# Mohamed Sathak A J College of Engineering Department of Electronics and Communication Engineering EC6601 VLSI Design Question Bank

# **Unit-I: MOS Transistor Principles**

# Part – A (2 Marks)

| 1.     | Define threshold voltage.                                                 |                 |
|--------|---------------------------------------------------------------------------|-----------------|
| 2.     | What are short channel effects?                                           |                 |
| 3.     | What is meant by velocity saturation?                                     | A/M 18          |
| 4.     | Define scaling. State its types.                                          | A/M 18          |
| 5.     | What is meant by channel length modulation in NMOS transistors            | A/M 17, A/M 16  |
| 6.     | Why nMOS is selected as pull down transistor?                             | N/D 17          |
| 7.     | What is the need of demarcation?                                          | N/D 17          |
| 8.     | Define body bias effect                                                   | N/D 16, N/D 14  |
| 9.     | Draw the stick diagram and layout for CMOS inverter                       | N/D 16          |
| 10.    | What is meant by CMOS latch-up?                                           | A/M 16          |
| 11.    | What is meant by subthreshold conduction?                                 |                 |
| 12.    | What are the second order effects of MOS transistor?                      |                 |
| 13.    | Draw the IV characteristics of NMOS/PMOS transistor                       |                 |
| 14.    | State the merits and demerits of CMOS technology                          |                 |
| 15.    | Draw the fabrication view of n-well/pwell and twin tub CMOS transistor    |                 |
| 16.    | What is meant by DIBL? State its significance.                            |                 |
| 17.    | What are guard rings? State their uses.                                   |                 |
| 18.    | What are SPICE models? What are BSIM models? Write SPICE                  |                 |
|        | descriptions for CMOS inverter.                                           |                 |
| 19.    | What is meant by full scaling or constant field scaling? What is meant    |                 |
|        | by fixed voltage scaling?                                                 |                 |
| 20.    | Define noise margin of CMOS inverter.                                     |                 |
| Part B | 8                                                                         |                 |
| 1.     | Explain the dynamic behavior of MOS transistors.                          | A/M 18          |
| 2.     | Discuss the mathematical equations that can be used to model the drain    | N/D 16          |
|        | current and diffusion capacitance of MOS transistors                      |                 |
| 3.     | Explain the need for scaling. Discuss the principles of constant field    | A/M 17, N/D 17, |
|        | and lateral scaling and analyze its effects on device characteristics     | A/M 16          |
| 4.     | Describe the equation for source to drain current in the three regions of | A/M 16          |
|        | operation of a MOS transistor and Draw the VI characteristics             |                 |

| 5. Explain the DC transfer characteristics of a CMOS inverter with           | A/M 17, N/D 17, |
|------------------------------------------------------------------------------|-----------------|
| necessary conditions for different regions of operation                      | A/M 16          |
| 6. Explain the different steps involved in the n-well CMOS fabrication       | N/D 16          |
| process with neat diagrams                                                   |                 |
| 7. Discuss in detail the following second order effects                      | N/D 13          |
| i) Velocity saturation and mobility degradation.ii) Body effect              |                 |
| iii) Subthreshold conduction. iv)Channel Length modulation                   |                 |
| and explain their effect on short channel transistors                        |                 |
| 8. Draw the stick diagram and layout diagram of                              | N/D 17, A/M     |
| 2 input NAND gate,2 input NOR, 4 input NAND/NOR                              | 18, A/M 17      |
| $Y = (AB + C)' \tag{16}$                                                     |                 |
| 9. Derive the noise margin of a CMOS inverter (4)                            | N/D 16          |
| 10. Discuss in detail with a neat layout, the design rules for a CMOS        |                 |
| inverter                                                                     |                 |
| 11. Explain the principle of operation of NMOS transistor in all operating   |                 |
| regions. (8)                                                                 |                 |
| 12. Discuss in detail various levels of SPICE model for MOS transistors. (8) |                 |
|                                                                              |                 |
| Unit-II: Combinational Logic Circuit                                         |                 |
| Part – A (2 Marks)                                                           |                 |

