
OCS752 INTRODUCTION TO C PROGRAMMING

DECISION MAKING
&

BRANCHING

INTRODUCTION

⚫Instruction of a programs are executed either
⚫ Sequential manner

⚫ Branching

⚫C language supports the following decision making
statements.
⚫ if statement

⚫ switch statement

⚫ conditional operator

⚫ goto statement

if statement

• It is used to control flow of execution of statement.

•It is two-way decision statement and is used in conjuction with an

expression

Syntax-

{ Entry

if (condition)

statement 1;

……………..

}

False

TrueEx: if (age is more than 55)

Person is retired

Test expression

?

DIFFERENT FORMS OF IF STATEMENT

simple if if-else nested if-else else if ladder

Simple if statement

entry

true

false

Syntax- if (Condition)

{

statement block;

}

statement x ;

Ex: if (category == sports)

{

marks=marks+bonus;

}

printf (“%f”,marks);

Test expression?

Statement x

Statement block

Program of simple if statement

main()

{

int a,b,c,d;

float ratio;

printf(“\n enter four integer value”);

scanf(“%d %d %d”,&a,&b,&c);

if(c-d !=0)

{

ratio= (float) (a+b)/(float)(c-d);

printf(“Ratio= %f”, ratio);

}

} Output- enter four integer values

12 23 34 45

Ratio= -3.181818

The if…else statement entry

if(Condition)Syntax-

{ true

true block statement; false

}

else

{

false block statement;

}

statement x;

Ex-: if (code== 1)

boy=boy+ 1;

if (code== 2)

girl=girl+1;

if (code==1)

boy=boy+1;

else

girl=girl+1;

Condition

True block statement False block statement

Statement x

Program for if…else statement

main()

{

int a;

printf(“Enter an integer”);

scanf(“%d”,&a);

if(a%2==0)

printf(“ %d is even number”,a);

else

printf(“%d is an odd number”,a);

}

output- Enter an integer

46

46 is an even number

NESTING OF IF…ELSE STATEMENT

Syntax-
if(test condition 1)

{
if (test condition 2)

{
statement 1;
}

else
{
statement 2;
}

}
else

{
statement 3;
}

statement x ;

PROGRAM FOR NESTED IF…ELSE STATEMENT

The else if ladder

syntax-:

if (condition 1)

statement 1 ;

else if (condition 2)

statement 2 ;

else if (condition 3)

statement 3 ;

else if(condition n)

statement n ;

else

default statement ;

statement x;

FLOWCHART OF ELSE….IF LADDER

Program for else…if ladder

THE SWITCH STATEMENT

• The complexity of a program increases by
increasing no. of if statement.

• To overcome this C has a built in multiway
decision statement known as switch.

SYNTAX

case labels (257 case labels)

switch (expression)

{

case value-1:

block1;

break;

case value-2:

block2;

break;

.

.

.

default:

default block;

break;

}

statement x;

FLOWCHART FOR SWITCH STATEMENT

PROGRAM FOR SWITCH STATEMENT

main()
{
int grade,mark,index;
printf(“Enter ur marks \n”);
scanf(“%d”,&mark);
index=mark/10;
switch(index)
{
case 10:
case 9:
case 8:

grade=“Honours”;
break;

case 7:

case 6:
grade=“First Division”;
break;

case 5:
grade=“Second Division”;
break;

case 4:
grade=“First Division”;
break;

default:
grade=“Fail”;
break;

}
printf(“%s”,grade);

}

THE GOTO STATEMENT
• The goto statement is used for branching unconditionally.

• The goto statement breaks normal sequential execution of the program.

• The goto requires label to where it will transfer a control.

• Label is a valid variable name followed by a colon(:).

goto label:

label:

statement;

FORWARD JUMP

label:

statement;

goto label;;

BACKWARD JUMP

PROGRAM TO CALCULATE SUM OF SQUARES OF
ALL INTEGERS

main()

{

int sum=0,n=1;

loop:

sum=sum+n*n;

if(n==10)

goto print;

else

{

n=n+1;

goto loop;

}

print:

printf(“\n Sum=%d”,sum);

}

LOOPING

LOOPS

• A loop allows a program to repeat a group of statements, either any number
of times or until some loop condition occurs

• Convenient if the exact number of repetitions are known

• Loop Consists of

• Body of the loop

• Control Statement

Test
Condition

Body of Loop

Entry Controlled/Pre-Test Loop

Test
Condition

Body of Loop

Exit Controlled/Post-Test Loop

True

False
True

False

STEPS IN LOOPING

• Initialization of condition variable

• Execution of body of the loop

• Test the control statement

• Updating the condition variable

COMMON LOOPS

for while do while

Repetition occurs as long as a condition is true

false

true
Body

FOR

Syntax:

for (expr1; expr2; expr3)

statement;

