OCS752 INTRODUCTION TO C PROGRAMMING

DECISION MAKING
&
BRANCHING

INTRODUCTION

Instruction of a programs are executed either

® Sequential manner

® Branching

C language supports the following decision making
statements.

® if statement
® switch statement
® conditional operator

® goto statement

If statement

* It is used to control flow of execution of statement.

oIt is two-way decision statement and is used in conjuction with an
expression

Syntax- If (condition)

{ statement1; Entry

Test expression

? False

Ex: iIf (age is more than 55)

Person Is retired

DIFFERENT FORMS OF IF STATEMENT

simple if if-else nested if-else else if ladder

Simple If statement
Syntax- if (Condition)
{ J entry

statement block; true
} Test expression?
statement x ; v
Ex: if (category == sports) | false Statement block
{

marks=marks+bonus; Statement X

}
printf (“%f”,marks); l

Program of simple if statement
main()
{
int a,b,c,d;

float ratio;
printf("\n enter four integer value”);

scanf(“%d %d %d",&a,&b,&c);
if(c-d !=0)
{
ratio= (float) (a+b)/(float)(c-d);
printf("Ratio= %f”, ratio);
}
} Output- enter four integer values
12 23 34 45
Ratio= -3.181818

The if...else statement

Syntax- if(Condition)
{

true block statement;

}

else

{

false block statement;

}

statement x;

Ex-: if (code==1)
boy=boy+ 1;
if (code==2)
girl=girl+1;

true

True block statement

entry

false

\4

False block statement

Statement x

if (code==1)
boy=boy+1;
else

girl=qgirl+1;

l

Program for if...else statement
main()
{

int a;
printf("Enter an integer”);
scanf(“%d”,&a);
if(a%2==0)

printf(* %d is even number”,a);

else

printf("%d is an odd number”,a);
}
output- Enter an integer

46

46 is an even number

NESTING OF IF...ELSE STATEMENT

Syntax-

statement X

¥

‘ statement-3

[Hﬁy

lesl

condition 1
2

!

statement-2

.04
-
statement-x

!

Next statement

False

y

lest
condition 2
2

‘

statement-1

PROGRAM FOR NESTED IF...ELSE STATEMENT

maini)

{ s
float A. B, C

printf(“Enter three values \n") N
scanf(*%f % %", &A &B, &C)

printf("\nLargest value IS

I‘ (*\ ’B)
{
if (A>C)
printf(*%f\n”
else
printf(“% f\n”
\.
)

else

if (C>B) R
Dnnt?("""bf n". C)

else | ‘
printf("%f\n B)

Output

Enter three values |
23445 67379 88843

Largest value 1S 88843 000000

The else if ladder

syntax-:
if (condition 1)

statement 1 ;
else if (condition 2)

statement 2 ;

else if (condition 3)

statement 3 ;
else if(condition n)

statement n ;

else
default statement ;

statement x;

Entry

+

condition-1

Tr

ue

statement-2 |

—

condition-2

True

et

i i

statement-3

~ condition-3

)

L

statement-n

condinmon-n

|

defaull
statement

Program for else...if ladder

main()

[
\

Nt units, custnum
float charges;
printf(“Enter CUSTOMER NO. and UNITS consumed\n");
scanf("%d %d", &custnum, &units)
if (units <= 200)
charges = 0.5 * unis;
else if (units <= 400)
charges = 100 + 0.65" (units — 200);
else if (units <= 600)
charges = 230 + 0.8 * (units — 400);

else

charges = 390 + (units — 600);
printf("\n\nCustomer No: %d: Charges = % .2f\n"

custnum, charges)
Qutput

Enter CUSTOMER NO. and UNITS consumed 101
Customer No:101 Charges = 75.00

Enter CUSTOMER NO. and UNITS consumed 202
Customer No:202 Charges = 116.25

Enter CUSTOMER NO. and UNITS consumed 303
Customer No:303 Charges = 213.75
Enter CUSTOMER NO. and UNITS consumed 404
Customer No:404 Charges = 326.00

enter CUSTOMER NO. and UNITS consumed 505
Customer No:505 Charges = 415.00

THE SWITCH STATEMENT

* The complexity of a program increases by
increasing no. of if statement.

To overcome this C has a built in multiway
decision statement known as switch.

SYNTAX

switch (expression)

{

case value-1: case labels (257 case labels)
block1;
break;

case value-2:
block2;

break;

default:
default block;
break;

}

statement Xx;

FLOWCHART FOR SWITCH STATEMENT

Entry

4

" switch
~._expression

~

< -

N

expression =
value-1 e ———
5| block-1

expression =
value-2 L
block-2

(no match) -
d?faun default

block

|

statement-x |

PROGRAM FOR SWITCH STATEMENT

main() case 6: . wr
rade="“First Division”;
int grade,mark,index; reak;
printf(“Enter ur marks \n”); case 5: g AT
scanf(“%d” &mark); rade=“Second Division”;
index=mark/10; reak;
switch(index) case 4-
case 10: rade=“First Division”;
case 9: reak;
case 8: default: :
rade="“Honours”; rade="Fail";
reak; reak;

case 7: printf(“%s”,grade);

THE GOTO STATEMENT

The goto statement is used for branching unconditionally.
The goto statement breaks normal sequential execution of the program.
The goto requires label to where it will transfer a control.