| 1.  | Define rise delay and fall delay.                                     |                 |
|-----|-----------------------------------------------------------------------|-----------------|
| 2.  | List the types of power dissipation                                   | A/M 18, N/D 17  |
| 3.  | Define Elmore constant. Give Elmore delay expression for propagation  | A/M 18, A/M 17, |
|     | delay of an inverter.                                                 | N/D 17, A/M 16  |
| 4.  | Define propagation delay of CMOS inverter.                            | A/M 17          |
| 5.  | State the advantages of transmission gates                            | A/M 17          |
| 6.  | What is the value of Vout for the figure                              | N/D 16          |
|     |                                                                       |                 |
| 7.  | State the components of static power consumption & dynamic power      | N/D 16          |
|     | consumption.                                                          |                 |
| 8.  | Draw the switch level schematic of multiplexer based nMOS latch using | A/M 16          |
|     | nMOS onle pass transistors for MUX                                    |                 |
| 9.  | Why single phase dynamic logic structure cannot be cascaded? Justify  | A/M 16          |
| 10. | Draw the equivalent RC model for a 2-input NAND gate.                 |                 |
| 11. | Why NAND implementation is preferred over NOR implementation?         |                 |
| 12. | What are all the problems of complementary CMOS logic as fan-in       |                 |

increases? What is meant by progressive transistor sizing? State its significance.

- 13. What is DCVSL logic? Draw its general structure.
- 14. What is Ratioed logic? State its merits and demerits.
- 15. What is pass-transistor logic? State its merits and demerits.
- 16. What is domino logic? State the properties of domino logic.
- 17. What is charge leakage and charge sharing?
- 18. Implement 2-to-1 multiplexer using transmission gate logic.
- 19. Implement 2-input XOR gate using transmission gate logic.
- 20. What is transmission gate logic? State its merits and demerits.
- 21. What is the impact of device sizing on power consumption?
- 22. What is meant by electrical effort/ logical effort/ gate effort/ branching effort?
- 23. What is input reordering? State its significance.
- 24. What is logic restructuring? State its significance.
- 25. What is clock gating

#### Part B

| 1.  | Discuss in detail the performance of pass-transistor and            | A/M 18           |
|-----|---------------------------------------------------------------------|------------------|
|     | transmission gate logic.                                            |                  |
| 2.  | What is dynamic logic? What are precharge and evaluation phases?    | A/M 18, A/M 16   |
|     | Discuss in detail various signal integrity issues in dynamic logic. |                  |
| 3.  | Explain with an example, the operation of domino logic gate.        | N/D 17, A/M 16   |
| 4.  | Compare performance of combinational CMOS digital circuits with     | A/M 16           |
|     | regard to area, speed, and power.                                   |                  |
| 5.  | Discuss in detail the sources of power dissipation in CMOS          | A/M 18, A/M 17,  |
|     | circuits with neat diagrams and circuits                            | N/D 16           |
| 6.  | Explain about DCVSL logic with suitable example(10)                 | A/M 17, N/D 13   |
| 7.  | Write short notes on i)Ratioed Circuits ii)Dynamic CMOS circuits    | N/D 16           |
| 8.  | What is transmission gate? Explain the use of transmission gate     | A/M 17, N/D 17   |
| 9.  | Explain in detail various low power design techniques for           | N/D 17           |
|     | combinational logic.                                                |                  |
| 10. | Draw the CMOS logic circuit of the Boolean expression $Z =$         | A/M 18, N/D 17   |
|     | {A(B+C)+DE}' and explain                                            |                  |
| 11. | Estimate the minimum delay of the pth from A to B as shown in       | A/M 18 (part C), |
|     | figure and Determine the input capacitance to achieve this delay.   | N/D 16           |

The initial inverter may present a load of 1C on the input and output load is equivalent to 5C?



| 12. | Design a four input NAND gate and obtain its delay during the | A/M 18   |
|-----|---------------------------------------------------------------|----------|
|     | transition from high to low                                   | (part C) |

