EC3352 DIGITAL SYSTEM DESIGN

COMBINATIONAL LOGIC CIRCUITS

Combinational Logic

for digital systems may be combinational

or sequential.

* A combinational circuit consists of input variables, logic

gates, and output variables.

—>
—>

n inputs : Combinational

circuit
—

—>
—>

— > moutpufs

—>

Fig. 4-1 Block Diagram of Combinational Circuit

4-2. Analysis procedure

To obtain the output Boolean functions from a logic
diagram, proceed as follows:

Label all gate outputs that are a function of input variables with

arbitrary symbols. Determine the Boolean functions for each
gate output.

Label the gates that are a function of input variables and

previously labeled gates with other arbitrary symbols. Find the
Boolean functions for these gates.

4-2. Analysis procedure

Repeat the process outlined in step 2 until the outputs of the
circuit are obtained.

By repeated substitution of previously defined functions, obtain
the output Boolean functions in terms of input variables.

Example

F,=AB+AC+BC; T,=A+B+C; T,=ABC; T;=F,T;;
F1= T3+ Tz
F,=T;+T,=F,’T;+ ABC= A'BC' + A'B'C + AB'C’ + ABC

=D

= >

M@M

Fig. 4-2 Logic Diagram for Analysis Example

Derive truth table from logic diagram

* We can derive the truth table in Table 4-1 by using the
circuit of Fig.4-2.

Table 4-1

Truth Table for the Logic Diagram of Fig. 4-2
A B C 1 Fa F, T, T, Ts Fy
0 0 O 0 I 0 0 0)
0 0 1 0 1 I 0 | 1
0O l 0 0 I I 0 | l
0 l 1 | 0 I 0 0 0
| 0 0 0 I I 0 | I
| 0 1 1 0 I 0 0 0
l l 0 | 0 I 0 O 0
| I 1 1 0 I I 0 l

4-3. Design procedure

1. Tabled-2 is a Code-Conversion example, first, we can
list the relation of the BCD and Excess-3 codes in the
truth table.

Table 4-2
Truth Table for Code-Conversion Exampie
input BCD Output Excess- 3 Code

Karnaugh map

2. For each symbol of the Excess-3 code, we use 1’s to
draw the map for simplifying Boolean function.

cD = CcD <
A OO o1 11 10 A OO o1 T 10
00 1 1 00 1 1
o1 1 1 01 1 1
11 x X X X 11 X X X X
A A
10 1 x x 10 1 X X
D D
z = DD’ CcD D
cD C cD <
a4 OO o1 11 10 ap OO 01 71 10
00 1 1 1 ‘ 00
o1 1 01 1 g 1
11 x X X X 11 x x X X
A e— 2
10 1 X X ‘ 10 1 1 X X

X = B'C + B'"D + BC"D’

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

w = A + BC + BD

Circuit implementation

z=D; y=CD+CD =CD + (C+ D)’
x=B'C+B'D+BCD’ =B'(C+D)+B(C+D)
w=A+BC+BD =A + B(C + D)

CD ¥ oy v

av

Y %JU‘Zq
f

C +D

Fig. 4-4 lL.ogic Diagram for BCD to Excess-3 Code Converter

4-4. Binary Adder-Subtractor

A combinational circuit that performs the addition of two bits is
called a half adder.
 The truth table for the half adder is listed below:

Table 4-3

Half Adder
X A C A S: Sum
0 0 0 0 C: Carry
0 I 0 I
| () 0 |
| | 0
S=XYy+Xy

b o = 2 = ~ =

Implementation of Half-Adder

e

-

N
J

S
X ®
S
Yy
SIS
(a)S=xy' +x'y (b)S=xDy
C =xy C=xy

Fig. 4-5 Implementation of Half-Adder

Full-Adder

One that performs the addition of three bits(two
significant bits and a previous carry) is a full adder.

