value of a digit is always one less than radix / base of a number

system.

6. Weight / Value: In a positional number system, the position of a digit with

reference to the decimal point determines the weight / value.

a. Usually weight / value is expressed in powers of radix / base.

b. The sum of all digits multiplied by their weight gives the total number

being represented.

7. Most Significant Digit / Bit: The leftmost digit / bit which has the greatest

weight is called Most Significant Digit / Bit (MSD / MSB).

8. Least Significant Digit / Bit: The rightmost digit / bit which has the least weight

is called Least Significant Digit / Bit (LSD / LSB).

NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

1.2 Classification of Number System:

1.2.1 Decimal Number System:

1. Base: Base 10 System / Radix 10 System.

a. Number of values assumed by each digit: 10

b. Range: Uses ten digits: 0,1,2,3,4,5,6,7,8,9.

c. Each digit in the Decimal Number System will assume 10 different values

from 0 to 9.

2. Largest Value of a digit: The largest value a digit can take is 9.

a. If larger values than 9 are needed, extra columns are added to the left.

Each column value is now ten times the value of the column to its right.

For example, the decimal value 47 is written 47 (4 tens + 7 ones).

3. Positional Weights: The positional weight of each digit is represented in the

power of 10.

1.2.2 Binary Number System:

1. Base: Base 2 System / Radix 2 System.

a. Number of values assumed by each digit: 2

b. Range: Uses two digits: 0,1.

c. Each digit in the Binary Number System will assume 2 different values

either 0 or 1.

2. Largest Value of a digit: The largest value a digit can take is 1.

a. If larger values than 1 are needed, extra columns are added to the left.

Each column value is now two times the value of the column to its right.

For example, the decimal value 2 is written 10 in binary (1 twos + 0

ones).

3. Positional Weights: The positional weight of each digit is represented in the

power of 2.

1.2.3 Octal Number System:

1. Base: Base 8 System / Radix 8 System.

a. Number of values assumed by each digit: 8

b. Range: Uses ten digits: 0,1,2,3,4,5,6,7.

c. Each digit in the Octal Number System will assume 8 different values

from 0 to 7.

2. Largest Value of a digit: The largest value a digit can take is 7.

a. If larger values than 7 are needed, extra columns are added to the left.

Each column value is now eight times the value of the column to its right.

For example, the decimal value 27 is written 33 in octal (3 eights + 3

ones).

3. Positional Weights: The positional weight of each digit is represented in the

power of 8.

1.2.4 Hexadecimal Number System:

1. Base: Base 16 Number System / Radix 16 Number System.

a. Number of values assumed by each digit: 16

b. Range: Uses ten digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

c. Each digit in the Octal Number System will assume 16 different values

from 0 to 9, A to F.

2. Largest Value of a digit: The largest value a digit can take is F.

a. If larger values than F are needed, extra columns are added to the left.

Each column value is now sixteen times the value of the column to its

right. For example, the decimal value 68 is written as 44 in hexadecimal

(4 sixteens + 4 ones).

3. Positional Weights: The positional weight of each digit is represented in the

power of 16.

1.2.5 Other Number Systems:

1.3 Conversion Between Number Systems:

1.3.1 Decimal to Other Number System Conversion:

Integer Part Conversion:

1. Successively divide by the base of the other number system.

2. Bottom to top approach.

Fraction Part Conversion:

1. Successively multiply by the base of the other number system.

2. Top to bottom approach.

Decimal to Binary Conversion:

Decimal to Octal Conversion:

Decimal to Hexadecimal Conversion:

Decimal to Any Other Number System Conversion:

Remember!!!!

1.3.2 Other Number System to Decimal Conversion:

Express in powers of base of other number system.

Binary to Decimal Conversion:

Octal to Decimal Conversion:

Hexadecimal to Decimal Conversion:

Any Other Number System to Decimal Conversion:

1.3.3 Binary to Other Number System Conversion:

Binary to Octal Conversion:

Group 3 binary bits and write the octal equivalent.

Binary to Hexadecimal Conversion:

Group 4 binary bits and write the hexadecimal equivalent.

1.3.4 Octal to Other Number System Conversion:

Octal to Binary Conversion:

Write the 3 bit binary equivalent for each of the octal digit.

Octal to Hexadecimal Conversion:

Step 1: Octal to Binary Conversion.

Step 2: Binary to Hexadecimal Conversion.

1.3.4 Hexadecimal to Other Number System Conversion:

Hexadecimal to Binary Conversion:

Write the 4 bit binary equivalent for each of the hexadecimal digit.

Hexadecimal to Octal Conversion:

Step 1: Hexadecimal to Binary Conversion.

Step 2: Binary to Octal Conversion.

1.3.4 Any Other Number System 1 to Any Other Number

System 2 Conversion:

Step 1: Any Other Number System 1 to Decimal Conversion.

Step 2: Decimal to Any Other Number System 2 Conversion.

2. Representation of Signed Number

2.1 Signed magnitude

For Positive number - sign bit will be 0

For negative number – sign bit will be 1

The various ways of representing negative numbers are:

1.sign magnitude

2. 1‟s complement

3. 2‟s complement

Sign magnitude – 1 101001

1‟s complement – 1 010110

2‟s complement - 1 010111

2.2 1’S COMPLEMENT SUBTRACTION:

Subtraction of smallest number from largest number

Ex 1: 43-21 = 22

43 in Binary 101011

21 in Binary 010101

1‟s complement of 21 = 101010

101011

101010 +

 =1010101 = 010101 + 1 (End around Carry)

 = 010110

If carry is present. The answer is positive.

For 1‟s complement you have to do End around carry.

Ans =+22

Subtraction of largest number from smallest number.

Ex 2: 21-43

Soln:

21 in Binary 010101

43 in Binary 101011

1‟s complement of 43 = 010100

010101

010100 +

= 101001

There is no carry. Answer is negative.

Ans = -(1‟s complement 101001)

 =-010110 = - 22

2.3 2’S COMPLEMENT SUBTRACTION:

Subtraction of smallest number from largest number using 2‟s complement.

Ex:1) 43-21 = 22

43 in Binary 101011

21 in Binary 010101

2‟s complement of 21 = 1‟s complement of 21 + 1

= 101010 +1 =101011

 101010

 1 +

= 101011

(1+1+1 =10+1 =11)

101011 43 in Binary

101011+2‟s complement of 21

= 1 0 1 0 1 1 0 (Ignore Carry)

 0 1 0 1 1 0

If carry is present. The answer is positive.

For 2‟s complement you have to do Ignore carry.

Ans =+22

Subtraction of largest number from smallest number using 2’s
complement.

Ex: 2) 21-43

Soln:

21 in Binary 010101

43 in Binary 101011

2’s complement of 43 = 1’s complement of 43

 +1

= 010100 +1 =010101

010101 21 in Binary

010101 + 2’s complement of 43

= 101010

There is no carry. Answer is negative.

Ans = -(2’s complement 101010) 010101 +1 = 010110

 =-(010110) =-22

3. Binary Codes

In the coding, when numbers, letters or words are represented by a specific

group of symbols, it is said that the number, letter or word is being encoded. The

group of symbols is called as a code.

The digital data is represented, stored and transmitted as group of binary bits.

This group is also called as binary code. The binary code is represented by

number as well as alphanumeric letter.

Advantages of Binary Code

Binary codes are suitable for computer applications.

Binary codes are suitable for the digital communications.

Binary codes make the analysis and designing of digital circuits easier since only 0 &

1 are being used.

3.1 Classification of binary codes

The codes are broadly categorized into following four categories.

Weighted Codes

Non-Weighted Codes

Binary Coded Decimal Code

Alphanumeric Codes

Error Detecting Codes

Error Correcting Codes

3.1.1 Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight

principle. Each position of the number represents a specific weight. Several systems

of the codes are used to express the decimal digits 0 through 9. In these codes each

decimal digit is represented by a group of four bits.

3.1.2 Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned.

The examples of non-weighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to

express decimal numbers. The Excess-3 code words are derived from the 8421 BCD

code words adding 00112 or 3 10 to each code word in 8421. The excess-3 codes

are obtained as follows −

Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no

specific weights assigned to the bit position. It has a very special feature that, only

one bit will change each time the decimal number is incremented as shown in fig. As

only one bit changes at a time, the gray code is called as a unit distance code. The

gray code is a cyclic code. Gray code cannot be used for arithmetic operation.

Application of Gray code

Gray code is popularly used in the shaft position encoders.

A shaft position encoder produces a code word which represents the angular

position of the shaft

3.3 Binary Coded Decimal BCD code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a

way to express each of the decimal digits with a binary code. In the BCD, with four

bits we can represent sixteen numbers 0000to1111. But in BCD code only first ten of

these are used 0000to1001. The remaining six code combinations i.e. 1010 to 1111

are invalid in BCD

Advantages of BCD Codes

It is very similar to decimal system.

We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

The addition and subtraction of BCD have different rules. The BCD arithmetic is little

more complicated.

BCD needs more number of bits than binary to represent the decimal number. So

BCD is less efficient than binary.

3.4 Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or

'1'. But this is not enough for communication between two computers because

there we need many more symbols for communication. These symbols are

required to represent 26 alphabets with capital and small letters, numbers from 0

to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic

characters. Mostly such codes also represent other characters such as symbol and

various instructions necessary for conveying information. An alphanumeric code

should at least represent 10 digits and 26 letters of alphabet i.e. total 36 items.

The following three alphanumeric codes are very commonly used for the data

representation.

American Standard Code for Information Interchange ASCII.

Extended Binary Coded Decimal Interchange Code EBCDIC.

Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more

commonly used worldwide while EBCDIC is used primarily in large IBM

computers.

3.5 Error Detecting and Correcting Codes

Error Detection

Error detection means to decide whether the received data is correct or not

without having a copy of the original message.

Error detection uses the concept of redundancy, which means adding extra bits

for detecting errors at the destination.

Error Codes

Parity method of error detection

Hamming code for error detection and correction

3.5.1 Parity Method for Error Detection

Any group of bit contain either an even or an odd number of 1s.

A parity bit is attached to a group of bits to make the total number of 1s in a

group always even or always odd.

An even parity bit makes the total number of 1s even, and an odd parity bit

makes the total odd.

The parity bit can be attached to the code at either the beginning or the end,

depending on system design.

The total number of 1s, including the parity bit, is always even for even parity and

always odd for odd parity.

3.5.2 Hamming Code

In the Hamming code, P parity bits are added to an m ‐bit data word, forming a

new word of m + P bits.

The bit positions are numbered in sequence from 1 to m + P.

Those positions numbered as a power of 2 are reserved for the parity bits.

The remaining bits are the data bits.

The code can be used with words of any length.

3.5.2.1 Single-bit error detection

To correct an error, the receiver reverses the value of the altered bit. To do so, it

must know which bit is in error.

Number of redundancy (parity) bits needed

Let data bits = m

Parity bits =P

Total message sent =m + p

The value of P must satisfy the following relation:

2P≥ m+P+1

The parity bits, P1, P2, P4, and P8, are in positions 1, 2, 4, … respectively (20, 21

,22, …)

The data bits are in the remaining positions.

Each parity bit is calculated as follows:

P1 = XOR of bits (3, 5, 7, 9, 11)

P2 = XOR of bits (3, 6, 7, 10, 11)

P4 = XOR of bits (5, 6, 7, 12)

P8 = XOR of bits (9, 10, 11, 12)

Exclusive‐OR operation

=1 for an odd number of 1‟s (Error)

=0 for an even number of 1‟s (No Error)

Each parity bit is set so that the total number of 1‟s in the checked positions,

including the parity bit, is always even

3.5.2.2 Single-Bit Error Correction

Error Correction

It can be handled in two ways:

1)Receiver can have the sender retransmit the entire data unit.

2)Receiver can use an error-correcting code, which automatically corrects certain

errors.

To correct an error, the receiver reverses the value of the altered bit.

To do so, it must know which bit is in error.

Number of redundancy (parity) bits needed

Let data bits = m

Parity bits =P

Total message sent =m + P

The value of P must satisfy the following relation:

2P≥ m+P+1

Each parity bit is calculated as follows:

P1 = XOR of bits (3, 5, 7, 9, 11)

P2 = XOR of bits (3, 6, 7, 10, 11)

P4 = XOR of bits (5, 6, 7, 12)

P8 = XOR of bits (9, 10, 11, 12)

The check bits are evaluated as follows:

C1 = XOR of bits (1, 3, 5, 7, 9, 11)

C2 = XOR of bits (2, 3, 6, 7, 10, 11)

C4 = XOR of bits (4, 5, 6, 7, 12)

C8 = XOR of bits (8, 9, 10, 11, 12)

(XOR is done along with the Parity bit received)

Examples

Hamming Error Detecting and Correcting Codes

1.Encode the data bit 1101 using Hamming Error correcting and Detecting codes.

Step 1 : To find the number of Parity bits required.

2p>= m+P+1

m=4

Let p=2 22 = 4 m+P+1 = 4+2+1 =7

Let P=3 23 = 8 m+P+1 =4+3+1 =8

Now 2p = m+P+1

3 –parity bits are enough to transmit 4-bit data.

Total bits =m+P =4 +3 =7

Step2: Construct a Bit location table:

Parity Bit = 20, 21 ,22

P1 P2 D1 P3 D2 D3 D4

Bit Position 1 2 3 4 5 6 7

Binary

Position

Number

001 010 011 100 101 110 111

Data Bits 1 1 0 1

Parity Bits 1 0 0

7-bit

Hamming

code

1 0 1 0 1 0 1

2. A hamming code is received as 1010111. Determine the correct code when even
parity is used.

Step1: Construct a Bit location table:

Parity Bit = 20, 21 ,22

Step 2: Find the Error Bit

Checking for Even Parity

E1 (P1) --------- 1, 3, 5, 7------ 1 1 1 1 --------- No Error – 0 (LSB)

E2 (P2) --------- 2, 3, 6, 7----- 0 1 1 1 --------- Error ---1

E3 (P3) --------- 4,5,6,7---------- 0 1 1 1 --------- Error ---1 (MSB)

Error Bit ------110

P1 P2 D1 P3 D2 D3 D4

Bit Position 1 2 3 4 5 6 7

Binary

Position

Number

001 010 011 100 101 110 111

Received

code

1 0 1 0 1 1 1

Corrected

code

1 0 1 0 1 0 1

4.Binary Logic – The Logic Gates

Graphic Symbols and Input-Output Signals for Logic gates:

What is in an OR GATE?

The OR gate IC which has 4 (Quad) OR gates is shown below.

The OR gate in its circuit form has 2 NPN transistors as the logic switches

The NPN transistor is also shown separately

2-Input Logic OR Gate IC 7432 Quad 2-input Logic OR Gate

2-input Transistor OR Gate NPN structure of a Transistor in OR Gate

5. DIGITAL LOGIC FAMILIES

Integrated circuits

Integrated Circuits are used for producing several different circuit configurations and

production technologies. The semiconductor chip consists of electronic components

used for constructing circuits. Integrated circuits are classified into

Linear Integrated Circuits

Digital Integrated Circuits

Both operate with continuous and discrete signals respectively and are used to

construct various electronic circuits.

There are different levels of Integration, based on the number of logic gates in a

single IC package.

Small scale Integration (SSI)

These IC‟s contain fewer logic gates (0 to 10).The input and output pins can be

directly connected to the pins in the package.

Medium Scale Integration (MSI)

These IC‟s have approximately around 10 to 1000 gates in one package, which

performs some specific functions.

(Ex: adders, multiplexers)

Large Scale Integration (LSI)

These IC‟s contain thousands of gates in a single package.

(Ex: processors, memory chips and programmable logic devices)

Very Large Scale Integrated Devices (VLSI)

These IC‟s contain hundreds of thousands of gates in a single package.

(Ex: memory arrays, computer chips)

Classification of Logic Families

Based on the circuit technology digital IC‟s are classified into various types

RTL (Resistor Transistor Logic)

DTL (Diode Transistor Logic)

TTL (Transistor Transistor Logic)

ECL (Emitter Coupled Logic)

MOS (Metal Oxide Semiconductor Logic)

Characteristics of Logic Families

The following are the important characteristics of digital IC‟s

Propagation Delay (or) Operating Speed

Voltage and Current parameters

Power Dissipation

Fan-in

Fan-out

Noise Margin

Operating Temperature

Power Supply Requirements

Propagation Delay (or) Operating Speed:

Propagation delay is defined as the time taken by the output of a gate to respond

when its inputs have changed.

Propagation delay shown in the diagram has two propagation delay times

tPLH : Propagation delay time from low level(0) to high level(1)

tPHL : Propagation delay time from high level(1) to low level(0)

The delay in output is a measure of relative speed of logic circuits.

Average propagation delay PD avg = (tPLH + tPHL)/2

Voltage and Current Parameters:

Digital logic gates have a certain range of voltage and current levels

corresponding to 0(low level)) and 1(high level)

Voltage and current levels:

High level input voltage and current: The minimum input voltage recognised as logic

1(high level) by the logic gates (2V – 3V range) and the corresponding current is

high level input current.

Low level input voltage and current: The maximum input voltage recognised as logic

0(low level) by the logic gates (around 0.8V) and the corresponding current is low

level input current.

High level output voltage and current: The minimum voltage available at the output

corresponding to logic 1 and the corresponding current is high level output current.

Low level output voltage and current: The minimum voltage available at the output

corresponding to logic 0 and the corresponding current is low level output current.

Power Dissipation:

Power dissipation is the measure of power consumed by the logic gate

when fully driven by all its inputs. It is expressed in milliwatts or nanowatts.

Average power dissipation Pdc avg =Vcc x Iavg

Vcc - DC supply voltage

Iavg – Average current taken from the supply

Fan-in:

Fan-in is the number of inputs available in a gate

Fan-out:

Fan-out is the number of similar logic gates that the output of a gate can drive

without affecting the normal operation.

Noise Margin:

Noise margin is the maximum external noise voltage added to the input signal that

does not cause any undesirable change in the circuit operation.

Operating Temperature:

All integrated circuits are semiconductor devices sensitive to temperature

Operating range

0ºC to +70º for consumer applications

-55º to +125ºC for military applications

Power Supply Requirements:

The amount of power required by the IC.

5.1 RESISTOR TRANSISTOR LOGIC (RTL)

The following diagram shows the Resistor Transistor Logic (RTL) of NOR logic

function.

Basic diagram of RTL NOR consists of transistor and resistors.

Here it is three input NOR gates logic diagram using RTL [i.e., A, B, C].

This follows the NOR gates truth table in its operation. i.e., whenever any one of the

input is “HIGH” then it produce low output (or) all inputs are low, it produces “Low”

output. This is similar to NOR logic truth table shown below.

Operation:

When all inputs are zero (or) low, then output Q= 0.

Since, all these transistors Q1, Q2, Q3 are in OFF condition; its collector output is

high.

When any one of the input is high (ort all inputs are high, then its corresponding

transistor is going to ON condition. Also, it is connected with ground and collector

potential which is approximately zero.

Anyhow, the base current is practically independent of the emitter junction

characteristic. When the resistors increase the input resistance and reduce the

switching speed of the circuit. This reduces the rise and fall times of any input pulse.

In practice, this approach to increase the speed of an RTL is to connect a capacitor

called a speed-up capacitor which is parallel to resistance connected in base.

Operation Table

Drawbacks:

In this logic family, some disadvantages are there, they are:

(i) It reduces current-hogging by load transistors, which is purely because of

mismatch of junction voltages. Hence it permits large fan-out.

(ii) One more problem is that load transistor in a RTL gate are driven heavily into

saturation. Hence it results in long-turn-off delays.

Characteristics of RTL Family

1. Speed of operation is low, i.e., Propagation delay is of the order 500 ns. Hence it

cannot operate the system speed above 4 MHz.

2. For switching delay of 50 ns, the fan-in is 4 (or) 5 and fan-out is 4.

3. Because of Base resistor in transistor, the power dissipation is more. This can be

reduced by introducing DCTL (Direct coupled transistor logic).

4. It is highly sensitive to temperature.

5. Poor in nose immunity

5.2 DIODE TRANSISTOR LOGIC (DTL)

This DTL logic family reduces the problem of decreasing output voltage with

increasing load.

The following diagram shows the DTL NAND logic circuit using diode and transistor.

A and B are the inputs.

D1 D2 forms AND equivalent circuit and transistor (Q) acts as a inverter.

Therefore, the combinations of AND and NOT gates forms a logical NAND circuit

hence it follows the following NAND truth table.

Operation:

As per the above circuit diagram, the operation is as follows:

When A = B = 1

Diodes D1 D2 are in reverse biased conditions [i.e., acts as open circuit].

Therefore D3 conduct. Hence the transistor base gets current flow and which is

turned ON.

Q output in low cut-off

When A = B = 0 (or) A = 0 and B = * (0 or 1)

When all inputs are zero, the D1 and D2 is in ON condition. Hence there is no input

current to base of the transistor. Q, hence it is in OFF condition. Thereby the output

in collector terminal of transistor Q is high, called saturated state.

Similarly if any one of the input is low (0) that makes the above operation. So output

is high (1)

Therefore, the final expression is Y = (A.B)‟ Then above operation is tabulated by

using functional operation table

Operation table

Characteristics of DTL Family

Propagation Delay:

The turn-off delay is considerably more than the turn-on-delay. Hence propagation

delay is 25 ns.

Fan-in and Fan-out.

Fan-in is less than 8.

Fan-out is high i.e., upto 8.

Noise immunity:

Noise margin is high. This is due to the additional diodes.

Anyhow, whatever the drawbacks, can be reduced (or) improved in TTL family.

5.3 TRANSISTOR TRANSISTOR LOGIC (TTL)

The speed limitation of DTL is overcome by TTL family. It is the commonly used

saturating family and hence operating speed is high.

Basic gate for TTL logic is NAND gate

2-Input TTL NAND Gate

The figure shows the circuit diagram of 2-input NAND gate. Its input structure

consists of multiple-emitter transistor and output structure consists of totem-pole

output. Here, Q1 is an NPN transistor having two emitters, one for each input to

the gate. Although this circuit looks complex, we can simplify its analysis by using

the diode equivalent of the multiple-emitter transistor Q1, as shown in figure.

Diodes D2 and D3 represent the two E-B junctions of Q1 an d4 is the collector-

base (C-B) junction.

Diode equivalent for Q1

The input voltages A and B are either LOW (ideally grounded) or HIGH (ideally +

5 volts). If either A or B or both are low, the corresponding diode conducts and

the base of Q1 is pulled down to approximately 0.7 V. This reduces the base

voltage of Q2 to almost zero. Therefore, Q2 cuts off. With Q2 open, Q4 goes into

cut-off and the Q3 base is pulled HIGH. Since Q3 acts as an emitter follower, the

Y output is pulled up to a HIGH voltage. On the other hand, when A and B both

are HIGH, the emitter diode of Q1 are reversed biased making them off. This

causes the collector diode D4 to go into forward conduction. This forces Q2 base

to go HIGH. In turn, Q4 goes into saturation producing a low output.

Without diode D1 in the circuit, Q3 will conduct slightly when the output is low. To

prevent this diode is used; its voltage keeps the base-emitter diode of Q3 revere

biased only Q4 conducts when output is low.

3-input TTL NAND Gate

The figure shows the three input TTL NAND gate. The operation of three input

TTL NAND is same as that of two output TTL NAND gate except that is Q1 (NPN)

transistor has three emitters instead of two. For three input NAND gate if all the

inputs are logic 1 then and then only output is logic 0; otherwise output is logic 1.

The operation is similar to the 2-input NAND gate. The table show the truth table

for 3-input NAND gate.

Totem-Pole Output

The figure shows a highlighted output configuration.

Transistor Q3 and Q4 form a totem-pole. Such a configuration is known as active

pull-up or totem pole output.

The active pull-up formed by Q3 and Q4 has specific advantage.

Totem-pole transistors are used because they produce LOW output impedance

Either Q3 acts as a emitter follower (HIGH output) or Q4 is saturated (LOW

output)

When Q3 is conducting, the output impedance is approximately 70Ω; when Q4 is

saturated, the output impedance is only 12Ω.

Either way, the output impedance is low. This means that the output voltage can

change quickly from one state to the other because any stray output capacitance

is rapidly charged or discharged through the low output impedance. Thus the

propagation delay is low in totem-pole TTL logic.

Open-Collector Output

One problem with totem pole output is that two outputs cannot be tied together.

See the figure, where the totem pole outputs of two separate gates are

connected together at point X. Suppose that the output of gate A is high (Q3A ON

and Q4A OFF) and the output of gate B is low (Q3B OFF and Q4B ON). In this

situation transistor Q4B acts as a load for Q3A. Since Q4B is a low resistance

load, it draws high current around 55 mA. This current might not damage Q3A or

Q4B immediately, but over a period of time can cause overheating and

deterioration in performance and eventual device failure.

Some TTL devices provide another type of output called open collector output.

The outputs of two difference gates with open collector output can be tied

together. This known as wired logic. Figure shows a 2-input NAND gate with an

open-collector output eliminates the pull-up transistor Q3, D1 and R4. The output

is taken from the open collector terminal of transistor Q4.

Because the collector of Q4 is open, a gate like this will not work properly until you

connect an external pull-up resistor, as shown in fig. When Q4 is ON, output is low and

when Q4 is OFF output is tied to VCC through an external pull up resistor.

Comparison between Totem-Pole and Open-Collector Outputs

Table summarizes the difference between totem-pole and open collector outputs.

Tri-Slate TTL Inverter

The tristate configuration is a third type of TTL output configuration. It utilizes the high-

speed operation of the totem-pole arrangement while permitting outputs to be wired-

ANDed (connected together). It is called tristate TTL because it allows three possible

output stages: HIGH, LOW and high impedance. We know the transistor Q3 is ON when

output is HIGH and Q4 is ON when output is LOW. In the high impedance state both

transistors, transistors Q3 and Q4 in the totem-pole arrangement are turned OFF. As a

result, the output is open or floating, it is neither LOW nor HIGH.

Totem-pole Open collector

Output stage consists of pull-up transistor

(Q3), diode resistor and pull-down

transistor (Q4)

Output stage consists of only pull-down

transistor.

External pull-up resistor is not required. External pull-up resistor is required for

proper operation of gate.

Output of two gates cannot be tied

together.

Output of two gates can be tied together

using wired AND technique.

Operating speed is high. Operating speed is low.

The figure shows the simplified circuit for tristate inverter. It has two inputs A and E.

A is the normal logic output whereas E is an ENABLE input. When ENABLE input

is HIGH, the circuit works as a normal inverter. Because when E is HIGH, the state of the

transistor Q1 (either ON or OFF) depends on the logic input A, and the additional

component diode is open circuited as its cathode is at logic HIGH. When ENABLE input is

LOW, regardless of the state of logic input A, the base-emitter junction of Q1 is forward

biased and as a result it turns ON. This shunts the current through R1 away from Q2

making it OFF. As Q2 is OFF, there is no sufficient drive for Q4 to conduct and hence Q4

turns off. The LOW at ENABLE input also forward-biases diode D2 which shunt the

current away from the base of Q3, making it OFF. In this way, when ENABLE input is

LOW, both transistors are OFF and output is at high impedance state. Fig shows the logic

symbols for tristate inverter. In above case circuit operation is enabled when ENABLE

input is HIGH. Therefore, ENBLE input is active high. The logic symbol for high enable

input is shown in figure. In some circuits ENABLE input can be active LOW, i.e. circuit

operates when ENABLE input is LOW. The logic symbol for active low ENABLE input is

shown in the figure.

The internal temperature – and voltage -compensated bias network supplies a

reference voltage (Bias voltage VBB = -1.3 V) to the differential amplifier. The best

noise immunity is obtained by connecting VCC to ground and VEE to -5.2 V.

5.4 ECL – Emitter coupled logic:

Emitter Coupled Logic (ECL) is a non saturated digital logic family. It achieves the

propagation delay of 2ns. Its required high speed system operation. The output

provides both OR and NOR functions. Each input is connected to the base of

transistor. The two voltage levels are about -0.8 V for the high state and -1.8V for

the low state.

