
80C51 Block Diagram

80C51 Memory

8051 Memory

- The data width is 8 bits
- Registers are 8 bits
- Addresses are 8 bits
 - □ i.e. addresses for only 256 bytes!
 - PC is 16 bits (up to 64K program memory)
 - DPTR is 16 bits (for external data up to 64K)

C types

- char 8 bits <-- use this if at all possible!</p>
- □ short 16 bits
- □ int 16 bits
- Iong 32 bits
- 🛛 float 🛛 32 bits
- C standard signed/unsigned

Accessing External Memory

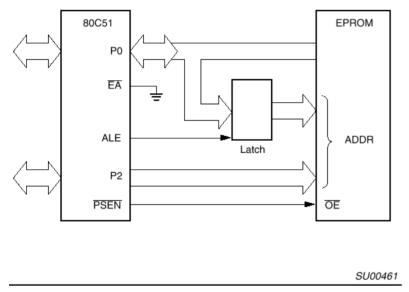


Figure 4. Executing from External Program Memory

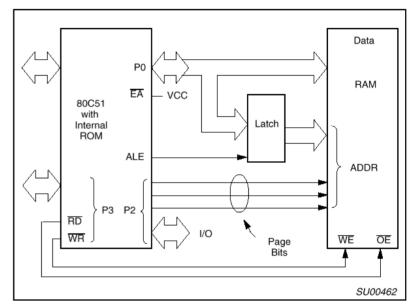


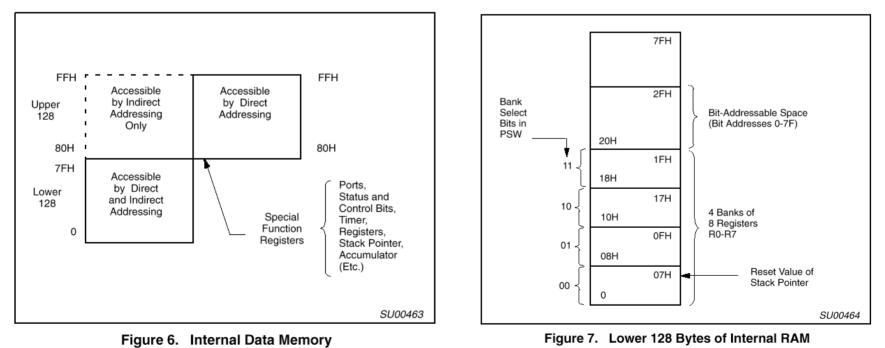
Figure 5. Accessing External Data Memory

Program Memory

- Program and Data memory are separate
- Can be internal and/or external
 - 20K internal flash for the Atmel controller
- Read-only
 - Instructions
 - Constant data

char code table[5] = $\{ 1', 2', 3', 4', 5' \};$

Compiler uses instructions for moving "immediate" data

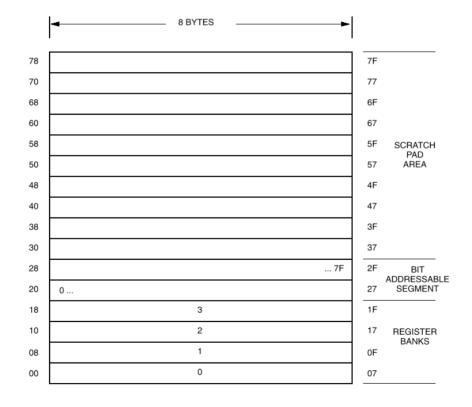

External Data Memory

- External Data xdata
 - Resides off-chip
 - Accessed using the DPTR and MOVX instruction
 - We will not use xdata
 - We will use the SMALL memory model
 - 🛛 all data is on-chip
 - Iimited to only ~128 bytes of data!

Internal Data Memory

Internal data memory contains all the processor state

- Lower 128 bytes: registers, general data
- Upper 128 bytes:
 - □ indirectly addressed: 128 bytes, used for the stack (small!)
 - directly addressed: 128 bytes for "special" functions



Lower 128 bytes

Register banks, bit addressable data, general data

□ you can address any register!