Table 4-4

Full Adder
x y b 4 - S
O Q) 8 | O O
O O 1 O |
O | O O 1
O | | | O
1 O O O 1
1 O 1 i O
1] O 1 O
1 |] I 1

12

Simplified Expressions

ez Y vz y
00 01 11 10 . 00 01 11 10
1 1 0 1
/\>
x|1 1 1 x11 1 1 w
~

4 Z
S=x'y'z +x'yz'+ xy'z' +xyz S=xy+\%z 4z

= xy txy'z +x'yz

Fig. 4-6 Maps for Full Adder

C

S=XYz+XyzZ +Xyz +Xyz

C=xy+xz+yz

Full adder implemented in SOP

x:—
y —
Z —

- 1 —

i

- D=
) N

- .

Fig. 4-7 Implementation of Full Adder in Sum of Products

Another implementation

* Full-adder can also implemented with two half adders
and one OR gate
S=zD (xDy)
=72’ (xy’ +X'y) + z(xy' + X'y)’
=Xxy'z +Xyz +Xyz+ XYz
C=1z(xy +XVy)+Xy=Xyz+Xyz+Xxy

D :

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Binary adder

 This is also called
Ripple Carry
Adder ,because of the
construction with full
adders are connected
in cascade.

Subscript i: 3 2 1 0

[nput carry O 1 1 0 C

Augend L) A,

Addend I | S ERL B,

Sum I 1 1 0 S;

Output carry 0O 0 1 1 Cisi
By A3 By Ay By A By Ay

L

A

|

T4

\Y)

A

FA

|

|

S

Fig. 4-9 4-Bit Adder

A

FA

|

16

Carry Propagation

* Fig.4-9 causes a unstable factor on carry bit, and produces a
longest propagation delay.

* The signal from C; to the output carry C,,,, propagates through an
AND and OR gates, so, for an n-bit RCA, there are 2n gate levels

for the carry to propagate from input to output.

Carry Propagation

* Because the propagation delay will affect the output signals on
different time, so the signals are given enough time to get the

precise and stable outputs.

 The most widely used technique employs the principle of
to improve the speed of the algorithm.

Aj; P;

Bj ! L/ i

Fig. 4-10 Full Adder with P and G Shown

Boolean functions

P.=A @ B steady state value
G, = AB, steady state value

Output sum and carry
S =P, @ C
Cii1= G+ PG

G, : carry generate P.: carry propagate
Co = input carry
C, = Gy + PyC
C,=G, +P,C; =G, +P,G, + P,P,C,
C =G, +P,C =G, +P,G; + P,P,G, + P,P,P,C,

* C; does not have to wait for C, and C, to propagate.

Logic diagram of
carry look-ahead generator

* C;is propagated at the same time as C, and C,.

:*%C3

U LN LHUHJ

:FD—
T[}

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

4-bit adder with carry lookahead

e Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

Cy Cy

> W
wow

C5

C>
) G Carry

LLook ahead

1 —.W generator
£
1 7
(&

A

%.

Fig. 4-12 4-Bit Adder with Carry Lookahead

M = 1->subtractor

Binary subtractor

: M = 0—~>adder

FA

4 R‘lj\! R‘lj

e —
[95]

C C,
- FA - FA
AY) S

Fig. 4-13 4-Bit Adder Subtractor

A

Overflow

Itis noting Fig.4-13 that binary numbers in the signed-
complement system are added and subtracted by the same basic
addition and subtraction rules as unsigned numbers.

Overflow is a problem in digital computers because the number of
bits that hold the number is finite and a result that contains n+1
bits cannot be accommodated.

Overflow on sighed and unsigned

When two unsigned numbers are added, an overflow is detected
from the end carry out of the MSB position.

When two signed numbers are added, the sign bit is treated as
part of the number and the end carry does not indicate an
overflow.

An overflow cann’t occur after an addition if one number is
positive and the other is negative.

An overflow may occur if the two numbers added are both
positive or both negative.

4-5 Decimal adder

BCD adder can’t exceed 9 on each input digit. K is the carry.