### **Unit-III: Sequential Logic Circuit**

### Part – A (2 Marks)

| 1.     | Compare and contrast synchronous and asynchronous sequential         | A/M 17         |
|--------|----------------------------------------------------------------------|----------------|
|        | logic circuits?                                                      |                |
| 2.     | Compare latches with registers(flip-flops).                          | A/M 18         |
| 3.     | What is meant by pipelining?                                         | A/M 17, N/D 16 |
| 4.     | Draw the schematic of dynamic edge-triggered register.               | N/D 16         |
| 5.     | What is Clocked-CMOS register?                                       | A/M 16         |
| 6.     | What is NORA-CMOS?                                                   | N/D 17         |
| 7.     | Define clock skew                                                    | A/M 18         |
| 8.     | Define clock jitter                                                  | N/D 17         |
| 9.     | Define setup time& hold time.                                        |                |
| 10.    | Define contamination delay.                                          |                |
| 11.    | Compare static memory element with dynamic memory element.           |                |
| 12.    | What are positive latch and negative latch?                          |                |
| 13.    | What is finite state machine? State its types.                       |                |
| 14.    | What is Moore FSM, Mealy FSM?                                        |                |
| 15.    | How do you generate non-overlapping clock signals?                   |                |
| 16.    | What is transition-triggered one-shot.                               |                |
| 17.    | Draw the switch level schematic of CMOS clocked SR flip-flop.        |                |
| 18.    | What is meant by metastability?                                      |                |
| Part – | B (8/16 Marks)                                                       |                |
| 1.     | Discuss about CMOS register concept and Explain the operation of     | A/M 18, A/M 16 |
|        | master-slave based edge triggered register. Explain its operation in |                |
|        | overlapping periods.                                                 |                |
| 2.     | Draw and explain the operation of conventional, pulsed and           | A/M 17         |
|        | resettable latches(8)                                                |                |

| 3.  | Explain timing issues and pipelining(16)                              | A/M 17         |
|-----|-----------------------------------------------------------------------|----------------|
| 4.  | Explain the operation of SR flip-flops.                               | A/M 16         |
| 5.  | Explain the operation of True Single-Phase Clocked Register           | A/M 17, N/D 16 |
|     | (TSPCR).(8)                                                           |                |
| 6.  | Discuss in detail various static latches and registers                | N/D 16         |
| 7.  | Write short notes on NORA-CMOS Latches                                | N/D 16         |
| 8.  | Discuss in detail about the design of sequential circuits and various | N/D 17, N/D 13 |
|     | pipelining approaches to optimize sequential circuits(16)             |                |
| 9.  | Explain the timing basics and clocking distribution strategy in       | N/D 17,        |
|     | synchronous design in detail.(16)                                     |                |
| 10. | Explain in detail various low power design techniques for             |                |
|     | sequential logic.                                                     |                |
| 11. | Explain memory architecture and its control circuits in detail        | A/M 18         |
| 12. | Design a clock distribution based on a H tree model for 16            | A/M 18 (part   |
|     | nodes                                                                 | C)             |
| Un  | it-IV: Design of Arithmetic Building Blocks                           |                |
| Pa  | rt – A (2 Marks)                                                      |                |
| 1   | What is datapath of the processor? State its functions I ist out the  | A/M 17         |

| 1.  | What is datapath of the processor? State its functions List out the   | A/M 17         |
|-----|-----------------------------------------------------------------------|----------------|
|     | components of datapath.                                               |                |
| 2.  | What is bit-sliced datapath?                                          | A/M 16         |
| 3.  | Write full adder output in terms of propagate and generate            | A/M 18         |
| 4.  | Draw the structure of 4x4 barrel shifter                              | A/M 18         |
| 5.  | Give an application of high speed adder                               | A/M 17         |
| 6.  | What is latency?                                                      | N/D 17         |
| 7.  | How to design a high speed adder? Write the principle of any one      | N/D 17, N/D 16 |
|     | fast multiplier                                                       |                |
| 8.  | Why barrel shifter is very useful in designing of arithmetic circuits | N/D 16         |
| 9.  | Derive the Boolean equation for half adder and draw the gate level    |                |
|     | schematic.                                                            |                |
| 10. | What is propagation delay of ripple carry adder?                      |                |
| 11. | What is propagation delay of ripple carry adder?                      |                |
| 12. | What is mirror adder?                                                 |                |
| 13. | What is logarithmic look-ahead adder?                                 |                |

