EC8453 Linear Integrated Circuit

 UNIT 1

The mainuse of opanp to amplty $a C$ and $D C$ Ilpsisnae
Ininialy used for Mathomatical opactions
Now a days, its applificatim vares
Here Díreet, whichmakes me Dcuotre
A so olp f intermedere
stce chove ground poternal
Theretue delevel at olp stage must be ghifted to ground ie down to ovottge with respeet to grond

Ermitier follower act as level sleitar
push pull onp increare tre olp voltye swins and increact tho current supntyins Capabuat spens

Charactertone of onn
Itish IIP mpedee >ICOKR
Low o/p impedee $<100 \Omega$
Anplities sismal wim frequy rgce oH2 b 1 mus
Low sffect rothe and curet
vony tivithe gais - abut 2,00000 (Reel values ahut 20,000 10 200000)

Que:
What is me difference betwer Digital IC and Linear IC?
Digitersc: Digital Ic's are Complete functining of logic ciraits. that are equivalents of basic transister lugic cercuits.
\rightarrow They are urad to form such circuit us qates, Countors, multipuxers, shift repistus and otmens. It is a pre desisned packape, it is usually requires nothing moreman a power Supply, I/P and o/P.
\rightarrow Dlgital circues are concenned witr only tuo Levels of voltape orcurrent 'Lish arow'. Therefure, accerale comtrn of uperating-repion characterisincs ore not requred in Disital ciralt, so eaxy $t \mathrm{f}$ design mon low wast.
Lipar IC: are equivakents of discrete fransister Néworts, such as amps, filters, frequency multiplies and modulatis, trat often aditional componens ane requied for satisfuctery oparation.
\rightarrow opp electrical signals vary in propertion to tre I/psisoal applied.

The IDeal operational Amplitior
Que: Draw me Ideal opamp and hist the ideal Charactorisnu of opamp]
(a) symbol $\underset{\substack{v_{1} \\ v_{1} \\ v_{1}=0}}{\substack{l_{2}=0}}=v_{0}$
(b) Equivalent Lircuist.

it shows that tre opamp amplities differens betuenme two it shows that
if $v_{1}=0$, output v_{0} is 180° out of phase win I/Psigna/ $v_{\text {a }}$.

$V_{2}=0$, output V_{0} will be in phase with be input siginal applied at v_{z}

Electrical characteristics

1) open lop virtue gain AoL $=\infty$
2) IIP impedence
3) Band widm
4) O / P impedance
$R_{i}=\infty\left[\begin{array}{l}{[\text { so that almost any signal sourlecan drive }} \\ \text { it and mere is }\end{array}\right.$ it and there is no loading of preceding stupe]
BW = ∞ [so that any frequency signal from ot om 42 Can be amplified wimove any atfernuaing
Ru $=0$ [so that olD can drive an ithnite no of omer devices]
5) Zero offset ie $v_{0}=0$ when $v_{1}=v_{2}=0$
6) Infinite Common-mode rejection ratio somat meolp Common-mde noise voltcpe is zero
7) Infinite shew Rate so prat trio olp vottape changes occur simultaniony wit I/P vitipe changes
opentiop operation of opAmp [op signal ins not fed back in any form as part of I lp terminals]

the
\rightarrow since gain is ∞
$\rightarrow 0 / P$ voltcpe is eimer ate its positive
satratim vothe (os) we saturation vote ($-v_{\text {sat }}$) as $v_{1}>v_{2}$ or $v_{2}>v_{1}$ vespeeively.
The op assumes one of the two possible of p states, ie $+v_{s a t}$ or - $V_{\text {sot }}$ and the amplifier act as switen eerily.

[scale value]
[curve not drawn to scale).
$-5-$
\rightarrow op vittape is directery propertimal to me in put difforence volteye anly initl it reaches the satoratim voltupes and that thereaftor output voltepe remains comstant
\Rightarrow ideal voltege tromptr urre, ideal becacse o/p offset volbe is assumed to be zoro
[0π : 20 pratica $0 / P$ op offset voltre is near to 2ars andit iqnued for simplicin for Calalaticos]
NOT
When connected inupen-loupcomfigratim, the opamp simply function as a high-gain ampllfier. There are three open
(2) Inverting amplifier \Rightarrow of $v_{0}=-A v i n$
(3) Non-lovering amplitior \Rightarrow olp $v_{0}=A \cdot v i n$.

Differential amp (openiun)
inverinas Amplitiar

Explain Why openluop comfiguranm is not used in linear applicarions.

\rightarrow Since open leopgain is ∞ o/p voine eimer tivsat,$v_{1}>v_{2}$ or -Vset, $v_{2}>v_{1}$ raspetivey.
\rightarrow if small noise v ottage preset ot-Ilp qet amplitied by the amplinier duet hish opan lupg ain.
\rightarrow From qraph, colly small Ile only it betare as linear
it shows tre inabillty of ap-amp to wolc as a linear somall signal ampltier in the open lwop mode.

Problem: [open lwo]
Depermine the op rottape forme invertins amp.

$$
\text { vin }=20 \mathrm{mvde}, \quad \text { vin }=-50 \mu r \text { peaksine ware, opamp }=741
$$

$A=200,000, R i=2 \mathrm{~m} \Omega, R_{0}=75 \Omega,+v e c=+15 \mathrm{~V},-V E E=-15^{\circ}$.

$$
\begin{aligned}
& \text { and olp swing }= \pm 14 r . \\
& \text { rin }=20 m r d c
\end{aligned}
$$

for invering anp $\quad r_{0}=-4$ vip $=-(2)\left(10^{5}\right)(20)\left(10^{-3}\right)=-4000 \mathrm{~V}$.
This is tre Theoriticol value, the aclicale value will be a nepative sateration $v o l t g e$.

$$
\operatorname{vin}=v_{0}=-A v \ln =-2\left(10^{5}\right)(-50)\left(10^{-6}\right)=10 \mathrm{~V} \text { peaksinewan. }
$$

Mis olp hess tham olp voltape swing.
feedBack in Ideal opAmp
By Comecting extemal comporents around an op-Aomp, we Create a feedback circuit.

The comporenof NamerCalled: FeedBack Resistane Rf. [Feed back Networic]

Type of Feod Back

$$
o / p
$$

: Nepative FeedBack
: Not driver into sateration and the cirarit behaves ina Linear manner

Assumptions:

1) The current draws by eitrer of tre input terminals (Non-inv and inv. I/pterminals neqligible.
2) The differential Ilp voltupe $v d$ betweon non-inverting and lnverting mput terminals is essentially zero.

The inverting Amplifier:
The I / p is applied at the inverting input terminal, the opAMP is called as inverting Amplifier.

The O / P it and IIP is antiphase ie 180° phase difference between them.

Circuit Diagram:

The ole voltupe v_{0} is fed back to the inverting input terminals through the $R f-R$, network where R_{f} is the feed bact resistor. The input signal v_{i} (ac orde) is applied to
 the inverting I / P through R_{1} and nom inverting input terminate of op-AMP is grounded.
Analysis: Assume an ideal-opnonp, As $V_{d}=0$, node ' a ' is at proms potential and the current i, through R, is

$$
i_{1}=\frac{V_{1}}{R_{1}}
$$

Also since opamp draws nocurrent. all the current flowing through R, must flow thrush $n f$. The op valtse

$$
V_{0}=-i_{1} R_{f}=-\left(\frac{r_{1}^{\prime}}{R_{1}}\right) R_{f} .
$$

Hence. Gain of Amp is Closed luygain is

$$
\begin{aligned}
& A C L=\frac{V_{0}}{r_{i}}=\frac{-\left(\frac{v_{i}}{R_{1}}\right) R_{f}}{r_{i}}=\left(\frac{-\eta_{i}}{R_{1}}\right) A \times \frac{1}{H_{i}} \text { effect. } \\
& A C L=-\frac{z f}{2 L_{L}} \quad A C L=-\frac{R f}{R_{1}} \text { fridGe opamp. }
\end{aligned}
$$

The closed Lwop gain $A_{C L}=-\frac{R_{I}}{R_{I}}$ fer ideal cause.
For a pratical upamp, the express)on for me closed lwo gain should be calcllated using a Low frequy model
For pratical opAmp where $A_{O L} \neq \infty, R i \neq \infty$ and $R_{0} \neq 0$, The opanp is a voltepe Corrolled suarce and $A O L V d$ is equivalent Thevenin voltape sounce and R_{0} is tre Thevenin equivalut Resistanc.
Analysis: Let we know equivalent circuit f an op-amp is

$$
R_{i}>R_{1} \text {. so assume }
$$

$$
V_{e q}=v_{i} \text { and } R_{e q}=R_{1}
$$

From Fig(b) out put hoop

$$
\begin{equation*}
v_{0}=i R_{0}+A_{O L} v_{d} \tag{1}
\end{equation*}
$$

Also $\quad V_{d}+i R f+V_{0}=0$

$$
\begin{equation*}
v_{d}=-\left(v_{0}+i s_{f}\right) \tag{2}
\end{equation*}
$$

Sub (3) in (1)

$$
\begin{align*}
& v_{0}=i R_{0}+A_{O L}\left[-\left(v_{0}+i R_{f}\right)\right] \\
& v_{0}=i R_{0}-A_{0 L} v_{0}-i R_{f} A_{0 L} \\
& v_{0}+A_{O L} V_{0}=i\left(R_{0}-R_{f} A_{O L}\right) \\
& V_{0}+A_{O L} V_{0}=i \tag{4}\\
& \frac{B}{3}\left(R_{0}-R_{f} A_{O L}\right.
\end{align*}
$$

(a)

(b) Equivalat $c k$ of pratical opamp invering amplifier.

(c) simplitied cre using the vienin equivalut

Afso the KVL Copopequation gives

$$
\begin{equation*}
V_{i}=i\left(R_{1}+R_{f}\right)+V_{0} \tag{5}
\end{equation*}
$$

'Sub' (3) in (3)

$$
r_{i}=\frac{V_{0}+A_{0 L} V_{0}}{i\left(R_{0}-R_{f} A_{0 L}\right)} \cdot\left(R_{1}+R_{f}\right)+V_{0}
$$

Multiply ($R_{0}-R_{f} A 0 L$).

$$
\begin{aligned}
r_{i}\left(R_{0-R} R_{0 L}\right) & \left.=\frac{V_{0}+A_{0 L} V_{0}}{\xi\left(R_{0}-R_{f} A_{0 L}\right)}\left(R_{f}+R_{1}\right) f R_{0}-R_{7} A_{0 L}\right) \\
V_{i}\left(R_{0}-R_{f} A_{0 L}\right) & =V_{0}+A_{0 L}\left(V_{0}\left(R_{0}-R_{f} A_{0 L}\right) .\right. \\
& =V_{0}\left[1+R_{0 L}\right)+V_{0}\left(R_{0}-R_{f} A_{0 L}\right) \\
& \left.\left.=V_{0}\left[\left(R_{1}\right)\right]+\left(R_{0}-R_{f}\right)\left(1+A_{0 L}\right)\right]+\left(R_{0}-R_{f} A_{0 L}\right)\right] \\
& =V_{0}\left[R_{1}+R_{f}+R_{1} A_{0 L}+R_{f} R_{O L}+R_{0}-R_{f} A_{0 L}\right] \\
& =V_{0}\left[R_{0}+R_{f}+R_{1}\left(I+A_{O L}\right)\right] \\
V_{i}\left(R_{0}-R_{f} A_{O L}\right) & =V_{0}\left[R_{0}+R_{f}+R_{1}\left(1+A_{0 L}\right)\right]
\end{aligned}
$$

$$
A\left(L=\frac{r_{0}}{r_{i}}=\frac{R_{0}-r_{f} A_{0 L}}{R_{0}+R_{f}+R_{1}\left(1+A_{0 L}\right)}\right.
$$

Closed loop gain of pratical opamp in for loverring amplifior.
$A_{0 L} \gg 1$ and $A_{0}\left(R_{1} \gg R_{0}+R_{f}\right.$ and neqleting R_{0}.

$$
A C L=\frac{-R_{F}}{R 2}
$$

Ilp Resistanu:

$$
R_{i f}=\frac{v_{d}}{i}
$$

Fromlup equation $\quad V_{d}+i\left(R f+R_{0}\right)+$ AOL Vd $=0$

$$
\begin{aligned}
& V_{d}\left[1+A_{0 L}\right]+i\left[R_{f}+R_{0}\right]=0 \\
& V_{d} \cdot\left(1+A_{0 L}\right)=-i\left(R_{f}+R_{0}\right) . \\
& \frac{V_{d}}{i}=\frac{R_{0}+R_{f}}{1+A_{0} L}
\end{aligned}
$$

Tpresistance:

The' NoN inverting Amplifier
The input v in is applied to the Non inverting terminal. This circus gives op in phase with tho I/p signal!

Win is either $a c$ or $d c$.

As the differential vortape V_{d} at the I/p terminal of op-amp is zeno.
 the voltage at node ' a ' is $v i$, Same as I/P voltye at non inverting terminal.

R\& and R_{1} forms a potential

Probum:
(1) Desisn an amplitier with a gain of -10 and I/P Ressteve equal to $10 \mathrm{k} \Omega$

Soution: Itp gain given in Nepative, so inverting amplitior her to be design.

$$
\begin{aligned}
& R_{1}=10 \mathrm{k} \Omega \\
& A C_{L}=10
\end{aligned}
$$

$$
A C L=\frac{-R_{1}}{R_{1}}
$$

$$
R_{f}=-A C L R_{1}
$$

$$
n_{4}=-10 \times 10 \mathrm{k} \Omega=100 \mathrm{k} \Omega
$$

(2) For an inverting amplitier, $R_{1}=10 \mathrm{k} \Omega, R_{f}=100 / \mathrm{c} \Omega, v_{i}=1 \mathrm{~V}$ $R_{L}=25 \mathrm{~K}$. Calalate
(i) i_{1}
(ii) V_{0}
(iii) Il and i_{0}.
(i) $\dot{l}_{1}=\frac{v_{i}}{R_{1}}=\frac{1 \mathrm{~V}}{10 \mathrm{ke}}=0.1 \mathrm{~mA}$
(2.)

$$
\begin{aligned}
V_{0}=\frac{-R_{A}}{R_{1}} \cdot v_{1}^{\prime} & =-\frac{100 \mathrm{k} \Omega}{10 \mathrm{k} \Omega} \cdot 1 \mathrm{v} \\
& =-10 \mathrm{~V} .
\end{aligned}
$$

(3). $i_{L}=\frac{V O}{R_{L}}=\frac{10}{25 \mathrm{~K}}=0.4 \mathrm{~mA}$
(4) i_{0} total current $=l_{1}+i_{L}=0.1 \mathrm{~mA}+0.4 \mathrm{~mA}=0.5 \mathrm{~mA}$.
(3) Design an amplitior with gais of $t 5$ using opamp, , $R_{1}=10 \mathrm{~N}$

$$
\left.\begin{array}{rl}
\text { for } \\
\text { imporing }
\end{array}\right] \begin{aligned}
A_{C L} & =1+\frac{R_{A}}{R_{1}} \\
5 & =1+\frac{R_{t}}{R_{1}} \\
5 & =1+\frac{R_{A}}{10 \mathrm{k}}, 5-1=\frac{R_{t}}{10 \mathrm{k}}, \\
R & =4 \times 10 \mathrm{R}=40 \mathrm{k} \Omega
\end{aligned}
$$

(4) 10102 loive find vo

$$
\begin{aligned}
A F=1+\frac{R t}{R_{1}} & =1+\frac{10 \mathrm{~K}}{10 \mathrm{k}} \\
& =2 \\
A_{F}=\frac{V 0}{V_{\text {in }}} \quad V_{0} & =A F^{2} \cdot \operatorname{vin} \\
V_{0} & =2 \times 3 \mathrm{~V}=6 \mathrm{~V} .
\end{aligned}
$$

(4) $\quad R_{1}=5 \mathrm{kR}, \quad R_{f}=20 \mathrm{k} \Omega, \quad r_{i}=1 \mathrm{v}, \quad R_{L}=5 \mathrm{k} \Omega$

Calalase $r_{O}, A C L, i_{L}$ and i_{0}
(i) $V_{0}=\left(1+\frac{R_{1}}{R_{1}}\right) v_{i}=\left(1+\frac{20 \mathrm{kR}}{5 \mathrm{k} \mathrm{\Omega}}\right) \mathrm{VV}=5 \mathrm{~V}$
(2) $A C L: \frac{v_{0}}{v_{i}}=\frac{5 v}{1 v}=5 ष$.
(3) $i_{L}=\frac{V_{0}}{R_{L}}=\frac{5}{5 K \Omega}=1 \mathrm{MA}$

(4) $i_{1}=\frac{v_{i}}{R_{1}}=\frac{v_{0}-v i}{R_{f}}=\frac{5 v-k}{20 k}=\frac{4}{201 c}=0.2 \mathrm{~mA}$.
(5) $i_{0}=i_{1}+i_{c}=1 \mathrm{MA}+0.2 \mathrm{~mA}=1.2 \mathrm{MA}$.

Voltape follower: wue [Define vortye follwer (or) Explain voltef flower.
(or) Nor menerting butter.
Let we cnow $\frac{v_{0}}{v_{i}}=1+\frac{R_{f}}{R_{1}}$ if $R_{f}=0$ and $R_{1}=\infty$, the circut beames.
$r_{0}=r_{i} i e$, the output vottcpe is equal to
Ilp vottape, both in magnitude and phase. otmerwis op voltre follow the I/P voitupe. Hence this circut called voitcye fllowe

I/P impedence is very hish $(M \Omega)$ Op impedence is zero
Therefore, it draws ne gligible current from the source

Use:

used as butter for impedence matching, ie, to conrect a hish impedernce source to a low impedence load. Formulas.

$$
\begin{aligned}
& A_{F}=1, R_{\text {iF }} \\
&=A R_{i}, R_{0 F}=\frac{R_{0}}{A}, f_{f}=A f_{0} \\
& V_{\text {cot }}=\frac{ \pm \text { VSat }}{A}
\end{aligned}
$$

- Differential amplitier:

Que: Draw the ditferenrial amplifier and Dotive an exprestion for Commen mode Rejectionnariol

Definition: A circut that amplities tre ditference between two inpur signals is called a difference orr differential amplitier.

Use: Used in instrumentation ciruts and Induzrial applications.
Significance: impertance of Difteremeal amplitior is betfer able to reject Coromm mode (nolse) voltupe than single I/P circuit \& Circut consist of I/P Resistane, feed back resistonce $\left(R_{2}\right)$ and Load Resistame R_{L}. I/p are V_{2} and r_{1} Since, the differential voltepe at the I/P termmals of the op-amp is zerre, nodes ' a ' and ' b ' are at Same potential, designated as V_{3} The nodel equation at ' a ' $\frac{V_{3}-v_{2}}{R_{1}}+\frac{v_{3}-v_{0}}{R_{2}}=0$

$$
\begin{equation*}
\frac{v_{3}}{R_{1}}-\frac{v_{2}}{R_{1}}+\frac{v_{3}}{R_{2}}-\frac{v_{2}}{R_{2}}=0 \tag{1}
\end{equation*}
$$

Rearr ange tre equations(1) and (2)

$$
\begin{align*}
& {\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right] v_{3}-\frac{V_{2}}{R_{1}}=\frac{v_{0}}{R_{2}}} \tag{1}\\
& {\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right] v_{3}-\frac{v_{1}}{R_{1}}=0} \tag{4}
\end{align*}
$$

sub (3) -(4)

$$
\begin{gathered}
{\left[\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}-\frac{v_{2}}{R_{1}}\right]-\left[\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}-\frac{v_{1}}{R_{1}}\right]=\frac{v_{0}}{R_{2}}} \\
\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}-\frac{v_{2}}{R_{1}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}+\frac{v_{1}}{R_{1}}=\frac{v_{0}}{R_{2}} \\
\frac{1}{R_{1}}\left[v_{1}-v_{2}\right]=\frac{v_{0}}{R_{2}} \quad v_{0}=\frac{R_{2}}{R_{1}}\left[v_{1}-v_{2}\right]
\end{gathered}
$$

$$
V_{0}=\frac{R_{2}}{R_{1}}\left[V_{1}-V_{2}\right]
$$

voltage
ain $_{A_{D}}=\frac{r_{0}}{r_{1}-r_{2}}=\frac{R_{2}}{R_{1}}$
conclunm:
These circuit useful for detecting very small difference in signals since the gain R_{2} / R_{1} can be chosen to be very large.

For exambe, if $R_{2}=100 R_{1}$, then the small difference $r_{1}-r_{2}$ is amplified 100 times.

Difference mode and Comm mode gains
Let $r_{0}=\frac{R_{2}}{R_{1}}\left[r_{1}-v_{2}\right]$, if $r_{1}=v_{2}$, the op $v_{0}=0$ for ideal op-amp only.

But pratical op-amp, $r_{1}=r_{2}$, we wont get $v_{0}=0$ dues common mode component of I/p signal (vottupe)

Forexnmb: V_{0} will have different value
(a mi) $\quad r_{1}=1$ cop uv, $r_{2}=50 \mu \mathrm{~V}$.
(ii) $v_{1}=1000 \mu \mathrm{r}, v_{2}=950 \mu \mathrm{v}$.

In Botrobecauses difference $\left[v_{1}-v_{2}\right)=50 \mu v$ But output is different, due to average voltage of I/psisnals. that is called common mode sisnal.

Not: (Important)

$$
V_{c n}=\frac{r_{1}+r_{2}}{2}
$$

$$
\begin{aligned}
& \frac{150}{2}=75 \\
& \frac{1950}{2}=975
\end{aligned}
$$

Forme differential amp.
if $v_{1}=v_{2}$, but voltupe at hade a and ' b ' are different becase f Resistance from V_{2} since is $\cong R_{1}$ and from $V 1$ some is $\simeq\left(R_{2}+R_{3}\right)$. The voltage at the positive terminal slightely grater than Negative terminal, So out is Not $\frac{2 e r o}{}$
"The o/p. There fore must be expressed ar

$$
\begin{equation*}
r_{0}=A_{1} r_{1}+A_{2} r_{2} \tag{1}
\end{equation*}
$$

Where A_{1} is gain when V_{1} is applied, $V_{2}=0$

$$
\begin{aligned}
& A_{2} " \quad v_{Q} \text { is applied, } \quad v_{1}=0 . \\
& V_{\text {cm }}=\frac{v_{1}+v_{2}}{2}, \quad r_{d}=\left(r_{1}-v_{2}\right)
\end{aligned}
$$

find v,

$$
\begin{align*}
& 2 v_{c m}=v_{1}+v_{2} \tag{2}\\
& v_{d}=v_{1}-r_{2} \\
& 2 v_{c m}+v_{d}=2 \\
& v_{c m}+\frac{v_{d}}{2}=v_{1}
\end{align*}
$$

$$
\begin{equation*}
\underset{2 \operatorname{An} n^{(3)}}{\operatorname{Ac}\left(v_{c m}+v_{d}=2 v_{1}\right.} \tag{4}
\end{equation*}
$$

sub (4) in (3)

$$
\begin{align*}
& V_{d}=V_{c m}+\frac{V_{d}}{2}-V_{2} . \\
& V_{2}=V_{c m}+\frac{V_{d}}{2}-V_{d} \\
& V_{2}=\left[V_{c m}-\frac{V_{d}}{2}\right] \tag{5}
\end{align*}
$$

sun (4) and (5) in (1)

$$
\begin{aligned}
V_{0} & =A_{1}\left[V_{c m}+\frac{v_{d}}{2}\right]+A_{2}\left[V_{c m}-\frac{v_{d}}{2}\right] \\
& =A_{1} V_{c m}+\frac{A_{1} v d}{2}+A_{2} V_{c m}-\frac{A_{2} v d^{2}}{2} \\
V_{0} & =V_{c m}\left[A_{1}+A_{2}\right]+V_{d}\left[\frac{A_{1}}{2}-\frac{A_{2}}{2}\right] \\
V_{0} & =V_{C M} \cdot A_{\text {CM }}+V_{d} A_{\text {DM }} .
\end{aligned}
$$

voltape $A_{\text {cn }}=A_{1}+A_{2}, A_{D m}=\frac{1}{2}\left[A_{1}-A_{2}\right]$

Commm mode.Rapjection Ratio (CMRR)
(ovefine cmnn)
It is defined as the ratio of differene mode sisnal to common mode sisnal is called $C m R_{R}$ and gives the figere of nesit ρ for the differential amplitior.

So $c m R R$ is given by

$$
\rho=\left|\frac{A D m}{A C m}\right| . \mid \quad i n d s
$$

MA741 minimm CNaR 7018. $\mu_{4} 725 \mathrm{~A}$ is 120 dn .
For ided upamp $A O M, A \mathrm{~cm}$ is shood be zen. so the higher value of CmRR, better is me op-amp
For prancal amp $C m n n$ ind $s=20 \log / \frac{A D}{A C} / d s$.
problem Incirait

$$
\begin{aligned}
& R_{1}=R_{2}=1 \mathrm{k} \Omega \\
& R_{F}=R_{3}=10 \mathrm{ke} \text { and }
\end{aligned}
$$

opamp is MAT4IC.
(1) What are tre gain and input resistane of amplitier?

(2) find v_{0} if $v_{2}=2.7 v_{p p}$

$$
v_{1}=3 \mathrm{rpp} \operatorname{sine} \text { wave at } 100 \mathrm{~Hz} \text { : }
$$

$$
\text { qain } A_{0}=\frac{-R_{F}}{R_{1}}=-\frac{10 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=-10 .
$$

Resistane by source v_{2} is R_{1}, so R_{i} by savee $U_{2}=1 / 0 \Omega$

$$
\begin{aligned}
& 11 \quad r_{1} \text { is }\left(R_{2}+R_{1}\right), \text { so } R_{1} \text { hy smes } v_{1}=1 k \Omega+10 k 2 \\
&=11 k \Omega \\
& A_{D}=\frac{r_{0}}{r_{1}-r_{2}}= \\
& V_{0}=A_{0}\left(r_{1}-r_{2}\right)=-10(3-2.77) \\
&=
\end{aligned}
$$

Oifterential Amplifior [BJT ditforermal emplition $](\mathrm{cr})$ DeAnllion

The differentsal amplifior used to amplities tre differemee between two Input signals. It is designed to provide Ligh sain md higen I/P. impedence. The main purpur of this Amplitier is to provide high gain to tre difforene mode sisnal and Cancel the common mode sisnal.

Feateres:

1) High nifferential vortape gain
2) High ($m n R$
3) High I/P impe donce
4) Low offiset voitue and currents
5) Low common mode gain.
6) Large B andwidm.
7) Low o/pimpeden6.
8) Low drift

Basic Difforontial Amp [pnncipu).

1) It uses emitter Couple Configuration
2) Transister θ_{1} and Q_{2} are similler Characterisites
3) $R C_{1}=R C_{2}$
4) $R E_{1}=R E_{2}$
5) mupanitude of $V \subset C$ and $-V E E$ are sume.
6) Balanced output amplitier.

Balanced olp sitferential amplitier
It has two input terminals, terminal B_{2} is mu in verring Ilp terminal and B_{1} is tre non-inverting I/p terminal.

Modes of oporation:
Differential mode of operation

1) Two Ilp signals are different from eachotrer, same maganitude but 180° out of phase.
operation:

* I/P signals are applied

-vae
at B_{1} and B_{2} of Transistars Q_{1} and $O_{2}, \frac{1}{z}$
it werks: © At Base 2 : fue signal appliod.
Bits: amplitied Nepative qoing signal develops at on
collectar of Q_{1}, puet posidive I/p. $v o t t a p e ~ d r o p$ across RE. amptitied positire signal develups on Cottector of od andit develo p
(2) At Base 2 : When Nopanive signal applied, amplitied positive sisnal develops on collecter of Q_{2}. Due to Nepanve I/P Nepative vultage drep across RE.

So signal voltape acrous R_{E} is equal magnitude and 180° out of phase, due to symmery of transistors. Hence these two sisnals are cancel eachomer and no sisnal across $R E$. so there is no ac sisnal flowing $R E$.
O/P: The O/P istaken at collecter of boththe transistors, equal magnitude but out of phase. And v_{0} is the difterene between two dignols.

$$
\text { ap: } 10-(-10)=20 \mathrm{~V}
$$

Commen mode operation
Base of both transistars B_{1} and B_{2} Jrined togather and conneeted to a voltye Vem called common modo vultape

$$
V_{1}=V_{2}=V_{c m}, Q_{1} \text { and } Q_{2} \text { forrood }
$$

Forward Biased and matched, dueto symmerry of tre circuts,

the current IQ divides equaly throyb Q_{1}, and $O L \sum_{-V E E}$. ie $I_{E 1}=I_{C 2}=I_{Q} / 2, I_{C 1}=I_{C_{2}}=\alpha_{R} \frac{I_{0}}{2}$, The voltege at collectors will he $V_{C C}-\alpha F \frac{I Q}{2} R C$ and therefare $V_{01}-V_{02}=O$. Evon iftre Vcm value is
Changed, Voltcpe cecross Colleeters wull hot chanpe. So it rejeed Commm mida it

Differential mo le rperakn
$-20-$
if

$$
r_{1}=1 v, \quad r_{2}=0, Q_{1}-O N, Q_{2-O F F}
$$

the The entire current flow through Q_{1} since O_{1} is 'on, the voltage at its emitter will be 0.3 V . This makes $B-E$ jumcrim of a_{2} Revers B lased and Q_{2} will remain OFF. The collects voltre
 of Q_{1} ie V_{01} will be (VCC - $\left.\alpha F I_{0} R C\right), V_{0_{2}}=V C C$.

Cavil) If $r_{1}=-1 v, r_{2}=0, \theta$ will be off and entire current IQ will flow thigh Q2. The voltage at the common Emittrpoint E' will be 0.7 V which makes $O, O F R$ and 02 ON. The colleeN Volthewill he $\quad V_{01}=V C C, \quad V_{02}=V C C-\alpha F I O R C$.
Conclutim:
The diff amplitiorie pair responds only to to difference modesisnals and Reject comm mode signals.
Differential Amplifier wit Active Load
The open circuit voltepe gain of an opanp. should be as large as possible and this achived by cascading gainsteses.
However, this increase tree phase shit to and amplifier becomes more suceprice to bracing out into oscilations.

IDes to increasing gain by putting Large value of R_{C} However, there are limitatims to use of the maxima $R C$. Limitations:
(1) Large value of Resistme Requires a large chip ares.
(2) For large $R C$, drop Gros $R C$ cncreseas and hence powerspry required to maintain a given quiscent collector current.

