

CRYPTOGRAPHY AND NETWORK SECURITY

 CS8792

 NOTES

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY L T P C

 3 0 0 3

OBJECTIVES:

• To understand Cryptography Theories, Algorithms and Systems.

• To understand necessary Approaches and Techniques to build protection mechanisms in order to secure computer

networks.

UNIT I INTRODUCTION 9

Security trends - Legal, Ethical and Professional Aspects of Security, Need for Security at Multiple levels, Security Policies

 - Model of network security – Security attacks, services and mechanisms – OSI security architecture – Classical

encryption techniques: substitution techniques, transposition techniques, steganography).- Foundations of modern

 cryptography: perfect security – information theory – product cryptosystem – cryptanalysis.

UNIT II SYMMETRIC CRYPTOGRAPHY 9

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures - Modular arithmetic-Euclid‟s

algorithm- Congruence and matrices - Groups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPHERS:

SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis - Block cipher design

 principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard –

RC4 – Key distribution.

UNIT III PUBLIC KEY CRYPTOGRAPHY 9

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing – Factorization –

 Euler’s totient function, Fermat’s and Euler’s Theorem - Chinese Remainder Theorem – Exponentiation and

 logarithm - ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management –

Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY 9

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC –

SHA –Digital signature and authentication protocols – DSS- Entity Authentication: Biometrics, Passwords,

Challenge Response protocols- Authentication applications - Kerberos, X.509

UNIT V SECURITY PRACTICE AND SYSTEM SECURITY 9

Electronic Mail security – PGP, S/MIME – IP security – Web Security - SYSTEM SECURITY: Intruders –

Malicious software – viruses – Firewalls.

TOTAL 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

• Understand the fundamentals of networks security, security architecture, threats and vulnerabilities

• Apply the different cryptographic operations of symmetric cryptographic algorithms

• Apply the different cryptographic operations of public key cryptography

• Apply the various Authentication schemes to simulate different applications.

• Understand various Security practices and System security standards

TEXT BOOK:

1. William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006.

REFERENCES:

1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd

2. BehrouzA.Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007.

3. Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communication in a PUBLIC

 World, Prentice Hall, ISBN 0-13-046019-2

UNIT I INTRODUCTION

Security trends - Legal, Ethical and Professional Aspects of Security, Need for Security at

Multiple Levels, Security Policies - Model of Network Security - Security Attacks, Services and

Mechanisms - OSI security architecture - classical encryption techniques: substitution

techniques, transposition techniques, steganography - Foundations of modern cryptography:

perfect security - information theory - product cryptosystem - cryptanalysis

SECURITY TRENDS

The protection afforded to an automated information system in order to attain the

applicable objectives of preserving the integrity, availability, and confidentiality of information

system resources (includes hardware, software, firmware, information/ data, and

telecommunications)

This definition introduces three key objectives that are at the heart of computer security:

• Confidentiality: This term covers two related concepts:

 Data confidentiality: Assures that private or confidential information is not made

available or disclosed to unauthorized individuals.

 Privacy: Assures that individuals control or influence what information related to them

may be collected and stored and by whom and to whom that information may be

disclosed.

• Integrity: This term covers two related concepts:

 Data integrity: Assures that information and programs are changed only in a specified

and authorized manner.

 System integrity: Assures that a system performs its intended function in an

unimpaired manner, free from deliberate or inadvertent unauthorized manipulation of the

system.

• Availability: Assures that systems work promptly and service is not denied to

authorized users

These three concepts form what is often referred to as the CIA triad (Figure 1.1). The three

concepts embody the fundamental security objectives for both data and for information and

computing services

Figure 1.1 CIA triad

Although the use of the CIA triad to define security objectives is well established, some in the

security field feel that additional concepts are needed to present a complete picture. Two of the

most commonly mentioned are as follows:

• Authenticity: The property of being genuine and being able to be verified and trusted;

confidence in the validity of a transmission, a message, or message originator. This means

verifying that users are who they say they are and that each input arriving at the system came

from a trusted source.

• Accountability: The security goal that generates the requirement for actions of an entity to be

traced uniquely to that entity. This supports non repudiation, deterrence, fault isolation, intrusion

detection and prevention, and after-action recovery and legal action.

• Computer Security - Generic name for the collection of tools designed to protect data and to

thwart hackers.

• Network Security - Measures to protect data during their transmission.

• Internet Security - Measures to protect data during their transmission over a collection of

interconnected networks Our Focus is on Internet Security which consists of measures to deter,

prevent, detect and correct security violations that involve the transmission and storage of

information

Figure 1.2 Security Trends

1.1.1 THE CHALLENGES OF COMPUTER SECURITY

Computer and network security is both fascinating and complex. Some of the reasons follow:

1. Security is not as simple as it might first appear to the novice. The requirements seem to be

straightforward; indeed, most of the major requirements for security services can be given self-

explanatory, one-word labels: confidentiality, authentication, non repudiation, or integrity

2. In developing a particular security mechanism or algorithm, one must always consider

potential attacks on those security features.

3. Typically, a security mechanism is complex, and it is not obvious from the statement of a

particular requirement that such elaborate measures are needed.

4. Having designed various security mechanisms, it is necessary to decide where to use them.

This is true both in terms of physical placement and in a logical sense

.

5. Security mechanisms typically involve more than a particular algorithm or protocol

6. Computer and network security is essentially a battle of wits between a perpetrator who tries

to find holes and the designer or administrator who tries to close them. The great advantage

that the attacker has is that he or she need only find a single weakness, while the designer must

find and eliminate all weaknesses to achieve perfect security.

7. There is a natural tendency on the part of users and system managers to perceive little

benefit from security investment until a security failure occurs.

8. Security requires regular, even constant, monitoring, and this is difficult in today‟s short-term,

overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system after the design is

complete rather than being an integral part of the design process.

10. Many users and even security administrators view strong security as an impediment to

efficient and user-friendly operation of an information system or use of information.

 LEGAL, ETHICAL AND PROFESSIONAL ASPECTS OF SECURITY

Today millions of people perform online transactions every day. There many ways to attack

computer and networks to take advantage of what has made shopping, banking, transformation

of messages, investments and leisure pursuits a simple matter of dragging and clicking for

many people. Thus, the laws and ethics are important aspects in data and network security.

The legal system has adapted quite well to computer technology by reusing some old forms of

legal protection (copyrights and patents) and creating laws where no adequate one existed

(malicious access). Still the courts are not a perfect form of protection for computer, for two

reasons, first court tends to be reactive instead of proactive. That is, we have to wait for

regression to occur and then adjudicative it, rather than try to prevent it in first place. Second

fixing a problem through the courts can be time consuming and more expensive.

The latter characteristic prevents all but the wealthy from addressing most wealthy. On

other hand, 1ethics has not had to change , because ethic is more situational and personal than

the law, for example the privacy of personal information becoming important part of computer

network security and although technically this issue is just an aspect of confidentiality,

practically it has a long history in both law and ethics.

Law and security are related in several ways. First international, national, state, city laws

affect privacy, secrecy. These statutes often apply to the rights of individuals to keep personal

matters private. Second law regulates the use of development, and ownership of data and

programs. Patents, copy rights, and trade secrets are legal devices to protect the right of

developers and owners of the information and data.

 Cryptography and Law

Cyber-Crime: - Criminal activities or attacks in which computer and computer networks are tool,

target, or place of criminal activity. Cybercrime categorize based on computer roles such as

target, storage device and communication tool.

Computers as targets: To get the information from the computer system or control the

computer system without the authorization or payment or alter the interfaces or data in the

particular system with use of server.

Computers as storage devices: Computers can be used to further unlawful activity by using a

computer or a computer device as a passive storage medium. For example, the computer can

be used to store stolen password lists, credit card details and proprietary corporate information.

Computers as communications tools: Many of the crimes falling within this category are

simply traditional crimes that are committed online. Examples include the illegal sale of

prescription drugs, controlled substances, alcohol, and guns; fraud; gambling; and child

pornography. Other than these crimes there are more specific crimes in computer networks.

There are:

Illegal access: The access to the whole or any part of a computer system without right.

Illegal interception: The interception without right, made by technical means, of non-public

transmissions of computer data to, from or within a computer system, including electromagnetic

emissions from a computer system carrying such computer data.

Data interference: The damaging, deletion, deterioration, alteration or suppression of computer

data without right.

System interference: The serious hindering without right of the functioning of a computer

system by inputting, transmitting, damaging, deleting, deteriorating, altering or suppressing

computer data.

Computer-related forgery: The input, alteration, deletion, or suppression of computer data,

resulting in inauthentic data with the intent that it be considered or acted upon for legal purposes

as if it were authentic, regardless whether or not the data is directly readable and intelligible.

Crime related to child pornography: Producing child pornography or distribution through a

computer system and making available or distributing or transmitting child pornography through

a computer system.

The relative lack of success in bringing cyber-criminals to justice has led to an increase in their

numbers, boldness, and the global scale of their operations. It is difficult to profile cybercriminals

in the way that is often done with other types of repeat offenders. The success of cybercriminals

and the relative lack of success of law enforcement, influence the behaviour of cybercrime

victims. As with law enforcement, many organizations that may be the target of attack have not

invested sufficiently in technical, physical, and human-factor resources to prevent attacks.

The law is used regulate people for their own good and for the greater good of society.

Cryptography also regulated activity.

Some Example laws which are forced on cryptography.

Control use of cryptography: Closely related to restrictions on content are restrictions on the

use of cryptography imposed on users in certain countries. For examples, 2 In China, state

council order 273 requires foreign organizations or individuals to apply permission to use

encryption in China. Pakistan requires that all encryption hardware and software be inspected

and approved by the Pakistan telecommunication authority.

Cryptography and Free speech: The Cryptography involve not just products, it involves ideas

too, although governments effectively control the flow of products across borders, controlling the

floe ideas either head or on the internet, is also impossible.

Cryptography and Escrow: Although laws enable governments to read encrypted

communications. In 1996, US government offered to relax the export restriction for so called

escrowed encryption, in which the government would able to obtain the encryption key for any

encrypted communication.

The victory in use of law enforcement depends much more on technical skills of the people.

Management needs to understand the criminal investigation process, the inputs that

investigators need, and the ways in which the victim can contribute positively to the

investigation.

Intellectual Properties.

There are three main types of intellectual property for which legal protection is available.

Copy rights: Copyright law protects the tangible or fixed expression of an idea, not the idea

itself. Copy right properties exists when proposed work is original and creator has put original

idea in concrete form and the copyright owner has these exclusive rights, protected against

infringement such as reproduction right, modification right, distribution right

Patents: A patent for an invention is the grant of a property right to the inventor. There are 3

types in patents:-

• Utility (any new and useful process, machine, article of manufacture, or composition of

matter).

• Design (new, original, and ornamental design for an article of manufacture)

• Plant (discovers and asexually reproduces any distinct and new variety of plant).

Trade-Marks: A trademark is a word, name, symbol or expression which used to identify the

products or services in trade uniquely from others. Trade mark rights used to prevent others

from using a confusingly similar mark, but not to prevent others from making the same goods or

from selling the same goods or services under a clearly different mark.

• Intellectual Property Relevant to Network and Computer Security

A number of forms of intellectual property are relevant in the context of network and

computer security.

• Software programs: software programs are protected by using copyright, perhaps

patent.

• Digital content: audio / video / media / web protected by copy right

Algorithms: algorithms may be able to protect by patenting

• Privacy Law and Regulation: An issue with considerable overlap with computer security

is that of privacy. Concerns about the extent to which personal privacy has been and

may be compromised have led to a variety of legal and technical approaches to

reinforcing privacy rights. A number of international organizations and national

governments have introduced laws and regulations intended to protect individual

privacy.

• European Union Data Protection Directive was adopted in 1998 to ensure member

states protect fundamental privacy rights when processing personal info and prevent

member states from restricting the free flow of personal info within EU organized around

principles of notice, consent, consistency, access, security, onward transfer and

enforcement. US Privacy Law have Privacy Act of 1974 which permits individuals to

determine records kept, forbid records being used for other purposes, obtain access to

records, ensures agencies properly collect, maintain, and use personal info and creates

a private right of action for individuals.

Cryptography and Ethics.

• There are many potential misuses and abuses of information and electronic

communication that create privacy and security problems. Ethics refers to a system of

moral principles that relates to the benefits and harms of particular actions. An ethic an

objectively defined standard of right and wrong. Ethical standards are often idealistic

principles because they focus on one objective. Even though religious group and

professional organization promote certain standards of ethical behaviour, ultimately each

person is responsible for deciding what do in a specific situation.

 Ethical issues related to computer and info systems

Computers have become the primary repository of both personal information and negotiable

assets, such as bank records, securities records, and other financial information.

Repositories and processors of information: Unauthorized use of otherwise unused

computer services or of information stored in computers raises questions of appropriateness or

fairness.

Producers of new forms and types of assets: For example, computer programs are entirely

new types of assets, possibly not subject to the same concepts of ownership as other assets.

Symbols of intimidation and deception: The images of computers as thinking machines,

absolute truth producers, infallible, subject to blame, and as anthropomorphic replacements of

humans who err should be carefully considered.

 NEED FOR SECURITY AT MULTIPLE LEVELS

Multilevel security or multiple levels of security (MLS) is the application of a computer system to

process information with incompatible classifications (i.e., at different security levels), permit

access by users with different security clearances and needs-to-know, and prevent users from

obtaining access to information for which they lack authorization.

There are two contexts for the use of multilevel security.

One is to refer to a system that is adequate to protect itself from subversion and has robust

mechanisms to separate information domains, that is, trustworthy.

Another context is to refer to an application of a computer that will require the computer to be

strong enough to protect itself from subversion and possess adequate mechanisms to separate

information domains, that is, a system we must trust. This distinction is important because

systems that need to be trusted are not necessarily trustworthy.

A threat is an object, person, or other entity that represents a constant danger to an asset.

 Security Policies

The Cryptography Policy sets out when and how encryption should be used. It includes

protection of sensitive information and communications, key management, and procedures to

ensure encrypted information can be recovered by the organisation if necessary.

Role of the Security Policy in Setting up Protocols

Following are some pointers which help in setting u protocols for the security policy of an

organization.

 Who should have access to the system?

 How it should be configured?

 How to communicate with third parties or systems?

https://en.wikipedia.org/wiki/Classified_information_in_the_United_States
https://en.wikipedia.org/wiki/Security_clearance
https://en.wikipedia.org/wiki/Need_to_know

Policies are divided in two categories:

 User policies

 IT policies.

User policies generally define the limit of the users towards the computer resources in a

workplace. For example, what are they allowed to install in their computer, if they can use

removable storages?

Whereas, IT policies are designed for IT department, to secure the procedures and functions of

IT fields.

 General Policies − This is the policy which defines the rights of the staff and access level

to the systems. Generally, it is included even in the communication protocol as a

preventive measure in case there are any disasters.

 Server Policies − This defines who should have access to the specific server and with

what rights. Which software’s should be installed, level of access to internet, how they

should be updated?

 Firewall Access and Configuration Policies − It defines who should have access to the

firewall and what type of access, like monitoring, rules change. Which ports and services

should be allowed and if it should be inbound or outbound?

 Backup Policies − It defines who is the responsible person for backup, what should be

the backup, where it should be backed up, how long it should be kept and the frequency of

the backup.

 VPN Policies − These policies generally go with the firewall policy; it defines those users

who should have a VPN access and with what rights. For site-to-site connections with

partners, it defines the access level of the partner to your network, type of encryption to be

set.

 Structure of a Security Policy

When you compile a security policy you should have in mind a basic structure in order to make

something practical. Some of the main points which have to be taken into consideration are:

 Description of the Policy and what is the usage for?

 Where this policy should be applied?

 Functions and responsibilities of the employees that are affected by this policy.

 Procedures that are involved in this policy.

 Consequences if the policy is not compatible with company standards.

Types of Policies

 Permissive Policy − It is a medium restriction policy where we as an administrator block

just some well-known ports of malware regarding internet access and just some exploits

are taken in consideration.

 Prudent Policy − This is a high restriction policy where everything is blocked regarding the

internet access, just a small list of websites is allowed, and now extra services are allowed

in computers to be installed and logs are maintained for every user.

 Acceptance User Policy − This policy regulates the behavior of the users towards a

system or network or even a webpage, so it is explicitly said what a user can do and

cannot in a system. Like are they allowed to share access codes, can they share

resources, etc.

 User Account Policy − This policy defines what a user should do in order to have or

maintain another user in a specific system. For example, accessing an e-commerce

webpage. To create this policy, you should answer some questions such as −

o Should the password be complex or not?

o What age should the users have?

o Maximum allowed tries or fails to log in?

o When the user should be deleted, activated, blocked?

 Information Protection Policy − This policy is to regulate access to information, hot to

process information, how to store and how it should be transferred.

 Remote Access Policy − This policy is mainly for big companies where the user and their

branches are outside their headquarters. It tells what should the users access, when they

can work and on which software like SSH, VPN, RDP.

 Firewall Management Policy − This policy has explicitly to do with its management, which

ports should be blocked, what updates should be taken, how to make changes in the

firewall, how long should be the logs be kept.

 Special Access Policy − This policy is intended to keep people under control and monitor

the special privileges in their systems and the purpose as to why they have it. These

employees can be team leaders, managers, senior managers, system administrators, and

such high designation based people.

 Network Policy − This policy is to restrict the access of anyone towards the network

resource and make clear who all will access the network. It will also ensure whether that

person should be authenticated or not. This policy also includes other aspects like, who will

authorize the new devices that will be connected with network? The documentation of

network changes. Web filters and the levels of access. Who should have wireless

connection and the type of authentication, validity of connection session?

 Email Usage Policy − This is one of the most important policies that should be done

because many users use the work email for personal purposes as well. As a result

information can leak outside. Some of the key points of this policy are the employees

should know the importance of this system that they have the privilege to use. They should

not open any attachments that look suspicious. Private and confidential data should not be

sent via any encrypted email.

 Software Security Policy − This policy has to do with the software’s installed in the user

computer and what they should have. Some of the key points of this policy are Software of

the company should not be given to third parties. Only the white list of software’s should be

allowed, no other software’s should be installed in the computer. Warez and pirated

software’s should not be allowed.

 A MODEL FOR NETWORK SECURITY

A model for much of what we will be discussing is captured, in very general terms, in

Figure 1.3. A message is to be transferred from one party to another across some sort of

Internet service.

A security-related transformation on the information to be sent, Examples include the

encryption of the message, which scrambles the message so that it is unreadable by the

opponent, and the addition of a code based on the contents of the message, which can be used

to verify the identity of the sender

Some secret information shared by the two principals and, it is hoped, unknown to the

opponent. An example is an encryption key used in conjunction with the transformation to

scramble the message before transmission and unscramble it on reception.

Figure 1.3 Model for Network Security

All the techniques for providing security have two components:

This general model shows that there are four basic tasks in designing a particular security

service:

1. Design an algorithm for performing the security-related transformation.

The algorithm should be such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm

and the secret information to achieve a particular security service

A general model of these other situations is illustrated by Figure 1.4, which reflects a

concern for protecting an information system from unwanted access. Most readers are familiar

with the concerns caused by the existence of hackers, who attempt to penetrate systems that

can be accessed over a network. The hacker can be someone who, with no malign intent,

simply gets satisfaction from breaking and entering a computer system. The intruder can be a

disgruntled employee who wishes to do damage or a criminal who seeks to exploit computer

assets for financial gain (e.g., obtaining credit card numbers or performing illegal money

transfers).

Figure 1.4 Network Access Security Model

Another type of unwanted access is the placement in a computer system of logic that exploits

vulnerabilities in the system and that can affect application programs as well as utility programs,

such as editors and compilers. Programs can present two kinds of threats:

• Information access threats: Intercept or modify data on behalf of users who should not have

access to that data.

• Service threats: Exploit service flaws in computers to inhibit use by legitimate users.

Viruses and worms are two examples of software attacks. Such attacks can be introduced into a

system by means of a disk that contains the unwanted logic concealed in otherwise useful

software.

The security mechanisms needed to cope with unwanted access fall into two broad

categories (see Figure 1.4).The first category might be termed a gatekeeper function. It includes

password-based login procedures that are designed to deny access to all but authorized users

and screening logic that is designed to detect and reject worms, viruses, and other similar

attacks. Once either an unwanted user or unwanted software gains access,

The second line of defense consists of a variety of internal controls that monitor activity

and analyze stored information in an attempt to detect the presence of unwanted intruders.

 THE OSI SECURITY ARCHITECTURE

ITU-T Recommendation X.800, Security Architecture for OSI, defines such a systematic

approach. The OSI security architecture is useful to managers as a way of organizing the task

of providing security. This architecture was developed as an international standard, computer

and communications vendors have developed security features for their products and services

that relate to this structured definition of services and mechanisms.

The OSI security architecture focuses on security attacks, mechanisms, and services.

These can be defined briefly as

• Security attack: Any action that compromises the security of information owned by an

organization.

• Security mechanism: A process (or a device incorporating such a process) that is designed

to detect, prevent, or recover from a security attack.

• Security service: A processing or communication service that enhances the security of the

data processing systems and the information transfers of an organization. The services are

intended to counter security attacks, and they make use of one or more security mechanisms to

provide the service. In the literature, the terms threat and attack are commonly used to mean

more or less the same thing.

•

Table 1.1 provides definitions taken from RFC 2828, InternetSecurity Glossary.

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action,

or event that could breach security and cause harm. That is, a threat is a possible danger that

might exploit a vulnerability.

Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act

that is a deliberate attempt (especially in the sense of a method or technique) to evade security

services and violate the security policy of a system.

 ATTACKS

The security attacks can be classified into two types’ passive attacks and active attacks.

A passive attack attempts to learn or make use of information from the system but does not

affect system resources. An active attack attempts to alter system resources or affect their

operation.

Passive Attacks

Two types of passive attacks are the release of message contents and traffic analysis.

The release of message contents is easily understood (Figure 1.5a).A telephone

conversation, an electronic mail message, and a transferred file may contain sensitive or

confidential information. We would like to prevent an opponent from learning the contents of

these transmissions.

A second type of passive attack, traffic analysis, is subtler (Figure 1.5b). Suppose that

we had a way of masking the contents of messages or other information traffic so that

opponents, even if they captured the message, could not extract the information from the

message. The common technique for masking contents is encryption. If we had encryption

protection in place, an opponent might still be able to observe the pattern of these messages.

Passive attacks are very difficult to detect, because they do not involve any alteration of the

data. Typically, the message traffic is not sent and received in an apparently normal fashion and

the sender nor receiver is aware that a third party has read the messages or observed the traffic

pattern.

Figure 1.5 Passive Attacks

Active Attacks

Active attacks involve some modification of the data stream or the creation of a false stream and

can be subdivided into four categories: masquerade, replay, modification of messages, and

denial of service.

A masquerade takes place when one entity pretends to be a different entity (Figure 1.6a). A

masquerade attack usually includes one of the other forms of active attack. For example,

authentication sequences can be captured and replayed after a valid authentication sequence

has taken place, thus enabling an authorized entity with few privileges to obtain extra privileges

by impersonating an entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retransmission to

produce an unauthorized effect (Figure 1.6b).

Modification of messages simply means that some portion of a legitimate message is altered,

or that messages are delayed or reordered, to produce an unauthorized effect (Figure 1.6c). For

example, a message meaning “Allow John Smith to read confidential file accounts” is modified

to mean “Allow Fred Brown to read confidential file account.

The denial of service prevents or inhibits the normal use or management of communications

facilities (Figure 1.6d). This attack may have a specific target.

Active attacks present the opposite characteristics of passive attacks. Whereas passive attacks

are difficult to detect, measures are available to prevent their success.

Figure 1.6 Active Attacks

 SERVICES

X.800 defines a security service as a service that is provided by a protocol layer of

communicating open systems and that ensures adequate security of the systems or of data

transfers. Perhaps a clearer definition is found in RFC 2828, which provides the following

definition: a processing or communication service that is provided by a system to give a specific

kind of protection to system resources; security services implement security policies and are

implemented by security mechanisms.

X.800 divides these services into five categories and fourteen specific services (Table 1.2)

Table 1.2 Security Services (X.800)

 MECHANISMS

Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are divided into

those that are implemented in a specific protocol layer, such as TCP or an application-layer

protocol, and those that are not specific to any particular protocol layer or security service

. Table 1.3 Security Mechanisms (X.800)

CLASSICAL ENCRYPTION TECHNIQUES

Symmetric encryption is a form of cryptosystem in which encryption and decryption are

performed using the same key. It is also known as conventional encryption.

• Symmetric encryption transforms plaintext into ciphertext using a secret key and an

encryption algorithm. Using the same key and a decryption algorithm, the plaintext is

recovered from the ciphertext.

• The two types of attack on an encryption algorithm are cryptanalysis, based on

properties of the encryption algorithm, and brute-force, which involves trying all possible

keys.

• Traditional (precomputer) symmetric ciphers use substitution and/or transposition

techniques. Substitution techniques map plaintext elements (characters, bits) into

ciphertext elements. Transposition techniques systematically transpose the positions of

plaintext elements.

• Rotor machines are sophisticated precomputer hardware devices that use substitution

techniques.

• Steganography is a technique for hiding a secret message within a larger one in such a

way that others cannot discern the presence or contents of the hidden message.

An original message is known as the plaintext, while the coded message is called the

ciphertext. The process of converting from plaintext to ciphertext is known as enciphering or

encryption; restoring the plaintext from the ciphertext is deciphering or decryption. The many

schemes used for encryption constitute the area of study known as cryptography.

Such a scheme is known as a cryptographic system or a cipher. Techniques used for

deciphering a message without any knowledge of the enciphering details fall into the area of

cryptanalysis. Cryptanalysis is what the layperson calls “breaking the code” The areas of

cryptography and cryptanalysis together are called cryptology.

 SYMMETRIC CIPHER MODEL

A symmetric encryption scheme has five ingredients (Figure 1.7):

• Plaintext: This is the original intelligible message or data that is fed into the algorithm as input.

• Encryption algorithm: The encryption algorithm performs various substitutions and

transformations on the plaintext.

• Secret key: The secret key is also input to the encryption algorithm. The key is a value

independent of the plaintext and of the algorithm. The algorithm will produce a different output

depending on the specific key being used at the time. The exact substitutions and

transformations performed by the algorithm depend on the key

• Ciphertext: This is the scrambled message produced as output. It depends on the plaintext

and the secret key. For a given message, two different keys will produce two different

ciphertexts. The ciphertext is an apparently random stream of data and, as it stands, is

unintelligible.

• Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the

cipher text and the secret key and produces the original plaintext.

Figure 1.7 Simplified Model of Symmetric Encryption

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the algorithm to be such

that an opponent who knows the algorithm and has access to one or more ciphertexts would be

unable to decipher the ciphertext or figure out the key. This requirement is usually stated in a

stronger form: The opponent should be unable to decrypt ciphertext or discover the key even if

he or she is in possession of a number of ciphertexts together with the plaintext that produced

each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and

must keep the key secure. If someone can discover the key and knows the algorithm, all

communication using this key is readable.

Figure 1.8 Model of Symmetric Cryptosystem

With the message X and the encryption key K as input, the encryption algorithm forms

the ciphertext Y=[Y1,Y2,…….YN] .We can write this as Y=E(K,X)This notation indicates that is

produced by using encryption algorithm E as a function of the plaintext X , with the specific

function determined by the value of the key K .

The intended receiver, in possession of the key, is able to invert the transformation:

X=D(K,Y)

An opponent, observing Y but not having access K to X or, may attempt to recover X or K or

both X and K. It is assumed that the opponent knows the encryption (E) and decryption (D)

algorithms. If the opponent is interested in only this particular message, then the focus of the

effort is to recover X by generating a plaintext estimate X. Often, however, the opponent is

interested in being able to read future messages as well, in which case an attempt is made to

recover K by generating an estimate K.

 Cryptography

Cryptographic systems are characterized along three independent dimensions:

The type of operations used for transforming plaintext to ciphertext:

All encryption algorithms are based on two general principles: substitution, in which each

element in the plaintext (bit, letter, group of bits or letters) is mapped into another element, and

transposition, in which elements in the plaintext are rearranged. The fundamental requirement is

that no information be lost (that is, that all operations are reversible). Most systems, referred to

as product systems, involve multiple stages of substitutions and transpositions.

1. The number of keys used. If both sender and receiver use the same key, the system is

referred to as symmetric, single-key, secret-key, or conventional encryption. If the sender and

receiver use different keys, the system is referred to as asymmetric, two-key, or public-key

encryption.

2. The way in which the plaintext is processed. A block cipher processes the input one block

of elements at a time, producing an output block for each input block. A stream cipher

processes the input elements continuously, producing output one element at a time, as it goes

along.

3. Cryptanalysis and Brute-Force Attack

Typically, the objective of attacking an encryption system is to recover the key in use rather than

simply to recover the plaintexts of a single ciphertext. There are two general approaches to

attacking a conventional encryption scheme:

• Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plusperhaps some

knowledge of the general characteristics of the plaintext oreven some sample plaintext–

ciphertext pairs. This type of attack exploits the characteristics of the algorithm to attempt to

deduce a specific plaintext or to deduce the key being used.

• Brute-force attack: The attacker tries every possible key on a piece of cipher text until an

intelligible translation into plaintext is obtained. On average, half of all possible keys must be

tried to achieve success.

Table 1.4 summarizes the various types of cryptanalytic attacks based on the amount of

information known to the cryptanalyst. The most difficult problem is presented when all that is

available is the ciphertext only.

Table 1.4 Types of Attacks on Encrypted Messages

A brute-force attack involves trying every possible key until an intelligible translation of the

ciphertext into plaintext is obtained.

 SUBSTITUTION TECHNIQUES

The two basic building blocks of all encryption techniques are substitution and

transposition. A substitution technique is one in which the letters of plaintext are replaced by

other letters or by numbers or symbols.1 If the plaintext is viewed as a sequence of bits, then

substitution involves replacing plaintext bit patterns with ciphertext bit patterns.

1. Caesar Cipher

The earliest known, and the simplest, use of a substitution cipher was by Julius Caesar.

The Caesar cipher involves replacing each letter of the alphabet with the letter standing three

places further down the alphabet. For example,

plain: meet me after the toga party

cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define the

transformation by listing all possibilities, as follows:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let us assign a numerical equivalent to each letter:

When letters are involved, the following conventions are used in this book. Plaintext is always in

lowercase; ciphertext is in uppercase; key values are in italicized lowercase.

Let us assign a numerical equivalent to each letter:

Then the algorithm can be expressed as follows. For each plaintext letter, substitute the cipher

text letter:

C = E(3, p) = (p + 3) mod 26

A shift may be of any amount, so that the general Caesar algorithm is

C = E(k, p) = (p + k) mod 26

where takes on a value in the range 1 to 25.The decryption algorithm is simply

p = D(k, C) = (C - k) mod 26

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is easily

performed: simply try all the 25 possible keys. Three important characteristics of this problem

enabled us to use a bruteforce cryptanalysis:

1. The encryption and decryption algorithms are known.

2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.

Figure 1.9 Brute-Force Cryptanalysis of Caesar Cipher

2. Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure.A dramatic increasein

the key space can be achieved by allowing an arbitrary substitution. A permutation of a finite

set of elements is an ordered sequence of all the elements of, with each element appearing

exactlyonce. For example, if S ={a,b,c} , there are six permutations of :

abc, acb, bac, bca, cab, cba

In general, there are n! permutations of a set of elements, because the first element can

be chosen in one of n ways, the second in n-1 ways, the third in n-2 ways, and so on.

Recall the assignment for the Caesar cipher:

plain: a b c d e f g h I j kl m n o p q r s t u v w x y z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters, then

there are 26! or greater than 4*1026 possible keys. This is 10 orders of magnitude greater than

the key space for DES and would seem to eliminate brute-force techniques for cryptanalysis.

Such an approach is referred to as a monoalphabetic substitution cipher, because a single

cipher alphabet (mapping from plain alphabetto cipher alphabet) is used per message.

The ciphertext to be solved is

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and compared to a

standard frequency distribution for English, such as is shown in Figure 1.9. If the message were

long enough, this technique alone might be sufficient, but because this is a relatively short

message, we cannot expect an exact match. In any case, the relative frequencies of the letters

in the ciphertext (in percentages) are as follows:

Figure 1.10 Relative Frequencies of Letters in English Text

That cipher letters P and Z are the equivalents of plain letters e and t, but it is not certain

which is which. The letters S, U, O, M, and H are all of relatively high frequency and probably

correspond to plain letters from the set {a, h, i, n, o, r, s}. The letters with the lowest frequencies

(namely A, B, G, Y, I, J) are likely included in the set {b, j, k, q, v, x, z}.

A powerful tool is to look at the frequency of two-letter combinations, known as digrams.

