EC3352 DIGITAL SYSTEM DESIGN COMBINATIONAL LOGIC CIRCUITS

Combinational Logic

- Logic circuits for digital systems may be combinational or sequential.
- A combinational circuit consists of input variables, logic gates, and output variables.

Fig. 4-1 Block Diagram of Combinational Circuit

4-2. Analysis procedure

- To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output.
2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.

4-2. Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Example

$F_{2}=A B+A C+B C ; T_{1}=A+B+C ; \quad T_{2}=A B C ; \quad T_{3}=F_{2}{ }^{\prime} T_{1} ;$
$\mathrm{F}_{1}=\mathrm{T}_{3}+\mathrm{T}_{2}$
$F_{1}=T_{3}+T_{2}=F_{2}{ }^{\prime} T_{1}+A B C=A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B C$

Fig. 4-2 Logic Diagram for Analysis Example

Derive truth table from logic diagram

- We can derive the truth table in Table 4-1 by using the circuit of Fig.4-2.

Table 4-1
Truth Table for the Logic Diagram of Fig. 4-2

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{3}}$	$\boldsymbol{F}_{\mathbf{1}}$
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

4-3. Design procedure

1. Table4-2 is a Code-Conversion example, first, we can list the relation of the BCD and Excess-3 codes in the truth table.

Input BCD				Output Excess-3 Code			
A	B	C	D	w	x	y	z
-	0	0	\bigcirc	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Karnaugh map

2. For each symbol of the Excess-3 code, we use 1's to draw the map for simplifying Boolean function.

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

Circuit implementation

$$
\begin{aligned}
& z=D^{\prime} ; y=C D+C^{\prime} D^{\prime}=C D+(C+D)^{\prime} \\
& x=B^{\prime} C+B^{\prime} D+B C^{\prime} D^{\prime}=B^{\prime}(C+D)+B(C+D)^{\prime} \\
& w=A+B C+B D=A+B(C+D)
\end{aligned}
$$

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

4-4. Binary Adder-Subtractor

- A combinational circuit that performs the addition of two bits is called a half adder.
- The truth table for the half adder is listed below:

Table 4-3
Half Adder

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{C}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

S: Sum
C: Carry

$$
\begin{aligned}
& S=x^{\prime} y+x y^{\prime} \\
& C=x y
\end{aligned}
$$

Implementation of Half-Adder

$$
\text { (a) } \begin{aligned}
S & =x y^{\prime}+x^{\prime} y \\
C & =x y
\end{aligned}
$$

(b) $S=x \oplus y$
$C=x y$

Fig. 4-5 Implementation of Half-Adder

Full-Adder

- One that performs the addition of three bits(two significant bits and a previous carry) is a full adder.

Table 4-4
Full Adder

\boldsymbol{x}	\boldsymbol{y}	z	C	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Simplified Expressions

Fig. 4-6 Maps for Full Adder

$$
\begin{aligned}
& S=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z \\
& C=x y+x z+y z
\end{aligned}
$$

Full adder implemented in SOP

Fig. 4-7 Implementation of Full Adder in Sum of Products

Another implementation

- Full-adder can also implemented with two half adders and one OR gate (Carry Look-Ahead adder).

$$
\begin{aligned}
S & =z \bigoplus(x \bigoplus y) \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y^{\prime}+x^{\prime} y\right)^{\prime} \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z+x^{\prime} y^{\prime} z \\
C & =z\left(x y^{\prime}+x^{\prime} y\right)+x y=x y^{\prime} z+x^{\prime} y z+x y
\end{aligned}
$$

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Binary adder

- This is also called Ripple Carry Adder ,because of the construction with full adders are connected in cascade.

Subscript i:	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Input carry	0	1	1	0	C_{i}
Augend	1	0	1	1	A_{i}
Addend	0	0	1	1	B_{i}
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

Carry Propagation

- Fig.4-9 causes a unstable factor on carry bit, and produces a longest propagation delay.
- The signal from C_{i} to the output carry C_{i+1}, propagates through an AND and OR gates, so, for an n-bit RCA, there are $2 n$ gate levels for the carry to propagate from input to output.