This diffculties are circumvented by using
a currant somber as toad in the place of $R C$

The current mimer when act as an active 1 and
current sauce, its dynamic resistance (ac) is very high. Hence current mimer can also be used as om activeluad. fer an amplitior to obtain a vory Large voltcpegav. Fro ciurit Q_{3} and Q_{4} act as currentmmor The constant current IQ may also be obtained from a current mirror.
 under the quiescent conditions. [N osignal Applied But powersipply is on]

$$
V_{1}=V_{2}=0 .
$$

Q1 and CO_{2} pere same so I1 $=I_{2}=I G / 2$
Where base current are assumed to be neqleted.
sine O_{3} and O_{4} form a current mirror, $I=I_{1}=I 2$

$$
\begin{aligned}
& I L=I-I 2=0 \quad \begin{array}{l}
\text { The wad current IL } \\
\text { Next stapeis }
\end{array} \\
& \text { when } V_{1} \text { is increased over } V_{Q}, I_{1} \\
& \text { creases. } \\
& I /+I 2= \\
& I_{1}=I Q \text { (constant). }
\end{aligned}
$$

Abs the current I aleays remain equal to I, due to Gerent mirror, The head Current

$$
\begin{aligned}
I L & =I-I_{2}=I 1-\hat{L} 2 \\
& =9 n_{1}-g v_{1} v_{2}=\operatorname{sn}\left(v_{1}-v_{L}\right) \\
I L & =9 n v_{d}
\end{aligned}
$$

The circus thus behave as frons anductar amplifier

What is the purpure of using differential Amplifier with active Load?
(1) Toprovide an high vortupe gain to the differential input signal and signle ended op ie reforered to the ground is ort armed.

Current mirrer circuet: (Constant current sinre)
Depinition: The cercuit 10 which the $0 / P$ currest forced to equal to input current is called curront mirror. in acercut, the output curront is the miror imape of the input cument.
$\rightarrow Q_{1}$ and Q_{2} are symmetrical.
The I/p current Ir of flows thrughtre diodo conneeted fransistor θ_{1}

$$
I_{\text {sunce }}=I \sin x \text {. }
$$

it collector currout $I_{C_{2}}=I_{0} \approx I_{\text {rof }}$
Since the O/P curront I_{0} is a reflection miorer of the refrencecurrat Iref. The mirrer effect is however, valid on'ly for large values of β
Analysis:

$$
\begin{align*}
& I e_{1}=\alpha F I E_{S} e^{V B E_{1} / V T} \tag{1}\\
& I C_{2}=\alpha F I E S e^{V A E 2 / V T} \tag{2}
\end{align*}
$$

(7) $\frac{I e_{2}}{I C_{1}}=e^{\left(V B E_{2}-V B E_{1}\right) / V T}$

Since $V B E_{1}=V B E_{2}$ we obtain

$$
I_{C_{1}}=I_{C 2}=I_{C}=I_{0}
$$

Also $\quad \beta_{1}=\beta_{2}=\beta$ (Botn the rromstor eque)
KCL at the colleehor \& Q, q, ves.

$$
\begin{aligned}
\text { Iref } & =I c_{1}+I \beta_{1}+I \beta_{2} \\
& =I c_{1}+\frac{I c_{1}}{\beta_{1}}+\frac{I c_{2}}{\beta_{2}}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { Irep }=I_{c}+\frac{I c}{\beta_{1}}+\frac{I c}{\rho_{2}} \quad \quad \beta_{1}=\rho_{2}=P \\
\text { Iret }=I_{c}\left[1+\frac{2}{\beta}\right]=I_{c}\left[\frac{\rho+2}{\beta}\right] \\
I_{c}=\left[\frac{\rho}{\beta+2}\right] \text { Iref. } \tag{3}
\end{array}\right.
$$

from circut

$$
\text { Iref }=\frac{V C C-V D E}{R_{1}} \approx \frac{V C C}{R_{1}}
$$

From equarion (3) for p T力T, $P / B+2$ is almost unity
$S_{0} I_{c=I}$ I. Iret for R_{1} constant.
ryplcally Io vavies hy ahout 3% for $50 \leq \beta \leq 200$

Prion in current more:

$$
\begin{aligned}
\text { Let IC }=\frac{P}{\beta+2} \text { Tref } & =1.0 \mathrm{~mA}
\end{aligned}=\frac{125}{125+2} \times \frac{10 \mathrm{~V}-0.7 \mathrm{v}}{R_{1}}
$$

Prow back in Basic current moor
widlar current source: depandion ρ, if p is las IofIry.
Limitation of Basic current mirror: whenever, we need low Value of current sure, the value of the Resistance R, required sufficient high and can not be fabricated eqnumlcy in Ic circus,

This Limitation is overcome by including R_{E} in the Emitterleed of Q_{2}. Due to $R E, V B E_{2}<V B E$, and Consequent y current Io is smaller than $I_{e l}$
Analysis/eirait Diagram

"Analysis: (aridlar current sonce)
Let $I_{C_{1}}=\alpha_{A} I_{E S} e^{V \Delta E Y V T}, \quad I_{C_{2}}=\alpha_{F} I_{E S} e^{V B E_{2} / V_{1}}$
Ratio

$$
\begin{equation*}
\frac{L_{C_{1}}}{I c_{2}}=e^{\left(V \Delta E_{1}-V \Delta E_{2}\right) / V_{1}} \tag{1}
\end{equation*}
$$

Take Natural wor botro trisides

$$
\begin{align*}
& \ln \left[\frac{I C_{1}}{I_{C 2}}\right]=\frac{V B E_{1}-V B E_{2}}{V T} \\
& V T \ln \left[\frac{I_{C 1}}{I_{C_{2}}}\right]=V B E_{1}-V B E_{2} . \tag{2}
\end{align*}
$$

Apply KVL fer the emister kerop.

$$
\begin{align*}
& V B E_{1}=V B E_{2}+\left(I B_{2}+I C_{2}\right) R E \\
& V B E_{1}-V B E_{2}=\left(I B_{2}+I C_{2}\right) R E \\
&=I C_{2}\left(1+\frac{I B_{2}}{I C_{2}}\right) R E \\
& V B E_{1}-V B E_{2}=I C_{2} R E\left[1+\frac{1}{\beta}\right] . \tag{3}
\end{align*}
$$

From (2) and (3)

$$
\begin{aligned}
& I C_{2} R E\left[1+\frac{1}{\beta}\right]=V_{T} \ln \left[\frac{I C_{1}}{I C_{2}}\right] \\
& R_{E}=\frac{U_{T}}{\left(1+\frac{1}{\beta}\right) I C_{2}} \ln \frac{I C_{1}}{I C_{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& P=\frac{I C Q}{I Q_{2}} \\
& P I D_{2}=I C 2
\end{aligned}
$$

Relation betuen $I_{C l}$ and Iret:
Apply KCL at node ' a ' at collecter of Q_{1}

$$
\begin{aligned}
& \text { Iy KCL at node ' } a^{\prime} \text { at collectcr of } Q_{1} \\
& \text { Iref }=I C_{1}+I B_{1}+I B_{2}=I C_{1}+\frac{I C_{1}}{\beta_{1}}+\frac{I C_{2}}{Q_{2}}\left\{Q_{1}=P_{1}: p\right. \\
& \text { Iry }=I C_{1}\left[1+\frac{1}{\beta}\right)+\frac{I Q^{2}}{\beta}
\end{aligned}
$$

Inwidharcurrent some. $I C_{2} \angle\left\langle I C_{1}\right.$, thenetor $\frac{I C_{2}}{\beta}$ is may be nepleted,
So $I_{r e f}=I_{C 1}\left[1+\frac{1}{\beta}\right], I_{C_{1}}=\frac{\beta}{\beta+1} I_{\text {ret }} \beta \gg^{2}$ so IC, EIref

$$
2 \text { ref }=\frac{V C C-V B E}{R 1}
$$

Improved currox sotue $q^{\text {Proult }}$ ：
A quad curnent source meet the reguiremens mos，
（1）Ip wnent Io shoud not be dependent upen p ．
（3）Ip resistance of the curent source should be very high Nood tor Aiph Resistene curnent smuce：＇Redue Curnmon mode gain＇ Aso，All differontial amplifiors invariaby use current sonver as a wead．Thus to obtain high vortge gain a lurge olp reststane lond is required．

To Redured dependone on β ．（a）increared o／r Resistue． the current sovec is used．
（1）Acunent sonvewitn gain．

$$
\begin{align*}
& I_{\text {rf }}=I_{C 1}+I_{B_{3}} \\
&=I_{C} 1+\frac{I_{E 3}}{1+p} \tag{1}\\
& Q_{3} / 8
\end{align*}
$$

The IE of Q_{3} is

$$
I E_{3}=I B_{1}+I B_{2}
$$

$$
I E_{3}=I B+I_{B}=2 I_{B}
$$ Tamencon：

叫き，夺

$$
\begin{aligned}
& =p(1+\beta) I_{\text {ref }}=I c\left[p+p^{2}+2\right] \\
& {\left[\frac{\operatorname{Inf}\left[\frac{p(1+p)}{p+p^{2}+2}\right]=I c}{}\right]=I_{a}}
\end{aligned}
$$

$I_{c_{1}}=I C_{c}$ $\mathbb{L E}_{3}=(1+\rho) \mathbb{D O}_{3}$
$I C_{1}=I C_{2}=\sqrt{0}$. $\frac{I E=(1+p) \overline{I O}}{\frac{\text { IO }}{\text { Irq }}=\frac{p(1+p)}{p+q^{2}+2}}$
wilson current sance: speialcurrientsonu, less sensitive to base provides output current Σ_{0}, which is very nearly equal to Ir of and also exhibits a very high output resistance. collector currant of the order of S MA. $v C C$. Tismolp has is tue of the citral

Analysis:
$\sin \theta \quad V_{B E}=V_{B} E_{2}$

$$
I_{C 1}=I_{C 2} \text { and } I_{B_{1}}=I_{B_{2}}=I_{B}
$$

At node ' b'

$$
\begin{align*}
& I E_{3}=I B_{1}+I B_{2}+I C_{2} \\
& I E_{3}=I B_{B}+I C_{B}+I C_{2}=2 I_{B}+I C_{2} . \\
& I E_{3}=2\left(\frac{I C_{2}}{\beta}\right)+I C_{2}=I C_{2}\left[1+\frac{2}{\beta}\right] . \tag{1}
\end{align*}
$$

$I_{E_{3}}$ is also equal to

$$
\begin{equation*}
I E_{3}=I c_{3}+I B_{3}=I c_{3}+\frac{I C_{3}}{p}=I c_{3}\left[1+\frac{1}{p}\right] . \tag{2}
\end{equation*}
$$

Froneq (1) and (2)

$$
\begin{align*}
& I_{C 3}\left[1+\frac{1}{\beta}\right]=I_{C 2}\left[1+\frac{2}{p}\right] \\
I_{C 3} & =I_{C 2}\left[\frac{p+2}{\rho}\right] \times\left[\frac{p}{p+1}\right] \\
I_{0}=I_{C 3} & =I_{2 \cdot}^{C}\left[\frac{B+2}{\beta+1}\right] \tag{B}
\end{align*}
$$

$\sin \theta I_{C_{1}}=I_{C_{2}}$

$$
I I_{0}=I C_{1}\left[\frac{B+2}{B+1}\right)
$$

At nodi ai

$$
\begin{aligned}
& I_{\text {ref }}=I_{C 1}+I_{B_{3}}=\frac{\beta+1}{\rho+2} I_{0}+\frac{I_{0}}{\rho}=I_{0}\left[\frac{\rho+1}{\rho+2}+\frac{\rho^{2}}{\rho} \quad I_{B_{3}}=\frac{I_{C_{3}}}{\beta^{0}}\right. \\
& I_{\text {raf }}=\frac{\beta^{2}+2 \rho+2}{\rho^{2}+2 p} I_{0}, I_{0}=I_{\text {ref }} \cdot \frac{\rho^{2}+2 p}{\beta^{2}+2 \rho+2} \\
& \quad V_{C C}-2 \text { VOE }
\end{aligned}
$$

$$
\text { Where } \text { ref }=\frac{V_{C C}-2 \text { VOE }}{R_{1}}
$$

The diffrence to-Irof

$$
\begin{aligned}
I_{0} & =\left[\frac{\rho^{2}+2 \beta+2-2}{\rho^{2}+2 \beta+2}\right] I \cdot o p \\
& =\operatorname{I+c}\left[\frac{\rho^{2}+2 \beta+2}{n^{2}+2 p+2}-\frac{2}{p^{2}+2 p+2}\right]
\end{aligned}
$$

Lead Io $=$ Irep $\left.\left[1-\frac{2}{p^{2}+2 p+2}\right]\right]$
This abure equasim shans differebeteen io -Irof and tre reforon current differ by anly a facter which is of tre cror of $2 / p^{2}$. The u/p Resistuns is graterthm Simple curront mirror.

The olp Qurrent $I_{0}=I C 2$ has tow sensivity to bake cumens of tansistor. Therfore Loミ工ref for wilsun curront Source.

Current Repeater (or) Mulriple current Sourco
When there is a need tosupply constant current (Reference) to multiple parts of same or diffarent cercues, mulriple ourent sourcus are used. This redues the Cumporent area, cs it replaces many Individual current Somen. A single refreve current is copled to multiple colleetur of tramsisterd conrected in cascado

$$
\begin{aligned}
& \text { Iref }=I C+I D+\eta I B \\
& \operatorname{IC}=\operatorname{Iref}\left(\frac{p}{\eta+1+p}\right) \text {. } \\
& I_{\text {rep }}=(n+1) I_{B}+3 c \\
& \text { Iref }=(n+1) I n+\beta I 0 \\
& \text { Iret }=(n+1+p) \pm B \\
& \text { Iref }=(n+1+p) \frac{I c}{p}
\end{aligned}
$$

OP-Amp Characteristics

let we know, ideal - op-amp responts equaldywell to botm acand DC inputs vortafe. However, a pratical opamp not likethis way, pratical apamp has some $D C$ Voltcpe at the output even with hotn inpure are zeno (c) qrumdod.
Dc characteristics

* An IDear opamp draus no current from tro sounco and it response is also independent of temperatere.
Realopamp:
* current is taken from tre sorre in to tre op-amp inputs, to Also tre two I/P I/Ps raspend difforentl'y to current and wolt g duet mismaton in transistars.
- Real op-amp also shifts it operation wim Tomperatere.

There non-ldeal de charataristics that add errer to tro $d c$ olp vortge are.

1) Input Blas current
2). I/P offect current
2) I/p offset voitepe
3) Thermal drift.
4) I/P Brascurrent: AnIIP Blas wnent is detined as $\xrightarrow[I B^{+}]{I-\bar{B}}$

$$
\begin{aligned}
& \text { of the input bla } \\
& I B=\frac{I_{B}^{+}+I s^{+}}{2}
\end{aligned}
$$

In ${ }^{+}=D C$ blas current flowing in to non inversing ilp In $=$ OC Blas curvent frowingto inverting I/P.
($I_{B}{ }^{\dagger}$ and $I i_{s}$ are 13 ase 13 ias currentes of tre tomsistors].

Evonthough bohr the ransisters are identical, it is not porsibu to have In and Int exactly equal to each over because of the internal imbalance between the two ups.
sinco

$$
I B=I B_{B}^{-}=I n^{+}
$$

BIT
rapamp 741 is $500 \cap A$ or cos consido., inverting amp,

$$
\text { Ii } r_{i}=0 \mathrm{~V} \text {, treoo/p }
$$

voltcpe vo should alsube zero, But, we find that me op voltage is

$$
\begin{aligned}
& V_{0}=I B \cdot R H \\
& V_{0}=5 \operatorname{LOnA} \times 1 \mathrm{M} \Omega=500 \mathrm{mV}:
\end{aligned}
$$

The op is driven to 5 comr with zero input beagle of bi as currents, this is totally macceptahle.
Compensation: This effect can be compensated using Rcompresistu has been added noninversing terminal and Grum d. The aerrent Int flowing thragn the Rump develop voltepe V, across Romp and thereby cancel the votyege V_{2} at node ' a '

Rf inveaningamp
By kV

$$
\begin{gathered}
-v_{1}+0+v_{2}-v_{0}=0 \\
v_{0}=v_{2}-v_{1}
\end{gathered}
$$

By selecting proper value of Rump, V_{2} canhe
Canceled with v_{1} and the $0 / p$ will be zeno

$$
\text { The valu of } P_{0} p=\frac{R_{1} R t}{R_{1}+R_{f}}
$$

The compensating Resister should he paralu/ Combinasim of resist u tied to me inverting I/P terminals

I/p offset carrent
The Blus corrent cumponsation will wark if botrn blas ouks IBt and IB ore equal.

$$
\text { ie } I B^{+}=I B^{-}=\text {will }
$$

identical
Since the I/P ransisters can not be mado equal, there will a)ways be some small difforonces betwen blas currents.

Detinition: The input offset current Ios is detined as the algetriaic sum difterenco between two input bias currents I B_{1} and $I_{B_{2}}$

$$
|\operatorname{IOS}|=I_{B}^{+}-I_{B}^{-}
$$

For 741, $\operatorname{IOS}=2 \operatorname{con} A$, Even moush bias current Componsation, offset curent will pooduce an out put voltepe when the input voltye V_{i} iszeso

$$
\begin{aligned}
V_{0} & =R_{f}\left[I \bar{s}-I_{\Delta}^{+}\right] \\
& =R_{f} \operatorname{IOs} \\
V_{0} & =1 M \Omega \times 200 n A=200 \mathrm{mv} .
\end{aligned}
$$

Finding vo
Refering Bius correst Compunsation circut.

$$
r_{1}=I B^{+} \text {Rcump, and } I_{1}=V / R_{1}
$$

Apply Kelat No de 'a'

$$
\begin{aligned}
& I_{2}=\left(I \bar{B}-I_{1}\right)=I \bar{B}-\left(I D^{+} \frac{R_{\text {and }}}{R_{1}}\right) . \\
& v_{0}=I_{2} M_{f}-v_{1}=I_{2} f_{f}-I s^{+} R \operatorname{Rum} p \text {. } \\
& =\left(I_{n}^{-}-I_{\Delta}^{+}+\frac{R_{\text {ans }}}{R_{1}}\right) n f-\text { Ins }^{+} \operatorname{Rem} p \text {. }
\end{aligned}
$$

affer ge substituiry Rcomp and Sme masipulasim

$$
\begin{aligned}
& r_{0}=R f\left[I 0^{-}-I \Delta\right\rangle \\
& v_{0}=R f[0 s
\end{aligned}
$$

Componsation

Compensation
The effect of offsetcurent can be minimized by keeping feedbacic resistive small. unfortanaly, to obtain HignI/P impede, R, must be large.

with R, Large, the free abele resistay Rf_{f} must also be kish
 quod solution to minimise the offsetcurent.

This will allow the Large feed back resistance. while keeping tue resist wo to proud bow, it act ask singer feed hack Resister

$$
\begin{gathered}
R_{f}=\frac{R t^{2}+2 R t R s}{R s} \\
R t \ll \frac{R t}{2} \\
R s=\frac{R t^{2}}{R_{f}-2 R t}
\end{gathered}
$$

I/p offset voltage:
inspite of the use of different Compensation techquies, it is found that the op voltage may still not be zen with Zoos I/P Vottege bu re to unavidable imbalances inside the opamp.
Defininim: It is defined as the amount of the in put woltape that should be applied between tub input terminals in order to force the output vortupe to zero Effect of a alp set voltage at opp vortape

Vios is applied at the I/pterminal to make the out put is zero.

Inverring $A m P$

We. sec tro effect of Vius on tro IIp of inv and non-inve amp When $v_{i}=0$, tro above (b) and (C) cirats beesme lice tris.

The vortge at V_{2} is $V_{2}=\left[\frac{R_{1}}{R_{1}+R_{f}}\right] V_{0}$.

$$
V_{0}=\left[\frac{R_{1}+R_{1}}{R_{1}}\right] V_{2}=\left(1+\frac{r_{f}}{R_{1}}\right) V_{2}
$$

$$
\begin{aligned}
\text { since } \left.V_{\text {ius }}\right\} & =\left|V_{i}-v_{2}\right| \text { and } V_{i}=0 \\
V_{1 u s} & =\left|0-V_{2}\right|=V_{2}
\end{aligned}
$$

or $v_{0}=\left(1+\frac{r f}{R_{1}}\right)$ vius olp offset voitge of opamp in clused-lwop configuration.

Total output offset voltape
Detintrion
Total alp offset voltage defined as tho Sum of tut op offset voltage due to Il offset voltape and olpvoltage due to bias current IB

$$
V_{O T}=\left(1+\frac{R_{f}}{R_{1}}\right) v_{i O S}+R_{f} I B \text {. }
$$

However, with R comp intrecict, tretotal op offset voltage is given by

$$
V_{0 T}=\left[1+\frac{R+}{R_{1}}\right] \text { Vios }+R f \underline{=}
$$

Cat for nullity tho $0 \mid p$ offset voltage

The manufatere recumbent 10 k pot be placed across offset null pins 1 and 5 and the wiper beconnected to pin 4.

The position of the wiper is adjusted to nullity the olp offset voitcipe.

Thermal brit: Bias current, offectccurrent and offset vothe change wit temparative. A cirat earfuly holed at $25^{\circ} \mathrm{C}$ may not remain so when the temp risies $350^{\circ} \mathrm{C}$, This is called drift Reduce: cartuldesign of PCB , forced air cuoeins stabilize the tempeetere.

Ac chanalleristres
The frecens trat infleence performance of opnme when $A C$ input sifnol is appliod nee $A C$ pertermomes charactariotics Imwtant chnoceterisnce
(1) Frequency Rripmse of op-anp
(2) stecillay of epame
(3) frequary cumpensation of op-amr
shew vate of op-amp
Freproncy Respanse of opamp:
For an ideee opanp shoud have infinite BW. This meane trat, it its open-luop gain is goidn wimidc'sisma ! its qain should remain me same gods throgh Acsisnal and on to higher radis fiequnaias. The pratical opamp qain/ decreares at hisher fequus. The way in which tre gain of toe opamp responds to frequy is caller ar frequency responste.

The decrease in gain is due to the copacitive Component in equivalent circut of opamp. This capacidane due to physical characterisna of device (BuTorfGT) used in the intermal construction of op-amp

The single capaction c representing all capacidanco effeet indroducas ane corner frequary. This ondel ropreans high prequey model of tre opamp wim one cerner fre guncy

High foequeny model of oparnP with tone cornes requy.

The open lw gain wit single Corns frequey is obtained by as

$$
\begin{aligned}
& r_{0}=\frac{-j \times c}{R_{0}-J \times c} A_{O L} \cdot V_{d} \\
& A=\frac{v_{0}}{v_{d}}=\frac{-j \times c}{R_{0}-J \times c} A_{0 L} \\
& \text { sub } x_{c}=\frac{1}{2 \pi f c},-j=\frac{1}{j} \text { and } j=\sqrt{-1}, j^{2}=-1 \\
& A=\frac{-j}{2 \pi f c}\left(R_{0}-J\left(\frac{1}{2 \pi f c}\right) \quad \cdot A L L\right. \\
& =\frac{\frac{-\hat{\jmath}}{2 \pi f C}}{\frac{2 i f R_{0} C-j}{2 \pi f C}} A O L \\
& =\frac{\frac{1}{j}}{2 \pi f R_{O} C-j} A O L \\
& =\frac{1}{j 2 \pi f_{1} R_{0} C-j^{2}} A U L \\
& A=\frac{1}{1+j 2 \pi f R_{O} C} A_{O L}
\end{aligned}
$$

This can be reusittonas

$$
A=\frac{\text { AOL }}{1+j\left(\frac{f}{f_{1}}\right)} \text { where } f_{1}=\frac{1}{2 \pi f_{0} c} \text { isme }
$$

The mapanitude and phase angle of A is

$$
|A|=\frac{A O L}{\sqrt{1+\left(\frac{f}{f_{1}}\right)^{2}}} \text { and } \phi=-\tan ^{-1}\left(\frac{f}{f_{1}}\right)
$$

The mapanitude and phase characterises, it can he seen trial

* For frequery $f \ll f_{1}$, me maganitute of gain is $20 \log A O L$ in $N \Delta$ * At fregy $f=f$, the gain is $\partial d B$ down from the $d c$ value in A_{3}. This P are of $A_{O L}|A|(d B)$ c called corner Fiequamy
* Fur $f \gg f$, the sain decrease at the rate of-20dn/deca de Those charactoristias *at $f=0$,
$\left(f \ll f_{1}\right)$, phase angle is 20
* af f_{1}, Phase angle is -45°
$\left(f_{2} f_{1}\right)$
$(f=f 1)$
$*$ af $f=\infty$, phase angle is $-90^{\circ} ?$
$(4 \gg f 1)$
* This shows that a maximum
of 90° phase change cans ocker -90°
in om opamp wim single capacitor
 Thetranster function of opamp wit mere number of Corner fequencis is givenhy.

$$
\begin{aligned}
& A=\frac{A_{0 L}}{\left(1+j\left(\frac{f}{f_{1}}\right)^{+}\left(1+j\left(\frac{f}{f_{2}}\right)\left(1+j \frac{f}{f 3}\right)\right.\right.}, \quad 0<f_{1}<f_{2}<f 3 . \\
& A=\frac{A \cup L \omega_{1} \omega_{2} w_{3}}{\left(s+\omega_{1}\right)\left(s+\omega_{2}\right)\left(s+\omega_{3}\right)} \quad, 0<\omega 1<\omega_{2}<w_{3} .
\end{aligned}
$$

Approximation of openlors gain $V_{\text {s }}$ frequy curve

* open lap frequy Response is fiat (9 0dB) from lowfrequeuy to 2 cero KHZ_{2}, the first break freak. frequy,
* From 20 kH 2 to $2 \mathrm{MH}^{2}$, quin drops from 90 dB to fo dB, Which is at $-20 d \Delta /$ decade
x trequy 2 mHz to 2 mH 2 , tre qain rol - oft ratis $-40 \mathrm{dn} /$ deado.

Conclurion
 from ahove Ficharacterssics, as prequy is increasing, cascading effect of $R C$ pairs come int effect and roll-off rate lnoreases sucussivey hy $-20 \mathrm{ds} /$ deade at each Corner frequ. Each RC pole pair also intoduus a lagsins phase of maximo up o

Frequency cumpensatio Tectniquas
Whore we need 1) Larger Bomdwidm and lowor Closed loopsain.

* External Componsation
- Intemal Cemponsation.

Extemal Prequeny Compansation: The comporsating N / W alter the opan-luop goin somat me roll-ift rate is $-20 \mathrm{db} / \mathrm{deabo}$ over a wide carge of frequy.

* Commar memodo
* Dominant-pole cimpuns annos
s pole-zero (lay)comporsatim.
Dominant - pole componsation
The dominant-pole cumponsation is carried out by introducing Dominont pole by adding R_{C}-netwuk in series wims op-amp.

The wimponsated Tramsfar funchum A^{\prime} beenmes

$$
\begin{aligned}
& A^{\prime}=\frac{V_{0}}{r_{i}} \\
& V_{0}=\frac{-j \times c}{R-j \times c}
\end{aligned}
$$

Find vo
where $-j=\frac{1}{J}, j=\sqrt{-1}, j^{2}=-1, x_{c}=\frac{1}{2 n f c}$ producins c cornoofoequy or dominant foequy $f_{d}=\frac{1}{2 \pi R C}$.

$$
A^{\prime}=\frac{v_{0}}{v_{i}}=\frac{A_{0} L}{1+j\left(\frac{f}{f_{d}}\right)}
$$

Wims thrue corner fuequies inside op-amp A^{\prime} is siven hy

$$
A^{\prime}=\frac{A_{0 L}}{\left(1+j \frac{f}{f_{j}}\right)\left(1+j \frac{f}{f_{1}}\right)\left(1+j \frac{f}{f_{2}}\right)\left(1+\frac{j f}{f_{2}}\right)}>f_{d}<f_{1}<f_{2} \angle f_{3}
$$

-27
The value of for from R and C are seleend such mat, its slupe passes throyth the first corner frequey f, This is deres hy introducing a pole (demominatr polynominal in A^{\prime}) of f_{1}. so the gais hat siogle roll-4t -2ods/dec ascompored with thiee rall-tfs in am concemponsated op-amp.

Disadvantye: It reducues the oper-deop BW drastially, Iut the nolse immusin of tre system is improved since tro nolse frequy components outside tre $B W$ are eliminated. pole-zer0 componsanm

Here tre oncomponsated fomstofuncrim is altered hy adding pole and 2eso

Gain vs frequiy ausve for poommort pole Comperscti in
pole zero Amponsanim [Detinltim].
The pominant pole campon scrim has drawback trit, ir becaupe of intrductim of fo, Bandwidm reduce drastically. o The Reducrim in Berodwidm cambe lomproved hy adling bok pole and a zens. Mis technique is called pole-2es compensatim.

Here $z_{1}=R_{1}, z_{2}=R_{2}-J \times c_{2}$
(1) -38 .
pole-zor compensanm

The cumponsated transter function A^{\prime} is given by. $A^{\prime}=\frac{V_{0}}{v_{i}}=\frac{V_{0}}{v_{2}} \cdot \frac{V_{2}}{v_{i}}$

poterial dividr pale at node \dot{N}^{\prime} to find $\frac{v o}{v}$

$$
\begin{equation*}
\frac{V_{0}}{V_{2}}=\frac{z_{2}}{z_{1}+z_{2}} \tag{2}
\end{equation*}
$$

sub(1) in (2)

$$
\begin{aligned}
& \frac{r_{0}}{v_{2}}=\frac{R_{2}-j \times c_{2}}{R_{1}+R_{2}-j \times c_{2}} \\
& =\frac{R_{2}-j \cdot \frac{1}{2 \pi f c_{2}}}{R_{1}+R_{2}-j \frac{1}{2 \pi f c_{2}}} \\
& =\frac{\frac{2 \pi f c_{2} R_{2}-j}{2 \pi f c^{2}}}{\frac{2 \pi f c_{2} R_{1}+R_{2} 2 \pi f c_{2}-j}{2 \pi f g^{2}}} \\
& =\frac{2 \pi f C_{2} R_{2}-j}{2 \pi f C_{2} R_{1}+R_{2} 2 \pi f(x-j} \\
& -j=\frac{1}{J}, \quad j^{2}=-1 \\
& =\frac{2 \pi f c_{2} R_{2}+\frac{1}{j}}{2 \pi f c_{2} R_{1}+R_{2} 2 \pi f c_{2}+\frac{1}{j}} \\
& 5=6 \\
& =\frac{c j 2 \pi f c_{2} R_{2}+1}{j 2 i f c_{2} R_{1}+j R_{2} 2 \pi f c_{2}+1} \\
& \frac{v_{0}}{v_{2}}=\frac{1+j\left(\frac{f}{f_{1}}\right)}{1+j\left(\frac{f}{f_{0}}\right)}
\end{aligned}
$$

where $f_{1}=\frac{1}{2 \pi R_{2}(2}, f_{0}=\frac{1}{2 \pi\left(R_{1}+R_{2}\right)<2}$

$$
\begin{equation*}
\frac{v_{0}}{v_{2}}=\frac{1+i\left(\frac{f}{f}\right)}{1+\dot{j}\left(\frac{f}{f_{0}}\right)} \tag{4}
\end{equation*}
$$

Sub equim (4) ma $\frac{v_{2}}{v_{i}}=A 0 L$ in equanim (2) tren

$$
\begin{aligned}
A^{\prime} & =\frac{A O L}{\left(1+j \frac{t}{f_{1}}\right)\left(1+j \frac{f}{f_{2}}\right)\left(1+j \frac{t}{f_{3}}\right)} \cdot \frac{1+j \frac{f}{f_{1}}}{1+j \frac{f}{f_{0}}} \\
\therefore A^{\prime} & \left.=\frac{A O C}{\left(1+j \frac{t}{f_{0}}\right)\left(1+j \frac{t}{f 2}\right)(1+j t} f_{3}\right)
\end{aligned}
$$

Conclunim (2)

$$
\text { wim } O<f_{0}<f_{1} \angle f_{2} \angle f_{3}
$$

Thusme componsated pranster funcon A^{\prime} Shows the inpeduction of a zero at corner foequy $f_{1}\left(1+j \frac{f}{f_{1}}\right)$. So slope of new frequy fo pusses \ddagger through f_{2}, as a pole was introduced at corner frequig f_{2}.
The wompenert values are seleered such mat, the slope is made to puss through f_{2} ratner trumf1.

