

1

UNIT I

INTRODUCTION TO OOP AND JAVA FUNDAMENTALS

Object Oriented Programming - Abstraction – objects and classes - Encapsulation- Inheritance-

Polymorphism- OOP in Java – Characteristics of Java – The Java Environment - Java Source File -

Structure Compilation. Fundamental Programming Structures in Java – Defining classes in Java –

constructors, methods - access specifiers - static members - Comments, Data Types, Variables,

Operators, Control Flow, Arrays, Packages - JavaDoc comments.

OBJECT-ORIENTED PROGRAMMING

Object-Oriented Programming (OOP) is a programming language model organized

around objects rather than actions and data. An object-oriented program can be characterized as data

controlling access to code. Concepts of OOPS

 Object

 Class

 Inheritance

 Polymorphism

 Abstraction

 Encapsulation

OBJECT

Object means a real word entity such as pen, chair, table etc. Any entity that has state and behavior is

known as an object. Object can be defined as an instance of a class. An object contains an address and takes

up some space in memory. Objects can communicate without knowing details of each other's data or code,

the only necessary thing is that the type of message accepted and type of response returned by the objects.

An object has three characteristics:

 state: represents data (value) of an object.

 behavior: represents the behavior (functionality) of an object such as deposit, withdraw etc.

 identity: Object identity is typically implemented via a unique ID. The value of the ID is not

visible to the external user. But, it is used internally by the JVM to identify each object uniquely.

CLASS

Collection of objects is called class. It is a logical entity. A class can also be defined as a blueprint

from which you can create an individual object. A class consists of Data members and methods.The primary

purpose of a class is to hold data/information. The member functions determine the behavior of the class,

i.e. provide a definition for supporting various operations on data held in the form of an object.Class doesn’t

store any space.

INHERITANCE

Inheritance can be defined as the procedure or mechanism of acquiring all the properties and

behavior of one class to another, i.e., acquiring the properties and behavior of child class from the parent

class. When one object acquires all the properties and behaviours of another object, it is known as

inheritance. It provides code reusability and establishes relationships between different classes. A class

which inherits the properties is known as Child Class(sub-class or derived class) whereas a class whose

properties are inherited is known as Parent class(super-class or base class). Types of inheritance in java:

single, multilevel and hierarchical inheritance. Multiple and hybrid inheritance is supported through

https://searchmicroservices.techtarget.com/definition/object
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation

2

interface only.

3

POLYMORPHISM

When one task is performed by different ways i.e. known as polymorphism. For example: to

convince the customer differently, to draw something e.g. shape or rectangle etc.

Polymorphism is classified into two ways:

Method Overloading(Compile time Polymorphism)

Method Overloading is a feature that allows a class to have two or more methods having the same name but

the arguments passed to the methods are different. Compile time polymorphism refers to a process in which

a call to an overloaded method is resolved at compile time rather than at run time.

Method Overriding(Run time Polymorphism)

If subclass (child class) has the same method as declared in the parent class, it is known as method

overriding in java.In other words, If subclass provides the specific implementation of the method that has

been provided by one of its parent class, it is known as method overriding.

ABSTRACTION

Abstraction is a process of hiding the implementation details and showing only functionality to the

user. For example: phone call, we don't know the internal processing.In java, we use abstract class and

interface to achieve abstraction.

ENCAPSULATION

Encapsulation in java is a process of wrapping code and data together into a single unit, for

example capsule i.e. mixed of several medicines.A java class is the example of encapsulation.

DIFFERENCE BETWEEN PROCEDURE-ORIENTED AND OBJECT-ORIENTED

PROGRAMMING

Procedure-Oriented Programming Object-Oriented Programming

In POP, program is divided into small parts In OOP, program is divided into parts

called functions called objects.

In POP,Importance is not given to data but to In OOP, Importance is given to the data rather

4

functions as well as sequence of actions to be

done.

than procedures or functions because it works as

a real world.

POP follows Top Down approach. OOP follows Bottom Up approach.

POP does not have any access specifier. OOP has access specifiers named Public, Private,

Protected, etc.

In POP, Data can move freely from function to

function in the system.

In OOP, objects can move and communicate with

each other through member functions.

To add new data and function in POP is not so

easy.

OOP provides an easy way to add new data and

function.

In POP, Most function uses Global data for

sharing that can be accessed freely from function

to function in the system.

In OOP, data can not move easily from function

to function,it can be kept public or private so we

can control the access of data.

POP does not have any proper way for hiding

data so it is less secure.

OOP provides Data Hiding so provides more

security.

In POP, Overloading is not possible. In OOP, overloading is possible in the form of

Function Overloading and Operator Overloading.

Example of POP are : C, VB, FORTRAN,

Pascal.

Example of OOP are : C++, JAVA, VB.NET,

C#.NET.

FEATURES OF JAVA

The main objective of Java programming language creation was to make it portable, simple and secure

programming language. Apart from this, there are also some awesome features which play important role in

the popularity of this language. The features of Java are also known as java buzzwords.

A list of most important features of Java language are given below.

Simple

Java is very easy to learn and its syntax is simple, clean and easy to understand. According to Sun, Java

language is a simple programming language because:

 Java syntax is based on C++ (so easier for programmers to learn it after C++).

 Java has removed many confusing and rarely-used features e.g. explicit pointers, operator
overloading etc.

 There is no need to remove unreferenced objects because there is Automatic Garbage Collection in

java.

Object-oriented

Java is object-oriented programming language. Everything in Java is an object. Object-oriented means we

organize our software as a combination of different types of objects that incorporates both data and

behaviour.

Object-oriented programming (OOPs) is a methodology that simplifies software development and

maintenance by providing some rules.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation

Platform Independent

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation

5

Java is platform independent because it is different from other languages like C, C++ etc. which are

compiled into platform specific machines while Java is a write once, run anywhere language. A platform is

the hardware or software environment in which a program runs.

There are two types of platforms software-based and hardware-based. Java provides software-based

platform.

The Java platform differs from most other platforms in the sense that it is a software-based platform that

runs on the top of other hardware-based platforms. It has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac/OS etc. Java code is

compiled by the compiler and converted into bytecode. This bytecode is a platform-independent code

because it can be run on multiple platforms i.e. Write Once and Run Anywhere(WORA).

Secured

Java is best known for its security. With Java, we can develop virus-free systems. Java is secured because:

o No explicit pointer

o Java Programs run inside virtual machine sandbox

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

6

 Classloader: Classloader in Java is a part of the Java Runtime Environment(JRE) which is used to

dynamically load Java classes into the Java Virtual Machine. It adds security by separating the

package for the classes of the local file system from those that are imported from network sources.

 Bytecode Verifier: It checks the code fragments for illegal code that can violate access right to

objects.

 Security Manager: It determines what resources a class can access such as reading and writing to

the local disk.

These security are provided by java language. Some security can also be provided by application developer

through SSL, JAAS, Cryptography etc.

Robust

 Robust simply means strong. Java is robust because:

 It uses strong memory management.

 There are lack of pointers that avoids security problems.

 There is automatic garbage collection in java which runs on the Java Virtual Machine to get rid of

objects which are not being used by a Java application anymore.

 There is exception handling and type checking mechanism in java. All these points makes java robust.

Architecture-neutral

Java is architecture neutral because there is no implementation dependent features e.g. size of primitive

types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes of memory

for 64-bit architecture. But in java, it occupies 4 bytes of memory for both 32 and 64 bit architectures.

Portable

Java is portable because it facilitates you to carry the java bytecode to any platform. It doesn't require any

type of implementation.

High-performance

Java is faster than other traditional interpreted programming languages because Java bytecode is "close" to

native code. It is still a little bit slower than a compiled language (e.g. C++). Java is an interpreted language

that is why it is slower than compiled languages e.g. C, C++ etc.

Distributed

Java is distributed because it facilitates users to create distributed applications in java. RMI and EJB are

used for creating distributed applications. This feature of Java makes us able to access files by calling the

methods from any machine on the internet.

Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs that deal with

many tasks at once by defining multiple threads. The main advantage of multi-threading is that it doesn't

occupy memory for each thread. It shares a common memory area. Threads are important for multi-media,

Web applications etc.

Dynamic

Java is a dynamic language. It supports dynamic loading of classes. It means classes are loaded on demand.

It also supports functions from its native languages i.e. C and C++.

Java supports dynamic compilation and automatic memory management (garbage collection).

GARBAGE COLLECTION
Objects are dynamically allocated by using the new operator, dynamically allocated objects must be

manually released by use of a delete operator. Java takes a different approach; it handles deallocation

automatically this is called garbage collection. When no references to an object exist, that object is assumed

to be no longer needed, and the memory occupied by the object can be reclaimed. Garbage collection only

occurs sporadically (if at all) during the execution of your program. It will not occur simply because one or

more objects exist that are no longer used.

THE JAVA ENVIRONMENT
JRE

JRE is an acronym for Java Runtime Environment. It is also written as Java RTE. The Java Runtime

Environment is a set of software tools which are used for developing java applications. It is used to provide

runtime environment. It is the implementation of JVM. It physically exists. It contains set of libraries +

other files that JVM uses at runtime.

Implementation of JVMs are also actively released by other companies besides Sun Micro Systems.

JDK

JDK is an acronym for Java Development Kit. The Java Development Kit (JDK) is a software development

environment which is used to develop java applications and applets. It physically exists. It contains JRE +

development tools.

JDK is an implementation of any one of the below given Java Platforms released by Oracle corporation:

 Standard Edition Java Platform

 Enterprise Edition Java Platform

 Micro Edition Java Platform

The JDK contains a private Java Virtual Machine (JVM) and a few other resources such as an

interpreter/loader (Java), a compiler (javac), an archiver (jar), a documentation generator (Javadoc) etc. to

complete the development of a Java Application.

6

https://www.javatpoint.com/java-applet

7

JVM (Java Virtual Machine)

JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides runtime environment

in which java bytecode can be executed.

JVMs are available for many hardware and software platforms (i.e. JVM is platform dependent).

The JVM performs following operation:

 Loads code

 Verifies code

 Executes code

 Provides runtime environment

JVM provides definitions for the:

 Memory area

 Class file format

 Register set

 Garbage-collected heap

 Fatal error reporting etc.

Internal Architecture of JVM

1. Classloader

Classloader is a subsystem of JVM that is used to load class files.

2. Class(Method) Area

Class(Method) Area stores per-class structures such as the runtime constant pool, field and method data, the

code for methods.

3.Heap

It is the runtime data area in which objects are allocated.

4. Stack

Java Stack stores frames. It holds local variables and partial results, and plays a part in method invocation

and return.

Each thread has a private JVM stack, created at the same time as thread.

A new frame is created each time a method is invoked. A frame is destroyed when its method invocation

completes.

8

5. Program Counter Register

PC (program counter) register contains the address of the Java virtual machine instruction currently being

executed.

6. Native Method Stack

It contains all the native methods used in the application.

7. Execution Engine

Contains a virtual processor, Interpreter to read bytecode stream then execute the instructions and Just-In-

Time(JIT) compiler is used to improve the performance. JIT compiles parts of the byte code that have

similar functionality at the same time, and hence reduces the amount of time needed for compilation. Here,

the term "compiler" refers to a translator from the instruction set of a Java virtual machine (JVM) to the

instruction set of a specific CPU.

STRUCTURE OF JAVA PROGRAM

A first Simple Java Program

class Simple

{

public static void main(String args[])

{

System.out.println("Java World");

}

}

To compile:

javac Simple.java

To execute:

java Simple

class keyword is used to declare a class in java.

public keyword is an access modifier which represents visibility, it means it is visible to all.

static is a keyword, if we declare any method as static, it is known as static method. The core advantage of

static method is that there is no need to create object to invoke the static method. The main method is

executed by the JVM, so it doesn't require to create object to invoke the main method. So it saves memory.

void is the return type of the method, it means it doesn't return any value.

main represents the starting point of the

program. String[] args is used for command line

argument. System.out.println() is used print

statement.

A program is written in JAVA, the javac compiles it. The result of the JAVA compiler is the .class file or

the bytecode and not the machine native code (unlike C compiler).

The bytecode generated is a non-executable code and needs an interpreter to execute on a machine. This

interpreter is the JVM and thus the Bytecode is executed by the JVM.

And finally program runs to give the desired output.

9

DEFINING CLASSES IN JAVA
The class is at the core of Java .A class is a template for an object, and an object is an instance of a class. A

class is declared by use of the class keyword

Syntax:

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

...

type methodnameN(parameter-list) {

// body of method

}

The data, or variables, defined within a class are called instance variables. The code is contained within

methods. The methods and variables defined within a class are called members of the class. In most classes,

the instance variables are acted upon and accessed by the methods defined for that class.

Variables defined within a class are called instance variables because each instance of the class (that is, each

object of the class) contains its own copy of these variables. Thus, the data for one object is separate and

unique from the data for another.

A Simple Class

class called Box that

defines three instance variables: width, height, and

depth. class Box {

double width;

double height;

double depth;

}

The new data type is called Box. This name is used to declare objects of type Box. The class declaration

10

only creates a template. It does not create an actual object.

To create a Box object

Box mybox = new Box(); // create a Box object called mybox

mybox will be an instance of Box.

11

Each time you create an instance of a class, you are creating an object that contains its own copy of each

instance variable defined by the class. To access these variables, you will use the dot (.) operator. The dot

operator links the name of the object with the name of an instance variable.

Example1:

/* A program that uses the Box class.

Call this file BoxDemo.java

*/

class Box {

double width;

double height;

double depth;

}

// This class declares an object of type Box.

class BoxDemo {

public static void main(String args[]) {

Box mybox = new Box();

double vol;

// assign values to mybox's instance variables

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

// compute volume of box

vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

Output:

Volume is 3000.0

Example2:

// This program declares two Box objects.

class Box {

double width;

double height;

double depth;

}

class BoxDemo2 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

12

mybox2.depth = 9;
// compute volume of first box

vol = mybox1.width * mybox1.height * mybox1.depth;

System.out.println("Volume is " + vol);

// compute volume of second box

vol = mybox2.width * mybox2.height * mybox2.depth;

System.out.println("Volume is " + vol);

}

}

Output:

Volume is 3000.0
Volume is 162.0

Declaring Objects

First, declare a variable of the class type. This variable does not define an object.Instead, it is simply a

variable that can refer to an object.

Second, you must acquire an actual, physical copy of the object and assign it to that variable. This is done

using the new operator. The new operator dynamically allocates (that is, allocates at run time) memory for

an object and returns a reference to it. This reference is then stored in the variable. Thus, in Java, all class

objects must be dynamically allocated.

Syntax:

Box mybox = new Box();
Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox does not yet

refer to an actual object. The next line allocates an object and assigns a reference to it to mybox. After the

second line executes, we can use mybox as if it were a Box object. But in reality, mybox simply holds, in

essence, the memory address of the actual Box object.

Assigning Object Reference Variables

Syntax:

Box b1 = new Box();

Box b2 = b1;

b2 is being assigned a reference to a copy of the object referred to by b1. b1 and b2 will both refer to the

same object. The assignment of b1 to b2 did not allocate any memory or copy any part of the original

13

object. It simply makes b2 refer to the same object as does b1. Thus, any changes made to the object

through b2 will affect the object to which b1 is referring, since they are the same object.

CONSTRUCTORS

 Constructors are special member functions whose task is to initialize the objects of its class.

 It is a special member function, it has the same as the class name.

 Java constructors are invoked when their objects are created. It is named such because, it constructs

the value, that is provides data for the object and are used to initialize objects.

 Every class has a constructor when we don't explicitly declare a constructor for any java class the

compiler creates a default constructor for that class which does not have any return type.

 The constructor in Java cannot be abstract, static, final or synchronized and these modifiers are not

allowed for the constructor.

There are two types of constructors:

1. Default constructor (no-arg constructor)
2. Parameterized constructor

Default constructor (no-arg constructor)

A constructor having no parameter is known as default constructor and no-arg constructor.

Example:

/* Here, Box uses a constructor to initialize the

dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box() {

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

14

}

}

15

class BoxDemo6 {
public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

Output:

Constructing Box

Constructing Box

Volume is 1000.0

Volume is 1000.0

new Box() is calling the Box() constructor. When the constructor for a class is not explicitly defined , then

Java creates a default constructor for the class. The default constructor automatically initializes all instance

variables to their default values, which are zero, null, and false, for numeric types, reference types, and

boolean, respectively.

Parameterized Constructors

A constructor which has a specific number of parameters is called parameterized constructor. Parameterized

constructor is used to provide different values to the distinct objects.

Example:

/* Here, Box uses a parameterized constructor to

initialize the dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

16

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

Output:

Volume is 3000.0
Volume is 162.0

Box mybox1 = new Box(10, 20, 15);

The values 10, 20, and 15 are passed to the Box() constructor when new creates the object. Thus, mybox1’s

copy of width, height, and depth will contain the values 10, 20, and 15 respectively.

Overloading Constructors

Example:

/* Here, Box defines three constructors to initialize

the dimensions of a box various ways.

*/

class Box {

double width;

double height;

double depth;

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

17

}
class OverloadCons

{

public static void main(String args[])

{

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

Output:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

METHODS
Syntax:

type name(parameter-list) {

// body of method

}

 type specifies the type of data returned by the method. This can be any valid type, including class

types that you create.

 If the method does not return a value, its return type must be void.

 The name of the method is specified by name.

 The parameter-list is a sequence of type and identifier pairs separated by commas. Parameters are

essentially variables that receive the value of the arguments passed to the method when it is called. If

the method has no parameters, then the parameter list will be empty.

 Methods that have a return type other than void return a value to the calling routine using the

following form of the return statement:

Syntax:

return value;

Example:

// This program includes a method inside the box class.

class Box {

double width;

double height;

18

double depth;

// display volume of a box

19

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}}

class BoxDemo3 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box

mybox1.volume();

// display volume of second box

mybox2.volume();

}

}

Output:

Volume is 3000.0

Volume is 162.0

The first line here invokes the volume() method on mybox1. That is, it calls volume() relative to the

mybox1 object, using the object’s name followed by the dot operator. Thus, the call to mybox1.volume()

displays the volume of the box defined by mybox1, and the call to mybox2.volume() displays the volume

of the box defined by mybox2. Each time volume() is invoked, it displays the volume for the specified box.

Returning a Value

Example:

// Now, volume() returns the volume of a box.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo4 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

20

// assign values to mybox1's instance variables

21

mybox1.width = 10;
mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

Output:

Volume is 3000
Volume is 162

when volume() is called, it is put on the right side of an assignment statement. On the left is a variable, in

this case vol, that will receive the value returned by volume().

Syntax:

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.

There are two important things to understand about returning values:

• The type of data returned by a method must be compatible with the return type specified by the method.