Table 4-5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K Zg Zs Lo Z oy Ss Sa S, S,

0 0 O O O O O 0 (8] (8] O
0 0 O 8 1 O O O O 1 |
0 0 0 1 O O O §) 1 O 2
O 0 O 1 1 O O §) 1 1 3
O O 1 O O O O | (8] O 4
0 0 1 O 1 O O | O | >
0 0 | 1 O O 0 1 1 (9] 6
0 O 1 1 1 O O | 1 1 7
0 | O O O O | 0 (9] 0O bol
0 1 O O 1 O 1 §) O 1 o
0 1 O 1 O 1 O @) O 0 10
0 1 0 1 1 1 0 O o H 11
0 | 1 O O | 0 §) 1 O 12
0 | 1 O 1 | O §) 1 1 13
0 | | 1 O 1 O 1 O O 14
0 | 1 1 1 1 O 1 O 1 IS
| 0 O O O 1 O 1 1 O 16
1 0 O O 1 | O 1 1 | 17
| 0 O 1 O 1 | §) 0O O 18
| (8 O 1 1 1 1 §) O 1 19

25

Rules of BCD adder

* When the binary sum is greater than 1001, we obtain a
representation.

* The addition of binary 6(0110) to the binary sum converts it to

the correct BCD representation and also produces an output carry
as required.

e To distinguish them from binary 1000 and 1001, which also have a

1 in position Zg, we specify further that either Z, or Z, must have a
1.

C=K+ZZ, +Z:Z,

Implementation of BCD adder

 Adecimal parallel lAfdeIdl iAIgT |

adder that adds n

. . _° Gty K 4- bit binary adder <_C§rry

decimal digits needs n out R, in

BCD adder stages.
e The Oumm-ﬂk<::}~J_<:::

carry
must be LL
If =1
connected to the
|nput Carry Of the next ’ “YYYY Y Y Y Y
: 0110
higher-order stage. 4 bit binary adder

byl

Se Si Sy S

Fig. 4-14 Block Diagram of a BCD Adder

4-6. Binary multiplier

e Usually there are more bits in the partial products and it is necessary to use full
adders to produce the sum of the partial products.

Ag

B Bo 5 5
'\T And 1 0
A ‘A

ApB1 ApBy L \ L \
A1B A1By

A
C3 > Co L B Bo
\N\ \ 4
[~
HA AH A
i l Y
s s & s

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

4-bit by 3-bit binary multiplier

Ay

* For bits and LT
bits we need (J X A Ak U
K) AND gates and (J - 1) K-bit u u Q w j
adders to produce a product Gl Augend
LK bite. [

A)

e K=4 and J=3, we need 12 AND

gates and two 4-bit adders. u u LLJ w
T 1 T]

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4-7. Magnitude comparator

* The
can be expressed logically
with an exclusive-NOR function as:

A = A,ALAA, ; B = B,B,B,B,

x=AB+A/'B’ fori=0,1,2,3

(A = B) = X3X,X1Xg

B

DO—
=)
% |
> % '—}
. . HD —j}m <B)
- % H -
== IR
Do |
3 g%:;:[yfo é}—(ﬂ > B)
=l
—) (A = B)

Fig. 4-17 4-Bit Magnitude Comparator

Magnitude comparator

 We inspect the relative magnitudes
of pairs of MSB. If equal, we
compare the next lower significant
pair of digits until a pair of unequal
digits is reached.

* If the corresponding digit of Aiis 1
and that of B is 0, we conclude that
A>B.

(A>B)=
AsB 3 +X3A, B, +X3X,A 1 B’ +X3X,%AgB
(A<B)=

J) H H
A 3B3+X3A 5By +X3X,A 1 BiHX3XoX A hBg

ﬁ
%

]
[
JU Ud O

i
ik
LHU

A > B)

Fig. 4-17 4-Bit Magnitude Comparator

(A=5)

4-8. Decoders

* The decoder is called n-to-m-line decoder, where
m<2" .

* the decoder is also used in conjunction with other
code converters such as a BCD-to-seven_segment
decoder.

* 3-to-8 line decoder: For each possible input
combination, there are seven outputs that are equal
to 0 and only one that is equal to 1.

Implementation and truth table
Tt b4

Fig. 4-18 3-to-8-Line Decoder

33

D po=xyz" [nuth Table of 0 3-to-§-Line Decoder
S)
), Dy =xy's Inputs Outputs
pa AN
D pa=xye 0 0 0 L0 0 0 0 0 0 0
— 0 (| 0 | 0 0 0 O 0
| Dazwa™ | 0 0 | 0 0 0 0 0
B R | R 0 0 0 | 0 0 0 0
_/ Ds=xy'z

| 0 0 0 0 0 | 0 0 0
) po=x | | | b0 0 0 0 1 0

|] 0 0 0 0 0 0 | 0
D Dy =xyz

| | | 0 0 0 0 0 0 0 |

Decoder with enable input

are constructed with NAND gates, it becomes
more economical to generate the decoder minterms in their
complemented form.

