MOHAMMED SATHAK A J COLLEGE OF ENGINEERING

Siruseri IT park, OMR, Chennai - 603103

			LESSON PLAN								
			Computer Science a	nd Engine	eering						
N	he Subject	Distributed Control		Na	ame of the						
Name of t	ne Subject	Distributed Systems		handli	ng Faculty						
Su	bject Code	CS8603		`	Year / Sem	III/VI					
	Acad Year	2021-2022			Batch	2019-2023					
			Course Objective	2							
		andation of Distributed systems									
		of peer to peer services and file system.									
		ail the system level and support required for dis									
Understa	and the iss	sues involved in studying process and resource									
			Course Outcome	;							
Upon co	ompletion	of the course, the students will be able to:									
CO1 :El	ucidate th	e foundations and issues of distributed systems	1								
CO2:Ga	in knowle	edge about distributed shared memory									
		owledge the file accessing model and various se			n						
		e features of peer-to-peer and distributed shared									
CO5 :Di	iscuss reso	ource and process management in distributed sy									
			Lesson Plan T / R*								
Sl. No.		Topic(s)	Book	Periods Required	Mode of Teaching (BB / PPT / NPTEL / MOOC / etc)	Blooms Level (L1- L6)	со	PO			
	ļ	UNI	Γ I INTRODUC	TION	!	-					
1		ion, Relation to computer system nts, motivation	Т1	1	ВВ	L2	CO1	PO1			
2	vs shared	o parallel systems, Message passing system I memory	Т1	1	ВВ	L2	CO1	PO1			
3	challenge		Т1	1	ВВ	L1	CO1	PO1			
4		f distributed computation, distributed model of distributed executions	T1	1	ВВ	L1	CO1	PO1			
5	Models o	of communication network,	T1/W1	1	ВВ	L2	CO1	PO1			
6	global sta	ate cuts, past and future cones of an event	T1/W2	1	ВВ	L3	CO1	PO1			
7	Models of process communication,		T1/W1	1	ВВ	L4	CO1	PO1			
8	logical ti	me, scalar time	T1/W2	1	BB	L5	CO1	PO2			
9		me, physical clock synchronization	T1/W1	1	BB	L2	CO1	PO2			
Suggested	l Activity:	Assignment / Case Studies / Tuorials/ Quiz / Mini P	rojects / Model Deve	eloped/oth	ers Planned if any	Assignment					
Evaluatio	on method:	Assignments and direct Interaction during intervals									
		UNIT II MESSA	GE ORDERING	& SNA	PSHOTS						
10		ordering and group communication: Message Paradigms,	T1	1	PPT/BB	L2	CO2	PO1			
11	Asynchro	onous Executions with Synchronous ication	T1	1	PPT/BB	L2	CO2	PO1			
12	Synchror system	nous program order on a Asynchronous	T1	1	PPT/BB	L3	CO2	PO2			

13	13 Group Communication,		1	PPT/BB	L2	CO2	PO2
14	14 Causal Order		1	PPT/BB	L3	CO2	PO2
15	Total Order,	Т1	1	PPT/BB	L2	CO2	PO2
1 16	Global state and Snapshot Recording Algorithms introduction	Т1	1	PPT/BB	L3	CO2	PO3
17	system Models and defenitions	Т1	1	PPT/BB	L4	CO2	PO2
18	Snapshot Algorithm for FIFO Channels	Т1	1	PPT/BB	L3	CO2	PO2

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any : Assignment

Evaluation method: Mark Based

UNIT III DISTRIBUTED MUTEX & DEADLOCK Distributed Mutual Exclusion Algorithms: L2 PO1, PO2 19 **T1** BBCO3 Introduction Preliminaries, Lamports algorithm L2CO3 PO1-3 20 T1 1 BB Ricart Agarawala algorithm, Maekawa's algorithm T1 BBL2 CO3 PO1-3 21 1 T1/W1 L2 CO3 PO1-3 BB 22 Suzuki- Kasami's broadcast Algorithm 1 T1 BB L3 23 Dead Detection in distributed systems: Introduction 1 CO3 PO1-3 24 System Models, Preliminaries T1 1 BB L2 CO3 PO2 25 Models of deadlocks **T1** BBL2CO3 PO2 Knapp's Classification T1 BBL3 CO3 PO2 26 1 Algorithm for Single resource model. T1 L2 CO3 PO1 27 1 RRAlgorithm for AND Model, OR model L2 CO3 PO1-3 28

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any : Assignment

Evaluation method: Mark Based

UNIT IV RECOVERY & CONSENSUS 29 Checkpointing and rollback recovery introduction T1 BB L2 CO4 PO1 Background and defenitions CO4 PO2 T1 BBL1 30 1 31 issues in failure Recovery, Checkpoint based recovery T1/W1 1 BB L2 CO4 PO1-3 Log Based Rollback Recovery, Co-Ordinated T1 L3 CO4 PO2 RR 32 1 Checkpointing Algorithm Algorithm for Asynchronous Checkpointing and 33 T1 1 BB L2 CO4 PO2 Recovery L3 34 Cosensus Agreement Algorithms: problem Definition T1 1 BBCO4 PO1-3 35 Overview and results **T1** BBL3 CO4 PO1-3 1 Agreement in a failure T1 BB L3 CO4 PO1-3 36 1 Agreement in Synchronous systems with failures CO4 PO2 T1 BBL4

