
8051 Overview 1

80C51 Block Diagram

8051 Overview 3

80C51 Memory

8051 Overview 4

8051 Memory

The data width is 8 bits

Registers are 8 bits

Addresses are 8 bits
i.e. addresses for only 256 bytes!

PC is 16 bits (up to 64K program memory)

DPTR is 16 bits (for external data - up to 64K)

C types
char - 8 bits <-- use this if at all possible!

short - 16 bits

int - 16 bits

long - 32 bits

float - 32 bits

C standard signed/unsigned

8051 Overview 5

Accessing External Memory

8051 Overview 6

Program Memory

Program and Data memory are separate

Can be internal and/or external
20K internal flash for the Atmel controller

Read-only
Instructions

Constant data

char code table[5] = {‘1’,‘2’,‘3’,‘4’,‘5’} ;

Compiler uses instructions for moving “immediate” data

8051 Overview 7

External Data Memory

External Data - xdata

Resides off-chip

Accessed using the DPTR and MOVX instruction

We will not use xdata

We will use the SMALL memory model

all data is on-chip

limited to only ~128 bytes of data!

8051 Overview 8

Internal Data Memory

Internal data memory contains all the processor state
Lower 128 bytes: registers, general data

Upper 128 bytes:

indirectly addressed: 128 bytes, used for the stack (small!)

directly addressed: 128 bytes for “special” functions

8051 Overview 9

Lower 128 bytes

Register banks, bit addressable data, general data
you can address any register!

let the C compiler deal with details (for now)

8051 Overview 10

Data Memory Specifiers

“data” - first 128 bytes, directly addressed
the default

“idata” - all 256 bytes, indirectly addressed (slower)

“bdata” - bit-addressable memory
16 bytes from addresses 0x20 to 0x2F

128 bit variables max

bit flag1, flag2;

flag1 = (a == b);

can access as bytes or bits

char bdata flags;

sbit flag0 = flags ^ 0; /* use sbit to “overlay” */

sbit flag7 = flags ^ 7; /* ^ specifies bit */

flags = 0; /* Clear all flags */

flag7 = 1; /* Set one flag */

8051 Overview 11

Upper 128 bytes: SFR area

8051 Overview 13

Accessing SFRs

The interesting SFRs are bit-addressable
addresses 0x80, 0x88, 0x90, . . . , 0xF8

SFRs can be addressed by bit, char or int

sbit EA = 0xAF; /* one of the interrupt enables

sfr Port0 = 0x80; /* Port 0 */

sfr16 Timer2 = 0xCC; /* Timer 2 */

sbit LED0 = Port1 ^ 2; /* Define a port bit */

EA = 1; /* Enable interrupts */

Port0 = 0xff; /* Set all bits in Port 0 to 1

if (Timer2 > 100) . . .

LED0 = 1; /* Turn on one bit in Port 2 */

8051 Overview 14

Ports

Port 0 - external memory access
low address byte/data

Port 2 - external memory access
high address byte

Port 1 - general purpose I/O
pins 0, 1 for timer/counter 2

Port 3 - Special features
0 - RxD: serial input

1 - TxD: serial output

2 - INT0: external interrupt

3 - INT1: external interrupt

4 - T0: timer/counter 0 external input

5 - T1: timer/counter 1 external input

6 - WR: external data memory write strobe

7 - RD: external data memory read strobe

8051 Overview 15

Ports

8051 Overview 16

Ports

Port 0 - true bi-directional

Port 1-3 - have internal pullups that will source current

Output pins:
Just write 0/1 to the bit/byte

Input pins:
Output latch must have a 1 (reset state)

Turns off the pulldown

pullup must be pulled down by external driver

Just read the bit/byte

8051 Overview 17

Program Status Word

Register set select

Status bits

8051 Overview 18

Instruction Timing

One “machine cycle” = 6 states (S1 - S6)

One state = 2 clock cycles
One “machine cycle” = 12 clock cycles

Instructions take 1 - 4 cycles
e.g. 1 cycle instructions: ADD, MOV, SETB, NOP

e.g. 2 cycle instructions: JMP, JZ

4 cycle instructions: MUL, DIV

8051 Overview 19

Instruction Timing

8051 Overview 20

Timers

Base 8051 has 2 timers
we have 3 in the Atmel 89C55

Timer mode
Increments every machine cycle (12 clock cycles)

Counter mode
Increments when T0/T1 go from 1 - 0 (external signal)

Access timer value directly

Timer can cause an interrupt

Timer 1 can be used to provide programmable baud rate for
serial communications

Timer/Counter operation
Mode control register (TMOD)

Control register (TCON)

8051 Overview 21

Mode Control Register (TMOD)

Modes 0-3

GATE - allows external pin to enable timer (e.g. external pulse)
0: INT pin not used

1: counter enabled by INT pin (port 3.2, 3.3)

C/T - indicates timer or counter mode

CSE 477 8051 Overview 22

Timer/Counter Control Register (TCON)