The circuit consists of

Differential amplifier

Temperature – and voltage -compensated bias network

Emitter follower

The Emitter follower output requires a pull down resistor for current to flow. This

is obtained from the input resistor, Rp of other similar gates or from an external

resistor connected to a negative voltage supply.

Working:

If any of the input is high the corresponding input transistor is turned ON and

transistor Q3 is OFF.

Ex: if VA = -0.8V, the transistor Q1 starts conducting, So the VBE(Q1) = 0.8V. Now

VE(Q1) = VA - VBE(Q1) = -0.8V – 0.8V = -1.6V

Next to find the VBE(Q3). VBE(Q3) = VB(Q3) – VE(Q3) = -1.3 –(-1.6) =0.3V. Thus the

transistor Q3 is OFF. So the transistor Q1 is remains ON. The output voltage of the

transistor Q1 is low. So the input voltage of transistor Q6 is Low. Since the

transistor Q6 is a Emitter follower so the output of the transistor Q6 is also Low.

This output produce the NOR output of the circuit.

The transistor Q3 is OFF. The output voltage of the transistor Q3 is high. So the

input voltage of transistor Q5 is high. Since the transistor Q5 is a Emitter follower

so the output of the transistor Q5 is also high. This output produce the OR output

of the circuit.

2. If both the inputs are low, transistors Q1 and Q2 are turned OFF and transistor

Q3 is ON.

Ex: if VA = VB = -1.8V, the transistor Q1 and Q2 = OFF, the transistor Q3 is ON. So

the VBE(Q3) = 0.8V. Now VE(Q3) = VBB - VBE(Q1) = -1.3V – 0.8V = -2.1V

Next to find the VBE(Q1) or VBE(Q2) . VBE(Q1) = VB(Q1) – VE(Q1) = -1.8 –(-2.1)

=0.3V. Thus the transistor Q1 is OFF. So the transistor Q3 is remains ON. The

output voltage of the transistor Q3 is low. So the input voltage of transistor Q3 is

Low. Since the transistor Q5 is a Emitter follower so the output of the transistor

Q5 is also Low. This output produce the OR output of the circuit.

The transistor Q1 is OFF. The output voltage of the transistor Q1 is high. So the

input voltage of transistor Q6 is high. Since the transistor Q6 is a Emitter follower

so the output of the transistor Q6 is also high. This output produce the NOR

output of the circuit.

Operation Table

5.5 CMOS Families

Complementary MOS (CMOS) logic uses the MOSFET in complementary pairs as

its basic element.

A complementary pair uses both p-channel and n-channel enhancement MOSFETs

CMOS AS INVERTER

A Q1

PMOS

Q2

NMOS

Y

0 ON OFF 1

1 OFF ON 0

CMOS AS NAND LOGIC

When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off.

The output is pulled HIGH through the on resistance of Q1 and Q2 in parallel.

When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are

off.

A

(Q1 &

Q3)

B

(Q2 &

Q4)

Q1

PMOS

Q2

PMOS

Q3

NMOS

Q4

NMOS

Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

The output is pulled HIGH through the low on resistance of Q1.

When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are

on.

The output is pulled HIGH through the low on resistance of Q2.

When both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on.

The output is pulled LOW through the on resistance of Q3 and Q4 in series to

ground.

CMOS AS NOR LOGIC

When both inputs are LOW, Q1 and Q2 are on, and Q3 and Q4 are off.

The output is pulled HIGH through the on resistance of Q1 and Q2 in series.

When input A is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are

off.

The output is pulled LOW through the low on resistance of Q4 to ground.

When input A is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are

on.

The output is pulled LOW through the on resistance of Q3 to ground.

When both inputs are HIGH, Q1 and Q2 are off, and Q3 and Q4 are on. The

output is

pulled LOW through the on resistance of Q3 and Q4 in parallel to ground.

A

(Q1 &

Q3)

B

(Q2 &

Q4)

Q1

PMOS

Q2

PMOS

Q3

NMOS

Q4

NMOS

Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 0

1 0 OFF ON ON OFF 0

1 1 OFF OFF ON ON 0

Comparison between Various Digital Logic Families

Parameter RTL DTL TTL ECL CMOS

Components

used

Resistors

and

transistor

Resistor

diode and

transistor

Resistor,

diode and

transistor

Resistor and

transistor

N-channel

and P-

channel

MOSFET

Circuit

Complexity
Simple Moderate Complex Complex Moderate

Noise

margin

[Noise

immunity]

Nominal Good Very good Good Very good

Fan-out
Low

(4)

Medium

(8)

More

(10)

High

(25)

50

Power

dissipation

in mW per

gate

12 8 – 12 10 40 – 55 0.1

Basic gate NOR NAND NAND OR-NOR NAND/NOR

Propagation

delay in ns
12 30 10

2 (ECL 10 K)

0.75 (ECL

100K)

70

Speed

power

product (PJ)

144 300 100
100 (ECL 10 K)

40 (ECL 100 K)
0.7

Applications Absolute Absolute
Laboratory

instruments

High speed

switching

applications

(low

propagation

delay)

Portable

instrument

with battery

supply (low

power

consumption

)

Number of

functions
High Fairly high Very high High Low

Clock rate

MHz
8 12 – 30 15 – 60 60 – 400 5

9. Lecture Notes

E-Books

Digital Fundamentals_ Global Ed - Thomas L Floyd

Digital Principles And Application - Leach & Malvino

Digital Design - M. Morris Mano and Michael D. Ciletti

Fundamentals of Digital Logic with Verilog Design-Stephen Brown and Zonko
Vranesic

ONLINE LEARNING MATERIALS:

1:http://nptel.iitm.ac.in/ video.php? subject Id=117106086

2:http://nptel.iitm.ac.in/courses/117101001

3: https://youtu.be/C-oAyXibnJU

4 https://youtu.be/oYRMYSIVj1o

5: https://www.youtube.com/watch?v=XZmGGAbHqa0

6:https://www.youtube.com/watch?v=KymIDyQiXZI

Video Links

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg

https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

10. Assignments

1. Describe the procedure to get the Hamming code for the binary word 1101100.

2. A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read
from memory. What was the original 8 bit data word that was written into
memory if the 12 bit word read out is as (i) 101110010100 and (ii) 111111110100

3. The following is an internal schematic of a TTL logic gate. Analyse the
transistor circuit and determine what type of gate (AND, OR, NAND, NOR, XOR,
etc.) it is:

A certain gate has a propagation delay of 5 ns and ICCH = 1 mA and ICCL = 2.5
mA with a dc supply voltage of 5 V. Determine the speed-power product.

Draw the paths of all currents in this circuit with the input in a “low” state and in
a high state:

11. Part A Q & A (with K level and CO)

PART A

Questions and Answers Blooms
Level

COs

1. What is a binary number system ?
The number system with base (or radix) two is known as the binary
number system. Only two symbols are used to represent the
numbers in the system and these are 0 and 1.

K1 CO1

2. What is an Excess3 code?
The excess3 code is a non weighted code which is obtained from the
8-4-2-1 code by adding 3(0011) to each of the codes.

K1 CO1

3. What is the difference between analog and digital systems?
In a digital system the physical quantities or signals can assume only
discrete values, while in analog systems the physical quantities
or signals vary continuously over a specified range.

K1 CO1

4. Subtract X = 1010100 and Y = 1000011 using 2‟s compliment
X = 1010100, 2‟s complement of Y = + 0111101
Sum = 10010001, Discard end carry, X - Y = 0010001

K1 CO1

5. Subtract X = 1010100 and Y = 1000011, using 1‟s complement.
X = 1010100, 1‟s complement of Y = + 0111100
Sum = 10010000, End -around carry = + 1, X - Y = 0010001

K1 CO1

6. What is meant by parity bit?
A parity bit is an extra bit included with a message to make the total
number of 1‟s either even or odd.

K1 CO1

7. Represent binary number 1101.101 in power of 2 and find its
decimal equivalent
N = 1 x 2 3 + 1 x 2 2 + 0 x 2 1 + 1 x 2 0 + 1 x 2 -1 + 0 x 2 -2 + 1 x 2 -
3

= 13.625

K1 CO1

8. What is the difference between binary code and BCD?
Binary: Any distinct element can be represented by a binary code. No
limitation for the minimum or maximum number of elements
required for coding the element.
BCD: Only a decimal digit can be represented. It is a four bit
representation

K1 CO1

9. Convert 0.640625 decimal number to its octal equivalent.
0.640625 x 8 = 5.125, 0.125 x 8 = 1.0
Ans. = 0.640 625 10 = 0.51

K1 CO1

10. What is a gray code?
A gray code is a non weighted code which has the property
that the codes for successive decimal digits differ in exactly one bit.

K1 CO1

11. Define noise margin
It is the maximum noise voltage added to an input signal of a digital
circuit that does not cause an undesirable change in the circuit
output. It is expressed in volts.

K1 CO1

12. Define fan-out
Number of logic gates at the next stage that can be loaded to
a given logic gate output so that voltages for each of the possible
logic state remain within the defined limits

K1 CO1

13. Mention the important characteristics of digital IC‟s.
Fan out, Power dissipation, Propagation Delay, Noise Margin , Fan In,
Operating temperature ,Power supply requirements.

K1 CO1

14. What is propagation delay?
Propagation delay for a logic output from a logic gate means
the time interval between change in a defined reference point input
voltage and reflection of its effect at the output.

K1 CO1

15. Classify the logic family by operation?
The RTL, DTL, TTL, I2L, HTL logic comes under the saturated logic
family. The Schottky TTL, and ECL logic comes under the unsaturated
logic family.

K1 CO1

16. Convert 0.1289062 decimal number to its hex equivalent
0.1289062 x 16 = 2.0625
0.0625 x 16 = 1.0
Ans. = 0.21 16

K1 CO1

17. Convert decimal number 22.64 to hexadecimal number.
16/ 22 R-6
16/ 1 R-1
R-0
0.64 x 16 = 10.24
0.24 x 16 = 3.84
0.84 x 16 = 13.44
.44 x 16 = 7.04
Ans. = (16 . A 3 D 7)

K1 CO1

18. What are the two steps in Gray to binary conversion?
The MSB of the binary number is the same as the MSB of the gray code
number. To obtain the next binary digit, perform an exclusive OR
operation between the bit just written down and the next gray code bit.

K1 CO1

19. Convert gray code 101011 into its binary equivalent.
Gray Code : 1 0 1 0 1 1
Binary Code 1 1 0 0 1 0

K1 CO1

20. Convert (9 B 2 - 1A) H to its decimal equivalent.
N = 9 x 16 2 + B x 16 1 + 2 x 16 0 + 1 x 16 -1 + A (10) x 16 -2

= 2304 + 176 + 2 + 0.0625 + 0.039
= 2482.1 10

K1 CO1

12. Part B Qs (with K level and CO)

PART B

1. (i) Explain in detail about error detecting and error correcting codes
(ii) Given the two binary numbers X= 10101002 and Y = 10000112,
perform the subtraction (a) X-Y and (b) Y-X using 2‟s complement

K1 CO1

2. Detect correct errors, if any, in the even parity Hamming code word
1010111 and write the correct code.

K1 CO1

3. (i) Perform the following using BCD and Excess-3 addition(205+569)
(ii)Encode the binary word11010 into odd parity Hamming code

K1 CO1

4. Perform the following operation and express the answer in octal
form (756) 8-(437) 8+ (725) 16.

K1 CO1

5. A 12 bit hamming code word containing 8 bits of data and 4 parity
bits is read from memory. What was the original 8 bit data word that
was written into the memory if the 12 bit word read out as
101110010100 (2) 111111110100

K1 CO1

6. Perform each of the following computations using signed 8-bit words
in 1‟s complement and 2‟s complement binary arithmetic:
(i) (+95)10 + (63)10 (ii) (+42)10 + (-87)10

(iii) (-13)10 + (-59)10

(iv) (+38)10 + (-38)10

(v) (-105)10 + (-120)10

K1 CO1

7. The state of a 12-cell register is 010110010111. What is its content
if it represents:
(a) 3 decimal digits in BCD.
(b) 3 decimal digits in Excess-3 code
(c) 3 decimal digits in 2421 BCD code
(d) 3 decimal digits in 84-2-1 BCD code.

K1 CO1

8. Draw and explain the circuit diagram of a CMOS NAND and NOR
gate

K1 CO1

9. Explain the concept and implementation of ECL NOR/ OR gate. K1 CO1

10. Compare DTL,RTL,TTL Logic families K1 CO1

13.Supportive online Certification courses (NPTEL, Swayam,
Coursera, Udemy, etc.,)

Swayam

Digital Circuits: https://swayam.gov.in/nd1_noc20_ee70/preview

Duration: 12 weeks, Start Date: 14 Sep 2020, End Date: 04 Dec 2020

Udemy

Digital Electric Circuits & Intelligent Electrical Devices

https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/

Coursera

Build a Modern Computer from First Principles: From Nand to Tetris (Project-
Centered Course)

https://www.coursera.org/learn/build-a-computer

https://swayam.gov.in/nd1_noc20_ee70/preview
https://swayam.gov.in/nd1_noc20_ee70/preview
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer

14. Real time Applications in day to day life and to Industry

A few real time applications of digital systems is shown and explained.

Basic block diagram of a iPod player

The iPod player stores music in the digital form in its memory and the Digital to

analog converter converts it into the music that we hear through the head

phones.

Basic block diagram of a CD player

The compact disk (CD) player has both digital and analog circuits. Music is stored

on the compact disk in digital form. A laser diode optical system picks up the

digital data from the rotating disk and transfers it to the digital-to-analog

converter (DAC). The DAC changes the digital data into an analog signal which is

an electrical reproduction of the original music. This signal is amplified and sent to

the speaker. An analog-to-digital converter (ADC) is used to record the music on

to the disk in digital form.

Source: Thomas Floyd- Digital Fundamentals

Simulation of logic gates using PLC simulation software

available at Factory Automation CoE.

Example: Two limit switches connected in series and used to control a solenoid

valve.

Example: Two limit switches connected in parallel and used to control a solenoid

valve.

15. Contents beyond the Syllabus (COE related Value

added courses)

17. Prescribed Text Books & Reference Books

TEXT BOOKS:

1.James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.

2.M. Morris Mano, „Digital Design with an introduction to the VHDL‟, Pearson

Education, 2013.

3.Comer “Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES

1.Mandal, “Digital Electronics Principles & Application, McGraw Hill Edu, 2013.

2.William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.

3.Thomas L.Floyd, „Digital Fundamentals‟, 11th edition, Pearson Education, 2015.

4.Charles H.Roth, Jr, Lizy Lizy Kurian John, „Digital System Design using VHDL,

Cengage, 2013.

Digital Logic Circuits

Unit 2

8. Activity based learning

Understanding the working of the combinational logic circuits through simulation

using Logisim

Simulation of

Half adder

Full adder

Multiplexer

De-multiplexer

Practice using open source DEEDS: https://www.digitalelectronicsdeeds.com/

https://www.digitalelectronicsdeeds.com/

9. Lecture Notes

Table of Contents

UNIT II COMBINATIONAL CIRCUITS

1. Combinational logic – Representation of logic functions-SOP and POS forms,

2. K-map representations - minimization using K maps

3. Simplification and implementation of combinational logic

Multiplexers and De multiplexers

Code converters,

Adders, Subtractors,

Encoders and Decoders.

Introduction:

1. In digital logic, the inputs and output of a function are in the form of binary

numbers (boolean values) i.e., the values are either zero (0) or one (1).

Therefore, digital logic is also known as „Boolean logic‟.

2. These inputs and output can be termed as „Boolean Variables‟.

3. The output boolean variable of a digital signal can be expressed in terms of

input boolean variables which forms the „Boolean Expression‟.

4. A boolean expression is an expression which consists of variables, constants (0-

false and 1-true) and logical operators which results in true or false.

5. They are used to describe Switching Function / Boolean Function.

6. In Boolean function, the variables are appeared either in complemented or in

uncomplemented form. Each occurrence of a variable in either a complemented

or a uncomplemented form is called a literal.

7. A Boolean function can be represented as:

• Algebraic expression Eg: Z(A,B,C,D) = AB + CD

• Truth table

• Logic diagram using gates

COMBINATIONAL CIRCUITS

Truth table

Logic diagram for Z(A,B,C,D) = AB + CD

Boolean Algebra

Boolean algebra is a convenient and systematic way of expressing and

analysing the operation of logic circuits.

It was developed by George Boole in 1847 and was proposed for design

by Claude E. Shannon in 1938.

Boolean algebra provides economical and straightforward approach and is

used extensively in designing electronic circuits used in computers

Laws of Boolean Algebra

Basic Identities

1. X + 0 = X

2. X · 1 = X

3. X + 1 = 1

4. X · 0 = 0

5. X + X = X

6. X · X = X

7. X + X‟ = 1

8. X · X‟ = 0

9. (X‟)‟ = X

Basic Laws

Commutative

10. X + Y = Y + X

11. X · Y = Y · X

Associative

12. X+(Y+Z)=(X+Y)+Z

13. X(YZ) = (XY)Z

Distributive

14. X(Y+Z) =XY+XZ

15. X+YZ=(X+Y)(X+Z)

De Morgan‟s Theorem

16. (X + Y)‟ = X‟ · Y‟

17. (XY)‟ = X‟ + Y‟

Consensus Theorem

18. XY + X‟Z + YZ = XY + X‟Z

The dual of a function is obtained by interchanging OR and AND operations and

replacing 1s and 0s with 0s and 1s.

Theorem Dual Theorem

X + X = X X . X = X Idempotent Law

X + 1 = 1 X . 0 = 0 Annulment Law

X + X . Y = X X. (X + Y) = X Absorption Law

(X‟)‟ = X Involution Law

X + (Y + Z) = (X+Y) + Z X . (Y . Z) = (X . Y). Z Associative Law

(X + Y)‟ = X‟ · Y‟ (XY)‟ = X‟ + Y‟ De Morgan‟s Theorem

Simplification using Boolean rules

Reduce AB + (AC)‟ + AB‟C(AB + C)

AB + (AC)‟ + AB‟C(AB + C) = AB + (AC)‟ + AAB‟BC + AB‟CC

= AB + (AC)‟ + AB‟CC [A.A‟ = 0]

= AB + (AC)‟ + AB‟C [A.A = 1]

= AB + A‟ + C‟ =AB‟C [(AB)‟ = A‟ + B‟]

= A‟ + B + C‟ + AB‟C [A + AB‟ = A + B]

= A‟ + B‟C + B + C‟ [A + A‟B = A + B]

= A‟ + B + C‟ + B‟C

=A‟ + B + C‟ + B‟

=A‟ + C‟ + 1

= 1 [A + 1 =1]

Simplify the following using De Morgan‟s theorem [((AB)‟C)‟‟ D]‟

[((AB)‟C)‟‟ D]‟ = ((AB)‟C)‟‟ + D‟ [(AB)‟ = A‟ + B‟]

= (AB)‟ C + D‟

= (A‟ + B‟)C + D‟

Show that (X + Y‟ + XY)(X + Y‟)(X‟Y) = 0

(X + Y‟ + XY)(X + Y‟)(X‟Y) = (X + Y‟ + X)(X + Y‟)(X‟ + Y) [A + A‟B = A + B]

= (X + Y‟)(X + Y‟)(X‟Y) [A + A = 1]

= (X + Y‟)(X‟Y) [A.A = 1]

= X.X‟ + Y‟.X‟.Y

= 0 [A.A‟ = 0]

A logic circuit can be designed and realized or implemented with minimal gates by

simplifying the expression.

Simplify F=X‟YZ+X‟YZ‟+XZ

X‟YZ+X‟YZ‟+XZ = X‟Y (Z + Z‟) + XZ

= X‟Y . 1 + XZ [A + A‟ =1]

= X‟Y + XZ

F= X’Y + XZ

The simplification of the equation reduces the number of gates used for

implementing the circuit

For the given expression F=X‟YZ+X‟YZ‟+XZ the logic diagram is as follows:

For the reduced expression F= = X‟Y + XZ the logic diagram is minimized as

follows:

1. Representation of Boolean expression can be primarily done in two ways. They

are as follows:

a. Sum of Products (SOP) form

b. Product of Sums (POS) form

2. The terms “product” and “sum” have been borrowed from mathematics to

describe AND and OR logic operations.

3. Note: If the number of input variables are n, then the total number of

combinations in Boolean algebra is 2
n
.

1.1 Sum of Products (SOP) Form :

1. It is one of the ways of writing a boolean expression, formed by adding (OR

operation) the product terms.

2. Product Term: Is defined as either a literal or a product of literals (also called as

conjunction). It is also defined as a group of literals that are ANDed together.

Eg: ABC , XYZ

3. SOP: Is defined as group of product terms that are ORed together.

Eg: F(A,B,C) = AB + BC + AC

4. Other Names: Disjunctive Normal Form, Disjunctive Normal Formula.

5. Standard SOP / Canonical SOP: SOP is said to be a Standard SOP / Canonical

SOP, if each product term consists of all literals in either complemented form or

uncomplemented form.

Eg.: F(A,B,C) = A B C + A B C + A B C + A B C+A B C

6. Minterms (∑m): Is defined as each individual product term in Standard SOP /

Canonical SOP.

7. SOP Form is obtained by writing one product term for each input combination

that produces an output 1.

0 Complement of a Variable

1 Variable

1. Representation of logic functions

- SOP and POS forms

1.2 Product of Sums (POS) Form :

1. It is one of the ways of writing a boolean expression, formed by multiplying

(AND operation) the sum terms.

2. Sum Term: Is defined as either a literal or a sum of literals (also called as

disjunction). It is also defined as a group of literals that are ORed together.

Eg: A+B+C , X+Y+Z

3. POS: Is defined as group of sum terms that are ANDed together.

Eg: F(A,B,C) = (A+B) (B+C) (A+C)

4. Other Names: Conjunctive Normal Form, Conjunctive Normal Formula.

5. Standard POS / Canonical POS: POS is said to be a Standard POS / Canonical

POS, if each sum term consists of all literals in either complemented form or

uncomplemented form.

Eg.: F(A,B,C) = (A+B+C) (A+B+C) (A+B+C) (A+B+C) (A+B+C)

6. Maxterms (ΠM): Is defined as each individual sum term in Standard POS /

Canonical POS.

7. POS Form is obtained by writing one sum term for each input combination that

produces an output 0.

0 Variable

1 Complement of a Variable

1.3 Conversion between SOP & POS forms:

1.3.1 SOP to Standard SOP (Canonical SOP) Conversion:

Step 1: Find the missing literals in each product term.

Step 2: AND each product term with (Missing Literal + Missing Literal)

Step 3: Expand and reorder.

Step 4: Omit more than once repeated terms.

1.3.2 POS to Standard POS (Canonical POS) Conversion:

Step 1: Find the missing literals in each sum term.

Step 2: OR each sum term with (Missing Literal . Missing Literal)

Step 3: Expand and reorder.

Step 4: Omit more than once repeated terms.

1.3.3 SOP to POS Conversion:

Step 1: SOP to Standard SOP (Canonical SOP)

Step 2: Standard SOP (Canonical SOP) to Minterms (∑m)

Step 3: Minterms (∑m) to Maxterms (ΠM)

Step 4: Maxterms (ΠM) to Standard POS (Canonical POS)

1.3.4 POS to SOP Conversion:

Step 1: POS to Standard POS (Canonical POS)

Step 2: Standard POS (Canonical POS) to Maxterms (ΠM)

Step 3: Maxterms (ΠM) to Minterms (∑m)

Step 4: Minterms (∑m) to Standard SOP (Canonical SOP)

Example Problems:

Convert the expression 𝐘 = 𝐀𝐁 + 𝐀𝐂𝐃 into the canonical SOP

form.

Step 1: Find the missing literals in each product term.

Step 2: AND each product term with (Missing Literal + Missing Literal)

𝐘 = 𝐀𝐁 𝐂 + 𝐂 𝐃 + 𝐃 + 𝐀𝐂𝐃 𝐁 + 𝐁

Step 3: Expand and reorder.

𝐘 = 𝐀𝐁𝐂 + 𝐀𝐁𝐂 𝐃 + 𝐃 + 𝐀𝐁𝐂𝐃 + 𝐀𝐁 𝐂𝐃

𝐘 = 𝐀𝐁𝐂𝐃 + 𝐀𝐁𝐂 𝐃 + 𝐀𝐁𝐂𝐃 + 𝐀𝐁𝐂 𝐃 + 𝐀𝐁𝐂𝐃 + 𝐀𝐁 𝐂𝐃

Step 4: Omit more than once repeated terms.

𝐘 = 𝐀𝐁𝐂𝐃 + 𝐀𝐁𝐂 𝐃 + 𝐀𝐁𝐂𝐃 + 𝐀𝐁𝐂 𝐃 + 𝐀𝐁𝐂𝐃 + 𝐀𝐁 𝐂𝐃

Ans.: 𝐘 = 𝐀𝐁𝐂𝐃 + 𝐀𝐁𝐂 𝐃 + 𝐀𝐁𝐂𝐃 + 𝐀𝐁𝐂 𝐃 +𝐀𝐁 𝐂𝐃

Convert the expression 𝐘 = 𝐀 + 𝐁 𝐁 + 𝐂 𝐀 + 𝐂 into the

canonical POS form.

Step 1: Find the missing literals in each sum term.

Step 2: OR each sum term with (Missing Literal + Missing Literal)

𝐘 = 𝐀 + 𝐁 + 𝐂𝐂 𝐁 + 𝐂 + 𝐀𝐀 𝐀 + 𝐂 + 𝐁𝐁

Step 3: Expand and reorder.

𝐘 = 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂

𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂

Step 4: Omit more than once repeated terms.

𝒀 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪

𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪

Ans.: 𝒀 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪

𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪

Convert the expression 𝐘 = 𝐀 𝐁 𝐂 + 𝐀 𝐁 𝐂 + 𝐀 𝐁𝐂 + 𝐀𝐁 𝐂 + 𝐀𝐁𝐂

into the canonical POS form.

Step 1: SOP to Standard SOP (Canonical SOP)

𝐘 = 𝐀 𝐁 𝐂 + 𝐀 𝐁 𝐂 + 𝐀 𝐁𝐂 + 𝐀𝐁 𝐂 + 𝐀𝐁𝐂

𝐘 = 𝐀 𝐁 𝐂 + 𝐀 𝐁𝐂 + 𝐀𝐁 𝐂 + 𝐀𝐁𝐂

Step 2: Standard SOP (Canonical SOP) to Minterms (∑m)

𝐘 = 𝐀 𝐁 𝐂 + 𝐀 𝐁𝐂 + 𝐀𝐁 𝐂 + 𝐀𝐁𝐂

Y = 001 + 011 + 100 + 111

Y = m1 + m3 + m4 + m7

Y = Σm(1,3,4,7)

Step 3: Minterms (∑m) to Maxterms (ΠM)

Y = ΠM(0,2,5,6)

Step 4: Maxterms (ΠM) to Standard POS (Canonical POS)

Y= M0 . M2 . M5 . M6

𝐘 = 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂

Ans.: 𝒀 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + 𝑪

 𝑨 + 𝑩 + 𝑪

Convert the expression 𝐘 = 𝐀 + 𝐁 𝐁 + 𝐂 𝐀 + 𝐂 into the

canonical SOP form.

Step 1: POS to Standard POS (Canonical POS)

 (Refer Problem 2)

𝐘 = 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂

 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂

Step 2: Standard POS (Canonical POS) to Maxterms (ΠM)

Y = (0+1+0) (0+1+1) (0+0+0) (1+0+0) (0+0+1)

Y = M2 . M3 . M0 . M4 . M1

Y = ΠM(2,3,0,4,1)

Step 3: Maxterms (ΠM) to Minterms (∑m)

 Y = Σm(5,6,7)

Step 4: Minterms (∑m) to Standard SOP (Canonical SOP)

Y = m5 + m6 + m7

Y = 𝐀𝐁 𝐂 + 𝐀𝐁𝐂 + 𝐀𝐁𝐂

Ans.: Y = 𝐀𝐁 𝐂 + 𝐀𝐁𝐂 + 𝐀𝐁𝐂

Write the logical expression in Canonical SOP & Canonical POS

form for the truth table given below.