14. Determine propagation delay of n-bit carry select adder.

15. What is carry select adder?

| 16.    | Determine propagation delay of n-bit carry bypass adder.             |                 |
|--------|----------------------------------------------------------------------|-----------------|
| 17.    | What is carry bypass adder?                                          |                 |
| 18.    | Determine propagation delay of n-bit Manchester carry chain in       |                 |
|        | dynamic logic.                                                       |                 |
| 19.    | What are Manchester carry gates?                                     |                 |
| Part – | B (8/16 Marks)                                                       |                 |
| 1.     | Explain in detail the operation of 4-bit ripple carry adder. How the | N/D 17          |
|        | drawbacks of RCA are overcome by CLA adder(16)                       |                 |
| 2.     | Explain in detail the operation of 4-bit carry look-ahead adder and  | A/M 18, A/M 17, |
|        | discuss its types. (10)                                              |                 |
|        | Discuss the details of area and speed trade off(6)                   |                 |
| 3.     | Explain in detail the design of Manchester carry chain adder.        | A/M 16          |
| 4.     | Explain in detail the operation of 16-bit carry bypass adder         | A/M 16          |
| 5.     | Explain in detail the operation of 16-bit carry select adder.        | N/D 16          |
| 6.     | Explain in detail mirror implementation of 4-bit carry look-ahead    | A/M 18, N/D 13  |
|        | adder.                                                               |                 |
| 7.     | Explain the concept of modified Booth multiplier with suitable       | A/M 17, N/D 17  |
|        | example(16)                                                          |                 |
| 8.     | Design a multiplier for 5 bit by 3 bit. Explain its operation and    | A/M 18, N/D 17  |
|        | summarise the number of adders. Discuss it over Wallace              |                 |
|        | multiplier(16)                                                       |                 |
| 9.     | Explain the concept of Booth multiplier with suitable example.       | N/D 16          |
|        | Justify how it speeds up the process (16)                            |                 |
| 10.    | Explain in detail the operation of 4-bit adder. Describe the         | N/D 16          |
|        | different approaches of improving the speed of the adder.(116)       |                 |
|        |                                                                      |                 |

#### **Unit-V: Implementation Strategies**

#### Part – A (2 Marks)

What is System on Chip (SoC)? Give an example. 1. What is meant by design automation? State its merits and demerits 2. 3. What is meant by CBIC? A/M 17 Name the elements in a configuration logic block 4. A/M 17 What are feed-through cells? State their uses. 5. A/M 16 State the features of full custom design 6. A/M 16 What is logic synthesis? 7. What is an antifuse? State its merits and demerits. 8. N/D 16

| 9.  | What is placement? State its goals and objectives.                        |                 |
|-----|---------------------------------------------------------------------------|-----------------|
| 10. | What is extraction? State its types.                                      |                 |
| 11. | What is routing? State its types and objectives.                          | N/D 17          |
| 12. | What is ULSI                                                              | N/D 17          |
| 13. | What is standard cell based ASIC design? State the merits and             | N/D 16          |
|     | demerits of standard cell based design                                    |                 |
| 14. | What is programmable interconnect? State its merits and demerits.         |                 |
| 15. | What are compiled cells? State the merits and demerits of                 |                 |
|     | compiled cells.                                                           |                 |
| 16. | Differentiate PLA, PAL and PROM                                           |                 |
| 17. | What are SPLDs? State its types.                                          |                 |
| 18. | What is CPLD? State its features. Compare features of CPLD with           |                 |
|     | FPGA.                                                                     |                 |
| 19. | What is clock routing? Wht are the two different types of routing         | A/M 18          |
| 20. | What is the role of cell libraries in ASIC design                         | A/M 18          |
| Pa  | rt B                                                                      |                 |
| 1.  | Explain in detail full custom design, and standard cell based design.     | A/M 18          |
| 2.  | Write short notes on routing procedures involved in FPGA                  | A/M 17          |
|     | interconnect(6)                                                           |                 |
| 3.  | Explain in detail semicustom ASIC with its classification & design flow.  | N/D 16, A/M 16  |
| 4.  | Explain in detail ASIC design flow                                        |                 |
| 5.  | Explain in detail different types of programmable interconnect.Explain in |                 |
|     | detail programmable interconnect,                                         |                 |
| 6.  | Explain in detail the functions of Xilinx XC4000 IOB.                     |                 |
| 7.  | Draw and Discuss in detail the building blocks of FPGA and its            | A/M 18, A/M 17, |
|     | programming technologies (10)                                             | N/D 17, N/D 16  |
| 8.  | Discuss in detail various implementation strategies of digital integrated |                 |
|     | circuits.                                                                 |                 |
| 9.  | Discuss in detail various ASIC with neat diagram(16)                      | A/M 18, A/M 17, |
|     |                                                                           | N/D 17          |