• The variable receiving the value returned by a method (such as vol, in this case) must also be compatible

with the return type specified for the method.

Adding a Method That Takes Parameters

Example:

// This program uses a parameterized method.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

// sets dimensions of box

void setDim(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

22

}

23

class BoxDemo5 {
public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// initialize each box

mybox1.setDim(10, 20, 15);

mybox2.setDim(3, 6, 9);

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

Output:

Volume is 3000
Volume is 162

The this Keyword

this keyword is used to to refer to the object that invoked it. this can be used inside any method to refer to

the current object. That is, this is always a reference to the object on which the method was invoked. this()

can be used to invoke current class constructor.

Syntax:

Box(double w, double h, double d) {

this.width = w;

this.height = h;

this.depth = d;

}

Example:

class Student
{

int id;

String name;

student(int id, String name)

{

this.id = id;

this.name = name;

}

void display()

{

System.out.println(id+" "+name);

}

public static void main(String args[])

{

Student stud1 = new Student(01,"Tarun");

Student stud2 = new Student(02,"Barun");

24

stud1.display();

stud2.display();

}

}

Output:

01 Tarun
02 Barun

Overloading Methods

When two or more methods within the same class that have the same name, but their parameter declarations

are different. The methods are said to be overloaded, and the process is referred to as method overloading.

Method overloading is one of the ways that Java supports polymorphism.

There are two ways to overload the method in java

1. By changing number of arguments

2. By changing the data type

Example:

// Demonstrate method overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// Overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

Output:

No parameters

25

a: 10
a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

Method Overriding

When a method in a subclass has the same name and type signature as a method in its superclass, then the

method in the subclass is said to override the method in the superclass. When an overridden method is

called from within its subclass, it will always refer to the version of that method defined by the subclass.

The version of the method defined by the superclass will be hidden.
Example:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

Output:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B is used. That is, the

version of show() inside B overrides the version declared in A. If you wish to access the superclass version

of an overridden method, you can do so by using super. For example, in this version of B, the superclass

version of show() is invoked within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {

int k;

26

B(int a, int b, int c) {

27

super(a, b);

k = c;

}

void show() {

super.show(); // this calls A's show()

System.out.println("k: " + k);

}

}

If you substitute this version of A into the previous program, you will see the following

Output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

ACCESS PROTECTION
The access modifiers in java specifies accessibility (scope) of a data member, method, constructor or class.

There are 4 types of java access modifiers:

1. private

2. default

3. protected

4. public

1) Private Access Modifier

The private access modifier is accessible only within class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data member and

private method. We are accessing these private members from outside the class, so there is compile time

error.

class A{

private int data=40;

private void msg(){System.out.println("Hello java");}

}

public class Simple{

public static void main(String args[]){

A obj=new A();

System.out.println(obj.data);//Compile Time Error

obj.msg();//Compile Time Error

}

}

Role of Private Constructor

If you make any class constructor private, you cannot create the instance of that class from outside the class.

For example:

class A{

private A(){}//private constructor

void msg(){System.out.println("Hello java");}

}

public class Simple{

28

public static void main(String args[]){

29

A obj=new A();//Compile Time Error
}

}

If you make any class constructor private, you cannot create the instance of that class from outside the class.

For example:

class A{

private A(){}//private constructor

void msg(){System.out.println("Hello java");}

}

public class Simple{

public static void main(String args[]){

A obj=new A();//Compile Time Error

}

}

2) Default Access Modifier

If you don't use any modifier, it is treated as default bydefault. The default modifier is accessible only

within package.

Example:

In this example, we have created two packages pack and mypack. We are accessing the A class from outside

its package, since A class is not public, so it cannot be accessed from outside the package.

//save by A.java

package pack;

class A{

void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();//Compile Time Error

obj.msg();//Compile Time Error

}

}

In the above example, the scope of class A and its method msg() is default so it cannot be accessed from

outside the package.

3) Protected Access Modifier

The protected access modifier is accessible within package and outside the package but through inheritance

only.

30

The protected access modifier can be applied on the data member, method and constructor. It can't be

applied on the class.

Example:

In this example, we have created the two packages pack and mypack. The A class of pack package is public,

so can be accessed from outside the package. But msg method of this package is declared as protected, so it

can be accessed from outside the class only through inheritance.

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B extends A{

public static void main(String args[]){

B obj = new B();

obj.msg();

}

}

Output:

Hello

4) Public Access Modifier

The public access modifier is accessible everywhere. It has the widest scope among all other modifiers.

Example:

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg();

}

}

Output:

Hello

Access Modifier Within Class Within Package Outside Package Outside Package

31

 By Subclass Only

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Java access modifiers with method overriding

If you are overriding any method, overridden method (i.e. declared in subclass) must not be more restrictive.

class A{

protected void msg(){System.out.println("Hello java");}

}

public class Simple extends A{

void msg(){System.out.println("Hello java");}//C.T.Error

public static void main(String args[]){

Simple obj=new Simple();

obj.msg();

}

}
The default modifier is more restrictive than protected. That is why there is compile time error.

STATIC MEMBERS
Static is a non-access modifier in Java which is applicable for the following:

1. blocks

2. variables

3. methods

4. nested classes

Static blocks

If you need to do computation in order to initialize your static variables, you can declare a static block that

gets executed exactly once, when the class is first loaded.

Example:

// Java program to demonstrate use of static blocks

class Test

{

// static variable

static int a = 10;

static int b;

// static block

static {

System.out.println("Static block initialized.");

b = a * 4;

}

public static void main(String[] args)

{

System.out.println("from main");

System.out.println("Value of a : "+a);

System.out.println("Value of b : "+b);

32

}
}

Output:

Static block initialized.

from main

Value of a : 10

Value of b : 40

Static variables

When a variable is declared as static, then a single copy of variable is created and shared among all objects

at class level. Static variables are, essentially, global variables. All instances of the class share the same

static variable.

Important points for static variables :-

 We can create static variables at class-level only.

 static block and static variables are executed in order they are present in a program.

Example:

// Demonstrate static variables, methods, and blocks.

class UseStatic {

static int a = 3;

static int b;

static void meth(int x) {

System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}

static {

System.out.println("Static block initialized.");

b = a * 4;

}

public static void main(String args[]) {

meth(42);

}

}

Output:

Static block initialized.

x = 42

a = 3

b = 12

Static methods

When a method is declared with static keyword, it is known as static method. When a member is declared

static, it can be accessed before any objects of its class are created, and without reference to any object. The

most common example of a static method is main() method. Methods declared as static have several

restrictions:

 They can only directly call other static methods.

 They can only directly access static data.

 They cannot refer to this or super in any way.

Syntax:

classname.method()

https://www.geeksforgeeks.org/this-reference-in-java/
https://www.geeksforgeeks.org/super-keyword/

33

Example:

//Inside main(), the static method callme() and the static variable b are accessed through their class name
//StaticDemo.

class StaticDemo {

static int a = 42;

static int b = 99;

static void callme() {

System.out.println("a = " + a);

}

}

class StaticByName {

public static void main(String args[]) {

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

}

}

Output:

a = 42
b = 99

JAVA COMMENTS
The java comments are statements that are not executed by the compiler and interpreter. The comments can

be used to provide information or explanation about the variable, method, class or any statement. It can also

be used to hide program code for specific time.

There are 3 types of comments in java.

1. Single Line Comment

2. Multi Line Comment

3. Documentation Comment

1) Java Single Line Comment

The single line comment is used to comment only one line.

Syntax:

//This is single line comment

Example:

public class CommentExample1
{

public static void main(String[] args)

{

int i=10;//Here, i is a variable

System.out.println(i);

}

}

Output:

10

2) Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.

Syntax:

/*

34

This

is

multi line

comment

*/

Example:

public class CommentExample2
{

public static void main(String[] args)
{

/* Let's declare and

print variable in java. */

int i=10;

System.out.println(i);

}

}

Output:

10

3) Java Documentation Comment

The documentation comment is used to create documentation API. To create documentation API, you need

to use javadoc tool.

Syntax:

/**

This

is

documentation

comment

*/

Example:

/** The Calculator class provides methods to get addition and subtraction of given 2 numbers.*/

public class Calculator

{

/** The add() method returns addition of given numbers.*/

public static int add(int a, int b)

{

return a+b;

}

/** The sub() method returns subtraction of given numbers.*/

public static int sub(int a, int b)

{

return a-b;

}

}
This type of comment is used to produce an HTML file that documents your program. The documentation

comment begins with a /** and ends with a */.

35

DATATYPES IN JAVA
Data types specify the different sizes and values that can be stored in the variable. There are two types of

data types in Java:

1. Primitive data types: The primitive data types include Integer, Character, Boolean, and Floating

Point.

2. Non-primitive data types: The non-primitive data types include Classes, Interfaces, and Arrays.

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean. These can

be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued signed numbers.

• Floating-point numbers This group includes float and double, which represent numbers with fractional

precision.

• Characters This group includes char, which represents symbols in a character set, like letters and numbers.

• Boolean This group includes boolean, which is a special type for representing true/false values.

Example :

// Compute distance light travels using long variables.

class Light {

public static void main(String args[]) {

int lightspeed;

long days;

long seconds;

long distance;

// approximate speed of light in miles per second

lightspeed = 186000;

days = 1000; // specify number of days here

seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute distance

System.out.print("In " + days);

System.out.print(" days light will travel about ");

System.out.println(distance + " miles.");

}

}

36

Output:

In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

VARIABLES

A variable is a container which holds the value and that can be changed durig the execution of the program.

A variable is assigned with a datatype. Variable is a name of memory location. All the variables must be

declared before they can be used. There are three types of variables in java: local variable, instance variable

and static variable.

1) Local Variable

A variable defined within a block or method or constructor is called local variable.
 These variable are created when the block in entered or the function is called and destroyed after

exiting from the block or when the call returns from the function.

 The scope of these variables exists only within the block in which the variable is declared. i.e. we

can access these variable only within that block.

Example:

import java.io.*;

public class StudentDetails

{

public void StudentAge()

{ //local variable age

int age = 0;

age = age + 5;

System.out.println("Student age is : " + age);

}

public static void main(String args[])

{

StudentDetails obj = new StudentDetails();

obj.StudentAge();

}

}

Output:

Student age is : 5

2) Instance Variable

Instance variables are non-static variables and are declared in a class outside any method, constructor or

block.

 As instance variables are declared in a class, these variables are created when an object of the class

is created and destroyed when the object is destroyed.

20

37

 Unlike local variables, we may use access specifiers for instance variables. If we do not specify any

access specifier then the default access specifier will be used.

Example:
import java.io.*;
class Marks{

int m1;

int m2;

}
class MarksDemo

{

public static void main(String args[])

{ //first object

Marks obj1 = new Marks();

obj1.m1 = 50;

obj1.m2 = 80;

//second object

Marks obj2 = new Marks();

obj2.m1 = 80;

obj2.m2 = 60;

//displaying marks for first object

System.out.println("Marks for first object:");

System.out.println(obj1.m1);

System.out.println(obj1.m2);

//displaying marks for second object

System.out.println("Marks for second object:");

System.out.println(obj2.m1);

System.out.println(obj2.m2);

}}

Output:

Marks for first object:

50

80

Marks for second object:

80

60

3) Static variable

Static variables are also known as Class variables.
 These variables are declared similarly as instance variables, the difference is that static variables are

declared using the static keyword within a class outside any method constructor or block.

 Unlike instance variables, we can only have one copy of a static variable per class irrespective of

how many objects we create.

 Static variables are created at start of program execution and destroyed automatically when

execution ends.

Example:

import java.io.*;

class Emp {

// static variable salary

38

public static double salary;

39

public static String name = "Vijaya";
}

public class EmpDemo

{

public static void main(String args[]) {

//accessing static variable without object

Emp.salary = 1000;

System.out.println(Emp.name + "'s average salary:" + Emp.salary);

}

}

Output:

Vijaya’s average salary:10000.0

Difference between Instance variable and Static variable

INSTANCE VARIABLE STATIC VARIABLE

Each object will have its own copy of instance
variable

We can only have one copy of a static variable per
class irrespective of how many objects we create.

Changes made in an instance variable using one

object will not be reflected in other objects as each

object has its own copy of instance variable

In case of static changes will be reflected in other

objects as static variables are common to all object

of a class.

We can access instance variables through object

references

Static Variables can be accessed directly using class

name.

Class Sample
{

int a;
}

Class Sample
{

static int a;
}

OPERATORS IN JAVA
Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the

following groups –

 Arithmetic Operators

 Increment and Decrement

 Bitwise Operators

 Relational Operators

 Boolean Operators

 Assignment Operator

 Ternary Operator

Arithmetic Operators

Arithmetic operators are used to manipulate mathematical expressions

Operator Result

40

Example:

// Demonstrate the basic arithmetic operators.

class BasicMath

{

public static void main(String args[])

{

// arithmetic using integers

System.out.println("Integer Arithmetic");

int a = 1 + 1;

int b = a * 3;

int c = b / 4;

int d = c - a;

int e = -d;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("e = " + e);

// arithmetic using doubles

System.out.println("\nFloating Point Arithmetic");

double da = 1 + 1;

double db = da * 3;

double dc = db / 4;

double dd = dc - a;

double de = -dd;

System.out.println("da = " + da);

System.out.println("db = " + db);

System.out.println("dc = " + dc);

System.out.println("dd = " + dd);

System.out.println("de = " + de);

}}

Output:

Integer Arithmetic

a = 2

b = 6

41

c = 1

42

d = -1
e = 1

Floating Point Arithmetic

da = 2.0

db = 6

dc = 1.5

dd = -0.5

de = 0.5

Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be applied to floating-point

types as well as integer types.

Example:

// Demonstrate the % operator.

class Modulus {

public static void main(String args[]) {

int x = 42;

double y = 42.25;

System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 10 = " + y % 10);

}
}

Output:

x mod 10 = 2
y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with an assignment.

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

Syntax:

var op= expression;

Example:

// Demonstrate several assignment operators.

class OpEquals

{

public static void main(String args[])

{

int a = 1;

int b = 2;

int c = 3;

a += 5;

b *= 4;

43

c += a * b;

44

c %= 6;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

}

}

Output:

a = 6

b = 8

c = 3

Increment and Decrement Operators

The ++ and the – – are Java’s increment and decrement operators. The increment operator increases its

operand by one. The decrement operator decreases its operand by one.

Example:

// Demonstrate ++.

class IncDec

{

public static void main(String args[])

{

int a = 1;

int b = 2;

int c;

int d;

c = ++b;

d = a++;

c++;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

}
}

Output:

a = 2
b = 3

c = 4

d = 1

Bitwise Operators

45

Java defines several bitwise operators that can be applied to the integer types: long, int, short, char, and

byte. These operators act upon the individual bits of their operands.

Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. the bitwise operators are

applied to each individual bit within each operand.

Example:

// Demonstrate the bitwise logical operators.

class BitLogic

{

public static void main(String args[])

{

String binary[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",

"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};

int a = 3; // 0 + 2 + 1 or 0011 in binary

int b = 6; // 4 + 2 + 0 or 0110 in binary

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b)|(a & ~b);

int g = ~a & 0x0f;

System.out.println(" a = " + binary[a]);

System.out.println(" b = " + binary[b]);

System.out.println(" a|b = " + binary[c]);

System.out.println(" a&b = " + binary[d]);

System.out.println(" a^b = " + binary[e]);

46

System.out.println("~a&b|a&~b = " + binary[f]);

System.out.println(" ~a = " + binary[g]);

}

}

Output:

a = 0011
b = 0110

a|b = 0111

a&b = 0010

a^b = 0101

~a&b|a&~b = 0101

~a = 1100

Left Shift Operator

The Java left shift operator << is used to shift all of the bits in a value to the left side of a specified number

of times.

Example:

class OperatorExample
{

public static void main(String args[])

{

System.out.println(10<<2);//10*2^2=10*4=40

System.out.println(10<<3);//10*2^3=10*8=80

System.out.println(20<<2);//20*2^2=20*4=80

System.out.println(15<<4);//15*2^4=15*16=240

}

}

Output:

40
80

80

240

Right Shift Operator

The Java right shift operator >> is used to move left operands value to right by the number of bits specified

by the right operand.

Example:

class OperatorExample

{

public static void main(String args[])

{

System.out.println(10>>2);//10/2^2=10/4=2

System.out.println(20>>2);//20/2^2=20/4=5

System.out.println(20>>3);//20/2^3=20/8=2

}

}

Output:

2
5

47

2

Relational Operators

The relational operators determine the relationship that one operand has to the other.Specifically, they

determine equality and ordering. The outcome of these operations is a boolean value.

Boolean Operators

The Boolean logical operators shown here operate only on boolean operands. All of the binary logical

operators combine two boolean values to form a resultant boolean value.

Example:
// Demonstrate the boolean logical operators.

class BoolLogic

{

public static void main(String args[])

{

boolean a = true;

boolean b = false;

boolean c = a | b;

boolean d= a & b;

boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

boolean g = !a;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d);

System.out.println(" a^b = " + e);

System.out.println("!a&b|a&!b = " + f);

System.out.println(" !a = " + g);

}

}

Output:
a = true
b = false
a|b =
true

48

a&b = false

49

a^b = true
!a&b|a&!b = true

!a=false

In the output, the string representation of a Java boolean value is one of the literal values true or false. Java

AND Operator Example: Logical && and Bitwise &

The logical && operator doesn't check second condition if first condition is false. It checks second

condition only if first one is true.

The bitwise & operator always checks both conditions whether first condition is true or false.

 Example:

class OperatorExample
{

public static void main(String args[])

{

int a=10;

int b=5;

int c=20;

System.out.println(a<b&&a<c);//false && true = false

System.out.println(a<b&a<c);//false & true = false

}

}

Output:

false

false

Assignment Operator

The assignment operator is the single equal sign, =.

Syntax:

var = expression;

Here, the type of var must be compatible with the type of expression.

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement.

Ternary Operator

Ternary operator in java is used as one liner replacement for if-then-else statement and used a lot in java

programming. it is the only conditional operator which takes three operands.

Syntax:

expression1 ? expression2 : expression3

Example:

class OperatorExample
{

public static void main(String args[])

{

int a=2;

int b=5;

int min=(a<b)?a:b;

System.out.println(min);

50

}

}

51

Output:

2

CONTROL STATEMENTS
Selection Statements in Java

A programming language uses control statements to control the flow of execution of program based on

certain conditions.

Java’s Selection statements:

 if

 if-else

 nested-if

 if-else-if

 switch-case

 jump – break, continue, return

if Statement

if statement is the most simple decision making statement. It is used to decide whether a certain statement or

block of statements will be executed or not that is if a certain condition is true then a block of statement is

executed otherwise not.