Iet the C compiler deal with details (for now)

Data Memory Specifiers

- "data" first 128 bytes, directly addressed
 the default
- "idata" all 256 bytes, indirectly addressed (slower)
- bdata" bit-addressable memory
 - 16 bytes from addresses 0x20 to 0x2F
 - 128 bit variables max

bit flag1, flag2;
flag1 = (a == b);

can access as bytes or bits

```
char bdata flags;
sbit flag0 = flags ^ 0; /* use sbit to "overlay" */
sbit flag7 = flags ^ 7; /* ^ specifies bit */
flags = 0; /* Clear all flags */
flag7 = 1; /* Set one flag */
```

Upper 128 bytes: SFR area

Table 1. AT89LV55 SFR Map and Reset Values

Table 1.	A109EV00	Si n Map ano	neset value	5				
0F8H								OFFH
0F0H	B 00000000							0F7H
0E8H								0EFH
0E0H	ACC 00000000							0E7H
0D8H								ODFH
0D0H	PSW 00000000							0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000		0CFH
0C0H								0C7H
0B8H	IP XX000000							0BFH
0B0H	P3 11111111							0B7H
0A8H	IE 0X000000							0AFH
0A0H	P2 11111111							0A7H
98H	SCON 00000000	SBUF XXXXXXXX						9FH
90H	P1 11111111							97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000		8FH
80H	P0 11111111	SP 00000111	DPL 00000000	DPH 00000000			PCON 0XXX0000	87H

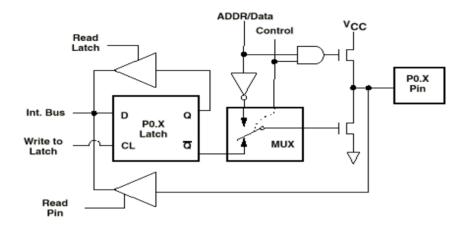
SYMBOL	DESCRIPTION	DIRECT ADDRESS									RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
DPTR	Data pointer (2 by- tes)										
DPH	Data pointer high	83H									00H
DPL	Data pointer low	82H									00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IE*	Interrupt enable	A8H	EA	I	-	ES	ET1	EX1	ET0	EX0	0x000000B
			BF	BE	BD	BC	BB	BA	B9	B8	
IP*	Interrupt priority	B8H	-	-	-	PS	PT1	PX1	PT0	PX0	xx000000B
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	-	-	-	-	-	-	T2EX	T2	FFH
											1
			A7	A6	A5	A4	AЗ	A2	A1	A0	
P2*	Port 2	A0H	A15	A14	A13	A12	A11	A10	A9	A8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	
P3*	Port 3	B0H	RD	WR	T1	Т0	INT1	INT0	TxD	Rxd	FFH
PCON1	Power control	87H	SMOD	-	-	١	GF1	GF0	PD	IDL	0xxxxxxB
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	-	Р	00H
SBUF	Serial data buffer	99H	9F	9E	9D	9C	9B	9A	99	98	xxxxxxxB
SCON*	Serial controller	98H	SM0	9E SM1	SM2	REN	TB8	RB8	TI	90 RI	00H
SP	Stack pointer	81H	SIVIO	SIVIT	SIVIZ	NEN	TBO	пво		ni	07H
51	Stack pointer	on	8F	8E	8D	8C	8B	8A	89	88	0/H
TCON*	Timer control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO	1
THO	Timer high 0	8CH									00H
TH1	Timer high 1	8DH									00H
TLO	Timer low 0	8AH									00H
TL1	Timer low 1	8BH									00H
TMOD	Timer mode	89H	GATE	C/T	M1	MO	GATE	C/T	M1	MO	00H

Table 1.	80051	Special	Eunction	Registers
Table 1.	00001	Special	Function	Registers