Label is a valid variable name followed by a colon(:).

goto label: label:
______________ statement;
label: S | oo

statement; goto label;;

FORWARD JUMP BACKWARD JUMP

PROGRAM TO CALCULATE SUM OF SQUARES OF
ALL INTEGERS

goto loop;
}
print:
printf(“\n Sum=%d”,sum);
}

LOOPING

LOOPS

* Aloop allows a program to repeat a group of statements, either any number
of times or until some loop condition occurs

e Convenient if the exact number of repetitions are known

* Loop Consists of
* Body of the loop

* Control Statement

False

," Entry Controlled/Pre-Test Loop Exit Controlled/Post-Test Loop

STEPS IN LOOPING

e |nitialization of condition variable
* Execution of body of the loop
 Test the control statement

* Updating the condition variable

COMMON LOOPS

for while do while

Repetition occurs as long as a condition is true

i > false

{true

Body

FOR

Syntax:

exprl controls the looping action,

expr2 represents a condition that ensures loop
continuation,

expr3 modifies the value of the control variable
initially assigned by exprl

keyword final value of control variable
for which the condition is true

/

for izl i<=n:i=i+1)

control variable i

I \
Initial value
of control increment of control variable
variable

loop continuation
condition

EXAMPLES

= Vary the control variable from 1 to 100 in increments of 1
for (i=1;i<=100; i++)

= Vary the control variable from 100 to 1 in increments of -1
for (l =100;i>=1; i__)

= Vary the control variable from 5 to 55 in increments of 5
for (i=5;1<=55; i+=5)

EXAMPLES 2

#include <stdio.h>

[* a program to produce a Celsius to Fahrenheit conversion chart for the
numbers 1 to 100 */

int celsius;
for (celsius = 0O; celsius <= 100; celsius++)

printf(“Celsius: %d Fahrenheit: %d\n”, celsius, (celsius *9) / 5 + 32);

NESTED FOR LOOPS

* Nested means there is a loop within a loop

 Executed from the inside out

* Each loop is like a layer and has its own counter variable, its own loop expression
and its own loop body

* Ina nested loop, for each value of the outermost counter variable, the complete
inner loop will be executed once

General form

WHILE

expression 1; initialization

while (expression 2) condition checking
{

statements;

expression 3; updation of condition

}

The statement is executed repeatedly as long as the expression is true (non
zero)

The cycle continues until expression becomes zero, at which point execution
resumes after statement

» |f the test expression in a while loop is false initially, the
while loop will never be executed

Inti=1, sum = 0;

while (i <= 10)
{ 4
sum = sum + i;
=1+ 1;
}

printf("Sum = %d\n”, sum);

FOR AND WHILE

for(exprl; expr2; expr3)
statement;

G

exprl;
while(expr2)

statement;
expr3;

BREAK AND CONTINUE

* These interrupt normal flow of control

* break causes an exit from the innermost enclosing loop

e continue causes the current iteration of a loop to stop and the next iteration
to begin immediately

while (expression)
{
statements;
if(condition)
break;

more_statements

}

while (expression)

{

statements
continue;

more_statements

}

DO-WHILE

When a loop is constructed using while, the test for
continuation is carried out at the beginning of each
pass

With do-while the test for continuation takes place at
the end of each pass

do
{

statement
} while (expression);

EXAMPLE

inti=1, sum=0;
do
{
sum = sum + i;
=i+ 1;
while(i<=10);
printf("Sum = %d\n”, sum);

WHILE VS. DO-WHILE

= while -- the expression is tested first, if the result is false, the loop body is
never executed

= do-while -- the loop body is always executed once. After that, the expression
is tested, if the result is false, the loop body is not executed again

Thank you

	Slide 1: OCS752 INTRODUCTION TO C PROGRAMMING
	Slide 2: DECISION MAKING & BRANCHING
	Slide 3: INTRODUCTION
	Slide 4: if statement
	Slide 5: DIFFERENT FORMS OF IF STATEMENT
	Slide 6: Simple if statement
	Slide 7: Program of simple if statement
	Slide 8: The if…else statement
	Slide 9: Program for if…else statement
	Slide 10: NESTING OF IF…ELSE STATEMENT
	Slide 11: PROGRAM FOR NESTED IF…ELSE STATEMENT
	Slide 12: The else if ladder
	Slide 13: FLOWCHART OF ELSE….IF LADDER
	Slide 14: Program for else…if ladder
	Slide 15: THE SWITCH STATEMENT
	Slide 16: SYNTAX
	Slide 17: FLOWCHART FOR SWITCH STATEMENT
	Slide 18: PROGRAM FOR SWITCH STATEMENT
	Slide 19: THE GOTO STATEMENT
	Slide 20: PROGRAM TO CALCULATE SUM OF SQUARES OF ALL INTEGERS
	Slide 21: LOOPING
	Slide 22: LOOPS
	Slide 23: Body of Loop
	Slide 24: STEPS IN LOOPING
	Slide 25: COMMON LOOPS
	Slide 26
	Slide 27
	Slide 28: keyword
	Slide 29: EXAMPLES
	Slide 30: EXAMPLES 2
	Slide 31: NESTED FOR LOOPS
	Slide 32: General form
	Slide 33: WHILE
	Slide 34
	Slide 35
	Slide 36: FOR AND WHILE
	Slide 37: BREAK AND CONTINUE
	Slide 38
	Slide 39: DO-WHILE
	Slide 40: EXAMPLE
	Slide 41: WHILE VS. DO-WHILE
	Slide 42