Carry Propagation

- Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs.
- The most widely used technique employs the principle of carry look-ahead to improve the speed of the algorithm.

Fig. 4-10 Full Adder with P and G Shown

Boolean functions

$$
\begin{aligned}
& P_{i}=A_{i} \oplus B_{i} \quad \text { steady state value } \\
& G_{i}=A_{i} B_{i} \text { steady state value }
\end{aligned}
$$

Output sum and carry

$$
\begin{aligned}
& S_{i}=P_{i} \oplus C_{i} \\
& C_{i+1}=G_{i}+P_{i} C_{i}
\end{aligned}
$$

G_{i} : carry generate P_{i} : carry propagate

$$
\begin{aligned}
& \mathrm{C}_{0}=\text { input carry } \\
& \mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} C_{0} \\
& \mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} C_{1}=G_{1}+\mathrm{P}_{1} G_{0}+P_{1} P_{0} C_{0} \quad \square \\
& \mathrm{C}_{3}=G_{2}+P_{2} C_{2}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}
\end{aligned}
$$

\square

- C_{3} does not have to wait for C_{2} and C_{1} to propagate.

Logic diagram of carry look-ahead generator

- C_{3} is propagated at the same time as C_{2} and C_{1}.

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

4-bit adder with carry lookahead

- Delay time of n-bit CLAA $=X O R+(A N D+O R)+X O R$

Fig. 4-12 4-Bit Adder with Carry Lookahead

Binary subtractor

$M=1 \rightarrow$ subtractor $\quad ; M=0 \rightarrow$ adder

Fig. 4-13 4-Bit Adder Subtractor

Overflow

- It is worth noting Fig.4-13 that binary numbers in the signedcomplement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers.
- Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains $n+1$ bits cannot be accommodated.

Overflow on signed and unsigned

- When two unsigned numbers are added, an overflow is detected from the end carry out of the MSB position.
- When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.
- An overflow cann't occur after an addition if one number is positive and the other is negative.
- An overflow may occur if the two numbers added are both positive or both negative.

4-5 Decimal adder

BCD adder can't exceed 9 on each input digit. K is the carry.
Table 4-5
Derivation of BCD Adder

Binary Sum					BCD Sum					Decimal
K	Z_{8}	Z_{4}	Z_{2}	Z_{1}	C	S_{8}	S_{4}	S_{2}	S_{1}	
0	0	O	0	0	O	0	0	0	0	0
0	0	O	0	1	O	0	O	O	1	1
0	0	O	1	O	O	0	O	1	0	2
0	0	O	1	1	O	0	O	1	1	3
0	0	1	0	O	O	0	1	O	0	4
0	0	1	0	1	O	0	1	0	1	5
0	0	1	1	0	O	0	1	1	O	6
0	0	1	1	1	O	0	1	1	1	7
0	1	0	0	O	O	1	O	O	0	8
0	1	O	0	1	O	1	O	O	1	9
0	1	O	1	0	1	0	O	0	O	10
0	1	O	1	1	1	0	O	O	1	11
0	1	1	0	O	1	0	O	1	0	12
0	1	1	0	1	1	0	O	1	1	13
0	1	1	1	O	1	0	1	O	0	14
0	1	1	1	1	1	0	1	O	1	15
1	0	O	0	O	1	O	1	1	O	16
1	0	0	0	1	1	0	1	1	1	17
1	0	O	1	O	1	1	O	0	O	18
1	0	O	1	1	1	1	O	O	1	1925

Rules of BCD adder

- When the binary sum is greater than 1001, we obtain a non-valid $B C D$ representation.
- The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required.
- To distinguish them from binary 1000 and 1001, which also have a 1 in position Z_{8}, we specify further that either Z_{4} or Z_{2} must have a 1.

$$
C=K+Z_{8} Z_{4}+Z_{8} Z_{2}
$$

Implementation of BCD adder

- A decimal parallel adder that adds n decimal digits needs n BCD adder stages.
- The output carry from one stage must be connected to the input carry of the next higher-order stage.

Fig. 4-14 Block Diagram of a BCD Adder

4-6. Binary multiplier

- Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products.