Syntax:

if(condition)
{

//statements to execute if

//condition is true

}

Condition after evaluation will be either true or false. If the value is true then it will execute the block of

statements under it. If there are no curly braces ‘{‘ and ‘}’ after if(condition) then by default if statement

will consider the immediate one statement to be inside its block.

Example:

class IfSample
{

public static void main(String args[])

{

int x, y;

x = 10;

y = 20;

https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#if
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#if-else
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#nested-if
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#if-else-if
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#switch-case
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#jump

52

if(x < y)
System.out.println("x is less than y");

x = x * 2;

if(x == y)

System.out.println("x now equal to y");

x = x * 2;

if(x > y)

System.out.println("x now greater than y");

// this won't display anything

if(x == y)

System.out.println("you won't see this");

}

}

Output:

x is less than y

x now equal to y

x now greater than y

if-else Statement

The Java if-else statement also tests the condition. It executes the if block if condition is true else if it is false

the else block is executed.

Syntax:.

If(condition)
{

}

else

{

}

//Executes this block if

//condition is true

//Executes this block if

//condition is false

Example:

53

public class IfElseExample

{

public static void main(String[] args)

{

int number=13;

if(number%2==0){

System.out.println("even number");

}else

{

System.out.println("odd number");

} } }

Output:

odd number

Nested if Statement

Nested if-else statements, is that using one if or else if statement inside another if or else if statement(s).

Example:

// Java program to illustrate nested-if statement

class NestedIfDemo

{

public static void main(String args[])
{

int i = 10;

if (i == 10)

{

if (i < 15)

System.out.println("i is smaller than 15");

if (i < 12)

System.out.println("i is smaller than 12 too");

else

System.out.println("i is greater than 15");

54

}
}

}

Output:

i is smaller than 15
i is smaller than 12 too

if-else-if ladder statement

The if statements are executed from the top down. The conditions controlling the if is true, the statement

associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true,

then the final else statement will be executed.

Syntax:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

.

.

else

statement;

Example:

public class IfElseIfExample {
public static void main(String[] args) {

int marks=65;

if(marks<50){

System.out.println("fail");

}

else if(marks>=50 && marks<60){

55

System.out.println("D grade");
}

else if(marks>=60 && marks<70){

System.out.println("C grade");

}

else if(marks>=70 && marks<80){

System.out.println("B grade");

}

else if(marks>=80 && marks<90){

System.out.println("A grade");

}else if(marks>=90 && marks<100){

System.out.println("A+ grade");

}else{

System.out.println("Invalid!");

}

}

}

Output:

C grade

Switch Statements

The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch execution to

different parts of your code based on the value of an expression.

Syntax:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

.

.

case valueN :

// statement sequence

break;

default:

// default statement sequence

}

Example:

// A simple example of the switch.

class SampleSwitch {

public static void main(String args[]) {

for(int i=0; i<6; i++)

switch(i) {

case 0:

System.out.println("i is zero.");

break;

case 1:

56

System.out.println("i is one.");

break;

case 2:

System.out.println("i is two.");

break;

case 3:

System.out.println("i is three.");

break;

default:

System.out.println("i is greater than 3.");

}}}

Output:

i is zero.

i is one.

i is two.

i is three.

i is greater than 3.

i is greater than 3.

ITERATIVE STATEMENTS
In programming languages, loops are used to execute a set of instructions/functions repeatedly when some

conditions become true. There are three types of loops in java.

57

 while loop
 do-while loop

 For loop

while loop

A while loop is a control flow statement that allows code to be executed repeatedly based on a given

Boolean condition. The while loop can be thought of as a repeating if statement.

Syntax:

while(condition) {

// body of loop

}

 While loop starts with the checking of condition. If it evaluated to true, then the loop body

statements are executed otherwise first statement following the loop is executed. It is called as Entry

controlled loop.

 Normally the statements contain an update value for the variable being processed for the next

iteration.

 When the condition becomes false, the loop terminates which marks the end of its life cycle.

Example:

// Demonstrate the while loop.

class While {

public static void main(String args[]) {

int n = 5;

while(n > 0) {

System.out.println("tick " + n);

n--;

}

}

}

Output:

tick 5
tick 4

tick 3

tick 2

tick 1

58

do-while loop:

do while loop checks for condition after executing the statements, and therefore it is called as Exit

Controlled Loop.

Syntax:

do {

// body of loop

} while (condition);

 do while loop starts with the execution of the statement(s). There is no checking of any condition for

the first time.

 After the execution of the statements, and update of the variable value, the condition is checked for

true or false value. If it is evaluated to true, next iteration of loop starts.

 When the condition becomes false, the loop terminates which marks the end of its life cycle.

 It is important to note that the do-while loop will execute its statements atleast once before any

condition is checked, and therefore is an example of exit control loop.

Example

public class DoWhileExample {

public static void main(String[] args) {

int i=1;

do{

System.out.println(i);

i++;

}while(i<=5);

}

}

Output:

1
2

3

4

5

for loop

59

for loop provides a concise way of writing the loop structure. A for statement consumes the initialization,

condition and increment/decrement in one line.

Syntax

for(initialization; condition; iteration) {

// body

}

 Initialization condition: Here, we initialize the variable in use. It marks the start of a for loop. An

already declared variable can be used or a variable can be declared, local to loop only.

 Testing Condition: It is used for testing the exit condition for a loop. It must return a boolean value.

It is also an Entry Control Loop as the condition is checked prior to the execution of the loop

statements.

 Statement execution: Once the condition is evaluated to true, the statements in the loop body are

executed.

 Increment/ Decrement: It is used for updating the variable for next iteration.

 Loop termination:When the condition becomes false, the loop terminates marking the end of its life

cycle.

Example

public class ForExample {
public static void main(String[] args) {

for(int i=1;i<=5;i++){

System.out.println(i);
}

} }

Output:

1
2

3

4

5

for-each Loop

60

The for-each loop is used to traverse array or collection in java. It is easier to use than simple for loop

because we don't need to increment value and use subscript notation. It works on elements basis not index.

It returns element one by one in the defined variable.

Syntax:

for(type itr-var : collection) statement-block

Example:

// Use a for-each style for loop.

class ForEach {

public static void main(String args[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

// use for-each style for to display and sum the values

for(int x : nums) {

System.out.println("Value is: " + x);

sum += x;

}

System.out.println("Summation: " + sum);

}

}

Output:

Value is: 1
Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 6

Value is: 7

Value is: 8

Value is: 9

Value is: 10

Summation: 55

Nested Loops

Java allows loops to be nested. That is, one loop may be inside another.

Example:

// Loops may be nested.

class Nested {

public static void main(String args[]) {

int i, j;

for(i=0; i<10; i++) {

for(j=i; j<10; j++)

System.out.print(".");

System.out.println();

}}

}

Output:

61

..........

.........

........

.......

......

.....

....

...

..

.

JUMP STATEMENTS
Java Break Statement

 When a break statement is encountered inside a loop, the loop is immediately terminated and the

program control resumes at the next statement following the loop.

 The Java break is used to break loop or switch statement. It breaks the current flow of the program at

specified condition. In case of inner loop, it breaks only inner loop.

Example:

// Using break to exit a loop.

class BreakLoop {

public static void main(String args[]) {

for(int i=0; i<100; i++) {

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

Output:

i: 0
i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

62

i: 8
i: 9

Loop complete.

Java Continue Statement

 The continue statement is used in loop control structure when you need to immediately jump to the

next iteration of the loop. It can be used with for loop or while loop.

 The Java continue statement is used to continue loop. It continues the current flow of the program

and skips the remaining code at specified condition. In case of inner loop, it continues only inner

loop.

Example:

// Demonstrate continue.

class Continue {

public static void main(String args[]) {

for(int i=0; i<10; i++) {

System.out.print(i + " ");

if (i%2 == 0) continue;

System.out.println("");

}

}

}

This code uses the % operator to check if i is even. If it is, the loop continues without

printing a newline.

Output:

0 1
2 3

4 5

6 7

8 9

Return

The last control statement is return. The return statement is used to explicitly return from a method. That is,

it causes program control to transfer back to the caller of the method.

Example:

// Demonstrate return.

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");

}

}

Output:

Before the return.

ARRAYS
 Array is a collection of similar type of elements that have contiguous memory location.

63

 In Java all arrays are dynamically allocated.

 Since arrays are objects in Java, we can find their length using member length.

 A Java array variable can also be declared like other variables with [] after the data type.

 The variables in the array are ordered and each have an index beginning from 0.

 Java array can be also be used as a static field, a local variable or a method parameter.

 The size of an array must be specified by an int value and not long or short.

 The direct superclass of an array type is Object.

 Every array type implements the interfaces Cloneable and java.io.Serializable.

Advantage of Java Array

 Code Optimization: It makes the code optimized, we can retrieve or sort the data easily.

 Random access: We can get any data located at any index position.

Disadvantage of Java Array

 Size Limit: We can store only fixed size of elements in the array. It doesn't grow its size at runtime.

To solve this problem, collection framework is used in java.

Types of Array in java

1. One- Dimensional Array
2. Multidimensional Array

One-Dimensional Arrays

An array is a group of like-typed variables that are referred to by a common name. An array declaration has

two components: the type and the name. type declares the element type of the array. The element type

determines the data type of each element that comprises the array. We can also create an array of other

primitive data types like char, float, double..etc or user defined data type(objects of a class).Thus, the

element type for the array determines what type of data the array will hold.

Syntax:

type var-name[];

Instantiation of an Array in java

array-var = new type [size];

Example:

class Testarray{

public static void main(String args[]){

int a[]=new int[5];//declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=70;

a[3]=40;

a[4]=50;

https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/marker-interface-java/
https://www.geeksforgeeks.org/serialization-in-java/

64

//printing array

for(int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);

}}

Output:

10
20

70

40

50

Declaration, Instantiation and Initialization of Java Array

Example:

class Testarray1{

public static void main(String args[]){

int a[]={33,3,4,5};//declaration, instantiation and initialization

//printing array

for(int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);

}}

Output:

33
3

4

5

Passing Array to method in java

We can pass the java array to method so that we can reuse the same logic on any array.

Example:

class Testarray2{
static void min(int arr[]){

int min=arr[0];

for(int i=1;i<arr.length;i++)

if(min>arr[i])

min=arr[i];

System.out.println(min);

}

public static void main(String args[]){

int a[]={33,3,4,5};

min(a);//passing array to method

}}

Output:

3

Multidimensional Arrays

Multidimensional arrays are arrays of arrays with each element of the array holding the reference of other

array. These are also known as Jagged Arrays. A multidimensional array is created by appending one set of

square brackets ([]) per dimension.

https://www.geeksforgeeks.org/jagged-array-in-java/

65

Syntax:

type var-name[][]=new type[row-size][col-size];

Example:

// Demonstrate a two-dimensional array.

class TwoDArray {

public static void main(String args[]) {

int twoD[][]= new int[4][5];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<5; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<5; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

Output:

0 1 2 3 4
5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the memory for the first

(leftmost) dimension. You can allocate the remaining dimensions separately. For example, this following

code allocates memory for the first dimension of twoD when it is declared. It allocates the second

dimension manually.

Syntax:

int twoD[][] = new int[4][];

twoD[0] = new int[5];

twoD[1] = new int[5];

66

twoD[2] = new int[5];

67

twoD[3] = new int[5];

Example:

// Manually allocate differing size second dimensions.

class TwoDAgain {

public static void main(String args[]) {

int twoD[][] = new int[4][];

twoD[0] = new int[1];

twoD[1] = new int[2];

twoD[2] = new int[3];

twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<i+1; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<i+1; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

Output:

0
1 2

3 4 5

6 7 8 9

The array created by this program looks like this:

PACKAGES
A java package is a group of similar types of classes, interfaces and sub-packages. Package in java can be

categorized in two form, built-in package and user-defined package. There are many built-in packages such

as java, lang, awt, javax, swing, net, io, util, sql etc.

68

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily maintained.
2) Java package provides access protection.

3) Java package removes naming collision.

Defining a Package

To create a package include a package command as the first statement in a Java source file. Any

classes declared within that file will belong to the specified package. The package statement defines a name

space in which classes are stored. If package statement is omitted, the class names are put into the default

package, which has no name.

Syntax:
package <fully qualified package name>;

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a package called

MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any classes you declare

to be part of MyPackage must be stored in a directory called MyPackage.

It is possible to create a hierarchy of packages. The general form of a multileveled package statement is

shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development system. For example, a

package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. We cannot rename a package without

renaming the directory in which the classes are stored.

69

Finding Packages and CLASSPATH

70

First, by default, the Java run-time system uses the current working directory as its starting point. Thus, if

your package is in a subdirectory of the current directory, it will be found. Second, you can specify a

directory path or paths by setting the CLASSPATH environmental variable. Third, you can use the -

classpath option with java and javac to specify the path to your classes.

consider the following package specification:

package MyPack

In order for a program to find MyPack, one of three things must be true. Either the program can be

executed from a directory immediately above MyPack, or the CLASSPATH must be set to include the path

to MyPack, or the -classpath option must specify the path to MyPack when the program is run via java.

When the second two options are used, the class path must not include MyPack, itself. It must simply

specify the path to MyPack. For example, in a Windows environment, if the path to MyPack is

C:\MyPrograms\Java\MyPack

then the class path to MyPack is

C:\MyPrograms\Java

Example:

// A simple package

package MyPack;

class Balance {

String name;

double bal;

Balance(String n, double b) {

name = n;

bal = b;

}

void show() {

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}

}

class AccountBalance {

public static void main(String args[]) {

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++) current[i].show();

}

}

Call this file AccountBalance.java and put it in a directory called MyPack.

Next, compile the file. Make sure that the resulting .class file is also in the MyPack directory. Then, try

executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this command.

(Alternatively, you can use one of the other two options described in the preceding section to specify the

path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means that it cannot be executed

71

by itself. That is, you cannot use this command line:

72

java AccountBalance

AccountBalance must be qualified with its package name.

Example:
package pck1;
class Student

{

private int rollno;

private String name;

private String address;

public Student(int rno, String sname, String sadd)

{

rollno = rno;

name = sname;

address = sadd;

}

public void showDetails()

{

System.out.println("Roll No :: " + rollno);

System.out.println("Name :: " + name);

System.out.println("Address :: " + address);

}

}

public class DemoPackage

{

public static void main(String ar[])

{

Student st[]=new Student[2];

st[0] = new Student (1001,"Alice", "New York");

st[1] = new Student(1002,"BOb","Washington");

st[0].showDetails();

st[1].showDetails();

}

}

There are two ways to create package directory as follows:
1. Create the folder or directory at your choice location with the same name as package name. After

compilation of copy .class (byte code file) file into this folder.

2. Compile the file with following syntax.

javac -d <target location of package> sourceFile.java

The above syntax will create the package given in the sourceFile at the <target location of pacakge> if it is

not yet created. If package already exist then only the .class (byte code file) will be stored to the package

given in sourceFile.

Steps to compile the given example code:

Compile the code with the command on the command prompt.

http://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

73

javac -d DemoPackage.java

1. The command will create the package at the current location with the name pck1, and contains the file

DemoPackage.class and Student.class

Page 1

2. To run write the command given below

java pckl.DemoPackage

Note: The DemoPackate.class is now stored in pck1 package. So that we've to use fully qualified type

name to run or access it.

Output:

Roll No :: 1001 Name

:: Alice Address :: New

York Roll No :: 1002

Name :: Bob

Address :: Washington

Page 2

UNIT II INHERITANCE AND INTERFACES
Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the

Object class – abstract classes and methods- final methods and classes – Interfaces – defining an

interface, implementing interface, differences between classes and interfaces and extending

interfaces - Object cloning -inner classes, Array Lists – Strings

Terms used in Inheritence

 Class: A class is a group of objects which have common properties. It is a template or
blueprint from which objects are created.

 Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a
derived class, extended class, or child class.

 Super Class/Parent Class: Superclass is the class from where a subclass inherits the features. It
is also called a base class or a parent class.

 Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse

the fields and methods of the existing class when you create a new class. You can use the same
fields and methods already defined in previous class.

CS8392 /Object Oriented Programming

Page 3

Terms used in Inheritence

 Class: A class is a group of objects which have common properties. It is a template or
blueprint from which objects are created.

 Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a
derived class, extended class, or child class.

 Super Class/Parent Class: Superclass is the class from where a subclass inherits the features. It
is also called a base class or a parent class.

 Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse

the fields and methods of the existing class when you create a new class. You can use the same
fields and methods already defined in previous class.

SINGLE INHERITANCE

In Single Inheritance one class extends another class (one class only).

Example:

public class ClassA

{

public void dispA()

{

System.out.println("disp() method of ClassA");

}

}

public class ClassB extends ClassA

{

public void dispB()

{

System.out.println("disp() method of ClassB");

}

public static void main(String args[])

{

//Assigning ClassB object to ClassB reference
ClassB b = new ClassB();

//call dispA() method of ClassA
b.dispA();

//call dispB() method of ClassB
b.dispB();

}

}

Output :

disp() method of ClassA
disp() method of ClassB

CS8392 /Object Oriented Programming

Page 4

MULTILEVEL INHERITANCE

In Multilevel Inheritance, one class can inherit from a derived class. Hence, the derived class becomes
the base class for the new class.

Example:

public class ClassA

{

public void dispA()

{

System.out.println("disp() method of ClassA");

}

}

public class ClassB extends ClassA

{

public void dispB()

{

System.out.println("disp() method of ClassB");

}

}

public class ClassC extends ClassB

{

public void dispC()

{

System.out.println("disp() method of ClassC");

}

public static void main(String args[])

{

//Assigning ClassC object to ClassC reference ClassC
c = new ClassC();

//call dispA() method of ClassA
c.dispA();

//call dispB() method of ClassB
c.dispB();

//call dispC() method of ClassC
c.dispC();

}

}

Output :

disp() method of ClassA

disp() method of ClassB

disp() method of ClassC

HIERARCHICAL INHERITANCE

In Hierarchical Inheritance, one class is inherited by many sub classes.

CS8392 /Object Oriented Programming

Page 5

Example:

public class ClassA

{

public void dispA()

{

System.out.println("disp() method of ClassA");

}

}

public class ClassB extends ClassA

{

public void dispB()

{

System.out.println("disp() method of ClassB");

}

}

public class ClassC extends ClassA

{

public void dispC()

{

System.out.println("disp() method of ClassC");

}

}

public class ClassD extends ClassA

{

public void dispD()

{

System.out.println("disp() method of ClassD");

}

}

public class HierarchicalInheritanceTest

{

public static void main(String args[])

{

//Assigning ClassB object to ClassB reference
ClassB b = new ClassB();

//call dispB() method of ClassB
b.dispB();

//call dispA() method of ClassA
b.dispA();

//Assigning ClassC object to ClassC reference ClassC
c = new ClassC();

//call dispC() method of ClassC
c.dispC();

CS8392 /Object Oriented Programming

Page 6

//call dispA() method of ClassA
c.dispA();

//Assigning ClassD object to ClassD reference ClassD
d = new ClassD();

//call dispD() method of ClassD
d.dispD();

//call dispA() method of ClassA
d.dispA();

}

}

Output :

disp() method of ClassB

disp() method of ClassA

disp() method of ClassC

disp() method of ClassA

disp() method of ClassD

disp() method of ClassA

Hybrid Inheritance is the combination of both Single and Multiple Inheritance. Again Hybrid

inheritance is also not directly supported in Java only through interface we can achieve this. Flow

diagram of the Hybrid inheritance will look like below. As you can ClassA will be acting as the Parent

class for ClassB & ClassC and ClassB & ClassC will be acting as Parent for ClassD.