The most common such digram is th. In our ciphertext, the most common digram is ZW, which

appears three times. So we make the correspondence of Z with t and W with h. Then, by our

earlier hypothesis, we can equate P with e. Now notice that the sequence ZWP appears in the

ciphertext, and we can translate that sequence as “the.” This is the most frequent trigram (three-

letter combination). Next, notice the sequence ZWSZ in the first line. We do not know that these

four letters form a complete word, but if they do, it is of the form th_t. If so, Sequates with a.

So far, then, we have

Only four letters have been identified, but already we have quite a bit of the message.

Continued analysis of frequencies plus trial and error should easily yield a solution from this

point. The complete plaintext, with spaces added between words, follows:

it was disclosed yesterday that several informal but

direct contacts have been made with political

representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency data of the

original alphabet. A countermeasure is to provide multiple substitutes, known as homophones,

for a single letter.

3. Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in

the plaintext as single units and translates these units into ciphertext digrams. The Playfair

algorithm is based on the use of a 5 × 5 matrix of letters constructed using a keyword. Here is

an example, solved by Lord Peter Wimsey inDorothy Sayers‟s Have His Carcase

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the

keyword (minus duplicates) from left to right and from top to bottom, and then filling in the

remainder of the matrix with the remaining letters in alphabetic order. The letters I and J count

as one letter. Plaintext is encrypted two letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as

x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to

the right, with the first element of the row circularly following the last. For example, ar is

encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the letter beneath, with

the top element of the column circularly following the last. For example, mu is encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and

the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or

JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers. For one thing,

whereas there are only 26 letters, there are 26 × 26 = 676 digrams, so that identification of

individual digrams is more difficult. Furthermore, the relative frequencies of individual letters

exhibit a much greater range than that of digrams, making frequency analysis much more

difficult. For these reasons, the Playfair cipher was for a long time considered unbreakable. It

was used as the standard field system by the British Army in World War I and still enjoyed

considerable use by the U.S. Army and other Allied forces during World War II.

4. Hill Cipher

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician

Lester Hill in 1929. Define the inverse M-1of a square matrix M by the equation M(M-1)= M-1M=I,

where I is the identity matrix. I is a square matrix that is all zeros except for ones along the main

diagonal from upper left to lower right. The inverse of a matrix does not always exist, but when

it does, it satisfies the preceding equation. For example,

To explain how the inverse of a matrix is computed, we begin by with the concept of

determinant. For any square matrix (m × m), the determinant equals the sum of all the products

that can be formed by taking exactly one element from each row and exactly one element from

each column, with certain of the product terms preceded by a minus sign. For a 2 × 2 matrix,

The determinant is k11k22 -k12k21. For a 3×3 matrix, the value of the determinant is

.k11k22k33 + k21k32k13 + k31k12k23 - k31k22k13 - k21k12k33 - k11k32k23. If a square matrix A has a

nonzero determinant, then the inverse of the matrix is computed as [A-1]ij=(det A)-1 (-1)i+j

(Dij)where (Dij) is the subdeterminant formed by deleting the jth row and the ith column of A,

det(A) is the determinant of A, and (det A)-1 is the multiplicative inverse of (det A) mod 26.

Continuing our example,

We can show that 9-1mod26=3, because9×3=27mod26=1.Therefore, we compute

the inverse of A as

THE HILLALGORITHM This encryption algorithm takes m successive plaintext letters and

substitutes for them m ciphertext letters. The substitution is determined by m linear equations in

which each character is assigned a numerical value (a=0,b=1,…z=25). For m=3, the system can

be described as

This can be expressed in terms of row vectors and matrices:

or

C = PK mod 26

where C and P are row vectors of length 3 representing the plaintext and ciphertext, and K is a

3 ×3 matrix representing the encryption key. Operations are performed mod 26.For example,

consider the plaintext “paymoremoney” and use the encryption Key

As with Playfair, the strength of the Hill cipher is that it completely hides single-letter

frequencies. Indeed, with Hill, the use of a larger matrix hides more frequency information.

Thus, a 3 ×3 Hill cipher hides not only single-letter but also two-letter frequency information.

Consider this example. Suppose that the plaintext “hillcipher” is encrypted using a Hill

cipher to yield the ciphertext HCRZSSXNSP. Thus, we know that (78) Kmod26=(72)11

11)Kmod26=(17 25); and so on. Using the first two plaintext–ciphertext pairs, we have

The inverse of X can be computed

This result is verified by testing the remaining plaintext–ciphertext pairs.

5. One Time Pad Cipher (or) Vernam Cipher

It is an unbreakable cryptosystem, described by Frank Miller in 1882, the one-time pad

was reinvented by Gilbert Vernam in 1917 and it was later improved by the US Amry Major

Joseph. It represents the message as a sequence of 0s and 1s. This can be accomplished by

writing all numbers in binary, for example, or by using ASCII. The key is a random sequence of

0‟s and 1‟s of same length as the message.

Once a key is used, it is discarded and never used again. The system can be expressed

as follows:

Thus the cipher text is generated by performing the bitwise XOR of the plaintext and the

key. Decryption uses the same key. Because of the properties of XOR, decryption simply

involves the same bitwise operation:

Example

Alice wishes to send the message “HELLO” to Bob. If key material begins with “XMCKL” and the

message is “HELLO”, then use Vernam One Time Pad to Decrypt and Show the Encryption

Process.

MESSAGE H E L L O

POSITION 7 4 11 11 14

KEY X M C K L

POSITION 23 12 2 10 11

OTP Encryption

H E L L O Message

7

(H)

4

(E)

11

(L)

11

(L)

14

(O)

Message

23

(X)

12

(M)

2

(C)

10

(K)

11

(L)

Key

30 16 13 21 25 Message + Key

4

(E)

16

(Q)

13

(N)

21

(V)

25

(Z)

Message + Key (mod 26)

E Q N V Z Ciphertext

Note: If a number is larger than 25, then the remainder afer subtraction of 26 is taken in Modular

Arithmetic fashion

OTP Decryption

E Q N V Z Ciphertext

4

(E)

16

(Q)

13

(N)

21

(V)

25

(Z)

Ciphertext

23

(X)

12

(M)

2

(C)

10

(K)

11

(L)

Key

-19 4 11 11 14 Ciphertext - Key

7

(H)

4

(E)

11

(L)

11

(L)

14

(O)

Ciphertext - Key (mod 26)

H E L L O Message

Note: If a number is negative then 26 is added to make the number positive

Advantages

 Encryption method is completely unbreakable for a cipher-text only known attack

 Chosen Plaintext (or) Ciphertext attacks is not possible

Disadvantages

 It requires a very long key which is expensive to produce and expensive to transmit.

 Once a key is used it is dangerous to reuse it for second message.

6. Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use different

monoalphabetic substitutions as one proceeds through the plaintext message. The general

name for this approach is polyalphabetic substitution cipher. All these techniques have the

following features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.

VIGEN`ERE CIPHER The best known, and one of the simplest, polyalphabetic ciphers is the

Vigenère cipher. In this scheme, the set of related monoalphabetic substitution rules consists of

the 26 Caesar ciphers with shifts of 0 through 25. Each cipher is denoted by a key letter, which

is the ciphertext letter that substitutes for the plaintext letter a. Thus, a Caesar cipher with a shift

of 3 is denoted by the key value.

Express the Vigenère cipher in the following manner. Assume a sequence of plaintext

letters and a key consisting of the sequence of letters, where typically < .The sequence of

ciphertext letters is calculated as follows

Thus, the first letter of the key is added to the first letter of the plaintext, mod 26, the second

letters are added, and so on through the first letters of the plaintext. For the next letters of the

plaintext, the key letters are repeated. This process continues until all of the plaintext sequence

is encrypted. A general equation of the encryption process is

Ci = (pi + kimod m)mod 26

Decryption is a generalization of Equation

pi= (Ci - kimod m)mod 26

To encrypt a message, a key is needed that is as long as the message. Usually, the key

is a repeating keyword. For example, if the keyword is deceptive, the message “we are

discovered save yourself” is encrypted as

key: deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

 TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a ciphertext symbol for a

plaintext symbol. A very different kind of mapping is achieved by performing some sort of

permutation on the plaintext letters. This technique is referred to as a transposition cipher. The

simplest such cipher is the rail fence technique, in which the plaintext is written down as a

sequence of diagonals and then read off as a sequence of rows. For example, to encipher the

message “meet me after the toga party” with a rail fence of depth 2, we write the following:

The encrypted message is
MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the

message in a rectangle, row by row, and read the message off, column by column, but permute

the order of the columns. The order of the columns then becomes the key to the algorithm. For

example,

Thus, in this example, the key is 4312567.To encrypt, start with the column that is

labeled 1, in this case column 3.Write down all the letters in that column. Proceed to column 4,

which is labeled 2, then column 2, then column 1, then columns 5, 6, and 7.A pure transposition

cipher is easily recognized because it has the same letter frequencies as the original plaintext.

For the type of columnar transposition just shown, cryptanalysis is fairly straightforward and

involves laying out the ciphertext in a matrix and playing around with column positions. Digram

and trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than

one stage of transposition. The result is a more complex permutation that is not easily

reconstructed. Thus, if the foregoing message is reencrypted using the same algorithm,

To visualize the result of this double transposition, designate the letters in the original

plaintext message by the numbers designating their position. Thus, with 28 letters in the

message, the original sequence of letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28

After the first transposition, we have

03 10 17 24 04 11 18 25 02 09 16 23 01 08

15 22 05 12 19 26 06 13 20 27 07 14 21 28

MEMATRHTGPRYETEFETEOAAT

 STEGANOGRAPHY

A plaintext message may be hidden in one of two ways. The methods of

steganography conceal the existence of the message, whereas the methods of cryptography

render the message unintelligible to outsiders by various transformations of the text.

A simple form of steganography, but one that is time-consuming to construct, is one in

which an arrangement of words or letters within an apparently innocuous text spells out the real

message. For example, the sequence of first letters of each word of the overall message spells

out the hidden message. Figure shows an example in which a subset of the words of the overall

message is used to convey the hidden message.

Various other techniques have been used historically; some examples are the following:

Character marking: Selected letters of printed or typewritten text are overwritten in pencil. The

marks are ordinarily not visible unless the paper is held at an angle to bright light.

Invisible ink: A number of substances can be used for writing but leave no visible trace until

heat or some chemical is applied to the paper.

Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless the

paper is held up in front of a light.

Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of

typing with the correction tape are visible only under a strong light

Steganography has a number of drawbacks when compared to encryption. It requires a lot of

overhead to hide a relatively few bits of information, although using a scheme like that proposed

in the preceding paragraph may make it more effective. Also, once the system is discovered, it

becomes virtually worthless. This problem, too, can be overcome if the insertion method

depends on some sort of key.

The advantage of steganography is that it can be employed by parties who have

something to lose should the fact of their secret communication (not necessarily the content) be

discovered. Encryption flags traffic as important or secret or may identify the sender or receiver

as someone with something to hide.

Foundations of modern cryptography

Modern encryption is the key to advanced computer and communication security. This

stream of cryptography is completely based on the ideas of mathematics such as number theory

and computational complexity theory as well as concepts of probability.

Characteristics of Modern Cryptography

There are four major characteristics that separate modern cryptography from the

classical approach.

Table 1.5 Differences between Traditional Encryption and Modern Encryption

Traditional Encryption Modern Encryption

For making ciphertext, manipulation is done

in the characters of the plaintext

For making ciphertext, operations are

performed on binary bit sequence

The whole of the ecosystem is required to

communicate confidentiality

Here, only the parties who want to execute

secure communication possess the secret

key

These are weaker as compared to modern

encryption

The encryption algorithm formed by this

encryption technique is stronger as

compared to traditional encryption algorithms

It believes in the concept of security through

obscurity

Its security depends on the publicly known

mathematical algorithm

Context of Cryptography

Cryptology, the study of cryptosystems, can be subdivided into two branches −

 Cryptography

 Cryptanalysis

Cryptography

Cryptography is the art and science of making a cryptosystem that is capable of

providing information security. Cryptography deals with the actual securing of digital data. It

refers to the design of mechanisms based on mathematical algorithms that provide fundamental

information security services.

Cryptanalysis

The art and science of breaking the cipher text is known as cryptanalysis. Cryptanalysis

is the sister branch of cryptography and they both co-exist. The cryptographic process results in

the cipher text for transmission or storage. It involves the study of cryptographic mechanism

with the intention to break them. Cryptanalysis is also used during the design of the new

cryptographic techniques to test their security strengths.

Note − Cryptography concerns with the design of cryptosystems, while cryptanalysis studies the

breaking of cryptosystems.

Types of Modern Cryptography

Different algorithms have come up with powerful encryption mechanisms incorporated in

them. It gave rise to two new ways of encryption mechanism for data security. These are:

o Symmetric key encryption

o Asymmetric key encryption

Key

It can be a number, word, phrase, or any code that will be used for encrypting as well as

decrypting any ciphertext information to plain text and vice versa.

Symmetric and asymmetric key cryptography is based on the number of keys and the

way these keys work. Let us know about both of them in details:

Symmetric key encryption

Symmetric key encryption technique uses a straight forward method of encryption.

Hence, this is the simpler among these two practices. In the case of symmetric key encryption,

the encryption is done through only one secret key, which is known as "Symmetric Key", and

this key remains to both the parties.

The same key is implemented for both encodings as well as decoding the information.

So, the key is used first by the sender prior to sending the message, and on the receiver side,

that key is used to decipher the encoded message.

One of the good old examples of this encryption technique is Caesar's Cipher. Modern

examples and algorithms that use the concept of symmetric key encryption are RC4, QUAD,

AES, DES, Blowfish, 3DES, etc.

Asymmetric Key Encryption

Asymmetric Encryption is another encryption method that uses two keys, which is a new

and sophisticated encryption technique. This is because it integrates two cryptographic keys for

implementing data security. These keys are termed as Public Key and Private Key.

The "public key", as the name implies, is accessible to all who want to send an

encrypted message. The other is the "private key" that is kept secure by the owner of that public

key or the one who is encrypting.

Encryption of information is done through public key first, with the help of a particular

algorithm. Then the private key, which the receiver possesses, will use to decrypt that encrypted

information. The same algorithm will be used in both encodings as well as decoding.

Examples of asymmetric key encryption algorithms are Diffie-Hellman and RSA

algorithm.

Security Services of Cryptography

 Confidentiality of information.

 Data Integrity.

 Authentication.

o Message authentication.

o Entity authentication.

 Non-repudiation.

Cryptography Primitives

Cryptography primitives are nothing but the tools and techniques in Cryptography that

can be selectively used to provide a set of desired security services −

 Encryption

 Hash functions

 Message Authentication codes (MAC)

 Digital Signatures

The following table shows the primitives that can achieve a particular security service on

their own.

Table 1.6 Primitives and Security Service

 Perfect Security

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no

information about the content of the plaintext However, part of being provably secure is that

you need as much key material as you have plaintext to encrypt.

Information Theory

Information theory studies the quantification, storage, and communication of information. It

was originally proposed by Claude Shannon in 1948 to find fundamental limits on signal

processing and communication operations such as data compression.

https://en.wikipedia.org/wiki/Quantification_(science)
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Data_compression

Its impact has been crucial to the success of the Voyager missions to deep space, the

invention of the compact disc, the feasibility of mobile phones, the development of the Internet,

the study of linguistics and of human perception, the understanding of black holes, and

numerous other fields. The field is at the intersection of mathematics, statistics, computer

science, physics, neurobiology, information engineering, and electrical engineering.

The theory has also found applications in other areas, including statistical

inference, natural language processing, cryptography, neurobiology, human vision, the

evolution and function of molecular codes (bioinformatics), model selection in statistics, thermal

physics, quantum computing, linguistics, plagiarism detection, pattern recognition, and anomaly

detection.

Important sub-fields of information theory include source coding, algorithmic complexity

theory, algorithmic information theory, information-theoretic security, Grey system theory and

measures of information.

Applications of fundamental topics of information theory include lossless data

compression (e.g. ZIP files), lossy data compression (e.g. MP3s and JPEGs), and channel

coding (e.g. for DSL).

Information theory is used in information retrieval, intelligence gathering, gambling, and

even in musical composition.

A key measure in information theory is entropy. Entropy quantifies the amount of

uncertainty involved in the value of a random variable or the outcome of a random process. For

example, identifying the outcome of a fair coin flip (with two equally likely outcomes) provides

less information (lower entropy) than specifying the outcome from a roll of a die (with six equally

likely outcomes). Some other important measures in information theory are mutual information,

channel capacity, error exponents, and relative entropy.

 Product Cryptosystems

A product cipher combines two or more transformations in a manner intending that the

resulting cipher is more secure than the individual components to make it resistant

to cryptanalysis.

The product cipher combines a sequence of simple transformations such

as substitution (S-box), permutation (P-box), and modular arithmetic. For transformation

involving reasonable number of n message symbols, both of the foregoing cipher systems

(the S-box and P-box) are by themselves wanting.

The combination could yield a cipher system more powerful than either one alone. This

approach of alternatively applying substitution and permutation transformation has been used

by IBM in the Lucifer cipher system, and has become the standard for national data encryption

standards such as the Data Encryption Standard and the Advanced Encryption Standard. A

product cipher that uses only substitutions and permutations is called a SP-network. Feistel

ciphers are an important class of product ciphers.

https://en.wikipedia.org/wiki/Voyager_program
https://en.wikipedia.org/wiki/Compact_disc
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Information_engineering_(field)
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Neurobiology
https://en.wikipedia.org/wiki/Human_vision
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Thermal_physics
https://en.wikipedia.org/wiki/Thermal_physics
https://en.wikipedia.org/wiki/Thermal_physics
https://en.wikipedia.org/wiki/Plagiarism_detection
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Source_coding
https://en.wikipedia.org/wiki/Algorithmic_complexity_theory
https://en.wikipedia.org/wiki/Algorithmic_complexity_theory
https://en.wikipedia.org/wiki/Algorithmic_information_theory
https://en.wikipedia.org/wiki/Information-theoretic_security
https://en.wikipedia.org/wiki/Grey_system_theory
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/Lossy_data_compression
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Digital_subscriber_line
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_entropy
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_process
https://en.wikipedia.org/wiki/Coin_flip
https://en.wikipedia.org/wiki/Dice
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Error_exponent
https://en.wikipedia.org/wiki/Relative_entropy
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Substitution_cipher
https://en.wikipedia.org/wiki/Transposition_cipher
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Substitution_box
https://en.wikipedia.org/wiki/Permutation_box
https://en.wikipedia.org/wiki/Lucifer_(cipher)
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/SP-network
https://en.wikipedia.org/wiki/Feistel_cipher
https://en.wikipedia.org/wiki/Feistel_cipher

 CRYPTANALYSIS

Cryptanalysis is the art of trying to decrypt the encrypted messages without the use of

the key that was used to encrypt the messages. Cryptanalysis uses mathematical analysis &

algorithms to decipher the ciphers.

The success of cryptanalysis attacks depends

 Amount of time available

 Computing power available

 Storage capacity available

The following is a list of the commonly used Cryptanalysis attacks;

Brute force attack– this type of attack uses algorithms that try to guess all the possible

logical combinations of the plaintext which are then ciphered and compared against the original

cipher.

Dictionary attack– this type of attack uses a wordlist in order to find a match of either

the plaintext or key. It is mostly used when trying to crack encrypted passwords.

Rainbow table attack– this type of attack compares the cipher text against pre-

computed hashes to find matches.

Other Attacks using Cryptanalysis

Known-Plaintext Analysis (KPA): Attacker decrypts ciphertext with known partial

plaintext.

Chosen-Plaintext Analysis (CPA): Attacker uses ciphertext that matches arbitrarily

selected plaintext via the same algorithm technique.

Ciphertext-Only Analysis (COA): Attacker uses known ciphertext collections.

Man-in-the-Middle (MITM) Attack: Attack occurs when two parties use message or key

sharing for communication via a channel that appears secure but is actually

compromised. Attacker employs this attack for the interception of messages that pass

through the communications channel. Hash functions prevent MITM attacks.

Adaptive Chosen-Plaintext Attack (ACPA): Similar to a CPA, this attack uses chosen

plaintext and ciphertext based on data learned from past encryptions.

UNIT II SYMMETRIC KEY CRYPTOGRAPHY

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic Structures - Modular

arithmetic - Euclid’s Algorithm - Congruence and Matrices - Groups, Rings, Fields - Finite fields -

SYMMETRIC KEY CIPHERS: SDES - Block cipher principles of DES - Strength of DES -

Differential and Linear Cryptanalysis - Block cipher design principles - Block cipher mode of

operation - Evaluation criteria of AES - Advanced Encryption Standard - RC4 - Key Distribution

 ALGEBRAIC STRUCTURES

Figure 2.1 Common Algebraic Structures

2.1.1 Groups, Rings, Fields

Groups, rings, and fields are the fundamental elements of a branch of

mathematics known as abstract algebra, or modern algebra.

Groups

A group G , sometimes denoted by {G,*} ,is a set of elements with a binary

operation denoted by * that associates to each ordered pair (a,b) of elements G in an

element(a*b) in , such that the following axioms are obeyed:

(A1) Closure: If a and b belong to G, then a*b is

also in G. (A2) Associative: a*(b*c)=(a*b)*c for all a, b, , in G .

(A3) Identity element: There is an element e in G such

that a*e=e*a=a for all in G .

(A4) Inverse element: For each a in G, there is an element

a’ in G such that a*a’=a’*a=e .

If a group has a finite number of elements, it is referred to as a finite group, and

the order of the group is equal to the number of elements in the group. Otherwise, the

group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a*b = b*a for all a b, in G.

CYCLIC GROUP: A group is cyclic if every element of G is a power ak (k is an

integer) of a fixed element a£ G .The element is a said to generate the group G or to be a

generator of

G.A cyclic group is always abelian and may be finite or infinite.

Rings

A ring R, sometimes denoted by {R, +, X}, is a set of elements with two binary

operations, called addition and multiplication, such that for all a, b, c ,in R the following

axioms are obeyed

A ring is said to be commutative if it satisfies the following additional condition:

Next, we define an integral domain, which is a commutative ring that obeys the following

axioms

Fields

A field F, sometimes denoted by {F, +, X}, is a set of elements with two binary

operations, called addition and subtraction, such that for all a, b, c , in F the following

axioms are obeyed

Figure 2.2 Groups, Ring and Field

 MODULAR ARITHMETIC

If is an integer and n is a positive integer, we define a mod n to be the remainder

when a is divided by n. The integer n is called the modulus. Thus, for any integer a, we

can rewrite Equation as follows

Modular Arithmetic Operations

A kind of integer arithmetic that reduces all numbers to one of a fixed set [0,….,n-1] for

some number n. Any integer outside this range is reduced to one in this range by taking

the remainder after division by n.

Modular arithmetic exhibits the following properties

Table 2.1 Arithmetic Modulo 8

 EUCLID’ S ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which is

a simple procedure for determining the greatest common divisor of two positive integers.

First, we need a simple definition: Two integers are relatively prime if their only common

positive integer factor is 1.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor ofa if a =mb for some m, where a,b,

and m are integers. We will use the notation gcd(a , b) to mean the greatest common

divisor of a and b .The greatest common divisor of a and b is the largest integer that

divides both a and b

.We also define gcd(0,0) = 0.

Algorithm

The Euclid's algorithm (or Euclidean Algorithm) is a method for

efficiently finding the greatest common divisor (GCD) of two numbers. The GCD of

two integers X and Y is the largest number that divides both of X and Y (without leaving a

remainder).

For every non-negative integer, a and any positive integer b

gcd (a, b) = gcd (b, a mod b)

Algorithm Euclids (a, b)

 = a

β = b

while (β > 0)

Rem = mod β

 = β

β = Rem

return

Steps for Another Method

a = q1b + r1; 0 < r1 < b

b = q2r1 + r2; 0 < r2 < r1

r1 = q3r2 + r3; 0 < r3 < r2

rn-2 = qnrn-1 + rn; 0 < rn < rn-1

rn-1 = q1rn + 0

d = gcd (a, b) = rn

Example 1:

gcd (55, 22) = gcd (22, 55 mod 22)

= gcd (22, 11)

= gcd (11, 22 mod 11)

= gcd (11, 0)

gcd (55, 22) is 11

Example 2:

gcd (30, 50) = gcd (50, 30 mod 50)

= gcd (50, 30)

= gcd (30, 50 mod 30)

= gcd (30, 20)

= gcd (20, 30 mod 20)

= gcd (20, 10)

= gcd (10, 20 mod 10)

= gcd (10, 0)

gcd (30, 50) is 10

Another Method

To find gcd (30,50)

50 = 1 x 30 + 20 gcd (30, 20)

30 = 1 x 20 + 10 gcd (20,10)

20 = 1 x 10 + 10 gcd (10,10)

10 = 1 x 10 + 0 gcd (10,0)

Therefore, gcd (30,50) = 10

Example 3:

gcd (1970, 1066) = gcd (1066, 1970 mod 1066)

=gcd (1066, 904)

=gcd (904, 1066 mod 904)

=gcd (904, 162)

=gcd (162, 904 mod 162)

=gcd (162, 94)

=gcd (94, 162 mod 94)

=gcd (94, 68)

=gcd (68, 94 mod 68)

=gcd (68, 26)

=gcd (26, 68 mod 26)

=gcd (26, 16)

=gcd (16, 26 mod 16)

=gcd (16, 10)

=gcd (10, 16 mod 10)

=gcd (10, 6)

=gcd (6, 10 mod 6)

=gcd (6, 4)

=gcd (4, 6 mod 4)

=gcd (4, 2)

=gcd (2, 4 mod 2)

=gcd (2, 0)

gcd (1970, 1066) is 2

Another Method

To find gcd (1970, 1066)

1970 = 1 x 1066 + 904 gcd (1066, 904)

1066 = 1 x 904 + 162 gcd (904,162)

904 = 5 x 162 + 94 gcd (162, 94)

162 = 1 x 94 + 68 gcd (94, 68)

94 = 1 x 68 + 26 gcd (68, 26)

68 = 2 x 26 + 16 gcd (26, 16)

26 = 1 x 16 + 10 gcd (16, 10)

16 = 1 x 10 + 6 gcd (10, 6)

10 = 1 x 6 + 4 gcd (6, 4)

6 = 1 x 4 + 2 gcd (4, 2)

4 = 2 x 2 + 0 gcd (2, 0)

Therefore, gcd (1970, 1066) = 2

Extended Euclidean Algorithm

Extended Euclidean Algorithm is an efficient method of finding modular inverse of

an integer.

Euclid’s algorithm can be improved to give not just gcd (a, b), but also used to find

the multiplicative inverse of a number with the modular value.

Example 1

Find the Multiplicative inverse of 17 mod 43

17-1 mod 43

17* X = mod 43

X= 17-1 mod 43

43 = 17 * 2 + 9

17 = 9 * 1 + 8

9 = 8* 1+ 1

Rewrite the above equation

9+8(-1) = 1 (1)

17+9(-1) = 8 (2)

43+17(-2) = 9 (3)

Substitution

sub equ 2 in equ 1

(1) 9+8(-1) = 1 [Sub 17+9(-1) = 8]

9+(17+9(-1))(-1) = 1

9+17(-1)+9(1)=1

17(-1)+9(2) =1 (4)

Now sub equ (3) in equ (4)

43+17(-2) = 9 (3)

17(-1)+(43+17(-2))(2)=1

17(-1)+43(2)+17(-4)=1

17(-5)+43(2) = 1(5)

Here -5 is the multiplicative inverse of 17. But inverse cannot be negative

17-1 mod 43 = -5 mod 43 = 38

So, 38 is the multiplicative inverse of 17.

Checking, 17* X ≡ 1 mod 43

17 * 38 ≡ 1 mod 43

646 ≡ 1 mod 43 (15*43 = 645)

Example 2

Find the Multiplicative inverse of 1635 mod 26

1635-1 mod 26

1635 = 26 (62) + 23

26 = 23 (1) + 3

23 = 3(7) + 2

3 = 2(1) + 1

Rewriting the above equation

3+2(-1) =1 (1)

23+3(-7) = 2 (2)

26+23(-1) = 3 (3)

1635+26(-62) = 23 (4)

Substitution

sub equ (2) in equ (1)

(2) => 23+3(-7) = 2

3+2(-1) =1

3+(23+3(-7))(-1) =1

3+23(-1)+3(7)=1

3(8)+23(-1) = 1 (5)

sub equ (3) in equ (5)

26+23(-1) = 3 (3)

(26+23(-1))(8) + 23 (-1) =1

26(8) + 23 (-8) + 23 (-1) =1

26 (8) + 23 (-9) =1 (6)

Sub equ (4) in equ (6)

1635+26(-62) = 23 (4)

26 (8) + (1635 + 26 (-62)) (-9) = 1

26 (8) + 1635 (-9) + 26 (558) =1

1635 (-9) + 26 (566) = 1 (7)

From equ (7) -9 is inverse of 1635, but negative cannot be inverse.

1635-1 mod 26 = -9 mod 26 = 17

So, the inverse of 1635 is 17.

Checking, 1635* X ≡ 1 mod 26

1635 * 17 ≡ 1 mod 26

27795 ≡ 1 mod 26 (1069*26 = 27794)

 CONGRUENCE AND MATRICES

Properties of Congruences

Congruences have the following properties:

Matrices

Matrix is a rectangular array in mathematics, arranged in rows and columns

of numbers, symbols or expressions.

A matrix will be represented with their dimensions as l x m where l defines the row

and m defines the columns

Examples of Matrices

1. Row Matrix

2. Column Matrix

3. Square Matrix

4. Zero Matrixes

5. Identity Matrix

 FINITE FIELDS

FINITE FIELDS OF THE FORM GF(p)

The finite field of order is generally written ; GF stands for Galois field,in honor of

the mathematician who first studied finite fields

Finite Fields of Order p

For a given prime, , we define the finite field of order , , as the set of integers

together with the arithmetic operations modulo .

Finding the Multiplicative Inverse in It is easy to find the multiplicative inverse of an

element in for small values of .You simply construct a multiplication table, such as shown

in Table 2.2b,and the desired result can be read directly. However, for large values of ,

this approach is not practical. p p GF(p) GF(p)

Table 2.2 Arithmetic in GF(7)

 Polynomial Arithmetic

We are concerned with polynomials in a single variable and we can distinguish

three classes of polynomial arithmetic. • Ordinary polynomial arithmetic, using the basic

rules of algebra. • Polynomial arithmetic in which the arithmetic on the coefficients is

performed modulo

;that is,the coefficients are in .

Polynomial arithmetic in which the coefficients are in ,and the polynomials are

defined modulo a polynomial whose highest power is some integer .

Ordinary Polynomial Arithmetic

A polynomial of degree (integer) is an expression of the form

Addition and subtraction are performed by adding or subtracting corresponding

coefficients. Thus, if

Polynomial Arithmetic with Coefficients in

Let us now consider polynomials in which the coefficients are elements of some

field F; we refer to this as a polynomial over the field F. In that case, it is easy to show that

the set of such polynomials is a ring, referred to as a polynomial ring. That is, if we

consider each distinct polynomial to be an element of the set, then that set is a ring 8

when polynomial arithmetic is performed on polynomials over a field, then division is

possible. Note that this does not mean that exact division is possible. Let us clarify this

distinction. Within a field, given two elements and, the quotient is also an element of the

field. However, given a ring that is not a field, in Ra /b ba Zp

Figure 2.3 Examples of Polynomial Arithmetic

A polynomial over a field is called irreducible if and only if cannot be expressed as

a product of two polynomials, both over, and both of degree lower than that of. By analogy

to integers, an irreducible polynomial is also called a prime polynomial.

 SYMMETRIC KEY CIPHERS

Symmetric ciphers use the same cryptographic keys for both encryption of

plaintext and decryption of ciphertext. They are faster than asymmetric ciphers and allow

encrypting large sets of data. However, they require sophisticated mechanisms to

securely distribute the secret keys to both parties

Types of keys are used in symmetric key cryptography

Symmetric encryption (figure 2.4) uses a single key that needs to be shared

among the people who need to receive the message while asymmetrical encryption uses

a pair of public key and a private key to encrypt and decrypt messages when

communicating.

Figure 2.4 Simplified Model of Symmetric Encryption

 SIMPLIFIED DATA ENCRYPTION STANDARD (S-DES)

The overall structure of the simplified DES shown in Figure 2.5. The S-DES

encryption algorithm takes an 8-bit block of plaintext (example: 10111101) and a 10-bit

key as input and produces an 8-bit block of ciphertext as output.

The S-DES decryption algorithm takes an 8-bit block of ciphertext and the same

10-bit key used to produce that ciphertext as input and produces the original 8-bit block of

plaintext.

Figure 2.5 Overview of S-DES Algorithm

The encryption algorithm involves five functions:

 An initial permutation (IP)

 A complex function labeled fk, which involves both permutation and

substitution operations and depends on a key input.

 A simple permutation function that switches (SW) the two halves of the

data.

 The function fk again.