TR - enable timer/counter

TF - overflow flag: can cause interrupt

IE/IT - external interrupts and type control
not related to the timer/counter

8051 Overview 23

Timer/Counter Mode 0

Mode 1 same as Mode 0, but uses all 16 bits

8051 Overview 24

Timer/Counter Mode 2

8-bit counter, auto-reload on overflow

8051 Overview 25

Timer/Counter Mode 3

Applies to Timer/Counter 0

Gives an extra timer

8051 Overview 26

Interrupts

Allow parallel tasking
Interrupt routine runs in “background”

Allow fast, low-overhead interaction with environment
Don’t have to poll

Immediate reaction

An automatic function call
Easy to program

8051 Interrupts
Serial port - wake up when data arrives/data has left

Timer 0 overflow

Timer 1 overflow

External interrupt 0

External interrupt 1

CSE 477 8051 Overview 27

Interrupt Vector

For each interrupt, which interrupt function to call

In low program addresses

Hardware generates an LCALL to address in interrupt vector

Pushes PC (but nothing else) onto the stack

RETI instruction to return from interrupt

0x00 - Reset PC address

0: 0x03 - External interrupt 0

1: 0x0B - Timer 0

2: 0x13 - External interrupt 1

3: 0x1B - Timer 1

4: 0x23 - Serial line interrupt

8051 Overview 28

Writing Interrupts in C

The C compiler takes care of everything
Pushing/popping the right registers (PSW, ACC, etc.)

Generating the RTI instruction

No arguments/no return values

unsigned int count;

unsigned char second;

void timer0 (void) interrupt 1 using 2 {

if (++count == 4000) {

second++;

count = 0;

}

}

Timer mode 2

Reload value = 6

8051 Overview 29

Timer Interrupts

Wakeup after N clock cycles, i.e. at a specified time

Wakeup every N clock cycles (auto reload)
Allows simple task scheduling

Clients queue function calls for time i

Interrupt routine calls functions at the right time

Wakeup after N events have occurred on an input

8051 Overview 30

Design Problem 1 - frequency counter

Measure the frequency of an external signal

Display as a number using the 7-segment display
e.g. number represents exponent of 2 or 10

CSE 477 8051 Overview 31

TMOD = 0x62; // 01100010;

TCON = 0x50; // 01010000;

TH1 = 246;

TH0 = 6;

IE = 0x8A; // 10001010;

Example Timer Setup

What does this setup do?

8051 Overview 32

Using the timers

void counterInterrupt (void) interrupt 3 using 1 {

timeLow = TL0;

TL0 = 0;

timeHigh = count;

count = 0;

if (timeHigh == 0 && timeLow < 10) *ledaddress = 0x6f;

else if (timeHigh == 0 && timeLow < 100) *ledaddress = 0x6b;

else if (timeHigh < 4) *ledaddress = 0x02;

else if (timeHigh < 40) *ledaddress = 0x04;

else if (timeHigh < 400) *ledaddress = 0x08;

else if (timeHigh < 4000) *ledaddress = 0x10;

else if (timeHigh < 40000) *ledaddress = 0x20;

else *ledaddress = 0xf0; // default

}

void timerInterrupt (void) interrupt 1 using 1 {

count++;

}

8051 Overview 33

Design Problem 2 - Measure the pulse width

Problem: send several bits of data with one wire
Serial data

precise, but complicated protocol

Pulse width

precise enough for many sensors

simple measurement

8051 Overview 34

Design Problem 3 - Accelerometer Interface

Accelerometer
Two signals, one for each dimension

Acceleration coded as the duty cycle

pulse-width/cycle-length

cycle time = 1ms - 10ms (controlled by resistor)

• 1ms gives faster sampling

• 10ms gives more accurate data

8051 Overview 35

Controlling Interrupts: Enables and Priority

8051 Overview 36

Interrupt Controls

8051 Overview 37

Interrupt Priorities

Two levels of priority
Set an interrupt priority using the interrupt priority register

A high-priority interrupt can interrupt an low-priority interrupt
routine

In no other case is an interrupt allowed

An interrupt routine can always disable interrupts explicitly

But you don’t want to do this

Priority chain within priority levels
Choose a winner if two interrupts happen simultaneously

Order shown on previous page

8051 Overview 38

Re-entrant Functions

A function can be called simultaneously be different processes

Recursive functions must be re-entrant

Functions called by interrupt code and non-interrupt code must
be re-entrant

Keil C functions by default are not re-entrant
Does not use the stack for everything

Use the reentrant specifier to make a function re-entrant

int calc (char i, int b) reentrant {

int x;

x = table[i];

return (x * b);

}

8051 Overview 39

External Interrupts

Can interrupt using the INT0 or INT1 pins (port 3: pin 2,3)
Interrupt on level or falling edge of signal (TCON specifies which)

Pin is sampled once every 12 clock cycles

for interrupt on edge, signal must be high 12 cycles, low 12 cycles

Response time takes at least 3 instuctions cycles

1 to sample

2 for call to interrupt routine

more if a long instruction is in progress (up to 6 more)