Ans.:

SOP Form:

𝐘 = 𝐀 𝐁 𝐂 + 𝐀 𝐁𝐂 + 𝐀𝐁 𝐂 + 𝐀𝐁𝐂

POS Form:

𝐘 = 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂

Input Output

A B C Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Write the logical expression in Canonical SOP & Canonical POS

form for the truth table given below.

Ans.:

SOP Form:

𝐘 = 𝐀 𝐁 𝐂 + 𝐀 𝐁 𝐂 + 𝐀𝐁 𝐂 + 𝐀𝐁𝐂

POS Form:

𝐘 = 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂 𝐀 + 𝐁 + 𝐂

Input Output

A B C Y

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

2. K-map Representations - Minimization using K-

maps

2.1 Introduction:

1. Maurice Karnaugh, a Telecommunications Engineer, developed the Karnaugh

Map at Bell Labs in 1953 while designing digital logic based telephone switching

circuits.

2. Karnaugh Map was developed with the aid of Venn Diagrams.

3. Karnaugh Maps reduce logic functions more quickly and easily compared to

Boolean Algebra, which inturn reduces the number of gates and inputs.

4. We like to simplify logic to a lowest cost form, to save costs by elimination of

components. We define lowest cost as being the lowest number of gates with

the lowest number of inputs per gate.

2.2 Karnaugh Map:

1. Karnaugh Maps is a graphical method of reducing a digital circuit to its

minimum number of gates.

2. The map is a simple table containing 1s and 0s that can express a truth table

or complex boolean expression describing the operation of a digital circuit.

3. The map is then used to work out the minimum number of gates needed, by

graphical means rather than by algebra.

4. Karnaugh Maps can be used on small circuits having two or three inputs as an

alternative to Boolean Algebra, and on more complex circuits having up to 6

inputs, it can provide quicker and simpler minimization than Boolean Algebra.

2.3 Structure of Karnaugh Map :

1. The shape and size of the map is dependent on the number of binary inputs in

the circuit to be analyzed.

2. The map needs one cell for each possible binary word applied to the inputs.

3. In general, n input circuit, requires 2
n
 cells:

a. 2 input circuits with inputs A and B, require maps with 2
2
 = 4 cells

b. 3 input circuits with inputs A B and C, require maps with 2
3
 = 8 cells

c. 4 input circuits with inputs A B C and D, require maps with 2
4
 = 16 cells

4. The input labels are written at the top left hand corner, divided by a diagonal

line. The top and left edges of the map then represent all the possible input

combinations for the inputs allocated to that edge.

5. Notice that this edge numbering does not follow the normal binary counting

sequence, but uses a Gray Code sequence where only one bit changes from

one cell to the next. This is an important feature of Karnaugh Map.

2.4 Karnaugh Map Rules:

SOP

1. Select K-Map according to the number of variables.

2. Identify minterms or maxterms as given in problem.

3. For SOP put 1‟s in blocks of K-map respective to the minterms (0‟s

elsewhere).

4. Make rectangular groups containing total terms in power of two like 2,4,8

…… and try to cover as many elements as you can in one group (Group 1s).

5. From the groups made in step 5, find the product terms and sum them up

for SOP form.

POS

1. Select K-Map according to the number of variables.

2. Identify minterms or maxterms as given in problem.

3. For POS put 0‟s in blocks of K-map respective to the maxterms (1‟s

elsewhere).

4. Make rectangular groups containing total terms in power of two like 2,4,8

…… and try to cover as many elements as you can in one group (Group 0s).

5. From the groups made in step 5, find the sum terms and multiply them up

for POS form.

• Note 1:

a. If outputs are not defined for some combination of inputs, then those

output values will be represented with don‟t care symbol „x‟.

b. That means, we can consider them as either „0‟ or „1‟.

• Note 2:

a. If don‟t care terms also present, then place don‟t cares „x‟ in the respective

cells of K-map.

b. Consider only the don‟t cares „x‟ that are helpful for grouping maximum

number of adjacent ones. In those cases, treat the don‟t care value as „1‟

for SOP 7 as „0‟ for POS.

• Note 3:

a. Groups must contain 1, 2, 4, 8, 16 (2n) cells.

b. For SOP : Groups must contain only 1 (and X if don't care is allowed).

For POS : Groups must contain only 0 (and X if don't care is allowed).

c. Groups may be horizontal or vertical, but not diagonal.

d. Groups should be as large as possible.

e. For SOP : Each cell containing a 1 must be in at least one group.

For POS : Each cell containing a 0 must be in at least one group.

f. Groups may overlap.

g. Groups may wrap around the table. The leftmost cell in a row may be

grouped with the rightmost cell and the top cell in a column may be

grouped with the bottom cell.

h. There should be as few groups as possible.

Obtain minimum SOP form for the following function:

 F = Σm(0,1,2)

Obtain minimum SOP form for the following function:

 F = Σm(0,1,2,3)

Obtain minimum SOP form for the following function:

 F = Σm(0,3)

Obtain minimum SOP form for the following function:

 F = Σm(1,2) + Σd(3)

Obtain minimum SOP form for the following function:

 F = Σm(0,1,2,3,4)

Obtain minimum SOP form for the following function:

 F = Σm(1,2,4,6,7)

Obtain minimum SOP form for the following function:

 F = Σm(0,2,3,4,5,6)

Obtain minimum SOP form for the following function:

 F = Σm(0,1,3,5,6) + Σd(2,4)

Obtain minimum SOP form for the following function:

 F = Σm(0,2,4,5,6,7,8,10,11,12,14,15)

Obtain minimum SOP form for the following function:

 F = Σm(0,1,2,3,11,12,14,15)

Obtain minimum SOP form for the following function:

 F = Σm(1,5,6,7,11,12,13,15)

Obtain minimum SOP form for the following function:

 F = Σm(0,2,4,5,6,7,8,10,13,15)

Obtain minimum SOP form for the following function:

 F = Σm(0,7,8,9,10,12) + Σd(2,5,13)

Obtain minimum SOP form for the following function:

 F = Σm(1,3,4,6,11) + Σd(0,8,10,12,13)

Obtain minimum SOP form for the following function:

 F = Σm(0,2,4,5,6,8,10,15) + Σd(7,13,14)

Obtain minimum SOP form for the following function:

 F = Σm (0,5,7,8,9,10,11,14,15) + Σd(1,4,13)

Obtain minimum SOP form for the following function:

 F = Σm(0,2,4,6,9,11,13,15,17,21,25,27,29,31)

Obtain minimum SOP form for the following function:

 F = Σm (0,1,2,3,10,12,13,14,20,21,22,23,26,27,28,29,30,31)

Obtain minimum POS form for the following function:

 F = ΠM(0,4,5,7,10,11,14,15)

Obtain minimum POS form for the following function:

 F = ΠM(0,3,4,7,8,10,12,14) + d(2,6)

Multiplexer (Data selector):

Multiplexer is a combinational circuit that has maximum of 2n data inputs, „n‟
selection lines and single output line. One of these data inputs will be connected
to the output based on the values of selection lines.

Since there are „n‟ selection lines, there will be 2n possible combinations of zeros
and ones. So, each combination will select only one data input. Multiplexer is also
called as MUX.

Digital multiplexer (MUX) selects binary information from one of many input lines
and directs it to a single output line.

2:1 MUX:

2x1 Multiplexer has two data inputs W0, W1 one selection line S and one output f.
The block diagram of 2x1 Multiplexer is shown in the following figure.

 Fig Block diagram of 2:1 MUX

One of these 2 inputs will be connected to the output based on the combination
of inputs present at the selection line. Truth table of 4x1 Multiplexer is shown
below.

 Fig Truth table of 2:1 MUX Fig Logic diagram of 2:1 MUX

From Truth table, we can directly write the Boolean function for output, f as

We can implement this Boolean function using Inverters, AND gates & OR gate.
The Logic diagram of 2x1 multiplexer is shown in the figure.

4. Multiplexer

4:1 MUX:

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and
one output Y. The block diagram of 4x1 Multiplexer is shown in the following
figure.

 Fig Block diagram of 4:1 MUX

One of these 4 inputs will be connected to the output based on the combination
of inputs present at these two selection lines. Truth table of 4x1 Multiplexer is
shown below.

 Fig Truth table of 4x1 MUX Fig Logic diagram of 4:1 MUX

From Truth table, we can directly write the Boolean function for output, Y as

We can implement this Boolean function using Inverters, AND gates & OR gate.
The Logic diagram of 4x1 multiplexer is shown in the figure.

Implementation of Higher-order Multiplexer:

Implementation of 8:1 MUX using 4:1 MUX:

We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output.
Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output.

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data
inputs. Since, each 4x1 Multiplexer produces one output, we require a 2x1
Multiplexer in second stage by considering the outputs of first stage as inputs
and to produce the final output.

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 &
s0 and one output Y. The Truth table of 8x1 Multiplexer is shown below.

We can implement 8x1 Multiplexer using lower order Multiplexers
easily by considering the above Truth table. The block diagram of
8x1 Multiplexer is shown in the following figure.

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data
inputs of upper 4x1 Multiplexer are I7 to I4 and the data inputs of lower 4x1
Multiplexer are I3 to I0. Therefore, each 4x1 Multiplexer produces an output based
on the values of selection lines, s1 & s0.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer
that is present in second stage. The other selection line, s2 is applied to 2x1
Multiplexer.

If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to
I0 based on the values of selection lines s1 & s0.

If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to
I4 based on the values of selection lines s1 & s0.

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1
Multiplexer performs as one 8x1 Multiplexer.

.

5. Demultiplexer

It is also known as a demux or data distributor.

Demultiplexer is a combinational circuit that accepts multiplexed data and
distributes over multiple output lines

In other words, the function of Demultiplexer is the inverse of the multiplexing
operation. Similar to Multiplexer the output depends on the control input.

It is a circuit which can distribute or deliver multiple outputs from a single input.

It can perform as single input many output switch.

The output lines of demultiplexer are 2N and one Data input=1

 where N- no.of Selection lines.

Types of Demultiplexer:

1:2 Demultiplexer

1:4 Demultiplexer

1:8 Demultiplexer

1:16 Demultiplexer

1 to 2 Demultiplexer:

It consists of 1 data input, 1 Selection line and 2 output bits. Y0 and Y1 are the
two output bits.

Block Diagram:

Output:

Y0 = Din S0 ‟

Y1 = Din S0

Logic Diagram:

1 to 4 Demultiplexer:

It consists of 1 data input, 2 Selection lines and 4 output bits. Y0 ,Y1 , Y2 and
Y4 are the four output bits.

Block Diagram:

Truth Table:

Output:

Y0 = Din S1 ‟ S0 ‟

 Y1 = Din S1 ‟ S0

 Y2 = Din S1 S0 ‟

 Y3 = Din S1 S0

Logic Diagram:

1 to 8 Demultiplexer:

It consists of 1 data input, 3 Selection lines and 8 output bits. Y0 ,Y1 , Y2 Y3 Y4 Y5

Y6 Y7 are the eight output bits.

Block Diagram:

Truth Table:

Output

Y0 = Din S2 ‟ S1 ‟ S0 ‟

Y1 =Din S2 ‟ S1 ‟ S0

Y2 = Din S2 ‟ S1 S0 ‟

Y3 = Din S2 ‟ S1 S0

Y4 = Din S2 S1 ‟ S0 ‟

Y5 = Din S2 S1 ‟ S0

Y6 = Din S2 S1 S0 ‟

Y7 = Din S2 S1 S0

Logic Diagram:

Cascading of Demultiplexers

Cascading refers to a process where large Demuxes can be designed and
implemented using smaller Demuxes.

1:8 Demux Designed Using Two 1:4 Demuxes:

From the truth table of the 1 : 8 Demux, value of first half of S2 is 0 which gives
E=1 so First 1 :4 Demux is enabled where the second Demux is disabled . So we
get first four output.

value of Second half of S2 is 1 which gives E=1 so Second 1 :4 Demux is
enabled where the First Demux is disabled . So we get Second four output.

1:16 Demux Designed Using Two 1:4 Demuxes:

Similar to 1:8 Demux 1:16 Demux can be implemented using two 1:8 Demux.

6.Code Converters

Code converters are logic circuits that implement the number conversion from one

binary code to another.

Types of Code converters:

Binary-to-Gray code

Gray-to-Binary code

BCD-to-Excess-3

Excess-3-to-BCD

Binary-to-BCD

BCD-to-binary

Steps to design code converters:

Construction of a truth table to meet input -output requirements.

Determine Boolean expressions for various output variables in terms of input

variables.

Simplify Boolean expression by minimization using Karnaugh map method.

Implement the simplified Boolean expression with minimum number of logic

gates.

Don‟t care conditions are considered for minimization using K-Map

* Don‟t care conditions for BCD are („X‟=10,11,12,13,14,15)

* For Excess 3 code („X‟=0,1,2,13,14,15)

6.1 Binary to Gray Code converter

Gray code is a reflected code with a value of a single bit between successive

numbers

Truth table for the Binary-to-Gray code converter with Binary code as input and

Gray Code as output

Truth Table

K-Map Minimization

From the truth table, the logic expression for the binary code outputs obtained
are:

G3= ∑m (8, 9, 10, 11, 12, 13, 14, 15)

G2= ∑m (4, 5, 6, 7, 8, 9, 10, 11)

G1= ∑m (2, 3, 4, 5, 10, 11, 12, 13)

G0= ∑m (1, 2, 5, 6, 9, 10, 13, 14)

 K- Map for G3 K- Map for G2

 G3 = B3 G2 = B3’B2+B3B2’

= B2 ⊕ B3

Decimal Binary code Gray code

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

B1 B0
B3 B2 0 0 0 1 1 1 1 0

 0 0 0 0 0 0

 0 1 0 0 0 0

 1 1 1 1 1 1

 1 0 1 1 1 1

B1 B0
B3 B2 0 0 0 1 1 1 1 0

0 0 0 0 0 0

0 1 1 1 1 1

1 1 0 0 0 0

1 0 1 1 1 1

 K-Map for G1 K-Map for G0

 G1=B2‟B1 + B2B1‟ G0= B1‟B0 + B1B0‟

 G1 = B2 ⊕ B1 G0= B1 ⊕ B0

Logic Diagram

B1 B0
B3 B2 0 0 0 1 1 1 1 0

 0 0 0 0 1 1

 0 1 1 1 0 0

 1 1 1 1 0 0

 1 0 0 0 1 1

B1B0
B3 B2 0 0 0 1 1 1 1 0

 0 0 0 1 0 1

 0 1 0 1 0 1

 1 1 0 1 0 1

 1 0 0 1 0 1

6.2 Gray to Binary Code converter

The same procedure is followed to obtain the circuit for Gray to Binary code
conversion.

Truth Table

From the truth table, the logic expression for the binary code outputs obtained
are:

B3= ∑m (8, 9, 10, 11, 12, 13, 14, 15)

B2 = ∑m (4, 5, 6, 7, 8, 9, 10, 11)

B1 = ∑m (2, 3, 4, 5, 8, 9, 14, 15)

B0 = ∑m (1, 2, 4, 7, 8, 11, 13, 14)

Decimal Gray code Binary
code

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 0 1 1 0

6 0 1 1 0 0 1 0 0

7 0 1 1 1 0 1 0 1

8 1 0 0 0 1 1 1 1

9 1 0 0 1 1 1 1 0

10 1 0 1 0 1 1 0 0

11 1 0 1 1 1 1 0 1

12 1 1 0 0 1 0 0 0

13 1 1 0 1 1 0 0 1

14 1 1 1 0 1 0 1 1

15 1 1 1 1 1 0 1 0

K-Map Minimization

K-Map for B3 K-Map for B2

B3=G3 B2 = G3‟G2+G3G2‟

B2 = G2 ⊕ G3 = G2 ⊕ B3

K-Map for B1 K-Map for B0

B1= G3„G2„G1+ G3„G2G1„+ G3G2G1+ G3G2„G1„

= G3„ (G2„G1+ G2G1„) + G3 (G2G1+ G2„G1„)

= G3„ (G2 ⊕ G1) + G3 (G2 ⊕ G1)„

Since [A ⊕ B = A„B+ AB„], [(A ⊕ B)„ = AB+ A„B„]

B1= G3 ⊕ G2 ⊕ G1

B1 = B2 ⊕ G1

G1 G0
G3 G2 0 0 0 1 1 1 1 0

 0 0 0 0 0 0

 0 1 0 0 0 0

 1 1 1 1 1 1

 1 0 1 1 1 1

G1 G0
G3 G2 0 0 0 1 1 1 1 0

 0 0 0 0 0 0

 0 1 1 1 1 1

 1 1 0 0 0 0

 1 0 1 1 1 1

G1 G0
G3 G2 0 0 0 1 1 1 1 0

 0 0 0 0 1 1

 0 1 1 1 0 0

 1 1 0 0 1 1

 1 0 1 1 0 0

G1 G0
G3 G2 0 0 0 1 1 1 1 0

 0 0 0 1 0 1

 0 1 1 0 1 0

 1 1 0 1 0 1

 1 0 1 0 1 0

B0= G3„G2„ G1„G0+ G3„G2‟G1G0„+ G3G2G1‟G0+ G3G2G1G0„+ G3„G2G1„G0„+

G3G2‟G1‟G0‟+ G3‟G2G1G0+G3G2‟G1G0

= G3„G2„ (G1„G0+ G1G0„) + G3G2 (G1„G0+ G1G0„) + G1„G0„ (G3„G2+ G3G2„) + G1G0
(G3„G2+ G3G2„).

= G3„G2„ (G0 ⊕ G1) + G3G2 (G0 ⊕ G1) + G1„G0„ (G2 ⊕ G3) +G1G0 (G2 ⊕ G3).

= G0 ⊕ G1 (G3„G2„ + G3G2) + G2 ⊕ G3 (G1„G0„+G1G0)

= (G0 ⊕ G1) (G2 ⊕ G3)„+ (G2 ⊕ G3) (G0 ⊕ G1)

B0= (G0 ⊕ G1) ⊕ (G2 ⊕ G3)

B0 = G0 ⊕ B1

Logic Diagram:

The logic diagram for the output binary code expressions can be implemented
using XOR gates

6.3 BCD to Excess-3 Converter

Excess-3 code is a modified binary code derived from the BCD code by adding 3

to each coded number.

Truth Table:

The logic expression for the Excess-3 code outputs from the truth table are:

E3= ∑m (5, 6, 7, 8, 9) + ∑d (10, 11, 12, 13, 14, 15)

E2= ∑m (1, 2, 3, 4, 9) + ∑d (10, 11, 12, 13, 14, 15)

E1= ∑m (0, 3, 4, 7, 8) + ∑d (10, 11, 12, 13, 14, 15)

E0= ∑m (0, 2, 4, 6, 8) + ∑d (10, 11, 12, 13, 14, 15)

Decimal BCD
code

Excess-3 code

B3 B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

Minimization using K-Map

 K- Map for E3 K- Map for E2

E3 = B3 + B2 (B0 + B1) E2 = B2 B1’B0’) + B2’ (B0 + B1)

 K- Map for E1 K- Map for E0

E1=B1’B0’ + B1B0 E0=B0’

B1 B0
B3 B2 0 0 0 1 1 1 1 0

 0 0 1 0 1 0

 0 1 1 0 1 0

 1 1 x x x x

 1 0 1 0 x x

B1 B0
B3 B2 0 0 0 1 1 1 1 0

 0 0 1 0 0 1

 0 1 1 0 0 1

 1 1 x x x x

 1 0 1 0 x x

B1 B0
B3 B2 0 0 0 1 1 1 1 0

 0 0 0 0 0 0

 0 1 0 1 1 1

 1 1 x x x x

 1 0 1 1 x x

B1 B0
B3 B2 0 0 0 1 1 1 1 0

 0 0 0 1 1 1

 0 1 1 0 0 0

 1 1 x x x x

 1 0 0 1 x x

Logic Diagram

6.4 Excess-3 to BCD Converter

The same procedure is followed for the implementation of the Excess 3 to BCD
converter

Truth Table

The logic expression for the Excess-3 code outputs are:

B3= ∑m (11, 12) + ∑d (0, 1, 2, 13, 14, 15)

B2= ∑m (7, 8, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)

B1= ∑m (5, 6, 9, 10) + ∑d (0, 1, 2, 13, 14, 15)

B0= ∑m (4, 6, 8, 10, 12) + ∑d (0, 1, 2, 13, 14, 15)

Decimal Excess-3 code BCD
code

E3 E2 E1 E0 B3 B2 B1 B0

3 0 0 1 1 0 0 0 0

4 0 1 0 0 0 0 0 1

5 0 1 0 1 0 0 1 0

6 0 1 1 0 0 0 1 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 0 1 0 1

9 1 0 0 1 0 1 1 0

10 1 0 1 0 0 1 1 1

11 1 0 1 1 1 0 0 0

12 1 1 0 0 1 0 0 1

Minimization using K-Map

 K- Map for B3 K- Map for B2

B3 = E3 E2 +E3 E1E0 B2 = E2’ E1’+ E2 E1E0 + E3 E1E0’

 K- Map for B1 K- Map for B0

B1=E1’E0 + E1E0’ B0=E0’

E1 E0
E3 E2 0 0 0 1 1 1 1 0

 0 0 x x 0 x

 0 1 0 1 0 1

 1 1 0 x x x

 1 0 0 1 0 1

E1 E0
E3 E2 0 0 0 1 1 1 1 0

 0 0 x x 0 x

 0 1 1 0 0 1

 1 1 1 x x x

 1 0 1 0 0 1

E1 E0
E3 E2 0 0 0 1 1 1 1 0

 0 0 x x 0 x

 0 1 0 0 0 0

 1 1 1 x x x

 1 0 0 0 1 0

E1 E0
E3 E2 0 0 0 1 1 1 1 0

 0 0 x x 0 x

 0 1 0 0 1 0

 1 1 0 x x x

 1 0 1 1 0 1

Logic Diagram

The logic diagram for the output expressions obtained can be implemented as

follows:

7. ADDERS

7.1 HALF ADDER

A combinational circuit that performs the addition of two bits is called a half
adder

It has two input A and B, two output Sum, S and Carry, C.

Block Diagram:

Truth Table:

 Sum, S=Ʃm(1,2)

K-Map for Sum:

K-Map for Carry:

Carry, C=Ʃm(2)

C=AB

Logic Diagram:

A full adder is a combinational circuit that forms the arithmetic sum of three bits.

It consists of three inputs and two outputs.

Truth Table:

Sum,S=Ʃm(1,2,4,7)

Carry Out,Cout=Ʃm(3,5,6,7)

7.2 FULL ADDER

K-Map for Sum:

K-Map for Carry Out,Cout:

Logic Diagram:

Full Adder Using Half Adder :

Two Half Adders can be connected as shown below to produce full
adder output.

From the Truth Table:

Cout= A‟ B Cin + A B‟ Cin + A B Cin‟ + A B Cin

Cout= Cin (A‟ B + A B‟) + A B (C in‟ + Cin)

Cout= Cin (A ⊕ B) + A B

Logic Diagram:

7.3 Half Subtractor

A combinational circuit that performs the subtraction of two bits is called a half
subtractor.

It has two input A and B, two output Difference, D and Borrow, B.

Truth Table:

 Difference, D=Ʃm(1,2)

 Borrow ,B=Ʃm(1)

K-Map for Difference:

 D=A‟ B + A B‟

 D= A ⊕ B

K-Map for Borrow:

 Borrow,B=A‟ B

Logic Diagram:

7.4 Full Subtractor:

Full Subtractor is a combinational logic circuit used for the purpose of subtracting
two single bit numbers.

It also takes into consideration borrow of the lower significant stage.

Thus, full subtractor has the ability to perform the subtraction of three bits.

Full subtractor contains 3 inputs and 2 outputs (Difference and Borrow) as shown-

Truth Table:

Difference,D=Ʃm(1,2,4,7)

Borrow Out,Bout=Ʃm(1,2,3,7)

K-Map For Difference,D :

 Difference, D= A‟ B‟ Bin + A‟ B Bin‟ + A B‟ Bin‟ + A B Bin

 = (A‟ B‟ + A B) Bin + (A‟ B + A B‟) Bin‟

 = A ⊕ B ⊕ Bin

K-Map For Borrow Out,Bout :

 Bout = A‟ Bin + A‟ B + B Bin

Logic Diagram For Full Subtractor:

Full Subtractor using Half Subtractor:

Block Diagram:

From The Truth Table:

Difference,D= A‟ B‟ Bin + A‟ B Bin‟ + A B‟ Bin‟ + A B Bin

 = (A‟ B‟ + A B) Bin + (A‟ B + A B‟) Bin‟

 = A ⊕ B ⊕ Bin

Borrow Out,Bout= A‟ B‟ Bin + A‟ B Bin + A‟ B Bin‟ + A B Bin

 =(A‟ B‟ + A B) Bin + A‟ B (Bin + Bin‟)

 = (A ⊕ B) Bin + A‟ B

Logic Diagram:

7.5 Four Bit Parallel Binary Adder/Subtractor: (Ripple Carry
Adder)

4 bit parallel Binary Adder:

A 4 bit adder using Full Adder is capable of adding 4 bit numbers resulting in 4
bit sum and a carry output.

Here all bits of Augend and Addend are fed simultanously, hence named as
parallel adder.

A= A3 A2 A1 A0

B= B3 B2 B1 B0

S= S3 S2 S1 S0

4 bit parallel Binary Subtractor:

If Cin= 0, it performs 1‟s Complement Subtraction

If Cin= 1, it performs 2‟s Complement Subtraction

4 bit parallel Binary Adder/Subtractor:

This performs both addition and subtraction of 4 bit numbers with single
hardware.

Binary Addition:

when M=0, the circuit becomes adder.

B ⊕ 0 = B.

full adders add the B with A with carry input zero and hence an addition operation
is performed.

Binary Subtraction:

When M= 1, the circuit is a subtractor.

B ⊕ 1 = B‟

Hence the complemented B inputs are added to A .

If Cin= 0, it performs 1‟s Complement Subtraction

If Cin= 1, it performs 2‟s Complement Subtraction

8. DECODER

DECODER:

• A Decoder is a combinational circuit converts binary information from n input lines

to 2n unique output lines. If n bit coded information has some unused

combinations , the decoder may have fewer than 2n outputs.

Block diagram of decoder

Decoder configurations

• 2 to 4 decoder

• 3 to 8 decoder

• 4 to 16 decoder etc.,

 3 to 8 line decoder

Three to eight line decoder is also called as binary to octal converter. The

input variables represents a binary number and the output represents the eight

digits of a number in octal in the octal system.However, a three-to-eight-line

decoder can be used for decoding any three-bit code to provide eight outputs, one

for each element of the code.

Three to Eight line Decoder

Block diagram of 3x8 Decoder

Circuit Diagram of 3X8 Decoder

INPUTS OUTPUTS

X Y Z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Truth Table of 3X8 decoder

The other configurations can be obtained in a similar method. A decoder

with enable input can function as a demultiplexer circuit that receives information

from a single line and directs it to one of 2" possible output lines. The selection of a

specific output is controlled by the bit combination of n selection lines. Decoder and

demultiplexer operations are obtained from the same circuit. a decoder with an

enable input is referred as a demultiplexer.

Decoders with enable inputs can be connected together to form a larger

decoder circuit. the figure shows two 3 to 8 line decoders with enable inputs

connected to form a 4 to 16 line decoder. When E = O, the top decoder is enabled

and the other is disabled. The bottom decoder outputs are all O's. and the top eight

outputs generate minterms 0000 to 0111. When E = 1 , the enable conditions are

reversed. The bottom decoder outputs generate minterms from 1000 to 1111, while

the outputs of the top decoder are all 0's. In general enable inputs are a convenient

feature for interconnecting two or more standard components for the purpose of

combining them into a similar function with more input

s and outputs.