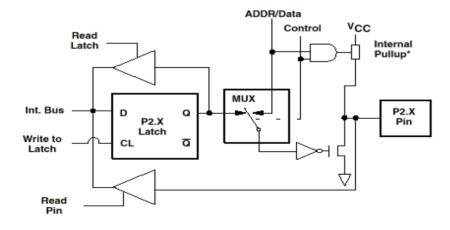
Accessing SFRs

The interesting SFRs are bit-addressable
 addresses 0x80, 0x88, 0x90, ..., 0xF8

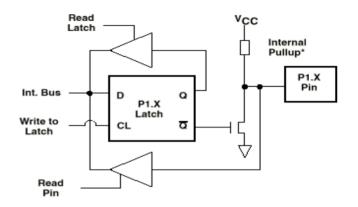
□ SFRs can be addressed by bit, char or int

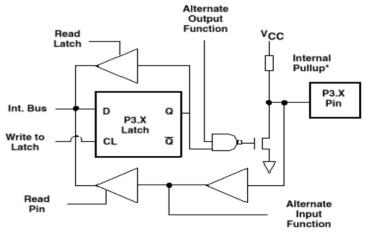

```
sbit EA = 0xAF; /* one of the interrupt enables
sfr Port0 = 0x80; /* Port 0 */
sfr16 Timer2 = 0xCC; /* Timer 2 */
sbit LED0 = Port1 ^ 2; /* Define a port bit */
EA = 1; /* Enable interrupts */
Port0 = 0xff; /* Set all bits in Port 0 to 1
if (Timer2 > 100) . . .
LED0 = 1; /* Turn on one bit in Port 2 */
```

Ports


Port 0 - external memory access

- Iow address byte/data
- Port 2 external memory access
 - high address byte
- Port 1 general purpose I/O
 - □ pins 0, 1 for timer/counter 2
- Port 3 Special features
 - 0 RxD: serial input
 - 🛯 1 TxD: serial output
 - 2 INTO: external interrupt
 - 3 INT1: external interrupt
 - 4 TO: timer/counter 0 external input
 - 5 T1: timer/counter 1 external input
 - 6 WR: external data memory write strobe
 - 7 RD: external data memory read strobe


Ports



c. Port 2 Bit

b. Port 1 Bit

d. Port 3 Bit

Ports

- Port 0 true bi-directional
- Port 1-3 have internal pullups that will source current
- Output pins:
 - □ Just write 0/1 to the bit/byte
- Input pins:
 - Output latch must have a 1 (reset state)
 - Turns off the pulldown
 - pullup must be pulled down by external driver
 - Just read the bit/byte

Program Status Word

- Register set select
- Status bits

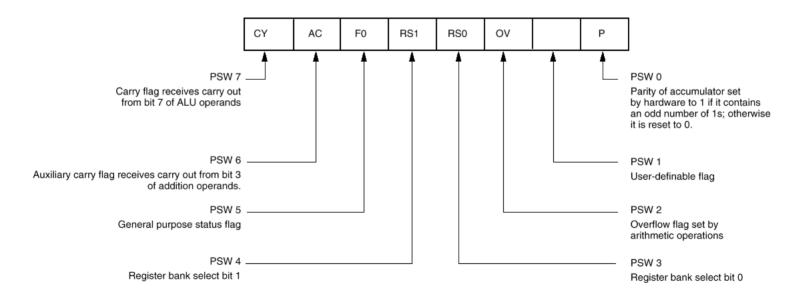
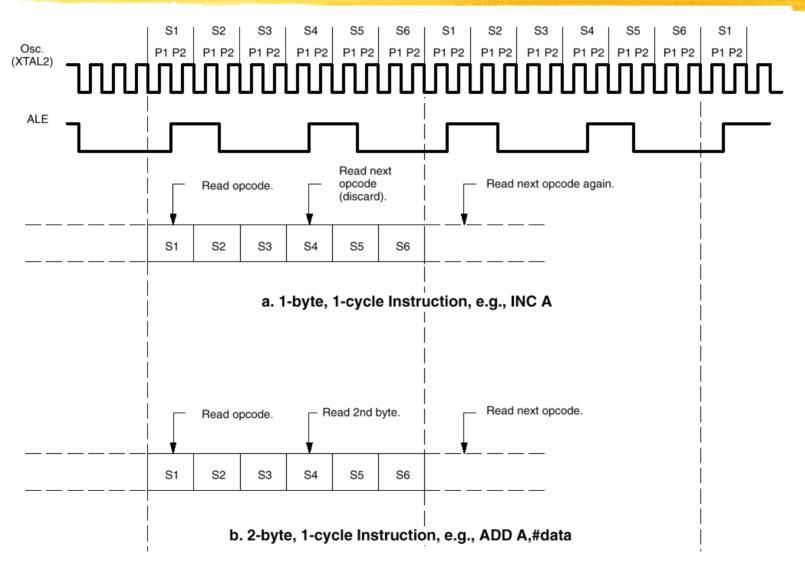