Suggested Activity: Assignment / Case Studies / Tuorials/ Quiz / Mini Projects / Model Developed/others Planned if any

: Quiz

Evaluation method: Mark Based

UNIT V P2P & DISTRIBUTED SHARED MEMORY

	DOD I	1 4	1	1 .	1				DD7				gg.	DO.
38	chord	troduction, data indexing overlays				Т		1		T/BB		2	CO5	PO2
39 40		nt addressable networks				T1/		1		T/BB T/BB		.2	CO5	PO2 PO1-3
41	Tapestry	ry					1	1	PPT	T/BB	I	.2	CO5	PO1
42	Distribu	outed shared Memory				Т	1	1	PPT	T/BB	I	_3	CO5	PO2
43	<u> </u>						1	1	PPT	T/BB	I	_3	CO5	PO1-3
44		Consiste				T1/	W1	2	PPT	T/BB	I	_3	CO5	PO2
45	Shared r	nemory N	/Iutual Ex	clusion		Т	1	1	PPT	T/BB	I	.3	CO5	PO2
Suggested	d Activity:	Assignme	nt / Case S	Studies / T	uorials/ Quiz/Mini P	rojects / M	Iodel Dev	eloped/oth	ers Planne	d if any	: Assig	gnment		
		17 1 5												
		Mark Bas												
	Cloud Cor		i ianneu											
2	Map Redu	ice												
						Text	Books							
1	_	oulouris, Je Fifth Editio			n Kindberg, "Distributed	d Systems (Concepts a	nd						
	Design , i	riiin Edillo	n, Pearson	Education	, 2012.	Referen	ce Books							
1	Pradeep	K Sinha,	"Distrib	uted Oper	rating Systems: Con-	cepts and	Design"	, Prentice	Hall of I	India, 200)7.			
2	Tanenba	um A.S.,	Van Ste	en M., "I	Distributed Systems:	Principle	s and Pa	radigms",	Pearson	Education	n, 2007			
3					Principles and App									
4	Nancy A	Lynch,	"Distribu	ited Algor	rithms", Morgan Ka				03.					
1	https://www	ny hrainkart	com/subject	ct/Dictribute	web	site / UR	L Refer	rences						
1	ittps://ww	W.DI allikai L	.com/subjec	Lt/ Distribute	eu-systems_136/	Bloom	s Level							
I	Level 1 (I	L1): Ren	nemberin	g		Fixed		Level 4	(L4) : Ar	nalysing			Uighar	Projects /
I	Level 2 (L	.2) : Unde	rstanding	g	Lower Order	Hour	rixed						Higher Order	Projects / Mini
	Level 3	3 (L3) : A ₁	pplying		Thinking	Exams		Level 6	(L6) : Cı	reating	Thinking	Projects		
			Mappin	g syllab	us with Bloom's T	axonon	y LOT a	nd HOT						
Uni	t No			Unit Nar		L1	L2	L3	L4	L5	L6	LOT	НОТ	Total
Un	nit 1	INTROI	OUCTIO	N		6	1	0	0	0	0	7	0	7
Un	nit 2	MESSA	GE ORD	ERING &	SNAPSHOTS	0	5	4	1	0	0	9	1	10
•											_	10	0	10
Unit 3 DISTRIBUTED MUTEX & DEADLOCK		0	8	2	0	0	0	10	0	10				
Unit 4 RECOVERY & CONSENSUS					1	3	4	1	0	0	8	1	9	
Unit 5 P2P & DISTRIBUTED SHARED MEMORY					0	4	5	0	0	0	9	0	9	
						7	21	15	2	0	0	43	2	45
Total						15.5556	46.6667	33.3333	4.44444	0	0	95.5556	4.44444	100
Total Percentage CO PO Mappi					<u> </u>	40.000/	33.3333	4.44444	U	U U	73.3330	4.44444	100	
	no:	P.0.5	P.0-	po:			P0=	PO?	PO?	DO4*	no.	DO:	DOG:	Dog :
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	0	0	0	0	0	0	0	0	0	3	2
CO2	3	2	2	0	0	0	0	0	0	0	0	0	3	2
	3	2	2	0	0	0	0	0	0	0	0	0	3	2
CO3					0	0	0	0	0	0	0	0	3	2
CO3	3	2	2	0	0									
		2	2	0	0	0	0	0	0	0	0	0	3	2
CO4	3						0	0	0	0	0	0	3	2
CO4 CO5 Avg	3	2 2	2	0	0	0	0		0	0				2

Name & Sign of Subject Expert :
Head of the Department :

Format No :231