4 to 16 decoder using 3 to 8 decoder

Combinational Logic Implementation with Decoder:

A decoder provides the 2n minterms of n input variables . Since any Boolean function

can be expressed in sum-of-minterms form a decoder that generates the minterms

of the function, together with an external OR gate that forms their logical sum,

provides a hardware implementation of the function. In this way. any combinational

circuit with n inputs and m outputs can be implemented with an n to 2n line decoder

and m number of OR gates.

Implementation of Full adder using Decoder

From the truth table of full adder minterms of sum and output carry are as follows

S(A,B,C) =∑m(1,2,4,7)

Cout(A,B,C)= ∑m(3,5,6,7)

Full Adder Implementation with decoder

9. ENCODER

Octal to binary encoder (or) 8 to 3 encoder

An encoder is a digital circuit that performs the inverse operation of a decoder. An

encoder has 2n(or fewer) input lines and n output lines. The output lines generate

the binary code corresponding 10 the input value. An example of an encoder is the

octal-to-binary encoder whose truth table is given in table. It has eight inputs (one

for each of the octal digits) and three outputs that generate the corresponding

binary number. It is assumed that only one input has a value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are determined

directly from the truth table. Output z is equal to 1 when the input octal digit is 1, 3,

5 or 7. Output y is 1 for octal digits 2, 3,6 or 7. and output x is 1 for digits 4, 5, 6

or 7.

INPUTS OUTPUTS

D0 D1 D2 D3 D4 D5 D6 D7 X Y Z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

 Output functions of encoder are

 X=D4+D5+D6+D7

 Y=D2+D3+D6+D7

Z=D1+D3+D5+D7

Limitation of encoder

The encoder has the limitation that only one input can be active at any

given time. If two inputs are active simultaneously, the output produces an

undefined combination. Another ambiguity in the octal-to-binary encoder is that an

output with all O's is generated when all the inputs are 0; but this output is the

same as when Do is equal to 1. The discrepancy can be resolved by providing one

more output to indicate whether at least one input is equal to 1 .

Octal to binary encoder

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function.

The operation of the priority encoder is such that if two or more inputs are equal to

1 at the same time, the input having the highest priority will take precedence. The

truth tab le of a four-input priority encoder is given in table , In addition to the two

outputs x and y, the circuit has a third output designated by V, this is a valid bit

indicator that is set to 1 when one or more inputs are equal to 1.If all input s are 0,

there is no valid input and V is equal to 0. The other two outputs are not inspected

when v equals 0 and are specified as don't -care conditions.

 INPUTS OUTPUTS

D0 D1 D2 D3 X Y V

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 1 1

Truth table of priority encoder

Priority Encoder

9. Lecture Notes

E-Books

Digital Fundamentals_ Global Ed - Thomas L Floyd

Digital Principles And Application - Leach & Malvino

Digital Design - M. Morris Mano and Michael D. Ciletti

Fundamentals of Digital Logic with Verilog Design-Stephen Brown and Zonko
Vranesic

ONLINE LEARNING MATERIALS:

1:http://nptel.iitm.ac.in/ video.php? subject Id=117106086

2:http://nptel.iitm.ac.in/courses/117101001

3: https://youtu.be/C-oAyXibnJU

4 https://youtu.be/oYRMYSIVj1o

5: https://www.youtube.com/watch?v=XZmGGAbHqa0

6:https://www.youtube.com/watch?v=KymIDyQiXZI

Video Links

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg

https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

10. Assignments

Design a combinational circuit with 4 inputs and 2 outputs. The output is 01

whenever the input binary value is greater the 10, 11 whenever the input binary

value is between 6 to 9, 10 whenever the input binary value is less than 4 and 00

for remaining conditions.

Design a combinational circuit with two inputs and four outputs. The output

binary number should be the square of the input binary number

Design a combinational circuit with 4 inputs and 2 outputs. The output is 01

whenever the input binary value is greater the 10, 11 whenever the input binary

value is between 6 to 9, 10 whenever the input binary value is less than 4 and 00

for remaining conditions

Design a 3 input combinational circuit whose output is equal to 1 if the input

variables have more number of 1 s than 0‟s. The output is „0‟ otherwise

The input to a combinational logic circuit is a 4 bit binary number .Design the

logic circuit with minimum hardware for the following (i)Output Y1=1, if input

binary number is 5 or less than 5 (ii)Output Y2=1,if input binary number is 9 or

more than 9

Reduce the given function using K-Map and draw the logic circuit using NAND

logic.

F (A, B, C, D,E) =∑m(6,9,13,18,19,25,27,29,31)+d(2,3,11,15,17,24,28)

Reduce the following function using K-map and draw the logic circuit using only

NOR gates F(A,B,C,D)= πM (0,2,3,8,9,12,13,15) .πd(1,4,5,10,14)

Write the maxterms corresponding to the logical expression Y = (A + B + C‟) (A +

B' + C') (A' + B' + C) and simplify using K-map and draw the logic circuit using

NOR logic

11. Part A Q & A (with K level and CO)

PART A

Questions and Answers Blooms
Level

COs

1. What are combinational circuits?
A combinational circuit consists of logic gates whose outputs at any
time are determined
from the present combination of inputs. A combinational circuit
performs an operation that can be specified logically by a set of
Boolean functions. It consists of input variables, logic gates, and
output variables.

K1 CO2

2. Define half adder.
A combinational circuit that performs the addition of two bits is called
a half adder. A half adder needs two binary inputs and two binary
outputs. The input variables designate the augend and addend bits;
the output variables produce the sum and carry

K1 CO2

3.Define full adder?
A combinational circuit that performs the addition of three bits is a
full adder. It consists of three inputs and two outputs.

K1 CO2

4. Define binary adder.
A binary adder is a digital circuit that produces the arithmetic sum of
two binary numbers. It can be constructed with full adders
constructed in cascade, with the output carry from each full adder
connected to the input carry of the next full adder in the chain.

K1 CO2

5. What are decoders?
A decoder is a combinational circuit that converts binary information
from n input lines to a maximum of 2n unique output lines. If the n
bit coded information has unused combinations, the decoder may
have fewer than 2n outputs.

K1 CO2

6. What are encoders?
An encoder is a digital circuit that performs the inverse operation of a
decoder. An encoder has 2n and n output lines. The output lines
generate the binary code corresponding to the input value.

K1 CO2

7. Define priority encoder?
A priority encoder is an encoder circuit that includes the priority
function. The operation of priority encoder is such that if two or more
inputs are equal to 1 at the same time, the input having the highest
priority will take precedence.

K1 CO2

8. Define multiplexer?
A multiplexer is combinational circuit that selects binary information
from one of many input lines and directs it to a single output line. The
selection of a particular input line is controlled by a
set of selection lines. Normally there are 2n input lines and n selection
lines whose bit combinations determine which input is selected.

K1 CO2

9. Define binary decoder?
A decoder which has an n- bit binary input code and a one activated
output out-of -2n
output code is called binary decoder. A binary decoder is used when it is
necessary to activate exactly one of 2n outputs based on an n-bit input
value.

K1 CO2

10. Simplify the following expression Y = (A + B)(A + C‟)(B‟ + C‟)
Y = (A + B)(A + C‟)(B‟ + C‟)
= (AA‟ + AC +A‟B +BC)(B‟ + C‟) [A.A‟ = 0]
= (AC + A‟B + BC)(B‟ + C‟)
= AB‟C + ACC‟ + A‟BB‟ + A‟BC‟ + BB‟C + BCC‟
= AB‟C + A‟BC‟

K2 CO2

11. State De Morgan‟s theorem.
De Morgan suggested two theorems that form important part of Boolean
algebra. They are,
1) The complement of a product is equal to the sum of the
complements.
(AB)‟ = A‟ + B‟
2) The complement of a sum term is equal to the product of the
complements.
(A + B)‟ = A‟B‟

K1 CO2

12. Reduce A.A‟C
A.A‟C = 0.c [A.A‟ = 1] = 0

K2 CO2

13. Reduce A(A + B)
A(A + B) = AA + AB
= A(1 + B) [1 + B = 1] = A.

K2 CO2

14. Reduce A‟B‟C‟ + A‟BC‟ + A‟BC
A‟B‟C‟ + A‟BC‟ + A‟BC = A‟C‟(B‟ + B) + A‟B‟C
= A‟C‟ + A‟BC [A + A‟ = 1]
= A‟(C‟ + BC) = A‟(C‟ + B) [A + A‟B = A + B]

K2 CO2

15. Simplify the following expression Y = (A + B)(A + C‟)(B‟ + C‟)

Y = (A + B)(A + C‟)(B‟ + C‟)
= (AA‟ + AC +A‟B +BC)(B‟ + C‟) [A.A‟ = 0]
= (AC + A‟B + BC)(B‟ + C‟)
= AB‟C + ACC‟ + A‟BB‟ + A‟BC‟ + BB‟C + BCC‟
= AB‟C + A‟BC‟

K2 CO2

16. Simplify the following using De Morgan‟s theorem [((AB)‟C)‟‟ D]‟

[((AB)‟C)‟‟ D]‟ = ((AB)‟C)‟‟ + D‟ [(AB)‟ = A‟ + B‟]
= (AB)‟ C + D‟
= (A‟ + B‟)C + D‟

K2 CO2

17. Show that (X + Y‟ + XY)(X + Y‟)(X‟Y) = 0
(X + Y‟ + XY)(X + Y‟)(X‟Y) = (X + Y‟ + X)(X + Y‟)(X‟ + Y) [A + A‟B = A
+ B]
= (X + Y‟)(X + Y‟)(X‟Y) [A + A = 1]
= (X + Y‟)(X‟Y) [A.A = 1]
= X.X‟ + Y‟.X‟.Y
= 0 [A.A‟ = 0]

K2 CO2

18. Convert the given expression in canonical SOP form
Y = AC + AB + BC
Y = AC + AB + BC
=AC(B + B‟) + AB(C + C‟) + (A + A‟)BC
=ABC + ABC‟ + AB‟C + AB‟C‟ + ABC + ABC‟ + ABC
=ABC + ABC‟ +AB‟C + AB‟C‟ [A + A =1]

K2 CO2

19. Convert the given expression in canonical POS form
Y = (A + B)(B + C)(A + C)
Y = (A + B)(B + C)(A + C)
= (A + B + C.C‟)(B + C + A.A‟)(A + B.B‟ + C)
= (A + B + C)(A + B + C‟)(A + B +C)(A‟ + B +C)(A + B + C)(A + B‟ +
C) [A + BC
= (A + B)(A + C) Distributive law]
= (A + B + C)(A + B + C‟)(A‟ + B + C)(A‟ + B + C)(A + B‟ + C)

K2 CO2

20. Find the minterms of the logical expression
Y = A‟B‟C‟ + A‟B‟C + A‟BC + ABC‟

Y = A‟B‟C‟ + A‟B‟C + A‟BC + ABC‟
=m0 + m1 +m3 +m6

K1 CO2

12. Part B Qs (with K level and CO)

PART B

1.Expand A+BC‟+ABD‟+ABCD to canonical SOP

Show that AB‟C+B+BD‟+ABD‟+A‟C =B+C

K2 CO2

2.Simplify the following functions using K-Map and draw the logic
circuit.
(i)F(A,B,C,D)= ∑m(0,1,2,4,5,6,8,10,11,14,15)

(ii) F(A,B,C)= ∑m(0,3,5,8,9,13)+ ∑d(1,4,7,12)

K2 CO2

3.Implement the following boolean function using Multiplexer
Y(A,B,C) = Σ(0,1,3,5,6)

Y(A,B,C,D) = Σ(0,1,6,12,14,15)

K2 CO2

4. Design full adder and full subtractor. K2 CO2

5.Implement full adder and subtractor using demultiplexer. K2 CO2

6. Using the K-map simplify the function
 F= ∑m(4,5,6,7,9,11,13,15,16,18,27,28,31)

K2 CO2

7. Design BCD to Excess 3 code converter

K2 CO2

8. Design Binary to gray code converter

K2 CO2

9.Construct a 4 bit binary Adder/Subtractor and Design a BCD
adder

K2 CO2

10. Design Gray to binary code converter

K2 CO2

13.Supportive online Certification courses (NPTEL, Swayam,
Coursera, Udemy, etc.,)

Swayam

Digital Circuits: https://swayam.gov.in/nd1_noc20_ee70/preview

Duration: 12 weeks, Start Date: 14 Sep 2020, End Date: 04 Dec 2020

Udemy

Digital Electric Circuits & Intelligent Electrical Devices

https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/

Coursera

Build a Modern Computer from First Principles: From Nand to Tetris (Project-
Centered Course)

https://www.coursera.org/learn/build-a-computer

https://swayam.gov.in/nd1_noc20_ee70/preview
https://swayam.gov.in/nd1_noc20_ee70/preview
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer

Encoder applications in industries

An encoder is a device that is used in many industries to provide feedback.

In the most basic terms, an encoder, regardless of the type, senses “position”,

“direction”, “speed”, or “counts”.

Encoders will use motion, under a variety of technologies, and translate it into an

electrical signal.

That signal is then sent back to a controlling device, and is interpreted, meaning

scaled, to represent a value that will then be used within the program.

Encoder Types and Technologies:

Some of the technologies involved in encoders are:

Magnetic

Mechanical

Resistive

Optical

“Optical” is the most widely used encoder motion translating technology.

There are different types of encoders such as “Absolute” and “Incremental”.

Fig. Source: realpars.com

Real time Applications in day to day life and to Industry

Encoder Working Principle:

An incremental, optical type encoder uses a beam of light that passes

through a disk that has opaque lines in a specific pattern, somewhat like the

spokes of a wheel.

On the other side of the disk is a photo sensing device that will interpret the

light, based on the pattern on the disk, picture a shutter, blocking and

unblocking the light.

The pulses of light are then converted to an electrical signal to be sent back

to the processor, through the encoder‟s output.

Fig. Source: realpars.com

Encoders for Controlling the Speed of a VFD:

For VFD control, you may be running a pump, on a VFD, to fill a tank full of a

liquid. You are requesting a certain speed and want to verify that the pumps VFD

is at the requested speed.

An “encoder” on the VFD may be used for feedback of speed.

Fig. Source: realpars.com

Encoder in Measuring Processes:

In this application, you will need to cut some aluminum product to a particular

size. You are passing a long roll, meaning hundreds of feet, of the aluminum

sheet through a cutting mechanism.

You need to determine the amount of aluminum fed, so that you can cut the

sheets to the proper size that will be used in a separate manufacturing process.

An encoder, attached to the conveyor and reading the material that is feeding

through your cutting assembly, will indicate the length of material that has been

fed since the last cut. That feedback can then be used to adjust the cutting blade

to sever the length required.

Fig. Source: realpars.com

Encoder Application in industries: Video Link.:

https://realpars.com/encoder/

https://realpars.com/encoder/

Simulation of SOP & POS functions using PLC simulation software

available at Factory Automation CoE.

Example: Two limit switches connected in parallel with each other and in

series with two sets of flow switches (in parallel), and used to control a

pilot light.

15. Contents beyond the Syllabus (COE related Value

added courses)

Example: Two limit switches connected in series with each other and in

parallel with two other limit switches (in series), and used to control a pilot

light.

Contents beyond the Syllabus (COE related Value

added courses)

17. Prescribed Text Books & Reference Books

TEXT BOOKS:

1.James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.

2.M. Morris Mano, „Digital Design with an introduction to the VHDL‟, Pearson

Education, 2013.

3.Comer “Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES

1.Mandal, “Digital Electronics Principles & Application, McGraw Hill Edu, 2013.

2.William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.

3.Thomas L.Floyd, „Digital Fundamentals‟, 11th edition, Pearson Education, 2015.

4.Charles H.Roth, Jr, Lizy Lizy Kurian John, „Digital System Design using VHDL,

Cengage, 2013.

DDDiiigggiiitttaaalll LLLooogggiiiccc CCCiiirrrcccuuuiiitttsss

UUUnnniiittt 333

8. Activity based learning

Understanding the working of the synchronous sequential circuits through

simulation using virtual labs http://vlabs.iitb.ac.in/vlabs-

dev/vlab_bootcamp/bootcamp/cool_developers/labs/exp6/index.html

Simulation of Flip Flops, Registers, Counters

Practice using open source DEEDS: https://www.digitalelectronicsdeeds.com/

Experiment to understand the working of SR Flip Flop

http://vlabs.iitkgp.ernet.in/dec/exp8/index.html#

13

http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/cool_developers/labs/exp6/index.html
http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/cool_developers/labs/exp6/index.html
http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/cool_developers/labs/exp6/index.html
http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/cool_developers/labs/exp6/index.html
http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/cool_developers/labs/exp6/index.html
https://www.digitalelectronicsdeeds.com/
https://www.digitalelectronicsdeeds.com/
http://vlabs.iitkgp.ernet.in/dec/exp8/index.html
http://vlabs.iitkgp.ernet.in/dec/exp8/index.html

9. Lecture Notes

Table of Contents

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

Page No:

1. Sequential logic--15

SR, JK, D and T flip flops------------------------------------19
level triggering and edge triggering

2. Counters ---31

Asynchronous and

Synchronous type

Modulo counters

3. Shift registers --62

4. Design of synchronous sequential circuits------------71

Moore and Melay models

Design

State diagram

State reduction

State assignment

1. Introduction to Sequential Logic

Output depends not only on current input but also on past input values, e.g.,
design a counter

Need some type of memory to remember the past input values

Types of Sequential Logic Circuits:

Synchronous Sequential Logic - Unit-3

Asynchronous Sequential Logic - Unit-4

Difference between Synchronous and Asynchronous Sequential Circuit:

S.No Combinational Circuit Sequential Circuit

1 Output depends on only the
present states.

Output depends
not only on current
input but also on
past input values.

2
No need of memory elements. It requires memory

elements

3 There is no clock pulse. It requires clock
pulse.

S.No Synchronous Sequential Circuit Asynchronous
Sequential Circuit

1 circuit output changes only at
some discrete instants of time

circuit output can
change at any time.

2 This type of circuits achieves
synchronization by using a
timing signal called the clock.

It performs clockless
operation.

Block Diagram of Sequential circuit

Sequential Logic circuits remember past inputs and past circuit state.

Outputs from the system are “fed back” as new inputs With gate delay and wire

delay

The storage elements are circuits that are capable of storing binary information:

memory

The binary information stored in these elements at any given time defines the

state of the sequential circuit at that time.

Latches and Flip-Flops

Latches are “transparent” (= any change on the inputs is seen at the outputs

immediately when C=1).

This causes synchronization problems.

Solution: use latches to create flip-flops that can respond (update) only on

specific times (instead of any time).

A flip-flop circuit maintains a binary state indefinitely till power is on or a change

in the input signal occurs.

The state of a latch or flip-flop is switched by a change in the control input

This momentary change is called a trigger

Latch: level-sensitive

Flip-Flop: edge-triggered

Difference between Latches and Flip Flops :

SR Latch:

The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled
NAND gates. It has two inputs labeled S for set and R for reset.

SR Latch (using NOR Gates) :

SR Latch (using NAND Gates) :

Functional Table:

S R Q Q‟ Remarks

0 1 0 1 Resets

1 1 0 1 Holds the
previous value

1 0 1 0 Sets

1 1 1 0 Holds the
previous value

2. FLIP –FLOPS

Types of Flip Flops:

 1. SR (Set-Reset) FF

2. JK FF

3.Delay/ Data (D) FF

4.Toggle (T) FF

SR Flip –Flop:

1.Block Diagram: 2. Logic Diagram:

3.Characteristic Table:

Characteristic table specifies the next state Q(t+1) with known inputs and present

state Q(t).

Q(t+1)=Ʃm (1,4,5,)+ Ʃd(6,7)

4.Simplified Characteristic Table with inputs and next state

Two useful states:

S=1, R=0 set state (Q will become to 1)

S=0, R=1 reset state (Q will become to 0)

When S=0 and R=0 No change in current value

When S=1 and R=1 Indeterminate state

S R Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

S R Q(t+1)

0 0 NC

0 1 0

1 0 1

1 1 X

5. Characteristic Equation:

From the Characteristic table Q(t+1)=Ʃm (1,4,5,)+ Ʃd(6,7)

Minimization using K-Map

Q(t+1)=S+R’Q

6. Excitation Table:

Excitation table gives the required inputs for a given change of state.

Flip-flop input conditions that will cause the required transition from present state to

next state are required during design of a sequential circuit

7. State Diagram:

The information in characteristic table is represented graphically in a state diagram.

A state is represented by a circle, and transition from one state to another is given

by directed lines.

Q(t) Q(t+1) S R

0 0 0 X

0 1 1 0

1 0 0 1

1 1 X 0

JK Flip –Flop:

The indeterminate state of the SR FF is defined in the JK FF

When J and K are equal to 1, the flip-flop switches to its complement state, if
Q = 1, it switches to Q = 0

1.Block Diagram: 2. Logic Diagram:

3.Characteristic Table:

Q(t+1)=Ʃm (1,4,5,6)

J K Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

4. Characteristic Equation , Q(t+1)

Q(t+1)=K’Q+JQ’

5. Excitation Table:

6. State Diagram:

7.Simplified Characteristic Table:

Q(t) Q(t+1) S R

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

J K Q(t+1)

0 0 NC

0 1 0

1 0 1

1 1 Q’

D Flip –Flop:

1.Block Diagram:

2. Logic Diagram:

3.Characteristic Table:

Q(t+1)=Ʃm (2,3)

D Q(t) Q(t+1)

0 0 0

0 1 0

1 0 1

1 1 1

4. Characteristic Equation , Q(t+1)

Q(t+1)=D

5. Excitation Table:

6. State Diagram:

7.Simplified Characteristic Table:

Q(t) Q(t+1) D

0 0 0

0 1 1

1 0 0

1 1 1

D Q(t+1)

0 0

1 1

T Flip –Flop:

1.Block Diagram:

2. Logic Diagram:

3.Characteristic Table:

Q(t+1)=Ʃm (1,2)

T Q(t) Q(t+1)

0 0 0

0 1 1

1 0 1

1 1 0

4. Characteristic Equation , Q(t+1)

Q(t+1)= T’Q+TQ’=T ⊕ Q

5. Excitation Table:

6. State Diagram:

7.Simplified Characteristic Table:

Q(t) Q(t+1) T

0 0 0

0 1 1

1 0 1

1 1 0

T Q(t+1)

0 NC

1 Q’

Conversion of Flip Flops

steps for converting one flip-flop to the other:

Consider the characteristic table of desired flip-flop.

Fill the excitation values inputs of given flip-flop for each combination of present
state and next state. The excitation table for all flip-flops is shown below.

Get the simplified expressions for each excitation input using K-Maps for
simplifying.

Draw the circuit diagram of desired flip-flop according to the simplified
expressions using given flip-flop and necessary logic gates.

Convert SR Flip-Flop to D Flip-Flop

Convert D flip-flop to T flip-flop :

D=TQ‟+T‟Q =T Ꚛ Q

JK flip-flop to T flip-flop

3. COUNTERS

Counter is a sequential circuit.

A digital circuit which is used for counting pulses is known as counter.

Counter is the widest application of flip-flops. It is a group of flip-flops with a
clock signal applied.

Counters are of two types.

Asynchronous or ripple counters.

Synchronous counters.

Difference between Synchronous Counter Asynchronous Counter

Sl.No Synchronous Counter Asynchronous Counter

1
In synchronous counter, all flip

flops are triggered with same clock

simultaneously.

In asynchronous counter, different

flip flops are triggered with different

clock, not simultaneously.

2

Synchronous Counter is faster than

asynchronous counter in operation.

Asynchronous Counter is slower

than synchronous counter in

operation.

3 Synchronous Counter is also called

Parallel Counter.

Asynchronous Counter is also called

Serial Counter.

4

Synchronous Counter will operate

in any desired count sequence.

Asynchronous Counter will operate

only in fixed count sequence

(UP/DOWN).

5

Synchronous Counter examples

are: Ring counter, Johnson counter.

Asynchronous Counter examples

are: Ripple UP counter, Ripple

DOWN counter

6 In synchronous counter,

propagation delay is less.

In asynchronous counter, there is

high propagation delay.

https://www.geeksforgeeks.org/digital-logic-ring-counter/
https://www.geeksforgeeks.org/digital-logic-n-bit-johnson-counter/
https://www.geeksforgeeks.org/digital-logic-ripple-counter/

Asynchronous Counter/ Ripple Counter:

Asynchronous counters are those counters which do not operate on

simultaneous clocking.

In asynchronous counter, only the first flip-flop is externally clocked using clock

pulse while the clock input for the successive flip-flops will be the output from a

previous flip-flop.

As the data ripples between the output of one flip-flop to the input of the next, it

is called as Ripple Counter.

Design of Asynchronous Counter:

3-bit up counter

3 bit Down Counter

MOD-5 counter

4-bit up counter

Decade counter/ MOD-10 Counter/BCD Counter

Asynchronous counter is implemented in toggle mode

The toggle flip-flop changes state when the clock input is applied, T = 1

The T-type flip-flop is not available commercially but can be constructed from a JK

flip-flop (or D-type flip-flop)

By connecting the J input with the K input and both to logic level “1”.

With J and K HIGH, the flip-flop changes state every time it is triggered at its

clock input. This clock input is now called the “toggle input” as the output

becomes “1” if it was “0”, and a “0” if it was “1”, that is it toggles.

The Data/Delay D-type flip-flop can just like the JK flip-flop be converted to
perform as a toggle flip-flop by connecting the Q output directly to the D-input

Design of 3-bit up counter :

Step-1 : State Diagram (0-1-2-3-4-5-6-7-0)

No.of FFs Required= 3

Block Diagram:

Truth Table

Output Waveform

Design of 3-bit Down counter :

Step-1 : State Diagram

Counting sequence (0-7-6-5-4-3-2-1-0)

No.of FFs Required=3

Block Diagram:

Truth Table:

Output Waveform:

Design of Mod-5 Counter

 MOD 6= 0-1-2-3-4-5-0

Step-1: State Diagram

Counting Sequence (0-1-2-3-4-0)

No.of FFs Required=3

Truth Table:

Instead 101 for clock pulse 5, the state of FFs should be 000. Hence Q2=1 & Q0

=1 are taken from 101 and fed to input of NAND gate to give clear input to all
FFs.

Block Diagram:

Output waveform:

Design of BCD/Mod-10/Decade ripple counter

MOD 10= 0-1-2-3-4-5-6-7-8-9-0

Step-1: State Diagram

Counting Sequence (0-1-2-3-4-0)

No.of FFs Required=4

Truth Table:

Instead 1010 for clock pulse 10, the state of FFs should be 0000. Hence Q3=1 &
Q1 =1 are taken from 1010 and fed to input of NAND gate to give clear input to
all FFs.

Output waveform:

Steps for Designing Synchronous Counter:

Decide the number of FFs required.