Definition: It is defined as the maximum rate of change of opprottape caused by a step input vortape and usually specified in $V / M s$

$$
S R=\frac{d v_{0}}{d t}
$$

Meaning of Stew Rate: (It tells how fest a op-amp creates to true given input voltrese) for ideal op-amp. Slewrate is infinite. So bu op roltcpe responds instankneously. to any change in (Aput voltepe. But be practical op-amp true opp voltage do not respond immediately with rasped to input vortepe due to shew rate.

Example:
Aopamp win IV/ Ms slew rate means that the Op rises or falls by IV incuse microsecond. similarly, apart with $1000 \mathrm{~V} / \mu \mathrm{s}$ slew rate means, the op raises orfals by 1000 V in one maros second of time (ie) respons immediately.
slewrate is fiequeny related and function to temperature, generally decreases with an increase in temperature.
What Causes Slew Rate?
Usually a capacitor with in or outside opramp to prevent oscillations. It is this capacitor which prevents the output voltupe from responding immedites, to e fast Changing isp. The rate at which the voltage Ceros the capacitor changes is given an slewrase

$$
\text { se }=\frac{d v_{0}}{d t}=\frac{d v_{c}}{d t}=\frac{I_{\text {max }}}{c}
$$

From equation, fer obtaing fastor slew rale, op-amp should have eitmer a highar curent or a small Compansating Capacitor.
Examble:
FOR 741 B , tre maximm current fows is limited to about 15 mA . and at 30 pF intemal Capaciter C_{1} is used ter frequency comper sation. Therefor slew rate is

$$
S R=\frac{d v c}{d t}=\frac{d v_{0}}{d t}=\frac{L_{\text {max }}}{C_{1}}=\frac{15 \mu_{0}}{30 p f}=0.5 \mathrm{v} / \mu \mathrm{H}
$$

$S R=0.5 \mathrm{~V} / \mu s$ is slow speed op-amp.
$S R<100|V| \mu S \rightarrow$ slowspeed op-amn
$S R>100 \mathrm{~V} / \mu \mathrm{M} \rightarrow$ bigh speed opand
Effect of shewrate for sire wave I/P
Let I/p is targe Amplitide,
Highs ferquy

$$
\begin{aligned}
& v_{s}=v_{m} \sin w t \\
& v_{0}=v_{m} \sin w t \\
& \frac{d v_{0}}{d t}=v_{m} w \cos w t \\
& S R=\left.\frac{d v_{0}}{d t}\right|_{\max }=w \cdot v_{m}
\end{aligned}
$$

(d) $v s$
$v_{0}=v_{s}$.

ie max Rate of change of o / p occess
when coswt $=1$

$$
\begin{array}{rlrl}
\therefore \text { SLev Rate } & =2 \pi f V_{m} \mathrm{~V} / \mathrm{s} & f: I / p \text { foequy }(\mathrm{k} / 2) \\
S R . & =\frac{2 \pi f V_{m}}{106} \mathrm{~V} / \mathrm{Ms} . & V_{m} & =\begin{array}{c}
\text { peak o/p } \\
\text { amplito de. }
\end{array}
\end{array}
$$

$$
S R=\frac{2 \pi f \mathrm{vm}}{10^{6}} \mathrm{v} / \mathrm{ms},
$$

In tore above equation, sight hand sido parametor is Lesstrom stew rate of op-amp, tren output will be distorted. If foequeny or amplitude of I / P sisnal is increased to execed tho slew rate of op-amp, tro O/p will be disterted.
How to Obtain un distarted o/p: Thus me maximm I/P frequery $f_{\text {max }}$ at which we can obtain an undisterted out put vortcpe of peak value V in is given hy

$$
f_{\text {max }}\left(H^{2}\right)=\frac{\text { Slewrak }}{6.28 \times v m} \times 10^{6}
$$

It is tremaximm foequy of a large amplitide sine wave witn which op-amp can have witmout distertion

Exmhe 2: Que: The o/p of op-amp voitye folluris trionsur wave fora squere wave I/p of focquy $2 \mathrm{mH2}$ and 8 V peale to perk Amplitide. What is tre slew rate of op-anp?
Slewrate is defined as the maximm rafi of chanse of tre ourput. So, $S_{R}=\frac{2 \pi f v m}{106} v / \mathrm{ms}=\frac{6 v}{(0.5 / 2) \mu s}=14 \mathrm{v} / \mathrm{Ms}$.

opwareform,

Effeet of square ware I/p:

$$
\begin{aligned}
& A C L=1+\frac{M_{f}}{R_{1}}, \quad \begin{array}{l}
R_{f}=0, R_{1}=\infty \text { witm } \\
\text { respect } 10 \text { grom }
\end{array} \\
& A C L=1=\frac{v_{0}}{v^{i}}=\frac{v_{0}}{v_{S}}
\end{aligned}
$$

if $v_{0}=v_{\rho}$ indicarinstrat opvoitye
ro just follows tre input vortuge $v s$.

Thus the output termmats must produce a square wave for Squave wave I/P. But the slew rate limit tre pesfermance, as tre frequeny 4 I/P sisnal increares.
Effect of O / P wim differect frequy 4 I/P square wave

for 100 H 2 of squave ware I / P, $0 / \mathrm{p}$ is distertion Less ofr.

101CH2 square ceave I/P, OP is disterted.

pue to limited shew rate, for $1 m H_{2} I / P$ square ware the $0 / p$ bew mes disterted into sawfrotr. This occured beease has
of predominance of capacidace presentintre circut at hish frequancies, $R C$ pair are in cascede and tre time censtacts are hish compared to hish frequay square wave I / p.

Metrods to 10 m prove the Slew rate
The gain BW product of op-amp is given by

$$
\begin{aligned}
f_{t} & =\frac{9 m}{2 \pi c} \\
s= & 2 \pi
\end{aligned}
$$

From the a bose exp, the methods of 1 mprowing slew race Can be giver.

1. Increasing $f_{t} \rightarrow$ To increase f_{t}, the internal capacitor value must be Reduced.
2. Increasing Io(rat) - öncreage Iocsut), prostarmahe $O P$-amps canke used. The operating point of the device can be set by me user with external current Is ut.
3) Reducing 'gm' - Toredue $9 m$ suitable series resistance with emitters of differential input transistor can be used and using FET-opamps
4) Frequany Componsarion canhouted

Prom: A 74 C Op-anp is used as inverting amp with a jain of 50. Thevolgesaio $v s$ frey carve of thur is flat unto 20 KH^{2}. What maxims peak No perk input signal Can be applied with alt distorting the off?

Slew rate fer 741 E is $0.5 \mathrm{~V} / \mathrm{Ms}^{\prime}$, so max $0 / \mathrm{P}$ volitge at

$$
\begin{aligned}
0.5 & =\frac{(2 \pi)\left(20 \times 10^{3}\right)\left(v_{m}\right)}{106} \\
v_{m} & =3.98 \text { peril } \\
v_{0} & =7.96 \mathrm{v} \text { pastures }
\end{aligned}
$$

Find tre max frequy for an opamp with sine wave output voitcye 10 V pepk ant slewrate is $2 \mathrm{~V} / \mathrm{\mu s}$

$$
S R=\frac{2 \pi f \mathrm{Vm}}{10^{6}} \mathrm{~V} / \mathrm{Ms}
$$

$f_{\text {mux }}: \frac{S R \times 10^{6}}{2 \times \pi \times \mathrm{vm}} \mathrm{Hz}=\frac{2 \times 10^{6}}{2 \times \pi \times 10}=31.83 \mathrm{kHZ}$

Why it frequy cumponsation is required io $0 p \tan R$
(1) Poachiveharge desired $B W$
(ii) po Reduce tue Closed-luop gain
(ii) poymprove tre behavior of oparp at hishr trequis
(iv) To enscre a roll-aft of -20 do/dec witn single corner frequy and to avoid iostebilty at hish frequy.
2) What is tre advantges of current minor?

1) Keep tre otp current constant repordleso of luading
2) opp current nof affected by any otrer extermal parametrs
3) It can aet as a activeload, therehy producing Large differential mo de Gain ma thus CmRR 4) occopiesters space in am IC cmpare to Reload 'e passive Load cerait.
Define pSRR: power supply rejectim ratio.: It is defined ces tre change in I / P offset voltage $V_{i o}$ witn change in supply roptcpe is given hy $\frac{\Delta V i o}{\Delta V}$

Tran gram concept in covering amp

Gain $\hat{a} \frac{v_{0}}{v_{i}}$, if $v_{\text {in }}=0$, quin is infinite

$$
r_{i}=v_{2}-v_{1}
$$

In toe above cirat v_{1} is consceted to 9 rand, so $v_{1}=0$. Thus v_{2} also will be at grand potential.

Why we need virtual grand?
Us. It needed to analyze the op-amp when negative feedback is employed. It will simply a lot of Calalatims and derivations.

viral
ground.
The v_{2} Vottape is approximately zero, not able to gmt infinite current.

A Difforential amplitier had $C M R R=1000$. Differennal Inputs V_{1} e $1100 \mu \mathrm{~V}$ and $V_{B}=$ qou $\mu \mathrm{V}$. calulate tre difterence in oupput vottee ifmo differennal qain

$$
\begin{aligned}
& A D=25200 \\
& r_{1}=1100 \mu r \quad V_{Q}=9 \omega_{0} \| v, \quad C M R R=1000, \quad A D=25000 \\
& V_{0}=A_{d} \text { vid }+A_{c} \text { Vic } \\
& v_{0}=\Delta_{d} \operatorname{vid}\left[1+\frac{A C}{A_{d}} \frac{v_{i c}}{v_{i d}}\right] \\
& =\operatorname{Ad} \operatorname{rid}\left[1+\frac{1}{\left(A_{d} / A c\right)} \frac{v_{i c}}{v_{i d}}\right] \\
& v_{0}=\operatorname{Ad} \operatorname{Vid}\left[1+\frac{1}{\text { CMRR }} \cdot \frac{v_{i c}}{\text { vid }}\right]
\end{aligned}
$$

Le $\quad v_{i d}=v_{1}-v_{2}$ I $1100 \mu v-q \omega 0 \mu v=2 c o \mu v$.

$$
\begin{aligned}
v_{1} c & =\frac{v_{1}+v_{2}}{2}=\frac{1100^{\mu^{v}}+900 \mu v}{2}=\frac{2000}{2}=1000 \mu v \\
v_{0} & =25000 \cdot 200 \mu v\left[1+\frac{1}{1000} \cdot \frac{10 \phi 0 \mu v}{2 \mu 0 \mu v}\right] \\
& =25000 \times 200\left[1+\frac{5}{1000}\right] \\
& =5000000[1.005] \\
v_{0} & =5025000 \mu v .
\end{aligned}
$$

Explain the signifacance of virtual ground.
In opamps tho term virtual grond mean ip that tre voltcye at trat paricular node is almost equal to qremed vottape (or). It is not physiculy Conneeted to promd.

Forexmble

$V_{o}=I \Delta{ }^{-1}$

$50 \mathrm{~mA} \times 1 \mathrm{M} \Omega=500 \mathrm{mV}$

This 500 mv ocur Dueto Blas current eventhouph $v i=0$
comprosation: To componsate this vritupe, conneat Rcump resistor in nominvarting teronmal it will cancal the vortepe v_{2} at node ' a '

$$
R_{\text {cump }}=\text { Rill Rf }
$$

8) Ilp oftsef current:

Noti: Eventhough componsation provided for componsat I/r Blas curvents, frere is a $0 / P$ vottepe due to I/P offset amont when $v i=0$.

$$
|I O S|=I B^{+}-I B^{-.}
$$

$F O-741, \operatorname{IOS}=200 \mathrm{nA}$, there is a oftset currenct at $0 / \rho$

$$
V_{0}=\operatorname{Rf}\left[I B_{-}-I B^{\dagger}\right]
$$

$$
\begin{aligned}
& =R+I O S \\
& =1 \mathrm{~m} \Omega \times 200 \mathrm{nA}=2 \mathrm{com} \mathrm{~N} . \\
&
\end{aligned}
$$

So we have to provide compinsatim ciract.
componsation
Noie: The afteet of oftset current can he minimized hy keeping feedbock repistare small. infartunally toohtain tish Ilp impedeme R1 must belearge, with R1 larse, the fead back resistau if must also be high. So as 1 ohtain Reasoncto saio Forthis sifuation weuse T fead haak N/w tommuntre tee offsef curreve. This will a llow tre large feaed hack resistole while kooping the repistove to groend low, and it act like a single frod back resister.

3) Input offsel voltepe
pefintion: The amount of Illp virtere that should be appliee beteven tho input terminals in order to forco the out put voltepe tozero.

VIUS applied betwceon

For Inverting and Non inverting opAmp
The offect of Vios when $V_{i}=0$, the ciralt becomel like beluw.

The vartafeat V_{2} is

$$
v_{0}=\left[\frac{R_{1}+R_{R}}{R_{1}}\right] v_{2}=\left(1+\frac{r_{4}}{R_{1}}\right) v_{2} .
$$

Since $v_{\text {ius }}=\left|v_{i}-v_{2}\right|$ and $v_{i}=0$.,

$$
\begin{aligned}
& \text { vius }=\left|\begin{array}{l}
v_{1}-v_{2} \mid \text { and } v_{i}=0 . \\
\text { vius }= \\
0-v_{2}
\end{array}\right|=v_{2} \quad \text { orf } \quad v_{0}=\left[1+\frac{R_{f}}{R_{1}}\right] \text { vius. }
\end{aligned}
$$

Total olp offset vortape: Sum of olp offset vritse due Lo Ilp offset vottje and olp vottepe duer Bias curet ID,

$$
V_{O T}=\left[1+\frac{R \&}{R_{1}}\right] \text { VIOS }+R_{f} I B .
$$

witn Rcomp: vot $=\left[1+\frac{R P}{R H}\right]$ vius + Rt IOS.
Cirat for nullity the o/p offset volitape put lok pot betwean offset null pin 1 and 5 and the wiper beconnected to pin 4. The pusition of wilpor is adjusted to nulity tue ol P offsec voltape.

AC Characterisilics: The factors that infwenc pasterreonse of opAmp when $A C$ input sisnal is applied are $A C$ perfermance charuerorissics
impertant charactorisnid are:
(1) Frequany Response
(D) Slew rate
(3) Stebillty.
(4) Frequany componsation.

1) Erequency Response: The vorration of operating frequeny will case varatimin quin mupanitode and its pruse angle.
The way in which the gain of the oparop responds to differrert frequencies is colled frequency Response.

* Why does op-anpquin decreases at hish frequery?

At higher frequerncies, the internal junctim Cepaciter of tromsiste, Come into play, thus reducing the output and theretere quin is decreases:

Let $K C=\frac{1}{2 \pi f c}$ if frequany is increased. Capacitive Reactance decreases so it hypass the maparity of olp. So quir deorears at LisherforequM
Figore below shows the low frequany model wirn.capaciter 'c' at output to represent the capaciter offeet.

(a)

Maparnitude Respinse

The open luop gain witr single corner trequeny is qiventy The mafanitude $|A|=\frac{A 0 L}{\sqrt{1+\left(\frac{f}{f}\right)^{2}}}$

$$
\text { phase } \phi^{\prime}=-\tan ^{-1}\left(\frac{f}{f_{1}}\right)
$$

Noie if possinte Drue the equanion refer

$$
\text { Goin } A=\frac{A_{0} L}{1+j\left(\frac{f}{f_{1}}\right)} \quad A_{1}=\frac{1}{2 \pi R o c}
$$ notes

Farom Response (b)
$f \ll f_{1}$, the mapanitute quen is

$$
20 \log A O L \operatorname{Ind} B
$$

$f=f_{1}$, the qain is $3 \mathrm{~d} B$ down from the dc value $\& A$ AOL ind B This Rrequacy is called cermer feq4.
$f 7 f_{1}$, the quin decreas at the rate $A-\operatorname{cod} B /$ decade.
phase chonactedsine

The tran npproxamation of open lap qain vs frequy Resporse aerve

Conclution: Fromabuse charactoristics, as frequany is increases calabing effeet of $R C$ pairs come in to effeet and roll-offrate increses sucessively by - $20 d$ / / decade at each corner frequy, Each RC pole pair also introdec a lagging phuse of maximum up to -90°

Transfor function of opamp witn more Corner frequacy is givenhy

$$
A=\frac{\text { AOL }}{1+j\left(\frac{f}{f_{1}}\right)\left(1+j\left(\frac{f}{f_{2}}\right)\left(1+j\left(\frac{f}{f_{3}}\right)\right)\right.}
$$

Slew Rate:
Detinition: It is the rate at which the opamp can detect vultupe changes
(or)
The rate atwhich the voltape across the capaciter changes is given us slew rate.

$$
S R=\frac{d v_{0}}{d t}=\frac{d v_{c}}{d t}=\frac{I_{\text {max }}}{c}
$$

Incl: \rightarrow maximum current towing from to capacitor
Notes for ideal opamp stew Rate is ∞, so the opp voltage responds (or)changes instanteniculy to any change in I/p but practical opamp, the output vottape does not respond immediate with respect to I/P wottepe change due to steverate,
What causes the stew rates: Because f capacitor is inside or outside opamp prevents the output voltage from responding immediately to a fast changing the I/P vottcee.
Note: For $\mu_{A} 741$ slew Rate is $0.5 \mathrm{~V} / \mathrm{Ms}$ it means that output raises ar falls by 0.5 V in one microseconds
Effect of slew Rate for square wave as I/P

$$
A C L=1+\frac{R A}{R_{1}}, \quad R F=0, R_{1}=\infty .
$$

with respect po grand.
So $A C L=1=\frac{v_{0}}{v_{i}}=\frac{v_{0}}{V_{s}}$.
if vo $=V \mathrm{~V}$, indicate the olpvoltape Vo' Just follow the I/P But the slew rate limit the perfonsuce as the frequency of I/P sisnal increases

Effect of shew rate for $\sqrt{a r i o u s ~ f r e q u a n y ~}$

distared due p sion rate

Efleet of shoo wo rate fe. sine wave Ilf

If the opamp is operated abuve ith slew rate limit,
Signals will beasmo disterted.
it conne sea hy forkusing sife wave fooms.

Let $V_{k}=V_{n} \sin w t$

ie max Rate of change of OIP Ocuers when cosurt $=1$
Slew Rate calveanm, $=S R=2 \pi f \mathrm{Vm} v / S$.

$$
S R=\frac{2 \pi f v m}{106} v / \mu 1
$$

Forex: $f=H^{2}$, peak volage $=$ volst iv'Vols
require an opAnP wimsleworate of 2π f v
requred form
x
i
i
y
会人
Nuli: If ine frequay of oponmp even leres ablet cuepup and therefore the ansplitude of theolp wave form will decreope
mayalso
slew Pate, not tiace be linear over tre whule hut it con raise and full.

Introduction:
Two types of Applications.

1. Linear Applications $\Rightarrow 0 / p$ voltage varies linearly with respect to i / p voltage
\Rightarrow Negative f / b is used from the amplifier $~ / / p$ to inverting $1 / p$ terminal
\Rightarrow gxampler: Voltage follower Adder, subtractor, Instrumentation amp. Integrator, differentiator
2. Non-linear Applications:
$\Rightarrow a f / b$ is provided from 01p to non-inverting ils terminal or to the inverting i / p terminal using non-linear element like diode tramistord etc.,
\Rightarrow Examples: precision rectifier. $\log \&$ antilog amplifiers. Comparator i.
schmitt trigger circuits.
Two assumptions are used to simplify the analyen 6 op-amp circuits
(i) zero isp Current \Rightarrow (ie) I drawn by either b isp terminal is zero
(ii) Virtual Ground \Rightarrow Differential ip Voltage V_{d} b/w two

Example:
If $\% \mathrm{~V}$ is 10 V \& AOL (open loop gain) is 10^{4}, then

$$
\begin{aligned}
V_{0} & =V_{d} A_{O L} \\
\therefore V_{d} & =\frac{V_{0}}{A_{0 L}}=\frac{10}{10^{4}}=1 \mathrm{mV}
\end{aligned}
$$

As $\mathrm{AOL} \rightarrow \infty, V_{d} \rightarrow 0$ \& realistically assumed to be zero for analyzing the circuit.

$$
\begin{aligned}
& V_{d}=\frac{V_{0}}{A_{02}}=\frac{V_{0}}{\infty}=0 \\
& \therefore V_{1}-V_{2}=0 \quad \therefore V_{1}=V_{2}
\end{aligned}
$$

scale changer $\left(R t / R_{1}=k\right.$ phase inverter $\left(R_{f} / R_{1}=1\right.$,

SIGN CHANGER
In ideal inverting amp,
if $R_{f}=R_{1}$ then gain $A_{C_{L}}=-1$

Thus mag. $f o / P$ is same as S. that $I \quad 1 / p$ but it sign is opposite to that $f i / p$

$$
V_{0}=-V_{\text {in }} \text { for } R_{f}=R 1, \quad \begin{aligned}
& \text { sign changer } / \\
& \text { phase inverter: }
\end{aligned}
$$

Scale Changer
In ideal inverting amp, if $R_{f} \neq R_{1}$, then $A C L=-k$ where $k=R_{f} / R$. Thus circuit is wed to multiply it by a constant k called scaling factor

$$
V_{0}=-k V_{\text {in }}
$$

Phase shift circuits
A phase shifter circuit is one in which all signals are transmitted from i / p to $0 / p$ withou change in amplitude but the circuit introduces a phare shift as signal transmits from i / p to $0 / p$.

phase shifter circuit.

Mathematical Analyhis
As Op-amp ip I is zero, If flows thro'C while I2 flows tho' R_{f}. While due to virtual ground $V_{A}=V_{E}$ from fig, $\quad V_{B}=\frac{1}{C} \int I_{1} d t$
using Laplace transform, $V_{B}(s)=\frac{1}{s^{C}} I_{1}(s)$

$$
\begin{aligned}
& \text { while } I_{1}(s)=\frac{V_{\text {in }}(s)-V_{B}(s)}{R^{\prime}} \\
& \text { sub Ins) itmenset } \\
& \therefore V_{B}(s)=\frac{V_{\text {in }}(s)-V_{B}(s)}{S C R} V^{000} N B^{(s)} \\
& V_{B}(s)\left[1+\frac{1}{S C D}\right]=\frac{V_{\operatorname{in}}(s)}{S C R} \\
& \therefore V_{B}(S)=\frac{V_{\text {in }}(S)^{S(R}}{S C R\left[1+\frac{1}{S C R}\right]}=\frac{V_{\text {in }}(S)}{\sin \left[\frac{S(R+1}{s C / R}\right]}=\frac{V_{\text {in }}(s)}{\text { t+ASCR}} \\
& V_{B}(s)=\frac{V_{\text {in }}(s)}{+s \mathbb{E} R}
\end{aligned}
$$

from branch $R_{1}, \quad I_{2}(s)=\frac{V_{\text {in }}(s)-V_{A}(s)}{R_{1}}=\frac{V_{\text {in }}(s)-V_{B} \mid s}{R_{1}}$
from branch $\begin{aligned} & R_{f}, I_{2}(s)=\frac{V_{A}(s)-V_{0}}{R_{f}} \\ & \therefore V_{\text {in }}(s)-V_{B}(s) \\ & R_{1}=\frac{V_{B}(s)-V_{0}(s)}{R_{f}}\end{aligned}$
$\frac{V_{0}(s)}{R_{f}}=V_{B}(s)\left[\frac{1}{R_{1}}+\frac{1}{R_{f}}\right]-\frac{\left.V_{\text {in }} / s\right)}{R_{1}}$ Sub equ(b) in
$\frac{V_{0}(s)}{R_{f}}=\frac{V_{\text {in }}(s)}{1+s(R}\left[\frac{R_{1}+R_{f}}{R_{1} R_{f}}\right]-\frac{V_{\text {in }}(s)}{R_{1}}$
Vols) $=R_{f}\left[V_{\text {in }}(s)\left[\frac{R_{1}+R_{f}\left(\frac{1}{R_{1} R_{f}(1+S C R}\right)}{1}-\frac{1}{R_{1}}\right]\right]$
$=\operatorname{Vin}(s)\left[\frac{R_{1}+R_{f}}{R_{1}}\left[\frac{1}{1+s(R}\right]-\frac{R_{f}}{R_{1}}\right]$
$=\operatorname{Vin}(s)\left[1+\frac{R_{f}}{R_{1}}\left(\frac{1}{1+S(R}\right)-\frac{R_{f}}{R_{1}}\right.$.
Select $R_{f}=R_{1}$
$\therefore V_{0}(s)=\operatorname{Vin}_{\text {in }}(s)\left[\frac{2}{1+S(R}-1\right]=V_{\text {in }}(s)\left[\frac{2-1-S C R}{1+S C R}\right.$
$\frac{V_{0}(S)}{V_{\text {in }}(S)} \Rightarrow \frac{1-S(R}{1+S(R}$
put $s=j \omega, \quad \therefore \frac{V_{0}(j \omega)}{V_{\text {in }}(j \omega)}=\frac{1-j \omega C R}{1+j \omega C R}$
$\left.\left|\frac{V_{0}(\omega)}{V_{\text {in }}(y \omega)}\right|=\frac{\sqrt{1+\omega^{2} c^{2} R_{2}}}{\sqrt{1+\omega^{2} c^{2} p^{2}}}=1 \quad \therefore\left|V_{0}\right|=N_{\text {in }} \right\rvert\,$
$Q=L\left[V_{0}(\omega)\right]^{1+\omega^{2} c^{2} R}=-\tan ^{-1}\left(\frac{\omega(R}{T}\right]-\tan ^{-1}\left(\frac{\omega(R)}{1}\right)$

Voltage to Cument Converter
It is apo called Transconductance amply accept an $1 / p$ voltage V_{i} e yields an $\% / p$ current of the type $i_{0}=A V_{i}$.
Where A - gain or sensitivity of the circuit, amp/ $\frac{\text { Two types of V } V \text { I Converter }}{1 . V-I \text { Converter with floating load } \hat{\jmath} \text { and }}$
2. V-I Converter with grounded load \rightarrow One end f R_{L} is Connected to and

V-I Converters wits floating load
Here, load resistor R_{2} is floating
Since Voltage at node 'a' is V_{i},

$$
\begin{aligned}
\therefore V_{i} & =i_{L} R_{1} \quad\left\{\propto I_{B}=0\right\} \\
i_{L} & =\frac{V_{i}}{R_{i}} \quad I_{L} \propto V_{i}
\end{aligned}
$$

The same Current flows tho' the signal source P load
\therefore signal source should be capable of providing load I
Note:
If the bad is a capacitor, it 'l charge or discharge at a constant rate. Hence such circuit are wed ti generate sawtooth or triangular waveforms. The proportionality cont is yeR \& hence this circuit is Transconductance amplifier (or) vatame ravelled convent sour bee

The angle of is the phase stiff introduced by the circuit as sign para from it to o lp.
Are varia form ono α, φ varies fum 0° to -180°. Due f°-ven sign, it in called phare lag.