▪ expr1 controls the looping action,

▪ expr2 represents a condition that ensures loop

continuation,

▪ expr3 modifies the value of the control variable

initially assigned by expr1

keyword

control variable i

for (i=1; i <= n; i = i + 1)

initial value

of control increment of control variable

variable

loop continuation

condition

final value of control variable

for which the condition is true

EXAMPLES

▪ Vary the control variable from 1 to 100 in increments of 1

for (i = 1; i <= 100; i++)

▪ Vary the control variable from 100 to 1 in increments of -1

for (i = 100; i >= 1; i--)

▪ Vary the control variable from 5 to 55 in increments of 5

for (i = 5; i <= 55; i+=5)

EXAMPLES 2

#include <stdio.h>

void main()

{

/* a program to produce a Celsius to Fahrenheit conversion chart for the
numbers 1 to 100 */

int celsius;

for (celsius = 0; celsius <= 100; celsius++)

printf(“Celsius: %d Fahrenheit: %d\n”, celsius, (celsius * 9) / 5 + 32);

}

NESTED FOR LOOPS

• Nested means there is a loop within a loop

• Executed from the inside out

• Each loop is like a layer and has its own counter variable, its own loop expression
and its own loop body

• In a nested loop, for each value of the outermost counter variable, the complete
inner loop will be executed once

General form

for (loop1_exprs) {

loop_body_1a

for (loop2_exprs) {

loop_body_2

}

loop_body_1b

}

WHILE

initialization

condition checking

updation of condition

expression 1;

while (expression 2)

{

statements;

expression 3;

}

▪ The statement is executed repeatedly as long as the expression is true (non
zero)

▪ The cycle continues until expression becomes zero, at which point execution
resumes after statement

▪ If the test expression in a while loop is false initially, the
while loop will never be executed

int i = 1, sum = 0;

while (i <= 10)

{

sum = sum + i;

i= i + 1;

}

printf(“Sum = %d\n”, sum);

FOR AND WHILE

for(expr1; expr2; expr3)
statement;

expr1;
while(expr2)

{
statement;
expr3;

}

BREAK AND CONTINUE

• These interrupt normal flow of control

• break causes an exit from the innermost enclosing loop

• continue causes the current iteration of a loop to stop and the next iteration
to begin immediately

while (expression)
{

statements;
if(condition)
break;
more_statements

}

while (expression)
{

statements
continue;
more_statements

}

DO-WHILE

▪ When a loop is constructed using while, the test for
continuation is carried out at the beginning of each
pass

▪ With do-while the test for continuation takes place at
the end of each pass

do
{

statement
} while (expression);

EXAMPLE

int i = 1, sum = 0;

do

{

sum = sum + i;

i= i + 1;

}while(i<=10);

printf(“Sum = %d\n”, sum);

WHILE VS. DO-WHILE

▪ while -- the expression is tested first, if the result is false, the loop body is
never executed

▪ do-while -- the loop body is always executed once. After that, the expression
is tested, if the result is false, the loop body is not executed again

Thank you

	Slide 1: OCS752 INTRODUCTION TO C PROGRAMMING
	Slide 2: DECISION MAKING & BRANCHING
	Slide 3: INTRODUCTION
	Slide 4: if statement
	Slide 5: DIFFERENT FORMS OF IF STATEMENT
	Slide 6: Simple if statement
	Slide 7: Program of simple if statement
	Slide 8: The if…else statement
	Slide 9: Program for if…else statement
	Slide 10: NESTING OF IF…ELSE STATEMENT
	Slide 11: PROGRAM FOR NESTED IF…ELSE STATEMENT
	Slide 12: The else if ladder
	Slide 13: FLOWCHART OF ELSE….IF LADDER
	Slide 14: Program for else…if ladder
	Slide 15: THE SWITCH STATEMENT
	Slide 16: SYNTAX
	Slide 17: FLOWCHART FOR SWITCH STATEMENT
	Slide 18: PROGRAM FOR SWITCH STATEMENT
	Slide 19: THE GOTO STATEMENT
	Slide 20: PROGRAM TO CALCULATE SUM OF SQUARES OF ALL INTEGERS
	Slide 21: LOOPING
	Slide 22: LOOPS
	Slide 23: Body of Loop
	Slide 24: STEPS IN LOOPING
	Slide 25: COMMON LOOPS
	Slide 26
	Slide 27
	Slide 28: keyword
	Slide 29: EXAMPLES
	Slide 30: EXAMPLES 2
	Slide 31: NESTED FOR LOOPS
	Slide 32: General form
	Slide 33: WHILE
	Slide 34
	Slide 35
	Slide 36: FOR AND WHILE
	Slide 37: BREAK AND CONTINUE
	Slide 38
	Slide 39: DO-WHILE
	Slide 40: EXAMPLE
	Slide 41: WHILE VS. DO-WHILE
	Slide 42