Draw State Diagram

Form State Table (Present state, Next State, FF input)

Using K –map , get the simplified expression for the input of FF

Draw the design using given FF

1.Design a 3 bit counter (Up counter)

Step-1 : State Diagram (0-1-2-3-4-5-6-7-0)

 No: of States =8, No: of FFs required= 3

Step2: State Table

Step-3: Finding Equation for FF input using K-map

JA= KA =BC

JB= KB=C

Let QA QB QC =A B C

JC= KC =1

Step: 4 Drawing the design

2.Design of Mod-5 Counter using T FF

Step-1: State Diagram

Counting Sequence (0-1-2-3-4-0)

No.of FFs Required=3

Step-2 : Forming State Table

(Unused States will have don’t cares in Next State and FF input)

Step 3: Finding FF input equation using K-map

Step: 4 Drawing the design

3. Design 3 bit down counter using D FF

Step-1 : State Diagram

Counting sequence (0-7-6-5-4-3-2-1-0)

No.of FFs Required=3

Step-2 : Forming State Table

(For D-FF D=Q(t+1))

Step 3: Finding FF input equation using K-map

DA =A‟B‟C‟+AB+AC

DB = B‟C‟+BC =B ⊕ C

DC= C

Step: 4 Drawing the design

4. Design 3 bit Bidirectional (Up/Down) 3 bit Counter

Step-1 : State Diagram

Counting sequence :

X=0 Up counting (0-1-2-3-4-5-6-7-0)

X=1 Down counting (0-7-6-5-4-3-2-1-0)

No.of FFs Required=3

Step-2 : Forming State Table

Step 3: Finding FF input equation using K-map

TA =XB‟C‟+X‟BC

TB =X‟C+XC‟=X ⊕ C

TC =1

Step: 4 Drawing the design

5. Design Decade Counter/ MOD-10 Counter/BCD
Counter

Step-1 : State Diagram

Counting sequence :

(0-1-2-3-4-5-6-7-8-9-0)

No.of FFs Required=4

Step-2 : Forming State Table

Step 3: Finding FF input equation using K-map

TA =AD+BCD

TB =CD

TC= A‟D

TD=1

Step: 4 Drawing the design

Design synchronous counter for sequence: 0 → 1 → 3 →
4 → 5 → 7 → 0, using T flip-flop. Check whether it is

self starting (Check lock out condition)

Step-1 : State Diagram

Counting sequence :

(0-1-3-4-5-7-0)

No.of FFs Required=3

Step-2 : Forming State Table 0-1-3-4-5-7-0

Step 3: Finding FF input equation using K-map

TA =B

TB =C

TC =B+C‟

Step: 4 Drawing the design

Step: 5 Checking lock out /self starting:

(From the FF i/p equation, find next state of Unused state)

2-7

6-3

As the next state of 2 is 7 (used state) and the next state of 6 is 3
(used state), the counter is self stating.

4. SHIFT REGISTERS

A shift register consists of a group of flip-flops arranged such that the output of

one feeds the input of the next so that the binary numbers stored shift from one

flip-flop to the next controlled by a clock pulse.

This implementation is a 4-bit shift register utilising D-type flip-flops. In this type

of circuit, the clock inputs of all the flip-flops connect to a common line, so they

receive clock inputs simultaneously.

With a D-type flip-flop, the value at the input D transfers to the output Q on

the rising edge of every clock pulse. Since they all receive the clock pulse

simultaneously, they all do this operation together on the rising edge.

A shift register “shifts” its output once every clock cycle

Types of Shift Register

Serial-in, Serial-out (SISO)

In this type of shift register, the binary data is input, shifted and output serially in

either left or right direction one bit at a time under a common clock signal.

Serial-in, Parallel-out (SIPO)

In this type of shift register, the binary data is input and shifted serially in either

left or right direction one bit at a time but is output parallel all together under a

clock signal.

Parallel-in, Serial-out (PISO)

In this type of shift register, the binary data is input all together in parallel mode

but is shifted and output serially in either left or right direction one bit at a time

under a clock signal.

Parallel-in, Parallel-out (PIPO)

 In this type of shift register, the binary data is input as well as shifted and output

in parallel mode all together under a clock signal.

https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-
shift-register-animation.html

https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html
https://www.petervis.com/dictionary-of-digital-terms/4-bit-shift-register/4-bit-shift-register-animation.html

Asynchronous Inputs:

1. Preset -Sets the FF as 1

2. Clear -Clear the state of the FF

Serial-in, Serial-out (SISO)

Block Diagram:

Data: 1011

Shift Register Truth Table

Serial-in, Parallel-out (SIPO)

Block Diagram:

Data :1001

Shift Register Truth Table

Parallel-in, Serial-out (PISO)

Block Diagram:

SHIFT/LOAD is a control input that allows the four bit of data at A, B, C and D

inputs to enter into the register in parallel or shift the data in serial.

When SHIFT/LOAD is LOW, AND gates G1 ,G2, G3 are enabled, allowing the data

at parallel inputs i.e. A, B, C and D to the Data inputs of the respective flip-flops.

When SHIFT/LOAD is HIGH, AND gates G1, G2, G3 are disabled and the

remaining AND gates G4 G5 G6 are enabled, allowing the data bits to shift right

from one stage to the next.

The OR gates allow either the normal shifting operation or the parallel data-entry

operation, depending on which the AND gates are enabled by the level on the

SHIFT/LOAD input.

Data: 1101

Shift Register Truth Table

Parallel-in, Parallel-out (PIPO)

Block Diagram:

Data: 1101

Shift Register Truth Table

Application of Shift Registers:

Johnson Counter/Twisted Ring Counter:

Block Diagram

Complement of the output of the last flip-flop is connected back

to the D input of the first flip-flop

If the counter starts at 0, this feedback arrangement produces a
characteristic sequence of states,

4-bit sequence has a total of eight states

5-bit sequence has a total of ten states

Johnson counter will produce a modulus of 2n, where n is the number of
stages in the counter

Truth Table:

State Diagram:

Ring Counter:

Ring counter has one flip-flop for each state in its sequence

Initially, a 1 is preset into the first flip-flop

Remaining flip-flops are cleared

Block Diagram

Inter stage connections are the same as Johnson counter

But Q rather than Q‟ is fed back from the last stage

Outputs of the counter indicate directly the decimal count of the clock pulse

1 is always retained in the counter and simply shifted “around the ring,”
advancing one stage for each clock pulse

Truth Table State Diagram

5. DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUITS

Synchronous sequential circuits:

There are two types.

1.Moore Circuit

2. Mealy Circuit

Moore Circuit: The output depends only on the present state of the flip-flops.

Mealy Circuit: The output depends on both the present state and the external inputs

 of the flip-flops.

Problems:

1.A sequential circuit with 2 D Flip-flops A&B has 2 inputs x &y and 1 output Z is
specified by following next state and output equations. Draw state diagram and
logical diagram.

 Solution:

 Here the output doesn‟t depend upon the external inputs x &y.

 Number of inputs = 2

 Number of outputs = 1

 Number of flip-flops = 2

Moore Circuit Mealy Circuit

It‟s output is a function of
present state only.

Input changes does not affect
the output.
It requires more number of
states for implementing the
same function.

It‟s output is a function of
present state as well as
external inputs.
Input changes may affect the
output of the circuit.
It requires less number of
states for implementing same
function.

Step 1:

Draw the Logic diagram

Step 2:

Derive the state table :

Present
State

Next State Output
Z

A B xy = 00
A+ B+

xy = 01
A+ B+

xy = 10
A+ B+

xy = 11
A+ B+

0 0 0 0 1 0 0 0 0 0 0

0 1 0 1 1 1 0 0 0 0 1

1 0 0 0 1 0 1 1 1 1 0

1 1 0 1 1 1 1 1 1 1 1

Step 3: Derive the State diagram

2. A sequential circuit with 2 – D flip-flops A &B and input x and output Y is specified
by the following next state and output equations.

 A(t+1) = Ax + Bx

 B(t+1) = A‟x

 Y = (A+B) X‟

i) Draw the logic diagram of the circuit.

ii) Derive the state table.

iii) Derive the state diagram.

Solution:

Number of inputs – 1, Number of flip-flops – 2, Number of output - 1

Step1: Draw the Logic diagram of the circuit

Step 2: Derive the state table

Present
State

Next State Output
Y

A B x = 0
A+ B+

x = 1
A+ B+

x = 0 x = 1

0 0
0 1
1 0
1 1

 0 0
 0 0
 0 0
 0 0

 0 1
 1 1
 1 0
 1 0

0
1
1
1

0
0
0
0

Step 3: Derive the state diagram

State Diagram:

 The information available in a state table may be represented graphically in a
state diagram.

 A state is represented by a circle and the transition between states is indicated by
directed lines connecting the circles.

 The directed lines are labeled with two binary numbers separated by a /. The
input value that causes the state transition is labeled first and the output after the
symbol / gives the value of the output during the present state.

 This is pictorial view of a state table derived from the given logic diagram.

State Reduction:

 The reduction of the number of flip-flops in a sequential circuit is referred to
as the state reduction problem. State-reduction algorithms are concerned with
procedures for reducing the number of states in a state table, while keeping the
external input-output requirements unchanged.

 Since (N) flip-flops produce (2N) states, a reduction in the number of states
may (or may not) result in a reduction in the number of flip-flops. An
unpredictable effect in reducing the number of flip-flops is that sometimes the
equivalent circuit (with fewer flip-flops) may require more combinational gates.

 We will illustrate the state reduction procedure with an example. We start with
a sequential circuit whose specification is given in the state diagram shown in Fig.
In this example, only the input-output sequences are important; the internal
states are used merely to provide the required sequences.

. For this reason, the states marked inside the circles are denoted by letter

symbols instead of their binary values. This is in constant to a binary counter,
where the binary value sequence of the state themselves is taken as the outputs.

There are an infinite number of input sequences that may be applied to the
circuit; each results in a unique output sequence. As an example, consider the
input sequence [01010110100] starting from the initial state (a). Each input of 0
or 1 produces an output of 0 or 1 and causes the circuit to go to the next state.
the output and state sequence for the given input sequence as follows: With the
circuit in initial state (a), an input of 0 produces an output of 0 and the circuit
remains in state (a). With present state (a) and input of 1, the output is 0 and the
next state is (b). With present state (b) and input of 0, the output is 0 and next
state is (c). Continuing this process, we find the complete sequence to be as
follows:

In each column, we have the present state, input value, and output value. The
next state is written on top of the next column. It is important to realize that in
this circuit, the states themselves are of secondary importance because we are
interested only in output sequences caused by input sequences.

Now let us assume that we have found a sequential circuit whose state diagram
has less than seven states and we wish to compare it with the circuit whose state
diagram is given by Fig. (1).

If identical input sequences are applied to the two circuits and identical outputs
occur for all input sequences, then the two circuits are said to be equivalent (as
far as the input-output is concerned) and one may be replaced by the other. The
problem of state reduction is to find ways of reducing the number of states in a
sequential circuit without altering the input-output relationships.

We now proceed to reduce the number of states for this example. First, we need
the state table; it is more convenient to apply procedures for state reduction
using a table rather than a diagram. The state table of the circuit is listed in Table
(1) and is obtained directly from the state diagram.

State a a b c d e f f g f g a

Input 0 1 0 1 0 1 1 0 1 0 0

Output 0 0 0 0 0 1 1 0 1 0 0

State table:

Equal states: Two states are said to be equivalent if, for each member of the set of
inputs, they give exactly the same output and send the circuit either to the same
state or to an equivalent state.

Reduced State table -1 [Note „e‟ and „g‟ are equal states. So in the reduced table „g‟
replaced by „e‟

Present
State

Next State Output

x=0 x=1 x=0 x=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

e, g are
Equal
states

Present
State

Next State Output

x=0 x=1 x=0 x=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f e f 0 1

d, f are
Equal
states

Reduced State table -2 [Note „d‟ and „f‟ are equal states. So in the reduced table „f‟
replaced by „d‟

Reduced State diagram:

Present
State

Next State Output

x=0 x=1 x=0 x=1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1

1.A sequential circuit has one input and one output, Minimize the following state
table and then draw the state diagram.

Solution:

Step1: Derive the reduced state table

Present
state

 Next state, Z(output),

 X(Input)

X=0 X=1

A A,0 D,1

B C,1 D,0

C B,0 A,1

D D,1 A,1

E D,1 A,1

F D,0 A,0

G D,1 A,1

H D,1 C,1

Equal
states

Present
state

Next state, Z(output),

 X(Input)

 X = 0 X = 1

A A,0 D,1

B C,1 D,0

C B,0 A,1

D D,1 A,1

F D,0 A,0

H D,1 C,1

Step2: Derive the state diagram

9. Lecture Notes

E-Books

Digital Fundamentals_ Global Ed - Thomas L Floyd

Digital Principles And Application - Leach & Malvino

Digital Design - M. Morris Mano and Michael D. Ciletti

Fundamentals of Digital Logic with Verilog Design-Stephen Brown and Zonko
Vranesic

ONLINE LEARNING MATERIALS:

1:http://nptel.iitm.ac.in/ video.php? subject Id=117106086

2:http://nptel.iitm.ac.in/courses/117101001

3: https://youtu.be/C-oAyXibnJU

4 https://youtu.be/oYRMYSIVj1o

5: https://www.youtube.com/watch?v=XZmGGAbHqa0

6:https://www.youtube.com/watch?v=KymIDyQiXZI

Video Links

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg

https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

QUIZ QUESTIONS:

1. What is/are the crucial function/s of memory elements used in the
sequential circuits?

a. Storage of binary information
b. Specify the state of sequential
c. Both a & b
d. None of the above

2. The behaviour of synchronous sequential circuit can be predicted by
defining the signals at ______.

a. discrete instants of time
b. continuous instants of time
c. sampling instants of time
d. at any instant of time

3. In Moore models, output are the function of only

a. present state

b. input state

c. next state

d. both a and b

4. Memory elements in clocked sequential circuits are called

a.latches

b.flip-flop

c.signals

d.gates

5.The state of flip-flop can be switched by changing its

a.input signal

b.output signal

c.momentary signals

d.all signals

6.The flip-flops can be constructed with two

a.NAND gates

b.XOR gates

c.AND gates

d.NOT gates

7.Unused states are treated as Don't cares conditions during the

a.Design of a circuit

b.Execution

c.Pulse trigger

d.None

8. .A synchronous sequential circuit is made up of

a.combinational gates

b.flip-flops

c.latches

d.both a and b

9. In the last step of design procedure we

a.draw map

b.draw circuit

c.draw table

d.draw a logic diagram

10. In T flip-flop when state of the T flip-flop has to be complemented
the T must be

a.0

b.1

c.t

d.t+1

10. Assignments

Design a sequential circuit with two JK flip-flops, A and B, and two inputs, E and

x. If E = 0, the circuit remains in the same state regardless of the value of x.

When E = 1 and x = I, the circuit goes through the state transitions from 00 to 01

to 10 to 11 back to 00, and repeats. When E = 1 and x = 0, the circuit goes

through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeats.

A sequential circuit has three D flip-flops, A, B, and C, and one input, X. It is

described by the following flip-flop input functions:

DA = (BC' + B'C)x + (Be + B'C')x„, DB = A, DC=B

(a) Derive the state table for the circuit.

(b) Draw two state diagrams: one for x = 0 and the other for x = 1.

A sequential circuit has two JK flip-flops, A and B; two inputs, x and y; and one

output, z.

The flip-flop input functions and the circuit output function are as follows:

JA = Bx + B'y' KA = B'xy„, JB = A'x, z = Axy + Bx'y'

(a) Draw the logic diagram of the circuit.

(b) Tabulate the state table.

(c) Derive the next-state equations for A and B.

Convert a D flip-flop to a JK flip-flop by including input gates to the D flip-flop.

The gates needed for the input of the D flip-flop can be determined by means of

sequential-circuit design procedures. The sequential circuit to be considered will

have one D flip-flop and two inputs, J and K.

Design a sequential circuit with two D flip-flops, A and B, and one input, x. When

x = 0, the state of the circuit remains the same. When x = 1, the circuit goes

through the state transitions from 00 to 01 to II to 10 back to 00, and repeats.

11. Part A Q & A (with K level and CO)

PART A

Questions and Answers Blooms
Level

COs

1. What is a sequential circuit?

A sequential circuit is one in which the output variables dependent
not only on the present input variables but they also depend up on
the past history of the input variables.
.

K1 CO3

2. What are the types of sequential circuits?

Synchronous sequential circuit: Change in input signals can affect the
memory elements only at discrete instants of time.
Asynchronous sequential circuit: Change in input signals can affect
memory element at any instant of time.

K1 CO3

3. Define flip flop.

Flip flop is a device with two stable states 0 or 1. A flip flop maintains
its output state until directed by an input signal to change its state.
Since it can store 1-bit of information, it is also called 1-bit memory
unit.

K1 CO3

4. What are the types of flip flops?

SR Flip flop
JK Flip flop
Delay (D) Flip flop
Toggle (T) Flip flop

K1 CO3

5. What is a latch?
A latch is a memory device without clock signal.
.

K1 CO3

6. What is a characteristic table?

A characteristic table defines the logical property of the flip-flop and
completely characteristic its operation.

K1 CO3

7. What is the difference between truth table and excitation table.

i) An excitation table is a table that lists the required inputs for a
given
change of state.
ii) A truth table is a table indicating the output of a logic circuit for
various
input states.

K1 CO3

8. What are the types of triggering a flip flop?
The types of triggering a flip flop are,
Level triggering
Edge triggering.

K1 CO3

9. What is edge triggering in flip flops?
Edge triggering means that the flip flop changes state either at the
positive edge(rising edge) or at the negative edge (falling edge) of the
clock pulse and is sensitive to its inputs only at this transition of the
clock.

K1 CO3

10. What is meant by level triggering?
In level triggering the output of the flip-flop changes state or responds
only when
the clock pulse is present.

K1 CO3

11. What is race around condition?
In JK flip flop output is fed back to the input and therefore changes in
the output results change in the input. Due to this, in the positive half of
the clock pulse if J and K are both high then output toggles
continuously. This condition is known as race around condition.

K1 CO3

12. What are shift registers?
A register is a group of flip flops to store a word. The binary information
in a register can be moved from stage to stage upon application of clock
pulses. This gives rise to group of registers called shift registers. This
type of bit shifting is essential for certain arithmetic and logic operations
used in microprocessors.

K1 CO3

13. What is a counter?
A counter is a register capable of counting the number of clock pulses
arriving at its clock input. Count represents the number of clock pulses
arrived.

K1 CO3

14. What is ripple or asynchronous counter?
Ripple counter is one in which first flip flop is clocked by the external
clock pulse and then each successive flip flop is clocked by the output of
previous flip flop.

K1 CO3

15. A counter has 14 stable states 0000 through 1101. If the input
frequency is 50KHz what will be its output frequency?
Output frequency = 50 / 14 = 3.57 KHz.

K1 CO3

16. What are the two models of synchronous sequential circuits?
The two models of synchronous sequential circuits are,
Moore model
Melay model

K1 CO3

17. What is a ring counter?
A counter formed by circulating a „bit‟ in a shift register whose serial
output has been connected to its serial input.

K1 CO3

18. What is Johnson counter?
It is a ring counter in which the inverted output is fed into the input. It
is also known as a twisted ring counter.

K1 CO3

19. What is meant by modulus of a counter?
By the term modulus of a counter we say it is the number of states
through which a counter can progress.

K1 CO3

20. Give the characteristic equation of a JK and T flip-flop.
JK characteristic equation Q(t+1)=JQ‟+K‟Q
T characteristic equation Q(t+1)=TQ‟+T‟Q

K1 CO3

12. Part B Qs (with K level and CO)

PART B

1. (i) Draw the circuit of SR flip flop and explain the operation
(ii)Realize JK flip flop using T flip flop

K3 CO3

2. (i)Explain the operation of Master Slave JK flip flop
(ii)Explain edge triggering in flip flops

K3 CO3

3. Explain the operations of D flip flop and T flip flop, Give their
characteristic equation and draw state diagram.

K3 CO3

4. A sequential circuit with two D flip flops A and B, two inputs X
and Y and one output Z is specified by the following input
equations. TA= X‟Y +XA , TB=X‟B +XA, Z=XB. i. Draw the logic
diagram of the circuit
ii. Define the state table
iii. Derive the state diagram.

K3 CO3

5. Explain various types of shift registers with neat diagrams K3 CO3

6. Explain the operation of universal shift register

K3 CO3

7. Minimize the state table and design the clocked sequential circuit

K3 CO3

8. Design synchronous sequential circuit using JK flip flop for the
given state diagram.

K3 CO3

Present State Next State

X(Input), Z(Output)

 0 1

A
B
C
D
E

B,0
B,0
E,1
E,1
B,0

C,0
D,0
C,0
C,0
D,0

9. Design synchronous BCD counter K3 CO3

10. Design MOD 5 counter using T flip flop K3 CO3

13.Supportive online Certification courses (NPTEL, Swayam,
Coursera, Udemy, etc.,)

Swayam

Digital Circuits: https://swayam.gov.in/nd1_noc20_ee70/preview

Duration: 12 weeks, Start Date: 14 Sep 2020, End Date: 04 Dec 2020

Udemy

Digital Electric Circuits & Intelligent Electrical Devices

https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/

Coursera

Build a Modern Computer from First Principles: From Nand to Tetris (Project-
Centered Course)

https://www.coursera.org/learn/build-a-computer

https://swayam.gov.in/nd1_noc20_ee70/preview
https://swayam.gov.in/nd1_noc20_ee70/preview
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer

DIGITAL CLOCK

A digital clock displays seconds, minutes, and hours

AC voltage is converted to pulse waveform and divided down to a 1 Hz pulse

waveform by divide counters.

Both the seconds and minutes counts are produced by divide counters

Synchronous decade counters are used for implementation a truncated sequence

achieved by using the decoder count 6 to asynchronously clear the

14. Real time Applications in day to day life and to

Industry

Automobile Parking Control

An up/down counter is used as a means of monitoring available spaces in a

parking garage and provide indication of a full condition by illuminating a display

sign and lowering a gate bar at the entrance

Each automobile entering the garage breaks a light beam, activating a sensor that

produces an electrical pulse.

This positive pulse sets the S-R latch on its leading edge.

The LOW on the Q output of the latch puts the counter in the UP mode. Also, the

sensor pulse goes through the NOR gate and clocks the counter on the LOW-to-

HIGH transition of its trailing edge.

Each time an automobile enters the garage, the counter is advanced by one

(incremented).

When the one-hundredth automobile enters, the counter goes to its last state

(10010).

The MAX/MIN output goes HIGH and activates the interface circuit (no detail),

which lights the FULL sign and lowers the gate bar to prevent further entry.

When an automobile exits, an optoelectronic sensor produces a positive pulse,

which resets the S-R latch and puts the counter in the DOWN mode. The trailing

edge of the clock decreases the count by one (decremented).

If the garage is full and an automobile leaves, the MAX/MIN output of the counter

goes LOW, turning off the FULL sign and raising the gate.

Timers and Counters in Microcontrollers – Contents for Embedded

Systems CoE.

PROGRAMMABLE DIGITAL TIMER SWITCH USING A PIC

MICROCONTROLLER

Digital timer switches are used to control the operation of electrical devices based

on a programmed schedule.

This project describes a programmable digital timer based on the PIC16F628A

microcontroller that can be programmed to schedule the on and off operation of

an electrical appliance.

The appliance is controlled through a relay switch.

This timer switch allows you to set both on and off time.

Operation of the timer

The timer gets inputs from the 4 push buttons. Their functions are described as
follows:

ON/OFF TIME : This timer device allows you to set both on and off time. When
the timer is initially powered on, the device is in off condition and both on and off
times are 0. Pressing this button, you can switch between the on and off time on
the display.

SELECT : This allows you to select between the on and off time settings as well as
hour and minute digits. The selected digit is incremented by pressing the ON/OFF
TIME button.

ENTER : When the appropriate hour and minutes are selected, pressing ENTER
finalize the corresponding on or off time.

START/STOP is to start or stop the timer. If the timer is already on, you can stop it
at anytime during its operation by pressing this button.

http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-

microcontroller/

15. Contents beyond the Syllabus (COE related Value

added courses)

http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/
http://embedded-lab.com/blog/programmable-digital-timer-switch-using-a-pic-microcontroller/

The device connected to the relay switch is needed to be turned on after 2

minutes.

Further, once it is turned on, it is required to be on for next 20 minutes. In this

case, the off time is 00:02 and the on time is 00:20, in hh:mm format.

Once the timer is started, the device will be turned on after 2 minutes and

remained on for 20 minutes.

After that it will be turned off again.

A standard 16×2 character LCD is used in the project to display the device status,

program menu and time.

A piezoelectric buzzer provides audible tone when the timer is started and

stopped. It also beeps when the device is turned on or off.

Contents beyond the Syllabus (COE related Value

added courses)

17. Prescribed Text Books & Reference Books

TEXT BOOKS:

1.James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.

2.M. Morris Mano, „Digital Design with an introduction to the VHDL‟, Pearson

Education, 2013.

3.Comer “Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES

1.Mandal, “Digital Electronics Principles & Application, McGraw Hill Edu, 2013.

2.William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.

3.Thomas L.Floyd, „Digital Fundamentals‟, 11th edition, Pearson Education, 2015.

4.Charles H.Roth, Jr, Lizy Lizy Kurian John, „Digital System Design using VHDL,

Cengage, 2013.

18. MINI PROJECT

Digital counter circuit

Circuit operation:

Momentarily press of micro-switch S1 once, sends one clock pulse.

The display shows „1.‟

Continuous pressing and releasing switch S1 increments the 7-segment display by
one digit for each clock pulse.

Continued pressing is done until the display shows „9.‟

The next press-and-release operation will change the display to „0,‟ indicating that
the counter has been reset and that it has completed its one cycle.

On changing the position of switch S4 to GND and giving a clock pulse from
switch S1, the display will show „9‟.

This indicates that the counter has now started counting downwards. Reverse
counting is justified as the down-count mode is selected.

For parallel data loading, the parallel data by switches S5 through S8 (either GND
or Vcc) is set and then switch S3 is pressed.

The set parallel data appears on the 7-segment display.

https://www.electronicsforu.com/electronics-projects/digital-counter

https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter
https://www.electronicsforu.com/electronics-projects/digital-counter

Digital Logic Circuits

Unit 4

8. Activity based learning

Understanding the working of the PLDs and FPGA through simulation using

Virtual Labs

http://vlab.amrita.edu/?sub=3&brch=66&sim=543&cnt=1

https://cse.iitkgp.ac.in/~chitta/coldvl/memory.html

Practice using open source DEEDS: https://www.digitalelectronicsdeeds.com/

http://vlab.amrita.edu/?sub=3&brch=66&sim=543&cnt=1
https://cse.iitkgp.ac.in/~chitta/coldvl/memory.html
https://www.digitalelectronicsdeeds.com/

9. Lecture Notes

Table of Contents

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND

PROGRAMMABILITY LOGIC DEVICES

Page No:

1. Asynchronous sequential logic circuits ------------------------------16

Transition stability, flow stability

2. Analysis of asynchronous sequential logic circuits ----------------25

3. Race conditions---35

4. Hazards &errors in digital circuits---------------------------------------43

5. Introduction to Programmability Logic Devices---------------------51

PROM

PLA

PAL

CPLD

FPGA.

14

9. Lecture Notes

E-Books

Digital Fundamentals_ Global Ed - Thomas L Floyd

Digital Principles And Application - Leach & Malvino

Digital Design - M. Morris Mano and Michael D. Ciletti

Fundamentals of Digital Logic with Verilog Design-Stephen Brown and Zonko
Vranesic

ONLINE LEARNING MATERIALS:

1:http://nptel.iitm.ac.in/ video.php? subject Id=117106086

2:http://nptel.iitm.ac.in/courses/117101001

3: https://youtu.be/C-oAyXibnJU

4 https://youtu.be/oYRMYSIVj1o

5: https://www.youtube.com/watch?v=XZmGGAbHqa0

6:https://www.youtube.com/watch?v=KymIDyQiXZI

Video Links

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg

https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1qCP5dBvi1LZxd6S7FAUxt788iMmLLpbg
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O
https://drive.google.com/open?id=1hrXWfXKWnhidFbnDPDtd75hQt9OzOG6O

Asynchronous Sequential Circuits:

Introduction:

Asynchronous sequential circuits do not use clock signals as synchronous

circuits do. Instead, the circuit is driven by the pulses of the inputs which

means the state of the circuit changes when the inputs change. Also, they

don‟t use clock pulses. The change of internal state occurs when there is a

change in the input variable. Their memory elements are either un-clocked

flip-flops or time-delay elements. They are similar to combinational circuits

with feedback.