A permutation function that is the inverse of the initial permutation

The function fk takes as input not only the data passing through the encryption

algorithm, but also an 8-bit key. Here a 10-bit key is used from which two 8-bit subkeys

are generated.

The key is first subjected to a permutation (P10). Then a shift operation is

performed. The output of the shift operation then passes through a permutation function

that produces an 8-bit output (P8) for the first subkey (K1).

The output of the shift operation also feeds into another shift and another instance

of P8 to produce the second subkey (K2).

The encryption algorithm can be expressed as a composition composition1 of

functions:

IP-1 ο fK2 ο SW ο fk1 ο IP, which can also be written as

Ciphertext = IP-1 (fK2 (SW (fk1 (IP (plaintext)))))

Where

K1 = P8 (Shift (P10 (Key)))

K2 = P8 (Shift (shift (P10 (Key))))

Decryption can be shown as Plaintext = IP-1 (fK1 (SW (fk2 (IP (ciphertext)))))

 S-DES Key Generation

S-DES depends on the use of a 10-bit key shared between sender and receiver.

From this key, two 8-bit subkeys are produced for use in particular stages of the

encryption and decryption algorithm.(Figure 2.6)

Figure 2.6 S-DES Key Generation

First, permute the key in the following fashion. Let the 10-bit key be designated as

(k1, K2, k3, k4, k5, k6, k7, k8, k9, k10). Then the permutation P10 is defined as:

P10 (k1, K2, k3, k4, k5, k6, k7, k8, k9, k10) = (k3, k5, K2, k7, k4, k10 10, k1, k9,

k8, k6).

P10 can be concisely defined by the display:

This table is read from left to right; each position in the table gives the identity of

the input bit that produces the output bit in that position. So, the first output bit is bit 3 of

the input; the second output bit is bit 5 of the input, and so on.

Example

The 10 bit key is (1010000010), now find the permutation from P10 for this key so

it becomes (10000 01100).

Next, perform a circular left shift (LS-1), or rotation, separately on the first five bits

and the second five bits. In our example, the result is (00001 11000).

Next, apply P8, which picks out and permutes 8 of the 10 bits according to the

following rule:

So, The result is subkey 1 (K1). In our example, this yield (10100100).

Then go back to the pair of 5-bit strings produced by the two LS-1 functions and

performs a circular left shift of 2 bit positions on each string. In our example, the value

(00001 11000) becomes (00100 00011).

Finally, P8 is applied again to produce K2. In our example, the result is

(01000011).

 S-DES Encryption

Encryption involves the sequential application of five functions (Figure 2.7).

1. Initial Permutations

The input to the algorithm is an 8-bit block of plaintext, which we first permute

using the IP function

The plaintext is 10111101

Permutated output is 01111110

Figure 2.7 S-DES Encryption

2. The Function fk

The most complex component of S-DES is the function fk, which consists of a

combination of permutation and substitution functions. The functions can be expressed as

follows. Let L and R be the leftmost 4 bits and rightmost 4 bits of the 8-bit input to f K, and

let F be a mapping (not necessarily one to one) from 4-bit strings to 4-bit strings. Then we

let

Fk (L, R) = (L⊕F (R, SK), R)

Where SK is a sub key and ⊕is the bit-by- bit exclusive OR function

Now, describe the mapping F. The input is a 4-bit number (n1 n2 n3 n4). The first

operation is an expansion/permutation operation:

Now, find the E/P from IP

IP = 01111110, it becomes

E/P = 01111101

Now, XOR with K1

=> 01111101 ⊕10100100 = 11011001

The first 4 bits (first row of the preceding matrix) are fed into the S-box S0 to

produce a 2- bit output, and the remaining 4 bits (second row) are fed into S1 to produce

another 2-bit output.

These two boxes are defined as follows:

The S-boxes operate as follows. The first and fourth input bits are treated as a 2-

bit number that specify a row of the S-box, and the second and third input bits specify a

column of the S-box. Each s box gets 4-bit input and produce 2 bits as output. It follows

00- 0, 01-1, 10-2, 11-3 scheme.

Here, take first 4 bits, Second 4 bits

S0 => 1101 S1 => 1001

11 - > 3 11 -> 3

10 -> 2 => 3 =>11 00 -> 0 = > 2 => 10

So, we get 1110

 Now, find P4

After P4, the value is 1011

Now, XOR operation 1011⊕ 0111 => 1100

3. The Switch function

 The switch function (sw) interchanges the left and right 4 bits.

1100 1110

1110 1100

.

4. Second function fk

 First, do E/P function and XOR with K2, the value is 01101001⊕01000011, the answer is

00101010

 Now, find S0 and S1

S0 => 00 - > 0 S1 = > 10 -> 2

01 -> 1 => 0 = 00 01 -> 1 = > 0 => 00

Value is 0000

 Now, find P4 and XOR operation

After P4 => 0000 ⊕ 1110 = 1110, then concatenate last 4 bits after interchange in sw.

 Now value is 11101100

5. Find IP-1

So, value is 01110101

The Ciphertext is 01110101

 S-DES Decryption

 Decryption involves the sequential application of five functions.

1. Find IP

 After IP, value is 11101100

2. Function fk

 After step 2, the answer is 11101100

3. Swift

 The answer is 11001110

4. Second fk

 The answer is 01111110

5. Find IP-1

 101111101 -> Plaintext

 DATA ENCRYPTION STANDARD

The most widely used encryption scheme is based on the Data Encryption Standard

(DES) adopted in 1977. The algorithm itself is referred to as the Data Encryption Algorithm

(DEA).

For DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm

transforms 64-bit input in a series of steps into a 64-bit output.

 DES Encryption

The overall scheme for DES encryption is illustrated in the Figure 2.8. There are two

inputs to the encryption function: the plaintext to be encrypted and the key. The plaintext must

be 64 bits in length and the key is 56 bits in length.

General Depiction of DES Encryption Algorithm

Phase 1

Looking at the left-hand side of the figure 2.8, we can see that the processing of the

plaintext proceeds in three phases.

First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the

bits to produce the permuted input.

Phase 2:

This is followed by a phase consisting of 16 rounds of the same function, which involves

both permutation and substitution functions.

The output of the last (sixteenth) round consists of 64 bits that are a function of the input

plaintext and the key. The left and right halves of the output are swapped to produce the

preoutput.

Phase 3:

Finally, the preoutput is passed through a permutation (IP-1) that is the inverse of the

initial permutation function, to produce the 64-bit ciphertext.

The right-hand portion of Figure shows the way in which the 56-bit key is used.

Operation on key:

Initially, the key is passed through a permutation function. Then, for each of the 16

rounds, a subkey (Ki) is produced by the combination of a left circular shift and a permutation.

The permutation function is the same for each round, but a different subkey is produced

because of the repeated shifts of the key bits.

Figure 2.8 DES Encryption Algorithm

Initial Permutation

The input to a table consists of 64 bits numbered from 1 to 64. The 64 entries in the

permutation table contain a permutation of the numbers from 1 to 64. Each entry in the

permutation table indicates the position of a numbered input bit in the output, which also

consists of 64 bits.

Permutation Tables for DES

(a) Initial Permutation (IP)

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Inverse Initial Permutation (IP-1)

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

Expansion Permutation (E)

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Permutation Function (P)

16 7 20 21 29 12 28 17

1 15 23 26 5 18 31 10

2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

Consider the following 64-bit input M:

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16

M17 M18 M19 M20 M21 M22 M23 M24

M25 M26 M27 M28 M29 M30 M31 M32

M33 M34 M35 M36 M37 M38 M39 M40

M41 M42 M43 M44 M45 M46 M47 M48

M49 M50 M51 M52 M53 M54 M55 M56

M57 M58 M59 M60 M61 M62 M63 M64

where Mi is a binary digit. Then the permutation X = IP(M) is as follows:

M58 M50 M42 M34 M26 M18 M10 M2

M60 M52 M44 M36 M28 M20 M12 M4

M62 M54 M46 M38 M30 M22 M14 M6

M64 M56 M48 M40 M32 M24 M16 M8

M57 M49 M41 M33 M25 M17 M9 M1

M59 M51 M43 M35 M27 M19 M11 M3

M61 M53 M45 M37 M29 M21 M13 M5

M63 M55 M47 M39 M31 M23 M15 M7

Inverse permutation Y = IP-1 (X) = IP-1(IP(M)),Therefore we can see that the original ordering of

the bits is restored.

 Details of Single Round

The below figure 2.9 shows the internal structure of a single round. The left and right halves of

each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R

(right). The overall processing at each round can be summarized in the following formulas:

Li= Ri-1

Ri= Li-1 x F(Ri-1, Ki)

Figure 2.9 Single Round of DES Algorithm

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by

using a table that defines a permutation plus an expansion that involves duplication of 16 of the

R bits. The resulting 48 bits are XORed with Ki. This 48-bit result passes through a substitution

function that produces a 32-bit output, which is then permuted.

Definition of S-Boxes

The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input

and produces 4 bits as output. The first and last bits of the input to box Si form a 2-bit binary

number to select one of four substitutions defined by the four rows in the table for S i. The middle

four bits select one of the sixteen columns as shown in figure 2.10.

The decimal value in the cell selected by the row and column is then converted to its 4-

bit representation to produce the output.

For example, in S1 for input 011001, the row is 01 (row 1) and the column is 1100

(column 12). The value in row 1, column 12 is 9, so the output is 1001.

Fig 2.10 Calculation of F(R, K)

 Key Generation

The 64-bit key is used as input to the algorithm. The bits of the key are numbered from 1

through 64; every eighth bit is ignored. The key is first subjected to a permutation governed by a

table labeled Permuted Choice One. The resulting 56-bit key is then treated as two 28-bit

quantities, labeled C0 and D0.

At each round, Ci-1 and Di-1 are separately subjected to a circular left shift, or rotation,

of 1 or 2 bits. These shifted values serve as input to the next round. They also serve as input to

Permuted Choice 2, which produces a 48-bit output that serves as input to the function F(Ri-1,

Ki).

DES Key Schedule Calculation

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

(b) Permuted Choice One (PC-1)

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

(c) Permuted Choice Two (PC-2)

14 17 11 24 1 5 3 28

15 6 21 10 23 19 12 4

26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40

51 45 33 48 44 49 39 56

34 53 46 42 50 36 29 32

(d) Schedule of Left Shifts

Roundnumber:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits rotated : 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

 DES Decryption:

As with any Feistel cipher, decryption uses the same algorithm as encryption,except that the

application of the subkeys is reversed. Additionally, the initial andfinal permutations are

reversed.

 The Avalanche Effect:

A desirable property of any encryption algorithm is that a small change in either the plaintext or

the key should produce a significant change in the ciphertext. In particular, a change in one bit

of the plaintext or one bit of the key should produce a change in many bits of the ciphertext.

THE STRENGTH OF DES

The strength of DES depends on two factors: key size and the nature of the algorithm.

1. The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 x

1016. Thus, a brute-force attack appears impractical.

2. The Nature of the DES Algorithm

In DES algorithm, eight substitution boxes called S-boxes that are used in each iteration.

Because the design criteria for these boxes, and indeed for the entire algorithm, were not made

public, there is a suspicion that the boxes were constructed in such a way that cryptanalysis is

possible for an opponent who knows the weaknesses in the S-boxes. Despite this, no one has

so far succeeded in discovering the supposed fatal weaknesses in the S-boxes.

3. Timing Attacks

A timing attack is one in which information about the key or the plaintext is obtained by

observing how long it takes a given implementation to perform decryptions on various

ciphertexts. A timing attack exploits the fact that an encryption or decryption algorithm often

takes slightly different amounts of time on different inputs.

Attacks on DES:

Two approaches are:

1. Differential crypt analysis

2. Linear crypt analysis

 Differential Cryptanalysis

Differential cryptanalysis is the first published attack that is capable of breaking DES in less

than 255 complexities. The need to strengthen DES against attacks using differential

cryptanalysis played a large part in the design of the S-boxes and the permutation P.

 One of the most significant recent (public) advances in cryptanalysis

 Powerful method to analyze block ciphers

 Used to analyze most current block ciphers with varying degrees of success

Differential Cryptanalysis Attack:

The differential cryptanalysis attack is complex. The rationale behind differential

cryptanalysis is to observe the behavior of pairs of text blocks evolving along each round of the

cipher, instead of observing the evolution of a single text block.

Consider the original plaintext block m to consist of two halves m0, m1. Each round of

DES maps the right-hand input into the left-hand output and sets the right-hand output to be a

function of the left-hand input and the subkey for this round.

So, at each round, only one new 32-bit block is created. If we label each new block

m1(2 ≤ i ≤17), then the intermediate message halves are related as follows:

mi+1 = mi-1 f(mi, Ki), i = 1, 2, ..., 16

In differential cryptanalysis, we start with two messages, m and m', with a known XOR

difference Δm= m m', and consider the difference between the intermediate message halves:

mi= mi mi' Then we have:

∆mi+1 = mi+1 m‟i-1

= [mi-1 f(mi,ki])] [m‟i-1 f(m‟i,ki)]

= ∆mi-1 [f(mi,ki) f(m‟i,ki)]

Let us suppose that there are many pairs of inputs to f with the same difference yield the

same output difference if the same subkey is used.

Therefore, if we know Δmi-1 and Δmi with high probability, then we know Δmi+1 with high

probability. Furthermore, if a number of such differences are determined, it is feasible to

determine the subkey used in the function f.

 Linear Cryptanalysis

This attack is based on the fact that linear equation can be framed to describe the

transformations.

The principle of linear crypt analysis is as follows

Length of CT and PT =n bits;

key=mbit

Block of cipher text is c[1]c[2]…c[n]; Block

of key is k[1]k[2]….k[m]

A[I,j,..k] = A[i] A[j] . A[k]

 Can attack DES with 247 known plaintexts, still in practice infeasible

 Find linear approximations with prob p != ½

 P[i1,i2,...,ia](+)c[j1,j2,...,jb] = k[k1,k2,...,kc]Where ia, jb, kc are bit locations in p, c, k

 BLOCK CIPHER PRINCIPLES

There are three critical aspects of block cipher design:

1. Number of rounds,

2. Design of the function F

3. Key scheduling.

Number of Rounds

 When the greater the number of rounds, the more difficult it is to perform cryptanalysis,

even for a relatively weak F.

 The number of rounds is chosen so that known cryptanalytic efforts require greater effort

than a simple brute-force key search attack

 When round DES S= 16, a differential cryptanalysis attack is slightly less efficient than

brute force, the differential cryptanalysis attack requires 255 operations.

 It makes it easy to judge the strength of an algorithm and to compare different algorithms.

Design of Function F

This is the most important function

Criteria needed for F,

 It must be difficult to “unscramble” the substitution performed by F.

 The function should satisfy strict avalanche criterion (SAC) which states that any

output bit j of an S-box should change with probability 1/2 when any single input bit i is

inverted for all i, j.

 The function should satisfy bit independence criterion(BIC), which states that output

bits j and k should change independently when any single input bit i is inverted for all i, j,

and k.

Key Schedule Algorithm

 The key is used to generate one sub key for each round.

 The sub keys to maximize the difficulty of deducing individual sub keys and the difficulty

of working back to the main key.

 Stream Cipher and Block Cipher

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time.

E.g, vigenere cipher. Figure (2.11a)

A block cipher is one in which a block of plaintext is treated as a whole and used to produce a

cipher text block of equal length. Typically, a block size of 64 or 128 bits is used. Figure (2.11b)

Figure 2.11 Stream Cipher and Block Cipher

 Many block ciphers have a Feistel structure. Such a structure consists of a number of

identical rounds of processing.

 In each round, a substitution is performed on one half of the data being processed,

followed by a permutation that interchanges the two halves.

 The original key is expanded so that a different key is used for each round.

 The Data Encryption Standard (DES) has been the most widely used encryption

algorithm. It exhibits the classic Feistel structure.

 The DES uses a 64-bit block and a 56-bit key. Two important methods of cryptanalysis

are differential cryptanalysis and linear cryptanalysis. DES has been shown to be highly

resistant to these two types of attack.

 A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n

bits. There are possible different plaintext blocks and, for the encryption to be reversible

(i.e., for decryption to be possible), each must produce a unique ciphertext block. Such a

transformation is called reversible, or non singular

 In particular, Feistel proposed the use of a cipher that alternates substitutions and

permutations, where these terms are defined as follows:

 Substitution: Each plaintext element or group of elements is uniquely replaced by

a corresponding ciphertext element or group of elements.

 Permutation: A sequence of plaintext elements is replaced by a permutation of

that sequence. That is, no elements are added or deleted or replaced in the

sequence, rather the order in which the elements appear in the sequence is

changed.

 Two methods for frustrating statistical cryptanalysis are:

 Diffusion – Each plaintext digit affects many ciphertext digits, or each ciphertext

digit is affected by many plaintext digits.

 Confusion – Make the statistical relationship between a plaintext and the

corresponding ciphertext as complex as possible in order to thread attempts to

deduce the key.

 Feistel cipher structure

 The left-hand side of figure 2.12 depicts the structure proposed by Feistel.

 The input to the encryption algorithm is a plaintext block of length 2w bits and a key K. the

plaintext block is divided into two halves L0 and R0.

 The two halves of the data pass through n rounds of processing and then combine to

produce the ciphertext block. Each round i has inputs Li-1 and Ri-1, derived from the

previous round, as well as the subkey Ki, derived from the overall key K.

 In general, the subkeys Ki are different from K and from each other. All rounds have the

same structure.

 A substitution is performed on the left half of the data (as similar to S-DES). This is done

by applying a round function F to the right half of the data and then taking the XOR of the

output of that function and the left half of the data.

 The round function has the same general structure for each round but is parameterized

by the round subkey ki. Following this substitution, a permutation is performed that

consists of the interchange of the two halves of the data.

 This structure is a particular form of the substitution-permutation network.

Figure 2.12 Feistel Encryption and Decryption (16 rounds)

The features of Feistel network are:

 Block size - Increasing size improves security, but slows cipher

 Key size - Increasing size improves security, makes exhaustive key searching harder,

but may slow cipher

 Number of rounds - Increasing number improves security, but slows cipher

 Subkey generation - Greater complexity can make analysis harder, but slows cipher

 Round function - Greater complexity can make analysis harder, but slows cipher

 The process of decryption is essentially the same as the encryption process.

 The rule is as follows: use the cipher text as input to the algorithm, but use the subkey

ki in reverse order. i.e., kn in the first round, kn-1 in second round and so on.

 For clarity, we use the notation LEi and REi for data traveling through the decryption

algorithm and LDi and RDi.

 The above diagram indicates that, at each round, the intermediate value of the decryption

process is same (equal) to the corresponding value of the encryption process with two

halves of the value swapped.

i.e., REi || LEi (or) equivalently RD16-i || LD16-i

 After the last iteration of the encryption process, the two halves of the output are

swapped, so that the cipher text is RE16 || LE16.

 The output of that round is the cipher text. Now take the cipher text and use it as input to

the same algorithm.

 The input to the first round is RE16 || LE16, which is equal to the 32-bit swap of the output

of the sixteenth round of the encryption process.

 Now we will see how the output of the first round of the decryption process is equal to a

32-bit swap of the input to the sixteenth round of the encryption process.

 First consider the encryption process,

LE16 = RE15

RE16 = LE15 ⊕ F (RE15, K16)

On the decryption side,
LD1 = RD0 = LE16 = RE15

RD1 = LD0 ⊕ F (RDO, K16)

= RE16 ⊕ F (RE15, K16)

= [LE15 ⊕ F (RE15, K16)] ⊕ F (RE15, K16)

= LE15

Therefore, LD1 = RE15, RD1 = LE15

In general, for the ith iteration of the encryption algorithm,

LEi = REi-1

REi = LEi-1 ⊕ F (REi-1, Ki)

 Finally, the output of the last round of the decryption process is RE0 || LE0. A 32-bit swap

recovers the original plaintext.

 BLOCK CIPHER MODES OF OPERATION

 Block Cipher is the basic building block to provide data security.

 To apply the block cipher to various applications, NIST has proposed 4 modes of

operation. The block cipher is used to enhance the security of the encryption algorithm

Multiple Encryption and Triple DES

The vulnerability of DES to a brute-force attack has been detected by using two approaches are

shown in figure 2.13

1. One approach is to design a completely new algorithm, of which AES is a prime example

2. Another alternative, which would preserve the existing investment in software and

equipment, is to use multiple encryptions with DES and multiple keys.

Double DES

The simplest form of multiple encryptions has two encryption stages and two keys. Given a

plaintext P and two encryption keys K1 and K2, cipher text C is generated as

Decryption requires that the keys be applied in reverse order:

For DES, this scheme apparently involves a key length of 56 * 2 = 112 bits, resulting in a

dramatic increase in cryptographic strength.

Figure 2.13 Multiple Encryption

Reduction to a Single Stage

Suppose it were true for DES, for all 56-bit key values, that given any two keys K1 and

K2, it would be possible to find a key K3 such that

Meet-in-the-Middle Attack

The use of double DES results in a mapping that is not equivalent to a single DES

encryption. But there is a way to attack this scheme, one that does not depend on any particular

property of DES but that will work against any block encryption cipher. This algorithm, known as

a meet-in-the-middle attack.

It is based on the observation that, if we have

Then

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all 256

possible values of K1. Store these results in a table and then sort the table by the Values of X.

Next, decrypt C using all 256 possible values of K2. As each decryption is

produced,

check the result against the table for a match.

If a match occurs, then test the two resulting keys against a new known plaintext–cipher

text pair. If the two keys produce the correct cipher text, accept them as the correct keys.

For any given plaintext P, there are 264 possible cipher text values that could be

produced by double DES. Double DES uses, in effect, a 112-bit key, so that there are 2112

possible keys.

Triple DES with Two Keys

To overcome the meet-in-the-middle attack is to use three stages of encryption with three

different keys. This is called ad Triple DES or 3DES as shown in figure 2.14.

The known plain text attack in 2112. The key length of 56 * 3 = 168 bits which is a

drawback.

Tuchman proposed a triple encryption method that uses only two keys given plain text k1,k2

. The final cipher text is

 The function follows an encrypt-decrypt-encrypt (EDE)sequence

Its only advantage is that it allows users of 3DES to decrypt data encrypted by users of the older

single DES:

 3DES with two keys is a relatively popular alternative to DES

 There are no practical cryptanalytic attacks on 3DES.

 The cost of a brute-force key search on 3DES is on the order of2112

Figure 2.14 Triple DES

The first serious proposal came from Merkle and Hellman

1. Merkle and Hellman

The concept is to find plaintext values that produce a first intermediate value of A = 0 and then

using the meet-in-the-middle attack to determine the two keys.

 The level of effort is 256,

 The technique requires 256 chosen plaintext–cipher text pairs, which is a number

unlikely to be provided.

2. known - plaintext attack:

The attack is based on the observation that if we know A and C then the problem

reduces to that of an attack on double DES.

The attacker does not know A, even if P and C are known, as long as the two keys are

unknown. The attacker can choose a potential value of A and then try to find a known (P, C) pair

that produces A.

The attack proceeds as follows.

Step 1:

 Obtain n (P, C) pairs. This is the known plaintext. Place these in a table sorted on the

values of P

Step 2:

 Pick an arbitrary value a for A, and create a second table with entries defined in the

following fashion.

 For each of the 256 possible keys K1 = i, calculate the plaintext value Pi that produces a.

 For each Pi that matches an entry in Table 1, create an entry in Table 2 consisting of the

K1 value and the value of B that is produced.

Step 3:

 We now have a number of candidate values of K1 in Table 2 and are in a position to

search for a value of K2.

 For each of the 256 possible keys K2 = j, calculate the second intermediate value for our

chosen value of a

 If there is a match, then the corresponding key i from Table 2 plus this value of j are

candidate values for the unknown keys (K1, K2).

Step 4:

 Test each candidate pair of keys (i, j) on a few other plaintext–cipher text pairs.

 If a pair of keys produces the desired cipher text, the task is complete. Ifno pair

succeeds, repeat from step 1 with a new value of a.

MODE 1: Electronic Code Book

The simplest mode is the electronic codebook (ECB) mode shown in figure 2.15. Here

plaintext is handled one block at a time and each block of plaintext is encrypted using the same

key.

The term codebook is used because, for a given key, there isa unique cipher text for every b-

bit block of plaintext.

When the message longer than b bits, to break the message into b-bit blocks. For the last

block when the no of bits is less than b, padding the last block if necessary.

Decryption is performed one block at a time, always using the same key.

Uses: The ECB method is ideal for a short amount of data, such as an encryption key.

Disadvantage:

When b‟ -bit block of plaintext appears more than once in the message, it always

produces the same cipher text output.

For lengthy messages, the ECB mode may not be secure. If the message is highly

structured, it may be possible for a cryptanalyst to exploit these regularities.

If the message has repetitive elements with a period of repetition a multiple of b bits, then

these elements can be identified by the analyst.

This may help in the analysis or may provide an opportunity for substituting or

rearranging blocks.

Figure 2.15 Electronic Code Book (ECB)

Mode Properties for Evaluating and Constructing ECB

Overhead: The additional operations for the encryption and decryption operation when

compared to encrypting and decrypting in the ECB mode.

Error recovery: The property that an error in the ith cipher text block is inherited by only a few

plaintext blocks

Error propagation: It is meant here is a bit error that occurs in the transmission of a cipher text

block, not a computational error in the encryption of a plaintext block.

Diffusion: Low entropy plaintext blocks should not be reflected in the cipher text blocks.

Roughly, low entropy equates to predictability or lack of randomness

Security: Whether or not the cipher text blocks leak information about the plaintext blocks.

MODE 2: Cipher Block Chaining Mode

This method is to overcome the disadvantage of ECB (i.e) when the PT block is

repeated CBC produces different cipher text blocks

The input to the encryption function for each plaintext block bears no fixed relationship to

the plaintext block. Therefore, repeating patterns of b bits are not exposed.

For decryption, each cipher block is passed through the decryption algorithm. The result

is XORed with the preceding cipher text block to produce the plaintext block are shown in figure

2.16.

Figure 2.16 Cipher Block Chaining (CBC) Mode

Then

To produce the first block of cipher text, an initialization vector (IV) is XORed with the first

block of plaintext.

On decryption, the IV is XORed with the output of the decryption algorithm to recover the

first block of plaintext.

Size of IV = Size of data Blocks

We can define CBC mode as

For maximum security, the IV should be protected against unauthorized changes. This

could be done by sending the IV using ECB encryption

Reason for protecting the IV:

If an opponent is able to fool the receiver in to using a different value for IV, then the opponent is

able to invert selected bits in the first block of plaintext. To see this, consider

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then

Then, using the properties of XOR, we can state

Where the prime notation denotes bit complementation. This means that if an opponent

can predictably change bits in IV, the corresponding bits of the received value of P1 can be

changed.

MODE 3: Cipher Feedback Mode:

We know that the DES is a block cipher.it is possible to convert block cipher into stream Cipher

using CFB mode

The advantages of CFB is that

 Eliminates the need to pad a message

 It also can operate in real time

 The length of the CT =Length of PT

Figure 2.17 depicts the CFB scheme. In the figure 2.17, it is assumed that the unit of

transmission is s bits; a common value is s = 8.

The units of plaintext are chained together; to get the cipher text is a function of all

preceding plaintext. Here the plaintext is divided into segments of s bits.

Encryption:

The input to the encryption function is a b-bit shift register that is initially set to some

initialization vector (IV).

The leftmost (most significant) s bits of the output of the encryption function are XORed

with the first segment of plaintext P1 to produce the first unit of cipher text C1.

The contents of the shift register are shifted left by s bits, and C1 is placed in the

rightmost (least significant) s bits of the shift register.

This process continues until all plaintext units have been encrypted.

Decryption:

The same scheme is used, except that the received cipher text unit is XORed with the

output of the encryption function to produce the plaintext unit.

Let MSBs(X) be defined as the most significant s bits of X. Then

Therefore, by rearranging terms:

The same reasoning holds for subsequent steps in the process.

Figure 2.17 S-bit Cipher Feedback (CFB) mode

We can define CFB mode as follows

Output Feedback Mode

The output feedback (OFB) mode is similar in structure to that of CFB.

The output of the encryption function is fed back to become the input for encrypting the

next block of plaintext as shown in figure 2.18.

Comparison between OFB and CFB

block.

In CFB, the output of the XOR unit is fed back to become input for encrypting the next

The other difference is that the OFB mode operates on full blocks of plaintext and cipher

text, whereas CFB operates on an s-bit subset. OFB encryption can be expressed as

Where

we can rewrite the encryption expression as:

By rearranging terms, we can demonstrate that decryption works.

We can define OFB mode as follows.

Let the size of a block be b. If the last block of plaintext contains u bits (indicated by *), with

u<b, the most significant u bits of the last output block ON are used for the XOR operation

The remaining b - u bits of the last output block are discarded.

Figure 2.18 Output Feedback Mode

Advantage:

Bit errors in transmission do not propagate (i.e.) when bit errors occurs in Ci, Pi is alone

affected

Disadvantage:

Vulnerable to message stream modification attack

Counter Mode

The counter (CTR) mode has increased recently with applications to ATM

(asynchronous transfer mode) network security and IP sec (IP security).

A counter equal to the plaintext block size is used. The counter value must be different

for each plaintext block as shown in figure 2.19.

The counter is initialized to some value and then incremented by 1 for each subsequent

block (modulo 2b, where b is the block size). For encryption, the counter is encrypted and then

XORed with the plaintext block to produce the cipher text block.

For decryption, the same sequence of counter values is used, with each

encrypted counter XORed with a cipher text block to recover the corresponding plaintext block.

Advantage:

Hardware efficiency

 CTR can be done in parallel

Software efficiency

 CTR supports parallel feature pipelining

Preprocessing

Simplicity

Figure 2.19 Counter Mode

 ADVANCED ENCRYPTION STANDARD (AES)

AES is a symmetric block cipher that is intended to replace DES as the approved

standard for a wide range of applications. Compared to public-key ciphers such as RSA, the

structure of AES and most symmetric ciphers is quite complex and cannot be explained as

easily as many other cryptographic, algorithms.

Finite Field Arithmetic

In AES, all operations are performed on 8-bit bytes. The arithmetic operations of

addition, multiplication, and division are performed over the finite field GF.A field is a set in

which we can do addition, subtraction, multiplication, and division without leaving the set.

Division is defined with the following rule: a/b = a(b-1).

An example of a finite field (one with a finite number of elements) is the set Zp consisting of

all the integers {0, 1, c, p - 1}, where p is a prime number and in which arithmetic is carried out

modulo p.

The way of defining a finite field containing 2nelements; such a field is referred to as GF(2n).

Consider the set, S, of all polynomials of degree n - 1 or less with binary coefficients. Thus,

each polynomial has the form

Where each ai takes on the value 0 or 1. There are a total of 2ndifferent polynomials in S.

For n = 3, the 23 = 8 polynomials in the set are

Appropriate definition of arithmetic operations, each such set S is a finite field.

The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules

of algebra with the following two refinements.

2. Arithmetic on the coefficients is performed modulo 2. This is the same as the

XOR operation.

3. If multiplication results in a polynomial of degree greater than n - 1, then the n polynomial

is reduced modulo some irreducible polynomial m(x) of degree n. That is, we divide by

m(x) and keep the remainder. For a polynomial f(x), the remainder is expressed as r(x) =

f(x) mod m(x). A polynomial m(x) is called irreducible if and only if m(x) cannot be

expressed as a product of two polynomials, both of degree lower than that of m(x).

A polynomial in GF(2n) can be uniquely represented by its n binary coefficients(an-1an-2 ca0).

Therefore, every polynomial in GF(2n) can be represented by an n-bit number.

 AES Structure

General Structure

 Figure 2.20 shows the overall structure of the AES encryption process. The cipher takes a

plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or32 bytes (128,

192, or 256 bits). The algorithm is referred to as AES-128, AES-192, orAES-256, depending

on the key length.

 The input to the encryption and decryption algorithms is a single 128-bit block. The block is

depicted as a 4 * 4 square matrix of bytes. This block is copied into the State array, which is

modified at each stage of encryption or decryption. After the final stage, State is copied to

an output matrix. These operations are depicted in Figure 2.21a. Similarly, the key is

depicted as a square matrix of bytes. This key is then expanded into an array of key

schedule words.

 Below Figure 2.20 shows the expansion for the 128-bit key. Each word is four bytes, and the

total key schedule is 44 words for the 128-bit key. Note that the ordering of bytes within a

matrix is by column. The first four bytes of a 128-bit plaintext input to the encryption cipher

occupy the first column of the in matrix. The second four bytes occupy the second column,

and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy the

first column of the w matrix. The cipher consists of N rounds, where the number of rounds

depends on the key length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14

rounds for a 32-byte key (Table 2.3).