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

4-bit by 3-bit binary multiplier

- For J multiplier bits and K multiplicand bits we need (J X K) AND gates and (J - 1) K-bit adders to produce a product of J+K bits.
- $\mathrm{K}=4$ and $\mathrm{J}=3$, we need 12 AND gates and two 4-bit adders.

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4-7. Magnitude comparator

- The equality relation of each pair of bits can be expressed logically with an exclusive-NOR function as:

$$
\begin{aligned}
& A=A_{3} A_{2} A_{1} A_{0} ; B=B_{3} B_{2} B_{1} B_{0} \\
& x_{i}=A_{i} B_{i}+A_{i}^{\prime} B_{i}^{\prime} \quad \text { for } i=0,1,2,3
\end{aligned}
$$

$$
(A=B)=x_{3} x_{2} x_{1} x_{0}
$$

Fig. 4-17 4-Bit Magnitude Comparator

Magnitude comparator

- We inspect the relative magnitudes of pairs of MSB. If equal, we compare the next lower significant pair of digits until a pair of unequal digits is reached.
- If the corresponding digit of A is 1 and that of B is 0 , we conclude that $A>B$.
($\mathrm{A}>\mathrm{B}$) $=$
$\mathrm{A}_{3} \mathrm{~B}^{\prime}{ }_{3}+\mathrm{x}_{3} \mathrm{~A}_{2} \mathrm{~B}^{\prime}{ }_{2}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{~A}_{1} \mathrm{~B}^{\prime}{ }_{1}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{~A}_{0} \mathrm{~B}^{\prime}{ }_{0}$ ($\mathrm{A}<\mathrm{B}$) $=$
$\mathrm{A}_{3}^{\prime} \mathrm{B}_{3}+\mathrm{x}_{3} \mathrm{~A}^{\prime}{ }_{2} \mathrm{~B}_{2}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{~A}^{\prime}{ }_{1} \mathrm{~B}_{1}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{~A}_{0}^{\prime} \mathrm{B}_{0}$

Fig. 4-17 4-Bit Magnitude Comparator

4-8. Decoders

- The decoder is called n-to-m-line decoder, where $m \leq 2^{n}$.
- the decoder is also used in conjunction with other code converters such as a BCD-to-seven_segment decoder.
- 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1 .

Implementation and truth table

Decoder with enable input

- Some decoders are constructed with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form.
- As indicated by the truth table, only one output can be equal to 0 at any given time, all other outputs are equal to 1.

(a) Logic diagram
(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Demultiplexer

- A decoder with an enable input is referred to as a decoder/demultiplexer.
- The truth table of demultiplexer is the same with decoder.

3-to-8 decoder with enable implement the 4-to-16 decoder

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

Implementation of a Full Adder with a Decoder

- From table 4-4, we obtain the functions for the combinational circuit in sum of minterms:

$$
\begin{aligned}
& S(x, y, z)=\Sigma(1,2,4,7) \\
& C(x, y, z)=\Sigma(3,5,6,7)
\end{aligned}
$$

Fig. 4-21 Implementation of a Full Adder with a Decoder

4-9. Encoders

- An encoder is the inverse operation of a decoder.
- We can derive the Boolean functions by table 4-7

$$
\begin{aligned}
& z=D_{1}+D_{3}+D_{5}+D_{7} \\
& y=D_{2}+D_{3}+D_{6}+D_{7} \\
& x=D_{4}+D_{5}+D_{6}+D_{7}
\end{aligned}
$$

Table 4-7
Truth Table of Octal-to-Binary Encoder

Inputs						Outputs				
D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	x	y	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Priority encoder

- If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.
- Another ambiguity in the octal-to-binary encoder is that an output with all 0 's is generated when all the inputs are 0 ; the output is the same as when D_{0} is equal to 1 .
- The discrepancy tables on Table 4-7 and Table 4-8 can resolve aforesaid condition by providing one more output to indicate that at least one input is equal to 1.

Priority encoder

$\mathrm{V}=0 \rightarrow$ no valid inputs
$\mathrm{V}=1 \rightarrow$ valid inputs

X's in output columns represent don't-care conditions
X 's in the input columns are useful for representing a truth table in condensed form.