Advantages:

No clock signal, hence no waiting for a clock pulse to begin processing

inputs, therefore fast. Their speed is faster and theoretically limited only by

propagation delays of the logic gates.

Robust handling. Higher performance function units, which provide average-

case completion rather than worst-case completion. Lower power

consumption because no transistor transitions when it is not performing a

useful computation. Absence of clock drivers reduce power consumption.

Less severe electromagnetic interference (EMI).

More tolerant to process variations and external voltage fluctuations. Achieve

high performance while gracefully handling variable input and output rates

and mismatched pipeline stage delays. Freedom from difficulties of

distributing a high-fan-out, timing-sensitive clock signal. Better modularity.

1. ASYNCHRONOUS SEQUENTIAL CIRCUITS

Less assumptions about the manufacturing process. Circuit speed adapts to

changing temperature and voltage conditions. Immunity to transistor-to-

transistor variability in the manufacturing process, which is one of the most

serious problems faced by the semiconductor industry.

Disadvantages:

Some asynchronous circuits may require extra power for certain operations.

More difficult to design and subject to problems like sensitivity to the relative

arrival times of inputs at gates. If transitions on two inputs arrive at almost

the same time, the circuit can go into the wrong state depending on slight

differences in the propagation delays of the gates which is known as race

condition.

Number of circuit elements (transistors) maybe double that of synchronous

circuits. Fewer people are trained in this style compared to synchronous

design. Difficult to test and debug. Their output is uncertain.

Performance of asynchronous circuits may be reduced in architectures that

have a complex data path.

Modes of Asynchronous Sequential Machines:

Depending on the type of input variables, the way they are allowed to

change etc., the asynchronous sequential circuits are classified into two

categories:

 Fundamental Mode

 Pulse Mode

Fundamental Mode Asynchronous Circuits:

The fundamental mode asynchronous circuit design is based on the following

assumptions:

 The inputs (I) to the synchronous circuits change only when the circuit

is stable, that means when the state variables (S) are not in their

transition state.

 Another assumption is that the inputs are levels and not pulses.

 The state variables in these circuits are characterized as delay

elements. Delay may be introduced by a latch or simply the propagation

delays inherent in the logic gates used for realizing the asynchronous

circuits.

Pulse Mode Asynchronous Circuits:

In the pulsed mode, the input variables are allowed to be applied in the form

of pulses, rather than in the form of levels.

But the width of input pulses is a critical parameter.

There are two restrictions on the width of the input pulses.

 The first requirement is that the pulses should be long enough so

that the circuit can respond to them.

 The second requirement is that the pulses should not be too long so

that they are still present after the new secondary state is reached.

The second requirement is that the pulses should not be too long so that

they are still present after the new secondary state is reached.

The base of calculating the minimum pulse width is the propagation delay of

the excitation logic.

The maximum pulse width is calculated based on the total propagation delay

through the excitation logic and the memory.

Block Diagram:

Type of circuit without clocks, but with the concept of memory.

Concept of memory is obtained via un-clocked latches and/or circuit delay.

Changes in input variables cause changes in states.

Asynchronous sequential circuits resemble combinatorial circuits with

feedback paths.

The design of synchronous circuits is more difficult than synchronous circuits

using flip-flops and clocks.

Note difference in “little y” secondary variables and “capital Y” excitation

variables.

Delay elements are hypothetical, and typically are a result of gate delays.

Note: When inputs change, excitation variables Y change. It takes additional

delay for the secondary variables (current state) to assume the values of the

excitation variables (next state).

Asynchronous circuits are identified by:

 The presence of combinatorial feedback paths, and/or

 The presence of un-clocked storage elements (i.e., latches).

Stability:

 For a given set of inputs (i.e., values), the system is STABLE if the

circuit eventually reaches steady state and the excitation variables and

secondary variables are equal and unchanging (little y = capital Y),

otherwise the circuit is UNSTABLE.

Transition Table:

Transition table shows excitation variables and outputs as a function of

inputs and secondary variables.

Example.: For the circuit, transition table is obtained as follows:

 Write logic equations for the excitation variables in terms of the circuit

inputs and secondary variables:

 Write logic equations for circuit outputs in terms of the circuit inputs and

secondary variables:

 Using these equations, we can write a transition table that shows excitation

variables and outputs as a function of inputs and secondary variables:

 Note that stable states (secondary variables equal to excitation variables) are

circled.

Flow Table:

Flow Table is just the transition table with binary numbers replaced with symbols

(e.g., let a = 00, b = 01, c = 10 and d = 11).

Example.: For the previous circuit, flow table is obtained as follows:

Another way to draw a flow table:

 Left-most column shows current state (secondary variables), and the

inputs are listed across the top.

 Entries in the matrix show the next state (excitation variables) and output

values.

Primitive Flow Table:

Flow table with only one stable state per row is called a primitive flow table.

Example: A Flow Table which is a Primitive Flow Table

Example: A Flow Table which is not a Primitive Flow Table

2. Analysis of Asynchronous Sequential Logic Circuits:

Procedure to determine transition table and/or flow table from a circuit with

combinational feedback paths:

 Determine feedback paths.

 Label Y (excitation variables) at output and y (secondary variables at

input).

 Derive logic expressions for Y (excitation variables) in terms of circuit

inputs and secondary variables. Do the same for circuit outputs.

 Create a transition table and flow table.

 Circle stable states where Y (excitation variables) are equal to y

(secondary variables).

Design of Asynchronous Sequential Logic Circuits:

Similar procedure to synchronous circuit design, but with some added

complexities due to the asynchronous part:

 Obtain a primitive flow table (one stable state per row) from problem

description.

 Reduce the flow table to get a smaller flow table with less states.

 Perform state assignment (need to avoid race conditions) to obtain a

transition table.

 Obtain next state and output equations (need to avoid hazards and

glitches).

 Draw circuit (with or without latches).

Example Problem:

Design a circuit with two inputs, D and G and one output, Q. Output Q follows D

with G=1, otherwise Q holds its value.

Assume fundamental mode operation – only one input changes at a time.

Primitive Flow Table:

Note: Some unspecified entries due to the fundamental mode assumption (e.g., in

state a, DG=01, so we never go from DG=01 -> DG=10)…

Reduced Flow Table:

For the moment, assume that the following flow table will also work for the verbal

problem description – assume (a,c,d) and (b,e,f) can be merged.

State Assignment and Transition Table:

We only have two states, so we can let a=0, and b=1.

Our transition table becomes:

Logic Equations:

We can make K-Maps to determine excitation variables (Y) and output (Z) in

terms of circuit inputs and secondary variables (y):

Output equal to the secondary (state) variable.

Logic Circuit:

Output Assignment:

Flow and transition tables might have unspecified entries for circuit outputs.

 This might be a result of the fundamental mode assumption.

 This might be a result of unstable states.

Note: output values always assigned for stable states!

We should think about the correctness of these unspecified don‟t care output

values…

 We might temporarily pass through these values while transitioning

from one stable state to another stable state.

Example: Consider the following flow table with don‟t cares at some outputs

(circuit has one input and one output):

 We might consider using the un-specified output values as don‟t cares in

order to minimize the logic function for the output…

 We need to be careful with output don‟t cares in asynchronous design.

 Consider start and stop STABLE STATES due to a change in input value.

o If both stable states produce a 0 output, make output 0 instead of a

don‟t care.

o If both stable states produce a 1 output, make output 1 instead of a

don‟t care.

o If stable states produce different outputs, the output can remain a

don‟t care and be used to find a smaller output circuit.

 We do this to avoid GLITCHES in the output (e.g., if the output should go

0->0 (or 1->1), it should remain 0 (or 1) during the transition through an

unstable state.

 Recall the flow table… If we consider possible transitions, we see that

some of the output don‟t cares should be changed to 0 or 1 to avoid

GLITCHES.

 The above changes will avoid temporary glitches at the outputs during

transitions where the output should not change.

Analysis of asynchronous synchronous sequential circuit:

1.An asynchronous sequential circuit is described by the following excitation and
output function.

Y=X1X2+(X1+X2)Y

Z=y

i) Draw the logic diagram of the circuit.

ii) Derive the transition table and output map

iii) Describe the behavior of the circuit.

Solution:

i) Logic diagram of the circuit

ii) Transition Table:

Transition table is useful to analyze an asynchronous circuit from the circuit diagram
Procedure to obtain transition table:

 1.Determine all feedback loops in the circuits.

 2. Mark the input (yi) and output (Yi) of each feedback loop.

 3. Derive the Boolean functions of all Y‟s.

 4. Plot each Y function in a map and combine all maps into one table.

 5. Circle those values of Y in each square that are equal to the value of y in
the same row.

To derive the transition table, First we have to derive state table.

State table of the circuit:

State table:

Transition table:

 X1X2 00 01 11 10

External
Inputs

Present
State

Next
State

Output

X1 X2 y Y Z

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

0 0 1 0

0 1 1 1

y

0

1

0 0 0

1 1 1

 stable states

Stable states

iii) Output map (Z)

iv) Behavior of the circuit:

 The behavior of the circuit depends only on the present state.

 The output of the circuit is high only when the present state is high.

0 1

0 1

0 1

0 1

X1X2

y
0 1

00

01

11

10

Analysis of asynchronous synchronous sequential circuit:

1.An asynchronous sequential circuit is described by the following excitation and
output function.

Y=X1X2+(X1+X2)Y

Z=y

i) Draw the logic diagram of the circuit.

ii) Derive the transition table and output map

iii) Describe the behavior of the circuit.

Solution:

i) Logic diagram of the circuit

ii) Transition Table:

Transition table is useful to analyze an asynchronous circuit from the circuit diagram
Procedure to obtain transition table:

 1.Determine all feedback loops in the circuits.

 2. Mark the input (yi) and output (Yi) of each feedback loop.

 3. Derive the Boolean functions of all Y‟s.

 4. Plot each Y function in a map and combine all maps into one table.

 5. Circle those values of Y in each square that are equal to the value of y in
the same row.

To derive the transition table, First we have to derive state table.

State table of the circuit:

State table:

Transition table:

 X1X2 00 01 11 10

External
Inputs

Present
State

Next
State

Output

X1 X2 y Y Z

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

0 0 1 0

0 1 1 1

y

0

1

0 0 0

1 1 1

 stable states

Stable states

iii) Output map (Z)

iv) Behavior of the circuit:

 The behavior of the circuit depends only on the present state.

 The output of the circuit is high only when the present state is high.

0 1

0 1

0 1

0 1

X1X2

y
0 1

00

01

11

10

Design of asynchronous sequential circuit

1. Design an asynchronous sequential circuit that has two inputs X2 and X1 and one
output Z. When X1= 0, output Z = 0. The first change in X2 that occurs while X1
is 1 will cause output Z to be 1. The output Z will remain at 1 till X1 returns to 0.

Solution:

Step 1: Draw the state diagram

Step2: Primitive flow table constructed from state diagram

Present
State

Next state, Output for X2 X1 inputs

 00 01 11 10

A , 0 B, , C,

B A, , 0 D, ,

C A, , E, ,0

D , F, ,1 C,

E , F, , 0 C,

F A, ,1 D, ,

A

B

C

D

E

F

Step 3: Implication table

Step 4 : Merger Diagram

Equal states are (A,B), (C,E), (D,F)

Step 5: State assignment

 (A, B) S0 (C,E) S1 (D,F) S2

 State assignment: Assigning binary value to the states

 S0 00, S1 01 , S2 10

A B C D E

 B

 C

 D

 E

 F

X

X

X

X

X

X

X

X

X X

X

 A

 B

 C

D

E

 F

Step 6: Reduced flow table with state assignment

So, the reduced flow table becomes,

Step 7: Reduced flow table with race free state assignment

Present
State

F2 F1

 Next state, Output for X2 X1 inputs

 00 01 11 10

S0 00 S0 , 1 S0 , 1 S2 , S1 ,

S1 01 S0 , S2, S1 , 0 S1 , 0

S2 10 S0 , S2 , 1 S2 , 1 S1 ,

 Note : S1 to S2, S2 to S1 – transition is not possible.
(Because critical race) So it requires temporary S3

Present
State

F2 F1

 Next state, Output for X2 X1 inputs

 00 01 11 10

S0 00 S0 , 1 S0 , 1 S2 , S1 ,

S1 01 S0 , S3, S1 , 0 S1 , 0

S2 10 S0 , S2 , 1 S2 , 1 S3 ,

S3, 11 , S2 , , S1 ,

Step 8: Transition table

Step 9 : K- map Simplification

Present
State

F2 F1

 Next state, Output for X2 X1 inputs

 00 01 11 10

00 00, 1 00, 1 10, 01,

01 00, 11, 01, 0 01, 0

10 00, 10 , 1 10 , 1 11 ,

11 , 10, , 01,

 F2
+ = F1 X2 X1 +F1 X2 X1 +F2 X1 +F2 F1 X2

 F1
+ = F2 F1 X1 + X2 X1

 K-map for output Z:

Step 10: Logic diagram

Z = F2

3. Race Conditions:

A race condition exists in an asynchronous circuit when two or more binary

state variables change value in response to a change in an input variable,

when unequal delays are encountered a race condition may cause the state

variable to change in an unpredictable manner.

A race condition or race hazard is the behaviour of an electronic, software, or

other system where the output is dependent on the sequence or timing of

other uncontrollable events.

A race condition may occur in a system of logic gates where inputs vary.

If a given output depends on the state of the inputs it may only be defined

for steady-state signals.

As the inputs change state a small delay will occur before the output

changes due to the physical nature of the electronic system.

The output may, for a brief period, change to an unwanted state before

settling back to the designed state.

Certain systems can tolerate such glitches but if this output functions as a

clock signal for further systems that contain memory, for example, the

system can rapidly depart from its designed behaviour.

Types:

 Critical and non-critical forms

 A critical race condition occurs when the order in which internal

variables are changed determines the eventual state that the state

machine will end up in. Race condition: Two or more binary state

variables will change value when one input variable changes.

Cannot predict state sequence if unequal delay is encountered.

 A non-critical race condition occurs when the order in which internal

variables are changed does not determine the eventual state that the

state machine will end up in. The final stable state does not depend on

the change order of state variables.

 A non-critical race condition occurs when the order in which internal

variables are changed does not determine the eventual state that the

state machine will end up in. The final stable state does not depend on

the change order of state variables.

 Design techniques such as Karnaugh maps encourage designers to

recognize and eliminate race conditions before they cause problems.

Often logic redundancy can be added to eliminate some kinds of races.

Race -Free State Assignment:

Once a reduced flow table has been derived for an asynchronous sequential

circuit, the next step in the design is to assign binary variables to each stable

state. This assignment results in the transformation of the flow table into its

equivalent transition table.

The primary objective in choosing a proper binary state assignment is the

prevention of critical races. Critical races can be avoided by making a binary

state assignment in such a way that only one variable changes at any given

time when a state transition occurs in the flow table.

Three-Row Flow-Table Example:

 To avoid critical races, we must find a binary state assignment such

that only one binary variable change during each state transition.

 An attempt to find such an assignment is shown in the transition

diagram.

 State a is assigned binary 00, and state c is assigned binary 11.

 This assignment will ca use a critical race during the transition from a

to c because there are two changes in the binary state variables and

the transition from a to c may occur directly or pass through b.

 Note that the transition from c to a also ca uses a race condition, but

it is noncritical because the transition does not pass through other

states.

 A race-free assignment can be obtained if we add an extra row to the

flow table. The use of a fourth row does not increase the number of

binary state variables, but it allows the formation of cycles between

two stable states.

 The transition table corresponding to the flow table with the

indicated binary state assignment is shown. The two dashes in row

d represent unspecified states that can be considered don't care

conditions. However, care must be taken not to assign 10 to these

squares, in order to avoid the possibility of an unwanted stable state

being established in the fourth row.

Four-Row Flow-Table Example:

 A flow table with four rows requires a minimum of two state variables.

 Although a race-free assignment is sometimes possible with only two

binary state variables, in many cases the requirement of extra rows to

avoid critical races will dictate the use of three binary state variables.

 The above figure shows a state assignment map that is suitable for any four-row

flow table.

 States a, b, c and d are the original states and e, f and g are extra states.

 The transition from a to d must be directed through the extra state e to produce

a cycle so that only one binary variable changes at a time.

 Similarly, the transition from c to a is directed through g and the transition from

d to c goes through f.

 By using the assignment given by the map, the four-row table can be expanded

to a seven-row table that is free of critical races.

 Note that although the flow table has seven rows there are only four stable

states. The uncircled states in the three extra rows are there merely to provide

a race-free transition between the stable states.

Cycle:

 A cycle occurs when an asynchronous circuit makes a transition through a

series of unstable states. If a cycle does not contain a stable state, the circuit

will go from one unstable to stable to another, until the inputs are changed.

 When a state assignment is made so that it introduces cycles.

 Care must be taken so that each cycle terminates on a stable state.

 If a cycle does not contain a stable state, the circuit will go from one unstable

state to another, until the inputs are changed.

4. Hazards & Errors in Digital Circuits:

Introduction:

1. A hazard, if exists, in a digital circuit causes a temporary fluctuation in output

of the circuit. In other words, a hazard in a digital circuit is a temporary

disturbance in ideal operation of the circuit which if given some time, gets

resolved itself.

2. These disturbances or fluctuations occur when different paths from the input to

output have different delays and due to this fact, changes in input variables do

not change the output instantly but do appear at output after a small delay

caused by the circuit building elements, i.e., logic gates.

3. A hazard is a momentary unwanted switching transient at a logic function

output (i.e., a glitch).

4. Hazards/glitches occur due to unequal propagation delays along different paths

in a combinational circuit.

5. Hazards in combinational circuits:

a. Static Hazard: Static 0 Hazard & Static 1 Hazard.

b. Dynamic Hazard

6. Hazards in sequential circuits:

a. Essential Hazard

Static Hazard:

A Static Hazard takes place when change in an input causes the output to change

momentarily before stabilizing to its correct value. Based on what is the correct

value, there are two types of static hazards:

1. Static-1 Hazard: If the output is currently at logic state 1 and after the input

changes its state, the output momentarily changes to 0 before settling on 1,

then it is a Static-1 Hazard.

When the output is to remain at the value 1, but a momentary 0 output is

produced during the transition between two input states, then the hazard is

Static-1 Hazard.

2. Static-0 Hazard: If the output is currently at logic state 0 and after the input

changes its state, the output momentarily changes to 1 before settling on 0,

then it is a Static-0 Hazard.

When the output is to remain at the value 0, but a momentary 1 output is

produced during the transition between two input states, then the hazard is

Static-0 hazard.

Static Hazards Elimination:

A static hazard can be removed by covering the adjacent cells with a

redundant grouping that overlap both groupings.

Detection of Static-1 Hazard:

Let‟s consider static-1 hazard first. To detect a static-1 hazard for a digital

circuit following steps are used:

Step-1: Write down the output of the digital circuit, say Y.

Step-2: Draw the K-map for this function Y and note all adjacent 1‟s.

Step-3: If there exists any pair of cells with 1‟s which do not occur to be

in the same group (i.e. prime implicant), it indicates the presence of a

static-1 hazard. Each such pair is a static-1 hazard.

Example – Consider the circuit shown below.

 Let‟s draw the K-map for this Boolean function as follows:

 The pair of 1‟s encircled as green are not part of the grouping/pairing provided

by the output of this Boolean function. This will cause a static-1 hazard in this

circuit.

Removal of Static-1 Hazard:

Once detected, a static-1 hazard can be easily removed by introducing some more

terms (logic gates) to the function (circuit). The most common idea is to add the

missing group in the existing Boolean function, as adding this term would not

affect the function by any mean but it will remove the hazard. Since in above

example the pair of 1‟s encircled with blue color causes the static-1 hazard, we

just add this as a prime implicant to the existing function as follows:

 Note that there is no difference in number of minterms of this function. The

reason is that the static-1 hazards are based on how we group 1‟s (or 0‟s for

static-0 hazard) for a given set of 1‟s in K-map. Thus, it does not make any

difference in number of 1‟s in K-map. The circuit would look like as shown

below with the change made for removal of static-1 hazard.

Removal of Static-0 Hazard:

Similarly, for Static-0 Hazards we need to consider 0‟s instead of 1‟s and if any

adjacent 0‟s in K-map are not grouped into same group that may cause a static-0

hazard. The method to detect and resolve the static-0 hazard is completely same

as the one we followed for static-1 hazard except that instead of SOP, POS will be

used as we are dealing with 0‟s in this case.

Dynamic Hazard:

 A dynamic hazard is defined as a transient change occurring three or more

times at an output terminal of a logic network when the output is supposed to

change only once during a transition between two inputs states.

 Dynamic Hazards occurs when an input changes and a circuit output should

change 0 to 1 or 1 to 0, but temporarily flips between values.

 Dynamic Hazards occur when the output of a network is to change between its

two logic states, but a momentary false output signal occurs during the

transient behaviour.

 A dynamic hazard is the possibility of an output changing more than once as

a result of a single input change. Dynamic hazards often occur in larger logic

circuits where there are different routes to the output (from the input). If each

route has a different delay, then it quickly becomes clear that there is the

potential for changing output values that differ from the required / expected

output.

 Example: A logic circuit is meant to change output state from '1' to '0', but

instead changes from '1' to '0' then '1' and finally rests at the correct value '0'.

This is a dynamic hazard.

Dynamic Hazard Elimination:

 Dynamic hazard takes a more complex method to resolve (which we shall not

cover).

 As a final note on dynamic hazards, it should be noted that if all static hazards

have been eliminated from a circuit, then dynamic hazards cannot occur.

Essential Hazard:

 Essential hazard is a type of hazard that exists only in asynchronous sequential

circuits with two or more feedbacks.

 An essential hazard is caused by unequal delays along two or more paths that

originate from the same input.

 An excessive delay through an inverter circuits in comparison to the delay

associated with the feedback path may cause essential hazard.

Essential Hazard Elimination:

 Essential hazard can be eliminated by adding redundant gates as in static

hazards.

 They can be eliminated by adjusting the amount of delay in the affected path.

 For this, each feedback loop must be designed with extra care to ensure that

the delay in the feedback path is long enough compared to the delay other

signals that originate from the input terminals.

5.PROGRAMMABLE LOGIC DEVICES

A memory unit is a device to which binary information is transferred for storage and from

which information is retrieved when needed for processing. When data processing takes

place, information from memory is transferred to selected registers in the processing unit.

Intermediate and final results obtained in the processing unit are transferred back to be

stored in memory. Binary information received from an input device is stored in memory,

and information transferred to an output device is taken from memory. A memory unit is

a collection of cells capable of storing a large quantity of binary information.

There are two types of memories that are used in digital systems:

Random-access memory (RAM)

Read-only memory (ROM)

RAM stores new information for later use. The process of storing new information into

memory is referred to as a memory write operation. The process of transferring the

stored information out of memory is referred to as a memory read operation. RAM can

perform both write and read operations. ROM can perform only the read operation. This

mean that suitable binary information is already stored inside memory and can be

retrieved or read at any time. However, that information cannot be altered by writing.

ROM is a programmable logic device (PLD). The binary information that is

stored within such a device is specified in some fashion and then embedded within the

hardware in a process is referred to as programming the device. The word

“programming” here refers to a hardware procedure which specifies the bits that are

inserted into the hardware configuration of the device.

ROM is one example of a PLD. Other such units are the programmable

logic array (PLA), programmable array logic (PAL), and the field-programmable gate

array (FPGA). A PLD is an integrated circuit with internal logic gates connected through

electronic paths that behave similarly to fuses. In the original state of the device, all

the fuses are intact. Programming the device involves blowing those fuses along the

paths that must be removed in order to obtain the particular configuration of the

desired logic function.

The above diagrams are used to represent multiple logic OR gate in conventional

symbol and array logic symbol.

A typical PLD may have hundreds to millions of gates interconnected

through hundreds to thousands of internal paths. In order to show the internal logic

diagram of such a device in a concise form, it is necessary to employ a special gate

symbol applicable to array logic. Figure shows the conventional and array logic symbols

for a multiple-input OR gate. Instead of having multiple input lines into the gate, we

draw a single line entering the gate. The input lines are drawn perpendicular to this

single line and are connected to the gate through internal fuses. In a similar fashion,

we can draw the array logic for an AND gate.

PROGRAMMABLE READ -ONLY MEMORY

A ROM is essentially a memory device in which permanent binary information is stored.

The binary information must be specified by the designer and is then embedded in the

unit to form the required interconnection pattern. Once the pattern is established, it

stays within the unit even when power is turned off and on again.

A block diagram of a ROM consisting of k inputs an n outputs is shown in figure. The

inputs provide the address for memory, and the outputs give the data bits of the stored

word that is selected by the address. The number of words in a ROM is determined

from the fact that k address input lines are needed to specify 2k words. Note that ROM

does not have data inputs, because it does not have a write operation. Integrated

circuit ROM chips have one or more enable inputs and sometimes come with three-

state outputs to facilitate the construction of large arrays of ROM.

Block Diagram Representation of ROM

EXAMPLE: 32X8 PROM

Consider, for example, a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. There

are five input lines that from the binary numbers from 0 through 31 for the address.

Figure 7.10 shows the internal logic construction of this ROM. The five inputs are decoded

into 32 distinct outputs by means of a 5 X 32 decoder. Each output of the decoder

represents a memory address.

The 32 outputs of the decoder are connected to each of the eight OR gates.

The diagram shows the array logic convention user in complex circuits. Each OR gate

must be considered as having 32 inputs. Each output of the decoder is connected to one

of the inputs of each OR gate. Since each OR gate has 32 input connections and there

are 8 OR gates, the ROM contains 32 X 8 = 256 internal connections. In general a 2k X n

ROM will have an internal k X 2k decoder an n OR gates. Each OR gate has 2k inputs,

which are connected to each of the outputs of the decoder

PROGRAMMING THE ROM

The hardware procedure that programs the ROM blows fuse links in accordance with a

given truth table. For example, programming the ROM according to the truth table

given by Table results in the configuration shown in figure.

Every 0 listed in the truth table specifies the absence of a connection, and every 1

listed specifies a path that is obtained by a connection. For example, the table

specifies the eight-bit word 10110010 for permanent storage at address 3.

The four 0‟s in the word are programmed by blowing the fuse links between output 3 of

the decoder and the inputs of the OR gates associated with outputs A6, A3, A2, and

A0.

The four 1‟s in the work are marked with a X to denote a temporary connection, in

place of a dot used for a permanent connection in logic diagrams.

Example 1:

Implement the given truth table with PROM

PROM IMPLEMENTATION

When the input of the ROM is 00011, all the outputs of the decoder are 0 except for output

3, which is a t logic 1, the signal equivalent to logic 1 at decoder output 3 propagates

through the connections to the OR gate outputs of A7, A5, A4, and A1.

The other four outputs remain at 0. The result is that the stored word 10110010 is applied

to the eight data outputs.

Design a combinational circuit using a PROM. The circuit

accepts a three - bit number and outputs a binary number

equal to the square of the input number.

CIRCUIT IMPLEMENTATION

Example 2

The block diagram representation of three programmable logic devices.

BASIC CONFIGURATION OF THREE PLD‟S

EXAMPLE

Implement the following Boolean functions with a PLA

F1(A,B,C) = ∑(0,1,2,4)

F2 (A,B,C)=∑((0,5,6,7)

KMAP

PROGRAMMABLE LOGIC ARRAY(PLA)

KMAP to find F1 complement

 PLA Program Table:

PLA Implementation

Design BCD to Excess 3 code converter with a PLA

Truth table

Example 2

B3 B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

KMAP

PLA Program Table and Circuit

The PROM is a combinational programmable logic device(PLD) – an integrated circuit

with programmable gates divided into an AND array and an OR array to provide an

AND-OR implementation. There are three major types of combinational PLD‟s differing

in the placement of programmable connection in the AND-OR array. The most flexible

PLD is PLA in which both AND and OR arrays can be programmed.