 The first N - 1 round consist of four distinct transformation functions: Sub Bytes, Shift Rows,

Mix Columns, and AddRoundKey, which are described subsequently. The final round

contains only three transformations, and there is an initial single transformation

(AddRoundKey) before the first round, which can be considered Round 0. Each

transformation takes one or more 4 * 4 matrices as input and produces a 4 * 4 matrix as

output Figure 5.1 shows that the output of each round is a 4 * 4 matrix, with the output of the

final round being the cipher text.

Figure 2.20 AES Encryption Process

Table 2.3 AES Parameters

 Detailed Structure

Below Figure 2.20 shows the AES cipher shows the sequence of transformations in each round

and showing the corresponding decryption function.

Fig: 2.21 Detail AES structure

Overall detail about AES structure.

1. It is not a Feistel structure. Recall that, in the classic Feistel structure, half of the data

block is used to modify the other half of the data block and then the halves are swapped.

AES instead processes the entire data block as a single matrix during each round using

substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bitwords, w[i].

Four distinct words (128 bits) serve as a round key for each round as shown in figure

2.22;

3. Four different stages are used, one of permutation and three of substitution:

 Substitute bytes: Uses an S-box to perform a byte-by-byte substitution ofthe

block

 ShiftRows: A simple permutation

 MixColumns: A substitution that makes use of arithmetic over GF(28)

 AddRoundKey: A simple bitwise XOR of the current block with a portion of

the expanded key

4. The structure is quite simple. For both encryption and decryption as shown in figure

2.22, the cipher begins with an AddRoundKey stage, followed by nine rounds that each

includes all four stages, followed by a tenth round of three stages.

5. Only the AddRoundKey stage makes use of the key. The AddRoundKey stage would

provide no security because they do not use the key. We can view the cipher as

alternating operations of XOR encryption (AddRoundKey) of a block, followed by

scrambling of the block (the other three stages), followed by XOR encryption, and so on.

This scheme is both efficient and highly secure.

Fig 2.22 AES Encryption and Decryption

6. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns

stages, an inverse function is used in the decryption algorithm. For the AddRoundKey

stage, the inverse is achieved by XORing the same round key to the block, using

the result that.

7. The decryption algorithm makes use of the expanded key in reverse order. However, the

decryption algorithm is not identical to the encryption algorithm. This is a consequence

of the particular structure of AES.

Fig 2.23 AES Encryption Round

8. Once it is established that all four stages are reversible, it is easy to verify that

decryption does recover the plaintext.

9. The final round of both encryption and decryption consists of only three stages. Again,

this is a consequence of the particular structure of AES and is required, to make the cipher

reversible

 AES Transformation Functions

Four transformations used in AES. For each stage, we describe the forward (encryption)

algorithm, the inverse (decryption) algorithm, and the rationale for the stage.

Substitute Bytes Transformation

Type 1: Forward and Inverse Transformations:

The forward substitute byte transformation, called Sub Bytes, is a simple table

lookup (Figure 2.24a). AES defines a 16 * 16 matrix of byte values, called an S-box that

contains a permutation of all possible 256 8-bit values.

Each individual byte of State is mapped into a new byte in the following way: The

leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column

value. These row and column values serve as indexes into the S-box to select a unique8-bit

output value as shown in figure 2.25.

For example, the hexadecimal value {95} references row 9, column 5 of the S-box, which

contains the value {2A}. Accordingly, the value {95} is mapped into the value {2A}.

Figure 2.24 AES Byte level Operations

Figure 2.25 AES S-Boxes

Here is an example of the SubBytes transformation:

The S-box is constructed in the following fashion (Figure 2.26a).

1. Initialize the S-box with the byte values in ascending sequence row by row. The first row

contains {00}, {01}, {02}, c, {0F}; the second row contains {10}, {11}, etc.; and so on. Thus, the

value of the byte at row y, column x is {yx}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value

{00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3,b2, b1, b0).

Apply the following transformation to each bit of each byte in the S-box:

Where ci is the ith bit of byte c with the value {63}; that is, (c7c6c5c4c3c2c1c0) = (01100011). The

prime („) indicates that the variable is to be updated by the value on the right.

Figure 2.26 Construction of S-Box and IS-Box

The AES standard depicts this transformation in matrix form as follows.

 In ordinary matrix multiplication, each element in the product matrix is the sum of

products of the elements of one row and one column. Each element in the product

matrix is the bitwise XOR of products of elements of one row and one column.

 As an example, consider the input value {95}. The multiplicative inverse in GF(28) is

{95}- 1 = {8A}, which is 10001010 in binary. Using above Equation

The result is {2A}, which should appear in row {09} column {05} of the S-box.

Type 2: Inverse Substitute Byte Transformation:

The inverse substitute byte transformation, called InvSubBytes, For example, that the

input {2A}produces the output {95}, and the input {95} to the S-box produces {2A}. The inverse

S-box is constructed by applying the inverse of the transformation is followed by taking the

multiplicative inverse in GF(28). The inverse transformation is

where byte d = {05}, or 00000101. We can depict this transformation as follows.

InvSubBytes is the inverse of Sub Bytes, label the matrices in sub Bytes and

InvSubBytes as X and Y, respectively, and the vector versions of constants c and d as C and D,

respectively. For some 8-bit vector B, becomes . We need to show that

. To multiply out, we must show . This becomes

We have demonstrated that YX equals the identity matrix, and the YC = D,so that YC D

equals the null vector.

Type 3: Shift Rows Transformation

Forward and Inverse Shift RowsTransformations:

The forward shift row transformation, called Shift Rows, is depicted in Figure 2.27.

The first row of State is not altered. For the second row, a 1-byte circular left shift is performed.

For the third row, a 2-bytecircular left shift is performed. For the fourth row, a 3-byte circular left

shift is performed. The following is an example of Shift Rows

Figure 2.27 Forward Shift Row Transformation

The inverse shift row transformation, called InvShiftRows, performs the circular shifts

in the opposite direction for each of the last three rows, with a 1-byte circular right shift for the

second row, and as shown in figure 2.28

Figure 2.28 AES Row and Column Operations

Type 4: Mix Columns Transformation

Forward and Inverse Transformations: The forward mix column transformation,

called MixColumns, operates on each column individually. Each byte of a column is mapped

into a new value that is a function of all four bytes in that column. The transformation can be

defined by the following matrix multiplication on State

Each element in the product matrix is the sum of products of elements of one rowand

one column. In this case, the individual additions and multiplications are performed in GF(28).

The MixColumns transformation on a single column of State can be expressed as

The following is an example of MixColumns:

The MixColumns transformation on the first column, we need to show that

For the first equation, we have {02}.{87} =(0000 1110) (0001 1011) =(0001 0101) and

{03}. {6E} = {6E} ({02}. {6E}) = (0110 1110) (1101 1100) = (1011 0010) then

The inverse mix column transformation, called InvMixColumns, is defined by

the following matrix multiplication:

The inverse of Equation need to show

That is, the inverse transformation matrix times the forward transformation matrix

equals the identity matrix. To verify the first column of above Equation.

For the first equation, we have {0E}.{02} =00011100 and {09}.{03} ={09} {09}.{02} =

00001001 00010010 =00011011then

The encryption was deemed more important than decryption for two reasons:

1. For the CFB and OFB cipher modes only encryption is used.

2. AES can be used to construct a message authentication code and for this, only encryption is

used.

Type 5: AddRoundKey Transformation

Forward and Inverse Transformations

In the forward add round key transformation, called AddRoundKey, the 128 bits of State are

bitwise XORed with the 128bits of the round key.

The operation is viewed as a column wise operation between the 4 bytes of a State column and

one word of the roundkey; it can also be viewed as a byte-level operation.

The following is an example of Add Round Key:

The first matrix is State, and the second matrix is the round key.

The inverse add round key transformation is identical to the forward addround key

transformation, because the XOR operation is its own inverse.

The Figure 2.29 is another view of a single round of AES, emphasizing the mechanisms and

inputs of each transformation.

Fig 2.29 AES Key Expansion

Type 6: Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and produces

a linear array of 44 words (176 bytes). This is sufficient to provide a four word round key for the

initial AddRoundKey stage and each of the 10 rounds of the cipher.

Each added word w[i]depends on the immediately preceding word, w[i - 1], and the word

four positions back, w[i - 4]. In three out of four cases, a simple XOR is used. For a word whose

position in the w array is a multiple of 4, a more complex function is used.

Figure 2.30 illustrates the generation of the expanded key, using the symbol g to

represent that complex function. The function g consists of the following sub functions

Figure 2.30 Key Expansion Algorithm

1. RotWord performs a one-byte circular left shift on a word. This means that a input word [B0,

B1, B2, B3] is transformed into [B1, B2, B3, B0].

2. SubWord performs a byte substitution on each byte of its input word, using the S-box.

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0.Thus, the

effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte of the

word. The round constant is different for each round and is defined as Rcon[j] = (RC[j], 0, 0, 0),

with RC[1] = 1, RC[j] = 2 # RC[j-1] and with multiplication defined over the field GF(28). The

values of RC[j] in hexadecimal are

For example, suppose that the round key for round 8 is

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated asfollows:

An AES Example

For this example, the plaintext is a hexadecimal palindrome. The plaintext,key, and resulting

ciphertext are

Results

Table 2.4 shows the expansion of the 16-byte key into 10 round keys. The process is formed

word by word, with each four-byte word occupying one column of the word round-key matrix.

Table 2.4 Expansion of the 16-byte key into 10 round keys

The left-hand column shows the four round-key words generated for each round. The

right-hand column shows the steps used to generate the auxiliary word used in key expansion.

The key itself serving as the round key for round 0.

Next, Table 2.5 shows the progression of State through the AES encryption process.

The first column shows the value of State at the start of a round. For the first row, State is just

the matrix arrangement of the plaintext. The second, third, and fourth columns show the value of

State for that round after the SubBytes, ShiftRows,andMixColumns transformations,

respectively. The fifth column shows the roundkey.

Table 2.5 progression of State through the AES encryption process

 RC4 ALGORITHM

RC4 is an encryption algorithm created in 1987 by Ronald Rivest of RSA Security. It is a

stream cipher (figure 2.31), which means that each digit or character is encrypted one at a time.

A cipher is a message that has been encoded.

A key input is pseudorandom bit generator that produces a stream 8-bit number that is

unpredictable without knowledge of input key.

The output of the generator is called key-stream, is combined one byte at a time with the

plaintext stream cipher using X-OR operation.

Figure 2.31 Stream Cipher Diagram

Example

2.13.1 Key Generation Algorithm

A variable-length key from 1 to 256 byte is used to initialize a 256-byte state vector S,

with elements S[0] to S[255]. For encryption and decryption, a byte k is generated from S by

selecting one of the 255 entries in a systematic fashion, then the entries in S are permuted

again (Figure 2.32).

Initialization of S

The entries of S are set equal to the values from 0 to 255 in ascending orders, a

temporary vector T, is created. If the length of the key k is 256 bytes, then k is assigned to T.

Otherwise, for a key with length(klen) bytes, the first klen elements of T as copied from K and

then K is repeated as many times as necessary to fill T.

// Initialization

for

i = 0 to 255 do S[i] = i;

T[i] = K[i mod klen];

Next, use T to produce the initial permutation of S. Starting with S[0] to S[255], and for

each S[i] algorithm swap it with another byte in S according to a scheme dictated by T[i], but S

will still contain values from 0 to 255:

// Initial Permutation of S

j = 0;

for i = 0 to 255

do

{

j = (j + S[i] + T[i]) mod 256;

Swap(S[i], S[j]);

}

Pseudo random generation algorithm (Stream Generation)

Once the vector S is initialized, the input key will not be used. In this step, for each S[i]

algorithm swap it with another byte in S according to a scheme dictated by the current

configuration of S. After reaching S[255] the process continues, starting from S[0] again

//Stream Generation

i, j = 0;

while (true)

i = (i + 1) mod 256;

j = (j + S[i]) mod 256;

Swap(S[i], S[j]);

t = (S[i] + S[j]) mod 256;

k = S[t];

Figure 2.32 PRGA Algorithm

Figure 2.33 RC4 Algorithm

Encrypt using XOR

To encrypt, XOR the value k with the next byte of plaintext.

Figure 2.34 RC4 Encryption

Decrypt using XOR

To decrypt, XOR the value k with the next byte of ciphertext.

Figure 2.35 RC4 Decryption

Advantage

 It is faster and more suitable for streaming application

 Key Distribution

 Symmetric Key Distribution Using Symmetric Encryption

 In Symmetric key encryption, the two parties to an exchange must share the same

key, and that key must be protected from access by others. Therefore, the term that

refers to the means of delivering a key to two parties who wish to exchange data,

without allowing others to see the key.

 For two parties A and B, key distribution can be achieved in a number of ways, as

follows:

1. A can select a key and physically deliver it to B.

2. A third party can select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party can transmit the

new key to the other, encrypted using the old key.

4. If A and B each has an encrypted connection to a third-party C, C can deliver a

key on the encrypted links to A and B.

 Physical delivery (1 & 2) is simplest - but only applicable when there is personal contact

between recipient and key issuer. This is fine for link encryption where devices & keys

occur in pairs, but does not scale as number of parties who wish to communicate grows.

3 are mostly based on 1 or 2 occurring first.

 A third party, whom all parties trust, can be used as a trusted intermediary to mediate the

establishment of secure communications between them (4). Must trust intermediary not to

abuse the knowledge of all session keys. As numbers of parties grow, some variant of 4

is only practical solution to the huge growth in number of keys potentially needed.

Key Distribution Centre

 The use of a key distribution centre is based on the use of a hierarchy of keys. At a

minimum, two levels of keys are used.

 Communication between end systems is encrypted using a temporary key, often referred

to as a Session key.

 Typically, the session key is used for the duration of a logical connection and then

discarded

 Master key is shared by the key distribution centre and an end system or user and used

to encrypt the session key.

Key Distribution Scenario

 Let us assume that user A wishes to establish a logical connection with B and requires a

one-time session key to protect the data transmitted over the connection. A has a

master key, Ka, known only to itself and the KDC; similarly, B shares the master key Kb

with the KDC (Figure 2.36). The following steps occur:

Figure 2.36 Key Distribution Scenarios

1. An issue a request to the KDC for a session key to protect a logical connection to B. The

message includes the identity of A and B and a unique identifier, N1, for this transaction,

which we refer to as a nonce. The nonce may be a timestamp, a counter, or a random

number; the minimum requirement is that it differs with each request. Also, to prevent

masquerade, it should be difficult for an opponent to guess the nonce. Thus, a random

number is a good choice for a nonce.

2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can

successfully read the message, and A knows that it originated at the KDC. The message

includes two items intended for A:

 The one-time session key, Ks, to be used for the session

 The original request message, including the nonce, to enable A to match this

response with the appropriate request

Thus, A can verify that its original request was not altered before reception by the KDC

and, because of the nonce, that this is not a replay of some previous request. In

addition, the message includes two items intended for B:

 The one-time session key, Ks to be used for the session

 An identifier of A (e.g., its network address), IDA

These last two items are encrypted with Kb (the master key that the KDC shares with B).

They are to be sent to B to establish the connection and prove A's identity.

3. A store the session key for use in the upcoming session and forwards to B the information

that originated at the KDC for B, namely, E (Kb, [Ks || IDA]). Because this information is

encrypted with Kb, it is protected from eavesdropping. B now knows the session key (Ks),

knows that the other party is A (from IDA), and knows that the information originated at

the KDC (because it is encrypted using Kb). At this point, a session key has

been securely delivered to A and B, and they may begin their protected exchange.

However, two additional steps are desirable:

4. Using the newly minted session key for encryption, B sends a nonce, N2, to A.

5. Also using Ks, A responds with f(N2), where f is a function that performs some

transformation on N2 (e.g., adding one).

 Session Key Lifetime

 The distribution of session keys delays the start of any exchange and places a burden

on network capacity. A security manager must try to balance these competing

considerations in determining the lifetime of a particular session key.

 For connection-oriented protocols, one obvious choice is to use the same session key

for the length of time that the connection is open, using a new session key for each

new session.

 If a logical connection has a very long lifetime, then it would be prudent to change

the session key periodically, perhaps every time the PDU (protocol data unit)

sequence number cycles.

 For a connectionless protocol, such as a transaction-oriented protocol, there is no

explicit connection initiation or termination.

 Thus, it is not obvious how often one needs to change the session key. The most secure

approach is to use a new session key for each exchange.

 A better strategy is to use a given session key for a certain fixed period only or for a

certain number of transactions.

UNIT III PUBLIC KEY CRYPTOGRAPHY 9 MATHEMATICS OF ASYMMETRIC
KEY CRYPTOGRAPHY

TOPICS: PUBLIC KEY CRYPTOGRAPHY MATHEMATICS OF ASYMMETRIC KEY

CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler‘s totient function, Fermat‘s
and Euler‘s Theorem - Chinese Remainder Theorem – Exponentiation and logarithm

ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management –
Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve
cryptography.

Prime numbers

PRIME NUMBERS

Prime numbers have divisors of 1 and its number itself.

Prime factorisation
To compute GCD of any two numbers in prime factorization approach we need to
find prime factors of the two numbers.

Fermat Theorem or Fermat’s little theorem

If a belongs to integer , P is a prime number that does not divide a

then a
P

congruent a (mod P)

ie., a
p

≡ a (mod P)

In special case

a
P-1

≡ 1 (mod P) if GCD(a,P)=1 . where a and p are coprime.

It is mainly used to solve modular exponentiation.

Eg. Compute the value of 2
10

mod 11

2
10

≡ 1 (mod 11)

Eg. Compute the value of 2
340

mod 11
340

)=(2
10 34

) mod 11

=1
34

mod 11=> 1

//Proof.
Take division algorithm
a = p.q + r where can be 0<= r <= p-1

let g.c.d (a,p) ie coprime
a is not divisible by p hence 1<= r <=p-1
fact says that if a leaves remainder r where 1<= r<= p-1 on dividing by p then ka,1<=
k<= p-1 also leaves remainders from 1 to p-1.

(2

Means
If a,2a,3a,…(p-1)a surely gives remainders 1,2,3,…(p-1)
So if multiply
a*2a*3a*…*(p-1)a ≡ 1.2.3…(p-1) (mod p)

hence a
p-1

.(p-1)! ≡ (p-1)! (mod p)
which returns

a
p-1

≡ 1 (mod p) [as mod p cannot divide (p-1)!]
hence proved. //

Eg.6
10

mod 11

Sol. 6
11-1

mod 11

= 1 [as per theorem]

Eg. 5
15

mod 13

=(5
2

mod 13) * (5
13

mod 13)

=(25 mod 13) * 5
=(12 * 5) mod 13
=60 mod 13
=8.

Euler’s theorem

If n and a are coprime positive intergers

then a
phi(n)

≡1 (mod)n
In this theorem phi(n) = n-1.
n is prime number and phi(n) is Euler‘s phi function.
Euler‘s phi function is also called Euler‘s totient function and hence named as
Euler‘s totient theorem or Euler‘s theorem.

Euler’s phi function or Euler’s totient function(

Euler‘s phi function phi (n) returns the numbers of integers from 1 to n,that are relatively
prime to n.
The phi function is computed phi(n) using various methods. They are

1.If n is a prime number then phi (n) = n-1
2.If n is a composite number then

2.1 Find the prime factors of that number and compute the phi function value as
used in step 1.otherwise

2.2.Find prime powers (p
n
)of the given number n. For computing the phi value of

prime powers we have to use the formula

(p
a

– p
a-1

).

Eg. Compute Eulers‘s totient function for the values 3,8
1. phi(3)=3-1=2
2. phi(8)= 2

3

= 2
3

-
3-1 a

2 (since p – p
a-1 3 2 =

) =2 - 2 8–4=4

Primality Testing Methods

Primality testing method is a method to find and to prove whether the given number
is prime number.

1. Naive Algorithm:

Naïve Algorithm is used to divide the given input number P by all the integers
starting from 2 to root of P – 1
If any one of them is a divisor, then the input number P is not a prime. Otherwise, it
is considered as a prime number

Algorithm:

1. Pick any integer P that is greater than 2

2. Try to divide P by all integers starting from 2 to the square root of P

3. If P is divisible by any one of these integer, we can conclude that P is a

composite

4. Else P is a prime number

Example:
Find the primality test for the number 100 using naïve algorithm.
1. P=100

2. 2,3,4,5,6,7,8,9

3. Case 1: 100/2 = 50(composite)

Therefore, 100 is not a prime number.

2. Fermat’s Primality Test:

If P is a prime and P does not divide a, which is a natural number then

a
P-1

≡ 1(mod P)

Example:

Check whether the given number 12 is prime number or not using Fermat‘s
theorem

Given P = 12
To check whether 12 is prime number or not, we have to check

a
P-1

≡ 1(mod P)
a

12-1
≡ 1(mod 12)

a
11

≡ 1(mod 12)
Where 1 <= a < 12

We have to calculate a
11

mod 12
If it is equal to 1, then it is called prime number. Otherwise, it is called

composite number.
Consider, a = 5

5
11

≡1 (mod 12)

(i.e) 5
11

mod 12=5
It is not equal to 1
Therefore it is not a prime number

3. Miller – Rabin Primality Test

Function Miller-Rabin (x)
w

x-1 = (2)y //x is the input number for primality test

select a randomly in the range [2, (x-1)]
y

Z = a mod x
if Z congruent 1 (mod x) then return prime
for i = 1 to w – 1
{
If Z congruent -1 (mod x) then return prime

2
Z = Z mod x
}
return composite

Example:
Find the primality for 7
x = 7 1
As per algorithm, x – 1 = 7 – 1 = 6 = 2 x 3
x = 7, w = 1, y = 3

y
Z = a mod 7
a = 2 (randomly), where [1<=a<=x-1]

3
Z = 2 mod 7 = 1
Value of Z = 1, 7 is concluded as prime number

Chinese Remainder Theorem

States that when the moduli of a system of linear congruencies are pairwise prime, there
is a unique solution of the system modulo, the product of the moduli.

x ≡ a (mod m).
Chinese mathematician Sun Tsu Suan-Ching asking the following problem:

―There are certain things whose number is unknown. When divided by 3, the
remainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the
remainder is 2. What will be the number of things?

(Otherwise) Mangos are divided into groups consisting of 3 mangos in each group
remaining is 2. If the mangos are divided into groups consisting of 5 mangos in each
group remaining 3.

If mangos are divided into groups consisting of 7 mangos in each group
remaining 2.Totally how many mangos are available?

x ≡ a1 mod(m1)

x ≡ a2 mod(m2)

x ≡ a3 mod(m3)

x = Σ(aiMiyi) = (a1 M1 y1 + a2 M2 y2 + a3 M3 y3) mod M

Let M1, M2, …, Mn be (pairwise) relatively prime numbers. Then the system:
Step1: Calculate M

M = m1*m2*m3 … mn.

Step 2: Calculate Mk =M/mk

Step 3: Find Inverse of MK (ie)yk

Find the X using CRT

x ≡ 2 mod(3)

x ≡ 3 mod(5)

x ≡ 2 mod(7)

a1 = 2, a2 = 3, a3 = 2; m1 = 3, m2 = 5, m3 = 7;

i. M = m1 x m2 x m3 = 105.

ii. For each equation calculate

Mk =M/mk (ie) M1 = M / m1 = 105 / 3 = 35

M2 = M / m2 = 105 / 5 = 21

M3 = M / m3 = 105 / 7 = 15

iii. inverse of Mk (ie) yk

inverse of M1 (ie) y1 = 35
-1

mod (3) = 35
3-2

mod (3) =2 [since Fermat’s inverse
theorem or easy inverse method like 35 x ? mod 3=1 (ie) 2]

y2 =1 ; y3 =1

X = Σ(aiMiyi) = (a1 M1 y1 + a2 M2 y2 + a3 M3 y3) mod M
X =[(2 x 35 x 2) + (21 x 3 x 1) + (2 x 15 x 1)] mod 105

= (140 + 63 + 30) mod 105
=233 mod 105

X =23

Exponentiation

Exponentiation is a type of operation where two elements are used in which one
element is considered as a base element and another as an exponential element.

For example, b is an example of exponential operation where x is a base element
and y is an exponential element.

When y is a positive integer, exponentiation is performed in a similar way to repeated
multiplication is performed.

Modular exponentiation is a type of exponentiation in which a modulo division
operation is performed after performing an exponentiation operation.

For example, (x

y
mod n), where n is an integer number.

The exponentiation is an important concept discussed in many cryptographic
algorithms such as RSA, Diffie-Hellman, Elgamal, etc.,

Example:1
11

7
mod 13

11
2

mod 13 = 121 mod 13 = 4

11
4

mod 13 = (11
2

mod 13 x 11
2

mod 13) mod 13

= (4 x 4) mod 13
= 16 mod 13
= 3

11
7

mod 13 = (11
4

mod 13 x 11
2

mod 13 x 11
1

mod 13) mod 13

= (3 x 4 x 11) mod 13
= (132) mod 13
= 2

Find the result of 2
90

mod 13.

Solution:

Step 1: Split x and y into smaller parts using exponential rules as shown below:

2
90

mod 13 = 2
50

x 2
40

Step 2: Calculate mod n for each part

2
50

mod 13 = 112589990684

2
40

mod 13 = 1099511627776 mod 13 = 3
S

9
te
0
p 3: Use mod

5
u
0
lar m

4
u
0

ltiplication properties to combine these 2 parts, we have
2 mod 13 = (2 x 2) mod 13

= (2
50

mod 13 x 2
40

mod 13) mod 13

= (4 x 3)mod 13 = (12) mod 13 = 12

Logarithms or Indices

• Discrete logarithms are logarithms defined with regard to multiplicative cyclic
groups. If G is a multiplicative cyclic group and g is a generator of G, then from
the definition of cyclic groups, we know every element h in G can be written as

x
g for some x. The discrete logarithm to the base g of h in the group G is defined

to be x .

• For example, if the group is Z5
*
, and the generator is 2, then the

4
discrete logarithm of 1 is 4 because 2 ≡ 1 mod 5.

• Input: p - prime number, a- primitive root of p, b - a residue mod p.

• Goal: Find k such that a
k

2
= b(mod p). (In other words, find the position of y in

q-1
the large list of {a, a , . . . , a }.

• 14 is a primitive root of 19.

• For example L14(5) = 10 mod 19, because 14
10

= 5(mod 19).

• the inverse problem to exponentiation is to find the discrete logarithm of a

number modulo p

x
that is to find x where a = b mod p

• written as x=loga b mod p or x=inda,p(b)

• if a is a primitive root then always exists

ASYMMETRIC KEY CIPHERS

PUBLIC KEY CRYPTOGRAPHY:

Principles of public key cryptosystems

The concept of public key cryptography evolved from an attempt to attack two of the
mostdifficult problems associated with symmetric encryption. Key distribution under
symmetric key encryption requires either

(1) Two communicantsalready share a key, which someone has been distributed to them

(2) The use of a key distribution center.

• Digital signatures.

Characteristics of Public key cryptosystems

Public key algorithms rely on one key for encryption and a different but related key for
decryption.These algorithms have the following important characteristics:

• It is computationally infeasible to determine the decryption key given only the
knowledgeof the cryptographic algorithm and the encryption key.

•

In addition, some algorithms, such as RSA, also exhibit the following characteristic:

• Either of the two related keys can be used for encryption, with the other used
for decryption.

INGREDIANTS OF PUBLIC KEY CRYPTOGRAPHY

1. Plaintext: This is the readable message or data that is fed into the algorithm as input.

2. Encryption algorithm: The encryption algorithm performs various transformations on the
plaintext.

3. Public and private keys: This is a pair of keys that have been selected so that if one is used
for encryption, the other is used for decryption. The exact transformations performed by the
algorithm depend on the public or private key that is provided as input.

4. Ciphertext: This is the scrambled message produced as output. It depends on the plaintext
and the key. For a given message, two different keys will produce two different cipher texts.

5. Decryption algorithm: This algorithm accepts the ciphertext and the matching key and
produces the original plaintext.

Encryption:

The essential steps are the following:

1. Each user generates a pair of keys to be used for encryption and decryption
of messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private.

3. If A wishes to send a confidential message to B, A encrypts the message using
B"s public key.

4. When B receives the message, it decrypts using its private key.

With this approach(Fig), all participants have access to public keys and private keys are generated
locally by each participant and therefore, need not be distributed.

Fig . Public Key Cryptography For Authentication
Let the plaintext be X=[X1, X2. X3, . .,X] where m is the number of letters in some finite

alphabets. Suppose A wishes to send a message to B.

B generates a pair of keys: a public key KUb and a private key KRb KRb is known only to

B, whereas KUb is publicly available and therefore accessible by A.

With the message X and encryption key KUb as input, A forms the cipher text Y=[Y1, Y2, Y3›

. Y n] •

i.e., Y=EKUb(X)

The receiver can decrypt it using the private key KRb i.e., X=D KRb(Y)

The other approach (using sender―s private key for encryption and sender―s public key for

decryption) will provide authentication which is illustrated in the following diagram(Fig 2.26).

Fig .Private Key Cryptography For Authentication

The encrypted message serves as a digital signature. It is important to emphasize that the
encryption process just described does not provide confidentiality.

P"**z'te“

"“'
nFrn p1J‹fin gâ›rfthnfl

Differences between public key Encryption and conventional Encryption

. The same -algorithm u'irh the same kcv is

1 . Ono uJ urilhm ir used for «ncmplion anJ a rcJared

used for enczygtiun and dcc ption. alyurirhm for dcc 'ption all h a pair of I:c\'.unc inr

*. The sender and receiver must share h tn C ptiun and one for decryption.

al gorilhrn and the key. *. The sender and ru-cei›cr must cach have one of the

/'Vce‹Jed fnr SeciJriiy.-
matched pcir oi kcTz (n 3t lhc same unc).

1. The lk€'Y fTtMSt bfi kCpt 5tCF£:I. ' " ―‗‖"'! -'

2. Tr rnusl be irnpnssihlc or at lczst impractical ‹+ 1. One of the la'O keys must be kept secret.

decipher a message il the key i‹ kept secret. *. JI must be impossible or al l«ast impractical r‹1

3. K riov•'1cJyc 3f the algorithm pJus sample: of decipher a message if ‹one of lhc kcYs is kz'j•r sccrcl.

cipherrc xt mum be insufficient to dv\crrninc 3. Knowledge ‹›f the algori\km plus unc oi rhc kc}z

the key. plus sampler of ciphertext melt be irlsufficicnl m

 determine the othe r key'.

Public Key Cryptography for Security

There is some source A that produces a message in plaintext, X —— [X 1, +2, . ,X]. The
elements of X are letters in some finite alphabet.

The message is intended for destination B. B generates a related pair of keys: a public

key, PUT, and a private key, PRb PRtis known only to B, whereas PL/his publicly available and
therefore accessible by A. With the message and the encryption key PL/,as input, A forms the
ciphertext Y =[Y 1. Yo. . ,YN]

Y= E(PUB,X)

Figure.PubIic-Key Cryptosystem: Secrecy

The intended receiver, in possession of the matching private key, is able to invert
the transformation:

X—— D (PRd›

An adversary, observing Y and having access to PUT, but not having access to PRbor X,
must attempt to recover X and/or PRb It is assumed that the adversary does have knowledge of
the encryption (E) and decryption (D) algorithms.

If the adversary is interested only in this particular message, then the focus of effort is to

recover A by generating a plaintext estimate X *. Often, however, the adversary is interested in

being able to read future messages as well, in which case an attempt is made to recover PRtby

generating an estimate PRb.

Y = E(PRa1)

X = D(PUa1 Y)

In this case, A prepares a message to B and encrypts it using A‘s private key before
transmitting it. B can decrypt the message using A‘s public key. Because the message was
encrypted using A‘s private key, only A could have prepared the message.

Therefore, the entire encrypted message serves as a digital signature. In addition, it is

impossible to alter the message without access to A‘s private key, so the message is
authenticated both in terms of source and in terms of data integrity.

Figure .Public-Key Cryptosystem: Authentication

It is important to emphasize that the encryption process depicted in above Figures does

not provide confidentiality. That is, the message being sent is safe from alteration but not from
eaves dropping. This is obvious in the case of a signature based on a portion of the message,
because the rest of the message is transmitted in the clear. Even in the case of complete
encryption, as shown in Figure13, there is no protection of confidentiality because any observer
can decrypt the message by using the sender‘s public key.

Authentication and Secrecy

It is, however, possible to provide both the authentication function and confidentiality by a
double use of the public-key scheme (Figure 2.29):

Ciphertext Z = EKUb[EKRa (X)]

Plaintext X = EKUa[EKRb (Y)]

Figure .PubIic-Key Cryptosystem: Authentication and Secrecy

Initially, the message is encrypted using the sender―s private key. This provides the digital

signature. Next, we encrypt again, using the receiver―s public key. The final ciphertext can be

decrypted only by the intended receiver, who alone has the matching private key. Thus

confidentiality is provided.

Applications for Public-Key Cryptosystems

We can classify the use of public-key cryptosystems into three categories

1. Encryption /decryption: The sender encrypts a message with the recipient‘s public key.

2. Digital signature: The sender ―signs" a message with its private key. Signing is achieved

by a cryptographic algorithm applied to the message or to a small block of data that is a
function of the message.