Multiple Inheritance is nothing but one class extending more than one class. Multiple

Inheritance is basically not supported by many Object Oriented Programming languages such

as Java, Small Talk, C# etc.. (C++ Supports Multiple Inheritance). As the Child class has

to manage the dependency of more than one Parent class. But you can achieve multiple

inheritance in Java using Interfaces.

“super” KEYWORD

Usage of super keyword

1. super() invokes the constructor of the parent class.

2. super.variable_name refers to the variable in the parent class.

3. super.method_name refers to the method of the parent class.

1. super() invokes the constructor of the parent class

super() will invoke the constructor of the parent class. Even when you don’t

add super() keyword the compiler will add one and will invoke the Parent Class constructor.

Example:

class ParentClass
{

ParentClass()

http://www.javainterviewpoint.com/java-constructor-chaining-with-example/

CS8392 /Object Oriented Programming

Page 7

{

System.out.println("Parent Class default Constructor");

}

}

public class SubClass extends ParentClass

{

SubClass()

{

System.out.println("Child Class default Constructor");

}

public static void main(String args[])

{

SubClass s = new SubClass();

}

}

Output:

Parent Class default Constructor
Child Class default Constructor

Even when we add explicitly also it behaves the same way as it did before. class
ParentClass

{

public ParentClass()

{

System.out.println("Parent Class default Constructor");

}

}

public class SubClass extends ParentClass

{

SubClass()

{

super();

System.out.println("Child Class default Constructor");

}

public static void main(String args[])

{

SubClass s = new SubClass();

}

}

Output:

Parent Class default Constructor
Child Class default Constructor

CS8392 /Object Oriented Programming

Page 8

You can also call the parameterized constructor of the Parent Class. For example, super(10) will call
parameterized constructor of the Parent class.

class ParentClass

{

ParentClass()

{

System.out.println("Parent Class default Constructor called");

}

ParentClass(int val)

{

System.out.println("Parent Class parameterized Constructor, value: "+val);

}

}

public class SubClass extends ParentClass

{

SubClass()

{

super();//Has to be the first statement in the constructor

System.out.println("Child Class default Constructor called");

}

SubClass(int val)

{

super(10);

System.out.println("Child Class parameterized Constructor, value: "+val);

}

public static void main(String args[])

{

}

}

Output

//Calling default constructor

SubClass s = new SubClass();

//Calling parameterized constructor

SubClass s1 = new SubClass(10);

Parent Class default Constructor called
Child Class default Constructor called

Parent Class parameterized Constructor, value: 10

Child Class parameterized Constructor, value: 10

2. super.variable_name refers to the variable in the parent class

When we have the same variable in both parent and subclass class
ParentClass

{

CS8392 /Object Oriented Programming

Page 9

int val=999;

}

public class SubClass extends ParentClass

{

int val=123;

void disp()

{

System.out.println("Value is : "+val);

}

public static void main(String args[])

{

}

}

Output

SubClass s = new SubClass();
s.disp();

Value is : 123

This will call only the val of the sub class only. Without super keyword, you cannot call the val
which is present in the Parent Class.

class ParentClass

{

int val=999;

}

public class SubClass extends ParentClass

{

int val=123;

void disp()

{

System.out.println("Value is : "+super.val);

}

public static void main(String args[])

{

SubClass s = new SubClass();
s.disp();

}

}

Output

Value is : 999

CS8392 /Object Oriented Programming

Page 10

3. super.method_nae refers to the method of the parent class

When you override the Parent Class method in the Child Class without super keywords support you
will not be able to call the Parent Class method. Let’s look into the below example

class ParentClass

{

void disp()

{

System.out.println("Parent Class method");

}

}

public class SubClass extends ParentClass

{

void disp()

{

System.out.println("Child Class method");

}

void show()

{

disp();

}

public static void main(String args[])

{

}

}

Output:

SubClass s = new SubClass();
s.show();

Child Class method

Here we have overridden the Parent Class disp() method in the SubClass and hence SubClass
disp() method is called. If we want to call the Parent Class disp() method also means then we have
to use the super keyword for it.

class ParentClass

{

void disp()

{

System.out.println("Parent Class method");

}

}

public class SubClass extends ParentClass

{

CS8392 /Object Oriented Programming

Page 11

void disp()

{

System.out.println("Child Class method");

}

void show()

{

//Calling SubClass disp() method disp();

//Calling ParentClass disp()
method super.disp();

}

public static void main(String args[])

{

}

}

Output

SubClass s = new SubClass();
s.show();

Child Class method
Parent Class method

When there is no method overriding then by default Parent Class disp() method will be called. class
ParentClass

{

public void disp()

{

System.out.println("Parent Class method");

}

}

public class SubClass extends ParentClass

{

public void show()

{

disp();

}

public static void main(String args[])

{

SubClass s = new SubClass();
s.show(); }}

Output:

Parent Class method

CS8392 /Object Oriented Programming

Page 12

STUDENTSFOCUS
.COM

The Object Class

There is one special class, Object, defined by Java. All other classes are subclasses of Object. That is,

Object is a superclass of all other classes. This means that a reference variable of type Object can

refer to an object of any other class. Also, since arrays are implemented as

classes, a variable of type Object can also refer to any array. Object defines the following methods,

which means that they are available in every object.

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You may

override the others. These methods are described elsewhere in this book. However, notice two

methods now: equals() and toString(). The equals() method compares two objects. It returns true

if the objects are equal, and false otherwise. The precise definition of equality can vary, depending on

the type of objects being compared. The toString() method returns a string that contains a description

of the object on which it is called. Also, this method is automatically called when an object is output

using println(). Many classes override this method. Doing so allows them to tailor a description

specifically for the types of objects that they create.

ABSTRACT CLASS

A class that is declared with abstract keyword, is known as abstract class in java. It can have abstract

and non-abstract methods (method with body).Abstraction is a process of hiding the implementation

details and showing only functionality to the user. Abstraction lets you focus on what the object does

instead of how it does it. It needs to be extended and its method implemented. It cannot be

instantiated.

Example abstract class:

abstract class A{}

abstract method:

CS8392 /Object Oriented Programming

Page 13

A method that is declared as abstract and does not have implementation is known as abstract method.

abstract void printStatus();//no body and abstract

In this example, Shape is the abstract class, its implementation is provided by the Rectangle and Circle
classes.

If you create the instance of Rectangle class, draw() method of Rectangle class will be invoked.

Example1:

File: TestAbstraction1.java
abstract class Shape{
abstract void draw();

}

//In real scenario, implementation is provided by others i.e. unknown by end user class
Rectangle extends Shape{

void draw(){System.out.println("drawing rectangle");}

}

class Circle1 extends Shape{

void draw(){System.out.println("drawing circle");}

}

//In real scenario, method is called by programmer or user class
TestAbstraction1{

public static void main(String args[]){

Shape s=new Circle1();//In real scenario, object is provided through method e.g. getShape() met hod

s.draw();

}

}

Output:

drawing circle

Abstract class having constructor, data member, methods

An abstract class can have data member, abstract method, method body, constructor and even main()
method.

Example2:

File: TestAbstraction2.java

//example of abstract class that have method body
abstract class Bike{

Bike(){System.out.println("bike is created");} abstract
void run();

void changeGear(){System.out.println("gear changed");}

}

class Honda extends Bike{

void run(){System.out.println("running safely..");}

}

CS8392 /Object Oriented Programming

Page 14

class TestAbstraction2{

public static void main(String args[]){
Bike obj = new Honda();

obj.run();

obj.changeGear();

}

}

Output:

bike is created
running safely..

gear changed

The abstract class can also be used to provide some implementation of the interface. In such case, the end
user may not be forced to override all the methods of the interface.

Example3:

interface A{

void a();

void b();

void c();

void d();

}

abstract class B implements A{

public void c(){System.out.println("I am c");}

}

class M extends B{

public void a(){System.out.println("I am a");}
public void b(){System.out.println("I am b");}

public void d(){System.out.println("I am d");}

}

class Test5{

public static void main(String args[]){ A
a=new M();

a.a();

a.b();

a.c();

a.d();

}}

Output:

I am a I

am b I

am c I

am d

CS8392 /Object Oriented Programming

Page 15

INTERFACE IN JAVA

An interface in java is a blueprint of a class. It has static constants and abstract methods.The interface

in java is a mechanism to achieve abstraction and multiple inheritance.

Interface is declared by using interface keyword. It provides total abstraction; means all the methods in

interface are declared with empty body and are public and all fields are public, static and final by default.

A class that implement interface must implement all the methods declared in the interface.

Syntax:

interface <interface_name>

{

// declare constant fields

// declare methods that abstract

// by default.

}

Relationship between classes and interfaces

Example: interface
printable{ void
print();

}

class A6 implements printable{

public void print(){System.out.println("Hello");} public
static void main(String args[]){

A6 obj = new A6();
obj.print();

}

}

Output:

Hello

CS8392 /Object Oriented Programming

Page 16

Example: interface
Drawable

{

void draw();

}

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

class Circle implements Drawable{

public void draw(){System.out.println("drawing circle");}

}

class TestInterface1{

public static void main(String args[]){

Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable() d.draw();

}

}

Output:

drawing circle

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple interfaces i.e. known as multiple
inheritance.

Example: interface
Printable{ void
print();

}

interface Showable{
void show();

}

class A7 implements Printable,Showable{ public
void print(){System.out.println("Hello");}

CS8392 /Object Oriented Programming

Page 17

public void show(){System.out.println("Welcome");}

public static void main(String args[]){ A7
obj = new A7();

obj.print();

obj.show();

}

}

Output:

Hello Welcome

Interface inheritance

A class implements interface but one interface extends another interface .
Example:

interface Printable{
void print();

}

interface Showable extends Printable{
void show();

}

class TestInterface4 implements Showable{ public
void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){ TestInterface4 obj

= new TestInterface4(); obj.print();

obj.show();

}}

Output:

Hello Welcome

Nested Interface in Java

An interface can have another interface i.e. known as nested interface.
interface printable{

void print();

interface MessagePrintable{ void
msg();

}

}

CS8392 /Object Oriented Programming

Page 18

Key points to remember about interfaces:

1) We can’t instantiate an interface in java. That means we cannot create the object of an interface

2) Interface provides full abstraction as none of its methods have body. On the other hand abstract

class provides partial abstraction as it can have abstract and concrete(methods with body) methods both.

3) “implements” keyword is used by classes to implement an interface.

4) While providing implementation in class of any method of an interface, it needs to be mentioned
as public.

5) Class that implements any interface must implement all the methods of that interface, else the class
should be declared abstract.

6) Interface cannot be declared as private, protected or transient.

7) All the interface methods are by default abstract and public.

8) Variables declared in interface are public, static and final by default.

interface Try

{

int a=10; public

int a=10;

public static final int a=10;
final int a=10;

static int a=0;

}

All of the above statements are identical.

9) Interface variables must be initialized at the time of declaration otherwise compiler will throw an
error.

interface Try

{

int x;//Compile-time error

}

Above code will throw a compile time error as the value of the variable x is not initialized at the time
of declaration.

10) Inside any implementation class, you cannot change the variables declared in interface because
by default, they are public, static and final. Here we are implementing the interface

“Try” which has a variable x. When we tried to set the value for variable x we got compilation error as

the variable x is public static final by default and final variables can not be re-initialized. class Sample
implements Try
{

public static void main(String args[])

{

x=20; //compile time error

}

}

11) An interface can extend any interface but cannot implement it. Class implements interface and
interface extends interface.

CS8392 /Object Oriented Programming

Page 19

12) A class can implement any number of interfaces.

13) If there are two or more same methods in two interfaces and a class implements both
interfaces, implementation of the method once is enough.

interface A

{

public void aaa();

}

interface B

{

public void aaa();

}

class Central implements A,B

{

public void aaa()

{

//Any Code here

}

public static void main(String args[])

{

//Statements

}

}

14) A class cannot implement two interfaces that have methods with same name but different return
type.

interface A

{

public void aaa();

}

interface B

{

public int aaa();

}

class Central implements A,B

{

public void aaa() // error

{

}

public int aaa() // error

{

}

public static void main(String args[])

{

CS8392 /Object Oriented Programming

 ABSTRACT CLASS INTERFACE

 1) Abstract class can have abstract and non- Interface can have only abstract methods. Sinc

abstract methods. Java 8, it can have default and static
 methods also.

 2) Abstract class doesn't support multiple Interface supports multiple inheritance.

inheritance.

 3) Abstract class can have final, non-final, Interface has only static and final variables.

static and non-static variables.

 4) Abstract class can provide the Interface can't provide the implementation of

implementation of interface. abstract class.

 5) The abstract keyword is used to declare The interface keyword is used to declare

abstract class. interface.

Page 19

Page 20

Page 21

2. Java final method

When you declare a method as final, then it is called as final method. A final method cannot be
overridden.

package com.javainterviewpoint;

class Parent

{

public final void disp()

{

System.out.println("disp() method of parent class");

}

}

public class Child extends Parent

{

public void disp()

{

System.out.println("disp() method of child class");

}

public static void main(String args[])

{

Child c = new Child();
c.disp();

}

}

Output : We will get the below error as we are overriding the disp() method of the Parent class.

Exception in thread "main" java.lang.VerifyError: class com.javainterviewpoint.Child overrides final
method disp.()

at java.lang.ClassLoader.defineClass1(Native Method) at
java.lang.ClassLoader.defineClass(Unknown Source)

at java.security.SecureClassLoader.defineClass(Unknown Source) at
java.net.URLClassLoader.defineClass(Unknown Source)

at java.net.URLClassLoader.access$100(Unknown Source) at
java.net.URLClassLoader$1.run(Unknown Source)

at java.net.URLClassLoader$1.run(Unknown Source)

3. Java final class

A final class cannot be extended(cannot be subclassed), lets take a look into the below example
package com.javainterviewpoint;

final class Parent

{

}

public class Child extends Parent

{

http://www.javainterviewpoint.com/what-is-method-overriding-in-java/
http://www.javainterviewpoint.com/what-is-method-overriding-in-java/
http://www.javainterviewpoint.com/what-is-method-overriding-in-java/

Page 22

public static void main(String args[])

{

Child c = new Child();

}

}

Output :

We will get the compile time error like “The type Child cannot subclass the final class Parent”

Exception in thread "main" java.lang.Error: Unresolved compilation problem

OBJECT CLONING

The object cloning is a way to create exact copy of an object. The clone() method of Object class is
used to clone an object.

The java.lang.Cloneable interface must be implemented by the class whose object clone we want
to create. If we don't implement Cloneable interface, clone() method generates
CloneNotSupportedException.

The clone() method is defined in the Object class.

Syntax of the clone() method:

protected Object clone() throws CloneNotSupportedException

The clone() method saves the extra processing task for creating the exact copy of an object. If we

perform it by using the new keyword, it will take a lot of processing time to be performed that is why
we use object cloning.

Advantage of Object cloning

 You don't need to write lengthy and repetitive codes. Just use an abstract class with a 4- or 5-line
long clone() method.

 It is the easiest and most efficient way for copying objects, especially if we are applying it to

an already developed or an old project. Just define a parent class, implement Cloneable in it,
provide the definition of the clone() method and the task will be done.

 Clone() is the fastest way to copy array.

Disadvantage of Object cloning

 To use the Object.clone() method, we have to change a lot of syntaxes to our code, like
implementing a Cloneable interface, defining the clone() method and handling
CloneNotSupportedException, and finally, calling Object.clone() etc.

 We have to implement cloneable interface while it doesn?t have any methods in it. We just have
to use it to tell the JVM that we can perform clone() on our object.

 Object.clone() is protected, so we have to provide our own clone() and indirectly call
Object.clone() from it.

 Object.clone() doesn?t invoke any constructor so we don?t have any control over object
construction.

 If you want to write a clone method in a child class then all of its superclasses should define the
clone() method in them or inherit it from another parent class. Otherwise, the super.clone() chain

Page 23

will fail.

Page 24

 Object.clone() supports only shallow copying but we will need to override it if we need deep

cloning.

Example of clone() method (Object cloning)

class Student implements Cloneable{ int
rollno;

String name;

Student(int rollno,String

name){ this.rollno=rollno;
this.name=name;

}

public Object clone()throws CloneNotSupportedException{ return
super.clone();

}

public static void main(String args[]){ try{

Student s1=new Student(101,"amit"); Student

s2=(Student)s1.clone();

System.out.println(s1.rollno+" "+s1.name);

System.out.println(s2.rollno+" "+s2.name);

}

catch(CloneNotSupportedException c){}

}

}

Output:

101 amit

101 amit

INNER CLASSES

Inner class means one class which is a member of another class. There are basically four types of inner
classes in java.

1) Nested Inner class

2) Method Local inner classes

3) Anonymous inner classes

4) Static nested classes

Nested Inner class

Nested Inner class can access any private instance variable of outer class. Like any other instance

variable, we can have access modifier private, protected, public and default modifier. Like class,
interface can also be nested and can have access specifiers.

Example:

class Outer {

// Simple nested inner class class
Inner {

Page 25

public void show() {

System.out.println("In a nested class method");

}

}

}

class Main {

public static void main(String[] args) {

Outer.Inner in = new Outer().new Inner();

in.show();

}

}

Output:

In a nested class method

Method Local inner classes

Inner class can be declared within a method of an outer class. In the following example, Inner is an
inner class in outerMethod().

Example:

class Outer {

void outerMethod() {

System.out.println("inside outerMethod");

// Inner class is local to outerMethod() class

Inner {

void innerMethod() {
System.out.println("inside innerMethod");

}

}

Inner y = new Inner();
y.innerMethod();

}

}

class MethodDemo {

public static void main(String[] args) { Outer

x = new Outer(); x.outerMethod();

}

}

Output:

Inside outerMethod
Inside innerMethod

Static nested classes

Static nested classes are not technically an inner class. They are like a static member of outer

Page 26

class.