Voltage Follower
A circuit in which the \%/p voltage follows the ip voltage ic called voltage follower Circuit

- From fig. Node B is at potential lin
\therefore Node A is also at potential V in

$$
\begin{equation*}
\therefore V_{A}=V_{B}=V_{\text {in }} \text {, since node } A \text { is } \tag{2}
\end{equation*}
$$

directly connected $k O / P, V_{0}=V_{A}$.
from sim (1) \& (2) $\quad \therefore V_{0}=V_{\text {in }}$
Note:
This circuit is alto called Source follower
Unity gain amplifier, buffer amp (va) isolation amp
Adv: 1. Very large isp $R,(M \Omega)$
2. Low op impedance, almost zero. Hence it is wed t connect high z ounce t low z load, as buffer
3. Large BW

Voltage t Current Converter with Grounded load
Here, one end if load resistor R_{L} is grounded, It is akin known as 'Howland Current
Converter, from the name 8 its inventor.
Analysis:
Let v_{1} be the voltage at node ' a '.
Apply KVL, we get $i_{1}+i_{2}=i_{L}$
(ar)

$$
\begin{align*}
& \frac{V_{i}-V_{1}}{R}+\frac{V_{0}-V_{1}}{R}=i_{2} \\
& V_{i}+V_{0}-2 V_{1}=i_{2} R \\
\therefore \quad & V_{1}=\frac{V_{i}+V_{0}-i_{2} R}{2} \tag{1}
\end{align*}
$$

Since op-omp is used in non-inverting mode, the gain of the circuit is $A=1+\frac{R_{f}}{R_{1}}=1+\frac{R}{R}=2$.
\therefore op voltage is $V_{0}=2 \cdot V_{1}$
\therefore from eq (0), $V_{0}=V_{i}+V_{0}-i_{L} R$
$V_{i}=i_{2} R$
$i_{2}=\frac{V_{i}}{R}$
\therefore load I depends imp $V_{i}{ }^{2}$ Resistor R

Adv:
As if z of non-inverting amplifier
this circuit has advantage of drawing farm amivio

Applications:

1. Low voltage $d c$ voltmeter
2. Low voltage ac voltmeter
3. $L E D$
4. Zener diode tester

Current to Voltage Converter
I-V Converter, also called trans resistance amplifier, accepts on i / p current $i_{I} \&$ yields an o/p voltage of the type $V_{0}=A i_{i}$, where A is the gain of circuit in

Analysis:

* Since (-) isp terminal) is at virtual ground,
 no I flow r throe Rs ? Current is flow tho f / b resistor Rf_{f}.
* Hence $V_{A}=0, \quad \dot{X}_{S}=\frac{V_{A}-V_{0}}{R_{f}}=\frac{-V_{0}}{R_{f}}$

$$
\therefore V_{0}=-\dot{\boldsymbol{I}} \mathrm{R}_{f} R_{f} \quad \therefore V_{0} \quad \alpha I_{i}
$$

Thus $0 / p$ is proportional k isp I
Lowest I that thin Civisit con measure will depend upas bias current IB of op-amp.
R_{f} is shunted with C_{f} to reduce $\frac{\text { high frequency rove } P \text { Puibility of oscillation en }}{\text { Pus }}$

ADDER [imerbig ADDGRGOSummar

Now from Ilpside. Apply KCl

$$
\begin{aligned}
& \text { Prom I|PIide } \\
& I_{1}=\frac{v_{1}-v_{a}}{R_{1}}=\frac{v_{1}-0}{R_{1}}=\frac{v_{1}}{R_{1}} \\
& I_{2}=\frac{v_{2}-v_{a}}{R_{2}}=\frac{v_{2}-\infty}{R_{2}}=\frac{v_{2}}{R_{2}} \\
& I_{3}=\frac{V_{3}-v_{0}}{R_{3}}=\frac{V_{3}-0}{R_{3}}=\frac{v_{3}}{R_{3}}
\end{aligned}
$$

let

$$
\begin{align*}
& \text { Let } I=I 1+I 2+23 .[I / p \text { side }] \\
& \text { From output -side } \\
& I=\frac{V_{A}-V_{0}}{R f}=\frac{0-v_{0}}{R f}=-\frac{V_{0}}{R f}
\end{align*}
$$

Sub: (1), (2), (3), (5) in equation (4)

$$
\begin{aligned}
\frac{-v_{0}}{R_{f}} & =\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}+\frac{v_{3}}{R_{3}} \\
r_{0} & =-\left[\frac{R_{1}}{R_{1}} v_{1}+\frac{R_{7}}{R_{2}} v_{2}+\frac{R_{f}}{R_{3}} v_{3}\right]
\end{aligned}
$$

The Restistul $R_{1}=R_{2}=R_{3}=R_{f}$

$$
\begin{aligned}
& \text { Reststul } R_{1}=R_{2}=R_{3} \\
& v_{0}=-\left[\frac{R_{1}}{R_{1}} v_{1}+\frac{R_{2}}{R_{2}} v_{2}+\frac{R_{3}}{R_{3}} v_{3}\right] \\
& v_{0}=-\left[v_{1}+v_{2}+v_{3}\right]
\end{aligned}
$$

SubTha tor (or) piffarence omb

To Find Relation
betwen IIp and olp Let us use
super position prinaple

$$
\begin{aligned}
& \text { Assume } \\
& V_{1}=\operatorname{acting}, V_{2}=0, \text { olp is } V_{01}[\text { nnvering Ams }] \\
& \text { olp is } V_{0} 2
\end{aligned}
$$

Assume

ASSume

$$
\begin{aligned}
& v_{1}=\operatorname{acting}, v_{2}=0, \text { o|p is } \\
& v_{2} \operatorname{actin} 8, v_{1}=0, \text { olp is } V_{0} 2 \\
& v_{2}=0 \text {. cirat }
\end{aligned}
$$

$$
31
$$

Caise(1)

$$
\begin{aligned}
& \text { wim Va } \\
& \text { Herce }
\end{aligned}
$$

Couse(1) Herce

$$
\begin{aligned}
& 2=0 \text {. drat } \\
& V_{0}=\frac{R f}{R_{1}} \cdot V_{1}
\end{aligned}
$$

$$
1=0 \text { ithe }
$$

Caes $\stackrel{\rightharpoonup}{ }$
Cacs is

$$
\begin{align*}
& \text { Noptyel Dividrrue } \tag{b}\\
& \mathrm{N}_{2} \text { iwop. }
\end{align*}
$$

$$
\begin{aligned}
& A_{B}=\frac{R p l y}{R 2+R} \cdot V_{2}-(1) \\
& V B
\end{aligned}
$$

to me

$$
\text { (6) } \frac{V 02-V B}{R F}
$$

$$
I=\frac{V A}{R_{1}}=\frac{V B}{R} \text {, (2) }
$$

$$
\operatorname{aind}_{\operatorname{aipsidf}} \operatorname{an}=\frac{v_{0} 2-V A}{R f}
$$

equente (2) arde(3)

$$
\frac{R f}{\text { sub equasin } N_{B} \text { in equanm (4) }}
$$

$$
\begin{aligned}
& \text { ate (2) ard (3) } \\
& \frac{V B}{R_{1}}=\frac{N 2-N B: e}{R P}
\end{aligned}
$$

$$
V B P=V 02-V B
$$

$$
R_{1}
$$

$$
\frac{V B}{R R A+V B=V 02}
$$

$$
\begin{aligned}
& V_{02}=\left[\begin{array}{ll}
1 & \text { ri }
\end{array}\right. \text { using super posinem princule } \\
& \text { Hence using }
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}=V_{01}+V_{0} \\
& =\frac{-R f}{R_{1}} V_{1}+\left[1+\frac{R f}{R_{1}}\right]\left[\frac{R}{R 2+R}\right] v_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } R_{1}=R_{2} \\
& =-\frac{R_{1}}{R_{1}} V_{1}+\left[1+\frac{R_{1}}{R_{1}}\right]\left[\frac{R}{R_{1}+R}\right] V_{2}
\end{aligned}
$$

$$
=\frac{-R_{1}}{R_{1}} V_{1}+\frac{R_{1}}{R_{1}} V_{2}, v_{0}=+\frac{R_{1}}{R_{1}}\left(V_{2}-V_{1}\right)
$$

- Difforential amplihieri(oo subJRACIOR(m) Diffenonce Mosp.

Que: Draw the differensial amplitien and prow on exprestim for [Commers mode Repection narto?
Detioition: A circut thatamplities the difference between two inpur signals is called a difference cri difforemital amplitier Use: used in instrumentation ciraps and Indusmal applications,

Significance: impertance of piftoxeneal amplifier is betfor able to reject Cornmon moda (nolse) vottape than single I/P circuits Cireut ansist of I/P Resistana,
feadbacic resistance $\left(R_{2}\right)$ and
Luad Resistame R_{L}.
I/P are V_{D} and r_{1}
since, the differential
voltupe at the I/P
termmals of the op-amp

R_{2}

,

is zero, nodes ' a and ' b ' are at same potential, desianatet as V_{3}

The rodel equation of ' a '

$$
\begin{aligned}
& \frac{v_{3}-v_{2}}{R_{1}}+\frac{v_{3}-v_{0}}{R_{2}}=0 \\
& \frac{v_{3}-r_{1}}{R_{1}}+\frac{v_{3}}{R_{2}}=0
\end{aligned}
$$

$$
\int^{\frac{v_{3}}{4}}
$$

Rearr ange tre equations (1) and (2)

$$
\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right] v_{3}-\frac{V_{2}}{R_{1}}=\frac{v_{0}}{R_{2}} \text { (1) }
$$

$$
\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right] v_{3}-\frac{v_{1}}{R_{1}}=0
$$

$$
\begin{aligned}
& \operatorname{sub}(3)-(4) {\left.\left[\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}-\frac{v_{2}}{R_{1}}\right]-\left[C \frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}-\frac{v_{1}}{R_{1}}\right]=\frac{v_{0}}{R_{2}} } \\
&\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}-\frac{v_{2}}{R_{1}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{3}+\frac{v_{1}}{R_{1}}=\frac{v_{0}}{R_{2}} \\
&\left.\frac{1}{R_{1}}\left[v_{1}-v_{2}\right]=\frac{v_{0}}{R_{2}} \quad V_{0}=\frac{R_{2}}{R_{1}}\left[v_{1}-v_{2}\right]\right]
\end{aligned}
$$

$V_{0}=\frac{R_{2}}{R_{1}}\left[V_{1}-V_{2}\right]$
voltage
ain $_{A_{D}}=\frac{r_{0}}{r_{1}-r_{2}}=\frac{R_{2}}{R_{1}}$
conelukm:
These circuit useful for detecting very small difference in signals since the gain $R L / R_{1}$ can be chosen to be very large.

For exambe, if $R_{2}=100 R_{1}$, then the small differembe $r_{1}-r_{2}$ is amplified 100 times

Differencernode and Common mode gains
Let $r_{0}=\frac{R_{2}}{R_{1}}\left[r_{1}-v_{2}\right]$, if $r_{1}=v_{2}$, the op $v_{0}=0$ for ideal op-amp only.

But pratical op-amp, $r_{1}=r_{2}$, we wont get $v_{0}=0$ duets common mode component of Ils signal (vortupe)

Fuexamte: V_{0} will have different value

$$
\begin{aligned}
& \text { Cau(i) } r_{1} \\
&=100 \mu \mathrm{v}, \quad v_{2}=50 \mu \mathrm{v} \\
& \text { (ii) } v_{1}=1000 \mu_{v}, v_{2}=950 \mu \mathrm{v}
\end{aligned}
$$

In Bots the causes difference $\left[v_{1}-v_{2}\right]=50 \mu \mathrm{~V}$ But output is different, due to averape voltape of Ilpsisnals that is called common mode signal

Not: :(important)
$V_{c_{n}}=\frac{v_{1}+v_{2}}{2}$
For me diftarential amp.
if $v_{1}=v_{2}$, but vitae at hade 'á ant ' h ' are Lifforent becase f Resistance at $\cong R_{1}$ And A from $v i$
terminal source is $\approx\left(R_{2}+x_{3}\right)$. The voltage at the putative slightely grater than Negative terminal. So out is Not

NOM-Inverting ADDLRR

Let vottge $\$$ node B is VB. rode A is at same potemal as th at of B, due p virtual grown it

From IIPside

$$
\begin{aligned}
& \text { on I|P side } \\
& I_{1}=\frac{V_{1}-V B}{R_{1}} \text { and } \frac{V_{2}-V B}{R_{2}}
\end{aligned}
$$

But Ip current of opamp is zero

$$
\begin{gathered}
I_{1}+I_{2}=0 . \\
\frac{v_{1}-v_{B}}{R_{1}}+\frac{v_{2}-v_{B}}{R_{2}}=0, \quad \frac{N_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}=V_{B}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]
\end{gathered}
$$

$$
\therefore V_{0}=\frac{R_{2} V_{1}+R_{1} v_{2}}{R_{1}+R 2}
$$

NOw at node ' A ' $I=\frac{V_{A}}{R}=\frac{V B}{R}$ as $V_{B}=V_{A}$-2 and throghne

$$
I=\frac{v_{0}-v_{A}}{R_{f}}=\frac{N_{0}-V_{B}}{R_{f}}
$$

equate (2) and (3)
$\frac{V_{B}}{R}=\frac{V_{0}-V_{B}}{R f}, \frac{V_{0}}{R f}=V_{B}\left[\frac{1}{R}+\frac{1}{R H}\right]$

$$
\begin{equation*}
v_{0}=v B \frac{[R+R \mathcal{R}]}{R} \tag{9}
\end{equation*}
$$

sub: equation
4

$$
v_{0}=\frac{R_{2} v_{1}+R_{1} v^{2}\left[R+R_{1}\right]}{\left(R_{1}+R_{2}\right) R}
$$

$$
V_{0}=\frac{R_{2}\left(R+k_{4}\right)}{R\left(R_{1}+R_{2}\right)} \cdot V_{1}+\frac{R_{1}\left(R+k_{1}\right)}{R\left(R 1+R_{2}\right)} V_{2}
$$

The opp is weighted sum of

$$
R_{1}=R_{2}=R=R_{f}
$$

Il ps \square

The noda a poterme of epamy Al is si also Bet Bi I vi At node D is $\cup 2$ als at c is V_{2}

The olp stape of Instruman fation amp ivtior is piltace
Anp and olp equis sivan hy
$V_{0}=\frac{R_{2}}{R_{1}}\left(V_{02}-V_{01}\right)$
Applying ohrolan: betwon, Eand F

$$
\begin{align*}
& I=\frac{v_{01}-v_{02}}{n_{1}+R_{a}+p_{1} 2} \\
& I=\frac{v_{01}-v_{2}}{2 n_{1}+R_{a_{2}}}
\end{align*}
$$

$$
n_{1}=R_{2}=n f
$$

$A t$ node a and 4 .

$$
I=\frac{V_{a}-V H}{R G}=\frac{V_{1}-V_{2}}{R G}
$$

equare (D) and (2)

$$
\frac{v_{01}-v_{02}}{2 n f+R a}=\frac{\left.v_{2}-v\right)}{R G}
$$

$$
\frac{v_{02}-v_{01}}{2 n_{4}+R_{a}}=\frac{v_{1}-v_{2}}{R_{a}}
$$

$v_{02}-v_{01}=\frac{\left(2 R_{f}+R_{a}\right)\left(v_{2}-v 1\right)}{R_{a}}$

Advantays

$$
v_{0}=\frac{R_{2}}{R_{1}}\left[\frac{2 R f+R a}{R_{a}}\right]\left(v_{2}-v_{1}\right)^{2}
$$

1) Helf of R_{a} gain

$$
\begin{aligned}
& \text { becasily verviee } \\
& 2 \text { Ifp impedanci is hif }
\end{aligned}
$$

hifh
$v_{0}=\frac{R_{2}}{R_{1}}\left(1+\frac{2 R_{0}}{R_{c}}\right)\left(v_{2}-v_{1}\right)$

G/p vijtepe iA tha intepuntion at fien infut vitilipe
leteal Achte ap amp intiapratort

The roodo is (s groxerded, fieda ' A ' also greveded due ve virtual qrownd

$$
\therefore V_{A}=V_{B}=0
$$

As I|p current of op-cimp is zam,
the entive current I flowing

throsegh R1, alio flows through R!

$$
\begin{equation*}
I=\frac{V_{i n}-V_{A}}{R 1}=\frac{V i n}{R 1} \tag{D}
\end{equation*}
$$

From output side, we can urite

$$
\begin{aligned}
& I=c_{f} \frac{d\left(v_{A}-v_{0}\right)}{d t} \\
& I=-c f \frac{d v_{0}}{d t} \\
& \text { equating (1) and (2) }
\end{aligned}
$$

$$
\frac{v_{i n}}{R_{1}}=-c_{f} \frac{d v_{0}}{d t}
$$

Inteprating bom me sides, we get
$\int_{0}^{1} \frac{v_{\text {in }}}{R 1} d t=-c_{f} \int \frac{d v_{0}}{d t} d t$
ie $\int_{0}^{1} \frac{V i n}{R 1} d t=-c_{f} V_{0}$
$\therefore v_{0}=-\frac{1}{R_{1} c f} \int_{0}^{1} v \ln d t+V_{0}(\theta)$
Where $V_{0}(0)$ is the intitat anstact of intepration, Indicanng the initial ouput vittee

The alpis $-1 / R 1<\&$ times the
intepral of Etp ane $k i c f$ iscollod bmo

For square wave IIP (intopati6)

$$
\begin{aligned}
\operatorname{vin}(t) & =A \quad 0<t T T / 2 \\
& =-A, \quad T / 2<t<T
\end{aligned}
$$

$v_{0}(1)=$

$$
\begin{array}{ll}
-A & 0<t T / 2 \\
+A & \pi / 2<t \quad t
\end{array}
$$

For sithe wave Ilp

$$
\begin{aligned}
V_{\operatorname{in}}(t) & =V_{m} \sin \omega t \\
V_{0}(t) & =-\int v_{i n} t \\
& =-\int v_{n} \sin \omega t d t \\
& =-V_{m}\left[\frac{1}{\omega}(-\cos \omega t)\right] \\
V_{0}(t) & \left.=-\frac{v_{m}}{\omega}(-\operatorname{\omega s} \omega t)\right]
\end{aligned}
$$

Slope - Avoth lsec slope tavot

Note for step Ilp
$\operatorname{vin}(t)=A$ for $t \geqslant 0$ - for $t \angle 0$
$v_{0}(t)=-A t$
$\operatorname{vin} 4$
A

Errusinan ideal tntepratar -15
In absence of Ilp Vottcpe or at zars frequey $(d c)$, op-amp qain is very hifh. The Ilp offset voltape gets armpilfod and appears at the OIP as an erorr Vottge. The blas currents alsoresuts in 4 Capacitr charging ouvt and adts it effect in a olp ermes vige
y The, Depanding on polarities of offsec vottge
and/or blas current o/p to rampup or
of Ilp atiset vitue ampltied at ol
error due v
dourn. After sume time op goes to saturatios bras cunt Level. due to thege two ems. op goas to saturation out of sateration. veng No

In ideal inteprator, absense of ItP, due to offset vottge © Ip goes to Nepative or positive saturation level

Inpresence of Ilp Vittape also, opp of opamp aet distorted we due to Ilpoffset vottre and bias aunt We wont get tovue intepration olp.
(2) Bw is very small. soit can be used for a very small frequang ramse of Ilp only.
Due to above limitations, an ideal intweprater not used in pratice, so we go for praticel intepratse
pratical integrator
\rightarrow Rf parallel win $C f$
\rightarrow Rcmp is also used to overcome the error $d u<$ to the bias current
\rightarrow Rf reduces the low frequy gain of opamp.
Analysis

As the Ilp current of op-cmp is zee the node B is sill at arums potential, Hence the node A also in around potential

$$
U_{A}=U_{B}=0
$$

$I=\frac{V_{i n}-v A}{R 1}=\frac{v_{\text {in }}}{R_{1}}$
$I_{1}=c f \frac{d\left(v_{A}-v_{0}\right.}{d t}=-c f \frac{d v_{0}}{d t}-(1)$
and
$I_{2}=\frac{V_{A}-V_{0}}{R_{f}}=\frac{-v_{0}}{R_{f}}$ (2)
At node A, applying KCL ,

$$
I=I_{1}+12
$$

$\frac{v_{i n}}{R_{1}}=-c f \frac{d v_{0}}{d t}-\frac{v_{0}}{R_{f}}$
Taxing Laplace, we get
$\frac{v_{i n}(s)}{R_{1}}=-s\left(f v_{0}(s)-\frac{v_{0}(s)}{R_{f}}\right.$
$\frac{\operatorname{vin}(s)}{R_{1}}=-v_{0}(s)\left[s c f+\frac{1}{R_{f}}\right]$
$\frac{\operatorname{vin}(s)}{R_{1}}=\frac{-V_{0}(s)[1+s c f R f]}{R f}$
$\therefore R A$
\therefore Vo

$$
v_{0}(S)=-\frac{1}{\left(S R_{1}\left(f+\frac{R 1}{R H}\right)\right.} \cdot v_{\text {in }}(S)
$$

When $R f$ is very large then RIlrf can be neqleted and hence cirat behave like as ideal integrator $V_{0}(S)=-\frac{1}{S R_{1} C f} V_{\text {in }}(S)$. $\begin{aligned} & \text { ie } v_{0}(t)=-\frac{1}{R 1 \subset f} \int V_{\text {in }}(t) d t \\ & \rightarrow \text { as } \frac{1}{s}=\end{aligned}$ Frequency Response of
practice Integrator
$-17-$

$$
\begin{aligned}
& \frac{v_{0}(s)}{v_{\text {put }}(s)}=\frac{-R f \mid R 1}{1+s c f R f} \\
& S=\hat{\jmath} \omega \\
& \begin{array}{l}
S=j \omega \\
\frac{\operatorname{vo}(j \omega)}{\operatorname{vin}(j \omega)}=\frac{-R_{f} \mid R_{1}}{1+j \omega C_{f} R_{f}}
\end{array}
\end{aligned}
$$

$\therefore A=-\frac{R f \mid R 1}{1+i 2 \pi f c \rho 日 f}=$ qainas
$1+j 2 \pi f c f$ of function of frequary
$A=\frac{R f / R 1}{1+\rho \frac{f}{f_{a}}}$
Where $f_{a}=\frac{1}{2 \pi c f R}$
f_{a} is corner frequency
The Mayan itude of the gain A is given by

$$
|A|=\frac{R f|R|}{\sqrt{1+\left(\frac{f}{f_{a}}\right)^{2}}}
$$

At $f=0$ ied condition

$$
|A|=R f / R 1
$$

$$
=20 \log \left(\frac{r f}{r^{2}}\right) d D .
$$

Thus infinite d g gain of opamp
encage of ideal, gets limited to $R f / R_{1}$ in the practical inteprater.
if $f=f_{a}$.

$$
(A)=\frac{R F|R|}{\sqrt{1+1}}=0.707 \frac{R f}{R 1}
$$

Fur integration frequary
response must be strigut lind slope, it ∞ occur between f_{a} and F_{b}. So integration taking place betuen fa and ff below fa does not in tee rate

Desisnc pratical inteprats $c k t$ witr a $d C$ sain of 10. to integrate a square wave of 10 ktz Quen $|A| d c=\frac{R t}{R_{i}} \quad$ I

$$
10=\frac{R t}{R_{1}}
$$

$f=10 \mathrm{KM2}$
Fer proper intepration $f \geqslant 10 \mathrm{fa}$

$$
\begin{aligned}
& \frac{f}{f_{a}}=10 . \\
& f_{0}=\frac{f}{10}=\frac{10 \times 10^{3}}{10}=1000 \mathrm{~Hz} .
\end{aligned}
$$

For pratical integrator

$$
f_{a}=\frac{1}{2 \pi 4+2}
$$

$$
1000 \mathrm{~Hz}=\frac{1}{2 \pi \mathrm{HCf}}
$$

$$
R_{f} C P=1.5915 \times 10^{-4}
$$

Chouse $R_{1}=10 \mathrm{k}$

$P A=10 R 1=10 \times 10^{3}=100 \mathrm{k}$
$c f=\frac{1.5915 \times 10^{-4}}{100 \times 10^{3}}=16 \mathrm{nF}$
Rcomp $=R_{1} \| R f$

$$
=\frac{R_{1} R L}{R_{1}+R_{2}}=\frac{10 \times 100}{10+100}=9.091 \mathrm{ce}
$$

Differentiater

The eproutt which produces tho difforentrourn of tre input vortupe at its oupput is called difforentator.

Ideal opamp differennabur
From circut Nobe ' B ' is
grounded so $V_{A}=0$
ASIlP current of oparop is zero,
entire carrent II flows throigh resistune Rp

Analysis

From snput side, we con urite

$$
I_{1}=c_{1} \frac{d\left(v_{i n}-V A\right)}{d t}=c_{1} \frac{d \text { vin }}{d t} \text {-(1) }
$$

$V_{A}=0$

From output side, we cans unste

$$
I=\frac{\left(V_{A}-V_{0}\right)}{R f}=-\frac{V_{0}}{R_{A}}-(2)
$$

equate (1) and (2)

$$
\text { c, } \frac{d v i n}{d t}=\frac{-v_{0}}{R f}, v_{0}=-c_{1} R f \frac{d v i n}{d t}
$$

Equation (3) ie output shows the outputis Cinf timesto differenstian of Input
ic,rf is called time censiont
-'signi is oueput equatim Indicater

Shit betacers input and outpue
By miller's thewem, the epfeanive repistane betaon input node 'A' and gruumd bee mes

$$
\frac{R f}{1+A V} \approx \frac{R f}{A V}, A v=\text { sain, whichis, vary lasie }
$$

So ff beemevory small and hance fre condinim

$$
R f C, \angle \angle T \text { qut satished at ael the frequician. }
$$

duxe in prative Rcomp=Rf
$\frac{\text { For sine wave Ilp -20 }}{10 \text { chose }}$

$$
\text { Let } V_{0}(t)=\frac{-d \sin u)}{d t}
$$

For RfCf $=1=-\frac{d}{d t}$ (Vnsinwt)

$$
V_{0}(t)=-V_{\text {n }} \text { oowt. } \omega
$$

soat $t=0 \quad V_{0}(t)=-V_{n} w$
$t=T / 4 \quad V_{0}(t)=0$
$t=\pi / 2 \quad v o u)=t v m w$ and so on.
so opp of dittorentiatr is cosine waveforn.

For square wave IlP

$$
\begin{aligned}
\operatorname{vin}(t)= & A \quad 0<t<T / 2 \\
& -A \quad T / 2<t<T
\end{aligned}
$$

Differenthatr behave similarto its

Frequancy Respense of ideal difforenticier

Us $V_{0}(t)=-R f C_{1} \frac{d v i n}{d t}$
palieg Laplace Tramitom

$$
v o(s)=-S R_{1}(1 \text { vin }(s)
$$

10 Get Frequey Respanse, Replace $S=j \omega$ $v o(j \omega)=-j w \operatorname{lo} \operatorname{vin}(j \omega)$
gaine $\frac{V_{0}(j w)}{v_{n}(J w)}=-j w$ ffe,
To act frequay paspense, take mparitude
$A=\left|\frac{v_{0}(j \omega)}{v_{\text {in }}(j \omega)}\right|=|-\hat{\omega}|$
$A=\omega R f_{C_{1}}=2 \pi f R_{1} C_{1}$
for kow freqy such as de $(f=0)$ so qain=0. Fand frequayinerases gainalso mereasa
$A=\frac{f}{f_{a}}, t_{a}=\frac{1}{2 \pi R P C}$

-21

$\underbrace{\text { indB. }}_{\text {Frequay Responseaf ideal ditferontiaper }}$
f_{a} is the prequey af which of gain becomes 2 or $20 \log 2$ ie odB
$f<f_{a}$
the ratio of $\mathrm{f} / \mathrm{f}_{a}$ ishess
Hence $20 \log \left(\mathrm{f} / \mathrm{f}_{a}\right)$ is Neqative
if $f=f_{a}$, gain beemes $o d B$ and frequencies f_{a} onvards, qais increass wim a rate of $20 \mathrm{dr} /$ decade.
Disaduantepes of an I deel differentiator

* The gain of the diffarentiater increass as fiequy increns at some hish frequ, it may become onstahe and break into the oscilations. Thare is a positilty that opamp may go to into suturatios.

$$
\text { * } \quad x_{c_{1}}=\frac{1}{2 \pi f c_{1}} \text {, if frequey mereses, Reaetane of }
$$

capactare decreases. This malces circut is very nuch
Sensitivets noise. At hish frequ nolse get amplitied dueto highgain so nuise coompletcy ovorrido the differentiated outnue
$\frac{\text { Limitanm }}{\text { circult suffers on its instatilty and nolre }}$ problems, at hish frequencies. This can be correted hy adding some additional parameter suchacirat is called pratical differentiat io

The nobe and stability at hish frequay can be comeated. Using Riseries wimct and if paralled with $R f$ Reamp used for blas Compensation.

B

$$
\sum_{i} k_{\operatorname{comp}}=k f \|_{k_{1}}
$$

Frequoncy Respense of pratical diftorentiater
To determne frequy Raspme, Latus obtain gain ae
interms of forquancy

$$
\begin{aligned}
& \text { Let } V_{0}(s)=\frac{-s R f C_{1} v i n(s)}{\left(1+S R_{1}(1)^{2}\right.} \\
& \frac{v_{0}(s)}{\operatorname{vin}(s)}=\frac{-s R f(1}{(1+S R, C 1)^{2}} \\
& \frac{s=j \omega}{\frac{v_{0}(j \omega)}{\operatorname{vin}(j \omega)}}=\frac{-j \omega R R C l}{\left(1+j \omega R_{1} C_{1}\right)^{2}} \\
& \frac{\omega=2 \pi f}{\frac{v_{0}(j \omega)}{\operatorname{vin}(j \omega)}}=\frac{-j 2 \pi f R f(1}{\left(1+j 2 \pi f R_{1}(1)^{2}\right.}
\end{aligned}
$$

Take Loptace proms tom

$$
z_{1}=R_{1}+\frac{1}{S C_{1}}=\frac{1+S R_{1} C_{1}}{S C_{1}}
$$

$$
I=\frac{v_{\text {in }}}{z_{1}}=\frac{S C_{1} \operatorname{vin}(s)}{\left(1+S R_{1}(1)\right.}-
$$

Now curront I_{1} is

$$
I_{1}=\frac{V_{A}-V_{0}}{p f}=\frac{-V_{0}}{R_{f}}
$$

$$
\begin{equation*}
I_{1}=\frac{-V_{0}(s)}{R f} \tag{2}
\end{equation*}
$$

Now currest is is

$$
I_{2}=c_{f} \frac{d\left(v_{A}-v_{0}\right)}{d t}=-c_{f} \frac{d v_{0}}{d t}
$$ capiace

$$
I_{2}=-s c_{f} V_{0}(s)
$$

Apply KCl at Node 'A
$I=I_{1}+I_{2}$

$$
V_{0}(S)=- \text { SRf } C_{1} \operatorname{vin}(S)
$$

$$
(1+S R, C 1)^{2}
$$

The time constact $R f C_{1}$ is much Gratoo tham $R_{1} C_{1}$, or RfCF and henve equatim (4) becomar raducas $V O(S)=-S P f(V / n(S)$ $R V_{0}(t)=-R f C_{1} \frac{d \operatorname{vin}(t)}{d t} \quad s=\frac{d}{d t}$

$$
\begin{aligned}
& \frac{S C_{1} \text { Vin(s) }}{\left(1+S R_{1} C 1\right)} \\
& \frac{S C_{1} V \operatorname{Vin}(S)}{\left(1+S R_{1}(1)\right.}=\frac{-V_{0}(S)}{R f}+\left(-C_{f} V_{0}(S)\right) \\
& =\frac{-V_{0}(s)}{n_{f}}-c_{f} V_{0}(s) \\
& =-V_{0}(s)\left[\frac{1+5 R f(f}{R p}\right] \\
& -V_{0}(S)=\frac{S(, \operatorname{vin}(S)}{\frac{(1+S R,(1)}{1+S R f(F}} \\
& V_{0}(S)=\frac{-S R_{f} C_{1} \operatorname{vin}(S)}{\left(1+S R f(1)\left(1+S R_{1} C l\right)\right.} \\
& \text { if } R P(f=R, C) \text {, then }
\end{aligned}
$$

Destan of pratical differennah - (4)

1) Choose fa as the highext frequay of the Ilp s15ect

Applicatens
(2) As a rate- \&-change deteator in the FM demodulators

Design a pratical difforentate cirat that will differoninate

 an inpul- sisnol wim tre $f_{\text {max }}=150 \mathrm{~Hz}$$$
R_{f}=1.06 \mathrm{ke}
$$

(iii) $f_{b}=10 f_{a}=10 \times 150=1500 \mathrm{~Hz}$

$$
\text { ANO } \quad R_{1} C_{1}=R f C f
$$

$$
f_{b}=\frac{1}{2 \pi R_{1} C_{1}}
$$

pratical integrator

$$
1500=\frac{1}{2 \pi R_{1} 1 \times 10^{-6}}
$$

$$
\begin{aligned}
& \qquad R_{1}=106.1 \mathrm{ke} \\
& \frac{\text { find } \&}{\text { Cat } R_{1} C l}=R 4 \mathrm{cf}
\end{aligned}
$$

Basc Lugraitrmic Amplitior
olp is propertienal to me lugraimen of me slpribevin It is obtcuined by using a transirtor as a dis da in mo
Olp is propertienal to tme lugraime
It is obtained by using a transistor as a
Nepative feed beck parm of an op-crmp.