Figure 10. PSW (Program Status Word) Register in 80C51 Devices

Instruction Timing

- One "machine cycle" = 6 states (S1 S6)
- One state = 2 clock cycles
 - One "machine cycle" = 12 clock cycles
- Instructions take 1 4 cycles
 - e.g. 1 cycle instructions: ADD, MOV, SETB, NOP
 - □ e.g. 2 cycle instructions: JMP, JZ
 - □ 4 cycle instructions: MUL, DIV

Instruction Timing

Timers

- Base 8051 has 2 timers
 - □ we have 3 in the Atmel 89C55
- Timer mode
 - □ Increments every machine cycle (12 clock cycles)
- Counter mode
 - □ Increments when TO/T1 go from 1 0 (external signal)
- Access timer value directly
- Timer can cause an interrupt
- Timer 1 can be used to provide programmable baud rate for serial communications
- Timer/Counter operation
 - Mode control register (TMOD)
 - Control register (TCON)

Mode Control Register (TMOD)

- Modes 0-3
- GATE allows external pin to enable timer (e.g. external pulse)
 - □ 0: INT pin not used
 - 1: counter enabled by INT pin (port 3.2, 3.3)
- C/T indicates timer or counter mode

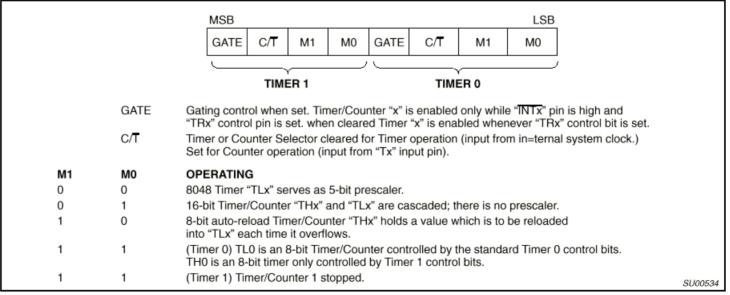
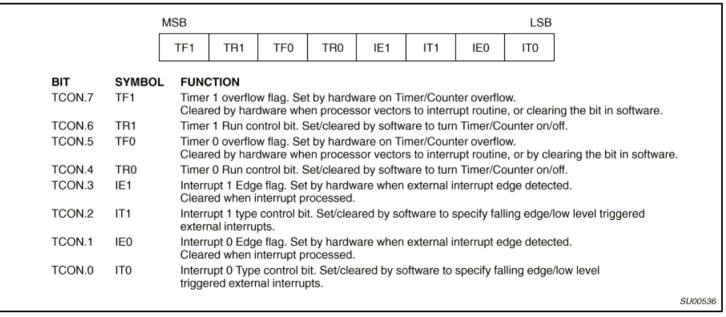



Figure 6. Timer/Counter Mode Control (TMOD) Register

Timer/Counter Control Register (TCON)