Example:

class Outer {

private static void outerMethod() {
System.out.println("inside outerMethod");

}

// A static inner class
static class Inner {

public static void main(String[] args) {

System.out.println("inside inner class Method");

outerMethod();

}

}

}

Output:

inside inner class Method
inside outerMethod

Anonymous inner classes

Anonymous inner classes are declared without any name at all. They are created in two ways. a) As
subclass of specified type

class Demo {
void show() {

System.out.println("i am in show method of super class");

}

}

class Flavor1Demo {

// An anonymous class with Demo as base class
static Demo d = new Demo() {

void show() {
super.show();

System.out.println("i am in Flavor1Demo class");

}

};

public static void main(String[] args){
d.show();

}

}

Output:

i am in show method of super class i
am in Flavor1Demo class

In the above code, we have two class Demo and Flavor1Demo. Here demo act as super class
and anonymous class acts as a subclass, both classes have a method show(). In anonymous

Page 27

class show() method is overridden.

b) As implementer of the specified interface

Example:

class Flavor2Demo {

// An anonymous class that implements Hello interface
static Hello h = new Hello() {

public void show() {

System.out.println("i am in anonymous class");

}

};

public static void main(String[] args) {
h.show();

}

}

interface Hello {
void show(); }

Output:

i am in anonymous class

In above code we create an object of anonymous inner class but this anonymous inner class is an

implementer of the interface Hello. Any anonymous inner class can implement only one interface at

one time. It can either extend a class or implement interface at a time.

STRINGS IN JAVA

In java, string is basically an object that represents sequence of char values. Java String provides a lot

of concepts that can be performed on a string such as compare, concat, equals, split, length, replace,
compareTo, intern, substring etc.

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable.

String s="javatpoint";

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example: String
s="welcome";

2) By new keyword

String s=new String("Welcome");

Page 28

Page 29

Example:
public classstringmethod

{

public static void main(String[] args)

{

String string1 = new String("hello");

String string2 = new String("hello"); if

(string1 == string2)

{

System.out.println("string1= "+string1+" string2= "+string2+" are equal");

}

else

{

System.out.println("string1= "+string1+" string2= "+string2+" are Unequal");

}

System.out.println("string1 and string2 is=
"+string1.equals(string2)); String a="information";

System.out.println("Uppercase of String a is= "+a.toUpperCase()); String
b="technology";

System.out.println("Concatenation of object a and b is= "+a.concat(b));

System.out.println("After concatenation Object a is= "+a.toString());

System.out.println("\"Joseph\'s\" is the greatest\\ college in chennai");

System.out.println("Length of Object a is= "+a.length());

System.out.println("The third character of Object a is= "+a.charAt(2));

StringBuffer n=new StringBuffer("Technology");

StringBuffer m=new StringBuffer("Information");

System.out.println("Reverse of Object n is= "+n.reverse()); n=

new StringBuffer("Technology");

System.out.println("Concatenation of Object m and n is= "+m.append(n)); System.out.println("After
concatenation of Object m is= "+m);

}

}

Output:

string1= hello string2= hello are Unequal string1
and string2 is= true

Uppercase of String a is= INFORMATION

Concatenation of object a and b is= informationtechnology
After concatenation Object a is= information

"Joseph's" is the greatest\ college in chennai
Length of Object a is= 11

The third character of Object a is= f
Reverse of Object n is= ygolonhceT

Concatenation of Object m and n is= InformationTechnology

Page 30

 void clear() It is used to remove all of the elements from this list.

 int lastIndexOf(Object o) It is used to return the index in this list of the last occurrence of

the specified element, or -1 if the list does not contain this element.

 Object[] toArray() It is used to return an array containing all of the elements in this

list in the correct order.

 Object[] toArray(Object[]

a)

It is used to return an array containing all of the elements in this

list in the correct order.

 boolean add(Object o) It is used to append the specified element to the end of a list.

 boolean addAll(int index,

Collection c)

It is used to insert all of the elements in the specified collection

into this list, starting at the specified position.

 Object clone() It is used to return a shallow copy of an ArrayList.

 int indexOf(Object o) It is used to return the index in this list of the first occurrence of

the specified element, or -1 if the List does not contain this

element.

CONSTRUCTOR DESCRIPTION

ArrayList() It is used to build an empty array list.

ArrayList(Collection c) It is used to build an array list that is initialized with the

elements of the collection c.

ArrayList(int capacity) It is used to build an array list that has the specified initial

capacity.

Page 31

Java ArrayList Example:

Book Example:

import java.util.*;
class Book {

int id;

String name,author,publisher; int
quantity;

public Book(int id, String name, String author, String publisher, int quantity) { this.id
= id;

this.name = name;

this.author = author;

this.publisher = publisher;

this.quantity = quantity;

}

}

public class ArrayListExample {
public static void main(String[] args) {

//Creating list of Books

List<Book> list=new ArrayList<Book>();

//Creating Books

Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);

Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill",4);
Book b3=new Book(103,"Operating System","Galvin","Wiley",6);

//Adding Books to list

list.add(b1);

list.add(b2);

list.add(b3);

//Traversing list

for(Book b:list){

System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);

}

}

}

Output:

101 Let us C Yashwant Kanetkar BPB 8

102 Data Communications & Networking Forouzan Mc Graw Hill 4
103 Operating System Galvin Wiley 6

Page 32

Unit – III

Exception Handling and I/O

Exceptions-exception hierarchy-throwing and catching exceptions-built-in exceptions,

creating own exceptions, Stack Trace Elements. Input /Output Basics-Streams-Byte streams

and character streams-Reading and Writing Console-Reading and Writing Files Templates

Difference between error and exception

Errors indicate serious problems and abnormal conditions that most applicationsshould not

try to handle. Error defines problems that are not expected to be caught under normal

circumstances by our program. For example memory error, hardware error, JVM error etc.

Exceptions are conditions within the code. A developer can handle such conditionsand take

necessary corrective actions. Few examples

 DivideByZero exception

 NullPointerException

 ArithmeticException

 ArrayIndexOutOfBoundsException

o An exception (or exceptional event) is a problem that arises during the

execution of a program.

o When an Exception occurs the normal flow of the program is disrupted

and the program/Application terminates abnormally, which is not

recommended, therefore, these exceptions are to be handled.

o If an exception is raised, which has not been handled by programmer

then program execution can get terminated and system prints a non user

friendly error message.

Page 33

Ex: Exception in thread "main"

java.lang.ArithmeticException: / by zero at

ExceptionDemo.main(ExceptionDemo.java:5)

Where, ExceptionDemo : The class name main :

The method name ExceptionDemo.java :

The filename java:5 : Line number

An exception can occur for many different reasons. Following are some scenarios where an

exception occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or

the JVM hasrun out of memory.

Exception Hierarchy

All exception classes are subtypes of the java.lang.Exception class. The exception

class is a subclass of the Throwable class.

Page 34

Key words used in Exception handling

There are 5 keywords used in java exception handling.

1. try

A try/catch block is placed around the code that might generate an

exception. Code within a try/catch block is referred to as protected code.

2. catch

A catch statement involves declaring the type of exception we are trying

to catch.

3. finally

A finally block of code always executes, irrespective of occurrence of an

Exception.

4. throw

It is used to execute important code such as closing connection, stream

etc. throw is used to invoke an exception explicitly.

5. throws throws is used to postpone the handling of a checked exception.

Syntax : //Example-predefined Excetion - for

Try //ArrayindexoutofBounds Exception

{ public class ExcepTest

//Protected code {

} public static void main(String args[])

 { int a[] = new int[2];

catch(ExceptionType1 e1) try

{

{ System.out.println("Access element three :" +

a[3]);

//Catch block }

} catch(ArrayIndexOutOfBoundsException e)

catch(ExceptionType2 e2) { System.out.println("Exception thrown :" + e);

{ }

//Catch block finally

} { a[0] = 6;

Page 35

catch(ExceptionType3 e3) System.out.println("First element value: " + a[0]);

{

System.out.println("The finally statement is

executed");

//Catch block }

} }

finally }

{ Output

//The finally block always

Exception thrown

:java.lang.ArrayIndexOutOfBoundsException:3

executes. First element value: 6

} The finally statement is executed

 Note : here array size is 2 but we are trying to access

3rdelement.

Uncaught Exceptions

This small program includes an expression that intentionally causes a divide-by- zero error:

class Exc0 { public static void main(String args[]) { int d = 0; int a =

Page 36

42 / d; } } When the Java run-time system detects the attempt to divide by zero, it constructs

a new exception object and then throws this exception. This causes the execution of Exc0 to

stop, because once an exception has been thrown, it must be caught by an exception handler

and dealt with immediately

Any exception that is not caught by your program will ultimately be processed by the default

handler. The default handler displays a string describing the exception, prints a stack trace

from the point at which the exception occurred, and terminates the program. Here is the

exception generated when this example is executed:

java.lang.ArithmeticException: / by zero at Exc0.main(Exc0.java:4)

Stack Trace:

Stack Trace is a list of method calls from the point when the application was started to the

point where the exception was thrown. The most recent method calls are at the top. A

stacktrace is a very helpful debugging tool. It is a list of the method calls that the application

was in the middle of when an Exception was thrown. This is very useful because it

doesn't only show you where the error happened, but also how the program ended up in

that place of the code.

Using try and Catch

To guard against and handle a run-time error, simply enclose the code that you want to

monitor inside a try block. Immediately following the try block, include a catch clause that

specifies the exception type that you wish to catch. A try and its catch statement form a unit.

The the following program includes a try block and a catch clause that processes the

ArithmeticException generated by the division-by-zero error:

Page 37

class Exc2 {

public static void main(String args[]) { int d,

a;

try { // monitor a block of code. d =

0;

a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output:

Division by zero.

After catch statement.

The call to println() inside the try block is never executed. Once an exception is thrown,

program control transfers out of the try block into the catch block.

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To handle

this type of situation, you can specify two or more catch clauses, each catching a different

type of exception. When an exception is thrown, each catch statement is inspected in order,

and the first one whose type matches that of the exception is executed. After one catch

Page 38

statement executes, the others are bypassed, and execution continues after the try/catch block.

The following example traps two different exception types:

// Demonstrate multiple catch statements.

Page 39

class MultiCatch {

public static void main(String args[]) { try {

int a = args.length;

System.out.println("a = " + a); int b

= 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) { System.out.println("Divide by 0: "

+ e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

Here is the output generated by running it both ways:

C:\>java MultiCatch a =

0

Divide by 0: java.lang.ArithmeticException: / by zero After

try/catch blocks.

C:\>java MultiCatch TestArg a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:42 After

try/catch blocks.

Page 40

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of another try.

Each time a try statement is entered, the context of that exception is pushed on the stack. If an

inner try statement does not have a catch handler for a particular exception, the stack is

unwound and the next try statement’s catch handlers are inspected for a match. This

continues until one of the catch statements succeeds, or until all of the nested try statements

are exhausted. If no catch statement matches, then the Java run-time system will handle the

exception.

// An example of nested try statements. class

NestTry {

public static void main(String args[]) { try {

int a = args.length;

/* If no command-line args are present, the

following statement will generate

a divide-by-zero exception. */ int b

= 42 / a; System.out.println("a = "

+ a); try { // nested try block

/* If one command-line arg is used, then a

divide-by-zero exception

will be generated by the following code. */ if(a==1) a =

a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

Page 41

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) { System.out.println("Divide by 0: "

+ e);

}

}

}

C:\>java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero C:\>java

NestTry One

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero C:\>java

NestTry One Two

a = 2

Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException:42

throw

it is possible for your program to throw an exception explicitly, using the throw statement. The

general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.

Page 42

Primitive types, such as int or char, as well as non-Throwable classes, such as String and

Object, cannot be used as exceptions. There are two ways you can obtain a Throwable object:

using a parameter in a catch clause, or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent

statements are not executed. The nearest enclosing try block is inspected to see if it has a

catch statement that matches the type of exception. If it does find a match, control is

transferred to that statement. If not, then the next enclosing try statement is inspected, and so

on. If no matching catch is found, then the default exception handler halts the program and

prints the stack trace

// Demonstrate throw. class

ThrowDemo { static void

demoproc() { try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc."); throw

e; // rethrow the exception

}

}

public static void main(String args[]) { try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

Page 43

Here is the resulting output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

Throws

If a method is capable of causing an exception that it does not handle, it must specify this

behaviour so that callers of the method can guard themselves against that exception. You do

this by including a throws clause in the method’s declaration. A throws clause lists the types

of exceptions that a method might throw. This is necessary for all exceptions, except those of

type Error or RuntimeException, or any of their subclasses. All other exceptions that a

method can throw must be declared in the throws clause. This is the general form of a method

declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) { try {

throwOne();

} catch (IllegalAccessException e) {

Page 44

System.out.println("Caught " + e);

}

}

}

Here is the output generated by running this example program: inside

throwOne

caught java.lang.IllegalAccessException: demo

finally

// Demonstrate finally.

class FinallyDemo {

// Through an exception out of the method. static

void procA() {

try {

System.out.println("inside procA"); throw

new RuntimeException("demo");

} finally {

Page 45

System.out.println("procA's finally");

}

}

// Return from within a try block. static

void procB() {

try {

System.out.println("inside procB");

return;

} finally { System.out.println("procB's

finally");

}

}

// Execute a try block normally. static

void procC() {

try {

System.out.println("inside procC");

} finally { System.out.println("procC's

finally");

}

}

public static void main(String args[]) { try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

Page 46

}

Here is the output generated by the preceding program:

inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Categories of Exceptions

Checked exceptions −A checked exception is an exception that occurs at the

compiletime, these are also called as compile time exceptions. These exceptions

cannot simply be ignored at the time of compilation, the programmer should take

care of (handle) these exceptions.

Unchecked exceptions − An unchecked exception is an exception that occurs at

thetime of execution. These are also called as Runtime Exceptions. These include

programming bugs, such as logic errors or improper use of an API. Runtime

exceptions are ignored at the time of compilation.

Common scenarios where exceptions may occur:

There are given some scenarios where unchecked exceptions can occur. They are as

follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException. int

a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

Page 47

If we have null value in any variable, performing any operation by the variable

occurs an NullPointerException.

String s=null;

System.out.println(s.length());//NullPointerException

3) Scenario where ArrayIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would result

ArrayIndexOutOfBoundsException as shown below:

int a[]=new int[5];

a[10]=50; //ArrayIndexOutOfBoundsException

Java’s Built-in Exceptions

User-defined Exceptions

All exceptions must be a child of Throwable.

If we want to write a checked exception that is automatically enforced by the Handle ,we

need to extend the Exception class.

User defined exception needs to inherit (extends) Exception class in

order to act as an exception.

throw keyword is used to throw such exceptions.

class MyOwnException extends Exception

{ public

MyOwnException(String msg) {

super(msg);

}

}

class EmployeeTest

{

Page 48

static void employeeAge(int age) throws

MyOwnException {

if(age < 0)

throw new MyOwnException("Age can't be less than zero");

else

System.out.println("Input is valid!!");

}

public static void main(String[] args)

{

try { employeeAge(-2);

}

catch (MyOwnException e)

{

e.printStackTrace();

}

}

}

Advantages of Exception Handling

Exception handling allows us to control the normal flow of the program by using

exception handling in program.

It throws an exception whenever a calling method encounters an error providing that

the calling method takes care of that error.

It also gives us the scope of organizing and differentiating between different error

types using a separate block of codes. This is done with the help of try-catch blocks.

Page 49

IO IN JAVA

Java I/O (Input and Output) is used to process the input and produce the output

based on the input. Java uses the concept of stream to make I/O operation fast.

The java.io package contains all the classes required for input and output

operations.

Stream

A stream can be defined as a sequence of data. there are two kinds of Streams

 InputStream: The InputStream is used to read data from a source.

 OutputStream: the OutputStream is used for writing data to a

destination.

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes FileInputStream ,

FileOutputStream.

Character Streams

Java Character streams are used to perform input and output for 16-bit unicode. FileReader ,

FileWriter

Standard Streams

 Standard Input: This is used to feed the data to user's program and

usually a keyboard is used as standard input stream and represented as

System.in.

 Standard Output: This is used to output the data produced by the

user's program and usually a computer screen is used to standard

output stream and represented as System.out.

Page 50

 Standard Error: This is used to output the error data produced by the

user's program and usually a computer screen is used to standard error

stream and represented as System.err.

Classification of Stream Classes:

Byte Stream Classes:

ByteStream classes have been designed to provide functional features for creating and

manipulating streams and files for reading and writing bytes. Since the streams are

unidirectional, they can transmit bytes in only one direction and therefore, Java provides two

kinds of byte stream classes: InputStream class and OutputStream class.

Input Stream Classes

Input stream classes that are used to read 8-bit bytes include a super class known as

InputStream and number of subclasses for supporting various input- related functions.

Page 51

Hierarchy of Input Stream Classes

The super class InputStream is an abstract class, so we cannot create object for the class.

InputStream class defines the methods to perform the following functions:-

 Reading Bytes

 Closing Streams

 Marking position in Streams

 Skipping ahead in streams

Page 52

 Finding the number of bytes in stream.

The following are the InputStream methods:

The DataInput interface contains the following methods

OutputStream Class

The super class InputStream is an abstract class, so we cannot create object for the class.

InputStream class defines the methods to perform the following functions:

 Writing Bytes

 Closing Streams

 Flushing Streams

Hierarchy of OutputStream Classes

Page 53

OutputStream Methods

Character Stream Vs Byte Stream in Java I/O

Stream

A stream is a method to sequentially access a file. I/O Stream means an input source or

output destination representing different types of sources e.g. disk files.The java.io package

provides classes that allow you to convert between Unicode character streams and byte

streams of non-Unicode text.

Page 54

Stream: A sequence of data.

Input Stream: reads data from source.

Output Stream: writes data to destination.

Character Stream

In Java, characters are stored using Unicode conventions (Refer this for details). Character

stream automatically allows us to read/write data character by character. For example

FileReader and FileWriter are character streams used to read from source andwrite to

destination.

/

importjava.io.*; // Accessing FileReader, FileWriter, IOException

publicclassGfG

{

publicstaticvoidmain(String[] args) throwsIOException

{

FileReader sourceStream = null; try

{

sourceStream = newFileReader("test.txt");

https://docs.oracle.com/javase/tutorial/java/data/characters.html

Page 55

// Reading sourcefile and writing content to

// target file character by character. inttemp;

while((temp = sourceStream.read()) != -1)

System.out.println((char)temp);

}

finally

{

// Closing stream as no longer in use if(sourceStream !=

null)

sourceStream.close();

}

}

}

Reading and Writing Files:

A stream can be defined as a sequence of data. The InputStream is used to read data from a

source and the OutputStream is used for writing data to a destination.

TheInputStream is used to read data from a source and the OutputStream is used for

writing data to a destination.The two important streams are FileInputStream and

FileOutputStream

Here is a hierarchy of classes to deal with Input and Output streams.