Programmable Array Logic:

The PAL has a programmable AND array and a fixed OR array. The AND gates

programmed to provide the product terms of the Boolean function, which are logically

summed in each OR gate

Example1

Design a PAL with following Boolean functions

COMBINATIONAL PLD’S

PAL PROGRAM TABLE

PAL CIRCUIT

SEQUENTIAL PROGRAMMABLE DEVICES

Sequential programmable devices include both gates and flip‐flops.

There are three major types

1. Sequential (or simple) programmable logic device (SPLD)

2. Complex programmable logic device (CPLD)

3. Field‐programmable gate array (FPGA)

CPLD

Complex Programmable Logic Device is a single device containing multiple Simple

Programmable Logic Device SPLDs

SPLD includes flip‐flops, in addition to the AND–OR array, Each section of an SPLD

is called a macrocell.

CPLD consists of multiple PLDs interconnected through a programmable switch

matrix.

Input–output (I/O) blocks provide the connections to IC pins. The pins are driven

by a three state buffer and programmed as input or output.

Configuration of CPLD is shown below:

The switch matrix receives inputs from the I/O block and directs them to the

individual macrocells and the outputs selected from macrocells are given as

outputs. 8 to 16 macrocells are present in each PLD.

Unused product terms in PLDs can be used by other nearby macrocells.

FPGA

Field‐Programmable Gate Array (FPGA) is a user programmable VLSI circuit.

FPGA consists of an array of millions of logic blocks, with multiple programmable
input and output blocks and connected through programmable interconnections.

FPGA logic block consists of lookup tables, multiplexers, gates, and

flip‐flops.

It is reprogrammed every time power is turned on and makes it suitable for
various applications using different logic implementations in the program.

The basic architecture is given as follows (Xilinx Spartan):

It consists of an array of configurable logic blocks (CLBs), a variety of local and
global routing resources, and input–output (I/O) blocks (IOBs), programmable I/O
buffers, and an SRAM‐based configuration memory

CLBs consists of a programmable lookup table, multiplexers, registers, and paths
for control signals

CLB have two storage devices that can be configured as edge‐triggered flip‐flops
with a common clock

Programmable interconnect resources of the device connect CLBs and IOBs,
either directly or through switch boxes

10. Assignments

A ROM chip of 4,096 * 8 bits has two chip select inputs and operates from a 5‐V

power supply. How many pins are needed for the integrated circuit package?

Draw a block diagram, and label all input and output terminals in the ROM.

Tabulate the PLA programming table for the four Boolean functions listed below.

Minimize the numbers of product terms.

A(x, y, z) = (1, 3, 5, 6) B(x, y, z) = (0, 1, 6, 7)

C(x, y, z) = (3, 5) D(x, y, z) = (1, 2, 4, 5, 7)

Draw a PLA circuit to implement the functions

F1 = AB + AC + ABC

F2 = (AC + AB + BC)

Tabulate the truth table for an 8 * 4 ROM that implements the Boolean functions

A(x, y, z) = (0, 3, 4, 6) B(x, y, z) = (0, 1, 4, 7)

C(x, y, z) = (1, 5) D(x, y, z) = (0, 1, 3, 5, 7)

An asynchronous sequential circuit has two internal states and one output. The

excitation and output functions describing the circuit are as follows:

Y1 = X1X2 + XIY2‟ + X2‟Y1

Y2 = X2 + X1Y1‟Y2 + X1‟Y1

Z= X2+Y1

(a) Draw the logic diagram of the circuit.

(b) Derive the transition table and output map.

(c) Obtain a flow table for the circuit.

11. Part A Q & A (with K level and CO)

PART A

Questions and Answers Blooms
Level

COs

1. List basic types of programmable logic devices.

Read only memory
Programmable logic Array
Programmable Array Logic

K1 CO5

2. Define ROM

A read only memory is a device that includes both the decoder and
the OR gates within a single IC package.

K1 CO5

3. Define PAL.

PAL programmable logic device with fixed OR array and a
programmable AND array. Because only AND gates are
programmable, PAL is easier to program, but it is not as flexible as
PLA.

K1 CO5

4. Define address and word.

In a ROM, each bit combination of the input variable is called on
address. Each bit combination that comes out of the output lines is
called a word.

K1 CO5

5. What are the types of ROM?

Masked ROM.
Programmable Read only Memory
Erasable Programmable Read only memory.
Electrically Erasable Programmable Read only Memory.

K1 CO5

6. What is programmable logic array? How does it differ from ROM?

PLA is a programmable logic device which consists of programmable
AND and OR array. A PLA is similar to a ROM in concept; however it
does not provide full decoding of the variables and does not
generates all the minterms as in the ROM.

K1 CO5

7. What is deadlock condition?

A condition resulting when one task is waiting to access a resource
that another is holding, and vice versa

K1 CO4

8. State the difference between static – 0 and static – 1 hazard.

Static-1 Hazard: the output is currently 1 and after the inputs change,

the output momentarily changes to 0 before settling on 1

Static-0 Hazard: the output is currently 0 and after the inputs change,

the output momentarily changes to 1 before settling on 0

K1 CO4

9.What are the two types of asynchronous sequential circuits?

The two types of asynchronous sequential circuits are:

a) Fundamental mode circuits

b) Pulse mode circuits

K1 CO4

10. Define races in asynchronous sequential circuits.

When 2 or more binary state variables change their value in response to

a change in an input

variable, race condition occurs in an asynchronous sequential circuit. In

case of unequal delays, a race condition may cause the state variables to

change in an unpredictable manner.

K1 CO4

11. Define Dynamic Hazard.

A dynamic hazard is the possibility of an output changing more than

once as a result of a single input change .

K1 CO4

12. Define Static Hazards

When one input variable changes, the output changes momentarily

when it shouldn't

K1 CO4

13. What is a critical race condition?

A critical race condition occurs when the order in which internal variables

are changed determines the eventual state that the state machine will

end up in.

K1 CO4

14. What is a non-critical race condition?

A non-critical race condition occurs when the order in which internal

variables are changed does not determine the eventual state that the

state machine will end up in.

K1 CO4

15. What is a flow table ?
A state transition table with its internal state being symbolised with
letters.

K1 CO4

16. What is a implication table ?
The rows in the primitive flow table are merged by first obtaining all
compatible pairs of states by means of the implication table.

K1 CO4

17. How is a primitive table derived?

The derivation of the primitive flow table can be facilitated by deriving a
table that lists all the possible total states in the circuit.

K1 CO4

18. What are the steps in the design of asynchronous sequential

circuits?

1.State the design specifications.
2. Derive a primitive flow table.
3. Reduce the flow table by merging the rows.
4. Make a race-free binary state assignment.
5. Obtain the transition table and output map.
6. Obtain the logic diagram

K1 CO4

19. What is multiple row method?

In the multiple-row assignment, each state in the original flow table is
replaced by two or more combinations of state variables.

K1 CO4

20. What is shared row method?

The method for making race-free stale assignments by adding extra
rows in the flow table is referred to as the shared-row method.

K1 CO4

12. Part B Qs (with K level and CO)

PART B

1. Analyze the given fundamental mode asynchronous sequential
circuit

K2 CO4

2. An asynchronous sequential circuit is described by the following
excitation and output function
Y1=X1X2+X1Y2+X2Y1

Y2= X2+X1Y1Y2+ X1Y1

Z=X2+Y1 Draw logic diagram and derive transition table.

K2 CO4

3. Design an asynchronous sequential circuit with two inputs X and
Y and with one output Whenever Y is 1, input X is transferred to Z.
When Y is 0, the output does not change for any change in X.

K3 CO4

4. Explain races and cycles in asynchronous sequential circuits.
K2 CO4

5. Explain various types of hazards with examples
K2 CO4

6. Obtain hazard free realization for the given functions
F(A,B,C,D)=∑m(0,5,7,8,10,11,12,14)
F(A,B,C) =∑m(1,2,3,6,7)

K2 CO4

7. Implement the following functions using PLA and PROM
F(x,y,z) =∑m(0,1,3,5,7)

K2 CO5

8. (i)Draw the configuration of 32X5 PROM
(ii)Implement full adder using PROM

K2 CO5

9. Design binary to gray converter using PLA

K3 CO5

10. Design BCD to excess converter using PAL K3 CO5

13.Supportive online Certification courses (NPTEL, Swayam,
Coursera, Udemy, etc.,)

Swayam

Digital Circuits: https://swayam.gov.in/nd1_noc20_ee70/preview

Duration: 12 weeks, Start Date: 14 Sep 2020, End Date: 04 Dec 2020

Udemy

Digital Electric Circuits & Intelligent Electrical Devices

https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/

Coursera

Build a Modern Computer from First Principles: From Nand to Tetris (Project-
Centered Course)

https://www.coursera.org/learn/build-a-computer

https://swayam.gov.in/nd1_noc20_ee70/preview
https://swayam.gov.in/nd1_noc20_ee70/preview
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer

Simplified Hybrid EV Power Control Architecture with Single FPGA

FPGA technology allows multiple control functions to run in parallel on one device

without the bottleneck of a single processor.

A new architecture that integrates MG and VVC (DC-DC) control functions into a

single FPGA is shown in the figure.

In addition to the benefits of a reduced number of parts, the new architecture

reduces the number of hardware and firmware interfaces.

It also provides opportunities for complete system simulation and auto-code

generation not possible with the existing architecture.

https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-

01210-electric-vehicles.pdf

14. Real time Applications in day to day life and to

Industry

https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01210-electric-vehicles.pdf
https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01210-electric-vehicles.pdf
https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01210-electric-vehicles.pdf
https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01210-electric-vehicles.pdf
https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01210-electric-vehicles.pdf
https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01210-electric-vehicles.pdf
https://www.intel.in/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01210-electric-vehicles.pdf

Creating and Exporting a PLD Schematic – Simulations for Embedded

Systems CoE

Multisim is used to create specialized schematics that describe the logic of a PLD,

such as the FPGA on the NI Digital Electronics FPGA Board (DEFB).

Multisim also includes configurations to automate creating synthesizable and

implementable designs for the DEFB.

Steps Involved:

Create a new PLD design in Multisim

Describe the logic in Multisim

Export digital logic

1. Step 1: Create a New PLD Design in Multisim

The first step is to create a new PLD design in Multisim

15. Contents beyond the Syllabus (COE related Value

added courses)

Step 2: Describe the Logic in Multisim

Step 3: Export PLD Logic

Select Program the connected PLD.

Choose to Save the generated program file.

Select Next to proceed.

http://www.ni.com/tutorial/10289/en/

http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/
http://www.ni.com/tutorial/10289/en/

17. Prescribed Text Books & Reference Books

TEXT BOOKS:

1.James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.

2.M. Morris Mano, „Digital Design with an introduction to the VHDL‟, Pearson

Education, 2013.

3.Comer “Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES

1.Mandal, “Digital Electronics Principles & Application, McGraw Hill Edu, 2013.

2.William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.

3.Thomas L.Floyd, „Digital Fundamentals‟, 11th edition, Pearson Education, 2015.

4.Charles H.Roth, Jr, Lizy Lizy Kurian John, „Digital System Design using VHDL,

Cengage, 2013.

Digital Logic Circuits

Unit 5

8. Activity Based Learning

Understanding and learning VHDL by generating synthesizable VHDL code using TINA

software by Design soft. https://www.tina.com/digital-vhdl-simulation/

Circuit for a counter, defined in VHDL using TINA software

Output for the counter in TINA on Running Analysis / Digital VHDL simulation

The VHDL circuit can be tested and also modified by changing the VHDL code and the
effect can be seen immediately

Practice using open source DEEDS: https://www.digitalelectronicsdeeds.com/

https://www.edaplayground.com/

15

https://www.tina.com/digital-vhdl-simulation/
https://www.tina.com/digital-vhdl-simulation/
https://www.tina.com/digital-vhdl-simulation/
https://www.tina.com/digital-vhdl-simulation/
https://www.tina.com/digital-vhdl-simulation/
https://www.tina.com/digital-vhdl-simulation/
https://www.digitalelectronicsdeeds.com/
https://www.digitalelectronicsdeeds.com/
https://www.edaplayground.com/
https://www.edaplayground.com/

9. Lecture Notes

Table of Contents

UNIT V VHDL

Page No:

1. RTL Design --17

VHDL --21

 Operators

Combinational logic

Data flow modelling --------------------------38

Structural modelling --------------------------54

Sequential circuit ------------------------------------60

2. Introduction to

Packages ---68

Subprograms---70

Test bench --73

3. Simulation / Tutorial --------------------------------79

(Examples: Adders, Counters, Flip flops,

Multiplexers & De multiplexers)

Register Transfer Level (RTL) Design

The Register Transfer Level (RTL) description specifies the digital system in terms

of the registers, the operations performed, and the control that sequences the

operations.

This type of description simplifies the design process because it consists of

procedural statements that determine the relationship between the various

operations of the design without reference to any specific structure.

The RTL description implies a certain hardware configuration among the registers,

allowing the designer to create a design that can be synthesized automatically,

rather than manually, into standard digital components.

A digital system is represented at the register transfer level (RTL) when it is

specified by the following three components:

1. The set of registers in the system.

2. The operations that are performed on the data stored in the registers.

3. The control that supervises the sequence of operations in the system.

The statement R2 R1 , denotes a transfer of the contents of register R1 into

register R2 —that is, a replacement of the contents of register R2 by the contents

of register R1 .

The operations in a digital system are controlled by signals that sequence the

operations in a prescribed manner. Certain conditions that depend on results of

previous operations may determine the sequence of future operations. The outputs

of the control logic of a digital system are binary variables that initiate the various

operations in the system‘s registers.

A control signal would determine when the operation actually executes.The

controller in a digital system is a finite state machine whose outputs are the control

signals governing the register operations.

A statement that specifies a register transfer operation implies that a data path (set

of circuit connections) is available from the outputs of the source register to the

inputs of the destination register. Data can be transferred serially or in parallel

between registers.

Type of Operations:

The type of operations most often encountered in digital systems can be classified into four

categories:

1. Transfer operations, which transfer (i.e., copy) data from one register to another.

2. Arithmetic operations, which perform arithmetic (e.g., multiplication) on data in registers.

3. Logic operations, which perform bit manipulation (e.g., logical OR) of non numeric data

in registers.

4. Shift operations, which shift data between registers.

The transfer operation does not change the information content of the data being moved

from the source register to the destination register unless the source and destination are

the same.

The other three operations change the information content during the transfer.

The register transfer notation and the symbols used to represent the various register

transfer operations are not standardized.

RTL Design is composed of

1) Registers and combinational function blocks (e.g. adders and multiplexers) called the

datapath and

2) A finite state machine, called the controller that controls the transfer of data through the

function blocks and between the registers.

Steps in RTL Design :

The steps in RTL design are:

1) Determine the number and sizes of registers needed to hold the data used by the device,

2) Determine the logic and arithmetic operations that need to be performed on these

register contents, and

3) Design a state machine whose outputs determine how these register contents are

updated with the results of those operations in order to obtain the desired results.

RTL BY MEANS OF HDL

Digital systems can be described at the RTL by means of a HDL.

VHDL - Very High-speed Integrated Circuit Hardware Description Language description of

RTL operations use combination of dataflow and behavioural constructs to specify the

combinational logic functions and register operations implemented by hardware.

Combinational circuit functions in RTL level are specified by means of concurrent or

sequential signal assignment statements within a level sensitive process.

Register transfers in RTL are specified by procedural statements within an edge –

sensitive process

Two types of assignments may be made in a process: Variable assignment (:= symbol)

and signal assignment (<= symbol)

A simplified flowchart for HDL‐based modeling, verification, and synthesis is shown

below.

Simplified flowchart for HDL‐based modeling, verification, and synthesis

The RTL description of the HDL design is simulated and checked for proper operation.

Its operational features must match those given in the specification for the behavior of

the circuit.

The test bench provides the stimulus signals to the simulator.

If the result of the simulation is not satisfactory, the HDL description is corrected and

checked again.

After the simulation run shows a valid design, the RTL description is ready to be

compiled by the logic synthesizer.

All errors (syntax and functional) in the description must be eliminated before synthesis.

The synthesis tool generates a netlist equivalent to a gate‐level description of the design

as it is represented by the model.

If the model fails to express the functionality of the specification, the circuit will fail to do

so also.

The gate‐level circuit is simulated with the same set of stimuli used to check the RTL

design.

If any corrections are needed, the process is repeated until a satisfactory simulation is

achieved.

The results of the two simulations are compared to see if they match.

If they do not, the designer must change the RTL description to correct any errors in the

design.

Then the description is compiled again by the logic synthesizer to generate a new

gate‐level description.

Once the designer is satisfied with the results of all simulation tests, the design of the

circuit is ready for physical implementation in a technology.

In practice, additional testing will be performed to verify that the timing specifications of

the circuit can be met in the chosen hardware technology

Introduction:

VHDL stands for Very High-speed Integrated Circuit Hardware Description

Language.

It is an IEEE (Institute of Electrical and Electronics Engineers) standard

hardware description language that is used to describe and simulate the

behavior of complex digital circuits.

This language was first introduced in 1981 for the Department of Defense

(DoD) under the VHSIC program.

VHDL (VHSIC Hardware Description Language) is becoming increasingly

popular as a way to capture complex digital electronic circuits for both

simulation and synthesis.

VHDL is a programming language that has been designed and optimized for

describing the behavior of digital circuits and systems.

VHDL is different from languages like C in that it is intended to describe

hardware. A C program is usually compiled to a platform-specific assembly

language and run as a binary. VHDL, on the other hand, is usually simulated

using a simulator.

Purpose of VHDL:

 VHDL is used for the following purposes:

For describing hardware

As a modeling language

For simulation of hardware

For early performance estimation of system architecture

For the synthesis of hardware

VHDL

Advantages of VHDL:

It supports various design methodologies.

It provides a flexible design language.

It allows better design management.

It allows detailed implementations.

It supports a multi-level abstraction.

It provides tight coupling to lower levels of design.

It supports all CAD tools.

It strongly supports code reusability and code sharing.

Disadvantages of VHDL:

It requires specific knowledge of the structure and syntax of the language.

It is more difficult to visualize and troubleshoot a design.

Some VHDL programs cannot be synthesized.

VHDL is more difficult to learn.

Basic Elements of VHDL:

Types of VHDL Modeling:

Types of VHDL Objects:

Types of VHDL Data Types:

Types of VHDL Operators:

BASIC STRUCTURES IN VHDL:

Basic building blocks of a VHDL description can be classified into five groups:

Entity

Architecture

Package

Configuration

Library

A digital system is usually designed as a hierarchical collection modules. Each

module corresponds to a design entity in VHDL. Each design entity has two parts:

Entity declaration

Architecture bodies

An entity declaration describes a component‘s external interface (input and output

ports etc.), whereas architecture bodies describe its internal implementations.

Packages define global information that can be used by several entities. A

configuration binds component instances of a structure design into entity

architecture pairs. It allows a designer to experiment with different variations of a

design by selecting different implementations. A VHDL design consists of several

library units, each of which is compiled and saved in a design library.

ENTITY DECLARATIONS:

The entity declaration provides an external view of a component but does not

provide information about how a component is implemented. The syntax is ;

entity entity_name is

[generic (generic_declarations);]

[port (port_declarations);]

{entity_declarative_item

{constants, types, signals};}

end [entity_name];

[] : square bracket denotes optional parameters.

| : vertical bar indicates a choice among alternatives.

{ } : a choice of none, one or more items can be made.

GENERIC DECLARATIONS:

The generic_declaration declares constants that can be used to control the

structure or behavior of the entity. The syntax is ;

generic (

constant_name : type [:=init_value]

{;constant_name : type [:=init_value]}

);

where constant_name specifies the name of a generic constant, type specifies the

data type of the constant, and init_value specifies an initial value for the constant.

PORT DECLARATIONS:

The port_declaration specifies the input and output ports of the entity.

port (

port_name : [mode] type [:=init_value]

{; port_name : [mode] type [:=init_value]}

);

where port_name specifies the name of a port, mode specifies the direction of a

port signal, type specifies the data type of a port, and init_value specifies an initial

value for a port.

VHDL is not case sensitive, so xyz=xYz=XYZ !!!

There are four port modes :

• in : can only be read. It is used for input only (can be only on the right side

of the assignment).

• out : can only be assigned a value. It is used for output only (can be only

on the left side of the assignment).

• inout : can be read and assigned a value. It can have more than one driver

(can be both on the right and left side of the assignment).

• buffer : can be read and assigned a value. It can have only one driver (can

be both on the right and left side of the assignment).

Inout is a bidirectional port whereas buffer is a unidirectional one. The

entity_declarative_item declares some constants, types or signals that can be

used in the implementation of the entity.

ARCHITECTURES:

An architecture provides an ―internal‖ view of an entity. An entity may have more

than one architecture. It defines the relationships between the inputs and the

outputs of a design entity which may be expressed in terms of :

Behavioral Style

Dataflow Style

Structural Style

An architecture determines the function of an entity. It consists of a declaration

section where signals, types, constants, components, and subprograms are

declared, followed by a collection of concurrent statements.

An architecture is declared using the following syntax :

architecture architecture_name of entity_name is

{architecture_declarative_part

}

begin

{concurrent_statement

}

end [architecture_name] ;

BEHAVIORAL STYLE ARCHITECTURES:

A behavioral style specifies what a particular system does in a program like

description using processes, but provides no details as to how a design is to be

implemented. The primary unit of a behavior description in VHDL is the process.

DATAFLOW STYLE ARCHITECTURES:

A dataflow style specifies a system as a concurrent representation of the flow of

control and movement of data. It models the information flow or dataflow

behavior, over time, of combinational logic functions such as adders, comparators,

decoders, and primitive logic gates.

STRUCTURAL STYLE ARCHITECTURES:

A structural style defines the structural implementation using component

declarations and component instantiations.

PACKAGES:

The primary purpose of a package is to collect elements that can be shared

(globally) among two or more design units. It contains some common data types,

constants, and subprogram specifications. A package may consist of two separate

design units : a package declaration and a package body. A package declaration

declares all the names of items that will be seen by the design units that use the

package. A package body contains the implementation details of the subprograms

declared in the package declaration. A package body is not required if no

subprograms are declared in a package declaration. The separation between

package declaration and package body serves the same purpose as the separation

between the entity declaration and architecture body.

The package syntax is :

package package_name is

{package_declarative_item}

end [package_name] ;

package body package_name is

{package_declarative_item}

end [package_name] ;

CONFIGURATIONS:

An entity may have several architectures. During the design process, a designer

may want to experiment with different variations of a design by selecting different

architectures. Configurations can be used to provide fast substitutions of

component instances of a structural design.

The syntax is :

configuration configuration_name of entity_name is

{configuration_declarative_part

}

for block_specification

{use_clause

}

{configuration_item

}

End for ;

DESIGN LIBRARIES:

The results of a VHDL compilation (analyze) are kept inside of a library for

subsequent simulation, for use as a component in other designs. A design library

can contain the following library units :

• Packages • Entities • Architectures • Configurations

To open a library to access a compiled entity as a part of a new V H D L design,

you first need to declare the library name.

The syntax is :

library library_name : [path / directory_name] ;

VHDL – Combinational Circuits – Data Flow Modeling

AND Gate

Library ieee;

use ieee.std_logic_1164.all;

entity and1 is

 port(x,y:in bit ; z:out bit);

end and1;

architecture working of and1 is

begin

 z<=x and y;

end working;

OR Gate

Library ieee;

use ieee.std_logic_1164.all;

entity or1 is

 port(x,y:in bit ; z:out bit);

end or1;

architecture working of or1 is

begin

 z<=x or y;

end working;

NOT Gate

Library ieee;

use ieee.std_logic_1164.all;

entity not1 is

 port(x:in bit ; y:out bit);

end not1;

architecture working of not1 is

begin

 y<=not x;

end working;

NAND Gate

Library ieee;

use ieee.std_logic_1164.all;

entity nand1 is

 port(a,b:in bit ; c:out bit);

end nand1;

architecture working of nand1 is

begin

 c<=a nand b;

end working;

NOR Gate

Library ieee;

use ieee.std_logic_1164.all;

entity nor1 is

 port(a,b:in bit ; c:out bit);

end nor1;

architecture working of nor1 is

begin

 c<=a nor b;

end working;

EXOR Gate

Library ieee;

use ieee.std_logic_1164.all;

 entity xor1 is

 port(a,b:in bit ; c:out bit);

end xor1;

architecture working of xor1 is

begin

 c<=a xor b;

end working;

EXNOR Gate

Library ieee;

use ieee.std_logic_1164.all;

entity xnor1 is

 port(a,b:in bit ; c:out bit);

end xnor1;

architecture working of xnor1 is

begin

 c<=not(a xor b);

end working;

HALF ADDER

Library ieee;

use ieee.std_logic_1164.all;

 entity half_adder is

 port(a,b:in bit; sum,carry:out bit);

end half_adder;

architecture data of half_adder is

begin

 sum<= a xor b;

 carry <= a and b;

end data;

FULL ADDER

Library ieee;

use ieee.std_logic_1164.all;

entity full_adder is port(a,b,c:in bit; sum,carry:out bit);

end full_adder;

 architecture data of full_adder is

begin

 sum<= a xor b xor c;

 carry <= ((a and b) or (b and c) or (a and c));

end data;

HALF SUBTRACTOR

Library ieee;

use ieee.std_logic_1164.all;

entity half_sub is

 port(a,c:in bit; d,b:out bit);

end half_sub;

architecture data of half_sub is

begin

 d<= a xor c;

 b<= (a and (not c));

end data;

FULL SUBTRACTOR

Library ieee;

use ieee.std_logic_1164.all;

 entity full_sub is

 port(a,b,c:in bit; sub,borrow:out bit);

end full_sub;

architecture data of full_sub is

begin

 sub<= a xor b xor c;

 borrow <= ((b xor c) and (not a)) or (b and c);

end data;

MULTIPLEXER (4:1)

Library ieee;

use ieee.std_logic_1164.all;

entity mux is

 port(S1,S0,D0,D1,D2,D3:in bit; Y:out bit);

end mux;

architecture data of mux is

begin

 Y<= (not S0 and not S1 and D0) or

 (S0 and not S1 and D1) or

 (not S0 and S1 and D2) or

 (S0 and S1 and D3);

end data;

DEMULTIPLEXER (1:4)

Library ieee;

use ieee.std_logic_1164.all;

 entity demux is

 port(S1,S0,D:in bit; Y0,Y1,Y2,Y3:out bit);

end demux;

 architecture data of demux is

begin

 Y0<= ((Not S0) and (Not S1) and D);

 Y1<= ((Not S0) and S1 and D);

 Y2<= (S0 and (Not S1) and D);

 Y3<= (S0 and S1 and D);

end data;

ENCODER (8X3)

library ieee;

use ieee.std_logic_1164.all;

entity enc is

 port(i0,i1,i2,i3,i4,i5,i6,i7:in bit; o0,o1,o2: out bit);

end enc;

architecture working of enc is

begin

 o0<=i4 or i5 or i6 or i7;

 o1<=i2 or i3 or i6 or i7;

 o2<=i1 or i3 or i5 or i7;

end working;

DECODER (3X8)

library ieee;

use ieee.std_logic_1164.all;

entity dec is

 port(i0,i1,i2:in bit; o0,o1,o2,o3,o4,o5,o6,o7: out bit);

end dec;

architecture working of dec is

begin

 o0<=(not i0) and (not i1) and (not i2);

 o1<=(not i0) and (not i1) and i2;

 o2<=(not i0) and i1 and (not i2);

 o3<=(not i0) and i1 and i2;

 o4<=i0 and (not i1) and (not i2);

 o5<=i0 and (not i1) and i2;

 o6<=i0 and i1 and (not i2);

 o7<=i0 and i1 and i2;

end working;