3. Key exchange: Two sides cooperate to exchange a session key. Several different
approaches are possible, involving the private key(s) of one or both parties.

Requirements for public key cryptography

• It is computationally easy for a party B to generate a pair [KUb ,KRb]

• It is computationally easy for a sender A, knowing the public key and the message to be

encrypted M, to generate the corresponding ciphertext: C=EKUb(M).

• It is computationally easy for the receiver B to decrypt the resulting ciphertext using
the private key to recover the original message:

M = DKRb (C) = DKRb [E KUb (M)]

• It is computationally infeasible for an opponent, knowing the public key KUb, to

determine the private key KRb
• It is computationally infeasible for an opponent, knowing the public key KUb, and a

ciphertext C, to recover the original message M.

• The encryption and decryption functions can be applied in either order:

M = EKUb [D KRb (M) = DKUb [E KRb (M)]

Public-Key Cryptanalysis

Attack Type 1 :

The public-key encryption scheme is vulnerable to a brute-force attack; therefore use
large key.The tradeoff is that makes use of some sort of invertible mathematical function.

Therefore choose key size such that the brute force attack is not possible, at the same
time should not be too slow for general use.

Attack type 2:

Attack is of other types (i.e.) given the algorithm and the public key deduce private key. This
method has not been successful till date.

Attack Type 3:

A probable-message attack. When a confidential message is to be transmitted using

DES,the attacker will find all 2
56

possible keys using the public key and discover the encrypted
key by matching the generated cipher text and the actual cipher. This attack can be avoided by
appending some random bits to the message.

RSA ALGORITHM

It was developed by Rivest, Shamir and Adleman. This algorithm makes use of an

expression with exponentials. Plaintext is encrypted in blocks, with each block having a binary

value less than some number n.

The RSA scheme is a cipher in which the plaintext and cipher text are integers between 0

and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than

2 1024

That is, the block size must be less than or equal to Iog 2 (n); in practice, the block size is
k

 its,
where 2
< n < 2

k 1
* . Encryption and decryption are of the following form, for some plaintext

block M and ciphertext block C:
e

c = M
d

mod n

e d e
M = C mod n = (M) mod n = M * mod n

Both the sender and receiver know the value of n. the sender knows the value of e and
only the receiver knows the value of d. thus, this is a public key encryption algorithm with a public
key of KU = {e, n) and a private key of KR = {d, n}. For this algorithm to be satisfactory for public
key encryption, the following requirements must be met:

1. It is possible to find values of e, d, n such that M
ed

= M mod n for all M < n.

2. It is relatively easy to calculate M
e

and C
d

for all values of M < n.

3. It is infeasible to determine d given e and n.

Ca en a•• ml •› F— ! › i •J— 1)

Sc loci intcgc r c

Calcula re d

Fig . The RSA Algorithm

Let us focus on the first requirement. We need to find the relationship of the form:

ed
M = M mod n

Given two prime numbers p and q and two integers, n and m, such that n=pq and 0<m<n, and
arbitrary integer k, the following relationship holds

k6 (n) +1 k(p-1)(q-1) +1

m mod n

where 6(n) — Euler totient function, which is the number of positive integers less than n
and relatively prime to n. we can achieve the desired relationship, if

This is equivalent to saying:

ed = k6(n)+1

ed - 1 mod 6(n)
1

d = e- mod 6(n)

That is, e and d are multiplicative inverses mod 6(n). According to the rule of modular arithmetic,
this is true only if d (and therefore e) is relatively prime to 6(n). Equivalently, gcd(6(n), d) = 1.

We are now ready to state the RSA scheme. The ingredients are the following:
p, q, two prime numbers (private, chosen)
n —— pq (public, calculated)

e, with gcd(6 (n), e) = 1; 1 <e < 6 (n) (public, chosen)

d-Ke-1 (mod 6 (n)) (private, calculated)

The steps involved in RSA algorithm for generating the key are

• Select two prime numbers, p = 17 and q = 11.

Calculate n = p*q = 17*11 = 187

Calculate 6(n) = (p-1)(q-1) = 16*10 = 160.

Select e such that e is relatively prime to 6(n) = 160 and less than 6(n); we choose

Determine d such that de K 1 (mod 160) and d < 160.The correct value is d —— 23,
because 23 • 7 = 161 = (1 • 160) + 1; d can be calculated using the extended Euclid‘s
algorithm

The resulting keys are public key PU —— {7, 187} and private key PR —— {23, 187}.

The example shows the use of these keys for a plaintext input of M—— 88. For encryption,
we need to calculate C = 887 mod 187.

Exploiting the properties of modular arithmetic, we can do this as follows.

88
7

mod 187 = [(88
4

mod 187) • (88
2

mod 187)x (88
1

mod 187)] mod 187
881 mod 187 = 88
88

2
mod 187 = 7744 mod 187 = 77

88
4

mod 187 = 59,969,536 mod 187 = 132

88
7

mod 187 = (88 • 77 • 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M —— 1123 mod 187:

11
23

mod 187 = [(11
1

mod 187) • (11
2

mod 187) • (11
4

mod 187)• (11‘ mod 187) •

(11 mod 187)] mod 187
11 mod 187 = 11

mod 187 = 121
11 mod 187 = 14,641 mod 187 = 55

11
8

mod 187 = 214,358,881 mod 187 = 33

11
23

mod 187 = (11 • 121 • 55 • 33 • 33) mod 187 = 79,720,245 mod 187 = 88

Fig . Example of RSA Algorithm

Security of RSA:

There are three approaches to attack the RSA:
1. Brute force: This involves trying all possible private keys.
2. Mathematical attacks: There are several approaches, all equivalent in effort to

factoring the product of two primes.
3. Timing attacks: These depend on the running time of the decryption algorithm.

Type 1 RSA Attack: Defense to Brute Force attack:

Use large key space (i.e) large number of bits in e and d the better secured but problems are,

1. Increases computing power
2. Factoring Problem

Type 2 RSA Attack: Mathematical Attack:

Mathematical approach takes 3 forms:

• Factor n = p*q, hence find 6(n) and then d.

• Determine 6(n) directly without determining p and q and find

1
d. d=e- (mode (n))

• Find d directly, without first determination 6(n).

Type 3 RSA Attack: Timing attacks:

This attack is learning for 2 reasons

1. Comes completely from unexpected direction
2. Cipher text only attack

Attack:

If the system does lastly the modular multiplication in majority of cases but takes longer
time in few cases. The average is also longer.

The attack is done bit by bit
Start with left most bit b„
Suppose first j bits are known.

For a given cipher text the attacker completes the j iteration.
If the bit is set then d<- (d * a) mod n.

Methods to overcome Timing attacks:

1. Constant exponentiation time: All exponentiations take the same amount of time before

returning a result. This is a simple fix but does degrade performance.

2. Random delay: Better performance could be achieved by adding a random delay to the
exponentiation algorithm to confuse the timing attack.

3. Blinding: Multiply the cipher text by a random number before performing exponentiation.
This process prevents the attacker from knowing what cipher text bits are being processed
inside the computer and therefore prevents the bit-by-bit analysis essential to the timing
attack.

KEY MANAGEMENT

There are two uses of public key cryptography regarding the issues of key distribution. They are
1. Distribution of public keys
2. Use of public key encryption to distribute secret keys

Distribution of Public Keys

Several techniques have been proposed for the distribution of public keys. Virtually all
these proposals can be grouped into the following general schemes:

a) Public announcement
b) Publicly available directory
c) Public-key authority
d) Public-key certificates

(a) Public Announcement of Public Keys

In public-key encryption the public key is public. Thus, if there is some broadly
accepted public-key algorithm, such as RSA, any participant can send his or her public key to
any other participant or broadcast the key to the community at large as shown in Figure 2.32.

Figure. Uncontrolled Public-Key Distribution
Disadvantage:

Anyone can forge such a public announcement. That is, some user could pretend to
be user A and send a public key to another participant or broadcast such a public key.

Until such time as user A discovers the forgery and alerts other participants, the forger
is able to read all encrypted messages intended for A and can use the forged keys for
authentication.

(b) Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available
dynamic directory of public keys. Maintenance and distribution of the public directory would
have to be the responsibility of some trusted entity or organization as shown in Figure 2.33.
Such a scheme would include the following elements:

1. The authority maintains a directory with a (name, public key} entry for each participant.

2. Each participant registers a public key with the directory authority. Registration would
have to be in person or by some form of secure authenticated communication.

3. A participant may replace the existing key with a new one at any time, due to either
the key has been used for a large amount of data, or the corresponding private key
has been compromised in some way.

4. Participants could also access the directory electronically. For this purpose, secure,
authenticated communication from the authority to the participant is mandatory

Figure Public-Key Publications

Vulnerabilities:

6 Tamper the records of public key directories.

6 If an adversary succeeds in obtaining or computing the private key of the directory authority,
the adversary could authoritatively pass out counterfeit public keys and impersonate any
participant and eavesdrop on messages sent to any participant.

(c) Public-Key Authority

Stronger security for public-key distribution can be achieved by providing tighter control
over the distribution of public keys from the directory. A typical scenario is illustrated in Figure
2.34.

As before, the scenario assumes that a central authority maintains a dynamic directory of
public keys of all participants. In addition, each participant reliably knows a public key for the
authority, with only the authority knowing the corresponding private key. The following steps
(matched by number to Figure 2.34) occur:

Figure .PubIic-Key Distribution Scenario

r

1. A sends a time stamped message to the public-key authority containing a request for the
current public key of B.

2. The authority responds with a message that is encrypted using the authority‘s private key,

PRauthT hus, A is able to decrypt the message using the authority's public key. Therefore, A is
assured that the message originated with the authority. The message includes the following:

• B‘s public key, PL/,which A can use to encrypt messages destined for B

• The original request, to enable A to match this response with the corresponding
earlier request and to verify that the original request was not altered before reception
by the authority

• The original timestamp, so A can determine that this is not an old message from the
authority containing a key other than B‘s current public key

3. A stores B's public key and also uses it to encrypt a message to B containing an identifier
of A (IDA) and a nonce (/\/1), which is used to identify this transaction uniquely.

4,5 B retrieves A‘s public key from the authority in the same manner as A retrieved B‘s
public key.

6.B sends a message to A encrypted with K aand containing A‘s nonce (/V1) as well as a

new nonce generated by B (/V2) Because only B could have decrypted message (3), the

presence of /V1 in message (6) assures A that the correspondent is B.

7. A returns 2. encrypted using B‘s public key, to assure B that its correspondent is A.

Thus, a total of seven messages are required. However, the initial four messages
need be used only infrequently because both A and B can save the other‘s public key for
future use, a technique known as caching.

Disadvantages:

• Bottle neck at the authority.

(d) Public-Key Certificates

The scenario of Figure 2.35 is attractive, yet it has some drawbacks. The public-key
authority could be somewhat of a bottleneck in the system, for a user must appeal to the
authority for a public key for every other user that it wishes to contact. As before, the directory
of names and public keys maintained by the authority is vulnerable to tampering.

An alternative approach is to use certificates that can be used by participants to
exchange keys without contacting a public-key authority.

A certificate consists of a public key plus an identifier of the key owner, with the whole
block signed by a trusted third party.

A user can present his or her public key to the authority in a secure manner, and obtain a
certificate. The user can then publish the certificate. Anyone needed this user's public key can
obtain the certificate and verify that it is valid by way of the attached trusted signature.

1. Any participant can read a certificate to determine the name and public key of the
certificate‘s owner.

2. Any participant can verify that the certificate originated from the certificate authority and is not
counterfeit.
3. Only the certificate authority can create and update certificates.

These requirements are satisfied by the original proposal in. Denning added the following
additional requirement:
4. Any participant can verify the currency of the certificate.

A certificate scheme is illustrated in Figure. Each participant applies to the certificate
authority, supplying a public key and requesting a certificate.

Public-Key distribution of Secret Keys using public key cryptography:

 Use previous methods to obtain public-key

 Can use for secrecy or authentication

 Public-key algorithms are slow so usually want to use private-key encryption to protect
message contents, Hence need a session key

a) Simple
b) Secret key distribution with confidentiality and authentication

c) Hybrid
d) Diffie Hell man key exchange

(a) SimpIe Secret Key Distribution:

1. A generates a public/private key pair (KUa,KRa) and transmits a message to B consisting of

KUa and an identifier of A,IDA.

2. B generatesa secret key , and transmits it to A, encrypted with A‘s public key.
3. A computes DKRa [EKUa [s]] to recover the secret key. Because only A can decrypt the
message, only A and B will know the identity of Ks -

4. A discards KUaand KRa and B discards KUa•

Advantages:

• No keys exist before the start of the communication no key exist after the completion of
communication

• Secure from eaves dropping

Disadvatages:

• Replay attack

• Meet in the middle attack

• A generates a public/private key pair {PUa, PRaj and transmits a message intended for
B consisting of PL/aand an identifier of A, IDA.

• D intercepts the message, creates its own public/private key pair \PUd, PRO and
transmits PUs 0 0 IDA to B.

• B generates a secret key, Ks, and transmits E(PL/s, Ks).

• D intercepts the message and learns Ks by computing D(PRd, E(PL/d, Ks)).

• D transmits E(PL/a, Ks) to A.

(b) Secret Key Distribution with Confidentiality and Authentication:

1. A uses B‘s public key to encrypt a message to B containing an identifier of A (ID A) and

a nonce (N1),which is used to identify this transaction uniquely.

2. B sends a message to A encrypted with KUa and containing A‘s decrypted message

(1) ,the presence of N1 in message (2) assures A that correspondent is B.

3. A returns Ne. encrypted using B‘s public key, to assurer B that its correspondent is A.

4. A select a secret key s find sends M = EKUb[EKRa[Ks]] TO B. Encryption of this message

with B‘s public key ensures that only B can read it.;encryption with A‘s private key ensures

that only A could have sent it.

5. Computes DxUa[DKRb[M]]to recover thesecret key.

Figure . Public Key Distribution of secret Keys
Advantages:

Scheme ensures both confidentiality and authentication in the exchange of a secret key.

(c) A Hybrid Scheme

Public-key scheme isused to distribute the master keys. The following rationale is provided
for using thisthree-level approach:

1. Performance:

The public key encryption is used occasionally to update the master key between uses
and KDC

When the distribution of session keys is done by public key encryption the performance
degrades because of high computation needed by P.K.E.

2. Backward compatibility: The hybrid scheme is easily overlaid on an existingKDC
scheme with minimal disruption or software changes.

The addition of a public-key layer provides a secure, efficient means of distributingmaster keys.

DIFFIE HELLMAN KEY EXCHANGE

The purpose of the algorithm is to enable two users to exchange a key securely that can
then be used for subsequent encryption of messages. The Diffie-Hellman algorithm depends for
its effectiveness on the difficulty of computing discrete logarithms.

First, we define a primitive root of a prime number p as one whose power generate all the

integers from 1 to (p-1) i.e., if ‗a‘ is a primitive root of a prime number p, then the numbers
a mod p, a

2
mod p, ... ap

1
mod p

-

are distinct and consists of integers from 1 to (p-1) in some permutation.

For any integer ‗b‘ and a primitive root ‗a‘ of a prime number ‗p‘, we can find a unique

exponent ‗i‘ such that

b - a' mod p where 0 i 1 (p-1)

The exponent ‗i‘ is referred to as discrete logarithm.

The Alqorithm

Figure 2.37 summarizes the Diffie-Hellman key exchange algorithm.There are publicly

known numbers: a prime number ‗q‘ and an integer a that is primitive root of q. suppose users A
and B wish to exchange a key. User A selects a random integer XA‹ q and computes YA = a XA
mod q.

A lice and 8ob stinre u

prime numher § and en
integer o. szsch that a < g' azid

Fig.Diffie Hellman Key Exchange
Similarly, user B independently selects a random integer XB< q and computes YB a XB

mod q. Each side keeps the X value private and makes the Y value available publicly to the other

side.

User A computes the key as

User B computes the key as

K = (YB) mod q and

K = (YA)
XB

mod q

These two calculations produce identical results.
K= (YB) mod q

XB
= (a mod q) mod q

XB
= (a

— (a)

)mod q
XB

mod q

XB
= (a mod q)

XB
mod q

= (Y A) mod q

Global Public Elements
prime number
a<q and a is the primitive root of q

User A Key generation
Select XA Xy< q
Calculate public Yr YA mod q

User B Key generation
Select XB XB‹ q
Calculate public YB YB=

XB
mod q

Generation of secret key by User A
K = (YB) mod q

Generation of secret key by User B
K = (YA)

XB
mod q

The result is that two sides have exchanged a secret key. The security of the
algorithm lies in the fact that, while it is relatively easy to calculate exponentials modulo a
prime, it is very difficult to calculate discrete logarithms.

Key Exchanqe Protocols

Figure .Diffe-Hellman Key Exchange

mod 353 = 40 *

The protocol depicted in figure 2.38 is insecure against a man-in-the-middle attack. Suppose Alice
and Bob wish to exchange keys, and Darth is the adversary. The attack proceeds as follows:

1. Darth prepares for the attack by generating two random private keys XD1 and XD2 and then
computing the corresponding public keys YD1 and
Yo2-2. Alice transmits YA to Bob.
3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates = (YA)

X
D mod q.

X
4. Bob receives YD1 and calculates K1 = (YD1) B mod q.
5. Bob transmits XA to Alice.

6. Darth intercepts XA and transmits YD2 to Alice. Darth calculates 1 " (YB)
X

D1 mod q.

7. Alice receives Yo2 and calculates 2' (YD2)
X

mod q.

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share
secret key K1 and Alice and Darth share secret key All future communication between Bob and
Alice is compromised in the following way:

1. Alice sends an encrypted message M: E(2. M).
2. Darth intercepts the encrypted message and decrypts it, to recover M.
3. Darth sends Bob E(K1. M) or E(K1. M‘), where M‘ is any message

Example:

Key exchange is based on the use of the prime number q —— 353 and a primitive root of 353, in
this case a = 3. A and B select secret keys EA—— 97 and XB—— 233, respectively.

Each computes its public key:
7

A computes YA 3 mod 353 = 40.

B computes YB—— 3
233

mod 353 = 248.

After they exchange public keys, each can compute the common secret key:
A computes K —— (Yy) mod 353 = 248 mod 353 = 160.

B computes K —— (Y A)
XB 2 3

mod 353 = 160.

ELLIPTIC CURVE ARITHMETIC

Elliptic Curves:
An elliptic Curve is a Cubic equation of the form

2 3
Y +axy+by = x

2
+cx +dx +e

Where a,b,c,d and e are real numbers

-E(1.11,-2.64)

(.11,2.64)

IP - R - (-1.11, 2.64).

99

/'(-J.35,-1.86)

g (-0.1, 0.836) -

/t (3.89, 5.62)

J2 (3.89, -5.62)

/' + g =/t = (3.89, -5.62).

2J,

A special addition operation is defined over elliptic curves and with the inclusion of a point
―0" called point at infinity.

If three points are on a line intersecting an elliptic curve, then their sum is equal to this

point at infinity O (which acts as the identity element for this addition operation)

Elliptic Curves over Galois field:

3
An elliptic group over the Galois Field Ed(a,b) is obtained by computing x +ax+b mod p

for 0ñ xñ p. The constants a&b are non-negative integers smaller than the prime number p must
satisfy the condition.

3 2
4a + 27b mod p 1 0

For each value of x, one needs to determine whether or not it is a quadratic
residue. If not then the point is not in the elliptic group Ed (a,b)

Addition and multiplication operation over elliptic groups:

Let the points P = (x1. y1) and Q = (X ,Y2) be in the elliptic group Ed (a,b) and O be the point at

infinity.

The rules for addition over the elliptic group Ed (a,b) are:
1. P+O=O+P=P

2. If x2 = x1 and y2 = -y1, that is P = (x1,y1) and Q = (X2,Y2)' (x1.-y1)' -P Then P+Q = O

3. If Q I -P ,then their sum P+Q =(x3.y3) is given by

and
y2 —+ j p, ,;;

3x + a

Elliptic Curve Encryption:

Elliptic curve cryptography can be used to encrypt the plain text message M, into

ciphertext. The plain text message M is encoded into a point PM from the finite set of points in the
elliptic group, Ed(a,b).

The first step consists in choosing a generator point, G c Ed(a, b) , such that the smallest value
of n for which nG = o is a very large prime number.

The elliptic group Ed(a,b) and the generator point G are made public.

Each user select a private key,nA< n and compute the public key PA as PA = nAG

To encrypt the message point PM for Bob (B),

Alice (A) choses a random integer k and compute the ciphertext pair of points c

Using Bob‘s public key PB

Pc' [(KG),(PM B)]

After receiving the ciphertext pair of points, Pc. Bob multiplies the firstpoint,(KG) with his private

key nB and then adds the result to the second point in the ciphertext pair of points (PM + KPB)

(PM + B) — [nB(KG)]= (PM+KnBG)-[nB(KG)]=PM

which is the plaintext point, corresponding to the plaintext message M.

Only Bob knowing the private key nB. can remove nB(KG) from the second point of the ciphertext

pair of point, i.e (PM + KGB), and hence retrieve the plaintext information PM

Elliptic curve cryptography

Security of ECC:

1. The cryptographic strength of elliptic curve encryption lies in the difficulty for a crypt analyst
to determine the secret random number k from KP & P itself.

2. The fastest method to solve this problem (known as elliptic curve logarithm problem is the
pollard factorization method).

3. The computational complexity for breaking the elliptic curve cryptosystem, using the pollard

method is 3.3 x 10
10

MIPS years for an elliptic curve key size of only 150bits.

4. For comparison the fastest method to break RSA, using General Number Field Sieve method

to factor the composite integer n in to the two prime p & q requires 2x10
11

MIPS years for a 768

bit RSA key & 3x 10
11

MIPS years for a RSA key length 1024
5. If the RSA key length is increased to 2048 bits, the GNES method will need 3x10

20
MIPS

years to factor n whereas increasing the elliptic curve key length to only 24 bits will impose a
2

computational complexity of 1.6x10 MIPS years.

Analog of Diffie-Hellman Key Exchange:

Key exchange using elliptic curves can be done in the following manner.

First pick a large integer q, which is either a prime number p or an integer of the form
2‖ and elliptic curve parameters a and b. This defines the elliptic group of points Ed(a, b).

Next, pick a base point G = (x1. y1) in Ed(a, b) whose order is a very large value n. The
order n of a point G on an elliptic curve is the smallest positive integer n such that nG = O. Eq(a,
b) and G are parameters of the cryptosystem known to all participants.

1. A selects an integer nA less than n. This is A's private key. A then generates a public key PA

nA x G; the public key is a point in Ed(a, b)•

2. B similarly selects a private key nB and computes a public key PB

3. A generates the secret key K = nAx PB B generates the secret key K = nB x EA.

 Global Public elements

Ed(a,b) Elliptic curve with parameters a,b and q, where q is a prime or

an integer of the form 2‖

 point on elliptic curve whose order is large value n

 User A Key Generation

Select private n A nA<n

Calculate public PA PA nA X G

 User B Key Generation

Select private nB nB‹n

Calculate public PA PB = n B X G

 Calculation of secret key by User A

K = nAX PB

 Calculation of secret key by User B

K = nBX PA

Figure .ECC Diffie-Hellman Key Exchange

UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY

UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY Authentication requirement –

Authentication function – MAC – Hash function – Security of hash function and MAC – SHA –
Digital signature and authentication protocols – DSS- Entity Authentication: Biometrics, Passwords,
Challenge Response protocols- Authentication applications - Kerberos, X.509

4. AUTHENTICATION REQUIREMENT

Communication across the network, the following attacks can be identified.

Disclosure – release of message contents to any person or process not possessing the
appropriate cryptographic key.

Traffic analysis – discovery of the pattern of traffic between parties.
 In a connection oriented application, the frequency and duration of connections could be

determined.

 In either a connection oriented or connectionless environment, the number and length of

messages between parties could be determined.

Masquerade – insertion of messages into the network from fraudulent source. This can be

creation of message by the attacker using the authorized port.

Content modification – changes to the contents of a message, including insertion, deletion,

transposition, and modification.

Sequence modification – any modification to a sequence of messages between parties,

including insertion, deletion, and reordering.

Timing modification – delay or replay of messages.

 In a connection oriented application, an entire session or sequence of messages could

be replay of some previous valid session, or individual messages in the sequence could
be delayed or replayed.

 In a connectionless application, an individual message could be delayed or replayed.

Source repudiation – denial of transmission of message by source.

Destination repudiation – denial of receipt of message by destination.

AUTHENTICATION FUNCTION

Any message authentication or digital signature mechanism can be viewed as having
fundamentally two levels.

At the lower level, there must be some sort of function that produces an authenticator, a value

to be used to authenticate a message.

At the higher-level, low-level function is then used as primitive in a higher-level authentication

protocol that enables a receiver to verify the authenticity of a message.

The types of function that may be used to produce an authenticator are grouped into three
classes.

Message Encryption – the ciphertext of the entire message serves as its authenticator.

Message Authentication Code (MAC) – a public function of the message and a secret key that

produces a fixed length value that serves as the authenticator.

Hash Function – a public function that maps a message of any length into a fixed-length hash

value, which serves as the authenticator.

Message Encryption:

Message encryption Message encryption by itself can provide a measure of authentication.

The analysis differs from symmetric and public key encryption schemes.

(a) If symmetric encryption(fig.a) is used then:

 A message m, transmitted from source A to destination B is encrypted using a secret

key shared by A and B.

 Since only sender and receiver knows key used

 Receiver knows sender must have created it. Hence authentication is provided.

 Know content cannot have been altered. Hence confidentiality is also provided.

 If message has suitable structure, redundancy or a checksum to detect any changes

 Therefore Symmetric Encryption provides authentication and confidentiality.

(a).Symmetric key encryption confidentiality, authentication and signature

(b) If public-key encryption(Fig b) is used:

This method is the use of public key cryptography which provides confidentiality only.

The sender A makes use of the public key of the receiver to encrypt the message. Here there is
no authentication because any user can use B‟s public key to send a message and claim that
only A has sent it.

(b) Public key encryption confidentiality

In this method(Fig c) to have only authentication, the message is encrypted with the sender‟s
A‟s private key. The receiver B uses the sender‟s A‟s public key to decrypt the message. Now
A cannot deny that it has not transmitted since it only knows its private key. This is called as
authentication or Digital Signature. Hence the problem is the,

 Receiver cannot determine whether the packet decrypted contains some useful

message or random bits.

 The problem is that anyone can decrypt the message when they know the public key of

sender A.

Figure (c) Public key encryption authentication and signature

This method (Fig d) provides authentication, confidentiality and digital signature. But the
problem with this method is the complex public key cryptography algorithm should be applied
twice during encryption and twice during decryption.

Figure (d) Public key encryption confidentiality, authentication and signature

Suppose the message can be any arbitrary bit pattern, in that case, there is no way to
determine automatically, at the destination whether an incoming message is the ciphertext of a
legitimate message.

One solution to this problem is to force the plaintext to have some structure that is easily
recognized but that cannot be replicated without recourse to the encryption function.

Append an error detecting code, also known as Frame Check Sequence (FCS) or

checksum to each message before encryption „A‟ prepares a plaintext message M and then
provides this as input to a function F that produces an FCS. The FCS is appended to M and the
entire block is then encrypted.

At the destination, B decrypts the incoming block and treats the result as a message with
an appended FCS. B applies the same function F to attempt to reproduce the FCS.

If the calculated FCS is equal to the incoming FCS, then the message is considered

authentic. In the internal error control, the function F is applied to the plaintext, whereas in
external error control, F is applied to the ciphertext (encrypted message fig e and d).

(e) Internal error control

(f) External error control

4.2.MAC

An alternative authentication technique involves the use of secret key to generate a
small fixed size block of data, known as cryptographic checksum or MAC that is appended to
the message.

This technique assumes that two communication parties say A and B, share a common
secret key „k‟. When A has to send a message to B, it calculates the MAC as a function of the
message and the key.

MAC = CK (M)

Where M – input message C – MAC function K – Shared secret key

The message plus MAC are transmitted to the intended recipient. The recipient performs

the same calculation on the received message, using the shared secret key, to generate a new
MAC.

The received MAC is compared to the calculated MAC. If it is equal, then the message is
considered authentic(Fig g and h). A MAC function is similar to encryption. One difference is
that MAC algorithm need not be reversible, as it must for decryption. In general, the MAC
function is a many-to-one function.

(g) Message Authentication

Figure (h) Message authentication and confidentiality, authentication tied to plain text

Figure (i) Message authentication and confidentiality, authentication tied to ciphertext

Requirements for MAC:

When an entire message is encrypted for confidentiality, using either symmetric or
asymmetric encryption, the security of the scheme generally depends on the bit length of the
key.

Barring some weakness in the algorithm, the opponent must resort to a brute-force

attack using all possible keys. On average, such an attack will require 2(k-1) attempts for a k-bit
key.

If confidentiality is not employed, the opponent has access to plaintext messages and

their associated MACs. Suppose k > n; that is, suppose that the key size is greater than the

MAC size. Then, given a known M1 and MAC1, with MAC1 = CK (M1), the cryptanalyst can
perform MACi = CKi (M1) for all possible key values Ki.

At least one key is guaranteed to produce a match of MACi = MAC1.

Note that a total of 2k MACs will be produced, but there are only 2n< 2k different MAC values.
Thus, a number of keys will produce the correct MAC and the opponent has no way of knowing
the correct key. On average, a total of 2k/2n = 2(k-n) keys will produce a match. Thus, the
opponent must iterate the attack:

Round 1

Given: M1, MAC1 = CK(M1)
Compute MACi = CKi (M1) for all 2k keys
Number of matches ≈2(k-n)

Round 2

Given: M2, MAC2 = CK(M2)
Compute MACi = CKi(M2) for the 2(k-n) keys resulting from Round 1

Number of matches ≈2(k-2xn) and so on

Consider the following MAC algorithm. Let M = (X1||X2||...||Xm) be a message that is treated as a
concatenation of 64-bit blocks Xi. Then define

Δ(M)= X1 + X2…Xm

Ck(M)=Ek(Δ(M))
Thus, the key length is 56 bits and the MAC length is 64 bits. If an opponent observes

{M||C(K, M)}, a brute-force attempt to determine K will require at least 256 encryptions.

But the opponent can attack the system by replacing X1 through Xm-1 with any desired

values Y1 through Ym-1 and replacing Xm with Ym where Ym is calculated as follows:

Ym = Y1+ Y2 ….... Ym1 + Δ(M)

The opponent can now concatenate the new message, which consists of Y1 through Ym, with
the original MAC to form a message that will be accepted as authentic by the receiver. With this
tactic, any message of length 64 X(m-1) bits can be fraudulently inserted.

Then the MAC function should satisfy the following requirements: The MAC function should
have the following properties:

 If an opponent observes M and CK(M), it should be computationally infeasible for the

opponent to construct a message M‟ such that CK(M‟) = CK(M)

 CK(M) should be uniformly distributed in the sense that for randomly chosen messages,
M and M‟, the probability that CK(M) = CK(M‟) is 2-n where n is the number of bits in the
MAC.

 Let M‟ be equal to some known transformation on M. i.e., M‟ = f(M).

MAC based on DES

One of the most widely used MACs, referred to as Data Authentication Algorithm (DAA) is
based on DES.

The algorithm(Fig 2) can be defined as using cipher block chaining (CBC) mode of operation of
DES with an initialization vector of zero. The data to be authenticated are grouped into
contiguous 64-bit blocks: D1, D2 … Dn. if necessary, the final block is padded on the right with
zeros to form a full 64-bit block. Using the DES encryption algorithm and a secret key, a data
authentication code (DAC) is calculated as follows:

O1 = EK(D1)
O2 = EK(D2 + O1)
O3 = EK(D3 + O2)
……

ON = EK(DN + ON-1)

Figure.2 Data Authentication Algorithm

4.3.HASH FUNCTION

A variation on the message authentication code is the one way hash function. As with

MAC, a hash function accepts a variable size message M as input and produces a fixed-size
output, referred to as hash code H(M).

Unlike a MAC, a hash code does not use a key but is a function only of the input

message. The hash code is also referred to as a message digest or hash value. There are
varieties of ways in which a hash code can be used to provide message authentication, as
follows:

In Fig (a) The message plus the hash code is encrypted using symmetric encryption. This is
identical to that of internal error control strategy. Because encryption is applied to the entire
message plus the hash code, confidentiality is also provided.

Figure (a) Hash Function

In Fig (b) Only the hash code is encrypted, using symmetric encryption. This reduces the
processing burden for those applications that do not require confidentiality.

In Fig (c) Only the hash code is encrypted, using the public key encryption and using the
sender‟s private key. It provides authentication plus the digital signature.