FileInputStream

This stream is used for reading data from the files. Objects can be created using the keyword

new and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream object to read

the file –

Page 56

Following constructor takes a file object to create an input stream object to

read the file. First we create a file object using File() method as follows −

Once you have InputStream object in hand, then there is a list of helper

methods which can be used to read to stream or to do other operations on the stream.

Example:

import

java.io.*;

class C{

public static void main(String args[])throws

Exception{ FileInputStream fin=new

FileInputStream("C.java"); FileOutputStream fout=new

FileOutputStream("M.java"); int i=0; while((i=fin.read())!=-

1){ fout.write((byte)i);

}

fin.close();

}

}

Byte Stream

Byte streams process data byte by byte (8 bits). For example FileInputStream is used to read

from source and FileOutputStream to write to the destination.

// Java Program illustrating the Byte Stream to copy

// contents of one file to another file.

InputStream f = new FileInputStream("C:/java/hello");

File f = new File("C:/java/hello"); InputStream

f = new FileInputStream(f);

Page 57

importjava.io.*; publicclassBStream

{

Public static void main(String[] args) throws IOException

{

FileInputStream sourceStream = null;

FileOutputStream targetStream = null; try

{

sourceStream = newFileInputStream("sorcefile.txt");

targetStream = newFileOutputStream ("targetfile.txt");

// Reading source file and writing content to target

// file byte by byte inttemp;

while((temp = sourceStream.read()) != -1)

targetStream.write((byte)temp);

}

finally

{

if(sourceStream != null)

sourceStream.close();

if(targetStream != null)

targetStream.close();

}

}

}

Page 58

STUDENTSFOCUS
.COM

Final Keyword In Java – Final variable, Method and Class

final keyword can be used along with variables, methods and classes.

1) final variable

2) final method

3) final class

1) final variable

final variables are nothing but constants. We cannot change the value of a final variable once

it is initialized. Lets have a look at the below code:

classDemo{

finalint MAX_VALUE=99; void

myMethod(){

MAX_VALUE=101;

}

Public static void main(String args[]){ Demo

obj=newDemo();

obj.myMethod();

}

}

Exception in thread "main" java.lang.Error: Unresolved compilation problem:

The final field Demo.MAX_VALUE cannot be assigned at

beginnersbook.com.Demo.myMethod(Details.java:6) at

beginnersbook.com.Demo.main(Details.java:10)

We got a compilation error in the above program because we tried to change the value of a

final variable “MAX_VALUE”.

2) final method

A final method cannot be overridden. Which means even though a sub class can call the final

method of parent class without any issues but it cannot override it. Example:

class XYZ{

Page 59

STUDENTSFOCUS
.COM

finalvoid demo(){ System.out.println("XYZ Class

Method");

}

}

class ABC extends XYZ{ void

demo(){

System.out.println("ABC Class Method");

}

public static void main(String args[]){ ABC

obj=new ABC(); obj.demo();

}

}

The above program would throw a compilation error, however we can use the parent class

final method in sub class without any issues. Lets have a look at this code: This program

would run fine as we are not overriding the final method. That shows that final methods are

inherited but they are not eligible for overriding.

class XYZ{ finalvoid

demo(){

System.out.println("XYZ Class Method");

}

}

class ABC extends XYZ{

public static void main(String args[]){ ABC

obj=new ABC(); obj.demo();

}

}

https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2013/05/java-inheritance-types/

Page 60

STUDENTSFOCUS
.COM

Output:

XYZ ClassMethod

3) final class

We cannot extend a final class. Consider the below example: finalclass

XYZ{

}

class ABC extends XYZ{ void

demo(){

System.out.println("My Method");

}

Public static void main(String args[]){ ABC

obj=new ABC(); obj.demo();

}

}

Output:

The type ABC cannot subclass the final class XYZ

Page 61

UNIT IV

MULTITHREADING AND GENERIC PROGRAMMING

Differences between multithreading and multitasking , thread life cycle, creating threads,

creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread

groups. Generic Programming - Generic classes- generic methods-Bounded Types-

Restrictions and Limitations

Thread:
A thread is a single sequential (separate) flow of control within program. Sometimes, it is called

an execution context or light weight process.

Multithreading

Multithreading is a conceptual programming concept where a program (process) is divided

into two or more subprograms (process), which can be implemented at the same time in

parallel. A multithreaded program contains two or more parts that can run concurrently. Each

part of such a program is called a thread, and each thread defines a separate path of execution.

Multitasking

Executing several tasks simultaneously is called multi-tasking. There are 2

types of multi-tasking

1. Process-based multitasking

2. Thread-based multi-tasking

1. Process-based multi-tasking

Executing various jobs together where each job is a separate independent operation is

called process-based multi-tasking.

2. Thread-based multi-tasking

Executing several tasks simultaneously where each task is a separate independent part

of the same program is called Thread-based multitasking and each independent part is called

Thread. It is best suitable for the programmatic

Page 62

level. The main goal of multi-tasking is to make or do a better performance of the system by

reducing response time

Multithreading vs Multitasking

Multithreading is to execute multiple

threads in a process concurrently.

Multitasking is to run multiple

processes on a computer

concurrently.

Execution

In Multithreading, the CPU switches

between multiple threads in the same

process.

In Multitasking, the CPU switches

between multiple processes to

complete the execution.

Resource Sharing

In Multithreading, resources are

shared among multiple threads in a

process.

In Multitasking, resources are shared

among multiple processes.

Complexity

Multithreading is light-weight and

easy to create.

Multitasking is heavy-weight and

harder to create.

Life Cycle of Thread

A thread can be in any of the five following states

1. Newborn State:

When a thread object is created a new thread is born and said to be in Newborn state.

2. Runnable State:

If a thread is in this state it means that the thread is ready for execution and waiting for

the availability of the processor. If all threads in queue are of same priority then they are given

time slots for execution in round robin fashion

Page 63

3. Running State:

It means that the processor has given its time to the thread for execution.

A thread keeps running until the following conditions occurs

(a) Thread give up its control on its own and it can happen in the following

situations

i.A thread gets suspended using suspend() method which can only be revived

with resume() method

ii.A thread is made to sleep for a specified period of time using sleep(time)

method, where time in milliseconds

iii.A thread is made to wait for some event to occur using wait () method. In

this case a thread can be scheduled to run again using notify () method.

(b) A thread is pre-empted by a higher priority thread

4. Blocked State:

If a thread is prevented from entering into runnable state and

subsequently running state, then a thread is said to be in Blocked state.

5. Dead State:

A runnable thread enters the Dead or terminated state when it completes its task or otherwise

Page 64

 last thread to finish execution.

class MainThread

{

public static void main(String[] args)

{

Thread t1=Thread.currentThread();

t.setName("MainThread");

System.out.println("Name of thread is "+t1);

}

}

Page 65

Output:
Name of thread is Thread[MainThread,5,main]

Creation Of Thread

Thread Can Be Implemented In Two Ways

1) Implementing Runnable Interface

2) Extending Thread Class

1. Create Thread by Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable

interface. To implement Runnable, a class need only implement a single method called run()

Example:
public class ThreadSample implements Runnable

{

public void run()

{

try

{

for (int i = 5; i > 0; i--)

{

System.out.println("Child Thread" + i);

Thread.sleep(1000);

}

}

catch (InterruptedException e)

{

System.out.println("Child interrupted");

}

Page 66

System.out.println("Exiting Child Thread");

}

}

public class MainThread

{

public static void main(String[] arg)

{

ThreadSample d = new ThreadSample();

Thread s = new Thread(d);

s.start();

try

{

for (int i = 5; i > 0; i--)

{

System.out.println("Main Thread" + i); Thread.sleep(5000);

}

}

catch (InterruptedException e)

{

System.out.println("Main interrupted");

}

System.out.println("Exiting Main Thread");

}}

2. Extending Thread Class

The second way to create a thread is to create a new class that extends

Thread, and then to create an instance of that class. The extending class must

override the run() method, which is the entry point for the new thread. It must

also call start() to begin execution of

Page 67

the new thread.

Example:

public class ThreadSample extends Thread

{

public void run()

{

try

{

for (int i = 5; i > 0; i--)

{

System.out.println("Child Thread" + i); Thread.sleep(1000);

}

}

catch (InterruptedException e)

{

System.out.println("Child interrupted");

}

System.out.println("Exiting Child Thread");

}

}

public class MainThread

{

public static void main(String[] arg)

{

ThreadSample d = new ThreadSample(); d.start();

try

{

Page 68

for (int i = 5; i > 0; i--)

{

System.out.println("Main Thread" + i); Thread.sleep(5000);

}

}

catch (InterruptedException e)

{

System.out.println("Main interrupted");

}

System.out.println("Exiting Main Thread");

}

}

Thread priority:

Each thread have a priority. Priorities are represented by a number between

1 and 10. In most cases, thread schedular schedules the threads according to their

priority (known as preemptive scheduling). But it is not guaranteed because it

depends on JVM specification that which scheduling it chooses.

3 constants defined in Thread class: public

static int MIN_PRIORITY

public static int NORM_PRIORITY

public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of

MIN_PRIORITY is 1 and the value of MAX_PRIORITY is 10.

Example :

public class MyThread1 extends Thread { MyThread1(String s)

{

Page 69

super(s);

start();

}

public void run()

{

for(int i=0;i<5;i++)

{

Thread cur=Thread.currentThread();

cur.setPriority(Thread.MAX_PRIORITY); int

p=cur.getPriority();

System.out.println("Thread

Name"+Thread.currentThread().getName());

System.out.println("Thread Priority"+cur);

}

}

}

class MyThread2 extends Thread {

MyThread2(String s)

{

super(s);

start();

}

public void run()

{

for(int i=0;i<5;i++)

{

Thread cur=Thread.currentThread(); cur.setPriority(Thread.MIN_PRIORITY);

System.out.println(cur.getPriority());

Page 70

int p=cur.getPriority();

System.out.println("Thread

Name"+Thread.currentThread().getName()); System.out.println("Thread

Priority"+cur);

}

}

}

public class ThreadPriority {

public static void main(String[] args)

{

MyThread1 m1=new MyThread1("MyThread1");

MyThread2 m2=new MyThread2("MyThread2");

}

}

Synchronizing Threads

o Synchronization in java is the capability to control the access of

multiple threads to any shared resource.

o Java Synchronization is better option where we want to allow only

one thread to access the shared resource

General Syntax :

synchronized(object)

{

//statement to be synchronized

}

Why use Synchronization

The synchronization is mainly used to

o To prevent thread interference.

o To prevent consistency problem.

Page 71

Types of Synchronization

There are two types of synchronization

 Process Synchronization

 Thread Synchronization

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread communication.

1. Mutual Exclusive

 Synchronized method.

 Synchronized block.

 static synchronization.

2. Cooperation (Inter-thread communication in java)

Synchronized method

 If you declare any method as synchronized, it is known as synchronized

method.

 Synchronized method is used to lock an object for any shared resource.

 When a thread invokes a synchronized method, it automatically acquires

the lock for that object and releases it when the thread completes its task.

Example of synchronized method

package Thread; public

class SynThread

{

public static void main(String args[])

{

share s = new share();

MyThread m1 = new MyThread(s, "Thread1"); MyThread

m2 = new MyThread(s, "Thread2");

Page 72

MyThread m3 = new MyThread(s, "Thread3");

}

}

class MyThread extends Thread

{

share s;

MyThread(share s, String str)

{

super(str);

this.s = s;

start();

}

public void run()

{

s.doword(Thread.currentThread().getName());

}

}

class share

{

public synchronized void doword(String str)

{

for (int i = 0; i < 5; i++)

{

System.out.println("Started:" + str); try

{

Thread.sleep(1000);

}

catch (Exception e)

Page 73

{

}}}}

Synchronized block.

 Synchronized block can be used to perform synchronization on any

specific resource of the method.

 Suppose you have 50 lines of code in your method, but you want to

synchronize only 5 lines, you can use synchronized block.

 If you put all the codes of the method in the synchronized block, it will

work same as the synchronized method.

Example of synchronized block

class Table{

void printTable(int n){

synchronized(this){//synchronized block for(int

i=1;i<=5;i++){

System.out.println(n*i); try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

}

}

}//end of the method

}

class MyThread1 extends Thread{ Table

t;

MyThread1(Table t){

this.t=t;

}

public void run(){ t.printTable(5);

Page 74

}

}

class MyThread2 extends Thread{ Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronizedBlock1{ public

static void main(String args[]){ Table obj = new

Table();//only one object MyThread1 t1=new

MyThread1(obj); MyThread2 t2=new

MyThread2(obj); t1.start();

t2.start();

}

}

Static synchronization

If you make any static method as synchronized, the lock will be on the class not on

object.

Example of static synchronization

In this example we are applying synchronized keyword on the static method to

perform static synchronization.

class Table{

synchronized static void printTable(int n){ for(int

i=1;i<=10;i++){

Page 75

System.out.println(n*i); try{

Thread.sleep(400);

}catch(Exception e){}

}

}

}

class MyThread1 extends Thread{ public

void run(){ Table.printTable(1);

}

}

class MyThread2 extends Thread{ public

void run(){ Table.printTable(10);

}

}

class MyThread3 extends Thread{ public

void run(){ Table.printTable(100);

}

}

class MyThread4 extends Thread{ public

void run(){ Table.printTable(1000);

}

}

public class TestSynchronization4{ public

static void main(String t[]){

Page 76

MyThread1 t1=new MyThread1();

MyThread2 t2=new MyThread2();

MyThread3 t3=new MyThread3();

MyThread4 t4=new MyThread4();

t1.start();

t2.start();

t3.start();

t4.start();

}

}

Inter-thread communication

Inter-thread communication or Co-operation is all about allowing synchronized threads

to communicate with each other.

Inter-thread communication is a mechanism in which a thread is paused running in its

critical section and another thread is allowed to enter (or lock) in the same critical section to

be executed.It is implemented by following methods of Object class:

 wait()

 notify()

 notifyAll()

wait()

tells calling thread to give up monitor and go to sleep until some other thread enters

the same monitor and call notify.

notify()

wakes up a thread that called wait() on same object.

notifyAll()

wakes up all the thread that called wait() on same object.

Page 77

wait() sleep()

wait() method releases the lock sleep() method doesn't release the

lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

should be notified by notify() or

notifyAll() methods

after the specified amount of

time, sleep is completed.

Example of inter thread communication in java

class Customer{ int

amount=10000;

synchronized void withdraw(int amount){

System.out.println("going to withdraw...");

if(this.amount<amount){

System.out.println("Less balance; waiting for deposit..."); try{wait();}catch(Exception e){}

}

this.amount-=amount; System.out.println("withdraw

completed...");

}

synchronized void deposit(int amount){

System.out.println("going to deposit...");

this.amount+=amount; System.out.println("deposit

completed... "); notify();

Page 78

}

}

class Test{

public static void main(String args[]){ final

Customer c=new Customer(); new Thread(){

public void run(){c.withdraw(15000);}

}.start();

new Thread(){

public void run(){c.deposit(10000);}

}.start();

}}

Daemon Thread in Java

Daemon thread in java is a service provider thread that provides services to the user

thread. Its life depend on the mercy of user threads i.e. when all the user threads dies, JVM

terminates this thread automatically.

Example:

public class TestDaemonThread1 extends Thread{ public void

run(){

if(Thread.currentThread().isDaemon()){//checking for daemon thread

System.out.println("daemon thread work");

}

else{

System.out.println("user thread work");

}

}

public static void main(String[] args){

TestDaemonThread1 t1=new TestDaemonThread1();//creating thread TestDaemonThread1

t2=new TestDaemonThread1();

Page 79

TestDaemonThread1 t3=new TestDaemonThread1();

t1.setDaemon(true);//now t1 is daemon thread t1.start();//starting

threads

t2.start();

t3.start();

}

}

Thread Group

Java provides a convenient way to group multiple threads in a single object. In such

way, we can suspend, resume or interrupt group of threads by a single method call.

Constructors of ThreadGroup class

There are only two constructors of ThreadGroup class.

1. ThreadGroup(String name)-creates a thread group with given

name.

2. ThreadGroup(ThreadGroup parent, String name)-creates a thread

group with given parent group and name.

Important methods of ThreadGroup class

There are many methods in ThreadGroup class. A list of important methods are given

below.

group.

1) int activeCount()-returns no. of threads running in current group.

2) int activeGroupCount()-returns a no. of active group in this thread

3) void destroy()-destroys this thread group and all its sub groups.

4)String getName()-returns the name of this group.

5) ThreadGroup getParent()-returns the parent of this group.

6)void interrupt()-interrupts all threads of this group.

Page 80

7)void list()-prints information of this group to standard console.

Let's see a code to group multiple threads. ThreadGroup tg1 =

new ThreadGroup("Group A"); Thread t1 = new Thread(tg1,new

MyRunnable(),"one");

Thread t2 = new Thread(tg1,new MyRunnable(),"two"); Thread t3 = new

Thread(tg1,new MyRunnable(),"three");

Now all 3 threads belong to one group. Here, tg1 is the thread group name,

MyRunnable is the class that implements Runnable interface and "one", "two" and "three" are

the thread names.

Now we can interrupt all threads by a single line of code only.

Thread.currentThread().getThreadGroup().interrupt();

ThreadGroup Example

public class ThreadGroupDemo implements Runnable{ public void

run() {

System.out.println(Thread.currentThread().getName());

}

public static void main(String[] args) {

ThreadGroupDemo runnable = new ThreadGroupDemo(); ThreadGroup tg1 =

new ThreadGroup("Parent ThreadGroup"); Thread t1 = new Thread(tg1,

runnable,"one");

t1.start();

Thread t2 = new Thread(tg1, runnable,"two"); t2.start();

Thread t3 = new Thread(tg1, runnable,"three"); t3.start();

Page 81

}

}

Output:

System.out.println("Thread Group Name: "+tg1.getName()); tg1.list();

one

two

three

Thread Group Name: Parent ThreadGroup

java.lang.ThreadGroup[name=Parent ThreadGroup,maxpri=10]

Thread[one,5,Parent ThreadGroup]

Thread[two,5,Parent ThreadGroup]

Thread[three,5,Parent ThreadGroup]

Generic Programming

Generic programming enables the programmer to create classes,interfaces and methods

that automatically works with all types of data(Integer, String, Float etc). It has expanded the

ability to reuse the code safely and easily.

Advantage of Java Generics

There are mainly 3 advantages of generics. They are as follows:

1) Type-safety : We can hold only a single type of objects in generics. It doesn’t

allow to store other objects.

2) Type casting is not required: There is no need to typecast the object.

3)Compile-Time Checking: It is checked at compile time so problem will not

occur at runtime. The good programming strategy says it is far better to handle

the problem at compile time than runtime.