Anode Bis virmal grmed.

hence $V_{B}=0$
$\because I=\frac{V i n-V B}{R}=\frac{V i n}{R}$

an opamp ypput current is zen

$$
I=I C
$$

"sel
The Voltape VCR $=0$ as the colleolor is at virtual grund and bese is qruendod, Hence wrecas urice equatirn Ic as

Applying to olpside weget

$U_{O}+U B E=0$.
ie $V O=-V B E$ and $I C=I=\frac{\text { Vin }}{R \text {. , SW IC in equn }}$
$-v_{0}=v_{T} \ln \left(\frac{v_{i n}}{\text { RIs }}\right)$
Lef \quad Nref $=I R o$
$V_{\text {ref }}=R_{5}$
$V_{0}=-V_{T} \ln \left[\frac{V_{i n}}{V_{\text {iaf }}}\right]$
O/f is direetly propentim / to the los of pre Ilp virtye

$$
\begin{align*}
& \text { (1) } f_{a}=f_{\max }=150 \mathrm{~Hz} \\
& \begin{array}{l}
\text { (H) Choose } c_{1}=1 \mathrm{Hf}=150 \mathrm{~Hz} \\
\text { (or Lesstmon } 1 \mathrm{ht})
\end{array} \\
& f_{0}=\frac{1}{2 \pi \mathrm{RfCl}} \\
& 150=\frac{1}{2 \pi R \& 1 \times 10^{-6}} \tag{2}\\
& \begin{aligned}
R_{\operatorname{com} p} & =R_{1} l \left\lvert\, k f=\frac{R_{1} R f}{R_{1}+R \&}\right. \\
& =\frac{106.1 \times 1.00 \times 10^{3}}{106.1+1.06 \times 10^{3}}
\end{aligned} \\
& =96.44 \Omega
\end{align*}
$$

Disaduantefer
Io. (Revest tat cunct chankeswim Temn) every $10^{\circ} \mathrm{C}$-rimios druble.
(2) vory difficict to set ire term Vref for trocict
(3) De tem V_{T} wim whichakialso chang wim femp. so femp atteets the presfone and accury $7 \mathrm{BaslC} \log$ anp. I. We havet put some sonf'if componsation erall.
Temp compunsated los Aoplitier
If wes two Cug Amp one for vis another for Veet

Qiond Q2 are domical. Aiand A2 work as bosic log arop

$$
I_{11}=I_{s 2}=I s
$$

then

$$
\begin{aligned}
& L D_{1}=L S_{2}=15 \\
& V_{01}=-V_{1} \ln \left(\frac{W_{n}^{\prime}}{R_{1} I s}\right) \\
& V_{02}=-V_{1} \ln \left(\frac{V_{\text {ret }}}{R_{1} I r}\right)
\end{aligned}
$$

As nst as difference omp cuinunis sio
So $V_{x}=V_{2}-V_{0}$

$$
\begin{aligned}
v_{x} & =-v_{T} \ln \left[\frac{v_{\text {ref }}}{R_{1 I s}}\right]-\left[-v_{T} \ln \left[\frac{v_{i n}}{R_{1 I}}\right)\right] \\
& =-v_{T}\left[\ln \left(\frac{v+f}{R_{1}}\right)-\ln (\bar{r})-\ln \left(\frac{v_{i n}}{R_{1}}\right)+\ln \left(\Sigma_{s}\right)\right]
\end{aligned}
$$

$$
V_{x}=-v_{T} \ln \left(\frac{v_{+4}}{v_{i n}}\right)
$$

Ansoming - vesion
NoI $\quad v_{x}=V T \ln \left(\frac{\text { vin }}{v i e q}\right)$
Vref is decided hy exteral bathy and it is not tempdepended and Temp dependet campent is set canculed sest. since U_{T} is preset in $V x$ which depend on temparaunie, this is com amfatid by Last stape of op-amp. A 4

$$
\begin{aligned}
& V_{0}=V_{x}\left[1+\frac{R 2}{R_{T}}\right] \\
& V_{0}=V_{T} \ln \left(\frac{V_{i n}}{V_{-\mu}}\right) \cdot\left(1+\frac{R_{2}}{R_{T}}\right) . \\
& V_{0}=\frac{V_{T}\left(R_{2}+R T\right)}{R_{T}} \ln \left(\frac{V_{i n}}{V_{r 2 j}}\right) .
\end{aligned}
$$

As Temp changes VT changes but the sametione R_{T} ild. chamjes, somat ratio $V_{T}\left(R_{2}+R_{T}\right) / R_{T}$ o emains constant
\qquad

Antilugamp: Artilus of the cambe obtomed hy using obtainins by cormeating transister at I/pteronned of op-amp.

Node B at virtual gromd hene $V_{D}=0$
coltecter and bare of Q is are at sworm λ.

potenial and $V_{C B}=0$.

$$
I_{C}=I_{S} e^{V D E / V T}
$$

B4 $U B E=V$ in

$$
\begin{equation*}
I C=I_{s} e^{v i n / v T} \tag{2}
\end{equation*}
$$

Now Ic and I are same as op-amp input currat is 20.0

$$
I=I_{C}=\frac{V_{B}-V_{0}}{r_{f}}=\frac{-V_{0}}{R_{4}}
$$

$$
\begin{aligned}
& \frac{0-v_{0}}{\mu}=\frac{v_{3}}{H} \\
& \begin{array}{c}
\text { Duebvirns } \\
\text { snn } \\
v_{B}=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-v_{0}}{r_{f}}=\text { Is } e^{v i n / v_{i}} \\
& v_{0}=\text {-Is ry } e^{v_{i n} / v_{i}}
\end{aligned}
$$

equate (2)and 3 .

Assume is Ry $=$ Vsef

$$
v_{0}=v_{\text {ref }} e^{\text {vin } \mid \eta v i}
$$

o Ip Nolt is prepertimal to exponennal of $v i n$.
je annilg of vin
since Io Is and v are present in mo ol pequir? all are functim of Temperatue. so fomp chanjes, parametrschages and cays series probums.

Temp Cimpensated Aorilus Anp
Thelos Amplcan he tumed arromed to provibe amsilug or Bomare idembial oxpensessar fumenton colless Anstily ' A ' gromulow

$$
\begin{aligned}
& V B E I=V \ln \left(\frac{I U 1}{I}\right) \\
& V C E 2=V \ln \left(\frac{I C 2}{I s}\right)
\end{aligned}
$$

As athampumuthueron

$$
I_{c 1}=I_{1}=\frac{r_{0}-v_{s}}{R_{1}}=\frac{v_{0}}{R_{1}}
$$

$$
\begin{equation*}
I_{c_{2}}=I_{2}=\frac{v_{\text {req }}-v_{3}=\frac{v_{\text {ref }}}{R_{1}} R_{\text {(3) }} \text { (1) }}{R_{1}} \tag{4}
\end{equation*}
$$

(3) in (1)

$$
\begin{equation*}
v_{\Delta} \varepsilon_{1}=v_{i l n}\left(\frac{v_{0}}{I S R_{1}}\right) \tag{5}
\end{equation*}
$$

(4) in (3)

$$
u_{B} E_{0}=v_{i s h}\left(\frac{N_{1}}{2 \mu \mu}\right)
$$

(5)

Now tho vilue v_{x} is

$$
\begin{align*}
& v_{x}=-V_{S} E_{1}=-V_{T} \ln \left(\frac{V_{0}}{T S_{1}}\right) \\
& V_{B_{2}}=\operatorname{Nin}\left[\frac{R \Gamma}{R_{2}+R_{T}}\right] \tag{b}
\end{align*}
$$

Now for me ransistros co , we com unte.

$$
\begin{equation*}
\text { SWEA (6) } V^{\text {inl }} V_{3}=V_{E 2}+V_{3} E_{2} \text {. } \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& \operatorname{vin}\left[\frac{R T}{R 2+\Delta T}\right]=V_{x}+V T \ln \left(\frac{V_{r e 1}}{I n_{1}}\right) \\
& \operatorname{vin}\left[\frac{R T}{R_{2+1} T}\right]=-v_{T} \ln \left[\frac{v_{0}}{I S R_{1}}\right]+v_{i \ln }\left[\frac{V_{\text {ret }}}{I S R_{1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 0 / \rho \alpha \text { annity }\left(h_{n}^{-1}\right) \text { \& z/e, treterin Rifvicerze }
\end{aligned}
$$

UNIT 3
Analog multiplier
What is analog multiplier?
ACPrcuit Which performs multiplication of two analog rotapes is called as Analog multiplier. The opp is me product of the two inputs divided by a reference voice Vet. The O / P is \& called version of x and y inputs.

$$
V_{0}=\frac{V_{x} v_{y}}{V_{r e f}}
$$

Normally Vref is internally set to lovuit
so $V_{0}=\frac{v_{x} \cup y}{10}$

Schematic symbol. Muth'plif.
as lens as.
and $\begin{array}{ll}V_{x} & V_{y}<V_{r e t}\end{array} \int$ The op of multiplier will not Saturate.

Modes of operation
(1) One quadrant multiplication: Bots the I/P are positive
(2) Two quardant multiplication: one I/Pis held positre and the other is allowed to switch Bot tie and Nepative swing
(3) Four quai droit multiplier: If both the I/Ps marg be dimer tue or -ie

Applications. (1) frequency duwbling
(2) Mea surement realpower (3) deteering phase-angee difference. between two sisnals of equal frequeny.
(4) Multriplying two si's nals
(6) Dividing one sisnal by amotrer
(b) Square root of a sisnal
(7) squaring a sisnal.

Antilog mutiplier
Log-amps require
the I/P and reference voltapes to be same polarity. This restricts log-antilog mutipliers
 to one quadrat operatim

$$
\ln v_{x}+\ln v y=\ln \left(v_{x} v y\right)
$$

Frequany Doubling:
The Mutriplication of two sine waves of tre sane frequy, but of pussibly different amplitide and phase allower to druble a frequy and to directey measure real power.

Let

$$
\begin{aligned}
& v_{x}=V_{x} \sin \omega t \\
& v_{y}=v_{y} \sin (\omega t+\theta)
\end{aligned}
$$

Where θ is the phak difforence the two sisnals.
of \neq is

$$
V_{0}=\frac{V_{x} \sin \omega t}{V_{y} \sin (\omega t+\theta)} V_{\text {ref }}
$$

$$
r_{0}=\frac{v_{x v y}}{v_{\text {ref }}} \sin \omega t(\sin \omega t \cos \theta+\sin \theta \cos \omega t) .
$$

$$
r o=\frac{v_{x} v y}{v r e f}\left(\sin ^{2} \omega t \cos \theta+\sin \theta \sin \omega t \cos \omega t\right) \text {. }
$$

But

$$
\text { ut } \begin{aligned}
& \sin ^{2} a=1-\cos ^{2} a \\
& \cos 2 a=2 \cos ^{2} a-1 \\
& \cos ^{2} a=\frac{1}{2}+\left(\frac{1}{2}\right) \cos 2 a \\
& \sin ^{2} a=1-\frac{1}{2}-\left(\frac{1}{2}\right) \cos 2 a=\frac{1}{2}-\left(\frac{1}{2}\right) \cos 2 a \\
& v_{0}=\frac{v_{x} v y}{v r e f}\left[\cos \theta\left[\frac{1}{2}-\left(\frac{1}{2}\right) \cos 2 \omega t\right]+\sin \theta \sin \omega t \cos \omega t\right]
\end{aligned}
$$

Bu $\sin a \cos a=\frac{1}{2} \sin 2 a=$
Hence

$$
\begin{aligned}
& V_{0}=\frac{v_{x} v_{4}}{2 v_{r e f}}(\cos \theta-\cos \theta \cos 2 \omega t+\sin \theta \sin 2 \omega t) \\
& V_{0}=\underbrace{\frac{v_{x} v_{4}}{2 v_{r e f}} \cos \theta}_{D C}+\underbrace{\frac{v_{x} v_{4}}{\frac{v_{r e f}}{2 v_{0}}(\sin \theta \sin 2 \omega t-\cos \theta \cos 2 \omega t)} .}_{2 n d e^{2} m \text { varies win time. }} .
\end{aligned}
$$

The first term is $D C$ is set by the masnitude of the sismols and their phase difference.
The secund tiers varies with time, but at twice the frequiry of the in puts (Lw)
IDeal Doubur. Bombe I/P are lance frequency.

$$
\begin{aligned}
& V_{x}=V_{x} \sin \omega t \\
& V_{y}=V_{y} \sin \omega t
\end{aligned} \quad \quad V_{0}=\frac{V_{x} \cdot \frac{v^{2}}{v^{4}} s^{2} \omega t}{}
$$

$$
v_{0}=\frac{v_{x} v 4}{r^{r e f}}\left[1-\frac{\cos 2 \omega t}{2}\right]
$$

The op contain a $D C$ term and a Nepative Eosin wave of double frequy. The $D C$ terms easily Removed by u sing coupling capacitor betuer load and the opp Lermmals. squarer circuit (voltage)

Multiplier can be used to square any tee or reparive number provided the number can he represented by a vortepe
 between 0 to Vref
vi- is the I/P vortape.

$$
I / P \text { s } V_{x}=v_{y}=v i
$$

$r_{i n}=V_{m} \sin \omega t$

$$
v_{0}=\frac{v_{i}^{2}}{v_{r e f}}
$$

$$
\begin{aligned}
\text { Ip } v_{0} & =k v v_{y} . \\
& =\frac{1}{v_{r e f}} \cdot v_{i}^{\prime 2} \\
v_{0} & =\frac{v_{i}^{2}}{v_{c l}} \quad\left\{\begin{array}{l}
K=\frac{1}{v_{r e f}} \text { ire } \\
\text { scaling factor }
\end{array}\right.
\end{aligned}
$$

for examhe.

$$
\begin{aligned}
& v_{i}=v m \sin \omega t \\
& v_{i}=5 \sin 2 \pi \times 10^{4} t \text { and vet } \\
& r_{0}=\frac{5^{2}}{10}\left(\sin 2 \pi \times 10^{4} t\right)^{2} \\
& =2.5\left[\frac{1}{2}-\frac{1}{2} \cos 2 \pi \times 2 \times 10^{4} t\right] \\
& =1.25-1.25 \cos 2 \pi \times 2 \times 10^{4} \mathrm{t}
\end{aligned}
$$

The $0 / p$ contains a $d c$ term and frequency is doubled.

Phase Angle Defection: Deteet phare angle betweentwo [/Ps.

$$
\begin{aligned}
& v_{x}=V_{m x} \sin \omega t \\
& v_{y}=V_{m y} \sin (\omega t+\theta)
\end{aligned}
$$

$V_{0}=\frac{V_{m x} V_{m y}}{V_{r e f}} \sin \omega t \sin (\omega t+\theta)$

$$
\left.\begin{aligned}
& =\frac{V_{m x} V_{m y}}{V_{r y}} \times \frac{V_{m \times} V_{m y}}{V_{r e}} \frac{1}{2}[\cos (\omega t-\omega t+\theta)-\cos (\omega t+\omega t+\theta) \\
& =\frac{V_{m x} V_{m y}}{V_{r e f}} \times \frac{1}{2}(d c-a c \text { frequy ierm })
\end{aligned} \right\rvert\, \begin{aligned}
& \sin A \sin \theta \\
& =\frac{1}{2}(\cos (\theta-B)-\cos (A+\theta)
\end{aligned}
$$

The offof musiplier is pussed to a LPF which provided $\frac{1}{2} d c$ as o/p ie $\frac{1}{2} \cos \theta$.
So The phase difforence θ between the two imput signais canbe Calulated from the $d c$ composent istre olp vottife vo ie

$$
\begin{aligned}
V_{0, d c} & =\frac{V_{m x} v_{m y}}{2 v_{r e f}} \times \cos \theta . \\
r_{0} d e & =\frac{V_{m x} v_{m y}}{2 \times 10} \cos \theta
\end{aligned}
$$

The product Vme vmy is made 20 . sotre olp voityc is propertimal to θ tre phanse angle difference between tho sinusvidal input vottues applied
voltage Divider:
obtained by Convening Muetipler at feed back lop of opamp.
V_{2} is divident V_{x} is diviser

$$
V_{0}=-V_{r_{4}} \cdot \frac{V_{z}}{V_{x}}
$$

prof:- The opamp's inverting terommal is at virtual ground Therefore

$$
\begin{aligned}
& I_{2}=I_{A} \\
& I_{2}=\frac{V_{2}}{R}
\end{aligned}
$$

The opp voltage V_{A} of the multiplier is determined by the mutiplicanm of V_{x} and v_{y}.

Aquino

$$
V_{A}=\frac{v_{x} V_{4}}{v_{\text {ret }}}=\frac{v_{x} V_{0}}{v_{r e t}}
$$

$$
\begin{aligned}
& V_{A}=-I A R . \\
& I_{A}=-V A / R
\end{aligned}
$$

$$
\left.\operatorname{sub}_{I_{A}} V_{A} i n\right]_{A}=-\frac{V_{x} v_{0}}{V_{r} f_{R}}
$$

As $I_{2}=I_{A}$
so

$$
\begin{aligned}
& I_{z}=\frac{-v_{x} v_{0}}{R \cdot v_{r e t}} \\
& V_{z}=I \Sigma R=\frac{-v_{x} v_{0}}{R \cdot v_{r e f}} \cdot R^{\prime} \\
& V_{z}=\frac{-v_{x} v_{0}}{v_{\text {ref }}} \\
& V_{\text {ref }} v_{z}=-v_{x} v_{0} \\
& \frac{-v_{\text {ref }} \frac{v_{z}}{v_{x}}=v_{0}}{}
\end{aligned}
$$

square Rcots.'
ut vo $=\frac{V_{x v y}}{v_{\text {vut }}}$

And $V_{A}=-V i n$.
so $V_{0}{ }^{2}=-\operatorname{Vin}$ Vref
or $V_{0}=\sqrt{V_{\text {ret } \mid V i n}}$ taling mapanitude $\mathrm{cnl}^{\prime} y$.
Thus, ofp vo is properrimal to squar root of mopanited of vio. Vin must be Neparive. or else op amp will Saterate.
rin Range lies between -1 and -10 r .

Analog multiplier Using Emittor Coupled Transistes pair

Emitter coupled Transistro pairstge

current sonue Conrolled hy V_{2}
-VEE
-8.
If V_{1} is applied totu base of tramsisir θ_{1} and 02 V_{2} is applied as tre emitfer current to boto transisce.
Taxing mily Emitn caupled stape

$$
\begin{align*}
& I_{C_{1}}=\frac{\Gamma E E}{1+e^{-V_{1} / \sqrt{T}}} \\
& I_{C_{2}}=\frac{I E E}{1+e^{V_{1} / V_{T}}} \\
& A I_{C}=I_{C_{1}}-I_{C_{2}} . \\
& A I C=\frac{I E E}{1+e^{-v_{1} / U T}}-\frac{I E E}{1+e^{v_{1} / v T}} \\
& =I G E\left[\frac{1}{1+e^{-v_{1} / v T}}-\frac{1}{1+e^{v_{1} / v T}}\right] \tag{t}\\
& \text { depention tre I/p vortye } \\
& \begin{array}{l}
\text { emp equi } \\
\text { votye. }
\end{array} \\
& \begin{array}{l}
+4 \text { Blus } \\
\text { curment }
\end{array} \\
& V_{T}=\text { Temp Equivalant } \\
& \text { volye. } \\
& \text { polarity } 7 \text { exponeniace } \\
& \begin{array}{l}
\text { depentis on the I/P vartye } \\
v_{1},
\end{array}
\end{align*}
$$

(7.) $A I_{C}=I E E \operatorname{tamh} \frac{v_{1}}{2 v T}$

DCTramifer Characteristis
if $V, \angle V T$ equarion (1) approximates as

$$
\begin{gathered}
\triangle I C=I E E \tanh \frac{v_{1}}{2 v T} \\
\cong I E E \frac{v_{1}}{2 v T}
\end{gathered}
$$

if IEE is made quar propertimal t me secend Ilp V_{2}. men equarin (2) becomo

$$
\Delta I C=V_{2} \frac{V_{1}}{2 V T} \text { where } V_{2} \alpha I E E
$$

IEE by considering Base to Emitter vote,

$$
\begin{equation*}
\text { IE } \cong K_{0}\left(V_{2}-V_{B E}(O N)\right) . \tag{3}
\end{equation*}
$$

sub (3) in (2).

$$
A I C=\frac{K_{0}\left(V_{2}-V_{B E} O_{O N}\right) \cdot V_{1}}{2 V_{T}}
$$

Ko is sealing factor

For proper Multiplication
(1) $v_{1}<50 m v$.
(2) V_{2} must be grates mam $V B E$ (On).

Drawbacks:
(1) The input voltape v_{2} is off set hy $V_{B E C O N}$. So desired input V_{2} cannot be multiplied with trod IIP V_{1}. Thus the preciseness in getting the product ole is affected
(2) U_{2} must be always positive resulting in two quadrant multiplication.
(3) $\operatorname{tamh}\left(\frac{v_{1}}{2 v_{T}}\right)$ is approximated as $\left(\frac{v_{1}}{2 v_{t}}\right)$ wits cessumprom $V_{1} L L V_{5}$. In Rom Temp, $U_{T}=26 \mathrm{~mL}$. Therefore, v_{1} must be very small α Saristy the approximation

Explain the working of a^{-10} Gilbert multiplies cell.
The Gilbert Multiplier also called for quadrant multiplier cell. It allows the two input vottepe to swing in bo to polarities. (If output)

aravit has three stapes.
stope 1 and 2,43
What is Gilbert Mutiplie. (u)
The Gilbert multiplier cell is a modification of the emitter coupled call and thisallms four quartront Multiplication. Therefore, it former the basics of most of the IC balanced multipliers. Two cross coupled emitter - coupled pairs in series Connection with an ernitter coupled pair form the structure of the Gilbert multiplier cell.

It is a type of mixer. It produces ole signals that are properrimal to the product if two I/p sisal. It widely used fur frequency Conversion in radio systems.

Advanty :
$-11-$ multiplication of the (differential) base currents And of both IIPS.

As a mixer, its balanced operation Cancels O Ut many unwanted mixing products, resulting in a "Cleaner' output.

Applications:

1) Used as modulators or mixers in Communication ans
2) used in signal processors.
3) Used as detectors or demodulate. to recover low frequent signals.
4 used as a phase Detectors
4) used as frequey double, squarer, divider etc
5) used in most of me IC mutiplus as a for quadrant cell.

Dcaralysis:
collector currents of Q_{1} and C_{2} are given by.

$$
\begin{align*}
& I_{C_{1}}=\frac{I_{C 5}}{1+e^{-v_{1} / V T}} \tag{1}\\
& I_{C_{2}}=\frac{I C_{5}}{1+e^{V_{1} / V T}}
\end{align*}
$$

LIC5 is emitter current of prim Q_{1} and U_{2}
(II) collector current of Q_{3} and 04 are given as

$$
\begin{align*}
& \operatorname{ICB}^{\prime}=\frac{I_{C b}}{1+e^{v_{1} / v_{1}}} \tag{3}\\
& I_{4}=\frac{I_{C b}}{1+e^{-v_{1} / v_{1}}} \tag{4}
\end{align*}
$$

\therefore Lee isem current parcel on

And collectar cunt of Q5ard 06 can be given al

$$
\begin{align*}
& I_{C 5}=\frac{I E E}{1+e^{-V_{2} / v i}} \tag{5}\\
& I_{C b}=\frac{I E C^{2}}{1+e^{V^{2} / V T}}
\end{align*}
$$

Sub value of IC5 and IC6 in equips. we set

$$
\begin{align*}
& \text { Set } \tag{7}\\
& I_{C 1}=\frac{I_{E E}}{\left[1+e^{-v_{1} / v T}\right]\left[1+e^{\left.-v_{2} / v_{1}\right]}\right.} \\
& I_{C 2}=\frac{I E E}{\left[1+e^{v_{1} / v T}\right]\left[1+e^{-v^{2} / v_{1}}\right]} \tag{9}\\
& I_{C 3}=\frac{I E E}{\left[1+e^{v_{1} / v T}\right]\left[1+e^{V_{2} / v_{1}}\right]} \\
& I_{C y}=\frac{I E L}{\left[1+e^{-v_{1} / v_{T}}\right]\left[1+e^{v_{2} / v_{1}}\right]}
\end{align*}
$$

The differential op current $4 I$ is given a

$$
\Delta I=I L_{1}-I L_{2}
$$

Where $I L_{1}=I C_{1}+I C_{3}$ and $I L_{2}=I C_{2}+I C_{4}$.

- from me figure.

$$
\begin{align*}
& \therefore \Delta I=\left(I C_{1}+I C_{3}\right)-\left(I C_{2}+I C_{4}\right) \\
& \text { or } \tag{II}\\
& \Delta I=\left(I C_{1}-I C_{4}\right)-\left(I C_{2}=I C_{3}\right)
\end{align*}
$$

sub equations 7 to 10 in equations (II) and taking exponential terms as hyperbolic tangent funcrims, weser

$$
\Delta I=I_{E E}\left[\tanh \left(\frac{v_{1}}{2 v T}\right) \tanh \left(\frac{v_{2}}{2 v T}\right)\right]
$$

Thus me differential current $4 I$ is the product of the hyperbolic tamset of tho I/ ps of vottopes v_{1} and v_{2} the olp v_{0} can be obtained from AI by using two equal value Resist R connected to $V C C$ and sending. corrupt $I_{L I}=\left(I C_{7}+I_{C 3}\right)$ through ono resistor and $I L_{2}=$ (I cI $+I C_{4}$). through over Resistor.

What are the advantepes of emitter coupled transistor pair?
(1) High current Gain
(2) more stability
(3) compact and easily implemented in IC form.

Varsabe Tramsconductance reehrique.

2 mal
What is the function of
Variabe Troms and U tue amplifier?

Mulriply two I/P voltapes by using the principle of dependency of transistor tramscondo ctance on the emittr current bias applied. The emittr current bias controlled by tro 182.
Q_{1} and Q_{2} forms ditterential Amp

Differential stape is used for trans cenduciance Teehmique Emittor current bias is contalled by the scond 2 nput voltefe V_{2}. Qland Q_{2} forms differenvial amplifier For vary under this condition vortuc is given al

$$
\begin{equation*}
V_{0}=q_{n} R_{L} V_{1} \tag{1}
\end{equation*}
$$

Whare $g_{m}=\frac{D E}{V T}$ is me francendrcatare
Vo depents on $9 m$ and $g m$ depend cos $I E$, By changing V_{2}. L_{E} chanses therety g_{m} chansel. ie incuntrilus hy V_{2}. intemaly.
Prom abae Piqure

$$
\begin{aligned}
& V_{2}=I E R E+V_{B E 3} \\
& \text { if IERE }>V_{B E}
\end{aligned}
$$

-4.

$$
\begin{equation*}
V_{2}=I E R E \text { and } I E=\frac{V_{2}}{R E} \tag{2}
\end{equation*}
$$

Sub IE in 9^{m} equanim.
(2) $\operatorname{in}(1)$

$$
\begin{align*}
& g_{m}=\frac{\frac{V_{2}}{R E}}{g_{m} R_{L} V_{1} V T}=\frac{V_{2}}{R E V T} \tag{3}
\end{align*}
$$

Let $v_{0}=g_{m} R_{L} v_{1}$
then $V_{0}=\frac{V_{2}}{R E V_{T}} R_{L} V_{1}$

$$
=V_{1} V_{2} \frac{R L}{R_{E} V T}
$$

$$
K=\frac{R L}{R E V J}
$$

$v_{0}=K v_{1} v_{2}$ is the scaling factor.
op is propertional to the product of two input votes. To improve the linearity of the multiple, exponential current voltage characteristics can be converted into linear characteristics.

Transistors Q_{A} and $O B$ is diode conneeeed and are driven by IAA m d IB, Il and I2 are related as $\frac{I_{1}}{I_{2}}=e^{\left(v_{1} / v_{2}\right)}, v_{1}=v_{T} \ln \left(\frac{L_{B}}{D D}\right)$
and substituing V_{1} in $\frac{T_{1}}{L_{2}}$ we get $\frac{\Sigma_{1}}{I_{2}}=\frac{I_{B}}{E A}$, Assuming that $V_{T i}$ is very

What is PLL and Lis the Basic Building Blocks of PLL.?
PLL? pharehocked wop: PLL is a circuit which detects the phases of two signals and reduce the difference in the presence of a phase difference. The internal y generated frequency and externals frequy are compared to detect and track the chamje is their phase difference.

Basic Building B locics of PLL [closed lwopsyshm].

1) Phase Detector / Comparator
2) A hew pass filter
3) Ab error Amplitis
4) A vortepe Contrived uscilater (vco)

Il signal $v s$ of frequency ts is applied to the $P L L$. the phase deetor compares the phase and frequency of incoming signal.
If the two signals differ in frequent and/or phase. an.eror vottape V_{e} is generated.
Phase Detector is basically multiplier and produce sum $\left(f_{s}+f_{0}\right)$ and
difference $\left(f_{s}-f_{0}\right)$ components at its $\%$.

LPE: The High frequency cimponent $\left(f s t f_{0}\right)$ is removed by LPF and the difference frequency Component is amplified and trees copplied as Centring vortope Vc lo Vo.
Capacturepange (or) state
The signal V_{c} shifts the Vo frequency in a direetiro to reduce the frequency difference between I_{s} and fo. once this action starts, we ar that the sinai is io Capacture Range. Thu Range if fraquiyan oran which then phase hock stake:

The frequency of V co can be set by an external capacitor and Resistor. The opP frequy fo of vco is compared wit the in among signal is.
when $f_{0}=f_{s}$, the pul is said to be locked

Tracking/state:
once trepLL is locked, Ml tracks the chases is frequency of I / P signal and the VCo O / P frequency charges and try to match the I / P signal. This action is repetitive in nature.
No once pul locked, the phase difference $\$$ generates a comeetive contry vottepe V_{c} to shift the vcoprequy from fo to ifs and there by maintain alack. Capture transient

From above figure, As capture starts, a swan sine ware appears due to frequency difference between Neo frequency and I/P frequency (f o-fs). The $D C$ component of the signal drives the vo towards the lock. Each successive cycle causes the vo frequency to move towards closer to me I/P sisnal frequency.

The difference in frequency become Smaller and a large $P C$ component- passed by the filter, shifting trey vow frequay fortorer. There process continue until the VCO locks onto tho sisal and the difference frequency is $D C$. important Definitims Relatito PLL

F Lock in Ramie:
once trepLL locked, it can track frequency chemses intremcoming sisnals. The ramse of pequy over Which the PLL Can maintain Lock with the incoming signal is called the lock-in range or tracking range. Phelock Range usually expressed as a percentage of fo, the vo frequency.
Capture Range: The Range of frequencies over which trepLl can acquire lock with arm I/P sismal is called. the capture hanse, expresses as percentage of 'fo' pull in time:
$\sqrt{5}$ The total time taken by the PLL to establish lock is called pull in time. This depends on the initial phase and frequency difference between the two signals as well as on the overall loop fain and lop filter characteristics.