Figure (b & c) Basic use of Hash Function

In Fig (d) If confidentiality as well as digital signature is desired, then the message plus the
public key encrypted hash code can be encrypted using a symmetric secret key.

In Fig (e) This technique uses a hash function, but no encryption for message authentication.
This technique assumes that the two communicating parties share a common secret value „S‟.
The source computes the hash value over the concatenation of M and S and appends the
resulting hash value to M.

In Fig(f) Confidentiality can be added to the previous approach by encrypting the entire
message plus the hash code.

Figure (d,e & f) Basic use of Hash Function

A hash value h is generated by a function H of the form

h = H(M)

where M is a variable-length message and H(M) is the fixed-length hash value.

The hash value is appended to the message at the source at a time when the message is
assumed or known to be correct. The receiver authenticates that message by recomputing the
hash value.

Requirements for a Hash Function

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and software
implementations practical.

4. For any given value h, it is computationally infeasible to find x such that H(x) = h. This is
sometimes referred to in the literature as the one-way property.

5. For any given block x, it is computationally infeasible to find y x such that H(y) = H(x). This is
sometimes referred to as weak collision resistance.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This is sometimes
referred to as strong collision resistance.
The first three properties are requirements for the practical application of a hash function to
message authentication.

The fourth property, the one-way property, states that it is easy to generate a code given

a message but virtually impossible to generate a message given a code.

The fifth property guarantees that an alternative message hashing to the same value as
a given message cannot be found. This prevents forgery when an encrypted hash code is used.

The sixth property refers to how resistant the hash function is to a type of attack known

as the birthday attack.

Simple Hash Functions

All hash functions operate using the following general principles. The input (message,

file, etc.) is viewed as a sequence of n-bit blocks. The input is processed one block at a time in
an iterative fashion to produce an n-bit hash function. One of the simplest hash functions is the
bit-by-bit exclusive-OR (XOR) of every block.

This can be expressed as follows: Ci = bi1 + bi1 ... + bim

where

Ci = ith bit of the hash code, 1 ≤i ≤n
m = number of n-bit blocks in the input
bij= ith bit in jth block

Procedure:

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:

a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

Birthday Attacks

Suppose that a 64-bit hash code is used. One might think that this is quite secure. For

example, if an encrypted hash code C is transmitted with the corresponding unencrypted
message M, then an opponent would need to find an M' such that H(M') = H(M) to substitute
another message and fool the receiver.

On average, the opponent would have to try about 263 messages to find one that

matches the hash code of the intercepted message.

However, a different sort of attack is possible, based on the birthday paradox. The

source, A, is prepared to "sign" a message by appending the appropriate m-bit hash code and
encrypting that hash code with A's private key.

1. The opponent generates 2m/2 variations on the message, all of which convey essentially the
same meaning. (Fraudulent message)

2. The two sets of messages are compared to find a pair of messages that produces the same
hash code. The probability of success, by the birthday paradox, is greater than 0.5. If no match
is found, additional valid and fraudulent messages are generated until a match is made.

3. The opponent offers the valid variation to A for signature. This signature can then be attached
to the fraudulent variation for transmission to the intended recipient. Because the two variations
have the same hash code, they will produce the same signature; the opponent is assured of
success even though the encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the order of 232

MEET-IN-THE-MIDDLE ATTACK.

Divide a message M into fixed-size blocks M1,M2,..., MN and use a symmetric encryption system
such as DES to compute the hash code G as follows:

Ho = initial value
Hi = EMi [Hi-1]
G = HN

This is similar to the CBC technique, but in this case there is no secret key. As with any hash
code, this scheme is subject to the birthday attack, and if the encryption algorithm is DES and
only a 64-bit hash code is produced, then the system is vulnerable.

Furthermore, another version of the birthday attack can be used even if the opponent has
access to only one message and its valid signature and cannot obtain multiple signings.

Here is the scenario; we assume that the opponent intercepts a message with a signature in the
form of an encrypted hash code and that the unencrypted hash code is m bits long:

1. Calculate the unencrypted hash code G.

2. Construct any desired message in the form Q1, Q2,..., QN2.

3. Compute for Hi = EQi [Hi-1]for 1 ≤i ≤(N-2).

4. Generate 2m/2 random blocks; for each block X, compute EX[HN-2.] Generate an additional 2m/2
random blocks; for each block Y, compute DY[G], where D is the decryption function
corresponding to E.

5. Based on the birthday paradox, with high probability there will be an X and Y such that EX
[HN-2] = DY[G].

6. Form the message Q1, Q2,..., QN-2, X, Y. This message has the hash code G and therefore
can be used with the intercepted encrypted signature.

 SECURITY OF HASH FUNCTION AND MAC

Just as with symmetric and public-key encryption, we can group attacks on hash functions and
MACs into two categories: brute-force attacks and cryptanalysis.

Brute-Force Attacks

The nature of brute-force attacks differs somewhat for hash functions and MACs.

Hash Functions

The strength of a hash function against brute-force attacks depends solely on the length of the
hash code produced by the algorithm.

Requirements of Hash Function:

One-way: For any given code h, it is computationally infeasible to find x such that H(x) =

h.

Weak collision resistance: For any given block x, it is computationally infeasible to find

y x with H(y) = H(x).

Strong collision resistance: It is computationally infeasible to find any pair (x, y) such

that H(x) = H(y).

For a hash code of length n, the level of effort required, as we have seen is proportional to the
following:

One way 2n

Weak collision resistance 2n

Strong collision resistance 2n/2

Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires known

message-MAC pairs.. To attack a hash code, we can proceed in the following way. Given a
fixed message x with n-bit hash code h = H(x), a brute-force method of finding a collision is to
pick a random bit string y and check if H(y) = H(x). The attacker can do this repeatedly off line.

To proceed, we need to state the desired security property of a MAC algorithm, which

can be expressed as follows:

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions and MAC

algorithms seek to exploit some property of the algorithm to perform some attack other than an
exhaustive search.

Hash Functions

The hash function takes an input message and partitions it into L fixed-sized blocks of b

bits each. If necessary, the final block is padded to b bits. The final block also includes the value
of the total length of the input to the hash function(Fig 3.4). The inclusion of the length makes
the job of the opponent more difficult.

Either the opponent must find two messages of equal length that hash to the same value or two
messages of differing lengths that, together with their length values, hash to the same value.

IV=Initial Value CV=Changing Variable
Yi = ith input block L=number of input blocks

n=Length of Hash code b=Length of input block

General structure of secure hash code

The hash algorithm involves repeated use of a compression function,f, that takes two
inputs (an n-bit input from the previous step, called the chaining variable, and a b-bit block) and
produces an n-bit output.

At the start of hashing, the chaining variable has an initial value that is specified as part of

the algorithm. The final value of the chaining variable is the hash value. Often b > n; hence the
term compression.

The hash function can be summarized as follows:

CV0 = IV = initial n-bit value
CVI = f(CVi-1, Yi-1) 1 ≤i ≤L
H(M) = CVL
Where the input to the hash function is a message M consisting of the blocks Yo, Y1,..., YL-1. The
structure can be used to produce a secure hash function to operate on a message of any
length.

Message Authentication Codes :
There is much more variety in the structure of MACs than in hash functions, so it is difficult

to generalize about the cryptanalysis of MACs.

 SHA

The algorithm takes as input a message with a maximum length of less than bits and
produces as output a 512-bit message digest. The input is processed in 1024-bit blocks. Figure
3.1 depicts the overall processing of a message to produce a digest.

Fig .Message Digest Generation Using SHA-512

The processing consists of the following steps.

Step 1: Append padding bits.

The message is padded so that its length is congruent to 896 modulo 1024. Padding is
always added, even if the message is already of the desired length. Thus, the number of
padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit followed by the
necessary number of 0 bits.

Step 2: Append length.

A block of 128 bits is appended to the message. This block is treated as an unsigned

128-bit integer (most significant byte first) and contains the length of the original message
(before the padding).

The outcome of the first two steps yields a message that is an integer multiple of 1024
bits in length. In Figure 3,8 , the expanded message is represented as the sequence of 1024-bit
blocks M1, M2, MN , so that the total length of the expanded message is NX1024 bits.

Step 3: Initialize hash buffer.

A 512-bit buffer is used to hold intermediate and final results of the hash function.The
buffer can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h).These registers are
initialized to the following 64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908 e = 510E527FADE682D1
b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F
c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B
d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

These values are stored in big-endian format, which is the most significant byte of a word in the
low-address (leftmost) byte position. These words were obtained by taking the first sixty-four
bits of the fractional parts of the square roots of the first eight prime numbers.

Step 4: Process message in 1024-bit (128-word) blocks.

The heart of the algorithm (Fig 3.9) is a module that consists of 80 rounds; Each round

takes as input the 512-bit buffer value, abcdefgh, and updates the contents of the buffer. At
input to the first round, the buffer has the value of the intermediate hash value,Hi-1

Each round makes use of a 64-bit value Wt, derived from the current 1024-bit block (Mi)
being processed .These values are derived using a message schedule described subsequently.

Each round also makes use of an additive constant kt, where 0<=t<=79 indicates one of

the 80 rounds.

The output of the eightieth round is added to the input to the first round (H i-1) to produce
Hi.The addition is done independently for each of the eight words in the buffer with each of the
corresponding words in Hi-1, using addition modulo 264 .

Step 5: Output.

After all N 1024-bit blocks have been processed, the output from the Nth stage is the 512-bit
message digest.

The behavior of SHA-1 is summarized as follows:

Where

H0 = IV

Hi = SUM64 (Hi-1, ABCDEFGHi)

MD = HN

IV = initial value of the abcdefgh buffer, defined in step 3

ABCDEq = the output of the last round of processing of the ith message block

L = the number of blocks in the message (including padding and

length fields)

SUM32 = Addition modulo 232 performed separately on each word of the pair
of inputs

MD = final message digest value

Figure. SHA-512 Processing of a Single 1024-Bit Block

SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing of one 512-bit
block. Each round is defined by the following set of equations:

T1 = h + Ch(e,f,g) + (e) + Wt + Kt)

T2 = (a) + Maj(a,b,c)

h = g g = f f = e e = d + T1 d = c

c = b b = a a = T1 + T2

Where

T = Step number; 0 ≤ t ≤ 79

Ch(e,f,g) = (a AND f) (NOT e AND g)

The conditional function: If e then f else g (Fig 3.10)

Fig .Elementary SHA Operation(single step)

The functions can be summarized as follows:

Steps Function Name Function Value

0≤t≤9 f1 = f(t,B,C,D) (B Λ C) V (B! Λ D)

20≤t≤39 f2 = f(t,B,C,D) B C D

40≤t≤59 f3 = f(t,B,C,D) (B Λ C) V (B Λ D) V (C Λ D)

60≤t≤79 f4 = f(t,B,C,D) B C D

The logical operators AND,OR,NOT,XOR, are represented by the symbols Λ V !

Only three different functions are used.

For, 0≤ t ≤ 19 the function is the conditional function.

For 20 ≤ t ≤ 39 and 60 ≤ t ≤ 79 the function produces a parity bit.

For A0 ≤ t ≤ 59 the function is true if two or three of the argument are true.

The following diagram illustrates how the 32bit word values wt are derived from the 512 bit

message.

Figure.Creation of 80-word Input Sequence for SHA-512 Processing of Single Block

The first 16 values of wt are taken directly from the 16 words of the current block.the remaining

values are defined as follows.

wt = S‟(wt-16 + wt-14 + w t-8 + wt-3)

Thus in the first 16 steps of processing the values of wt is equal to the corresponding word in
the message block. For the remaining 64 steps the value of wt consists of the circular left shift
by one bit of the XOR of four of the processing values of wt.

Both MD5 and RIPEMD-160 uses one of the 16 words of a message block directly as input to
each step function only the order of the word is permuted from round to round.

SHA-1 expands the 16 block words to 80 words for use in the compression function.

Comparison of SHA-1 and MD5

Because both are derived from MD4,SHA-1 and MD5 are similar to one another.

1. Security against brute – force attacks:

The most important difference is that the SHA-1 digest is 32bits longer than the MD5
digest.

Using a brute force technique the difficulty of producing any message having a given message
digest is on the order of 2128 operations for MD5 and 2160 for SHA-1.

Using brute force technique the difficulty of producing two messages having the same message

digest is on the order of 264 operations for MD5 and 280 for SHA-1.Thus SHA-1 is considerably
stronger against brute force attacks.

2. Security against cryptanalysis:

MD5 is vulnerable to cryptanalytic attacks.

SHA-1 is not vulnerable to such attacks.

3. Speed:

Both algorithms rely on addition module 232, so both do well on 32 bit architecture

SHA-1 involves more steps (80) and must process a 160 bit buffer compared to MD5‟s 128 bit
buffer.

Thus SHA-1 should execute more slowly than MD5 on the same hardware.

4. Simplicity and compactness:

Both algorithms are simple to describe and simple to implement and do not require large
programs or substitution tables.

5. Little endian versus big endian architecture:

MD5 uses a little endian scheme and SHA-1 uses a big endian scheme.

HMAC

HMAC Design Objectives:

 To use hash functions that perform well in software and for which code is freely and

widely available.

 To allow for easy replacement of the embedded hash function in case faster or more

secure hash functions are found or required.

 To preserve the original performance of the hash function without incurring a significant

degradation.

 To use and handle keys in a simple way.

 To have a well understood cryptographic analysis of the strength of the authentication

mechanism based on reasonable assumptions about the embedded hash function.

The first two objectives are important to the acceptability of HMAC.

HMAC treats the hash function as a “black box.” This has two benefits.

First, an existing implementation of a hash function can be used as a module in
implementing HMAC. In this way, the bulk of the HMAC code is prepackaged and ready to use
without modification.

Second, if it is ever desired to replace a given hash function in an HMAC

implementation, remove the existing hash function module and drop in the new module.

HMAC Algorithm:

Definition of terms used in algorithm(Fig 3.12).

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)

IV = initial value input to hash function

M = message input to HMAC

Yi =i th block of M, 0 ≤ i ≤ (L – 1)

L =number of blocks in M

b = number of bits in a block

Figure .HMAC Structure

n = length of hash code produced by embedded hash function

K = secret key; recommended length is n; if key length is greater than b, the key is input to
the hash function to produce an n-bit key

K+ = K padded with zeros on the left so that the result is b bits in length

ipad = 00110110 (36 in hexadecimal) repeated b/8 times

opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as

HMAC(K, M) = H[(K+ opad) || H[(K+ ipad) || M]]

We can describe the algorithm as follows:

1. Append zeros to the left end of to create a -bit string (e.g., if is of length 160 bits and , then

will be appended with 44 zeroes).

2. XOR (bitwise exclusive-OR) with ipad to produce the b -bit block Si .

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block S0.

6. Append the hash result from step 4 to S0.

7. Apply H to the stream generated in step 6 and output the result.

A more efficient implementation is possible. Two quantities are precomputed:

f(IV, (K + ipad))

f(IV, (K + opad))

In effect, the precomputed quantities substitute for the initial value (IV) in the hash
function. With this implementation (Fig 3.13), only one additional instance of the compression
function is added to the processing normally produced by the hash function.

Figure .Efficient Implementation of HMAC

Security of HMAC

The security of a MAC function is generally expressed in terms of the probability of

successful forgery with a given amount of time spent by the forger and a given number of
message–tag pairs created with the same key.

In essence, it is proved in that for a given level of effort (time, message–tag pairs) on

messages generated by a legitimate user and seen by the attacker, the probability of successful
attack on HMAC is equivalent to one of the following attacks on the embedded hash function.

1. The attacker is able to compute an output of the compression function even with an that is
random, secret, and unknown to the attacker.

2. The attacker finds collisions in the hash function even when theIV is random and secret.

In the first attack, we can view the compression function as equivalent to the hash

function applied to a message consisting of a single b bit block. For this attack, the IV of the
hash function is replaced by a secret, random value of bits. An attack on this hash function
requires either a brute-force attack on the key, which is a level of effort on the order of 2n, or a
birthday attack.

In the second attack, the attacker is looking for two messages M & M‟and that produce

the same hash: H(M) = H(M‟) .

CMAC

Only messages of one fixed length of mn bits are processed, where n is the cipher block size

and m is a fixed positive integer. a simple example, notice that given the CBC MAC of a one-
block message X, say T = MAC(K, X), the adversary immediately knows the CBC MAC for the

two block message since this is once again T.

Black and Rogaway [BLAC00] demonstrated that this limitation could be overcome using three
keys: one key K of length k to be used at each step of the cipher block chaining and two keys of
length b, where b is the cipher block length.

The Cipher-based Message Authentication Code (CMAC) mode of operation for use with

AES and triple DES. It is specified in NIST Special Publication 800-38B.

First, let us define the operation of CMAC when the message is an integer multiple n of the
cipher block length b. For AES, b = 128, and for triple DES, b = 64. The message is divided into
n blocks (M1, M2,c, Mn). The algorithm makes use of a k-bit encryption key K and a b-bit
constant, K1. For AES, the key size k is 128, 192, or 256 bits; for triple DES, the key size is 112
or 168 bits. CMAC is calculated as follows

where

T = message authentication code, also referred to as the tag
Tlen = bit length of T
MSBs(X) = the s leftmost bits of the bit string X

The CMAC operation(Fig 3.14) then proceeds as before, except that a different b-bit key K2 is
used instead of K1.

Fig .Cipher-based Message Authentication Code

The two b-bit keys are derived from the k-bit encryption key as follows.

where multiplication (#) is done in the finite field GF(2b) and x and x2 are first and second-
order polynomials that are elements of GF(2b). Thus, the binary representation of x consists of
b - 2 zeros followed by 10; the binary representation of x2 consists of b - 3 zeros followed by
100.

 DIGITAL SIGNATURE AND AUTHENTICATION PROTOCOLS

Digital Signature Requirements

Message authentication protects two parties who exchange messages from any third party.
However, it does not protect the two parties against each other.

Disputes created by message authentication are:

 Creation of fraud message.

 Deny the sending of message

For example, suppose that John sends an authenticated message to Mary, the following
disputes that could arise:

1 Mary may forge a different message and claim that it came from John. Mary would simply
have to create a message and append an authentication code using the key that John and Mary
share.

2. John can deny sending the message. Because it is possible for Mary to forge a message,
there is no way to prove that John did in fact send the message.

Properties of digital signature :

 It must verify the author and the date and time of the signature.

 It must to authenticate the contents at the time of the signature.

 It must be verifiable by third parties, to resolve disputes.

Requirements for a digital signature:

 The signature must be a bit pattern that depends on the message being signed.

 The signature must use some information unique to the sender, to prevent both forgery
and denial.

 It must be relatively easy to produce the digital signature.

 It must be relatively easy to recognize and verify the digital signature.

 It must be computationally infeasible to forge a digital signature, either by constructing a

new message for an existing digital signature or by constructing a fraudulent digital
signature for a given message.

 It must be practical to retain a copy of the digital signature in storage.

Direct Digital Signature

The term direct digital signature refers to a digital signature scheme that involves only the

communicating parties (source, destination). It is assumed that the destination knows the public
key of the source.

Confidentiality can be provided by encrypting the entire message plus signature with a

shared secret key (symmetric encryption). Note that it is important to perform the signature
function first and then an outer confidentiality function. In case of dispute, some third party must
view the message and its signature.

If the signature is calculated on an encrypted message, then the third party also needs

access to the decryption key to read the original message. However, if the signature is the inner
operation, then the recipient can store the plaintext message and its signature for later use in
dispute resolution.

The validity of the scheme just described depends on the security of the sender‟s private key.

Weakness of Direct Digital Signature:

 If a sender later wishes to deny sending a particular message, the sender can claim that

the private key was lost or stolen and that someone else forged his or her signature.

 Another threat is that some private key might actually be stolen from X at time T. The
opponent can then send a message signed with X‟s signature and stamped with a time
before or equal to T.

Arbitrated Digital Signatures

The problem associated with the Direct digital signature can be overcome by using arbitrated
schemes.

In the arbitrated scheme, the entire signed message from the sender goes to the arbiter A. The
arbiter subjects the message and signature to a number of tests to check the origin and control.
The date and time is attached to the message. This indicates that the digital signature has been
verified and is satisfied. The message is then transmitted to the receiver.

Requirement of the arbiter:

 As the arbiter plays a sensitive and crucial role, it should be a trusted third party.

Notation:X = Sender Y = Recipient A = Arbiter M=Message T=Timestamp

Scheme 1: Conventional encryption, Arbiter sees the message:

The sender X and arbiter A share the master key Kax the receiver y and the arbiter A

share the master key Kay

When X wants to send a message M to Y, construct a message computes the hash

value H(M). This hash is encrypted using symmetric encryption with the key Kax which acts as

signature. The message along with the signature is transmitted to A.

At A, it decrypts the signature and checks the hash value to validate the message. A

transmit the message to Y, encrypted with Kay. Y decrypt to extract the message and signature.

Disadvantage:

Eaves dropper can read the message as there is no confidentiality.

Scheme 2: Conventional encryption, Arbiter does not see the message:

 Kax and Kay are the master keys.

 Kxy is the key shared between the X and Y

 When x wants to transmit a message to Y, the packet goes to arbiter.

 The same procedure as that of I scheme is used X transmit an identifier, a copy of the

message encrypted with Kxy and a signature to A.

 The signature is the hash of the message encrypted with Kxa

 A decrypt the signature, and checks the hash value to validate the message.

 A cannot read the message, A attaches to it the time stamps, encrypt with Kxa and transmit

to Y.

Attack: The arbiter can join with an attacker and deny a message with sender‟s signature.

Scheme 2: Public key encryption, Arbiter does not see the message:

This method uses the public key cryptography which gives authentication and digital signature.

The doubly encrypted message is concatenated with IDx and sent to arbiter.

 A can decrypt the outer encryption to ensure that the message has come from X.

 A then transmit the message with IDx and time stamp.

Advantages:

 No information is shared among parties before communication, hence fraud is avoided.

 No incorrectly dated message can be sent.

Disadvantages:

The complex public key algorithm is to be twice for encryption and twice for decryption.

Authentication Protocols

Authentication Protocols used to convince parties of each other‟s identity and to exchange
session keys.

Mutual Authentication

An important application area is that of mutual authentication protocols. Such protocols
enable communicating parties to satisfy themselves mutually about each other‟s identity and to
exchange session keys.

Key issues are

 confidentiality – to protect session keys and prevent masqueraded and

compromised
 timeliness – to prevent replay attacks

Replay Attacks

Where a valid signed message is copied and later resent

 Simple replay
The opponent simply copies the message and replays it later.

 Repetition that can be logged

The opponent replay a time stamped message within a valid time window.

 Repetition that cannot be detected

The attacker would have suppressed the original message from the receiver.
Only the replay message alone arrives.

 Backward replay without modification

This replay back to the sender itself.This is possible if the sender cannot easily
recognize the difference between the message sent and the message received
based on the content.

Countermeasures include

One approach to coping with replay attacks is to attach a sequence number to each
message used in an authentication exchange. A new message is accepted only if its sequence
number is in the proper order.

The difficulty with this approach is that it requires each party to keep track of the last

sequence number for each claimant it has dealt with. Because of this overhead, sequence
numbers are generally not used for authentication and key exchange. Instead, one of the
following two general approaches is used:

 Timestamps: Party A accepts a message as fresh only if the message contains a

Timestamp that is close enough to A‟s knowledge of current time. This approach

requires that clocks among the various participants be synchronized.

 Challenge/response: Party A, expecting a fresh message from B, first sends B a

nonce (challenge) and requires that the subsequent message (response) received

from B contain the correct nonce value.

Using Symmetric Encryption

 Use a two-level hierarchy of keys
 Usually with a trusted Key Distribution Center (KDC)

 Each party shares own master key with KDC
 KDC generates session keys used for connections between parties
 Master keys used to distribute the session ke

Needham-Schroeder Protocol

 Original third-party key distribution protocol

 For session between A and B mediated by KDC

 Protocol overview is:

1. A→KDC: IDA|| IDB|| N1

2. KDC→A: EKa[Ks || IDB|| N1|| EKb[Ks||IDA]]

3. A→B: EKb[Ks||IDA]

4. B→A: EKs[N2]

5. A→B: EKs[f(N2)]

Step 1: A to KDC ,transmit the id of source and destination and a nonce N1 as a request.

Step 2: A securely acquires the session key in step 2 and a packet to B encrypted with EKb is

also received from KDC.

Step 3: A transmit to B the message it got from KDC.

Step 4: As a hand shake, B encrypts a new nonce N2 and transmit to A with Ks.

Step 5: As a hand shake, A encrypt the function of N2 with Ks

Step 4 and Step 5 as used as hand shake and prevent the reply attacks.

Attacks:

 Used to securely distribute a new session key for communications between A &B

 But is vulnerable to a replay attack if an old session key has been Compromised

 Then message 3 can be resent convincing B that is communicating With A

 Modifications to address this require:

 Timestamps
 Using an extra nonce

DenningProtocol:

To overcome the above weakness by a modification to the Needham/Schroeder protocol that
includes the addition of a timestamp to steps 2 and 3.

A→KDC: IDA||IDB

KDC → A: E(Ka, [KsIIIDB II T II E(Kb, [Ks IIIDA II T])])

A→B: E(Kb, [Ks II IDA IIT])

B→A: E(Ks, N1)

A→ B: E(Ks, f(N1))

T is a timestamp that assures A and B that the session key has only just been generated. Thus,
both A and B know that the key distribution is a fresh exchange.A and B can verify timeliness by
checking that

I Clock – T I < ∆t1+∆t2

The Denning protocol seems to provide an increased degree of security compared to

the Needham/Schroeder protocol. However, a new concern is raised: namely, that this new

scheme requires reliance on clocks that are synchronized throughout the network.

suppress-replay attacks:

The problem occurs when a sender‟s clock is ahead of the intended recipient‟s clock. In
this case, an opponent can intercept a message from the sender and replay it later when the
timestamp in the message becomes current at the recipient‟s site. This replay could cause
unexpected results.

Method to overcome:

One way to counter suppress-replay attacks is to enforce the requirement that parties
regularly check their clocks against the KDC‟s clock. The other alternative, which avoids the
need for clock synchronization, is to rely on handshaking protocols using nonce.

This latter alternative is not vulnerable to a suppress-replay attack, because the nonce

the recipient will choose in the future are unpredictable to the sender.

An attempt is made to respond to the concerns about suppress replay attacks and at the same
time fix the problems in the Needham/Schroeder protocol.

The protocol is

1. A: →B: IDA||Na

2. B: → KDC: IDB||Nb||E(Kb, [IDA||Na||Tb])

3. KDC: → A: E(Ka, [IDBƒ ƒNaƒ ƒKs ƒ ƒTb]) „ E(Kb , [IDA„ Ks „ Tb]) „ Nb

4. A: →B: Kb, [IDA„ Ks„ Tb]) „ E(Ks, Nb)

1. A initiates the authentication exchange by generating a nonce,Na , and sending that plus its

identifier to B in plaintext. This nonce Na will be returned to A in an encrypted message that
includes the session key, assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the KDC includes its identifier
and a nonce, . This nonce will be returned to B in an encrypted message that includes the
session key, assuring B of its timeliness.B‟s message to the KDC also includes a block
encrypted with the secret key shared by B and the KDC. This block is used to instruct the KDC
to issue credentials to A; the block specifies the intended recipient of the credentials, a
suggested expiration time for the credentials, and the nonce received from A.

3. The KDC passes on to A B‟s nonce and a block encrypted with the secret key that B shares
with the KDC. The block serves as a “ticket” that can be used by A for subsequent
authentications, as will be seen. The KDC also sends to A block encrypted with the secret key
shared by A and the KDC. This block verifies that B has received A‟s initial message (IDB) and
that this is a timely message and not a replay (Na), and it provides A with a session key (KS)
and the time limit on its use (Tb).

4. A transmits the ticket to B, together with the B‟s nonce, the latter encrypted with the session
key. The ticket provides B with the secret key that is used to decrypt E(KS,Nb) to recover the

nonce. The fact that B‟s nonce is encrypted with the session key authenticates that the
message came from A and is not a replay.

Using Public-Key Encryption

 Have a range of approaches based on the use of public-key encryption

 Need to ensure have correct public keys for other parties

 Using a central authentication server (AS)

 Various protocols exist using timestamps or nonces

Denning AS Protocol

 Denning presented the following:

1. A→AS: IDA|| IDB

2. AS→A: EKRas[IDA||KUa||T] || EKRas[IDB||KUb||T]

3. A→B: EKRas[IDA||KUa||T] || EKRas[IDB||KUb||T] ||EKUb[EKRas[Ks||T]]

 Note session key is chosen by A, hence AS need not be trusted to protect it

 timestamps prevent replay but require synchronized clocks

Another approach proposed by woo and lam makes use of nonce.

1. A→KDC: IDA|| IDB

2. KDC→A: EKRauth[IDB II KUb]

3. a→b: EKUb[Na II IDA]

4. B→KDC: IDB II IDA II EKUauth [Na]

5. KDC→B: EKRauth [IDA II KUa] II EKUb[EKRauth[Na II Ks II IDB]]

6. B→A: EKUa[EKRauth[Na II Ks II IDB] II Nb]

7. A→B: EKs[Nb]

Step 1: A informs the KDC of its intention to establish a secure connection with B.

Step 2: The KDC returns to A a copy of B‟s public key certificate.

Step 3: A informs B of its desire to communicate and sends a nonce Na.

Step 4: B asks the KDC for A‟s public key certificate and request a session key.;B includes A‟s
nonce so that the KDC can stamp the session key with that nonce.The nonce is protected using
the KDC‟s public key.

Step 5: The KDC returns to B a copy of A‟s public key certificate, plus the information[Na,Ks,IDB].

Step 6: The triple [Na,Ks,IDB] , still encrypted with the KDC‟s private key,is relayed to A,together
with a nonce Nb generated by B.

All the foregoing are encrypted using A‟s public key. A retrieves the session key Ks and uses it
to encrypt Nb and return it to B.

Step 7: Assures B of A‟s knowledge of the session key.

One-Way Authentication

 Required when sender & receiver are not in communications at same time (eg. Email)

 Have header in clear so can be delivered by email system

 May want contents of body protected & sender authenticated

Using Symmetric Encryption

 can refine use of KDC but can‟t have final exchange of nonce

1. A→KDC: IDA|| IDB|| N1
2. KDC→A: EKa[Ks || IDB|| N1|| EKb[Ks||IDA]]
3. A→B: EKb[Ks||IDA] || EKs[M]

 Does not protect against replays

 could rely on timestamp in message, though email delays make this problematic

Public-Key Approaches

 If confidentiality is major concern, can use:

A→B: EKUb[Ks] || EKs[M]

In this case, the message is encrypted with a one-time secret key. A also encrypts this

one-time key with B‟s public key. Only B will be able to use the corresponding private key to
recover the one-time key and then use that key to decrypt the message. This scheme is more
efficient than simply encrypting the entire message with B‟s public key.

 If authentication needed use a digital signature with a digital certificate:

A→ B: M„II EKRa(H(M))

This method guarantees that A cannot later deny having sent the message. However, this
technique is open to another kind of fraud. Bob composes a message to his boss Alice that
contains an idea that will save the company money. He appends his digital signature and sends
it into the e-mail system.

Eventually, the message will get delivered to Alice‟s mailbox. But suppose that Max has

heard of Bob‟s idea and gains access to the mail queue before delivery. He finds Bob‟s
message, strips off his signature, appends his, and requeues the message to be delivered to
Alice. Max gets credit for Bob‟s idea.

To counter such a scheme, both the message and signature can be encrypted with the
recipient‟s public key:

A→ B: EKUb, [M || EKRa, H(M)]

The latter two schemes require that B know A‟s public key and be convinced that it is timely. An
effective way to provide this assurance is the digital certificate

A→B: M || EKRa [H(M)] || EKRas II T|| IDA || KUa]

In addition to the message,A sends B the signature encrypted with A‟s private key and A‟s
certificate encrypted with the private key of the authentication server. The recipient of the
message first uses the certificate to obtain the sender‟s public key and verify that it is authentic
and then uses the public key to verify the message itself.

 DSS

The DSS Approach

The DSS uses an algorithm that is designed to provide only the digital signature function. Unlike
RSA, it cannot be used for encryption or key exchange. Nevertheless, it is a public-key
technique.
RSA approach

The message to be signed is input to a hash function that produces a secure hash code
of fixed length. This hash code is then encrypted using the sender‟s private key to form the
signature.

Both the message and the signature are then transmitted. The recipient takes the

message and produces a hash code. The recipient also decrypts the signature using the
sender‟s public key.

If the calculated hash code matches the decrypted signature, the signature is accepted

as valid. Because only the sender knows the private key, only the sender could have produced
a valid signature.

DSS approach
The DSS approach also makes use of a hash function. The hash code is provided as

input to a signature function along with a random number generated for this particular signature.