* Asindicated by the truth table, only one output can be equal to O
at any given time, all other outputs are equal to 1.

=
)

(=)

ATDO—
5 >0 —
>

E

cocoorMm
—— oo X
— o o Xl W

._.._.,_\O._.U
mr—,or~|lD
—_O = =

om -3

(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

34

Demultiplexer

A decoder with an enable input is referred to as a
decoder/demultiplexer.

* The truth table of demultiplexer is the same with

decoder. A

B
=
. -+ Demultiplexer D1

— D2
— D3

3-to-8 decoder with enable implement the
4-to-16 decoder

X &
. 3 X8 D D
Y decoder oto 7
Z b ¢ E
w o Dc
3X8
decoder Dgto D5
E

Fig. 4-20 4 X 16 Decoder Constructed with Two 3 X 8 Decoders

Implementation of a Full Adder with a
Decoder

From table 4-4, we obtain the functions for the combinational circuit in sum of
minterms:

S(x,vy,2)=5(1, 2,4,7)
C(x,vy,z)=5(3,5,6, 7)

0fF—
1
S
x —22 2
gl 3x38 2
decoder 4
7 — 90 5 C
6
7 L 4

Fig. 4-21 Implementation of a Full Adder with a Decoder

4-9. Encoders

e An is the inverse operation of a decoder.
 We can derive the Boolean functions by table 4-7

z=D;+D;+D;+ D,
y=D,+D;+ D¢+ D,

X=D,+ Dg+ Dg+ D,

Table 4-7

Truth Table of Octal-to-Binary Encoder
Inputs Outputs
D, D, D, 59 D, D D D X y z
I 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 | 0 0 0 0 0 0 | 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 | 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

Priority encoder

If two are active simultaneously, the produces
an undefined combination. We can establish an input priority
to ensure that only one input is encoded.

in the octal-to-binary encoder is that an
output with all 0’s is generated when all the inputs are 0; the
output is the same as when D, is equal to 1.

The discrepancy tables on Table 4-7 and Table 4-8 can resolve
aforesaid condition by providing one more output to indicate
that at least one input is equal to 1.

Priority encoder

V=0—2no valid inputs

V=1->valid inputs Table 4.8
Truth Table of a Priority Encoder

in output columns represent _ opts ~ Outputs
don’t-care conditions Dy Dy D, Dy x oy Vv
in the input columns are 0 0 0 0 X X 0
useful for representing a truth L (l) 3 :: 3 (l’ :
table in condensed form. X X 10 |0
D GRS G I

Instead of listing all 16

minterms of four variables.

40

4-input priority encoder

* Implementation of
table 4-8

X =D, + Dj
y =D;+ D,D’,
V=Dy+ D;+ D,+ D;

D,
00 01 11 10
00| X 1 1 1
01 1 1 1
Dy
11 1 1 1
Dy
10 1 1 1
D;
x =D+ Dj
Fig. 4-22 Maps for a Priority Encoder

Ds

DZ DC

D

Dy

00

01

11

10

D,
00 01 11 10
X | 1 1 0
1 1 1 0
1 1 1 0
1 1 0

D3
y = D3 R D]D’z

Fig. 4-23 4-Input Priority Encoder

4-10. Multiplexers

S=0,Y=1, Truth Table=> S Y Y=Sl,+Sl,
S=1,Y=1, 0 l
1 B
I
} 1 0
:D—y MUX
S l {>w <

(a) Logic diagram (b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

4-to-1 L

Iy

51

50

>

L]

(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

ne Multiplexer

§1 S0 Y
0 0l Iy
0 1| I
1 0| I
1 1] I3

(b) Function table

Quadruple 2-to-1 Line Multiplexer

 Multiplexer circuits can be combined with common selection inputs to provide
multiple-bit selection logic. Compare with Fig4-24.