Closed Lop Analysis of $P L L$

Block diagram of PLL System,
K_{ϕ} : Convertion gain of phase detector in voit/rad $F(S)$: Lop Transfer function.
A : Gain of the Amplifier
Kv: vortepe to frequy transtr coefficut of Vo
The phase of the $v C 0$ output is actuly equal to the time integral of the $V C 0$ output frequy.
since $w_{0}(t)=\frac{d \theta_{0}(t)}{d t}$

$$
\theta_{0}(t)=\left.\theta_{0}\right|_{t=0} ^{d t}+\int_{0}^{t} \omega_{0}(t) d t
$$

Integration is represented by $1 / 5$
When $V f=0$, the $V c_{0}$ frequy is called freq running frequey, WC. The relation between the $V C O$ output frequy w_{0} and $u f$ is given by.

$$
w_{0}(t)=w_{c}+k_{0} v_{f}(t) \text {. }
$$

Theclused loop transfer function for a ML system. given by.

$$
\begin{aligned}
& \frac{V_{f}}{\theta_{s}}=\frac{K \phi F(S) A \frac{18-2}{1+K \phi F(S) A \frac{K v}{s}}}{} \\
&=\frac{S K \phi F(S) A}{S+K \phi K V A F(S)} \\
& \frac{V f}{W S}=\frac{K \psi F(S) A}{S+K \phi K V A F(S)}
\end{aligned}
$$

if Lop filter is not used, and $f(S)=1$ then

$$
\begin{aligned}
\frac{v f}{w s} & =\frac{K \phi A}{S+K \phi K v A} \\
& =\left(\frac{K L}{S+K L}\right) \frac{1}{K v .}
\end{aligned}
$$

Where $K L=K \phi K V A$ and it known as Loop Bandwidth.
$K L=$ product of the phase dater $($ ain $K \varnothing \times v$ cotransiof coefficut

Analog phase Detector.
It is a switch type phase Detector. A Gilbert cell can be used as along phase Detector. An electronic switen is. is used is opened and closed by signal coming fromm VCO. The input signal is, therefore, chapped at a repetitious rate determmed by vo frequency.

It also called' Half wave Detecter, since tree phase information for only one - half of the I/P wave form is detected and averaged. The of of he phase comparator when filtered through a LPF gives an error signal which is the average Value of the \%/p waveform shown in above

Problems assuciated with the switch type phrase detector

1) The off vortcpe 'vo 'is propertional to the Ilp sisal amplitude V_{s}. This is undesirable since it mate phase detecter Gain and the dorp gain dependent on the input signal amplitude.
2) The op is proportional to cos ϕ and not proportional to ϕ making it non-linear.

The above problems are eleminated by limiting the amplitdo of the I/P sisnas ie conversing the I/P to a constant amplitude square wave.

Lircuitused: (Gilbert multiplier) Balanced modulator used as full wave switching phase detecter.
Gilbert multiplier

When V_{s} and vo bot are
$q+v a c$
 high during tree time O to $(\pi-\infty)$.
Q) and Q_{3} are driven to on and IE flows through Q, and 03 . This gives an op Votge Ve=-LERL.

O/PDC Voltage VS phase difterenco

* Linear relation between Ne and ϕ

Ip waveform

For (II- θ) for II, when Vsis ltigh and Vo is Low $1 Q 1$ and Q_{4} oN, Routing V_{N} $V_{Q}=I E R L$
then $\left(V_{e}\right)_{\arg }=\frac{1}{\pi}\left[\operatorname{area} A_{1}+\operatorname{Area}_{a}\left(A_{2}\right)\right]$

Op wave form.

Digital phase Detector: using Ex-on qak

fs.

I/p and op wavetorms for $f_{s}=f_{0}$ in (b). Here fs is leading f_{0} by \varnothing deprees. The varation of de ol P voltape witm phase difference ϕ is sham berve.

$$
\begin{aligned}
& \text { acdpe } \\
& \text { voltcen }
\end{aligned}
$$

$$
\begin{aligned}
& \text { dc dr } \\
& \text { voltce i. } \\
& \text { vecan vani- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { atce } \\
& \text { vecandaí1 - }
\end{aligned}
$$

From ahave $F i g$, maximum errer vottepe is produced when the phase difference is π radians.

The convertion gain $K \phi=\frac{V C C}{\pi}$ if $V C C=5 V$

$$
K_{\varphi}=\frac{5 \mathrm{v}}{\pi}=1.59 \mathrm{v} / \text { radians. }
$$

Veo:
What is rco ?
A vortupe conrelled oscilator is a circuit in which the frequency of oscilation can be cuntrolled by an axtermaly applied input vortupe. It performs votcue to frequeny convertion. The vco provides lonear Rolationshi, between the applied vottape and the weo olp frequency-

Basic Block dicprm

Connearion Dicyrm

$43 \Rightarrow$ current Amplitis to orive tre cond

* A small capacitor 0.001 hf connected between 5 amd to eliminate possible oscilations.
* Vcoused to low frequency signals in to audio frequency Range.
* modulating vottge applied at pin no 5
* capacitor C_{1} is charging and discharges due to the reference set at the non inverting terminal of op-amp A_{2} forme 0.5 VCC Lo 0.25 vac by potential divider R_{a} md $R b$.
F If the op of Buffer tries to exceed 0.5 VCc the schmitt trissor goes tow and the capacitor discharges until $0.25 v c c$ and again schmitt frigs geeshish state and this process repeats.

The op frequency of vo can be calculated as
The total voltape antre capacity chasses from 0.25 VCc to 0.5 VCc . Thus $\Delta \mathrm{V}=0.25 \mathrm{VCc}$. The capacir

$$
\left.\begin{array}{l}
\text { The pate of change of } \\
\text { vottape across copaciter } \\
\text { is given as }
\end{array}\right\} \frac{\Delta v}{\Delta t}=\frac{i}{C T}
$$

$$
\text { (or) } \frac{0.255 \mathrm{Vcc}}{4 t}=\frac{i}{c T}
$$

$$
\begin{equation*}
\Delta t=\frac{0.25 \mathrm{vcc} C T}{i} \tag{0}
\end{equation*}
$$

The fine period of triangular wave form is The frequency of oscilater f_{0} is $2 \Delta t$ (.T)

$$
\begin{equation*}
f_{0}=\frac{1}{T}=\frac{1}{2 \Delta L}=\frac{l}{0.5 v C C C T} \tag{2}
\end{equation*}
$$

But $\ddot{l}=\frac{V C c-V_{c}}{R_{T}}$
-24 -
Where, V_{c} is me vortcfe at pins. Therefore wimno modellary
Il valine

$$
\begin{align*}
& f_{0}=\frac{2(v c c-v c)}{C T R T V C C}= \frac{2(v c c-(T / 8) v \in c}{c T R T v c c} \tag{-3}\\
&=\frac{1}{4 R T C T}=\frac{0.25}{R T C T}
\end{align*}
$$

$v_{c}=(1 / 8)(+v)$
The op frequency of V vo can be chansed either hy (i) RT (ii) CT ar (iii) me voltye at V_{c} atpinnos. The votiti carke varied hy connering a $R_{1} R_{2}$ circuit voltape to frequey convering factor

Vortupe to frequy converim factor K_{v} is detined as

$$
\begin{equation*}
2 \text { 2mic } \quad K_{v}=\frac{\Delta f_{0}}{\Delta v_{c}} \tag{4}
\end{equation*}
$$

Here ΔV_{c} is tre modulation Voltape required t produe the foequy shitt Δf_{0} for a $V_{c o}$. If we assume triat the orismal frequy is f_{0} and tre New frequy is ' f_{1}^{\prime} tren.

$$
\begin{aligned}
& \Delta f_{0}= f_{1}-f_{0}=\frac{2\left(V_{C C}-V_{C}+\Delta V_{c}\right)}{C T R T V C C}-\frac{2\left(V C C-V_{c}\right)}{C T R T V_{C C}} \\
& \Delta f_{0}=\frac{2 \Delta V C}{C T R T V C C}=\Delta f_{0} C T R T V C C=2 \Delta V C \\
& \text { or } \Delta V C= \frac{\Delta f_{0} C T R T V C C}{2} \text { (5 }
\end{aligned}
$$

Sub. tre value of RT and CT inffobetow equation (8), wese
or

$$
\begin{aligned}
& f_{0}=\frac{0.25}{R T C T}=\frac{0.26}{2 \Delta^{V C}} \\
& \Delta V C=\Delta f_{0} \cdot V C C \\
& f_{V} \cdot 8 f_{0} \\
& k_{V}=\frac{\Delta f_{0}}{\Delta V C}=\frac{8 f_{0}}{V C C}
\end{aligned}
$$

-25.
$V C_{0}$ is called as $V-f$ converter Why?
Vwis called or vortye to frequy converter becaye, When tre centrl vortye I/p V_{C} is chansed to a new vortcpe Δv_{c}, of p frequy of $v c o$ is atso chansed to new frequy Δp_{0} to fo, the frece runsing trequy or centrefoegry voo
V_{c} to $\Delta v c$ \& fo to Δf_{0}
$\Delta v c$ is vatape devartm and Δf_{0} is the frequy doviam. Thesefore, the out \& $V C O$ is direetely propertimal to input vottcoe V_{c}.

Low pass filte:

Low pass filter Ramove the hish frequany ciomponents and also controts the synamic characteristics of PLL

MonoLithic PLL (IC 565)
phase comparator vo ste

The output frequency of VCD can be written as

$$
f_{0}=\frac{0.25}{R T C T} \mathrm{HZ}
$$

\rightarrow ETA \rightarrow extemal copaciter and resistor Connented to pin no 8 and $9 . \quad R T=2 k \Omega$ to $20 k \Omega$
\rightarrow The free running frequaly of voes is adjusted wit R_{T} and C_{T}.
\rightarrow Thecapaditer. C and 3.6 k resistor make low pass filter.
\rightarrow phase Comparator Compares fo wit inputsignal f_{s}
\rightarrow convertion ratio of phase detector of 565 pLL as

$$
K \phi=\frac{0.7-(-0.7)}{\pi}=\frac{1.4}{\pi}
$$

\rightarrow Demodulated output takonct pin nor 7 .

Electricel characterishics -27

1) Operaing fiequency: 0.001 Hz L0 500 kMz
2) operating vittue rase: $\pm 6 \mathrm{rt} \pm 12 \mathrm{~V}$.
3) I/P tracking Level required: lormv rams ominionum to 3 V PP maximm
4) Itp resistance:lokr
5) Ip \sin kcurrent : I ms
6) Ip source current : 10 omA
7) $B Q$ nd widt m adjusmant rage: $\pm 1 \% 10 \pm 60 \%$.
8) square wave amplitade $5-4 \mathrm{vpp}$ at $\pm 6 \mathrm{v}$ supplymatse
(w) Traiangle wave amplitide $2.4 \mathrm{Vpp}_{\mathrm{p}}$ at $\pm 6 \mathrm{v}$ supply voitge

Derivation of Lockin Range and Capture Range Lock in Range: To understand we take Basic Block of PLL wim transter function of each hlock as siven by
218.

Derivation of Loc x in Range in PLL
If ϕ radians is me phase difference betwean tho sisnal voitape v_{i} and tre $v c o$ votcepe v_{0}, thens the olp vortape of amalog phase Detector V_{e} is sivenhy.

$$
\begin{equation*}
V e=K \phi(\phi-\pi / 2) \tag{1}
\end{equation*}
$$

where $K \phi$ is the phase angle-to-volupe fromster cuetticiont of the phase petectar (co) convertiongain given in Vनt/radians. and $\frac{\pi}{2}$ is me initial phase shitt

O/PCF Amp iecentry volace V_{C} which is givento $V C O$ and it is givenby

$$
\begin{align*}
& V_{c}=A \cdot V_{e} \\
& V_{c}=A K \phi(\phi-\pi / 2) \tag{2}
\end{align*}
$$

$A \Rightarrow$ Virtapegain of the AmP.
This V_{C} shifts (ie chanse) Vcorfrequency from its free running frequeny fo to a new poequency ' f ' is qiven by

$$
\begin{equation*}
f=f_{0}+k_{r} \not \subset c \tag{3}
\end{equation*}
$$

$K v \Rightarrow$ votupe to fiequary transter Coefticient. of tre $V_{c o}$. When PLL is locked into sisnal frequeny $f s$, then whe have. (Loikeistan) $f=f_{s}=f_{0}+k v \gamma C^{3}$
$\begin{array}{lll}\sin \theta \text { Frum equarions } & \text { (2) (4) (4) we can unite }\end{array}$

$$
\begin{gathered}
V_{c}=\frac{f_{s}-f_{0}}{k v}=A K \varphi\left[\phi-\frac{\pi}{2}\right] \\
\phi=\frac{\pi}{2}+\frac{f_{s}-f_{0}}{K v K \phi A}
\end{gathered}
$$

The maximum contry vitife and deviation occors, when $\phi=0$ ration $\phi=\pi$ radian, subsituring thesevatue in V_{c}

$$
\sqrt[2]{V_{C \text { (min) }}} A K \phi\left[\phi-\frac{\pi}{2}\right] \text { we set }
$$

$$
V_{\text {cmax }}= \pm \pi / 2 K \phi A
$$

Sub (5)in (4)
Themaximmo frequency swing that caan be Obtained by is greenhy

$$
\begin{equation*}
\left(f-f_{0}\right)_{\max }=K_{v} V_{c_{\max }}=K_{v} \nless \phi A \pi / 2 \tag{b}
\end{equation*}
$$

Therefore, tre max, mom ranse of sisnal frequencies over which me PLL can remais locked will be.
$\sin (5 \operatorname{in}(4)$

$$
f=f_{s}=f_{0} \pm \frac{\left(f-f_{0}\right)_{\text {max }}}{k v \cdot v_{c}}=f_{0} \pm k_{v} k \phi(\pi / 2)_{A}=f_{0} \pm \Delta f_{L}
$$

Where $2 \Delta f_{L}$ will be tre lock-1n frequy Range and is igive by
LoekinRange $=2 \Delta \underline{f_{L}}=K V K \phi A \pi$ Rom $\exp (7)$
(or) $\Delta f_{L}= \pm K_{V} K \phi A \pi / 2$
The tuckin ranse is summerically docated wim respeed to V a focee ruming foequey f_{0}, Fer IC 565 PLL.

$$
K_{v}=\frac{8 f_{0}}{v}
$$

Where $r=$ trec- -rece
and theole woltepe of phase peteetor is limitted by to a max $\&$ $\pm 0.7 \mathrm{~V}$ and so $k \phi$ is given as

$$
K_{\phi}=\frac{0.7-(0.7) v}{\pi}=\frac{1.4}{11} \text { and } A=1.4 .
$$

Sub $K \phi, K V$ and A value in $\exp (8)$

$$
\begin{aligned}
& \Delta=\Delta f_{L}=\frac{1.4}{\pi} \times 8 \frac{8 f_{0}}{v} \times 1.4 \times \pi / 2 \\
& \Delta f L= \pm 7.84 \frac{f_{0}}{V}
\end{aligned}
$$

$$
\begin{aligned}
& v_{e}=K_{\phi}\left(0^{\circ}-1\right)_{2} \\
& V \text { e(max) } \\
& = \pm k \phi \pi / 2 \\
& \text { tis omitted } \\
& \begin{array}{l}
\text { since pepp.swing } \\
\text { isconsiderd }
\end{array} \\
& \text { isconsiderd }
\end{aligned}
$$

Derivation is Cepture Range
Initially, when PLLis not loexed to the signal, tre Rrequeng If the Vco will be firee runming fequary fo. The phge ansle difterene between thesignal and the $v c_{0}$ of povithe will be

$$
\phi=\left(\omega_{s} t+\theta_{s}\right)-\left(\omega_{0} t+\theta_{0}\right)=\left(\omega_{s}-\omega_{0}\right) t+\Delta \theta
$$

constane
The phase angle difference do not remain but will change with ti

$$
\frac{d y}{d t}=w_{s}-w_{0}
$$

The phase detector o/p voltupe will therefor nat have de cumponat but itprodue a_{c} o/p wits trianguer waveform of pes x amplitude $K_{\phi}(\pi / 2)$
fundemental foequeny $\left(f_{s}-f_{0}\right)=\Delta f$
$\angle P F$ isa $R C$ Newaric wim pranstr function

$$
\begin{aligned}
& T(j f)=\frac{1}{1+j\left(f / f_{1}\right)}, \quad f=\frac{1}{2 \pi R c} \text { isme } 3 d / 3 \text { point पf } \\
& \text { Lpf. }
\end{aligned}
$$

For tre condition that $\left(f / f_{1}\right)^{2}>1$ then, tranter funcrion Slope of LPC
can be expoesses apl roximaty a.

$$
T(f)=\frac{f 1}{\hat{j} f}
$$

The fundemental frequiy term $\left(f-f_{0}\right)=\Delta_{f}$ is given to LPF. If $\Delta f>^{3} f$, term $\left(f s-f_{0}\right)=\Delta_{f}$ is tre pronster function of $\angle P F$
will he approximaty we

$$
\begin{equation*}
T(\Delta f) \simeq f / \Delta f=\frac{f}{f_{s}-f_{0}} \tag{4}
\end{equation*}
$$

The virtape V_{c} to drive the $v_{c_{0}}$ is

$$
\begin{equation*}
V_{c}=V_{e} \times T(f) \times A \tag{5}
\end{equation*}
$$

or

$$
\begin{align*}
V_{c}(\text { max }) & =V_{l}(\max) \times T(f) \times 4 \\
& = \pm K \phi(\pi / 2) A\left(f_{1} / \Delta f\right) . \tag{6}
\end{align*}
$$

For the acquisition of signal frequay, put $f=f$ s. so me maximum sisnal frequency hanse that can be acquired by PLLis

$$
\begin{align*}
&\left(f-f_{0}\right)=\left(f_{s}-f_{0}\right)_{\text {max }} \pm K_{v} K_{4}(\pi / 2) A \cdot\left(f_{1} / \Delta f\right) \\
& \pm K_{v}\left(V_{c} \text { max }\right)
\end{align*}
$$

now $A_{f c}=\left(f_{s}-f_{0}\right)_{\text {max }}$.

$$
\begin{align*}
& \Delta f_{c}= \pm K_{\phi} K_{v}(\pi / 2) \cdot A \cdot\left(\frac{f_{1}}{\Delta f_{c}}\right) \\
& \left(\Delta f_{c}\right)^{2}= \pm K_{\phi} K_{v}(\pi / 2) \cdot A \cdot f_{1} \cdot \tag{8}
\end{align*}
$$

Since $\Delta f_{L}= \pm K_{v} K_{\phi}(\pi / 2) A$
$\sin (3) i n(8)$

$$
\begin{align*}
& \left(\Delta f_{c}\right)^{2}=\Delta f_{L} \cdot f_{1} \\
& \Delta f_{c} \simeq \pm \sqrt{\Delta f_{L} \cdot f_{1}} \tag{10}
\end{align*}
$$

Therefor total Capture Range ir

$$
2 \Delta f_{c}=2 \sqrt{f_{1} \Delta f_{L}}
$$

Where the Lock in-Ranse $=2 \Delta f_{L}=K v K_{B} A \cdot \pi$ for PLL $565 \quad R=3.6 \mathrm{kN}$, so the capture rage is

$$
\Delta f c \pm\left[\frac{\Delta f L}{2 \pi\left(3.6 \times 10^{3}\right) c}\right]^{1 / 2}
$$

Derivation is Caotirn n.
_32
Novt: Large cepature Range will make a PLL more suscepribl to noise and undesirable sismi.
\rightarrow So Capacture Range Always Less man lockin Range.
\rightarrow LPF BW initialy set for a larger vame, for sisnal acquisition once tre sisnal captred, tre BW of LPF is redued, to minimise meinterfirence.

PLL Loock Rayge - and - Cepatrekange.
$\mathrm{Sos}_{\mathrm{G}}$ problem.
-33 determine free - running freqy of v cu fo, the Lock range f_{L} and capture Range f_{C} of PLL and illustrate the relation ship herren for flans $f C$.
(i) the para menes are
(i) supply voltepes $+v=10 v,-v=-10 r$
(iii) $R_{1}=121 \mathrm{c}, C_{1}=0.01 \mathrm{Nf}$
(iii) $R_{c} N / \omega, R=3.61 \Omega, c=10 \mathrm{Nf}$

Determmeme foeckrunnins frequay

$$
\begin{aligned}
f_{0} & =\frac{1.2}{4 R_{1} c_{1}} \\
& =\frac{1.2}{4 \times\left(12 \times 10^{3}\right) \times\left(0.01 \times 10^{-6}\right)}=2500 \mathrm{~Hz}=2.5 \mathrm{kHL}
\end{aligned}
$$

Lock range canbe deternned by exp.

Copatore Range

$$
\begin{aligned}
& \text { Range } \\
& \Delta f c= \pm\left[\frac{\Delta f L}{2 \pi(3.6 \mathrm{kn}) \cdot c}\right]^{1 / 2} 10-(-10)= \\
& = \pm \frac{980 \mathrm{H2}}{2 \pi \times 3.6 \times 10^{3} \times 10 \times 10^{-6}}=65.82 \mathrm{~Hz}
\end{aligned}
$$

Bl applications
Frequency multiplcation/OIVIsion

From fig, $\because N$ Network inserted between V Vo output and phase comparator input

Intucked state, the vico op frequy fo rs given by ML $\quad f=\sim f$
Mutbipticarim factor is obtained by selecting a proper Scaling factor N of the Conn or lie \div by \sim Nectuourx, we can obtain desires multiplican m.
Division: Since me VCO output (a square ware) is rich in Harmonics. it is possible to lock the m-th harmonic of the VCO out put with the input signal $f s$.
the output fo of $V c_{0}$ is now given hg

$$
f_{0}=\frac{f_{s}}{m}
$$

oxen: $f o=6 \mathrm{fs}$
$N=6$ we shots sene $N=6$

Frequency Transulation:
Shifting the frequency of as oscillator by a soave factor.

The I/P to the phase Detector is
(i) offset frequency f_{1} and ($f_{0}-f_{s}$)

During locked state, op frequency is adjusted to This gives. make two input frequencies of

$$
f_{0}-f_{s}=f_{1}
$$

$$
\therefore f_{0}=f_{s}+f_{1}
$$ phase Detector equal.

this makes both the signals applied to the mule in same phase.

Op of multiplier Contain sum and difference fregumana, the high frequany component filtered by LpF md demodule: op at obtained at $\% / p$.

Since $P L L$ Respond es only to the carrier frequencies which are close to the V co output,
Advantlye
(1) High degree of selectivity
(2) Nose immunity is more. Compare ts pes x detects.

Frequency synthesizer: Same as frequy multiples eacupt the divide by M Network is added at the input of PLL.

The circus produces many frequencies from a single reference oscilator is celled frequency synthesizer.

$$
\text { The op of counts } f_{R}=\frac{f_{0}}{M}
$$

$$
\begin{aligned}
& \text { under locked stare } \\
& f_{0} \\
& f_{R}=f_{D}=\frac{f_{0}}{N} \quad \therefore f_{0}=N f_{R}
\end{aligned}
$$

$$
f_{O_{S E}} / m=f_{v_{\infty}} / N
$$

so that $f_{v \omega}=(\mathrm{N} / \mathrm{m})$ fosse.
By adjusting divider counts to desired value large no of frequencies can be product, all drives tom the crustal ofribats

FSK Demodulater:
Frequany shitt key ing.
Bmary data is transmitted hy means of a carrier frequany which is shiffed betwees two present frequencies.

FSIC demodulator for tele-typeuritor sisnals of 1070 Hz and 1270H2. As the sisnal appears at the I/P, the loop loeks to tro Input frequiy and tracksit between the two frequencies with a conosponding de shift at theoutput. A Three stofe RcFilts nemre the camior component and me outpue Gisnal is made logic Compatibue by a voltepecomparater
\qquad \checkmark

FM Demodulator

if PLL is locked to a Fm signal, vco tracks the Instantaneous frequy of the IIP sisinal. The filteres emr valife which contrrts the voo mnd maitains a luck witm the I/P sisnal is me demodulated Fmout rue.
problem: APLL with a free ronning frequey of 1 KHz is connected to a variake frequy oscilater. Tre frequy foscilas Gradualy increased and when its frequency was 850 Hz , the PLL got locked. The frequary \& oscilator was decreased and it went out 4 lock tos me orcilation fequay of soo H2. Calculatebre locic range and capture rarge of PLL
Captre Range

$$
\begin{aligned}
\Delta f_{c} & =\left|f_{b}-f_{0}\right|=\left|f-f_{0}\right| \\
& =\left|850 \mathrm{H}^{2}-\right| 1 \mathrm{cH}^{2} \\
\Delta f c & =150 \mathrm{H}^{2}
\end{aligned}
$$

$2 \mathrm{AfC}=300 \mathrm{~Hz}$ is the Cepatrenange
Lockrange

$$
\begin{aligned}
\Delta f L & =\left|f-f_{0}\right|=|f-h| \\
& =|.800 \mathrm{~Hz}-1 \mathrm{kHz}| \\
\Delta f L & =200 \mathrm{~Hz} \\
2 \Delta f L & =400 \mathrm{~Hz} \text { is one locic nange. }
\end{aligned}
$$

FSK Demodulator

In Digital dafa transmissim, binary dala is transmisted hy means of a corsier freque. It uses two diffeect camier frequy for logic 1 and logro ó staks of binay data sisna. This typeof transmissm Glled FSK.

Ontre Reciving end, two carrier frequeres are converted in to 1 and 0 to set the orisinal binay dafa. This prowe is Call FSIC Demodulan or Comparath: produe a reconstrocted digites olpsisnal

Let consitor two trequues.

$$
\begin{aligned}
& f_{1} \text { - rpresented as i- } \\
& f_{2}-1
\end{aligned}
$$

If PLL remain lucked thto the FSK sinnal at hum f1 and f_{2}, tre vco votte which is abo. to tre comparatr will be givencs

$$
\begin{aligned}
& v_{c_{1}}=\left(f_{1}-f_{0}\right) / k v \\
& v_{c_{2}}=\left(f_{2}-f_{0}\right) / k v .
\end{aligned}
$$

The difterene between two contronl Levil is $\Delta v C=\left(f_{2}-A_{1}\right) / k v$.
The reforene Vritape for tre Comparater is derived trm Lpe 2 and it is adjussed mid wo bet weon VC1 and VC2 There tore, fin VC1 and VC2, Compasates of give ol Iand

Ahalug muctiplior IC
$A D 532$

Feactrol:
(1) only four extemal adjusmet are neecery.
(2) max mom four quardrat error is below 0.5%,
(3) Temp drift is as Luw as $0-01 \% / \dot{c}$
(4) Simple operctions.

Applications: (1)multiplier

x_{0} and y_{0} is null pot used for balancing uperation.
zo put componsate the olp opanp off set v जhe.
Sain pot sets the fullsure olplevel.

Dividor

Square rcotr.

PLL APplication
Frequency Multiplication/DIvis/ion.
(1)

Dividr

$$
f_{0}=f_{s} / m
$$

By proper selettion of scaling facter, we can obtain Desired multiplilation
(2) frequeny syntresizer

under locked cundirm. fos $/ \mathrm{N}=f_{\text {voo }} / \mathrm{N}$, so $f_{\text {voo }}=(\mathrm{N} / \mathrm{M}) f_{\text {ose }}$. By adjusting dividocounte to desired vause barse no of frequeres canbe produced.
(3) Frequany Translution
shititing the frequy of an osc hy a small tactor.

Dining Lockingstate?
$f_{0}-f_{s}=f_{1}$ oip. fe्qy, By adjusny the aftset
$f_{1}=f_{s}+f_{1}$ frequy fl, we can shidt the freqy of the osilate t tre degived value.

AM Deteation

Vao olp always go out of phac wim incoming jisnal under lucking cond hom, and an lisnal alsoshited t 90° Bom feet int deteeton witn same phake. Then cowfreqy compants filterd hy upf and demodileted o/p ohtaivel at $0 / \mathrm{p}$ Camie-Hish freqy compuit) sine: modullasin In
FSIK: De modulator

Fmbemodieatr

Capture Range.
initialy, PLL is not luckod, Vco frequary will be the free running frequy fo Let phase angu(φ) differane between the sisnal and the vco olp votege will be.

$$
\phi=\frac{\left(\omega_{s} t+\theta_{s}\right)}{I / p}-\frac{\left(w_{0} t+\theta_{0}\right)}{v c_{001 p}}=\left(\omega_{s}-\omega_{0}\right) t+\Delta \theta \text {-(1) }
$$

φ-not cunstant so

$$
\begin{equation*}
\frac{d \phi}{d t}=w_{s}-w_{0} \tag{2}
\end{equation*}
$$

\rightarrow Fundamental frequy $\left(f_{s}-f_{0}\right)=\Delta f$
\rightarrow LPF is a RC N/w, wims JF $=T(j f)=\frac{1}{1+\rho(f / f) \text {. }}$
$f_{1}=\frac{1}{2 \pi R C}$ is tre $3 d s$ poing of

For this condition that $\left(f / f_{1}\right)^{2} \gg 1$, then $J \cdot F$ can be expressed app roximaly as.

$$
\begin{equation*}
T(A)=\frac{f_{1}}{j f} \tag{3}
\end{equation*}
$$

Af is applied to LPF
if $\Delta f>3 f_{1}$, then TF \&F LPF is approxmated w

$$
\begin{equation*}
T(\Delta f) \approx \frac{f}{\Delta f}=\frac{f}{f s-f_{0}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
V_{c}= & V_{e} \times T(f) \times A-(5) \\
V_{c}(\text { max }) & =V_{e(\text { max })} \times T(f) \times A \\
& = \pm K q(\pi / 2) \cdot A \times f 1 / \Delta f \tag{b}
\end{align*}
$$

For acqusiom \& sisnal frequy, put $f=f$, somax sisnal fiequy pase brat $(f / 0)=(f=-p) \pm K v . V_{c}($ max $)$ can be acquired hy pu is.

$$
\begin{align*}
\left(f-f_{0}\right)=\left(f_{s}-f_{0}\right)_{\text {max }} & = \pm K v \cdot v_{\text {cmax }} \\
& \left.= \pm K v \cdot K_{\phi}(1)_{2}\right) A \cdot x+1 / \Delta_{\text {cas }}
\end{align*}
$$

Now

$$
\begin{align*}
& \Delta f_{c}=\left(f_{s}-f_{0}\right)_{\text {max }} \text {, so } \\
& \Delta F C= \pm K \phi k V(\pi / 2) \cdot A\left(\frac{f}{\Delta f} / c_{0}\right) \\
&\left(\Delta f_{\theta}\right)^{2}= \pm k \phi K v(\pi / 2) \cdot A \cdot f_{1}-8 \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\sin A_{L}= \pm k v k \phi\left(\nabla_{2}\right) A-(9) \tag{9}
\end{equation*}
$$

$\operatorname{gin} \theta$

$$
\begin{align*}
& \left(\Delta f_{C}\right)^{2}=\Delta f_{L} \cdot f_{1} \\
& \left(\Delta f_{C}\right) \simeq \pm \sqrt{\Delta f_{L} \cdot f_{1}} \tag{10}
\end{align*}
$$

Therefore total coparre Raye.

$$
2 \Delta f_{C}=2 \sqrt{\Delta f_{L} \cdot f_{1}}
$$

where the lock rase $2 \Delta \mathrm{fL}$

$$
=2 A F_{L}=K V K \phi A \cdot \bar{\pi}
$$

FarpCL, $R=3.61 \Omega$ the captre

$$
\begin{aligned}
& \text { Rage } \\
& \text { Afc } \pm\left[\frac{4 f 1}{2 \pi\left(3.6 \times 13^{3}\right) c}\right]^{1 / 2}
\end{aligned}
$$ total capture karse $2 \Delta f$ cap

Lock in Range
ϕ-radians - pharediff between v_{i} and $v_{c o ~ o l p ~}^{l} V_{0}$.

$$
\begin{align*}
v_{e} & =k \phi(\phi-\pi / 2) \\
V_{c} & =A \cdot V_{e} \\
& =A \cdot k_{\phi}(\phi-\pi / 2) \tag{2}
\end{align*}
$$

$$
\xrightarrow[\longrightarrow]{\pi / 2}) \text { inital phase th it. }
$$

V shits $f_{0} \rightarrow f^{\prime}$

$$
\begin{aligned}
f= & f_{0}+k v \cdot v_{c} \\
& f_{0}+k v \cdot A \cdot k \phi(\phi-\pi / 2)
\end{aligned}
$$

Locked stare

$$
\begin{align*}
& f=f_{s}=f_{0}+k v v c . \tag{3}\\
& f_{s}-f_{0}=k v v c \tag{4}\\
& \frac{f_{s}-f_{0}}{k_{v}}=v c
\end{align*}
$$

from eq (2) and (4)

$$
\begin{align*}
& V C=\frac{\beta_{s}-f_{0}}{k V}=A \cdot k \phi(\phi-\pi / 2) \tag{-5}\\
& \phi=\pi / 2+\frac{f_{s}-f_{0}}{K V k \phi A}
\end{align*}
$$

Max conn) vote ocew form $P D$ when $\phi=0$ ind $\phi=\pi$

$$
\begin{aligned}
& V e=k \phi(\phi-\pi) / \\
& \left.V_{e} \text { (max }\right)= \pm k \phi \pi / 2
\end{aligned}
$$

wi. $V_{c_{\text {max }}}=A K \phi[\phi-\pi / 2]$

$$
\begin{equation*}
V_{c \text { mat }}= \pm A k \phi \quad \pi / 2 . \tag{-5}
\end{equation*}
$$

$\sin (5) \cdot \pi$ (3).
let

$$
\begin{aligned}
f=f_{s} & =f_{0} \pm k v \cdot V_{\epsilon} \\
& =f_{0} \pm k v \cdot A \cdot k \phi[\phi-\pi / 2] . \\
& =f_{0} \pm \Delta f_{L} .
\end{aligned}
$$

When $2 \Delta f c$ will he the login loge ard glen by.

$$
2 A P L=K V K \varphi A \cdot \pi \quad \therefore \quad A L L= \pm K V K \phi A \pi / 2
$$

EC8453 Linear Integrated Circuits

Unit 4

ADC Types

Successive Approximation (SAR) ADC.
Flash ADC
Single slope ADC
Dual Slope ADC.
Delta ADC
Delta-sigma ($\Delta \Sigma$) ADC.
Pipelined ADC.