The signature function also depends on the sender‟s private key (PRa) and a set of
parameters known to a group of communicating principals. We can consider this set to
constitute a global public key (PUG). The result is a signature consisting of two components,
labeled s and r(fig 3.15).

Figure 3.15 Two Approaches to Digital Signatures

At the receiving end, the hash code of the incoming message is generated. This plus the
signature is input to a verification function. The verification function also depends on the global
public key as well as the sender‟s public key, which is paired with the sender‟s private key.

The output of the verification function is a value that is equal to the signature component

if the signature is valid. The signature function is such that only the sender, with knowledge of
the private key, could have produced the valid signature.
The Digital Signature Algorithm:
There are three parameters that are public and can be common to a group of users.

 A 160-bit prime number q is chosen.
 Next, a prime number p is selected with a length between 512 and 1024 bits such

that q divides (p - 1).
 Finally, g is chosen to be of the form h(p-1)/qmod p, where h is an integer between 1

and (p-1).
With these numbers in hand, each user selects a private key and generates a public

key.The private key x must be a number from 1 to (q-1) and should be chosen randomly. T
The public key is calculated from the private key as y = gx mod p .The calculation of

given(Fig 3.16) is relatively straightforward. However, given the public key y, it is believed to be
computationally infeasible to determine x, which is the discrete logarithm of y to the base g, mod
p.

At the receiving end, verification is performed using the formulas. The receiver
generates a quantity v that is a function of the public key components, the sender‟s public key,
and the hash code of the incoming message. If this quantity matches the component of the
signature, then the signature is validated.

Figure.The Digital Signature Algorithm (DSA)

The value r does not depend on the message at all. Instead, r is a function of k and the

three global public-key components.

The multiplicative inverse of k (mod q) is passed to a function that also has as inputs the
message hash code and the user‟s private key.

The structure of this function is such that the receiver can recover using the incoming

message and signature, the public key of the user, and the global public key. Given the difficulty
of taking discrete logarithms, it is infeasible for an opponent to recover k from r to recover x from
s.

The only computationally demanding task in signature generation is the exponential
calculation gkmod p. Because this value does not depend on the message to be signed, it can be
computed ahead of time.

Selects a private key and generates a public key. The private key x must be a number
from 1 to (q1) and should be chosen randomly. The public key is calculated from the private key
as y = gxmod p.

To create a signature, a user calculates two quantities, r and s, that are functions of the

public key components (p, q, g), the user's private key (x), the hash code of the message, H(M),
and an additional integer k that should be generated randomly and be unique for each signing.

At the receiving end, verification is performed using the formulas. The receiver generates

a quantity v that is a function of the public key components, the sender's public key, and the hash
code of the incoming message. If this quantity matches the r component of the signature, then
the signature is validated (Fig).

Figure DSS Signing and Verifying

 AUTHENTICATION APPLICATIONS

One of the key aspects of cryptography and network security is authentication. It helps to

establish trust by identifying a particular user or a system. There are many ways to authenticate
a user. Traditionally, user ids and passwords have been used.

1.Authentication Requirements

During communication across networks, following attacks can be identified.

1. Disclosure: Releases of message contents to any person or process not possessing

the appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties.

3. Masquerade: Insertion of messages into the network fraudulent source.

4. Content modification: Changes to the content of the message, including insertion

deletion, transposition and modification.

5. Sequence modification: Any modification to a sequence of messages between

parties, including insertion, deletion and reordering.

6. Timing modification: Delay or replay of messages.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of transmission of message by destination.

The security measures for the above mentioned attacks are as follows

For 1,2 - Message Confidentiality
3,4,5,6 - Message Authentication
7 - Digital Signatures

8 - Digital signature with protocol designed to counter the attack

2.Authentication Functions

Any message authentication or digital signature mechanism can be viewed as having

fundamentally two levels.

1. Lower level: Some function that produces an authenticator: a value to be used to

authenticate a message.

2. Higher Level: Lower layer functions are used to create a protocol that enables a receiver

to verify the authenticity of message

The different types of functions that may be used to produce an authenticator are as
follows:

1. Message encryption: The cipher text of the entire message serves as its

authenticator.

2. Message Authentication Code (MAC): A public function of the message and a

secret key that produces a fixed length value serves as the authenticator.

3. Hash function: A public function that maps a message of any length into a fixed

length hash value, which serves as the authenticator.

 KERBEROS

Kerberos provides a centralized authentication server whose function is to authenticate

users to servers and servers to users. Kerberos relies exclusively on conventional encryption,
making no use of public-key encryption.

Motivation

A distributed architecture consists of dedicated user workstations (clients) and

distributed or centralized servers. In this environment, there are three approaches to security:

 Rely on each individual client workstation to assure the identity of its user or users and
rely on each server to enforce a security policy based on user identification (ID).

 Require that client systems authenticate themselves to servers, but trust the client
system concerning the identity of its user.

 Require the user to prove his or her identity for each service invoked. Also require that
servers prove their identity to clients.

The following are the requirements for Kerberos:

 Secure: A network eavesdropper should not be able to obtain the necessary

information to impersonate a user. More generally, Kerberos should be strong
enough that a potential opponent does not find it to be the weak link.

 Reliable: For all services that rely on Kerberos for access control, lack of availability

of the Kerberos service means lack of availability of the supported services. Hence,
Kerberos should be highly reliable and should employ distributed server architecture,
with one system able to back up another.

 Transparent: Ideally, the user should not be aware that authentication is taking

place, beyond the requirement to enter a password.

 Scalable: The system should be capable of supporting large numbers of clients and
servers. This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a trusted third-
party authentication service that uses a protocol based on Needham and Schroeder.

It is trusted in the sense that clients and servers trust Kerberos to mediate their mutual
authentication. Assuming the Kerberos protocol is well designed, and then the authentication
service is secure if the Kerberos server itself is secure.

Two versions of Kerberos are in common use. Version 4 and Version 5

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide the
authentication service

 Simple Authentication Dialogue

In an unprotected network environment, any client can apply to any server for service.

The obvious security risk is that of impersonation. To counter this threat, servers must be able

to confirm the identities of clients who request service. But in an open environment, this places

a substantial burden on each server.

An alternative is to use an authentication server (AS) that knows the passwords of all

users and stores these in a centralized database. In addition, the AS shares a unique secret key

with each server. The simple authentication dialogue is as follows:

1. C >> AS: IDc||Pc||IDv

2. AS >> C: Ticket

3. C >> V: IDc||Ticket

Ticket= EKv(IDc||ADc||IDv)

C : Client,

AS : Authentication Server,

V : Server, IDc : ID of the client,

Pc : Password of the client,

ADc : Address of client, IDv : ID of the server,

Kv : secret key shared by AS and V,

|| : concatenation.

 More Secure Authentication Dialogue

There are two major problems associated with the previous approach:

 Plaintext transmission of the password.

 Each time a user has to enter the password.

To solve these problems, we introduce a scheme for avoiding plaintext passwords, and

a new server, known as ticket granting server (TGS). The hypothetical scenario is as follows:

Once per user logon session:-

1. C >> AS: IDc||IDtgs
2. AS >> C: Ekc (Tickettgs)

Once per type of service:

3. C >> TGS: IDc||IDv||Tickettgs
4. TGS >> C: ticketv

Once per service session:

5. C >> V: IDc|| Ticketv

Tickettgs= Ektgs(IDc||ADc||IDtgs||TS1||Lifetime1)
Ticketv= Ekv(IDc||ADc||IDv||TS2||Lifetime2)

C: Client, AS: Authentication Server, V: Server,

IDc : ID of the client, Pc:Password of the client, ADc: Address of client,
IDv : ID of the server, Kv: secret key shared by AS and V,
|| : concatenation, IDtgs: ID of the TGS server, TS1, TS2: time stamps, lifetime:
lifetime of the ticket.

The new service, TGS, issues tickets to users who have been authenticated to AS.

Thus, the user first requests a ticket-granting ticket (Tickettgs) from the AS. The client module in

the user workstation saves this ticket.

Each time the user requires access to a new service, the client applies to the TGS, using

the ticket to authenticate itself. The TGS then grants a ticket for the particular service. The client

saves each service-granting ticket and uses it to authenticate its user to a server each time a

particular service is requested.

Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its user's ID
and password to the AS, together with the TGS ID, indicating a request to use the TGS
service

2. The AS responds with a ticket that is encrypted with a key that is derived from the user's
password.
When this response arrives at the client, the client prompts the user for his or her

password, generates the key, and attempts to decrypt the incoming message.

If the correct password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct user can

recover the ticket. Thus, we have used the password to obtain credentials from Kerberos

without having to transmit the password in plaintext. Now that the client has a ticket-granting

ticket, access to any server can be obtained with steps 3 and 4:

3. The client requests a service-granting ticket on behalf of the user. For this purpose, the
client transmits a message to the TGS containing the user's ID, the ID of the desired
service, and the ticket-granting ticket

4. The TGS decrypts the incoming ticket and verifies the success of the decryption by the
presence of its ID. It checks to make sure that the lifetime has not expired. Then it
compares the user ID and network address with the incoming information to authenticate
the user. If the user is permitted access to the server V, the TGS issues a ticket to grant
access to the requested service.

The service-granting ticket has the same structure as the ticket-granting ticket. Indeed,
because the TGS is a server, we would expect that the same elements are needed to
authenticate a client to the TGS and to authenticate a client to an application server.

Again, the ticket contains a timestamp and lifetime. If the user wants access to the same

service at a later time, the client can simply use the previously acquired service-granting ticket
and need not bother the user for a password.

Note that the ticket is encrypted with a secret key (Kv) known only to the TGS and the
server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to the

corresponding service with step 5:
5. The client requests access to a service on behalf of the user. For this purpose, the client

transmits a message to the server containing the user's ID and the service-granting
ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query per user

session and protection of the user password.

Kerberos V4 Authentication Dialogue Message Exchange

Two additional problems remain in the more secure authentication dialogue:

 Lifetime associated with the ticket granting ticket. If the lifetime is very short, then
the user will be repeatedly asked for a password. If the lifetime is long, then the
opponent has the greater opportunity for replay.

 Requirement for the servers to authenticate themselves to users.

The actual Kerberos protocol version 4 is as follows
:

 A basic third-party authentication scheme

 Have an Authentication Server (AS)

o Users initially negotiate with AS to identify self
o AS provides a non-corruptible authentication credential (ticket granting

ticket TGT)

 Have a Ticket Granting
o Users subsequently request access to other services from TGS on basis

of users TGT

(a) Authentication service exchange: to obtain ticket granting ticket

(1) C → AS : IDC II IDtgs II TS1

(2) AS → C : EKc [Kc,tgs II IDtgs II TS2 II Lifetime2 II Tickettgs]

(b) Ticket-Granting Service Exchange: to obtain service-granting ticket

(3) C → TGS: IDv II Tickettgs II Authenticatorc
(4) TGS → C: EKc,tgs[Kc,y II IDv II TS4 II Ticketv]

Tickettgs = EK,tgs[Kc,tgs II IDC II ADC II IDtgs IITS2 II Lifetime2]
Ticketv = EKv[Kc,v II IDC II ADC II IDv IITS4 II Lifetime4]
AuthenticatorC = EKtgs [IDC II ADC II TS3]

(c) Client/Server Authentication Exchange: to obtain service

(5) C → V : Ticketv II Authenticatorc
(6) V → C: Ekc,v[TS5 +1]

Ticketv = EKv[Kc,v II IDC II ADC II Idv II TS4 II Lifetime4]

Authenticatorc = EKtgs [IDC II ADC II TS3]

Kerberos 4 Overview

Fig 4.1 Overview of Kerberos 4

Kerberos Realms and Multiple Kerberi

A full-service Kerberos environment consisting of a Kerberos server, a number of clients,

and a number of application servers requires the following:

4. The Kerberos server must have the user ID and hashed passwords of all participating

users in its database. All users are registered with the Kerberos server.
5. The Kerberos server must share a secret key with each server. All servers are registered

with the Kerberos server.

Such an environment is referred to as a Kerberos realm

The concept of realm can be explained as follows.

Fig .Request for service in another Realm

A Kerberos realm is a set of managed nodes that share the same Kerberos database.

The Kerberos database resides on the Kerberos master computer system, which should be kept

in a physically secure room. A read-only copy of the Kerberos database might also reside on

other Kerberos computer systems.

However, all changes to the database must be made on the master computer system.

Changing or accessing the contents of a Kerberos database requires the Kerberos master

password. A related concept is that of a Kerberos principal, which is a service or user that is

known to the Kerberos system.

Each Kerberos principal is identified by its principal name. Principal names consist of

three parts: a service or user name, an instance name, and a realm name. Networks of clients

and servers under different administrative organizations typically constitute different realms.

That is, it generally is not practical, or does not conform to administrative policy, to have

users and servers in one administrative domain registered with a Kerberos server elsewhere.

However, users in one realm may need access to servers in other realms, and some
servers may be willing to provide service to users from other realms, provided that those users
are authenticated.

Kerberos provides a mechanism for supporting such inter realm authentication. For two

realms to support inter realm authentication, a third requirement is added:

6. The Kerberos server in each interoperating realm shares a secret key with the

server in the other realm. The two Kerberos servers are registered with each other.
The scheme requires that the Kerberos server in one realm trust the Kerberos server in

the other realm to authenticate its users. Furthermore, the participating servers in the second

realm must also be willing to trust the Kerberos server in the first realm.

The details of the exchanges illustrated in Fig 2are as follows:

C → AS :IDC II IDtgs II TS1

AS → C :EKc[Kc,tgs ii IDtgs II TS2 II Lifetime2 II Tickettgs

C → TGS :IDtgsrem II Tickettgs II Authenticatorc

TGS → C :E Kc,tgs[Kc,tgsrem II IDtgsrem II TS4 II Tickettgsrem

C→ TGS rem :IDvrem II Tickettgsrem II Authenticatorc

TGS rem → C :EKc,tgsrem [Kc,vrem II IDvrem II TS6 II Ticketvrem:

C → Vrem :Ticketvrem IIAuthenticatorc

Differences between Versions 4 and 5

Version 5 is intended to address the limitations of version 4 in two areas: environmental

shortcomings and technical deficiencies.

Environmental shortcomings:

7. Encryption system dependence:

Version 4 requires the use of DES. In version 5, ciphertext is tagged with an encryption

type identifier so that any encryption technique may be used.

8. Internet protocol dependence:

Version 4 requires the use of Internet Protocol (IP) addresses. Version 5 network

addresses are tagged with type and length, allowing any network address type to be used.

9. Message byte ordering:

In version 4, the sender of a message employs a byte ordering of its own choosing and

tags the message to indicate least significant byte in lowest address In version 5, all message

structures are defined using Abstract Syntax Notation One (ASN.1) and Basic Encoding Rules

(BER), which provide an unambiguous byte ordering.

10. Ticket lifetime:

Lifetime values in version 4 are encoded in an 8-bit quantity in units of five minutes. In

version 5, tickets include an explicit start time and end time, allowing tickets with arbitrary

lifetimes.

11. Authentication forwarding:

Version 4 does not allow credentials issued to one client to be forwarded to some other

host and used by some other client. Version 5 provides this capability.

Technical deficiencies in the version 4 protocol:

 Double encryption

 PCBC encryption

 Session keys

 Password attacks

The Version 5 Authentication Dialogue

(a) Authentication Service Exchange: to obtain ticket-granting ticket

(1) C → AS : Options II IDc II Realmc II Times II Nonce1

(2) AS → C : Realmc II IDc II Tickettgs II EKc [Kc,tgs II Times II Nonce1 II Realmtgs II IDtgs]

Tickettgs = EKtgs [Flags II Kc,tgs II Realmc II IDc II ADc II Times]

(b) Ticket – Granting Service Exchange:to obtain service-granting ticket

(3) C → TGS: Optionns II IDv II Times II Nonce1

(4) TGS → C : Realmc II IDc II Ticketv II EKc,tgs[Kc,v II Times II Nonce2 II Realmv II IDv]

Tickettgs = EKtgs[Flags II Kc,tgs II Realmc II IDc II ADc II Times]

Ticketv = Ekv[[Flags II Kc,v II Realmc II IDc II ADc II Times]

Authenticatorc = EKc,tgs[IDc II Realmc II TS1]

(c) Client/Server AUTHENTICATION Exchange: to obtain service

(5) C → V : Options II Ticketv II Authenticatorc
(6) V → C : EKc,v [TS2 II subkey II Seq #]

Ticketv = EKv[Flags II Kc,v II Realmc II IDc II ADc II Times]
Authenticatorc = EKc,v[IDc II Realmc II TS2 II Subkey II Seq#]

First, consider the authentication service exchange. Message (1) is a client request for a

ticket-granting ticket. It includes the ID of the user and the TGS.

The following new elements are added:

 Realm: Indicates realm of user

 Options: Used to request that certain flags be set in the returned ticket

 Times: Used by the client to request the following time settings in the ticket:

o from : the desired start time for the requested ticket
o till : the requested expiration time for the requested ticket

o rtime : requested renew-till time

Nonce: A random value to be repeated in message (2) to assure that the response is fresh and

has not been replaced by an opponent .

Message (2) returns a ticket-granting ticket, identifying information for the client, and a
block encrypted using the encryption key based on the user's password. This block includes the
session key to be used between the client and the TGS, times specified in message (1), the
nonce from message (1), and TGS identifying information.

The ticket itself includes the session key, identifying information for the client, the

requested time values, and flags that reflect the status of this ticket and the requested options.

Let us now compare the ticket-granting service exchange for versions 4 and 5.

We see that message (3) for both versions include an authenticator, a ticket, and the

name of the requested service.

In addition, version 5 includes requested times and options for the ticket and a nonce,

all with functions similar to those of message (1). The authenticator itself is essentially the same

as the one used in version 4.

The authenticator itself is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2), returning a ticket plus information

needed by the client, the latter encrypted with the session key now shared by the client and the
TGS.

Finally, for the client/server authentication exchange, several new features appear in

version 5. In message (5), the client may request as an option that mutual authentication is

required. The authenticator includes several new fields as follows:

 Subkey: The client's choice for an encryption key to be used to protect this specific

application session. If this field is omitted, the session key from the ticket (Kc,v) is used.

 Sequence number: An optional field that specifies the starting sequence number to be

used by the server for messages sent to the client during this session. Messages may
be sequence numbered to detect replays.
If mutual authentication is required, the server responds with message (6). This

message includes the timestamp from the authenticator. Note that in version 4, the timestamp

was incremented by one. This is not necessary in version 5 because the nature of the format of

messages is such that it is not possible for an opponent to create message (6) without

knowledge of the appropriate encryption keys.

X.509 AUTHENTICATION SERVICES

X.509 defines a framework for authentication services by the X.500 directory to its users.

The directory consists of public-key certificates.

Each certificate contains the public key of a user and is signed with the private key of a
trusted certification authority.

X.509 defines authentication protocols based on public key certificates. X.509 standard

certificate format used in S/MIME, IP Security and SSL/TLS and SET.

Certificates

The certificates are created and stored in the directory by the trusted Certification
Authority (CA). The directory server not having certification functions and not create public key.
But the user obtains the certificate from some easily accessible location

The general format of the certificate as shown below Fig 4.3

The elements of the certificates are

1. Version(V): The default version is 1. The issuer and subject unique identifier are present

in version 2. If one or more extensions are present in version 3.
2. Serial Number (SN): Unique integer value issued by CA
3. Signature Algorithm Identifier (AI): This algorithm is used to sign the certificate with

some parameters
4. Issuer Name (CA): The name of the CA that created and signed this certificate
5. Period of validity (TA): The first and last on which the certificate is valid
6. Subject Name (A): The name of the user to whom this certificate refers
7. Subject’s Public Key Information (AP): The public key of the subject plus identifier of

the algorithm for which this key is to be used, with associated parameters.

Fig X.509 AUTHENTICATION SERVICES

Issuer Unique Identifier: It is used to identify uniquely the issuing CA

8. Subject Unique Identifier: It is used to identify uniquely the subject
9. Extensions: A set of one or more extension fields
10. Signature: Covers all of the other fields of certificate; it contains hash code of other

fields, encrypted with the CA‟s private key.

[Note: Unique identifier is used to avoid reuse of subject and issuer names over time]

Notation to define a certificate

CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap}
where
Y<<X>> = The certificate of user X issued by certification authority Y.
Y {I} = The signing of I by Y. It consists of I with an encrypted hash code appended.

The CA signs the certificate with its private key. If the corresponding public key is known

to a user, then that user can verify that a certificate signed by the CA is valid.

Generation and usage of certificate by a user

The user certificates generated by CA have the following characteristics:

11. Any user with access to the public key of the CA can verify the user public
key that was certified.

12. No party other than the Certification Authority (CA) can modify the certificate without
this being detected.

13. Certificates are unforgeable,

If all users belong to the same CA, the certificates can be placed in the directory for
access by all users. If the number of users increased, single CA could not be satisfied all user
requirements.

For example, User A has obtained the certificate from certificate authority x1 and user B

from x2. Now the two CAs (x1 and x2) securities exchange their own public keys in the form of
certificates. That is x1 must hold x2‟s certificate and x2 holds x1‟s certificate

Now A want s to access B‟s public key, it follows the following chain to obtain B‟s public

key.
x1<< x2>> x2<>

i.e., first A gets x2‟s certificate from x1‟s directory to obtain x2‟s public key. Then using

x2‟s public key to obtain B‟s certificate from x2‟s directory to obtain„s public key.

In the same method, B can obtain A‟s public key with the reverse chain
x2<< x1>> x1<<A>>

Hierarchy of CAs

To obtain public key certificate of user efficiently, more than one CAs can be arranged in
a hierarchy, so that navigation in easy.

The connected circles indicate the hierarchical(Fig 4.4) relationship among the CAs; the

associated boxes indicate certificates maintained in the directory for each CA entry. The
directory entry for each CA includes two types of certificates:

 Forward certificates: Certificates of X generated by other CAs

 Reverse certificates: Certificates generated by X that are the certificates
of other CAs

User A can acquire the following certificates from the directory to establish a certification
path to B:

X<<W>> W <<V>> V <<Y>><<Z>> Z <>

Fig4.4 : Hierarchy of X.509

Revocation of certificates

 Certificates have a period of validity

 May need to revoke before expiry, for the following reasons eg:

 User's private key is compromised
 User is no longer certified by this CA
 CA's certificate is compromised

 CA‟s maintain list of revoked certificates
 The Certificate Revocation List (CRL)

 Users should check Certificates with CA‟s CRL

Authentication Procedures

X.509 includes three alternative authentication procedures:

 One-Way Authentication

 Two-Way Authentication

 Three-Way Authentication

One-Way Authentication

One message (A→B) used to establish

 The identity of A and that message is from A

 Message was intended for B

 Integrity & originality of message

Message must include timestamp, nonce, B's identity and is signed by A

Two-Way Authentication

Two messages (A→B, B→A) which also establishes in addition:

 The identity of B and that reply is from B

 That reply is intended for A

 Integrity & originality of reply

Reply includes original nonce from A, also timestamp and nonce from B

Three-Way Authentication

Three messages (A→B, B→A, A→B) which enables above authentication without

synchronized clocks (Fig 4.5)

 Has reply from A back to B containing signed copy of nonce from B

 Means that timestamps need not be checked or relied upon

Fig: X509 Strong Authentication Procedure

X.509 Version 3

The following requirements not satisfied by version 2:

14. The Subject field is inadequate to convey the identity of a key owner to a public-
key user.

15. The Subject field is also inadequate for many applications, which typically
recognize entities by an Internet e-mail address, a URL, or some other Internet-
related identification.

16. There is a need to indicate security policy information. There is a need to limit the
damage that can result from a faulty or malicious CA by setting constraints on the
applicability of a particular certificate.

17. It is important to be able to identify different keys used by the same owner at
different times.

The certificate extensions fall into three main categories: key and policy information,

subject and issuer attributes, and certification path constraints.

Key and Policy Information

These extensions convey additional information about the subject and issuer keys, plus

indicators of certificate policy.. For example, a policy might be applicable to the authentication of

electronic data interchange (EDI) transactions for the trading of goods within a given price

range.

This area includes the following:

Authority key identifier: Identifies the public key to be used to verify the signature on

this certificate or CRL.
Subject key identifier: Identifies the public key being certified.
Key usage: Indicates a restriction imposed as to the purposes for which, and the

policies under which, the certified public key may be used.

Private-key usage period: Indicates the period of use of the private key corresponding

to the public key. For example, with digital signature keys, the usage period for the
signing private key is typically shorter than that for the verifying public key.
Certificate policies: Certificates may be used in environments where multiple policies

apply.
Policy mappings: Used only in certificates for CAs issued by other CAs.

Certificate Subject and Issuer Attributes

These extensions support alternative names, in alternative formats, for a certificate

subject or certificate issuer and can convey additional information about the certificate subject,
to increase a certificate user's confidence that the certificate subject is a particular person or
entity. For example, information such as postal address, position within a corporation, or picture
image may be required.

The extension fields in this area include the following:

 Subject alternative name: Contains one or more alternative names, using any of a
variety of forms

 Subject directory attributes: Conveys any desired X.500 directory attribute values
for the subject of this certificate.

Certification Path Constraints

These extensions allow constraint specifications to be included in certificates issued for

CAs by other CAs. The extension fields in this area include the following:

 Basic constraints: Indicates if the subject may act as a CA. If so, a certification

path length constraint may be specified.

 Name constraints: Indicates a name space within which all subject names in

subsequent certificates in a certification path must be located.

 Policy constraints: Specifies constraints that may require explicit certificate policy

identification or inhibit policy mapping for the remainder of the certification path.

PANIMALAR ENGINEERING COLLEGE

UNIT V - SECURITY PRACTICE AND SYSTEM SECURITY

Electronic Mail security – PGP, S/MIME – IP security – Web Security - SYSTEM SECURITY:

Intruders – Malicious software – viruses – Firewalls.

Electronic Mail security

 PRETTY GOOD PRIVACY (PGP)

PGP provides the confidentiality and authentication service that can be used for electronic

mail and file storage applications.

The steps involved in PGP are

□ Select the best available cryptographic algorithms as building blocks.

□ Integrate these algorithms into a general purpose application that is independent of operating

system and processor and that is based on a small set of easy-touse commands.

□ Make the package and its documentation, including the source code, freely available via the

internet, bulletin boards and commercial networks.

□ Enter into an agreement with a company to provide a fully compatible, low cost commercial

version of PGP.

PGP has grown explosively and is now widely used.

A number of reasons can be cited for this growth.

□ It isavailable free worldwide in versions that run on a variety of platform.

□ It is based on algorithms that have survived extensive public review and are considered

extremely secure.e.g., RSA, DSS and Diffie Hellman for public key encryption

□ It has a wide range of applicability.

□ It was not developed by, nor it is controlled by, any governmental or standardsorganization.

 Operational description

The actual operation of PGP consists of five services:

1. Authentication

2. Confidentiality

3. Compression

4. E-mail compatibility

5. Segmentation.

1. Authentication: The sequence for authentication is as follows:

□ The sender creates the message

□ SHA-1 is used to generate a 160-bit hash code of the message

□ The hash code is encrypted with RSA using the sender‟s private key and the result is

pretended to the message.

 The receiver uses RSA with the sender‟s public key to decrypt and recover the
hash code.

 The receiver generates a new hash code for the message and compares it with
the decrypted hash code. If the two match, the message is accepted as
authentic.

2. Confidentiality
Confidentiality is provided by encrypting messages to be transmitted or to be stored

locally as files. In both cases, the conventional encryption algorithm CAST-128 may be used.

The 64-bit cipher feedback (CFB) mode is used. In PGP, each conventional key is used
only once. That is, a new key is generated as a random 128-bit number for each message. Thus
although this is referred to as a session key, it is in reality a onetime key. To protect the key, it
is encrypted with the receiver‟s public key.
The sequence for confidentiality is as follows:

 The sender generates a message and a random 128-bit number to be used as a
session key for this message only.

 The message is encrypted using CAST-128 with the session key.

 The session key is encrypted with RSA, using the receiver‟s public key and is
prepended to the message.

 The receiver uses RSA with its private key to decrypt and recover the session
key.

 The session key is used to decrypt the message.
Confidentiality and authentication

Here both services may be used for the same message. First, a signature is generated
for the plaintext message and prepended to the message. Then the plaintext plus the signature
is encrypted using CAST-128 and the session key is encrypted using RSA.

3. Compression

As a default, PGP compresses the message after applying the signature but before
encryption. This has the benefit of saving space for both e-mail transmission and for file storage.

The signature is generated before compression for two reasons:

 It is preferable to sign an uncompressed message so that one can store only the
uncompressed message together with the signature for future verification. If one
signed a compressed document, then it would be necessary either to store a
compressed version of the message for later verification or to recompress the
message when verification is required.

 Even if one were willing to generate dynamically a recompressed message from
verification, PGP‟s compression algorithm presents a difficulty. The algorithm is not
deterministic; various implementations of the algorithm achieve different tradeoffs in
running speed versus compression ratio and as a result, produce different
compression forms.

Message encryption is applied after compression to strengthen cryptographic security. Because
the compressed message has less redundancy than the original plaintext, cryptanalysis is more
difficult. The compression algorithm used is ZIP

Fig 5.1: PGP Cryptographic Functions

4. E-mail compatibility

Many electronic mail systems only permit the use of blocks consisting of ASCII texts. To
accommodate this restriction, PGP provides the service of converting the raw 8-bit binary
stream to a stream of printable ASCII characters. The scheme used for this purpose is radix-64

conversion. Each group of three octets of binary data is mapped into four ASCII characters.

5. Segmentation and reassembly

E-mail facilities often are restricted to a maximum length. E.g., many of the facilities
accessible through the internet impose a maximum length of 50,000 octets. Any message
longer than that must be broken up into smaller segments, each of which is mailed separately.

To accommodate this restriction, PGP automatically subdivides a message that is too
large into segments that are small enough to send via e-mail. The segmentation is done after all
the other processing, including the radix-64 conversion.

At the receiving end, PGP must strip off all e-mail headers and reassemble the entire
original block before performing the other steps.

 Cryptographic keys and key rings

Three separate requirements can be identified with respect to these keys:

 A means of generating unpredictable session keys is needed.

 It must allow a user to have multiple public key/private key pairs.

 Each PGP entity must maintain a file of its own public/private key pairs as well as
a file of public keys of correspondents.

a. Session key generation

Each session key is associated with a single message and is used only for the purpose
of encryption and decryption of that message. Random 128-bit numbers are generated using
CAST-128 itself.

The input to the random number generator consists of a 128-bit key and two 64-bit
blocks that are treated as plaintext to be encrypted. Using cipher feedback mode, the CAST-128
produces two 64-bit cipher text blocks, which are concatenated to form the 128-bit session key.
The plaintext input to CAST-128 is itself derived from a stream of 128-bit randomized numbers.
These numbers are based on the keystroke input from the user.
b. Key identifiers

If multiple public/private key pair are used, then how does the recipient know which of
the public keys was used to encrypt the session key?

One simple solution would be to transmit the public key with the message but, it is
unnecessary wasteful of space. Another solution would be to associate an identifier with each
public key that is unique at least within each user.

The solution adopted by PGP is to assign a key ID to each public key that is, with very

high probability, unique within a user ID. The key ID associated with each public key consists of
its least significant 64 bits. i.e., the key ID of public key KUa is (KUa mod 264).

A message consists of three components.

 Message component – includes actual data to be transmitted, as well as the

filename and a timestamp that specifies the time of creation

 Session key component – includes session key and the identifier of the recipient
public key.

 Signature component – includes the following

 Timestamp – time at which the signature was made.

 Message digest – hash code.

 Two octets of message digest – to enable the recipient to determine if the

correct public key was used to decrypt the message.

 Key ID of sender’s public key – identifies the public key
Notation:

 EkUb= encryption with user B‟s Public key

 EKRa= encryption with user A‟s private key

 EKs = encryption with session key

 ZIP = Zip compression function

 R64 = Radix- 64 conversion function

Fig 5.2: Transmission and Reception of PGP message

PGP provides a pair of data structures at each node, one to store the public/private key

pair owned by that node and one to store the public keys of the other users known at that node.
These data structures are referred to as private key ring and public key ring.

The general structures of the private and public key rings are shown below:

Timestamp - the date/time when this entry was made.
Key ID - the least significant bits of the public key.
Public key - public key portion of the pair.

Private Key - private key portion of the pair.

User ID - the owner of the key
Key legitimacy field – indicates the extent to which PGP will trust that this is a valid

public key for this user.

Fig 5.3: General Format of PGP message (From A to B)

Signature trust field – indicates the degree to which this PGP user trusts the signer to certify

public key.
Owner trust field - indicates the degree to which this public key is trusted to sign other

public key certificates.

PGP message generation First consider message transmission and assume that the
message is to be both signed and encrypted. The sending PGP entity performs the following
steps:

1. Signing the message

 PGP retrieves the sender‟s private key from the private key ring using user ID as an
index. If user ID was not provided, the first private key from the ring is retrieved.