VHDL – Combinational Circuits – Behavioral Modeling

HALF ADDER

library ieee;

use ieee.std_logic_1164.all;

entity halfadder2 is

port(a, b : in bit;

 s, c : out bit);

end halfadder2;

architecture behavioral of halfadder2 is

begin

p1: process(a,b)

begin

if a & b = "00" then

s <= '0';

c <= '0';

elsif a & b = "01" or a & b = "10" then

s <= '1';

c <= '0';

else

s <= '0';

c <= '1';

end if;

end process;

end behavioral;

FULL ADDER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fab is

Port (a : in std_logic;

b : in std_logic;

c : in std_logic;

s : out std_logic;

cr : out std_logic);

end fab;

architecture Behavioral of fab is

begin

process(a,b,c)

begin

if(a='0' and b='0' and c='0')then

s<='0';

cr<='0';

elsif(a='0' and b='0' and c='1')then

 s<='1';

cr<='0';

 elsif(a='0' and b='1' and c='0')then

 s<='1';

cr<='0';

 elsif(a='0' and b='1' and c='1')then

 s<='0';

cr<='1';

elsif(a='1' and b='0' and c='0')then

 s<='1';

cr<='0';

 elsif(a='1' and b='0' and c='1')then

 s<='0';

cr<='1';

 elsif(a='1' and b='1' and c='0')then

 s<='0';

cr<='1';

else

s<='1';

cr<='1';

end if;

end process;

end Behavioral;

HALF SUBTRACTOR

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity HS is

Port (

A : in STD_LOGIC;

B : in STD_LOGIC;

Diff : out STD_LOGIC;

Borrow : out STD_LOGIC

);

end HS;

architecture Behavioral of HS is

begin

process(A,B)

begin

if (A =‘0′ and B=‘0′) THEN

Diff <= ‗0‘;

Borrow <= ‗0‘;

elsif (A = ‗0‘ and B=‘1′) THEN

Diff <= ‗1‘;

Borrow <= ‗1‘;

elsif (A =‘1′ and B=‘0′) THEN

Diff <= ‗1‘;

Borrow <= ‗0‘;

elsif (A = ‗1‘ and B=‘1′) THEN

Diff <= ‗0‘;

Borrow <= ‗0‘;

else

Diff <= ‗Z‘;

Borrow <=‘Z‘;

end if;

end process;

end Behavioral;

FULL SUBTRACTOR

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FULLSUBTRACTOR_BEHAVIORAL_SOURCE is

Port (A : in STD_LOGIC_VECTOR (2 downto 0);

Y : out STD_LOGIC_VECTOR (1 downto 0));

end FULLSUBTRACTOR_BEHAVIORAL_SOURCE;

architecture Behavioral of FULLSUBTRACTOR_BEHAVIORAL_SOURCE is

begin

process (A)

begin

if (A = "001" or A = "010" or A = "111") then

Y <= "11";

elsif (A = "011") then

Y <= "01";

elsif (A = "100") then

Y <= "10";

else

Y <= "00";

end if;

end process;

end Behavioral;

DECODER (2X4)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity DECODER_SOURCE is

 Port (I : in STD_LOGIC_VECTOR (1 downto 0);

 Y : out STD_LOGIC_VECTOR (3 downto 0));

end DECODER_SOURCE;

architecture Behavioral of DECODER_SOURCE is

begin

process (I)

begin

case I is

when "00" => Y <= "0001" ;

when "01" => Y <= "0010" ;

when "10" => Y <= "0100" ;

when others => Y <= "1000" ;

end case;

end process;

end Behavioral;

ENCODER (4X2)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ENCODER_SOURCE is

 Port (I : in STD_LOGIC_VECTOR (3 downto 0);

 Y : out STD_LOGIC_VECTOR (1 downto 0));

end ENCODER_SOURCE;

architecture Behavioral of ENCODER_SOURCE is

begin

process (I)

begin

if I = "0001" then Y <= "00";

elsif I = "0010" then Y <= "01";

elsif I = "0100" then Y <= "10";

else Y <= "11";

end if;

end process;

end Behavioral;

VHDL – Combinational Circuits – Structural Modeling

FULL ADDER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity fulladd is

 Port (x : in STD_LOGIC;

 y : in STD_LOGIC;

 cin : in STD_LOGIC;

 sum : out STD_LOGIC;

 cout : out STD_LOGIC);

end fulladd;

architecture Structural of fulladd is

component or1 is

Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 c : out STD_LOGIC);

end component;

component xor1 is

Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 c : out STD_LOGIC);

end component;

component and1 is

Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 c : out STD_LOGIC);

end component;

signal s1, s2, s3:STD_LOGIC;

begin

g1:xor1 port map(x,y,s1);

g2:xor1 port map(s1, cin, sum);

g3:and1 port map(x, y, s2);

g4:and1 port map(s1, cin, s3);

g5:or1 port map(s2, s3, cout);

end Structural;

HALF SUBTRACTOR

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity sub2 is

 Port (x : in STD_LOGIC;

y : in STD_LOGIC;

dif : out STD_LOGIC;

bor : out STD_LOGIC);

end sub2;

architecture Structural of sub2 is

component xorg is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

c : out STD_LOGIC);

end component;

component andg is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

c : out STD_LOGIC);

end component;

component notg is

Port (a : in STD_LOGIC;

c : out STD_LOGIC);

end component;

signal s1:STD_LOGIC;

begin

g1: xorg port map(x, y, dif);

g2: notg port map(x, s1);

g3: andg port map(s1, y, bor);

end Structural;

DECODER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity deco1 is

 Port (x : in STD_LOGIC;

 y : in STD_LOGIC;

 z : in STD_LOGIC;

 d0 : out STD_LOGIC;

 d1 : out STD_LOGIC;

 d2 : out STD_LOGIC;

 d3 : out STD_LOGIC;

 d4 : out STD_LOGIC;

 d5 : out STD_LOGIC;

 d6 : out STD_LOGIC;

 d7 : out STD_LOGIC);

end deco1;

architecture Structural of deco1 is

component decand1 is

Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 c : in STD_LOGIC;

 d : out STD_LOGIC);

end component;

component decnot1 is

Port (a : in STD_LOGIC;

 c : out STD_LOGIC);

end component;

signal s2, s1, s3: STD_LOGIC;

begin

g1: decnot1 port map(x,s1);

g2: decnot1 port map(y,s2);

g3: decnot1 port map(z,s3);

g4: decand1 port map(s1, s2, s3, d0);

g5: decand1 port map(s1, s2, z, d1);

g6: decand1 port map(s1, y, s3, d2);

g7: decand1 port map(s1, y, z, d3);

g8: decand1 port map(x, s2, s3, d4);

g9: decand1 port map(x, s2, z, d5);

g10: decand1 port map(x, y, s3, d6);

g11: decand1 port map(x, y, z, d7);

end Structural;

VHDL Programs for sequential circuits

D Flip-Flop (Behavioral approach)

Library ieee;

Use ieee.std_logic_1164.all;

Entity dff is

Port(D,CLK,reset:in std_logic;

 Q:out std_logic);

End dff;

Architecture dff_arch of dff is

begin

 process (CLK)

Begin

If (CLK‘event and CLK=‗1‘)then

If reset=‗0‘ then

Q<=‗0‘;

Else

Q<=‗D‘;

end if;

end if;

end process;

end;

JK Flip-Flop (Behavioral approach)

Library ieee;

Use ieee.std_logic_1164.all;

Entity jkff is

Port(J,K,CLK:in std_logic;

 Q,NQ:inout std_logic);

End jkff;

Architecture jkff_arch of jkff is

begin

 process(CLK)

Begin

If(CLK‘event and CLK=‗1‘)then

If (j=‗0‘ and K=‗0‘)then

Q<=Q;

NQ=NQ;

elseif (j=‗1‘ and K=‗0‘)then

Q<=1;

NQ=0;

elseif (j=‗0‘ and K=‗1‘)then

Q<=0;

NQ=1;

elseif (j=‗1‘ and K=‗1‘)then

Q<=not Q;

NQ=not NQ;

end if;

end if;

end process;

end;

4-bit Serial in Serial out Shift Register: (Structural approach)

library ieee;

use ieee.std_logic_1164.all;

entity siso is

port(D:in std_logic;

reset,CLK:in std_logic);

Q:out std_logic);

end siso;

architecture arch_siso of siso is

signal QA,QB,QC,QD:std_logic;

component dff1 is

port(D,CLK,reset:in std_logic; – D Flip-Flop program is

used as

Q:out std_logic);

– Component

end component;

begin

a1:diff port map(D,CLK,reset,QA);

a2:diff port map(QA,CLK,reset,QB);

a3:diff port map(QB,CLK,reset,QC);

a4:diff port map(QC,CLK,reset,QB);

end;

4-bit Parallel in Shift out Shift Register:

The VHDL program for the 4-bit Parallel in Serial out Shift Register using behavioral

approach can be written as follows.

library ieee;

use ieee.std_logic_1164 all;

entity dpiso is

port(CLK,load; in std_logic;

d: in std_logic_vector (3 downto 0);

dout: out std_logic);

end dpiso;

architecture arch_dpiso of dpiso is

signal reg: std_logic_vector (3 downto 0);

begin

process (CLK)

begin

if (CLK ‗event and CLK= ‗1‘) then

if (load = ‗1‘) then reg <=d;

else reg <= reg (2 downto 0) & ‗0‘;

end if;

end if;

end process;

dout <= reg (3);

end;

4-bit Parallel in Parallel out Shift Register:

The VHDL program for the 4-bit Parallel in Parallel out Shift Register can be written

as follows. This program follows structural approach.

library ieee;

use ieee.std_logic_1164.all;

entity pipo is

port(D:in std_logic_vector(0 to 3);

reset,CLK:in std_logic;

Q:out std_logic_vector(0 to 3);;

end pipo;

architecture arch_pipo of pipo is

component dff1 is

port(D,CLK,reset:in std_logic;

Q:out std_logic);

end component;

begin

a1:diff port map(D(0),CLK,reset,Q(0)); – Delay FF component

is used at

a2:diff port map(Q(1),CLK,reset,Q(1)); – instances a1, a2, a3

a3:diff port map(Q(2),CLK,reset,Q(2));

a4:diff port map(Q(3),CLK,reset,Q(3));

end;

Counters
4-bit Asynchronous/Ripple Counter:

The VHDL program for the 4-bit Asynchronous/Ripple Counter shown in Fig. 5.1 can

be written as follows. This program follows structural approach.

library ieee;

use ieee.std_logic_1164.all;

entiry ripple_counter is

port(Vcc,CLK,reset:in std_logic;

Q, NQ:input std_logic_vector(0 to 3));

end ripple_counterl

architecture arch_ripple_counter of ripple_counter is

component jkff1 is

port (J,K,CLK,reset: in std_logic;

Q, NQ: inout std_logic);

end component;

begin

a:jkff1 port map (Vcc, Vcc,CLK, reset,Q(0), NQ (0));

b:jkff1 port map (Vcc, Vcc,CLK, reset,Q(1), NQ (1));

c:jkff1 port map (Vcc, Vcc,CLK, reset,Q(2), NQ (2));

d:jkff1 port map (Vcc, Vcc,CLK, reset,Q(3), NQ (3));

end;

 The external clock pulse is applied to the first flip-flop only and, ‗1‘ signal (Vcc) is

given to JK inputs of all the flip-flops. The output of one flip=flop is connected to

clock input of the next flip-flip.

4-bit sysnchronous Binary Counter :

The VHDL program for the 4-bit Synchronous Binary Counter shown in Fig. 5.11 can

be written as follows. This program follows structural approach.

library ieee;

use ieee.std_logic_1164.all;

entity binary counter is

port (Vcc,CLK:in std_logic;

Q.NQ:inout std_logic_vector(0 to 3));

end binarycounter;

architecture arch_binarycounter of binarycounter is

signal X1,Y1:std_logic;

component jkff1 is

port (J,K,CLK: in std_logic;

Q,NQ: inout std_logic);

end component;

component andgate is

port(A,B:in std_logic;

Y:out std_logic);

end component;

component andgates is

port(A.B.C:in std_logic;

Y:out std_logic);

end component;

begin

a: jkff1 port map (Vcc, Vcc, CLK, Q(0),NQ(0));

b: jkff1 port map (Q(0),Q(0), CLK, Q(1),NQ(1));

c: andgate port map (Q(1),Q(0),X1);

d: jkff1 port map (X1,X1,CLK, Q(2),NQ(2));

f: andgates port map (Q(0),Q(1),Q(2),Y1);

g: jkff1 port map (Y1,Y1,CLK, Q(3),NQ(3));

end;

PACKAGES

A package in VHDL is a collection of functions, procedures, shared variables,

constants, files, aliases, types, subtypes, attributes, and components.

Packages are most often used to group together all of the code specific to a

Library.

Packages can have two parts: a declaration and a body, (body may not be

necessarily required).

The declarations section contains the prototypes for the functions and

procedures that are defined.

The body section contains the actual implementation of the functions and

procedures (similar to a .h file in C).

A package body is not required if no subprograms are declared in a package

declaration.

Packages group functionality that belongs together and also makes reusable.

All component definitions are put in a single package file.

Constants and types that appear repeatedly throughout the code should be

grouped together in a package file.

Functions and procedures exist both in the declaration section as well as the body

section. The declaration contains the prototype for the function or procedure and

the body contains the actual implementation of the code.

The package syntax is :

package package_name is

{package_declarative_item}

end [package_name] ;

package body package_name is

{package_declarative_item}

end [package_name] ;

-- Package Declaration Section

package example_package is

constant c_PIXELS : integer := 65536;

 type t_FROM_FIFO is record

 wr_full : std_logic;

 rd_empty : std_logic;

 end record t_FROM_FIFO;

 component example_component is

 port (

 i_data : in std_logic;

 o_rsult : out std_logic);

 end component example_component;

 function Bitwise_AND (

 i_vector : in std_logic_vector(3 downto 0))

 return std_logic;

 end package example_package;

-- Package Body Section

package body example_package is

 function Bitwise_AND (

 i_vector : in std_logic_vector(3 downto 0)

)

 return std_logic is

 begin

 return (i_vector (0) and i_vector (1) and i_vector (2) and i_vector (3));

 end;

end package body example_package;

Using Packages

In order to use the constants, components, functions, etc created in the package
file, it is needed to specify the other code where to look for these things.

This is done with the use clause. The .all at the end of the use clause tells the
file to use everything inside of the package file, as opposed to one particular
function for example.

SUBPROGRAMS

Design units may contain a context clause as the initial part. The context clause of

a primary unit applies to all of the primary units corresponding secondary units.

Architectures and package bodies are the secondary units.

Subprograms are not library units and must be inside entities, architectures or

packages.

Subprograms

There are two kinds of subprograms: procedures and functions.

Both procedures and functions written in VHDL must have a body and may have

declarations.

Procedures perform sequential computations and return values in global objects

or by storing values into formal parameters.

Functions perform sequential computations and return a value as the value of the

function.

Functions do not change their formal parameters.

Subprograms may exist as just a procedure body or a function body.

Subprograms may also have a procedure declarations or a function declaration.

When subprograms are provided in a package, the subprogram declaration is

placed in the package declaration and the subprogram body is placed in the

package body.

Procedure Declaration

Used to declare the calling interface to a procedure.

 procedure identifier [(formal parameter list)] ;

 procedure print_header ;

 procedure build (A : in constant integer;

 B : inout signal bit_vector;

 C : out variable real;

 D : file) ;

Procedure Body

Used to define the implementation of the procedure.

 procedure identifier [(formal parameter list)] is

 [declarations]

 begin

 sequential statement(s)

 end procedure identifier ;

 procedure print_header is

 use STD.textio.all;

 variable my_line : line;

 begin

 write (my_line, string'("A B C"));

 writeline (output, my_line);

 end procedure print_header ;

Function Declaration

Used to declare the calling and return interface to a function.

 function identifier [(formal parameter list)] return a_type ;

 function random return float ;

 function is_even (A : integer) return boolean ;

Function Body

Used to define the implementation of the function.

 function identifier [(formal parameter list)]

 return a_type is

 [declarations]

begin

 sequential statement(s)

 return some_value; -- of type a_type

 end function identifier ;

 function random return float is

 variable X : float;

 begin

 -- compute X

 return X;

 end function random ;

TEST BENCH

VHDL test bench is a VHDL code to verify the functional correctness of the HDL

model.

The main objectives of test bench are:

– Instantiate the design under test (DUT)

– Generate stimulus waveforms for design under test

– Generate reference outputs and compare them with the outputs of design under

test

– Automatically provide a pass or fail indication

Test bench is a part of the circuits specification.

Stimulus generation for test bench

The three ways are:

– Generate them ―on-the-fly‖

– Read vectors stored as constants in an array

– Read vectors stored in a separate system file

Response is produced in the test bench. Response can be stored into file for further

processing.

Example:

– Stimulus can be generated with Matlab and test bench feeds it into design under

test.

– Design under test (DUT) generates the response and test bench stores it into file.

– Result can be compared to Matlab simulations.

Example

AND GATE CODE

use IEEE.std_logic_1164.all;

entity andgate is

Port(A : in std_logic;

B : in std_logic;

Y : out std_logic

);

end andgate;

architecture Behavioral of andgate is

begin

Y<= A and B ;

end Behavioral;

AND GATE TEST BENCH

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity and_tb is

-- Port ();

end and_tb;

architecture Behavioral of and_tb is

--Component name and entity's name must be same

--ports must be same

component andgate is

 Port (A,B:in std_logic;

 C: out std_logic);

end component;

--inputs

signal a: std_logic:= '0';

signal b: std_logic:= '0';

--outputs

signal c : std_logic;

begin

--uut unit under test

uut: andgate PORT MAP(a=>A,b=>B,c=>C);

--Stimulus Process

stim_proc:process

begin

wait for 10ns;

a<='1';

b<='0';

wait for 10ns;

a<='0';

b<='1';

wait for 10ns;

a<='0';

b<='0';

wait for 10ns;

a<='1';

b<='1';

wait for 10ns;

end process;

end Behavioral;

Example : Design all LOGIC GATES in VHDL and verify

CODE

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY logic_gates IS

PORT(a,b: IN std_logic;

 c: OUT std_logic_vector(0 to 6));

END logic_gates;

ARCHITECTURE logic_gates OF logic_gates IS

BEGIN

c(0)<=a and b;

c(1)<=a or b;

c(2)<=not a;

c(3)<=a nand b;

c(4)<=a nor b;

c(5)<=a xor b;

c(6)<=a xnor b;

END logic_gates;

TEST BENCH CODE

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY logic_gates_tb IS

END logic_gates_tb;

ARCHITECTURE logic_gates_tb OF logic_gates_tb IS

 COMPONENT logic_gates

 PORT(

 a : IN std_logic;

 b : IN std_logic;

 c : OUT std_logic_vector(0 to 6)

);

 END COMPONENT;

 signal a : std_logic := '0';

 signal b : std_logic := '0';

 signal c : std_logic_vector(0 to 6);

BEGIN

uut: logic_gates PORT MAP (

 a => a,

 b => b,

 c => c

);

stim_proc: process

 begin

 a <= '0';

 b <= '0';

 wait for 50 ns;

 a <= '0';

 b <= '1';

 wait for 50 ns;

 a <= '1';

 b <= '0';

 wait for 50 ns;

 a <= '1';

 b <= '1';

 wait;

 end process;

END;

SIMULATION AND TUTORIALS

ADDER

VHDL CODE:

Behaviour Simulation

Synthesis Schematic

Gate - Level Simulation

Ref: http://esd.cs.ucr.edu/labs/tutorial/

http://esd.cs.ucr.edu/labs/tutorial/

9. Lecture Notes

E-Books

Digital Fundamentals_ Global Ed - Thomas L Floyd

Digital Principles And Application - Leach & Malvino

Digital Design - M. Morris Mano and Michael D. Ciletti

Fundamentals of Digital Logic with Verilog Design-Stephen Brown and Zonko
Vranesic

ONLINE LEARNING MATERIALS:

1. https://nptel.ac.in/courses/117/108/117108040/

2. https://nptel.ac.in/courses/106/102/106102181/

3: http://esd.cs.ucr.edu/labs/tutorial/

4. https://www.ics.uci.edu/~alexv/154/VHDL-Cookbook.pdf5:

5. https://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf

Video Links

https://www.youtube.com/watch?v=mwJ3uMWvJX0

https://www.youtube.com/watch?v=IZDgIg6cllw&feature=emb_logo

http://esd.cs.ucr.edu/labs/tutorial/
http://esd.cs.ucr.edu/labs/tutorial/
https://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf
https://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf
https://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf
https://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf
https://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf

10. Assignments

Design a system at the Register Transfer Level (RTL) that is to count the number of 1's

in a word of data, in a register.

Describe the 7-segment decoding logic using VHDL for implementation in a
programmable logic device (PLD). The logic expressions for segments a, b, and c of the
display are as follows:

a = H0 ; b = H1H0 + H1H0 + H2H1 ; c = H1H0 + H2H1

Write a VHDL program for the SOP logic circuit below using the structural approach and
compare with the data flow approach. Assume that VHDL component for a 3-input NAND
gate and for a 2-input NAND are available.

Develop a VHDL program for the logic circuit below, using both the data flow and the
structural approach. Compare the resulting programs.

A

11. Part A Q & A (with K level and CO)

PART A

Questions and Answers Blooms
Level

COs

1. What is VHDL?

Vey high speed integrated circuit Hardware Description
Language. It is a language for describing a hardware, which has to
be readable for machines and humans at the same time.

K1

CO6

2. What are the VHDL structural elements?
The main units in VHDL are Entity , Architecture , Configuration,
Process , Package , Library

K1 CO6

3. Write VHDL program for an and gate

entity andgate is
Port (a : in std_logic;
b : in std_logic;
c : out std_logic); end andgate;
architecture dataflow of andgate is begin
c<= a and b; end andgate;

K2 CO6

4. List the operators in VHDL

Logical operators
Relational operators
Shift operators
Adding operators
Multiply operators
Miscellaneous operators

K1 CO6

5. What is test bench?

A test bench is a model which is used to exercise and verify the
correctness of a hardware model.

K1 CO6

6.What are packages?
A package is used to provide a convenient method to store and
share declarations that are common for many design units.

K1 CO6

7. What are the types of subprograms?
Functions
Procedure

K2 CO6

8. Define modularity.
It allows partitioning of big functional blocks into smaller units and
to group closely related parts in self- contained sub blocks, so called
module.

K1 CO6

9. What are the data types available in VHDL?
Scalar type
Composite type
Access type
File type

K1 CO6

10. What is data flow modeling in VHDL?
A data flow model specifies the functionality of the entity without
explicitly specifying its structure.

K1 CO6

11. What is package declaration?
It contains a set of declarations that many be shared by various
design units. It defines items which are made visible to other design
units.

K1 CO6

12. What is a Procedure?
These are used to partition large behavioral descriptions. Procedures
can return zero or more values. It may or may not execute in zero
simulation time. It depends whether the wait statement is used or
not.

K1 CO6

13. What is entity?
The interface between a module and its environment is described
within the entity declaration which is initiated by the keyword entity.

K1 CO6

14. What is a Function?
These are used for computing a single value. It executes in zero
simulation time.

K1 CO6

15. What are the RTL description processes?
The pure combinational process and the clocked process . All clocked
processes infer flip-flops and can be described in terms of state
machine syntax.

K1 CO6

12. Part B Qs (with K level and CO)

PART B

1. Explain RTL design with an example K3 CO6

2. Write VHDL program for full adder using data flow and

structural approach K3 CO6

3. What is test bench? Explain with an example
K3 CO6

4. Write VHDL program for 4x1 multiplexer using structural

approach
K3 CO6

5. Write VHDL program for 4 bit ripple counter
K3 CO6

6. Write VHDL program for 3 bit synchronous down counter
K3 CO6

7. Write VHDL program for JK flip flop and T flip flop
K3 CO6

8. Write the VHDL code to realize a 2:1 multiplexer using data
flow modeling K3 CO6

9. Write the VHDL code for a logical gate which gives high
output only when both the inputs are high K3 CO6

10. Write the test bench for a FSM used to detect the
sequence 1101 K3 CO6

11. Explain the operators and data types in VHDL
K3 CO6

12. Write short notes on package and subprograms
K3 CO6

13. Briefly explain simulation and synthesis
K3 CO6

14. Explain the different timing control available in VHDL with
suitable examples K3 CO6

15. Write VHDL program for a 1:8 de-multiplexer in all three
modelling methods. K3 CO6

13.Supportive online Certification courses (NPTEL, Swayam,
Coursera, Udemy, etc.,)

Swayam

Digital Circuits: https://swayam.gov.in/nd1_noc20_ee70/preview

Duration: 12 weeks, Start Date: 14 Sep 2020, End Date: 04 Dec 2020

Udemy

Digital Electric Circuits & Intelligent Electrical Devices

https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/

Coursera

Build a Modern Computer from First Principles: From Nand to Tetris (Project-
Centered Course)

https://www.coursera.org/learn/build-a-computer

https://swayam.gov.in/nd1_noc20_ee70/preview
https://swayam.gov.in/nd1_noc20_ee70/preview
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.udemy.com/course/digital-electric-circuits-intelligent-electrical-devices/
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer

TRAFFIC SIGNAL CONTROLLER

A traffic signal controller is represented with its combinational logic and sequential

logic.

The use of VHDL to create the sequential logic component of the system

Ref: Digital Fundamentals by Thomas L Floyd

14. Real time Applications in day to day life and to

Industry

VHDL Coding for FPGAs – Contents for Embedded Systems CoE.

DIGITAL LOGIC DESIGN

DESIGN FLOW

DATA TYPES

LOGIC GATES IN VHDL

TESTBENCH GENERATION

XILINX: I/O ASSIGNMENT

USE OF std_logic_vector

DESIGN FLOW

Design Entry: The logic circuit is specified using a Hardware Description Language

(e.g., VHDL, Verilog).

Functional Simulation: Also called behavioural simulation. Here, we will only verify

the logical operation of the circuit. Stimuli is provided to the logic circuit, so we

can verify the outputs behave as we expect.

Physical Mapping: The inputs/outputs of our logic circuit are mapped to specific

pins of the FPGA.

Timing Simulation: It simulates the circuit considering its timing behavior (delays

between inputs and outputs)

Implementation: A configuration file (‗bitstream‘ file) is generated and then

downloaded onto the FPGA

https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

15. Contents beyond the Syllabus (COE related Value

added courses)

https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

17. Prescribed Text Books & Reference Books

TEXT BOOKS:

1.James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.

2.M. Morris Mano, ‗Digital Design with an introduction to the VHDL‘, Pearson

Education, 2013.

3.Comer ―Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES

1.Mandal, ―Digital Electronics Principles & Application, McGraw Hill Edu, 2013.

2.William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.

3.Thomas L.Floyd, ‗Digital Fundamentals‘, 11th edition, Pearson Education, 2015.

4.Charles H.Roth, Jr, Lizy Lizy Kurian John, ‗Digital System Design using VHDL,

Cengage, 2013.

18. MINI PROJECT

Design of a camera control system

The camera control system has to generate the appropriate signals for the lens
shutter and the film transportation motor. It also generates the input signals for a
small 7-segment display showing either the current exposure time or the total
number of pictures taken so far. The user controls the camera operation via
several keys.

The central control system that is to be developed in this course is split into seven
modules:

A decoder (decoder) is used to pre process the signals from the input device for
the controller.

The exposure latch (exp_ff) stores the selected exposure time.

A timer for the film transport (motor_timer) is used to detect errors during film
transportation, e.g. if the film is torn apart.

The exposure controller (exp_ctrl) opens the lens shutter for the selected
exposure time and counts the number pictures that have been taken.

The photo controller (main_ctrl) is the central control unit for the camera control
system.

A specialized display controller (disp_ctrl) selects the appropriate data for the 7-
segment display.

The display driver (disp_drv), finally, converts the internal data signals into a
format suitable for the output device.

https://www.vhdl-online.de/vhdl_workshop/start

https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start
https://www.vhdl-online.de/vhdl_workshop/start