FLASH TYPE ADC

Flash type ADC produces an equivalent digital output for a corresponding analog input in no time. Hence, flash type ADC is the fastest.To convert the analog input voltage into a digital signal of n-bit output, $\left(2^{n}-1\right)$ comparators are required

Figure . Basic circuit for flash type \mathbf{A} / \mathbf{D} converter

Note: In this design Vref is 8 V is used

Ther whope y_{3}	π	x_{4}	x_{5}	H_{4}	x	x	x_{j}	x_{5}	y_{2}	y	r_{0}
0 to $4 / 8$	0	0	0	0	0	0	0	1.	0	0	0
V/8 to V/4	0	0	0	0	0	0	1	1	0	0	1
$V / 4$ to 3 L/8	0	0	0	0	0	1	1	1	0	1	0
7/6/6 to $/ 42$	0	0	0	0	1	1	1	1	0	1	1
$V_{1 / 2}$ to 5 ,/6	0	4	0	1	1	1	1	1	1	0	0
5 //18 to $31 / 44$	0	0	1	1	1	1	1	1	1	0	1
$3 / 1 / 4$ to $7 / 18$	0	1	1	1	1	1	1	1	1	1	0
$7 V_{/} /{ }^{\text {a }}$ to $/ 6$	1	1	1	1	1	1	1	1	1	1	1

The 3-bit flash type ADC consists of a voltage divider network, 7 comparators and a priority encoder.

The voltage divider network contains 8 equal resistors. A reference voltage VR is applied across that entire network with respect to the ground. The voltage drop across each resistor from bottom to top with respect to ground will be the integer multiples (from 1 to 8) of VR8

The external input voltage Vi is applied to the non-inverting terminal of all comparators. The voltage drop across each resistor from bottom to top with respect to ground is applied to the inverting terminal of comparators from bottom to top.

At a time, all the comparators compare the external input voltage with the voltage drops present at the respective other input terminal. That means, the comparison operations take place by each comparator parallelly.

- The output of the comparator will be ' 1 ' as long as Va is greater than the voltage drop present at the respective other input terminal.
- Similarly, the output of comparator will be ' 0 ', when, Va is less than or equal to the voltage drop present at the respective other input terminal.

All the outputs of comparators are connected as the inputs of priority encoder. This priority encoder produces a binary code (digital output), which is corresponding to the high priority input that has ' 1 '.

Therefore, the output of priority encoder is nothing but the binary equivalent (digital tput) of external analog input voltage, Va

Flash ADC Advantages

- It is the fastest ADC and is utilized in high bandwidth applications.

Flash ADC Disadvantages

- These ADC are more power-consuming as compared to ADCs implemented with different techniques.
- It is a limited resolution of up to 8 -bits.
- Increase bits lead to a large die area. With an 8 -bit resolution, it needs a die area big enough to accommodate 255 comparators ($2^{\wedge} \mathrm{N}-1$).
- The resistors and comparators should be matched to provide an accurate reference voltage to the comparators by the voltage divider network

Flash ADC Applications

- Satellite communication
- Radar processing
- Oscilloscopes

Successive Approximation ADC(https://www.electronics-tutorial.net)

Successive Approximation type ADC is the most widely used and popular ADC method. The conversion time is maintained constant in successive approximation type ADC, and is proportional to the number of bits in the digitaloutput, unlike the counter and continuous type A / D converters. The basic principle of this type of A / D converter is that the unknown analog input voltage is approximated against an n-bit digital value by trying one bit at a time, beginning with the MSB

The functional block diagram of successive approximation type of ADC

It consists of a successive approximation register (SAR), DAC and comparator. The output of SAR is given to n -bit DAC. The equivalent analog output voltage of DAC, VD is applied to the non-inverting input of the comparator. The second input to the comparator is the unknown analog input voltage VA. The output of the comparator is used to activate the successive approximation logic of SAR.
When the start command is applied, the SAR sets the MSB to logic 1 and other bits are made $\operatorname{logic} 0$, so that the trial code becomes 1000

The principle of successive approximation process for a 4-bit conversion is explained here. This type of ADC operates by successively dividing the voltage range by half, as explained in the following steps.

Step (1): The MSB is initially set to 1 with the remaining three bits set as 000 . The digital equivalent voltage is compared with the unknown analog input voltage.

1000 MSB is 1 remaining three bits set as 000

Step (2): If the analog input voltage is higher than the digital equivalent voltage (VA $>\mathrm{VD}$), the MSB is retained as 1 and the second MSB is set to 1 .

1100 MSB 1 and second bit set to 1

Otherwise, the MSB is set to 0 and the second MSB is set to 1 .

Comparison is made as given in step (1) to decide whether to retain or reset the second MSB.
Let $\mathrm{VA}=11 \mathrm{~V}$ and $\mathrm{Vref}=16 \mathrm{~V}$, in DAC output we get half of reference voltage ie 8 V
The above steps are more accurately illustrated with the help of an example. Let us assume that the 4-bit ADC is used and the analog input voltage is $\mathrm{VA}=11 \mathrm{~V}$. when the

Since the unknown analog input voltage VA is higher than the equivalent digital voltage VD, as discussed in step (2), the MSB is retained as 1 and the next MSB bit is set to 1 as follows $\mathrm{VD}=12 \mathrm{~V}=[1100] 2$

Now $\mathrm{VA}=11 \mathrm{~V}<\mathrm{VD} \quad=\quad 12 \mathrm{~V}=\quad[1100] 2$
Here now, the unknown analog input voltage VA is lower than the equivalent digital voltage VD. As discussed in step (2), the second MSB is set to 0 and next MSB set to 1 as $\mathrm{VD}=10 \mathrm{~V}=[1010] 2$

Now again VA $=11 \mathrm{~V}>\mathrm{VD}=10 \mathrm{~V}=[1010] 2$ Again as discussed in step (2) VA $>\mathrm{VD}$, hence the third MSB is retained to 1 and the last bit is set

to 1.	The code		nord	is
VD	11 V			
$[1011] 2$				

Now finally $\mathrm{VA}=\mathrm{VD}$, and the conversion stops.

Conversion process in a successive approximation type A/D converter.

Advantages:

1 Conversion time is very small.
2 Conversion time is constant and independent of the amplitude of the analog input signal VA.

Disadvantages:

1 Circuit is complex.
2 The conversion time is more compared to flash type ADC.
Single Slope ADC

The above is the block diagram of single slope ADC. These converter techniques are based on comparing the unknown analog i / p voltage with a reference voltage that begins at $\mathrm{Ov} \&$ increases linearly with time.The time required for the reference voltage to reach the value of unknown analog i / p voltage is proportional to the amplitude of unknown analog i / p voltage.

The time period can be measured using a digital counter. The main circuit of this converter is a ramp generator which on receiving a RESET from the control circuit increases linearly with time from Ov to a max volt Vm Assume a +ive analog i / p voltage Vi is applied at the non-inverting i / p of the comparator. When a RESET signal is applied to the control logic, the 4-digit decade counter resets to 0 \& the ramp begins to increase. Vi is +ive the comparator o / p is in HIGH state. This allows the clk pulse to pass to the i / p of the 4 -digit counter through the AND gate $\&$ the counter is incremented. This process continues until the analog i / p voltage is greater than the ramp generator voltage.

When the ramp generator voltage is equal to the analog i / p voltage, the comparator o / p becomes negatively saturated or logic 0 .The clk is prevented from passing through the gate causing the counter operation. Then the control circuit generates a signal, which latches the counter values in the 4 digit latch, which is displayed on 7 -segmant displays. The displayed value is then equivalent to the amplitude of analog input voltage.

Dual Slope Adc

In dual slope type ADC, the integrator generates two different ramps, one with the known analog input voltage VA and another with a known reference voltage -Vref. Hence it is called a s dual slope A to D converter. The logic diagram for the same is shown below

Operation:

The binary counter is initially reset to 0000 ; the output of integrator reset to 0 V and the input to the ramp generator or integrator is switched to the unknown analog input voltage VA. The analog input voltage VA is integrated by the inverting integrator and generates a negative ramp output. The output of comparator is positive and the clock is passed through the AND gate.

This results in counting up of the binary counter. The negative ramp continues for a fixed time period $t 1$, which is determined by a count detector for the time period t . At the end of the fixed time period t 1 , the ramp output of integrator is given by
$\therefore \mathrm{VS}=-\mathrm{VA} / \mathrm{RC} \times \mathrm{t} 1$

When the counter reaches the fixed count at time period t , the binary counter resets to 0000 and switches the integrator input to a negative reference voltage -Vref. Now the ramp generator starts with the initial value -Vs and increases in positive direction until it reaches 0 V and the counter gets advanced. When Vs reaches 0 V , comparator output becomes negative (i.e. logic 0) and the AND gate is deactivated. Hence no further clock is applied through AND gate. Now, the conversion cycle is said to be completed and the positive ramp voltage is given by
$\therefore \mathrm{VS}=\mathrm{Vref} / \mathrm{RC} \times \mathrm{t} 2$
Where Vref \& RC are constants and time period $t 2$ is variable. The dual ramp output waveform is shown below

Since ramp generator voltage starts at 0 V , decreasing down to -Vs and then increasing up to 0 V , the amplitude of negative and positive ramp voltages can be equated as follows.
$\therefore \mathrm{Vref} / \mathrm{RC} \times \mathrm{t} 2=-\mathrm{VA} / \mathrm{RC} \times \mathrm{t} 1$
\therefore t2 $=-\mathrm{t} 1 \times \mathrm{VA} / \mathrm{Vref}$
$\therefore \mathrm{VA}=-\mathrm{Vref} \times \mathrm{t} 1 / \mathrm{t} 2$
Thus the unknown analog input voltage VA is proportional to the time period t2, because Vref is a known reference voltage and tl is the predetermined time period.

The actual conversion of analog voltage VA into a digital count occurs during time t 2 . The binary counter gives corresponding digital value for time period t 2 . The clock is connected to the counter at the beginning of t 2 and is disconnected at the end of t 2 . Thus the counter counts digital output

Digital output=(counts/sec) t2
\therefore Digital output $=($ counts $/ \mathrm{sec})[\mathrm{t} 1 \times \mathrm{VA} /$ Vref $]$

DAC
A Digital to Analog Converter (DAC) converts a digital input signal into an analog output signal. The digital signal is represented with a binary code, which is a combination of bits 0 and 1

Types of DACs

There are two types of DACs

- Weighted Resistor DAC
- R-2R Ladder DAC

Advantages/Disadvantages of weighted resistor method

1. The Resistors that are being used in the network have a wide variety of values present that ensures the stability and the absolute accuracy across all the resistors

When the n given by the user is large, the corresponding resistance provided to LBS is considered to be a large value. If it is compared with the provided input resistance of the Amplifier. This all leads to accurate results

1. N number of switches that represents a bit applied to the input provided.
2. A ladder network supported by a weighted resistor. The resistor is inversely proportional to the corresponding binary digital signal.
3. A reference voltage V ref provided
4. A summing Amplifier

High speed sarmple and HoLD dircults
The circuit takes a samples fors me analug IIp sismal and holds ittor a perralar period of time is known as hish speed semple and hold circits.

Sampling time: Thecircuit switch allows samples of Ilp for 8 nort durationtime.
Holding Tres: The talue is holded by a cepacitor for hol ling time

The sempleand Howo ciroult uses a bas, c cumpu swith, opamp and mosfet, diodes.
When V_{s} is given, M-switen is on, A_{1} and 12 act as voltape flllower, switen on, cepacits is charging to maxmm valu and disetario, When v_{s} is OFR poriod, the mOSFFT M switus OFF and Copaciter Hold tre vauee and ratains $i t$ until nexet sample cormes in. $T=$ acquisiontime
$T_{2}=$ is Holding time
s the Perrialar - Sample me

2 ya capacitor

bes! c compass
A_{1} and 12 en on, cepaciter $\Rightarrow \quad M$ swipes and retains es jon

During Holding time, the capacitor slowly discharges to produce the charge in amplirde (AV). This is knows a) drop. To avoid this, capacitors are selected wit less Leakge during holding time.
(1)cmosswition (2) $12 J T$ swith (3) Totem puleswiten

Switches for $D A C$
(4) cmus invertr switch, (5) multiplifing
(6) Transmissim gate switen. DAC switan

C mus switch. Switen cossist of pair of Nmos Transistor. Ms - Mq. The transistor MI-Mf copalole of accepting TTL and cmus compotite Lטフic I) P

When the I/pis Lagic tigh, ms-off and $2 R$ commected bo IO ma-on

Vin $=$ Low, $M 8$-oN, $M G=06 A, 2 R$ conneated r Io
Bうt switen
$B J T$ SU arevsed to provile fast aurent switching and true olp current Sounce or sinic copability in $D A C S$
When $V_{k}>V_{\text {aicus }}, \theta_{1}$ off, $Q_{2}-\Delta N, Q_{3}$-ofarest thus steering $Q k^{\prime} s$ collectorauk Ick $04-0 N$, Io bus.

vatat 2

When $V_{k}<V_{B A A S} \theta_{1}$ on, $\theta_{2}=$ of C

$$
Q_{3}=0 r, Q_{6}=o f r
$$

Icc drivent 50 Dus. Theswitching Threshole is set by Volas 1 , which is typicaly nearl.4 V to ensure compatibily witn bom cmus and

Total pole switch

M1M2-NChanel enamaut MosFFT
(1) $S=1, R=D, \theta=1 \quad \bar{Q}=0$.
$Q=1, M_{1} \rightarrow$ on - ableay -ivv p apparetinodes.
(2) $S=0, R=1, Q=0$, and $\bar{Q}=1$
$\bar{c}=1, \mathrm{M}_{2} \rightarrow 0 \mathrm{~N}$ allowing N des S tocomet

EC8453 Linear Integrated Circuits

UNIT V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave Generator,ICL8038 function generator, Timer IC 555, IC Voltage regulators - Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Low Drop - Out(LDO) Regulators - Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Optocouplers and fibre optic IC.

Explain the square wave generator, triangular wave generator and Saw tooth wave generator with neat diagram (A/M 2020, N/D 2018,A/M 2019,A/M 2016.2014)

Square Wave Generator or Astable Multivibrator

A square wave generator is an electronic circuit which generates square wave. The circuit diagram of a op-amp based square wave generator is shown in the following figure

Fig. 2.83 Square wave generator

Observe that in the circuit diagram shown above, the resistor $R 1$ is connected between the inverting input terminal of the op-amp and its output of op-amp. So, the resistor $R 1$ is used in the negative feedback. Similarly, the resistor $R 2$ is connected between the non inverting input terminal of the opamp and its output. So, the resistor $R 2$ is used in the positive feedback path.

A capacitor C is connected between the inverting input terminal of the op-amp and ground. So, the voltage across capacitor \mathbf{C} will be the input voltage at this inverting terminal of op-amp. Similarly, a resistor $R 3$ is connected between the non-inverting input terminal of the op-amp and ground. So, the voltage across resistor $\boldsymbol{R} \mathbf{3}$ will be the input voltage at this non-inverting terminal of the op-amp.

The operation of a square wave generator is explained below -
Assume, there is no charge stored in the capacitor initially. Then, the voltage present at the inverting terminal of the op-amp is zero volts. But, there is some offset voltage at non-inverting terminal of opamp. Due to this, the value present at the output of above circuit will be $+V_{\text {sat }}$

- Now, the capacitor C starts charging through a resistor $R 1$. The value present at the output will change to $-V_{\text {sat }}$, when the voltage across the capacitor C reaches just greater than the voltage (positive value) across resistor $R 3$
- The capacitor C starts discharging through a resistor $R 1$, when the output of above circuit is $-V_{\text {sat }}$. The value present at the output of above circuit will change to $+V$ sat, when the voltage across capacitor C reaches just less than (more negative) the voltage (negative value) across resistor $R 3$

Square wave generator: Output and Capacitor voltage waveform
Comparator and positive feedback resistors R_{1} and R_{2} form an inverting schmitt trigger.

Mk/ece/msajce

When V_{o} is at $+V_{\text {sat }}$, the feedback voltage is called the upper threshold voltage V_{UT} and is given as

$$
\begin{equation*}
\mathrm{V}_{\mathrm{UT}}=\frac{\mathrm{R}_{1}+\mathrm{V}_{\text {sat }}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \tag{1}
\end{equation*}
$$

When V_{o} is at $-\mathrm{V}_{\text {sat }}$, the feedback voltage is called the lower-threshold voltage V_{LT} and is given as

$$
\begin{equation*}
V_{L T}=\frac{R_{1}-V_{\text {sat }}}{R_{1}+R_{2}} \tag{2}
\end{equation*}
$$

Frequency of Oscillation:

The frequency of oscillation of Square Wave Generator Using Op amp is determined by the time it takes the capacitor to charge from V_{UT} to V_{LT} and vice versa. The voltage across the capacitor as a function of time is given as

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{V}_{\max }+\left(\mathrm{V}_{\text {initial }}-\mathrm{V}_{\max }\right) \mathrm{e}^{(-\mathrm{t} / \mathrm{T})} \tag{3}
\end{equation*}
$$

where

- $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$ is the instantaneous voltage across the capacitor.
- $\mathrm{V}_{\text {initial }}$ is the initial voltage
- $\mathrm{V}_{\max }$ is the voltage toward which the capacitor is charging.

Let us consider the charging of capacitor from V_{LT} to V_{UT}, where V_{LT} is the initial voltage, V_{UT} is the instantaneous voltage and $+\mathrm{V}_{\text {sat }}$ is the maximum voltage. At $\mathrm{t}=\mathrm{T}_{1}$, voltage across capacitor reaches V_{UT} and therefore equation (3) becomes

$$
\begin{align*}
& \mathrm{V}_{\mathrm{UT}}=+\mathrm{V}_{\text {sat }}+\left(\mathrm{V}_{\mathrm{LT}}-+\mathrm{V}_{\text {sat }}\right) \mathrm{e}^{\left(-\mathrm{T}_{\mathrm{V}} / \mathrm{R}_{\mathrm{f}} \mathrm{C}\right)} \tag{4}\\
& \therefore-\left(\mathrm{V}_{\mathrm{LT}}-+\mathrm{V}_{\text {sat }}\right) \mathrm{e}^{\left(-\mathrm{T}_{\mathrm{l}} / \mathrm{R}_{\mathrm{f}} \mathrm{C}\right)}=+\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{UT}} \\
& \therefore \quad e^{\left(-T_{l} / R_{f} C\right)}=\frac{\left(+V_{\text {sat }}-V_{U T}\right)}{\left(+V_{\text {sat }}-V_{L T}\right)} \\
& \therefore \quad \frac{-\mathrm{T}_{1}}{\mathrm{R}_{\mathrm{f}} \mathrm{C}}=\ln \left(\frac{+\mathrm{V}_{\mathrm{sat}}-\mathrm{V}_{\mathrm{UT}}}{+\mathrm{V}_{\mathrm{sat}}-\mathrm{V}_{\mathrm{LT}}}\right) \\
& \therefore \quad \mathrm{T}_{1}=-\mathrm{R}_{\mathrm{f}} \mathrm{C} \ln \left(\frac{+\mathrm{V}_{\mathrm{sat}}-\mathrm{V}_{\mathrm{UT}}}{+\mathrm{V}_{\mathrm{sat}}-\mathrm{V}_{\mathrm{LT}}}\right) \\
& =\mathrm{R}_{\mathrm{f}} \mathrm{C} \ln \left(\frac{+\mathrm{V}_{\mathrm{sat}}-\mathrm{V}_{\mathrm{LT}}}{+\mathrm{V}_{\mathrm{sat}}-\mathrm{V}_{\mathrm{UT}}}\right) \tag{5}
\end{align*}
$$

The time taken by capacitor to charge from $V_{U T}$ to $V_{L T}$ is same as time required for charging capacitor from V_{LT} to V_{UT}. Therefore, total time required for one oscillation is given as

$$
\begin{align*}
\mathrm{T} & =2 \mathrm{~T}_{1} \tag{6}\\
& =2 \mathrm{R}_{\mathrm{f}} \mathrm{C} \ln \left(\frac{+\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{LT}}}{+\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{UT}}}\right)
\end{align*}
$$

The frequency of oscillation can be determined as $f_{o}=1 / T$, where T represents the time required for one oscillation.

Substituting the value of T we get,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{o}}=\frac{1}{2 \mathrm{R}_{\mathrm{f}} \mathrm{C} \ln \left(\frac{+\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{LT}}}{+\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{UT}}}\right)} \tag{8}
\end{equation*}
$$

Triangular Wave Generator

Triangular wave is generated by alternatively charging and discharging a capacitor with a constant current. This is achieved by connecting integrator circuit at the output of square wave generator

Input-output waveforms

Assume that V^{\prime} is high at +V sat. This forces a constant current (+V sat/R3) through C (left to right) to drive Vo negative linearly. When V^{\prime} is low at —Vsat, it forces a constant current (— Vsat /R3) through C (right to left) to drive Vo positive, linearly. The frequency of the triangular wave is same as that of square wave

Although the amplitude of the square wave is constant (\pm Vsat), the amplitude of the triangular wave decreases with an increase in its frequency, and vice versa. This is because the reactance of capacitor decreases at high frequencies and increases at low frequencies. In practical circuits, resistance $R 4$ is connected across C to avoid the saturation problem at low frequencies as in the case of practical integrator

To obtain stable triangular wave at the output, it is necessary to have $5 \mathrm{R} 3 \mathrm{C} 2>\mathrm{T} / 2$, where T is the period of the square wave input.

The time period of the output of the square wave generator is $\mathrm{T}=2 \times 2.303 \mathrm{Rf} \mathrm{C} \times$ $\log ((2 R 2+R 1) / R 1)$ which is the same for triangular wave generator. Frequency of the output $f=1 / T$

Saw tooth Wave form Generator

Sawtooth wave generator is given in above figure. Schematic of Sawtooth wave generator Sawtooth waveform can be also generated by an asymmetrical astable multivibrator followed by an integrator as shown in figure . The sawtooth wave generators have wide application in time-base generators and pulse width modulation circuits. The difference between the triangular wave and sawtooth waveform is that the rise time of triangular wave is always equal to its fall of time while in saw tooth generator, rise time may be much higher than its fall of time, vice versa

The triangular wave generator can be converted in to a sawtooth wave generator by injecting a variable dc voltage into the non-inverting terminal of the integrator. In this circuit a potentiometer is used. Now the output of integrator is a triangular wave riding on some dc level that is a function of R4 setting.

The duty cycle of square wave will be determined by the polarity and amplitude of dc level. A duty cycle less than 50% will cause output of integrator be a sawtooth. With the wiper at the centre of R4, the output of integrator is square wave. Use of the potentiometer is when the wiper moves towards -VEE,the rise time of the sawtooth become longer than the fall time (see fig. If the wiper moves towards +VCC , the fall time becomes more than the rise time.

Output waveform of sawtooth wave generator

Features of LM380:

1. Internally fixed gain of 50 (34 dB)
2. Output is automatically self centering to one half of the supply voltage.
3. Output is short circuit proof with internal thermal limiting.
4. Input stage allows the input to be ground referenced or ac
5. Wide supply voltage range (5 to 22 V).
6. High peak current capability.
7. High impedance.

Explain the working principle of 1. Audio power amplifier 2. Videoamplifier 3. Isolation Amplifier

Applications:

Explain switched capacitor filter, audio power amplifier, opto coupler? (April May 2017)
Briefy write the working principle and functionalities of LM 380 audio amplifier. (8)

[APR/MAY 2016][NOV/DEC 2017][APR/MAY 2019

(i) Audio Power Amplifier:

Figure shown above is the connection of Audio power Amplifier. Amplifier requires very few external components because of the internal biasing, compensation \& fixed gain.

- When the power amplifier is used in the non inverting configuration, the inverting terminal may be either shorted to ground, connected to ground through resistors \& capacitors.
- Similarly when the power amplifier is used in the inverting mode, the non inverting terminal may be either shorted to ground or returned to ground through resistor or capacitor.
- Usually a capacitor is connected between the inverting terminal \& ground if the input has a high internal impedance.
- As a precautionary measure, an RC combination should be used at the output terminal (pin 8) to eliminate 5 -to- 10 MHz oscillation.
- C1 is coupling capacitor which couples the output of the amplifier to the 8 ohms loud speaker which acts as a load. The amplifier will amplify the Vin applied at the non- inverting terminal

Video Amplifier

8.25.1 IC MC 1550 as a Video Amplifier

The Fig. 8.25.1 shows MC 1550 used as a video amplifier. As it uses a cascode amplifier pair, the video amplifier is called cascode video amplifier. The transistor Q_{1} is a common emitter amplifier and transistor Q_{3} is a common base amplifier and they together from a cascode amplifier.

2

To properly terminate the oaxial cable carrying the ideo signal, a 50Ω resistance is connected between the pins 1 and 4 of MC 1550. Such a 1 mall resistance has very negligible effect on the biasing of the transistor Q_{1}. The load resistance R_{L} is directly inserted in the collector of the transistor Q_{3}.

The Fig. 8.25.1 (a) shows the small signal approximate equivalent circuit for video amplifier. Both Q_{2} and Q_{3} are operating in their active region, therefore the collector of Q_{1} sees the very small input resistance ($r_{e 2}\| \|_{e 3}$) of two common-base stages ${\text { parallel. By representing } Q_{1} \text { in }}_{\text {in }}$ its hybrid- π model, and due to
 very low load on Q_{1}, we can neglect the effect of $C_{C} . Q_{3}$ can be represented as a current source, $\alpha_{3} I_{3}$, where I_{3} is the emitter signal current of Q_{3} and $\alpha_{3}=1$ and is independent of frequency over the band of frequencies under consideration. C_{S} represents the capacitance from the collector of Q_{1} and Q_{3} to the substrate.

Isolation Amplifier (Nov/ Dec 2016) [NOV/DEC2013][MAY/JUN 2012]

8.26 Isolation Amplifier

An_{n} isolation amplifier is an amplifier that offers an ohmic or electrical isolation between its input and output terminals. Isolation amplifiers are often used when there is a very large common-mode voltage difference between the input and output sides of the device. They can provide voltage difference of several thousands of volts between input and output. The isolation in the isolation amplifier is achieved by use of transtormer or by use of optically coupled devices discussed earlier.
\qquad

The Fig. 8.26.1 shows some of the symbols used for isolation amplifiers.

Fig. 8.26.1 Different symbols used for isolation amplifiers
An important characteristics of an isolation amplifier is the linearity of the input to output transfer characteristics. But the non linear input current to light output characteristics is a problem in this regard. There are various methods of obtaining a high degree of linearity in optically coupled isolation amplifiers. Such two examples of isolation amplifiers are discussed in the following section. Fig. 8.26.2 shows an isolation amplifier in which a LED-photo transistor couplers are used as an optoisolators. As shown in Fig. 8.26.2, first LED-phototransistor coupler is used in the feedback loop of amplifier A_{1} and the second LED-phototransistor coupler is used at the input of amplifier A_{2}. Both LED-phototransistor couplers are used with matched characteristics, are driven by the same amplifier, amplifier A_{1}. Due to the matched characteristics of the two LED-photo transistor pairs, the non-linear characteristics and temperature dependence get compensated.

Fig. 8.26.2 LED-Phototransistor linearized isolation amplifier

IC 723 - GENERAL PURPOSE REGULATOR

Disadvantages of fixed voltage regulator:

1. Do not have the shot circuit
2. Output voltage is not adjustable

These limitations can be overcomes in IC723.
Features of IC723:

1. Unregulated dc supply voltage at the input between $9.5 \mathrm{~V} \& 40 \mathrm{~V}$
2. Adjustable regulated output voltage between 2 to 3 V .
3. Maximum load current of 150 mA (ILmax $=150 \mathrm{~mA}$).
4. With the additional transistor used, ILmax upto 10A is obtainable.
5. Positive or Negative supply operation
6. Internal Power dissipation of 800 mW .
7. Built in short circuit protection.
8. Very low temperature drift.
9. High ripple rejection

Explain the functional block diagram of voltage regulator and basic low voltage and high voltage regulator.

Functional block diagram of IC723

\&

Functional block diagram of IC723 is shown in figure 5.6.1.The simplified functional block diagram can be divided in to 4 blocks.