Page 82

Generic class

 A class that can refer to any type is known as generic class.

 Generic class declaration defines set of parameterized type one for

each possible invocation of the type parameters

Example:

class TwoGen<T, V>

{

T ob1;

V ob2;

TwoGen(T o1, V o2)

{

ob1 = o1;

ob2 = o2;

}

void showTypes() {

System.out.println("Type of T is " + ob1.getClass().getName());

System.out.println("Type of V is " + ob2.getClass().getName());

}

T getob1()

{

return ob1;

}

V getob2()

{

return ob2;

}

}

public class MainClass

Page 83

{

public static void main(String args[])

{

TwoGen<Integer, String> tgObj = new TwoGen<Integer,

String>(88,"Generics");

tgObj.showTypes();

int v = tgObj.getob1();

System.out.println("value: " + v);

String str = tgObj.getob2(); System.out.println("value: "

+ str);

}

}

Generic Method

Like generic class, we can create generic method that can accept any type of argument.

public class TestGenerics4{

public static < E > void printArray(E[] elements) { for (E

element : elements){

System.out.println(element);

}

System.out.println();

}

public static void main(String args[]) { Integer[]

intArray = { 10, 20, 30, 40, 50 }; Character[]

charArray = { 'J', 'A', 'V', 'A'}; System.out.println(

"Printing Integer Array"); printArray(intArray);

System.out.println("Printing Character Array");

Page 84

printArray(charArray);

}

}

Bounded type

The type parameters could be replaced by any class type. This is fine for many

purposes, but sometimes it is useful to limit the types that can be passed to a type parameter

Syntax :
<T extends superclass>

Example

class Stats<T extends Number> { T[]

nums;

Stats(T[] o) { nums =

o; }

double average() {

double sum = 0.0;

for(int i=0; i < nums.length; i++) sum

+= nums[i].doubleValue(); return sum

/ nums.length;

}

}

public class MainClass {

public static void main(String args[]) { Integer

inums[] = { 1, 2, 3, 4, 5 };

Stats<Integer> iob = new Stats<Integer>(inums); double

v = iob.average(); System.out.println("iob average is " +

v);

Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

Stats<Double> dob = new Stats<Double>(dnums);

CS8392 1

double w = dob.average(); System.out.println("dob average

is " + w);

}

}

Restrictions on Generics

To use Java generics effectively, you must consider the following restrictions:

CS8392 2

UNIT-V

EVENT DRIVEN PROGRAMMING

Graphics programming-Frame-Components-working with 2D shapes-Using color, fonts, and images-

Basics of event Handling-event handlers-adapter classes-actions mouse events-AWT event hierarchy-

Introduction to Swing-layout management-Swing Components-Text Fields, Text Areas-Buttons-Check

Boxes-Radio Buttons-Lists-choices-Scrollbars-windows-Menus-Dialog Boxes and Interfaces,

Exception handling, Multithreaded programming, Strings, Input/output

Graphics programming

 Java contains support for graphics that enable programmers to visually enhance applications

 Java contains many more sophisticated drawing capabilities as part of the Java 2D API

AWT

 Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in

java.

 Java AWT components are platform-dependent i.e. components are displayed according to the view

of operating system.

 AWT is heavyweight i.e. its components are using the resources of OS.The java.awt package

provides classes for AWT api such as TextField, Label, TextArea, RadioButton, CheckBox, Choice,

List etc.

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

CS8392 3

Container

The Container is a component in AWT that can contain another components like buttons,

textfields, labels etc. The classes that extend Container class are known as container such as Frame,

Dialog and Panel. Window

The window is the container that has no borders and menu bars. You must use frame, dialog or

another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other

components like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other

components like button, textfield etc.

There are two ways to create a Frame. They are,

 By Instantiating Frame class

 By extending Frame class

Example:

import java.awt.*;

import java.awt.event.*;

class MyLoginWindow extends Frame

{

TextField name,pass;

Button b1,b2;

MyLoginWindow()

{

setLayout(new FlowLayout());

this.setLayout(null);

Label n=new Label("Name:",Label.CENTER);

Label p=new

Label("password:",Label.CENTER); name=new

TextField(20);

pass=new TextField(20);

pass.setEchoChar('#');

b1=new Button("submit");

b2=new Button("cancel");

this.add(n);

this.add(name);

this.add(p);

this.add(pass);

CS8392 4

this.add(b1);

this.add(b2);

CS8392 5

n.setBounds(70,90,90,60);

p.setBounds(70,130,90,60);

name.setBounds(200,100,90,20);

pass.setBounds(200,140,90,20);

b1.setBounds(100,260,70,40);

b2.setBounds(180,260,70,40);

}

public static void main(String args[])

{

MyLoginWindow ml=new MyLoginWindow();

ml.setVisible(true);

ml.setSize(400,400);

ml.setTitle("my login

window");

}}

Output:

Event handling:

Changing the state of an object is known as an event. For example, click on button, dragging

mouse etc. The java.awt.event package provides many event classes and Listener interfaces for event

handling.

Event handling has three main components,

 Events : An event is a change in state of an object.

 Events Source : Event source is an object that generates an event.

 Listeners : A listener is an object that listens to the event. A listener gets notified when an

event occur

CS8392 6

STUDENTSFOCUS
.COM

How Events are handled ?

A source generates an Event and send it to one or more listeners registered with the source.

Once event is received by the listener, they process the event and then return. Events are supported by

a number of Java packages, like java.util, java.awt and java.awt.event.

Important Event Classes and Interface

Event Classes Description Listener Interface

ActionEvent
generated when button is pressed, menu-item is

selected, list-item is double clicked

ActionListener

MouseEvent
generated when mouse is dragged,

moved,clicked,pressed or released and also when it

enters or exit a component

MouseListener

KeyEvent generated when input is received from keyboard KeyListener

ItemEvent
generated when check-box or list item is clicked ItemListener

TextEvent
generated when value of textarea or textfield is

changed

TextListener

MouseWheelEvent
generated when mouse wheel is moved MouseWheelListener

WindowEvent
generated when window is activated, deactivated,

deiconified, iconified, opened or closed

WindowListener

ComponentEvent
generated when component is hidden, moved, resized

or set visible

ComponentEventListener

ContainerEvent
generated when component is added or removed from

container

ContainerListener

AdjustmentEvent
generated when scroll bar is manipulated AdjustmentListener

CS8392 7

FocusEvent generated when component gains or loses keyboard

focus

FocusListener

Steps to handle events:

 Implement appropriate interface in the class.

 Register the component with the listener.

How to implement Listener

1. Declare an event handler class and specify that the class either implements an ActionListener(any

listener) interface or extends a class that implements an ActionListener interface. For example:

public class MyClass implements ActionListener

{

// Set of Code

}

2. Register an instance of the event handler class as a listener on one or more components. For

example:

someComponent.addActionListener(instanceOfMyClass);

3. Include code that implements the methods in listener interface. For example:

public void actionPerformed(ActionEvent e) {

//code that reacts to the action

}

Mouse Listener

package Listener;

import java.awt.Frame;

import java.awt.Label;

import java.awt.TextArea;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

CS8392 8

public class Mouse implements MouseListener {

TextArea s;

public Mouse()

{

Frame d=new Frame("kkkk");

s=new TextArea("");

d.add(s);

s.addMouseListener(this);

d.setSize(190, 190);

d.show();

}

public void mousePressed(MouseEvent e)

{ System.out.println("MousePressed");

int a=e.getX();

int b=e.getY();

System.out.println("X="+a+"Y="+b);

}

public void mouseReleased(MouseEvent e) {

System.out.println("MouseReleased");

}

public void mouseEntered(MouseEvent e) {

System.out.println("MouseEntered");

}

public void mouseExited(MouseEvent e)

{

System.out.println("MouseExited")

;

}

public void mouseClicked(MouseEvent e) {

System.out.println("MouseClicked");

}

public static void main(String arg[])

CS8392 9

{

Mouse a=new Mouse();

CS8392 10

}

}

Mouse Motion Listener

package Listener;

import java.awt.event.MouseEvent;

import java.awt.event.MouseMotionListener;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextArea;

public class MouseMotionEventDemo extends JPanel implements MouseMotionListener {

MouseMotionEventDemo()

{

JTextArea a=new JTextArea();

a.addMouseMotionListener(this)

; JFrame b=new JFrame();

b.add(a);

b.setVisible(true);

}

public void mouseMoved(MouseEvent e)

{ System.out.println("Mouse is Moving");

}

public void mouseDragged(MouseEvent e) {

System.out.println("MouseDragged");

}

public static void main(String arg[])

{

MouseMotionEventDemo a=new MouseMotionEventDemo();

}

}

CS8392 11

KEY LISTENER

package Listener;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

import javax.swing.JFrame;

import javax.swing.JTextField;

public class KeyEventDemo implements KeyListener

{

public KeyEventDemo()

{

JFrame s=new JFrame("hai");

JTextField typingArea = new JTextField(20);

typingArea.addKeyListener(this);

s.add(typingArea);

s.setVisible(true);

}

public void keyTyped(KeyEvent e) {

System.out.println("KeyTyped");

}

/** Handle the key-pressed event from the text field. */

public void keyPressed(KeyEvent e) {

System.out.println("KeyPressed");

}

/** Handle the key-released event from the text field. */

public void keyReleased(KeyEvent e) {

System.out.println("Keyreleased");

}

public static void main(String g[])

{

KeyEventDemo a=new KeyEventDemo();

}

CS8392 12

}

CS8392 13

ITEM LISTENER

package Listener;

import java.awt.event.ItemEvent;

import java.awt.event.ItemListener;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

import javax.swing.JButton;

import javax.swing.JCheckBox;

import javax.swing.JFrame;

import javax.swing.JTextField;

public class itemlistener implements ItemListener

{

public itemlistener()

{

JFrame s=new JFrame("hai");

JCheckBox a=new JCheckBox("Ok");

a.addItemListener(this);

s.add(a);

s.setVisible(true);

}

public static void main(String g[])

{

itemlistener l=new itemlistener();

}

public void itemStateChanged(ItemEvent arg0) {

System.out.println("State changed");

}

}

CS8392 14

Window Listener

package Listener;

import java.awt.event.MouseEvent;

import java.awt.event.MouseMotionListener;

import java.awt.event.WindowEvent;

import java.awt.event.WindowListener;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextArea;

public class window extends JPanel implements WindowListener {

window()

{

JFrame b=new JFrame();

b.addWindowListener(this);

b.setVisible(true);

}

public static void main(String arg[])

{

window a=new window();

}

public void windowActivated(WindowEvent arg0) {

System.out.println("Window activated");

}

public void windowClosed(WindowEvent arg0) {

// TODO Auto-generated method

stub System.out.println("Window

closed");

}

public void windowClosing(WindowEvent arg0) {

// TODO Auto-generated method stub

System.out.println("Window closing");

}

CS8392 15

public void windowDeactivated(WindowEvent arg0) {

// TODO Auto-generated method stub

CS8392 16

System.out.println("Window deactivated");

}

public void windowDeiconified(WindowEvent arg0) {

// TODO Auto-generated method stub

System.out.println("Window deiconified");

}

public void windowIconified(WindowEvent arg0) {

// TODO Auto-generated method stub

System.out.println("Window Iconified");

}

public void windowOpened(WindowEvent arg0) {

// TODO Auto-generated method stub

System.out.println("Window opened");

}}

WINDOW FOCUS LISTENER

package Listener;

import java.awt.event.MouseEvent;

import java.awt.event.MouseMotionListener;

import java.awt.event.WindowEvent;

import java.awt.event.WindowFocusListener;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextArea;

public class window1 extends JPanel implements WindowFocusListener {

window1()

{

JFrame b=new JFrame();

b.addWindowFocusListener(this);

b.setVisible(true);

}

CS8392 17

public static void main(String arg[])

{

window1 b=new window1();

}

public void windowGainedFocus(WindowEvent e)

{

// TODO Auto-generated method

stub System.out.println("Window

gained");

}

public void windowLostFocus(WindowEvent e) {

// TODO Auto-generated method stub

System.out.println("Windowlostfocus");

}}

WindowStateListener

package Listener;

import java.awt.event.MouseEvent;

import java.awt.event.MouseMotionListener;

import java.awt.event.WindowEvent;

import java.awt.event.WindowStateListener;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextArea;

public class window2 extends JPanel implements WindowStateListener {

window2()

{

JFrame b=new JFrame();

b.addWindowStateListener(this);

b.setVisible(true);

}

CS8392 18

public static void main(String arg[])

{

window2 b=new window2();

CS8392 19

}

public void windowStateChanged(WindowEvent

e) {

// TODO Auto-generated method stub

System.out.println("State Changed");

}}

ACTION LISTENER

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

import javax.swing.event.*;

public class A extends JFrame implements ActionListener {

Scientific() {

JPanel buttonpanel = new JPanel();

JButton b1 = new JButton("Hai");

buttonpanel.add(b1);

b1.addActionListener(this);

}

public void actionPerformed(ActionEvent e) {

System.out.println(“Hai button”);

}

public static void main(String args[])

{ A f = new A();

f.setTitle("ActionListener")

; f.setSize(500,500);

f.setVisible(true);

}}

Java adapter classes

Java adapter classes provide the default implementation of listener interfaces. If you inherit the

adapter class, you will not be forced to provide the implementation of all the methods of listener

CS8392 20

interfaces. So it saves code.

CS8392 21

The adapter classes are found in java.awt.event, java.awt.dnd and javax.swing.event packages.

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

Java WindowAdapter Example

import java.awt.*;

import java.awt.event.*;

public class

AdapterExample{ Frame f;

AdapterExample(){

f=new Frame("Window Adapter");

f.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {

f.dispose();

}

});

f.setSize(400,400);

f.setLayout(null);

CS8392 22

f.setVisible(true);

CS8392 23

STUDENTSFOCUS
.COM

}

public static void main(String[] args)

{ new AdapterExample();

} }

Java MouseAdapter Example

import java.awt.*;

import java.awt.event.*;

public class MouseAdapterExample extends MouseAdapter{

Frame f;

MouseAdapterExample(){

f=new Frame("Mouse

Adapter");

f.addMouseListener(this);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public void mouseClicked(MouseEvent e) {

Graphics g=f.getGraphics();

g.setColor(Color.BLUE);

g.fillOval(e.getX(),e.getY(),30,30);

}

public static void main(String[] args) {

new MouseAdapterExample();

} }

Java MouseMotionAdapter Example

import java.awt.*;

import java.awt.event.*;

public class MouseMotionAdapterExample extends MouseMotionAdapter{

Frame f;

CS8392 24

MouseMotionAdapterExample(){

f=new Frame("Mouse Motion Adapter");

CS8392 25

STUDENTSFOCUS
.COM

f.addMouseMotionListener(this)

; f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public void mouseDragged(MouseEvent e) {

Graphics g=f.getGraphics();

g.setColor(Color.ORANGE);

g.fillOval(e.getX(),e.getY(),20,20);

}

public static void main(String[] args)

{ new

MouseMotionAdapterExample();

} }

Java KeyAdapter Example

import java.awt.*;

import java.awt.event.*;

public class KeyAdapterExample extends KeyAdapter{

Label l;

TextArea area;

Frame f;

KeyAdapterExample(){

f=new Frame("Key Adapter");

l=new Label();

l.setBounds(20,50,200,20);

area=new TextArea();

area.setBounds(20,80,300, 300);

area.addKeyListener(this);

f.add(l);f.add(area);

f.setSize(400,400);

f.setLayout(null);

CS8392 26

f.setVisible(true);

}

CS8392 27

STUDENTSFOCUS
.COM

public void keyReleased(KeyEvent e)

{ String text=area.getText();

String words[]=text.split("\\s");

l.setText("Words: "+words.length+" Characters:"+text.length());

}

public static void main(String[] args)

{ new KeyAdapterExample();

} }

AWT EVENT HIERARCHY

Swing

 Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create window-based

applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely written in

java.

 Unlike AWT, Java Swing provides platform-independent and lightweight components.

 The javax.swing package provides classes for java swing API such as JButton, JTextField,

JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

CS8392 28

The hierarchy of java swing API is given below

No. Java AWT Java Swing

1) AWT components are platform-

dependent.

Java swing components

are platform-independent.

2) AWT components are heavyweight. Swing components

are lightweight.

3) AWT doesn't support pluggable look

and feel.

Swing supports pluggable

look and feel.

4) AWT provides less components than

Swing.

Swing provides more

powerful componentssuch as

tables, lists, scrollpanes,

colorchooser, tabbedpane etc.

5) AWT doesn't follows MVC(Model

View Controller) where model represents

data, view represents presentation and

controller acts as an interface between

model and view.

Swing follows MVC.

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

CS8392 29

Layout

management Java

LayoutManagers

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is

an interface that is implemented by all the classes of layout managers. There are following classes that

represents the layout managers:

AWT Layout Manager Classes

CS8392 30

STUDENTSFOCUS
.COM

Border layout:

Example:

import java.awt.*;

import javax.swing.*;

public class Border {

JFrame f;

Border(){

f=new JFrame();

JButton b1=new JButton("NORTH");;

JButton b2=new JButton("SOUTH");;

JButton b3=new JButton("EAST");;

JButton b4=new JButton("WEST");;

JButton b5=new JButton("CENTER");;

f.add(b1,BorderLayout.NORTH);

f.add(b2,BorderLayout.SOUTH);

f.add(b3,BorderLayout.EAST);

f.add(b4,BorderLayout.WEST);

f.add(b5,BorderLayout.CENTER);

f.setSize(300,300);

f.setVisible(true);

}

public static void main(String[] args)

{ new Border();

} }

ScrollPaneLayout:

import javax.swing.ImageIcon;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JScrollPane;

public class ScrollPaneDemo extends JFrame

CS8392 31

STUDENTSFOCUS
.COM

{

public ScrollPaneDemo()

{ super("ScrollPane

Demo");

ImageIcon img = new ImageIcon("child.png");

JScrollPane png = new JScrollPane(new JLabel(img));

getContentPane().add(png);

setSize(300,250);

setVisible(true);

}

public static void main(String[] args)

{ new ScrollPaneDemo();

} }

Boxlayout

import java.awt.*;

import javax.swing.*;

public class BoxLayoutExample1 extends Frame {

Button buttons[];

public BoxLayoutExample1 ()

{ buttons = new Button [5];

for (int i = 0;i<5;i++) {

buttons[i] = new Button ("Button " + (i +

1)); add (buttons[i]);

}

setLayout (new BoxLayout (this,

BoxLayout.Y_AXIS)); setSize(400,400);

setVisible(true);

}

public static void main(String args[]){

BoxLayoutExample1 b=new BoxLayoutExample1();

}

CS8392 32

STUDENTSFOCUS
.COM

Group layout:

Example

public class GroupExample

{

public static void main(String[] args)

{

JFrame frame = new JFrame("GroupLayoutExample");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Container contentPanel = frame.getContentPane();

GroupLayout groupLayout = new GroupLayout(contentPanel);

contentPanel.setLayout(groupLayout);

JLabel clickMe = new JLabel("Click Here");

JButton button = new JButton("This

Button"); groupLayout.setHorizontalGroup(

groupLayout.createSequentialGroup()

.addComponent(clickMe)

.addGap(10, 20, 100)

.addComponent(button));

groupLayout.setVerticalGroup(

groupLayout.createParallelGroup(GroupLayout.Alignment.BASELINE)

.addComponent(clickMe)

.addComponent(button));

frame.pack();

frame.setVisible(true);

} } }

Swing components:

Text Fields

The object of a JTextField class is a text component that allows the editing of a single line text. It

inherits JTextComponent class.