Instead of listing all 16
Table 4.8
Truth Table of a Priority Encoder

Inputs				Outputs			
D_{0}	D_{1}	D_{2}	D_{3}		X	Y	V
0	0	0	0		X	X	0
1	0	0	0		0	0	1
X	1	0	0		0	1	1
X	X	1	0		1	0	1
X	X	X	1		1	1	1

4-input priority encoder

- Implementation of table 4-8

$$
\begin{aligned}
& x=D_{2}+D_{3} \\
& y=D_{3}+D_{1} D_{2}^{\prime} \\
& v=D_{0}+D_{1}+D_{2}+D_{3}
\end{aligned}
$$

Fig. 4-22 Maps for a Priority Encoder

Fig. 4-23 4-Input Priority Encoder

4-10. Multiplexers

$S=0, Y=I_{0}$	Truth Table \rightarrow	S	Y	$\mathrm{Y}=\mathrm{S}^{\prime} \mathrm{I}_{0}+\mathrm{SI}_{1}$
$S=1, Y=I_{1}$		0	I_{0}	
		1	I_{1}	

(a) Logic diagram
(b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

4-to-1 Line Multiplexer

s_{1}	s_{0}	Y
0	0	I_{0}
0	1	I_{1}
1	0	I_{2}
1	1	I_{3}

(b) Function table
(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

Quadruple 2-to-1 Line Multiplexer

- Multiplexer circuits can be combined with common selection inputs to provide multiple-bit selection logic. Compare with Fig4-24.

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

Boolean function implementation

- A more efficient method for implementing a Boolean function of n variables with a multiplexer that has $\mathrm{n}-1$ selection inputs.

$$
F(x, y, z)=\Sigma(1,2,6,7)
$$

x	y	z	F	
0	0	0	0	
0	0	1	1	$F=z$
0	1	0	1	
0	1	1	0	$F=z$
1	0	0	0	
1	0	1	0	$F=0$
1	1	0	1	
1	1		1	$F=1$

(a) Truth table

(b) Multiplexer implementation

4-input function with a multiplexer

$F(A, B, C, D)=\Sigma(1,3,4,11,12,13,14,15)$

A	B	C	D	F	
0	0	0	0	0	$F=D$
0	0	0	1	1	
0	0	1	0	0	$F=D$
0	0	1	1	1	
0	1	0	0	1	$F=D^{\prime}$
0	1	0	1	0	
0	1	1	0	0	$F=0$
0	1	1	1	0	
1	0	0	0	0	$F=0$
1	0	0	1	0	
1	0	1	0	0	$F=D$
1	0	1	1	1	
1	1	0	0	1	$F=1$
1	1	0	1	1	
1	1	1	0	1	$F=1$
1	1	1	1	1	

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

Three-State Gates

- A multiplexer can be constructed with three-state gates.

Fig. 4-29 Graphic Symbol for a Three-State Buffer

4-11. HDL for combinational circuits

- A module can be described in any one of the following modeling techniques:

1. Gate-level modeling using instantiation of primitive gates and user-defined modules.
2. Dataflow modeling using continuous assignment statements with keyword assign.
3. Behavioral modeling using procedural assignment statements with keyword always.

Gate-level Modeling

- A circuit is specified by its logic gates and their interconnection.
- Verilog recognizes 12 basic gates as predefined primitives.
- The logic values of each gate may be $1,0, x$ (unknown), z (high-impedance).

Table 4-9
Truth Table for Predefined Primitive Gates

and	0	1	x	z	or	0	x	z
0	0	0	0	0	0	O	x	x
1	0	1	x	x	1	1	1	1
x	0	x	x	x	x	x	x	x
z	0	x	x	x	z	x	x	x
xor	0	1	x	z	not	input	out	
0	0	1	x	x		0	1	
1	1	0	x	x		1	0	
x	x	x	x	x		x	x	
z	x	x	x	x		z	x	

Gate-level description on Verilog code

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Design methodologies

- There are two basic types of design methodologies: top-down and bottom-up.
- Top-down: the top-level block is defined and then the subblocks necessary to build the top-level block are identified.(Fig.4-9 binary adder)
- Bottom-up: the building blocks are first identified and then combined to build the top-level block.(Example 4-2 4-bit adder)