1. Reference Generating block:

The temperature compensated Zener diode, constant current source \& voltage reference amplifier together from the reference generating block. The Zener diode is used to generate a fixed reference voltage internally. Constant current source will make the Zener diode to operate at affixed point \&
it is applied to the Non - inverting terminal of error amplifier. The Unregulated input voltage $\pm \mathrm{Vcc}$ is applied to the voltage reference amplifier as well as error amplifier.

2. Error Amplifier:

Error amplifier is a high gain differential amplifier with 2 input (inverting \& Non- inverting). The Non-inverting terminal is connected to the internally generated reference voltage. The Inverting terminal is connected to the full regulated output voltage.
3. Series Pass Transistor:

Q1 is the internal series pass transistor which is driven by the error amplifier. This transistor actually acts as a variable resistor \& regulates the output voltage. The collector of transistor Q1 is connected to the Un-regulated power supply. The maximum collector voltage of Q1 is limited to 36 Volts. The maximum current which can be supplied by Q1 is 150 mA .
4. Circuitry to limit the current:

The internal transistor Q2 is used for current sensing \& limiting. Q2 is normally OFF transistor. It turns ON when the IL exceeds a predetermined limit. Low voltage, Low current is capable of supplying load voltage which is equal to or between 2 to 7Volts. Pin diagram of IC723 in figure

Vload $=2$ to 7 V and Iload= 50 mA

Pin diagram of IC723

Describe the working of IC723 voltage regulator and explain how it can be used as Low voltage regulator.[APR/MAY2021]

Describe the working of IC723 voltage regulator and explain how it can be used as High voltage regulator.[APR/MAY2021]

Summarize the working principle of IC723 general purpose voltage regulator. (12) [APR/MAY 2016]

IC 723 LOW voltage Regulator

Basic Low Voltage Regulator

The resistor, R_{sc} is connected between CL and CS pins. The current limit transistor remains nonconductive unless drops across $R_{s c}$ is 0.6 V (equal to $V_{B E}$ drop). The value of $R_{s c}$ can be found out by following equation

$$
\begin{equation*}
R_{\text {sc }}=\frac{V_{\text {sense }}}{I_{\text {limit }}}=\frac{0.6}{I_{\text {limit }}} \tag{1}
\end{equation*}
$$

$l_{\text {limit }}$ can be selected as 1.2 to 1.5 times the maximum load circuit. Potential divider made up of R_{1} and R_{2} is connected between $\mathrm{V}_{\text {ref }}$ and non-inverting terminals.

$$
\begin{equation*}
\mathrm{V}_{\text {non-inverting }}=\mathrm{V}_{\text {ref }} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \tag{2}
\end{equation*}
$$

As the series pass transistor is working as emitter follower.

$$
\begin{equation*}
V_{0}=V_{r e f} \times \frac{R_{2}}{R_{1}+R_{2}} \tag{3}
\end{equation*}
$$

R_{1} and R_{2} can be between $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$.

$$
\begin{equation*}
\mathrm{R}_{3}=\mathrm{R}_{1} \| \mathrm{R}_{2} \quad \therefore \mathrm{R}_{3}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \tag{4}
\end{equation*}
$$

Maximum load current can be 150 mA .

Basic High voltage regulator

Basic high-voltage regulator ($\mathrm{V}_{0}=7$ to 37 volts)

Basic Positive High Voltage Regulator

For this type, output voltage varies from +7 V to +37 V and $\mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}$.
The non-inverting terminal connected to $V_{\text {ref }}$ through R_{3}. Due to this arrangement the error amplifier acts as non-inverting amplifier.

The gain

$$
\mathrm{A}=1+\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}
$$

The output voltage is,

$$
\begin{equation*}
\mathbf{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}\left(1+\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}\right)=\mathrm{V}_{\text {ref }}\left(\frac{\mathbf{R}_{1}+\mathbf{R}_{2}}{\mathbf{R}_{2}}\right) \tag{8.12.7}
\end{equation*}
$$

$$
\begin{equation*}
R_{\mathrm{sc}}=\frac{0.6}{\mathrm{I}_{\text {limit }}}=\frac{\mathrm{V}_{\text {sense }}}{\mathrm{I}_{\mathrm{sc}}} \tag{8.12.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{R}_{3}=\mathbf{R}_{1} \| \mathbf{R}_{2}=\left(\frac{\mathbf{R}_{1} \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}}\right) \tag{8.12.9}
\end{equation*}
$$

This is also called basic high voltage low current regulator.

Low voltage High current Regulator

12.4.2 voltage from Output voltage be more than 150 and load current cansistor is connected For this one tran as Q_{1} in the externally,
Fig. 8.12.5.
The functional equations are similar to that of basic low voltage regulator circuit.

$$
\begin{align*}
\mathrm{V}_{\mathrm{o}} & =\mathrm{V}_{\text {ref }} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
\mathrm{R}_{\mathrm{sc}} & =\frac{0.6}{\mathrm{I}_{\text {limit }}} \tag{8.12.5}
\end{align*}
$$

Fig. 8.12.5

Power dissipation of transistor $=\left[\mathrm{V}_{\mathrm{i}(\max)}-\mathrm{V}_{\mathrm{O}(\min)}\right] \times \mathrm{I}_{\mathrm{L}(\max)}$
Power dissipation of IC $=\left[V_{i(\max)}-V_{o(\min)}\right] \times \frac{I_{L(\max)}}{h_{f e(\min) \text { of } Q_{1}}}$

8.12.4.4 Positive High Voltage High Current Regulator

For this type, output voltage from +7 V to +37 V and load current $\mathrm{I}_{\mathrm{L}}>150 \mathrm{~mA}$. For this a external transistor Q_{1} is connected, as shown in the Fig. 8.12.7.

For this different expressions are similar to basic R_{3} high voltage regulator and reproduced for the convenience.

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}\right) \\
& \mathbf{R}_{\mathrm{sc}}=\frac{0.6}{\mathrm{I}_{\text {limit }}}=\frac{\mathrm{V}_{\text {sense }}}{I_{\mathrm{sc}}}, \mathrm{R}_{3}=\frac{\mathbf{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
\end{aligned}
$$

Fig. 8.12.7 Positive high voltage regulator

While the power dissipation of transistor Q_{1} and the $I C$ is given by the same expressions as given by the equations (8.12.5) and (8.12.6).

EXPLAIN THE OPTO COUPLERS/OPTO ISOLATORS AND FIBRE OPTIC IC

Opto couplers or Opto isolators is a combination of light source \& light detector in the same package. They are used to couple signal from one point to other optically, by providing a complete electric isolation between them. This kind of isolation is provided between a low power control circuit \& high power output circuit, to protect the control circuit.

Characteristics of opto coupler:
(i) Current Transfer Ratio:

It is defined as the ratio of output collector current (Ic) to the input forward current (If)
$C T R=$ Ic/If * 100\%. Its value depends on the devices used as source \& detector.
(ii) Isolation voltage between input \& output:

It is the maximum voltage which can exist differentially between the input \& output without affecting the electrical isolation voltage is specified in K Vrms with a relative humidity of 40 to 60%.
(iii) Response Time:

Response time indicates how fast an opto coupler can change its output state. Response time largely depends on the detector transistor, input current \& load resistance.
(iv) Common mode Rejection:

Even though the opto couplers are electrically isolated for dc \& low frequency signals, an impulsive input signal (the signal which changes suddenly) can give rise to a displacement current $\mathrm{Ic}=\mathrm{Cf} * \mathrm{dv} / \mathrm{dt}$. This current can flow between input \& output due to the capacitance Cf existing between input \& output. This allows the noise to appear in the output.

Depending on
the type of light source \& detector used we can get a variety of opto couplers.
They are as follows,

Explain the OPTO COUPLERS/OPTO ISOLATORS AND FIBRE OPTIC(A/M 2017) ,N/D 2016

1.LED PHOTODIODE OPTOCOUPLER

Fig. 8.27.1 Optocoupler

LED photodiode and its waveforms are shown in above figure , here the infrared LED acts as a light source \& photodiode is used as a detector.

The advantage of using the photodiode is its high linearity. When the pulse at the input goes high, the LED turns ON. It emits light. This light is focused on the photodiode. In response to this light the photocurrent will start flowing though the photodiode. As soon as the input pulse reduces to zero, the LED turns OFF \& the photocurrent through the photodiode reduces to zero. Thus the pulse at the input is coupled to the output side.

$$
\mathrm{V}_{\mathrm{out}}=\mathrm{V}_{2}-\mathrm{I}_{2} \mathrm{R}_{2}
$$

LED - PHOTOTRANSISTOR OPTO COUPLER

When the input voltage forward biases the LED, light transmitted to the phototransistor turns it on, resulting current through the external load, as shown in Fig. 8.27 .1 (b).

The LED phototransistor opto coupler and its waveforms shown in figure. An infrared LED acts as a light source and the phototransistor acts as a photo detector.

- This is the most popularly used opto coupler, because it does not need any additional amplification.
- When the pulse at the input goes high, the LED turns ON. The light emitted by the LED is focused on the CB junction of the phototransistor.
- In response to this light photocurrent starts flowing which acts as a base current for the phototransistor.
- The collector current of phototransistor starts flowing. As soon as the input pulse reduces to zero, the LED turns OFF \& the collector current of phototransistor reduces to zero. Thus the pulse at the input is optically coupled to the output side.
- The input \& output waveforms are 180 o out of phase as the output is taken at the collector of the phototransistor

LED -DARLINGTON OPTOCOUPLER

Mk/ece/msajce

(b) LED-photodarlington

Advantages of Opto coupler:

- Control circuits are well protected due to electrical isolation.
- Wideband signal transmission is possible.
- Due to unidirectional signal transfer, noise from the output side does not get coupled to the input side.
- Interfacing with logic circuits is easily possible.
- It is small size \& light weight device.

Disadvantages:

- Slow speed.
- Possibility of signal coupling for high power signals.

Applications:

Opto couplers are used basically to isolate low power circuits from high power circuits.
At the same time the control signals are coupled from the control circuits to the high power circuits.

- Some of such applications are,
i. AC to DC converters used for DC motor speed control
ii. High power choppers
iii. High power inverters
- One of the most important applications of an opto coupler is to couple the base driving signals to a power transistor connected in a DC-DC chopper

8.25.2 Design Considerations ror viaeo minинии

From the equations for 3 dB frequencies and for voltage gain in the previous example we can conclude the following design considerations for video amplifier

1. To increase the bandwidth the gain must be reduced by decreasing R_{L},
2. The load capacitance should be as small as possible.
3. If discrete circuit is used choose the transistor having high value of f_{T} and low value of base spreading resistor r_{bb} '
4. Use CE-CB cascode pair as an amplifier because its high frequency is better than the CE amplifier.
5. Use one or more negative feedback loops to increase the bandwidth of the amplifier.

The TIMER IC 555

Applications
Astable multivibrator
Monnostable multivibrator

Explain the IC 555 can be used as a Astable Multivibrator. Drive an expression for frequency of oscillations. (If this question asked in Big question should draw internal diagram and explain the operation)

What are the modes of operation of a timer? Draw the functional diagram of a square wave generator using timer and derive its duty cyle.
.[APR/MAY2021](understand)
With neat diagram, explain the operation of an astable and monostable multivibrator[NOV/DEC 2017] [NOV/DEC 2018]

Atable multivibrator

It is also called as Free Running Multivibrator. It has no stable states and continuously switches between the two states without application of any external trigger.

Schematic Diagram

The pins 2 and 6 are connected and hence there is no need for an external trigger pulse. It will self trigger and act as a free running multivibrator (oscillator). The rest of the connections are as follows: pin 8 is connected to supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$. Pin 3 is the output terminal and hence the output is available at this pin. Pin 4 is the external reset pin. A momentary low on this pin will reset the timer. Hence, when not in use, pin 4 is usually tied to V_{CC}.

The control voltage applied at pin 5 will change the threshold voltage level. But for normal use, pin 5 is connected to ground via a capacitor (usually $0.01 \mu \mathrm{~F}$), so the external noise from the terminal is filtered out. Pin 1 is ground terminal. The timing circuit that determines the width of the output pulse is made up of R_{1}, R_{2} and C.

Operation

The following schematic depicts the internal circuit of the IC 555 operating in astable mode. The RC timing circuit incorporates $\mathrm{R}_{1}, \mathrm{R}_{2}$ and C .

The following schematic depicts the internal circuit of the IC 555 operating in astable mode. The RC timing circuit incorporates $\mathrm{R}_{1}, \mathrm{R}_{2}$ and C .

When the flip-flop is set, Q is high which drives the transistor Q_{d} in saturation and the capacitor gets discharged. Now the capacitor voltage is nothing but the trigger voltage. So while discharging, when it becomes less than $1 / 3 \mathrm{~V}_{\mathrm{CC}}$, comparator 2 output goes high. This resets the flip-flop hence Q goes low and $\overline{\mathrm{Q}}$ goes high.

The low Q makes the transistor off. Thus capacitor starts charging through the resistances $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ and V_{CC}. The charging path is shown by thick arrows in the Fig. 2.105. As total resistance in the charging path is $\left(R_{A}+R_{B}\right)$, the charging time constant is $\left(R_{A}+R_{B}\right) C$.

Now the capacitor voltage is also a threshold voltage. While charging, capacitor voltage increases i.e. the threshold voltage increases. When it exceeds $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, then the comparator 1 output goes high which sets the flip-flop. The flip-flop output Q becomes high and output at pin 3 i.e. $\overline{\mathrm{Q}}$ becomes low. High Q drives transistor Q_{d} in saturation and capacitor starts discharging through resistance R_{B} and transistor Q_{d}. This path is shown by dotted arrows in the Fig. 2.105. Thus the discharging time constant is $R_{B} C$. When capacitor voltage becomes less than $1 / 3 \mathrm{~V}_{\mathrm{CC}}$, comparator 2 output goes high, resetting the flip-flop. This cycle repeats.

Thus when capacitor is charging, output is high while when it is discharging the output is low. The output is a rectangular wave. The capacitor voltage is exponentially rising and falling. The waveforms of Astable Multivibrator using 555 Timer IC are shown in the Fig

Waveforms of astable operation

. Duty Cycle of Astable Multivibrator:

Generally the charging time constant is greater than the discharging time constant. Hence at the output, the waveform is not symmetric. The high output remains for longer period than low output. The ratio of high output period and low output period is given by a mathematical parameter called duty cycle. It is defined as the ratio of ON time i.e. high output to the total time of one cycle.

$$
\begin{array}{rlrl}
\mathrm{W} & =\text { time for output is high }=\mathrm{T}_{\mathrm{ON}} \\
\mathrm{~T} & =\text { time of one cycle } \\
\therefore \quad & \mathrm{D} & =\text { duty cycle }=\frac{\mathrm{W}}{\mathrm{~T}} \\
\therefore \quad \% \mathrm{D} & =\frac{\mathrm{W}}{\mathrm{~T}} \times 100 \%
\end{array}
$$

The charging time for the capacitor is given by,

$$
\mathrm{T}_{\mathrm{c}}=\text { Charging time }=0.693\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) \mathrm{C}
$$

While the discharge time is given by,

$$
\mathrm{T}_{\mathrm{d}}=\text { Discharging time }=0.693 \mathrm{R}_{\mathrm{B}} \mathrm{C}
$$

Hence the time for one cycle is

$$
\begin{aligned}
T & =T_{c}+T_{d}=0.693\left(R_{A}+R_{B}\right) C+0.693 R_{B} C \\
& =0.693\left(R_{A}+2 R_{B}\right) C
\end{aligned}
$$

While

$$
\begin{array}{rlrl}
& & W & =T_{c}=0.693\left(R_{A}+R_{B}\right) C \\
\therefore & \% D & =\frac{W}{T} \times 100=\frac{0.693\left(R_{A}+R_{B}\right) \mathrm{C}}{0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}} \times 100 \\
\therefore & & \% \mathrm{D} & =\frac{\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right)}{\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right)} \times 100
\end{array}
$$

While the frequency of oscillations is given by,

$$
\begin{aligned}
& \mathrm{f} & =\frac{1}{\mathrm{~T}}=\frac{1}{0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}} \\
\therefore & \mathrm{f} & =\frac{1.44}{\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}} \mathrm{~Hz}
\end{aligned}
$$

If R_{A} is much smaller than R_{B}, duty cycle approaches to 50% and output waveform approaches to square wave.

Application of Astable Multivibrator using IC 555:

The various Application of Astable Multivibrator using IC 555 are,

1. Square wave generation
2. FSK generator
3. Voltage controlled oscillator (VCO)

Monostable Multivibrator Using 555 IC

The IC 555 timer can be operated as a Monostable Multivibrator Using IC 555 by connecting an external resistor and a capacitor as shown in the Fig

The circuit has only one stable state. When trigger is applied, it produces a pulse at the output and returns back to its stable state. The duration of the pulse depends on the values of R and C . As it has only one stable state, it is called one shot multivibrator.

Working of 555 Timer as Monostable Multivibrator:

The flip-flop is initially set i.e. Q is high. This drives the transistor Q_{d} in saturation. The capacitor discharges completely and voltage across it is nearly zero. The output at pin 3 is low.

When a trigger input, a low going pulse is applied, then circuit state remains unchanged till trigger voltage is greater than $1 / 3 \mathrm{~V}_{\mathrm{CC}}$. When it becomes less than $1 / 3 \mathrm{~V}_{\mathrm{CC}}$, then comparator 2 output goes high. This resets the flip-flop so Q goes low and $\overline{\mathrm{Q}}$ goes high. Low Q makes the transistor Q_{d} off. Hence capacitor starts charging through resistance R , as shown by dark arrows in the Fig.

Waveforms of monostable operation

The voltage across capacitor increases exponentially. This voltage is nothing but the threshold voltage at pin 6 . When this voltage becomes more than $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, then comparator 1 output goes high. This sets the flip-flop i.e. Q becomes high and $\overline{\mathrm{Q}}$ low. This high Q drives the transistor Q_{d} in saturation. Thus capacitor C quickly discharges through Q_{d} as shown by dotted arrows in the wave forms Figure

So it can be noted that $\mathrm{V}_{\text {out }}$ at pin 3 is low at start, when trigger is less than $1 / 3 \mathrm{~V}_{\mathrm{CC}}$ it becomes high and when threshold is greater than $2 / 3 \mathrm{~V}_{\mathrm{CC}}$ again becomes low, till next trigger pulse occurs. So a rectangular wave is produced at the output. The pulse width of this rectangular pulse is controlled by the charging time of capacitor. This depends on the time constant RC. Thus RC controls the pulse width. The waveforms are shown in the above Figure.

Derivation of Pulse Width:

The voltage across capacitor increases exponentially and is given by

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}=\mathrm{V}\left(1-\mathrm{e}^{-\mathrm{t}} / \mathrm{CR}\right) \\
& \text { If } \quad \mathrm{V}_{\mathrm{C}}=2 / 3 \mathrm{~V}_{\mathrm{CC}} \\
& \text { then } \quad \frac{2}{3} \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}\left(1-\mathrm{e}^{-\mathrm{t}} / \mathrm{CR}\right) \\
& \frac{2}{3}-1=-\mathrm{e}^{\mathrm{t} / C R} \\
& \frac{1}{3}=\mathrm{e}^{-t / C R} \\
& \therefore \quad-\frac{\mathrm{t}}{\mathrm{CR}}=-1.0986 \\
& \therefore \quad t=+1.0986 \mathrm{CR} \\
& \therefore \quad \mathrm{t} \approx 1.1 \mathrm{CR}
\end{aligned}
$$

where

- C in farads,
- R in ohms,
- t in seconds.

Thus, we can say that voltage across capacitor will reach $2 / 3 \mathrm{~V}_{\mathrm{CC}}$ in approximately 1.1 times, time constant i.e. 1.1 RC

Thus the pulse width denoted as W is given by,

$$
\mathrm{W}=1.1 \mathrm{RC} .
$$

Schematic Diagram:
Generally a schematic diagram of the IC 555 circuits is shown which does not include comparators, flip-flop etc. It only shows the external components to be connected to the 8 pins of IC 555. Thus, the schematic diagram of Monostable Multivibrator Using IC 555 is shown in the Fig

555 timer as monostable multivibrator

The external components R and C are shown. To avoid accidental reset, pin 4 is connected to pin 8 which is supply $+\mathrm{V}_{\mathrm{CC}}$. To have the noise filtering of control voltage, the pin 5 is grounded through a small capacitor of $0.01 \mu \mathrm{~F}$.

Monostable Multivibrator Using IC 555 Applications:

The various applications of Monostable Multivibrator Using IC 555 are,

1. Frequency divider
2. Pulse width modulation
3. Linear ramp generator
4. Pulse position modulation
5. Missing pulse detector
6. Timer in relay

Problems

Describe the 555 Timer IC. Design a Astable Multivibrater Circuit to generate output Pulses of $25 \%, 50 \%$ duty cycle using a 555 Timer IC, with choice of $C=0.01$, uF, Frequency as 4.0 KHz (April May 2017)

Design a wave generator using 555 timer for a frequency of 110 Hz and 80% duty cycle.Assume $\mathrm{C}=$
0.16 μ F..[Nov/Dec 2018](Create)

A 555 timer is configured in as table mode with $R A=2 k$ ohm $R B=6 k$ ohm and $C=0.1 \mu F$.Determine the frequency of oscillation. (4) [APR/MAY 2016

2 marks

1. Mention some applications of 555 timer (DEC2009))

*Oscillator
*pulse generator
*ramp and square wave generator
*mono-shot multivibrator
*burglaralarm
*traffic light control.
2.List the applications of 555 timer in monostable mode of operation: [NOV/DEC'13]
*Missing pulse detector
*Linear ramp generator
*Frequency divider
*Pulse width modulation.
3. List the applications of 555 timer in Astable mode of operation: (MAY/JUNE2010)[NOV/DEC 2013]
*FSK generator
*Pulse-position modulator

4. What is a voltage regulator? (MAY 2010)

A voltage regulator is an electronic circuit that provides a stable dc voltage independent of the load current, temperature, and ac line voltage variations.
5.Give the classification of voltage regulators: (MAY 2010)

Series / Linear regulators
Switching regulators.
6.What is a linear voltage regulator?(Remember)

Mk/ece/msajce

Series or linear regulator uses a power transistor connected in series between the unregulated dc input and the load and it conducts in the linear region. The output voltage is controlled by the continuous voltage drop taking place across the series pass transistor.
7.What is a switching regulator?(Remember)

Switching regulators are those which operate the power transistor as a high frequency on/off switch, so that the power transistor does not conduct current continously. This give improved efficiency over series regulators.

8.What are the advantages of IC voltage regulators?(Remember) (April /May 2017)

*low cost
*highreliability
*reduction in size
*excellent performance
9. Give some examples of monolithic IC voltage regulators:(Remember)

78XX series fixed output, positive voltage regulators
79XX series fixed output, negative voltage regulators
723 general purpose regulators.

10. What is the purpose of having input and output capacitors in three terminal IC regulators?[Apr/May 2021]

A capacitor connected between the input terminal and ground cancels the Inductive effects due to long distribution leads. The outputcapacitor improves the transient response.

11.Define line regulation. [NOV/DEC 2013],[NOV/DEC 2014][APR/MAY 2018]

Line regulation is defined as the percentage change in the output voltage for a change in the inputvoltage. It is expressed in mill volts or as a percentage of the output voltage.

12.Define load regulation. [NOV/DEC 2014]

Load regulation is defined as the change in output voltage for a change in load current. It is expressed in millivolts or as a percentage of the output voltage.

13.What is meant by current limiting? (Remember) [APR/MAY 2015]

Current limiting refers to the ability of a regulator to prevent the load current from increasing above a preset value.

14.Give the drawbacks of linear regulators:(Remember)

*The input step down transformer is bulky and expensive because of low line frequency.
*Because of low line frequency, large values of filter capacitors are required to decrease the ripple.
*Efficiency is reduced due to the continuous power dissipation by the transistor as it operates in the linear region

Mk/ece/msajce

15. What is the advantage of monolithic switching regulators? (MAY 2010)

*Greater efficiency isachieved as the power transistor is made to operate as low impedance switch. Power transmitted across the transistor is in discrete pulses rather than as a steady current flow
*By using suitable switching loss reduction technique, the switching frequencycan be increased so as to reduce the size and weight of the inductors and capacitors.
16. What is an opto-coupler IC? Give examples. (MAY 2010) [MAY/JUNE 2014]

Opto-coupler IC is a combined package of a photo-emitting device and a photo sensing device. Examples for opto-coupler circuit: LED and a photo diode, LED and photo transistor, LED and Darlington. Examples for opto-coupler IC: MCT 2F, MCT 2E.
17. Mention the advantages of opto-couplers:(Remember) [Apr/May 2021]B
*Better isolation between the two stages.
*Impedance problem between the stages is eliminated.
*Wide frequency response.
*Easily interfaced with digital circuit.
*Compact and light weight.
*Problems such as noise, transients, and contact bounce are eliminated.
18. What is an isolation amplifier? Mention it's application (MAY/JUNE 2010) [APR/MAY 2016]

An isolation amplifier is an amplifier that offers electrical isolation between its input and output terminals.
19. What is the need for a tuned amplifier? (Remember) (MAY 2009)

In radio or TV receivers, it is necessary to select a particular channel among all other available channels. Hence some sort of frequency selective circuit is needed that will allow us to amplify the frequency band required and reject all the other unwanted signals and this function is provided by a tuned amplifier.
20. Write the frequency of oscillation (f0) equation for triangularwave generator) (MAY10)
$\mathrm{fO}=\mathrm{R} 3 / 4 \mathrm{R} 1 \mathrm{C} 1 \mathrm{R} 2$

21. How frequency to voltage converted onOP-AMPS. (MAY 2010)

A Frequency to voltage converter produces an output voltage, whose amplitude is a function of frequency of the input signal. The input signal may be a sine wave, a square wave or a pulse train. The F / V converter is essentially an FM detector or discriminator.

22. What is video amplifier? (MAY/JUNE 2010)

The video or wideband amplifiers are designed to provide a relatively flat gain versus frequency response characteristics for the range offrequencies required to transmit video information.
25. Define Multivibrators. Mention its types.[APR/MAY 2019] (MAY/JUNE 2010)[MAY/JUNE 2014]

Multivibrators are regenerative circuits, which are mainly used in timing applications. Based on their operational characteristics they can be classified into

Mk/ece/msajce

- AstableMultivibrators
- MonostableMultivibrators
- BistableMultivibrator

What are thethree different wave forms generated by ICL8038?[APR/MAY 2010]
Sine wave, Square wave \& Triangular wave.
26. What is meant by thermal shutdown applied to voltage regulators?[NOV/DEC 2010]

The IC has a temperature sensor which turns off the IC when it becomes too hot. The output current will drop and remain there until IC has cooled significantly.
27. What is an opto-coupler IC? Mention its applications. [APR/MAY 2011]

It is combined package of LED and Photodiode.
28.Define the duty cycle inAstablemultivibrator using IC 555. [APR/MAY 2011]

Duty cycle $=(\mathrm{Rb} / \mathrm{R}$
a+2Rb
)*100
29. What are the limitations of three terminal regulators [APR/MAY 2012]

1. No short circuit protection.
2. Output voltage is fixed.
30.What is switched capacitor filter. (Remember) [NOV/DEC 2013]

A switched capacitor filter is a three terminal element which consistsof capacitors, periodic switches and op-amps whose open circuit voltage transfer function represents filter characteristics. 37. Give the formula for period of oscillations in an op-amp as table circuit. [May/June 13]
$T=2 R C \ln (1+\beta / 1-\beta)$
31. Define duty cycle of a periodic pulse wave form. [May / June 2013]

Duty cycle $=(\mathrm{Rb} / \mathrm{Ra}+2 \mathrm{Rb})^{*} 100$
32. State the two conditions for oscillations? [APR/MAY 2015]

1. The loop gain is equal to unity in absolute magnitude and
2. Thephase shiftaround the loop is zeroor an integer multiple of 2π
3. What is the purpose of connecting a capacitor at the input and the output side of an IC voltage
regulator? [NOV/DEC 2015]
The figure above shows the application of LM340 IC as a voltage regulator. Pins 1,2 , and 3 are the input, output and ground When there is quite a distance (in cms) from the IC to the filter capacitor of the unregulated power
supply, there may occur unwanted oscillations within the IC due to lead inductances within the circuit. In order to remove this unwanted oscillation, the capacitor C1 has to be placed as shown in the circuit.
Capacitor C2 is sometimes used to improve the transient response of the circuit.
Any device in the LM 340 series needs a minimum input voltage at least 2 to 3 V greater than the regulated output voltage. Otherwise, it will stopregulating. Furthermore, there is a maximum input voltage because of excessive power dissipation.
4. Mention two applications of frequency to voltage converter.(Remember) [NOV/DEC 2015]
5. Frequency to voltage converter in tachometers.
6. Frequency difference measurement.
7. Write the advantages of switching regulator over series voltage regulators. [R2008 NOV/DEC 2015]

	Einear requlator	Switching regulator
Buck EOOSt Buthefbrinst inverting	Possible Impossible impossibie Impossible	Possible Possible Possitule Possible
Etficiency	NoN. Mostly low	Approx 95% Usually high
Output poviel	Gicnerally suverat watls Dupericlerig unt themmal clesaign	$\begin{aligned} & \text { parge } \\ & \text { powier } \\ & \text { pusitile } \end{aligned}$
Naires	Ifow	Suvitching noisce exists
Destgn	Simple	Curriplicalerl
Peatis-conaral	Isim	High
Cusl	\bigcirc	\triangle

36 Distinguish the principle of linear regulator and a switched mode powersupply. (April/May 2017)
A switching power supply operates by constantly switching the source on and off; the rate of which is dictated by the needed voltage at the output. A linear power supply is often used because of its simplicity.
Linear regulators exist in packaged ICs that only need a rectified voltage source to operate.
49) Define current transfer ratio of an opto-coupler?[Nov/Dec 2017

The current transfer ratio refers to the ratio of the output collector current (Ic)to the input forward current(If)CTR $=\{\mathrm{Ic} / \mathrm{If}\} * 100$

Draw a fixed voltage regulator circuit and state its operations?[Nov/Dec 2017]

Connection of 7815 Voltage Regulator

38 .List the applications of multivibrator??[Nov/Dec 2018](Remember)

Frequency divider
Pulse width Modulation
Linear ramp generator
Square wave generator
VCO
Schmitt trigger

39. State the function of optocoupler. [APR/MAY 2019])

Optocoupler provides electrical isolation between two circuits
EPC Questions

1. Explain the square wave generator, triangular wave generator and Saw tooth wave generator with neat diagram (A/M 2020, N/D 2018,A/M 2019,A/M 2016.2014
2. Explain switched capacitor filter, audio power amplifier, Video Amplifier opto coupler, Isolation Amplifier (April May 2017), [APR/MAY 2016][NOV/DEC 2017][APR/MAY 2019
3. Explain the functional block diagram r and basic low voltage and high voltage regulator.
4. With neat diagram, explain the operation of an astable and monostable multivibrator .Drive duty cycle A/M 2021, [NOV/DEC 2017] [NOV/DEC 2018]
5. With neat diagram, explain the operation of an monostable multivibrator [NOV/DEC 2017] [NOV/DEC 2018]