Text Areas

CS8392 33

The object of a JTextArea class is a multi line region that displays text. It allows the editing of

multiple line text. It inherits JTextComponent class

CS8392 34

STUDENTSFOCUS
.COM

Buttons

The JButton class is used to create a labeled button that has platform independent implementation.

The application result in some action when the button is pushed. It inherits AbstractButton

class. import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JPasswordField;

import javax.swing.JTextField;

public class SwingFirstExample {

public static void main(String[] args) {

// Creating instance of JFrame

JFrame frame = new JFrame("My First Swing Example");

// Setting the width and height of

frame frame.setSize(350, 200);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

/* Creating panel. This is same as a div tag in HTML

* We can create several panels and add them to specific

* positions in a JFrame. Inside panels we can add text

* fields, buttons and other components.

*/

JPanel panel = new JPanel();

// adding panel to

frame

frame.add(panel);

/* calling user defined method for adding components

* to the panel.

*/

placeComponents(panel);

// Setting the frame visibility to

true frame.setVisible(true); }

private static void placeComponents(JPanel panel) {

CS8392 35

/* We will discuss about layouts in the later sections * of this tutorial. For now we are setting

the layout * to null */

CS8392 36

STUDENTSFOCUS
.COM

panel.setLayout(null);

// Creating JLabel

JLabel userLabel = new JLabel("User");

/* This method specifies the location and size

* of component. setBounds(x, y, width, height)

* here (x,y) are cordinates from the top left

* corner and remaining two arguments are the width

* and height of the component.

*/

userLabel.setBounds(10,20,80,25);

panel.add(userLabel);

/* Creating text field where user is supposed to

* enter user name.

*/

JTextField userText = new JTextField(20);

userText.setBounds(100,20,165,25);

panel.add(userText);

// Same process for password label and text

field. JLabel passwordLabel = new

JLabel("Password");

passwordLabel.setBounds(10,50,80,25);

panel.add(passwordLabel);

/*This is similar to text field but it hides the user

* entered data and displays dots instead to protect

* the password like we normally see on login screens.

*/

JPasswordField passwordText = new

JPasswordField(20);

passwordText.setBounds(100,50,165,25);

panel.add(passwordText);

// Creating login button

JButton loginButton = new JButton("login");

CS8392 37

loginButton.setBounds(10, 80, 80, 25);

panel.add(loginButton);

}}

CS8392 38

Output:

:

Check Boxes

The JCheckBox class is used to create a checkbox. It is used to turn an option on (true) or off (false).

Clicking on a CheckBox changes its state from "on" to "off" or from "off" to "on ".It inherits

JToggleButton class.

Example:

import javax.swing.*;

public class CheckBoxExample

{

CheckBoxExample(){

JFrame f= new JFrame("CheckBox Example");

JCheckBox checkBox1 = new

JCheckBox("C++");

checkBox1.setBounds(100,100, 50,50);

JCheckBox checkBox2 = new JCheckBox("Java", true);

checkBox2.setBounds(100,150, 50,50);

f.add(checkBox1);

f.add(checkBox2);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

CS8392 39

{

new CheckBoxExample();

CS8392 40

}}

Radio Buttons

The JRadioButton class is used to create a radio button. It is used to choose one option from

multiple options. It is widely used in exam systems or quiz. It should be added in ButtonGroup to select

one radio button only.

import javax.swing.*;

import java.awt.event.*;

class RadioButtonExample extends JFrame implements ActionListener{

JRadioButton rb1,rb2;

JButton b;

RadioButtonExample(){

rb1=new JRadioButton("Male");

rb1.setBounds(100,50,100,30);

rb2=new JRadioButton("Female");

rb2.setBounds(100,100,100,30);

ButtonGroup bg=new

ButtonGroup();

bg.add(rb1);bg.add(rb2);

b=new JButton("click");

b.setBounds(100,150,80,30);

b.addActionListener(this);

add(rb1);add(rb2);add(b);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e){

if(rb1.isSelected()){

JOptionPane.showMessageDialog(this,"You are Male.");

}

if(rb2.isSelected()){

CS8392 41

JOptionPane.showMessageDialog(this,"You are

Female.");

} }

CS8392 42

public static void main(String args[]){

new RadioButtonExample();

}}

Lists

The object of JList class represents a list of text items. The list of text items can be set up so that

the

user can choose either one item or multiple items. It inherits JComponent class.

import javax.swing.*;

public class ListExample

{

ListExample(){

JFrame f= new JFrame();

DefaultListModel<String> l1 = new

DefaultListModel<>(); l1.addElement("Item1");

l1.addElement("Item2");

l1.addElement("Item3");

l1.addElement("Item4");

JList<String> list = new

JList<>(l1);

list.setBounds(100,100, 75,75);

f.add(list);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new ListExample();

}}

CS8392 43

Choices (JComboBox)

The object of Choice class is used to show popup menu of choices. Choice selected by user is

shown on the top of a menu. It inherits JComponent class.

import javax.swing.*;

public class ComboBoxExample {

JFrame f;

ComboBoxExample(){

f=new JFrame("ComboBox Example");

String country[]={"India","Aus","U.S.A","England","Newzealand"};

JComboBox cb=new JComboBox(country);

cb.setBounds(50,

50,90,20); f.add(cb);

f.setLayout(null);

f.setSize(400,500);

f.setVisible(true);

}

public static void main(String[] args)

{ new ComboBoxExample();

} }

CS8392 44

Output:

Scrollbars

The object of JScrollbar class is used to add horizontal and vertical scrollbar. It is an

implementation of a scrollbar. It inherits JComponent class.

mport javax.swing.*;

class ScrollBarExample

{

ScrollBarExample(){

JFrame f= new JFrame("Scrollbar

Example"); JScrollBar s=new JScrollBar();

s.setBounds(100,100, 50,100);

f.add(s);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new ScrollBarExample();

}}

CS8392 45

Output:

Windows

The class JWindow is a container that can be displayed but does not have the title bar

Menu

s

The JMenuBar class is used to display menubar on the window or frame. It may have several

menus. The object of JMenu class is a pull down menu component which is displayed from the

menu bar. It

inherits the JMenuItem class.

The object of JMenuItem class adds a simple labeled menu item. The items used in a menu must

belong to the JMenuItem or any of its subclass.

import javax.swing.*;

class MenuExample

{

JMenu menu, submenu;

JMenuItem i1, i2, i3, i4,

i5; MenuExample(){

JFrame f= new JFrame("Menu and MenuItem

Example"); JMenuBar mb=new JMenuBar();

menu=new JMenu("Menu");

submenu=new JMenu("Sub Menu");

i1=new JMenuItem("Item 1");

i2=new JMenuItem("Item 2");

i3=new JMenuItem("Item 3");

i4=new JMenuItem("Item 4");

i5=new JMenuItem("Item 5");

CS8392 46

menu.add(i1); menu.add(i2); menu.add(i3);

submenu.add(i4); submenu.add(i5);

CS8392 47

menu.add(submenu);

mb.add(menu);

f.setJMenuBar(mb);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new MenuExample();

}}

Output :

Dialog Boxes.

The JDialog control represents a top level window with a border and a title used to take some

form of input from the user. It inherits the Dialog class.Unlike JFrame, it doesn't have maximize and

minimize buttons.

Example:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class DialogExample {

private static JDialog d;

DialogExample() {

JFrame f= new JFrame();

CS8392 48

STUDENTSFOCUS
.COM

d = new JDialog(f , "Dialog Example",

true); d.setLayout(new FlowLayout());

JButton b = new JButton ("OK");

b.addActionListener (new

ActionListener()

{

public void actionPerformed(ActionEvent e)

{

DialogExample.d.setVisible(false); }}};

d.add(new JLabel ("Click button to

continue.")); d.add(b);

d.setSize(300,300);

d.setVisible(true);

}

public static void main(String args[])

{

new DialogExample(); }}

Output:

	UNIT I
	OBJECT-ORIENTED PROGRAMMING
	OBJECT
	CLASS
	INHERITANCE
	POLYMORPHISM
	Polymorphism is classified into two ways:
	Method Overriding(Run time Polymorphism)
	ABSTRACTION
	ENCAPSULATION

	DIFFERENCE BETWEEN PROCEDURE-ORIENTED AND OBJECT-ORIENTED PROGRAMMING
	FEATURES OF JAVA
	Simple
	Object-oriented
	Platform Independent
	Secured
	Robust
	Architecture-neutral
	Portable
	High-performance
	Distributed
	Multi-threaded
	Dynamic

	GARBAGE COLLECTION
	THE JAVA ENVIRONMENT
	JRE
	JDK
	JVM (Java Virtual Machine)
	Internal Architecture of JVM
	2. Class(Method) Area
	3.Heap
	4. Stack
	5. Program Counter Register
	6. Native Method Stack
	7. Execution Engine

	STRUCTURE OF JAVA PROGRAM
	A first Simple Java Program
	To compile:
	To execute:

	DEFINING CLASSES IN JAVA
	Syntax:
	A Simple Class
	To create a Box object
	Example1:
	Output:
	Example2:
	Output: (1)
	Declaring Objects
	Syntax: (1)
	Assigning Object Reference Variables Syntax:

	CONSTRUCTORS
	Output:
	Parameterized Constructors
	Example:
	Output: (1)
	Overloading Constructors Example:
	Output: (2)

	METHODS
	Syntax:
	Syntax: (1)
	Example:
	Returning a Value Example:
	Output:
	Syntax: (2)
	Adding a Method That Takes Parameters Example:
	Output: (1)
	The this Keyword
	Syntax: (3)
	Example: (1)
	Output: (2)
	Overloading Methods
	Example: (2)
	Output: (3)
	Method Overriding
	Output: (4)
	Output: (5)

	ACCESS PROTECTION
	1) Private Access Modifier
	Role of Private Constructor
	2) Default Access Modifier
	Example:
	3) Protected Access Modifier
	Example: (1)
	Output:
	4) Public Access Modifier
	Example: (2)
	Output: (1)
	Java access modifiers with method overriding

	STATIC MEMBERS
	Static blocks
	Example:
	Output:
	Static variables
	Important points for static variables :-
	Example: (1)
	Output: (1)
	Static methods
	Syntax:
	Example: (2)
	Output: (2)

	JAVA COMMENTS
	1) Java Single Line Comment
	Syntax:
	Example:
	Output:
	2) Java Multi Line Comment
	Syntax: (1)
	Example: (1)
	Output: (1)
	3) Java Documentation Comment
	Syntax: (2)
	Example: (2)

	DATATYPES IN JAVA
	Example :
	Output:

	VARIABLES
	1) Local Variable
	Example:
	Output:
	2) Instance Variable
	Output: (1)
	3) Static variable
	Example: (1)
	Output: (2)

	OPERATORS IN JAVA
	Arithmetic Operators
	Operator Result
	Output:
	Modulus Operator
	Example:
	Output: (1)
	Arithmetic Compound Assignment Operators
	Syntax:
	Example: (1)
	Output: (2)
	Increment and Decrement Operators
	Example: (2)
	Output: (3)
	Bitwise Operators
	Bitwise Logical Operators
	Example: (3)
	Output: (4)
	Left Shift Operator
	Example: (4)
	Output: (5)
	Right Shift Operator
	Example: (5)
	Output: (6)
	Relational Operators
	Boolean Operators
	Example: (6)
	Example: (7)
	Output: (7)
	Assignment Operator
	Syntax: (1)
	Ternary Operator
	Syntax: (2)
	Example: (8)
	Output: (8)

	CONTROL STATEMENTS
	Selection Statements in Java
	Java’s Selection statements:
	if Statement
	Syntax:
	Example:
	Output:
	if-else Statement
	Syntax:.
	Example: (1)
	Output: (1)
	Nested if Statement
	Example: (2)
	Output: (2)
	if-else-if ladder statement
	Syntax: (1)
	Example: (3)
	Output: (3)
	Switch Statements
	Syntax: (2)
	Example: (4)
	Output: (4)

	ITERATIVE STATEMENTS
	while loop
	Syntax:
	Example:
	Output:
	do-while loop:
	Syntax: (1)
	Example
	Output: (1)
	for loop
	Syntax
	Example (1)
	Output: (2)
	for-each Loop
	Syntax: (2)
	Example: (1)
	Output: (3)
	Nested Loops
	Example: (2)
	Output: (4)

	JUMP STATEMENTS
	Java Break Statement
	Example:
	Output:
	Java Continue Statement
	Example: (1)
	Output: (1)
	Return
	Example: (2)
	Output: (2)

	ARRAYS
	Advantage of Java Array
	Disadvantage of Java Array
	Types of Array in java
	One-Dimensional Arrays
	Syntax:
	Output:
	Declaration, Instantiation and Initialization of Java Array Example:
	Output: (1)
	Passing Array to method in java
	Example:
	Output: (2)
	Multidimensional Arrays
	Syntax: (1)
	Example: (1)
	Output: (3)
	Syntax: (2)
	Example: (2)
	Output: (4)

	PACKAGES
	Syntax:
	package MyPackage;
	package pkg1[.pkg2[.pkg3]];
	package java.awt.image;
	package MyPack
	Example:
	java MyPack.AccountBalance
	Output:
	SINGLE INHERITANCE
	Example: (1)
	Output :
	MULTILEVEL INHERITANCE
	Example: (2)
	Output : (1)
	HIERARCHICAL INHERITANCE
	Example: (3)
	Output : (2)

	“super” KEYWORD
	Usage of super keyword
	1. super() invokes the constructor of the parent class
	Output:
	Output: (1)
	Output
	2. super.variable_name refers to the variable in the parent class

	Output (1)
	Output (2)
	3. super.method_nae refers to the method of the parent class

	Output: (2)
	Output (3)
	Output: (3)

	The Object Class
	ABSTRACT CLASS
	Example abstract class:
	abstract method:
	Example1:
	Output:
	Example2:
	Output: (1)
	Example3:
	Output: (2)
	INTERFACE IN JAVA
	Relationship between classes and interfaces
	Output: (3)
	Output: (4)
	Multiple inheritance in Java by interface
	Output: (5)
	A class implements interface but one interface extends another interface . Example:
	Output: (6)
	Nested Interface in Java
	Key points to remember about interfaces:
	2. Java final method
	3. Java final class

	Output :
	OBJECT CLONING
	Syntax of the clone() method:
	Advantage of Object cloning
	Disadvantage of Object cloning
	Output: (7)
	INNER CLASSES
	Nested Inner class
	Output: (8)
	Method Local inner classes
	Output: (9)
	Static nested classes
	Output: (10)
	Anonymous inner classes
	Output: (11)
	Example:
	Output: (12)
	STRINGS IN JAVA
	Example: (1)
	Output: (13)
	Java ArrayList Example: Book Example:
	Output: (14)

	Unit – III
	Difference between error and exception
	Ex: Exception in thread "main" java.lang.ArithmeticException: / by zero at ExceptionDemo.main(ExceptionDemo.java:5)
	Exception Hierarchy
	Key words used in Exception handling
	Uncaught Exceptions
	Stack Trace:
	Using try and Catch
	Multiple catch Clauses
	throw
	Throws
	finally
	Categories of Exceptions
	Common scenarios where exceptions may occur:
	User-defined Exceptions
	User defined exception needs to inherit (extends) Exception class in order to act as an exception.
	class MyOwnException extends Exception
	public static void main(String[] args)
	Advantages of Exception Handling
	IO IN JAVA
	Stream
	Byte Streams
	Character Streams
	Standard Streams
	Byte Stream Classes:
	Input Stream Classes
	Hierarchy of Input Stream Classes
	OutputStream Class
	Hierarchy of OutputStream Classes
	Character Stream Vs Byte Stream in Java I/O Stream
	Reading and Writing Files:
	FileInputStream
	Byte Stream
	Final Keyword In Java – Final variable, Method and Class
	Output:
	Output: (1)
	UNIT IV
	Thread:
	Multitasking
	1. Process-based multi-tasking
	2. Thread-based multi-tasking
	1. Newborn State:
	2. Runnable State:
	3. Running State:
	4. Blocked State:
	5. Dead State:
	Output: (2)
	Creation Of Thread
	1) Implementing Runnable Interface
	1. Create Thread by Implementing Runnable
	Example:
	2. Extending Thread Class
	Example: (1)
	Thread priority:
	Example :
	Synchronizing Threads
	General Syntax :
	Why use Synchronization
	Types of Synchronization
	Thread Synchronization
	Synchronized method
	Example of synchronized method
	Synchronized block.
	Example of synchronized block
	Static synchronization
	Example of static synchronization
	Inter-thread communication
	wait()
	notify()
	notifyAll()
	Example of inter thread communication in java
	Daemon Thread in Java
	Example: (2)
	Thread Group
	ThreadGroup Example
	Output: (3)
	Generic Programming
	Advantage of Java Generics
	Generic class
	Example: (3)
	Generic Method
	Bounded type
	Syntax :
	Example
	Restrictions on Generics
	UNIT-V
	Graphics programming
	AWT
	Java AWT Hierarchy
	Container
	Panel
	Frame
	Example: (4)
	Event handling:
	How Events are handled ?
	Important Event Classes and Interface
	Mouse Listener
	Mouse Motion Listener
	KEY LISTENER
	ITEM LISTENER
	Window Listener
	WINDOW FOCUS LISTENER
	WindowStateListener
	ACTION LISTENER
	Java adapter classes
	Java WindowAdapter Example
	Java MouseAdapter Example
	Java KeyAdapter Example
	AWT EVENT HIERARCHY
	Layout management Java LayoutManagers
	Border layout:
	ScrollPaneLayout:
	Boxlayout
	Group layout:
	Swing components:
	Text Areas
	Buttons
	Output: (4)
	Check Boxes
	Example: (5)
	Radio Buttons
	Lists
	Choices (JComboBox)
	Scrollbars
	Windows
	Menus
	Output :
	Example: (6)
	Output: (5)