Ag =
[D > v
Aq Y\
I -/ D— Y Y
A2 0 ﬁ
L/ D— Y-
Ajz N\
1 D— Ys
Bo N\
L/ Function table
E S| OutputY
51) 1 X| allO's
Il 0O 0| selectA
B> N (0] 1 select B
L/
Bs —
L/
(selse'ct) {>C {>0
(enfble) {>C

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

Boolean function implementation

* A more efficient method for implementing a Boolean function of
n variables with a multiplexer that has n-1 selection inputs.

F(X’ yl Z) = 2(1121617)

4 X1 MUX

y —15

X —5
xy z | F
0 0 |0 0
0 01| 1]F=z 7z — 0 F
0 1 |0 | 1 —
0o 1 I 0 =2z 7 —1
Lojfolol o 0 —2
1 01 |0 B
ttfof[t] . . =
111 |1 B

(a) Truth table (b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

4-input function with a multiplexer

F(A, B, C, D) =2(1, 3,4, 11, 12, 13, 14, 15)

A B CD|F

0 0 0[0] 0]

0o 0 ol1| 1] F=P
0 0 1[0 0

0 0 1111/ 1 =
0 1 0[O0 1 ,
0 1 0|1 of F=P
0 1 1[0 0]

0o 1 11| of F=9
1 0 0lo0] 0o .

10 o1 ol £79
1 0 1/0] 0

1 0 1)1] 1] F=P
1 1 0lo] 1

11 01| 1] £
1 1 101

11 1 |1] 1] £71

i

0

8 X 1 MUX

~N O o B W N = O

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

Three-State Gates

* A multiplexer can be constructed with three-state gates.

B

Select

Normal input A

Control input C

N

T

Output Y =Aif C=1
High-impedance if C =0

Fig. 4-29 Graphic Symbol for a Three-State Buffer

%ﬁ

>~

1

(a) 2-to-1- line mux

1y J
I] i >—o
12 E—{I
13 L\
0
Select 53 > % 4 1
—So
decoder 2
Enable — EN .

(b)4-to-1 line mux

Fig. 4-30 Multiplexers with Three-State Gates

4-11. HDL for combinational circuits

A module can be described in any one of the
following modeling techniques:

modeling using instantiation of primitive gates
and user-defined modules.

modeling using continuous assignment statements
with keyword assign.

modeling using procedural assignment
statements with keyword always.

Gate-level Modeling

A circuit is specified by its logic gates and their interconnection.

Verilog recognizes 12 basic gates as predefined primitives.

The logic values of each gate may be 1, 0, x(unknown), z(high-impedance).

Truth Table for Predefined Primitive Gates

Table 4-9

and 0O 1 X Z
TS

0 0 0 0O 0O
1 0 | x X
X 0 X T
Z 0 X X X
xor 0O | X Z
0 0 1 X X
| 1 O X X
X X X X X
Z X X X X

or 0O 1 X Z
0 0 1 X X
| | | | |
X X 1 X X
z X 1 X X

not linput output
o I
| 1 O
X X
I Z X

49

Gate-level description on Verilog code

HDL Example 4-1

The wire declaration is for internalimmos cmis oo e

//Figure 4-19
module decoder_gl (A,B,E,D);
input A,B,E;
output (0:3]D;
wire Anot, Bnot, Enot;
not
nl (Anot,A),
n2 (Bnot,B),
n3 (Enot,E);
nand

‘ n4 (D[0], Anot, Bnot, Enot),
D n5 (D[1],Anot, B, Enot),
]) 0 né (D[2],A,Bnot,Enot),
n7 (D[3],A,B,Enot);
endmodule
E A B | Dy Dy Dy Dy
D
] > P xx o
A 0 0 0 0 1 1 1
>O ‘ 0 0 1 1 0 1 1
}Dz 0 1 0 11 0 1
*r—
B >C 0 1 1 110
B
|
E >
(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Design methodologies

 There are two basic types of desigh methodologies: top-down
and bottom-up.

* Top-down: the top-level block is defined and then the sub-
blocks necessary to build the top-level block are
identified.(Fig.4-9 binary adder)

* Bottom-up: the building blocks are first identified and then
combined to build the top-level block.(Example 4-2 4-bit adder)