- TR enable timer/counter
- TF overflow flag: can cause interrupt
- IE/IT external interrupts and type control
 - not related to the timer/counter

Figure 8. Timer/Counter Control (TCON) Register

Timer/Counter Mode 0

Mode 1 same as Mode 0, but uses all 16 bits

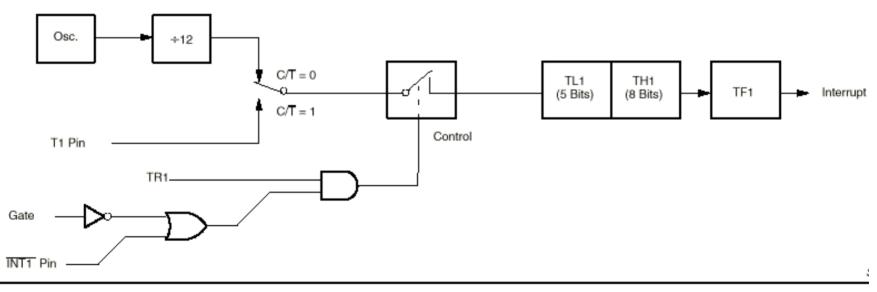


Figure 7. Timer/Counter Mode 0: 13-Bit Counter

Timer/Counter Mode 2

8-bit counter, auto-reload on overflow

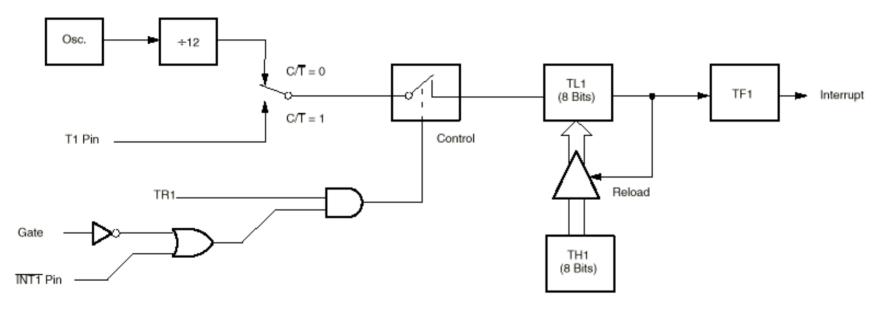


Figure 9. Timer/Counter Mode 2: 8-Bit Auto-Load

Timer/Counter Mode 3

Applies to Timer/Counter 0
Gives an extra timer

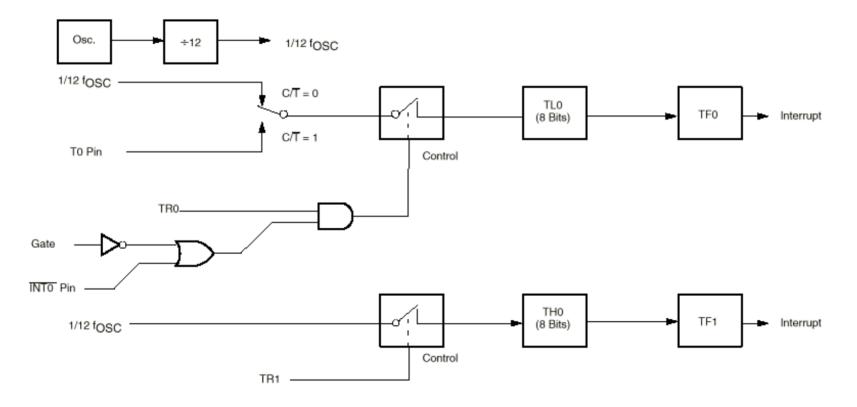


Figure 10. Timer/Counter 0 Mode 3: Two 8-Bit Counters

Interrupts

- Allow parallel tasking
 - Interrupt routine runs in "background"
- Allow fast, low-overhead interaction with environment
 - Don't have to poll
 - Immediate reaction
- An automatic function call
 - Easy to program
- 8051 Interrupts
 - Serial port wake up when data arrives/data has left
 - Timer 0 overflow
 - Timer 1 overflow
 - External interrupt 0
 - External interrupt 1

Interrupt Vector

For each interrupt, which interrupt function to call
 In low program addresses

0x00 - Reset PC address

- 0: 0x03 External interrupt 0
- 1: 0x0B Timer 0
- 2: 0x13 External interrupt 1
- 3: 0x1B Timer 1
- 4: 0x23 Serial line interrupt
- Hardware generates an LCALL to address in interrupt vector
- Pushes PC (but nothing else) onto the stack
- RETI instruction to return from interrupt

Writing Interrupts in C

The C compiler takes care of everything

- Pushing/popping the right registers (PSW, ACC, etc.)
- Generating the RTI instruction
- No arguments/no return values

```
unsigned int count;
unsigned char second;
void timer0 (void) interrupt 1 using 2 {
    if (++count == 4000) {
        second++;
        count = 0;
    }
}
```

- **Timer mode 2**
- Reload value = 6

Timer Interrupts

- Wakeup after N clock cycles, i.e. at a specified time
- Wakeup every N clock cycles (auto reload)
 - Allows simple task scheduling
 - Clients queue function calls for time i
 - Interrupt routine calls functions at the right time
- Wakeup after N events have occurred on an input

Design Problem 1 - frequency counter

- Measure the frequency of an external signal
- Display as a number using the 7-segment display
 - □ e.g. number represents exponent of 2 or 10

Example Timer Setup

What does this setup do?

TMOD = 0x62; // 01100010; TCON = 0x50; // 01010000; TH1 = 246; TH0 = 6;

IE = 0x8A; // 10001010;

Using the timers

```
void counterInterrupt ( void ) interrupt 3 using 1 {
     timeLow = TL0:
     TLO = 0;
     timeHigh = count;
     count = 0;
     if (timeHigh == 0 && timeLow < 10) *ledaddress = 0x6f;
     else if (timeHigh == 0 && timeLow < 100) *ledaddress = 0x6b;
     else if (timeHigh < 4) *ledaddress = 0x02;
     else if (timeHigh < 40) *ledaddress = 0x04;
     else if (timeHigh < 400) *ledaddress = 0x08;
     else if (timeHigh < 4000) *ledaddress = 0x10;
     else if (timeHigh < 40000) *ledaddress = 0x20;
     else *ledaddress = 0xf0; // default
}
void timerInterrupt ( void ) interrupt 1 using 1 {
     count++;
}
```

Design Problem 2 - Measure the pulse width

Problem: send several bits of data with one wire

- Serial data
 - precise, but complicated protocol
- Pulse width
 - precise enough for many sensors
 - simple measurement

Design Problem 3 - Accelerometer Interface

Accelerometer

- Two signals, one for each dimension
- Acceleration coded as the duty cycle
 - pulse-width/cycle-length
 - cycle time = 1ms 10ms (controlled by resistor)
 - 1ms gives faster sampling
 - 10ms gives more accurate data

Controlling Interrupts: Enables and Priority

	(MSB)							(LSB)			
	ĒĀ	Х	х	ES	ET1	EX1	ET0	EX0			
Symbol Position Function											
ΕA	τ	IE.7	in e	Disables all interrupts. If $\overline{EA} = 0$, no interrupt will be acknowledged. If $\overline{EA} = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.							
		IE.6		Reserved.							
		IE.5	R	Reserved.							
ES	6	IE.4	in	Enables or disables the Serial Port interrupt. If ES = 0, the Serial Port interrupt is disabled.							
ET	ET1		in	Enables or disables the Timer 1 Overflow interrupt. If ET1 = 0, the Timer 1 interrupt is disabled.							
EX	(1	IE.2		Enables or disables External Interrupt 1. If EX1 = 0, External Interrupt 1 is disabled.							
ET	0	IE.1	in	Enables or disables the Timer 0 Overflow interrupt. If ET0 = 0, the Timer 0 interrupt is disabled.							
EX	EX0 IE.0 Enables or disables Exeternal Interrupt 0. If EX0 = 0, External Interrupt 0 is disabled										
								SU00474			

	(MSB)							(LSB)
	х	х	х	PS	PT1	PX1	PT0	PX0
Sy	mbol	Positi	on Fu	unction	1			
		IP.7	R	eserved	l.			
		IP.6	R	eserved	l.			
		IP.5	R	eserved	l.			
PS	5	IP.4	le		= 1 pro			t priority higher
PT	PT1 IP.3 Defines the Timer 1 interrupt priority level. PT1 = 1 programs it to the higher priority level.							
PX	PX1 IP.2 Defines the External Interrupt 1 priority level. PX1 = 1 programs it to the higher priority level.							
PT	0	IP.1	pr	iority le		= 1 pro) Interrupt it to the
PX	0	IP.0	le		0 = 1 pr			priority e higher
								SU00475

Figure 17. Interrupt Enable (IE) Register

Figure 18. Interrupt Priority (IP) Register

Interrupt Controls

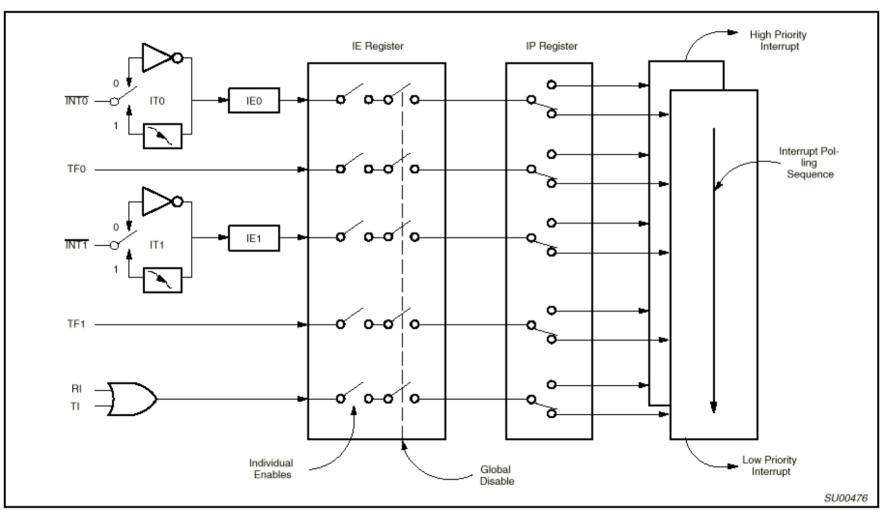


Figure 19. Interrupt Control System

8051 Overview

Interrupt Priorities

- Two levels of priority
 - Set an interrupt priority using the interrupt priority register
 - A high-priority interrupt can interrupt an low-priority interrupt routine
 - In no other case is an interrupt allowed
 - An interrupt routine can always disable interrupts explicitly

But you don't want to do this

- Priority chain within priority levels
 - Choose a winner if two interrupts happen simultaneously
 - Order shown on previous page

Re-entrant Functions

- A function can be called simultaneously be different processes
- Recursive functions must be re-entrant
- Functions called by interrupt code and non-interrupt code must be re-entrant
- Keil C functions by default are not re-entrant
 - Does not use the stack for everything
 - Use the reentrant specifier to make a function re-entrant

```
int calc (char i, int b) reentrant {
    int x;
    x = table[i];
    return (x * b);
}
```

External Interrupts

- Can interrupt using the INTO or INT1 pins (port 3: pin 2,3)
 - Interrupt on level or falling edge of signal (TCON specifies which)
 - Pin is sampled once every 12 clock cycles
 - □ for interrupt on edge, signal must be high 12 cycles, low 12 cycles
 - Response time takes at least 3 instuctions cycles
 - □ 1 to sample
 - 2 for call to interrupt routine
 - more if a long instruction is in progress (up to 6 more)