 PGP prompts the user for the passphrase (password) to recover the unencrypted private
key.

 The signature component of the message is constructed.

Fig 5.4: General structure of private and public key Rings

2. Encrypting the message

 PGP generates a session key and encrypts the message.

 PGP retrieves the recipient‟s public key from the public key ring using user ID as index.

Fig 5.5: PGP message generation

The receiving PGP entity performs the following steps:
1. Decrypting the message

 PGP retrieves the receiver‟s private key from the private key ring, using the key ID field
in the session key component of the message as an index.

 PGP prompts the user for the passphrase (password) to recover the unencrypted private
key.

 PGP then recovers the session key and decrypts the message.

2. Authenticating the message

 PGP retrieves the sender‟s public key from the public key ring, using the key ID field in
the signature key component of the message as an index.

 PGP recovers the transmitted message digest.

 PGP computes the message digest for the received message and compares it to the
transmitted message digest to authenticate.

Fig 5.6: PGP message reception

 S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extension) is a security enhancement to the

MIME Internet e-mail format standard, based on technology from RSA Data Security.

 Multipurpose Internet Mail Extensions

MIME is an extension to the RFC 822 framework that is intended to address some of the

problems and limitations of the use of SMTP (Simple Mail Transfer Protocol) or some other mail
transfer protocol and RFC 822 for electronic mail.

Following are the limitations of SMTP/822 scheme:
1. SMTP cannot transmit executable files or other binary objects.
2. SMTP cannot transmit text data that includes national language characters because

these are represented by 8-bit codes with values of 128 decimal or higher, and SMTP is limited
to 7-bit ASCII.

3. SMTP servers may reject mail message over a certain size.
4. SMTP gateways that translate between ASCII and the character code EBCDIC do not

use a consistent set of mappings, resulting in translation problems.
5. SMTP gateways to X.400 electronic mail networks cannot handle non textual data

included in X.400 messages.
6. Some SMTP implementations do not adhere completely to the SMTP standards

defined in RFC 821. Common problems include:

 Deletion, addition, or reordering of carriage return and linefeed

 Truncating or wrapping lines longer than 76 characters

 Removal of trailing white space (tab and space characters)

 Padding of lines in a message to the same length

 Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible with existing
RFC 822 implementations. The specification is provided in RFCs 2045 through 2049.

OVERVIEW

The MIME specification includes the following elements:
1. Five new message header fields are defined, which may be included in an RFC 822
header. These fields provide information about the body of the message.
2. A number of content formats are defined, thus standardizing representations that

support multimedia electronic mail.
3. Transfer encodings are defined that enable the conversion of any content format into a

form that is protected from alteration by the mail system.
In this subsection, we introduce the five message header fields. The next two subsections deal
with content formats and transfer encodings.
The five header fields defined in MIME are as follows:

 MIME-Version: Must have the parameter value 1.0. This field indicates that the message
conforms to RFCs 2045 and 2046.

 Content-Type: Describes the data contained in the body with sufficient detail.

 Content-Transfer-Encoding: Indicates the type of transformation that has been used to
represent the body of the message in a way that is acceptable for mail transport.

 Content-ID: Used to identify MIME entities uniquely in multiple contexts.

 Content-Description: A text description of the object with the body; this is useful when the

object is not readable (e.g., audio data).

5.1.3.1 MIME Content Types

There are seven different major types of content and a total of 15 subtypes

MIME Content Types

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.

Enriched Provides greater format flexibility.

Multipart

Mixed The different parts are independent but are to be
transmitted together. They should be presented to the
receiver in the order that they appear in the mail message.

Parallel Differs from Mixed only in that no order is defined for
delivering the parts to the receiver.

Alternative The different parts are alternative versions of the same

information. They are ordered in increasing faithfulness to
the original, and the recipient's mail system should display
the "best" version to the user.

Digest Similar to Mixed, but the default type/subtype of each part
is message/rfc822.

Message
rfc822 The body is itself an encapsulated message that conforms

to RFC 822.

 Partial Used to allow fragmentation of large mail items, in a way
that is transparent to the recipient.

External-

body
Contains a pointer to an object that exists elsewhere.

Image

jpeg The image is in JPEG format, JFIF encoding.

Gif The image is in GIF format.

Video mpeg MPEG format.

Audio
Basic Single-channel 8-bit ISDN mu-law encoding at a sample

rate of 8 kHz.

Application

PostScript Adobe Postscript.

octet-stream General binary data consisting of 8-bit bytes.

For the text type of body, no special software is required to get the full meaning of the

text, aside from support of the indicated character set. The primary subtype is plain text, which
is simply a string of ASCII characters or ISO 8859 characters. The enriched subtype allows
greater formatting flexibility.

The multipart type indicates that the body contains multiple, independent parts. The

Content-Type header field includes a parameter, called boundary, that defines the delimiter
between body parts.

The multipart/digest subtype is used when each of the body parts is interpreted as an

RFC 822 message with headers. This subtype enables the construction of a message whose
parts are individual messages. For example, the moderator of a group might collect e-mail
messages from participants, bundle these messages, and send them out in one encapsulating
MIME message.

The message type provides a number of important capabilities in MIME. The
message/rfc822 subtype indicates that the body is an entire message, including header and
body. Despite the name of this subtype, the encapsulated message may be not only a simple
RFC 822 message, but also any MIME message.

The message/partial subtype enables fragmentation of a large message into a number

of parts, which must be reassembled at the destination. For this subtype, three parameters are
specified in the Content-Type: Message/Partial field: an id common to all fragments of the same
message, a sequence number unique to each fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be conveyed in

this message are not contained in the body. Instead, the body contains the information needed
to access the data.
MIME Transfer Encodings

MIME Transfer Encodings

7bit The data are all represented by short lines of ASCII characters.

8bit The lines are short, but there may be non-ASCII characters
(octets with the high-order bit set).

binary Not only may non-ASCII characters be present but the lines are
not necessarily short enough for SMTP transport.

quoted-printable Encodes the data in such a way that if the data being encoded
are mostly ASCII text, the encoded form of the data remains
largely recognizable by humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of

output, all of which are printable ASCII characters.

x-token A named nonstandard encoding.

The quoted-printable transfer encoding is useful when the data consists largely of octets

that correspond to printable ASCII characters. In essence, it represents non safe characters by
the hexadecimal representation of their code and introduces reversible (soft) line breaks to limit
message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common one for
encoding arbitrary binary data in such a way as to be invulnerable to the processing by mail
transport programs.

 Canonical Form

An important concept in MIME and S/MIME is that of canonical form. Canonical form is a
format, appropriate to the content type that is standardized for use between systems. This is in
contrast to native form, which is a format that may be peculiar to a particular system.
S/MIME Functionality

In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability to
sign and/or encrypt messages.

Functions:

S/MIME provides the following functions:

 Enveloped data: This consists of encrypted content of any type and encrypted-

content encryption keys for one or more recipients.

 Signed data: A digital signature is formed by taking the message digest of the

content to be signed and then encrypting that with the private key of the signer.
The content plus signature are then encoded using base 64 encoding. A signed
data message can only be viewed by a recipient with S/MIME capability.

 Clear-signed data: As with signed data, a digital signature of the content is
formed. However, in this case, only the digital signature is encoded using base
64. As a result, recipients without S/MIME capability can view the message
content, although they cannot verify the signature.

 Signed and enveloped data: Encrypted data may be signed and signed data or
clear-signed data may be encrypted.

Cryptographic Algorithms

Table 1 summarizes the cryptographic algorithms used in S/MIME. S/MIME uses the

following terminology, taken from RFC 2119 to specify the requirement level:

 Must: The definition is an absolute requirement of the specification. An

implementation must include this feature or function to be in conformance with the
specification.

 Should: There may exist valid reasons in particular circumstances to ignore this

feature or function, but it is recommended that an implementation include the feature
or function.

Table1: Cryptographic Algorithms Used in S/MIME

Function Requirement

 MUST support SHA-1.

Create a message digest to be used in
forming a digital signature. Encrypt
message digest to form digital signature.

Receiver SHOULD support MD5 for
backward compatibility.

Sending and receiving agents MUST
support DSS.

Sending agents SHOULD support RSA
encryption.

Receiving agents SHOULD support
verification of RSA signatures with key
sizes 512 bits to 1024 bits.

Encrypt session key for transmission with
message.

Sending and receiving agents SHOULD
support Diffie-Hellman.

Sending and receiving agents MUST
support RSA encryption with key sizes
512 bits to 1024 bits.

 Sending and receiving agents MUST
support encryption with triple DES

Encrypt message for transmission with
one-time session key.

Sending agents SHOULD support
encryption with AES.

Sending agents SHOULD support
encryption with RC2/40.

Create a message authentication code

Receiving agents MUST support HMAC
with SHA-1.

Receiving agents SHOULD support
HMAC with SHA-1.

5.1.3.6 S/MIME MESSAGES

S/MIME makes use of a number of new MIME content types, which are shown in Table

2. All of the new application types use the designation PKCS. This refers to a set of public-key
cryptography specifications issued by RSA Laboratories and made available for the S/MIME
effort.

Table 2: S/MIMEContent Types

Type Subtype SMIME
Parameter

Description

Multipart Signed A clear-signed message in two
parts: one is the message and the
other is the signature.

Application

PKCS 7-
MIME

Signed Data A signed S/MIME entity.

PKCS 7-
MIME

Enveloped
Data

An encrypted S/MIME entity.

PKCS 7-
MIME

degenerate
signed Data

An entity containing only public-
key certificates.

PKCS 7-

MIME

Compressed

Data

A compressed S/MIME entity

PKCS 7-
SIGNATURE

signed Data The content type of the signature
subpart of a multipart/signed
message.

SECURING A MIME ENTITY

S/MIME secures a MIME entity with a signature, encryption, or both. A MIME entity may
be an entire message (except for the RFC 822 headers), or if the MIME content type is
multipart, then a MIME entity is one or more of the subparts of the message. In all cases, the
message to be sent is converted to canonical form.

In particular, for a given type and subtype, the appropriate canonical form is used for the
message content. For a multipart message, the appropriate canonical form is used for each
subpart.

The use of transfer encoding requires special attention.

1) Enveloped Data

1. Generate a pseudorandom session key for a particular symmetric encryption algorithm

(RC2/40 or triple DES).
2. For each recipient, encrypt the session key with the recipient's public RSA key.
3. For each recipient, prepare a block known as Recipient Info that contains an identifier of

the recipient's public-key certificate, an identifier of the algorithm used to encrypt the
session key, and the encrypted session key.

4. Encrypt the message content with the session key.
The Recipient Info blocks followed by the encrypted content constitute the enveloped

Data. This information is then encoded into base 64. To recover the encrypted message, the
recipient first strips off the base64 encoding. Then the recipient's private key is used to
recover the session key. Finally, the message content is decrypted with the session key.

2) Signed Data

The steps for preparing a signed Data MIME entity are as follows:

 Select a message digest algorithm (SHA or MD5).

 Compute the message digest, or hash function, of the content to be signed

 Encrypt the message digest with the signer's private key.

 4. Prepare a block known as Signer Info that contains the signer's public-key
certificate, an identifier of the message digest algorithm, an identifier of the algorithm
used to encrypt the message digest, and the encrypted message digest

To recover the signed message and verify the signature, the recipient first strips off the
base64 encoding. Then the signer's public key is used to decrypt the message digest.

The recipient independently computes the message digest and compares it to the
decrypted message digest to verify the signature.

3) Clear Signing

 Clear signing is achieved using the multipart content type with a signed subtype.

 As was mentioned, this signing process does not involve transforming the message to
be signed, so that the message is sent "in the clear."

 Thus, recipients with MIME capability but not S/MIME capability are able to read the
incoming message.
A multipart/signed message has two parts.

The first part can be any MIME type but must be prepared so that it will not be

altered during transfer from source to destination. This means that if the first part is not 7bit,
then it needs to be encoded using base64 or quoted-printable.

This second part has a MIME content type of application and a subtype of PKCS7-
signature The protocol parameter indicates that this is a two-part clear-signed entity. The
receiver can verify the signature by taking the message digest of the first part and comparing
this to the message digest recovered from the signature in the second part.

 Registration Request

The user will apply to a certification authority for a public-key certificate. The S/MIME
entity is used to transfer a certification request.

 The certification request includes certification Request Info block, followed by an
identifier of the public-key encryption algorithm, followed by the signature of the
certification Request Info block, made using the sender's private key.

 The certification Request Info block includes a name of the certificate subject (the
entity whose public key is to be certified) and a bit-string representation of the user's
public key.

Certificates-Only Message
A message containing only certificates or a certificate revocation list (CRL) can be sent

in response to a registration request. The message is an application/PKCS7-MIME type/subtype
with an SMIME-type parameter of degenerate. The steps involved are the same as those for
creating a signed Data message, except that there is no message content and the signer Info
field is empty.

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509 The key-
management scheme used by S/MIME is in some ways a hybrid between a strict X.509
certification hierarchy and PGP's web of trust.

User Agent Role

An S/MIME user has several key-management functions to perform:

Key generation:

The user of some related administrative utility (e.g., one associated with LAN
management) MUST be capable of generating a key pair from a good source of
nondeterministic random input and be protected in a secure fashion.
Registration:

A user's public key must be registered with a certification authority in order to receive an
X.509 public-key certificate.
Certificate storage and retrieval:

A user requires access to a local list of certificates in order to verify incoming signatures
and to encrypt outgoing messages. Such a list could be maintained by the user or by some local
administrative entity on behalf of a number of users.
VeriSign Certificates

There are several companies that provide certification authority (CA) services. There are

a number of Internet-based CAs, including VeriSign, GTE, and the U.S. Postal Service.
VeriSign provides a CA service that is intended to be compatible with S/MIME and a

variety of other applications. VeriSign issues X.509 certificates with the product name VeriSign
Digital ID.

The information contained in a Digital ID depends on the type of Digital ID and its
use. At a minimum, each Digital ID contains

 Owner's public key

 Owner's name or alias

 Expiration date of the Digital ID

 Serial number of the Digital ID

 Name of the certification authority that issued the Digital ID

 Digital signature of the certification authority that issued the Digital ID

Digital IDs can also contain other user-supplied information, including

 Address

 E-mail address

 Basic registration information (country, zip code, age, and gender)
VeriSign provides three levels, or classes, of security for public-key certificates. A user requests
a certificate online at VeriSign's Web site or other participating Web sites. Class 1 and Class 2
requests are processed on line, and in most cases take only a few seconds to approve. Briefly,
the following procedures are used:

 For Class 1 Digital IDs, VeriSign confirms the user's e-mail address by sending a PIN
and Digital ID pick-up information to the e-mail address provided in the application.

 For Class 2 Digital IDs, VeriSign verifies the information in the application through an
automated comparison with a consumer database in addition to performing all of the
checking associated with a Class 1 Digital ID.

o Finally, confirmation is sent to the specified postal address alerting the user that

a Digital ID has been issued in his or her name.

 For Class 3 Digital IDs, VeriSign requires a higher level of identity assurance. An
individual must prove his or her identity by providing notarized credentials or applying in
person.

 Enhanced Security Services

Three enhanced security services have been proposed in an Internet draft.

Signed receipts:

A signed receipt may be requested in a Signed Data object. Returning a signed receipt

provides proof of delivery to the originator of a message and allows the originator to
demonstrate to a third party that the recipient received the message.

Security labels:

A security label may be included in the authenticated attributes of a SignedData object.

A security label is a set of security information regarding the sensitivity of the content that is
protected by S/MIME encapsulation. The labels may be used for access control, by indicating
which users are permitted access to an object.

Secure mailing lists:

When a user sends a message to multiple recipients, a certain amount of per-recipient

processing is required, including the use of each recipient's public key.

The user can be relieved of this work by employing the services of an S/MIME Mail List
Agent (MLA). An MLA can take a single incoming message, perform the recipient-specific
encryption for each recipient, and forward the message.

The originator of a message need only send the message to the MLA, with encryption

performed using the MLA's public key.

NON REPUDIATION

Non-repudiation is the assurance that someone cannot deny something. Typically, non-

repudiation refers to the ability to ensure that a party to a contract or a communication cannot
deny the authenticity of their signature on a document or the sending of a message that they
originated.

To repudiate means to deny. On the Internet, a digital signature is used not only to
ensure that a message or document has been electronically signed by the person that purported
to sign the document, but also, since a digital signature can only be created by one person, to
ensure that a person cannot later deny that they furnished the signature.

Since no security technology is absolutely fool-proof, some experts warn that a digital

signature alone may not always guarantee non-repudiation. It is suggested that multiple
approaches be used, such as capturing unique biometric information and other data about the
sender or signer that collectively would be difficult to repudiate.

Email non-repudiation involves methods such as email tracking that is designed to

ensure that the sender cannot deny having sent a message and/or that the recipient cannot
deny having received it

http://searchsecurity.techtarget.com/definition/digital-signature

5.2 IP SECURITY

 OVERVIEW OF IPSEC

Applications of IPSec

IPSec provides the capability to secure communications across a LAN, across private
and public WANs, and across the Internet. Examples of its use include the following:

 Secure branch office connectivity over the Internet

 2 Secure remote access over the Internet

 Establishing extranet and intranet connectivity with partners

 Enhancing electronic commerce security

 Benefits of IPSec:

 When IPSec is implemented in a firewall or router, it provides strong security

 IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP,
and the firewall is the only means of entrance from the Internet into the
organization.

 IPSec is below the transport layer (TCP, UDP) and so is transparent to
applications. There is no need to change software on a user or server system
when IPSec is implemented in the firewall or router.

 IPSec can be transparent to end users. There is no need to train users on
security mechanisms

 IPSec can provide security for individual users if needed.
 Routing Applications

IPSec can play a vital role in the routing architecture required for internet working.

The following are examples of the use of IPSec. IPSec can assure that

 A router advertisement (a new router advertises its presence) comes from an
authorized router

 A neighbor advertisement (a router seeks to establish or maintain a neighbor
relationship with a router in another routing domain) comes from an authorized
router.

 A redirect message comes from the router to which the initial packet was sent.

 A routing update is not forged.
IP SECURITY ARCHITECTURE
 IPSec Documents

The IPSec specification consists of numerous documents. The most important of these,
issued in November of 1998, are RFCs 2401, 2402, 2406, and 2408:

 RFC 2401: An overview of a security architecture

 RFC 2402: Description of a packet authentication extension to IPv4 and IPv6

 RFC 2406: Description of a packet encryption extension to IPv4 and IPv6

 RFC 2408: Specification of key management capabilities
The documents are divided into seven groups:

 Architecture

Covers the general concepts, security requirements, definitions, and mechanisms
defining IPSec technology.
Encapsulating Security Payload (ESP):

Covers the packet format and general issues related to the use of the ESP for packet
encryption and, optionally, authentication.
Authentication Header (AH):

Covers the packet format and general issues related to the use of AH for packet
authentication.
Encryption Algorithm:

A set of documents that describe how various encryption algorithms are used for ESP.
Authentication Algorithm:

A set of documents that describe how various authentication algorithms are used for AH
and for the authentication option of ESP.
Key Management:

Documents that describe key management schemes.
Domain of Interpretation (DOI):

Contains values needed for the other documents to relate to each other. These include
identifiers for approved encryption and authentication algorithms, as well as operational
parameters such as key lifetime.

Fig 5.7: IP security Document overview

IPSec Services

IPSec provides security services at the IP layer by enabling a system to select required
security protocols, determine the algorithm(s) to use for the service(s), and put in place any
cryptographic keys required to provide the requested services.

Two protocols are used to provide security:

 An authentication protocol: Designated by the header of the protocol,
Authentication Header (AH);

 Encryption/authentication protocol designated by the format of the packet for that
protocol, Encapsulating Security Payload (ESP).

The services are

 Access control

 Connectionless integrity

 Data origin authentication

 Rejection of replayed packets (a form of partial sequence integrity)

 Confidentiality (encryption)

 Limited traffic flow confidentiality

Security Associations

A key concept that appears in both the authentication and confidentiality mechanisms for

IP is the security association (SA). An association is a one-way relationship between a sender
and a receiver that affords security services to the traffic carried on it.

A security association is uniquely identified by three parameters:

 Security Parameters Index (SPI)

 IP Destination Address

 Security Protocol Identifier

SA Parameters

A security association is normally defined by the following parameters:
a) Sequence Number Counter:

A 32-bit value used to generate the Sequence Number field in AH or ESP headers.

b) Sequence Counter Overflow:

A flag indicating whether overflow of the Sequence Number Counter should generate an
auditable event and prevent further transmission of packets on this SA.
c) Anti-Replay Window:

Used to determine whether an inbound AH or ESP packet is a replay.
d) AH Information:

Authentication algorithm, keys, key lifetimes, and related parameters being used with AH
(required for AH implementations).

e) ESP Information:

Encryption and authentication algorithm, keys, initialization values, key lifetimes, and

related parameters being used with ESP (required for ESP implementations).

f) Lifetime of This Security Association:

A time interval or byte count after which an SA must be replaced with a new SA or
terminated, plus an indication of which of these actions should occur .

g) IPSec Protocol Mode: Tunnel, transport.
h) Path MTU: Any observed path maximum transmission unit and aging variables.

Modes of Transfer

Both AH and ESP support two modes of use: transport and tunnel mode.

Transport Mode:

Transport mode provides protection primarily for upper-layer protocols. That is, transport
mode protection extends to the payload of an IP packet.

Tunnel Mode:

Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH or

ESP fields are added to the IP packet, the entire packet plus security fields is treated as the
payload of new "outer" IP packet with a new outer IP header.

The entire original, or inner, packet travels through a "tunnel" from one point of an IP
network to another; no routers along the way are able to examine the inner IP header. Because
the original packet is encapsulated, the new, larger packet may have totally different source and
destination addresses, adding to the security.

 Authentication Header

The Authentication Header provides support for data integrity and authentication of IP

packets. The Authentication Header consists of the following fields:

 Next Header (8 bits): Identifies the type of header immediately following this header.

 Payload Length (8 bits): Length of Authentication Header in 32-bit words, minus 2.

 Reserved (16 bits): For future use.

 Security Parameters Index (32 bits): Identifies a security association.

 Sequence Number (32 bits): A monotonically increasing counter value.

 Authentication Data (variable): A variable-length field (must be an integral number
of 32-bit words) that contains the Integrity Check Value (ICV), or MAC

Fig 5.8: IPSec Authentication Header

Anti-Replay Service

A replay attack is one in which an attacker obtains a copy of an authenticated packet
and later transmits it to the intended destination.

When a new SA is established, the sender initializes a sequence number counter to 0.
Each time that a packet is sent on this SA, the sender increments the counter and places the
value in the Sequence Number field. Thus, the first value to be used is 1.

If anti-replay is enabled (the default), the sender must not allow the sequence number to
cycle past 232-1 back to zero. Otherwise, there would be multiple valid packets with the same
sequence number. If the limit of 232-1 is reached, the sender should terminate this SA and
negotiate a new SA with a new key.
Integrity Check Value

The Authentication Data field holds a value referred to as the Integrity Check Value. The

ICV is a message authentication code or a truncated version of a code produced by a MAC
algorithm.

Transport and Tunnel Modes

For transport mode AH using IPv4, the AH is inserted after the original IP header and
before the IP payload

For tunnel mode AH, the entire original IP packet is authenticated, and the AH is
inserted between the original IP header and a new outer IP header

Encapsulating Security Payload

The Encapsulating Security Payload provides confidentiality services, including
confidentiality of message contents and limited traffic flow confidentiality.

The diagram shows the format of an ESP packet. It contains the following fields:
 Security Parameters Index (32 bits): Identifies a security association.
 Sequence Number (32 bits): A monotonically increasing counter value; this provides an

anti-replay function, as discussed for AH.

 Payload Data (variable): This is a transport-level segment (transport mode) or IP

packet (tunnel mode) that is protected by encryption.
 Padding (0255 bytes):The purpose of this field is discussed later.
 Pad Length (8 bits): Indicates the number of pad bytes immediately preceding

this field.
 Next Header (8 bits): Identifies the type of data contained in the payload data

field by identifying the first header in that payload (for example, an extension
header in IPv6, or an upper-layer protocol such as TCP).

 Authentication Data (variable): A variable-length field (must be an integral number of

32-bit words) that contains the Integrity Check Value computed over the ESP packet
minus the Authentication Data field.

Fig 5.9: Scope of AH Authentication

Padding:
The Padding field serves several purposes:

 If an encryption algorithm requires the plaintext to be a multiple of some number of
bytes (e.g., the multiple of a single block for a block cipher), the Padding field is used
to expand the plaintext (consisting of the Payload Data, Padding, Pad Length, and
Next Header fields) to the required length.

 The ESP format requires that the Pad Length and Next Header fields be right aligned
within a 32-bit word. Equivalently, the ciphertext must be an integer multiple of 32
bits. The Padding field is used to assure this alignment.

 Additional padding may be added to provide partial traffic flow confidentiality by
concealing the actual length of the payload.

Transport and Tunnel Modes

ESP service can be used. In the upper part of the figure, encryption (and optionally
authentication) is provided directly between two hosts.

The diagram shows how tunnel mode operation can be used to set up a virtual private
network.

In this example, an organization has four private networks interconnected across the
Internet.

Hosts on the internal networks use the Internet for transport of data but do not interact
with other Internet-based hosts.

By terminating the tunnels at the security gateway to each internal network, the
configuration allows the hosts to avoid implementing the security capability. The former
technique is support by a transport mode SA, while the latter technique uses a tunnel mode SA.
Transport Mode ESP:

For this mode using IPv4, the ESP header is inserted into the IP packet immediately

prior to the transport-layer header (e.g., TCP, UDP, ICMP) and an ESP trailer (Padding, Pad
Length, and Next Header fields) is placed after the IP packet; if authentication is selected, the
ESP Authentication Data field is added after the ESP trailer.

The entire transport-level segment plus the ESP trailer are encrypted. Authentication
covers all of the cipher text plus the ESP header.

For this mode using IPv4, the ESP header is inserted into the IP packet immediately
prior to the transport-layer header (e.g., TCP, UDP, ICMP) and an ESP trailer (Padding, Pad
Length, and Next Header fields) is placed after the IP packet; if authentication is selected, the
ESP Authentication Data field is added after the ESP trailer.

The entire transport-level segment plus the ESP trailer are encrypted. Authentication
covers all of the cipher text plus the ESP header.

Transport mode operation provides confidentiality for any application that uses it, thus
avoiding the need to implement confidentiality in every individual application. This mode of
operation is also reasonably efficient, adding little to the total length of the IP packet. One
drawback to this mode is that it is possible to do traffic analysis on the transmitted packets.

Fig 5.10: Transport Mode

Tunnel Mode ESP

Tunnel mode ESP is used to encrypt an entire IP packet. For this mode, the ESP header

is prefixed to the packet and then the packet plus the ESP trailer is encrypted. This method can
be used to counter traffic analysis.

Because the IP header contains the destination address and possibly source routing
directives and hop-by-hop option information, it is not possible simply to transmit the encrypted
IP packet prefixed by the ESP header. Intermediate routers would be unable to process such a
packet.

Therefore, it is necessary to encapsulate the entire block (ESP header plus cipher text
plus Authentication Data, if present) with a new IP header that will contain sufficient information
for routing but not for traffic analysis.

COMBINING SECURITY ASSOCIATIONS

An individual SA can implement either the AH or ESP protocol but not both. Sometimes

a particular traffic flow will call for the services provided by both AH and ESP. Further, a
particular traffic flow may require IPsec services between hosts and, for that same flow,
separate services between security gateways, such as firewalls.

Security associations may be combined into bundles in two ways:
Transport adjacency:

Refers to applying more than one security protocol to the same IP packet without
invoking tunneling. This approach to combining AH and ESP allows for only one level of
combination; further nesting yields no added benefit since the processing is performed at one
IPsec instance: the (ultimate) destination.
Iterated tunneling:

Refers to the application of multiple layers of security protocols effected through IP

tunneling. This approach allows for multiple levels of nesting, since each tunnel can originate or
terminate at a different IPsec site along the path.

The two approaches can be combined, for example, by having a transport SA between
hosts travel part of the way through a tunnel SA between security gateways.

One interesting issue that arises when considering SA bundles is the order in which
authentication and encryption may be applied between a given pair of endpoints and the ways
of doing so. We examine that issue next. Then we look at combinations of SAs that involve at
least one tunnel.
Authentication plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet that
has both confidentiality and authentication between hosts. We look at several approaches.

 ESP with Authentication Option

This approach is illustrated in diagram. In this approach, the user first applies ESP to the

data to be protected and then appends the authentication data field. There are actually two
subcases:

Transport mode ESP: Authentication and encryption apply to the IP payload delivered
to the host, but the IP header is not protected.

Tunnel mode ESP: Authentication applies to the entire IP packet delivered to the outer

IP destination address (e.g., a firewall), and authentication is performed at that destination. The
entire inner IP packet is protected by the privacy mechanism for delivery to the inner IP
destination.

For both cases, authentication applies to the cipher text rather than the plaintext.

Transport Adjacency

Another way to apply authentication after encryption is to use two bundled transport
SAs, with the inner being an ESP SA and the outer being an AH SA. In this case, ESP is used
without its authentication option. Because the inner SA is a transport SA, encryption is applied
to the IP payload. The resulting packet consists of an IP header (and possibly IPv6 header
extensions) followed by an ESP.AH is then applied in transport mode,

so that authentication covers the ESP plus the original IP header (and extensions)

except for mutable fields. The advantage of this approach over simply using a single ESP SA
with the ESP authentication option is that the authentication covers more fields, including the
source and destination IP addresses.The disadvantage is the overhead of two SAs versus one
SA.

Fig 5.11: Protocol Operation for ESP

Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that must
be supported by compliant IPsec hosts (e.g., workstation, server) or security gateways (e.g.
firewall, router).These are illustrated in Figure .

The lower part of each case in the figure represents the physical connectivity of the

elements; the upper part represents logical connectivity via one or more nested SAs. Each SA

can be either AH or ESP. For host-to-host SAs, the mode may be either transport or tunnel;
otherwise it must be tunnel mode.

Case 1: All security is provided between end systems that implement IPsec.
For any two end systems to communicate via an SA, they must share the appropriate

secret keys. Among the possible combinations are

 AH in transport mode

 ESP in transport mode

 ESP followed by AH in transport mode (an ESP SA inside an AH SA)

 Any one of a, b, or c inside an AH or ESP in tunnel mode
We have already discussed how these various combinations can be used to support

authentication, encryption, authentication before encryption, and authentication after encryption.
Case 2: Security is provided only between gateways (routers, firewalls, etc.) and no

hosts implement IPsec. This case illustrates simple virtual private network support. The security
architecture document specifies that only a single tunnel SA is needed for this case. The tunnel
could support AH, ESP, or ESP with the authentication option. Nested tunnels are not required,
because the IPsec services apply to the entire inner packet.

Case 3: This builds on case 2 by adding end-to-end security. The same combinations
discussed for cases 1 and 2 are allowed here. The gateway-to-gateway tunnel provides either
authentication, confidentiality, or both for all traffic between end systems.When the gateway-to-
gateway tunnel is ESP, it also provides a limited form of traffic confidentiality. Individual hosts
can implement any additional IPsec services required for given applications or given users by
means of end-to-end SAs.

Case 4: This provides support for a remote host that uses the Internet to reach an
organization‟s firewall and then to gain access to some server or workstation behind the firewall.
Only tunnel mode is required between the remote host and the firewall. As in case 1, one or two
SAs may be used between the remote host and the local host.

KEY MANAGEMENT

The key management portion of IPSec involves the determination and distribution of
secret keys. Two types of key management:

Manual: A system administrator manually configures each system with its own keys and

with the keys of other communicating systems. This is practical for small, relatively static
environments.

Automated: An automated system enables the on-demand creation of keys for SAs and

facilitates the use of keys in a large distributed system with an evolving configuration.
The default automated key management protocol for IPSec is referred to as

ISAKMP/Oakley and consists of the following elements:
Oakley Key Determination Protocol: Oakley is a key exchange protocol based on the

Diffie-Hellman algorithm but providing added security. Oakley is generic in that it does not
dictate specific formats.

Internet Security Association and Key Management Protocol (ISAKMP):ISAKMP

provides a framework for Internet key management and provides the specific protocol support,
including formats, for negotiation of security attributes.

(firewall, router).These are illustrated in Figure .The lower part

Fig 5.12: Basic Combinations of Security Associations

Oakley Key Determination Protocol

Oakley is a refinement of the Diffie-Hellman key exchange algorithm. There is prior

agreement on two global parameters: q, a large prime number; and a primitive root of q. A
selects a random integer XA as its private key, and transmits to B its public key YA XA mod q.

Similarly, B selects a random integer XB as its private key and transmits to A its public
key YB XB mod q. Each side can now compute the secret session key:

K = (YB)XAmod q = (YA
)XB mod q= XAXB mod q

The Diffie-Hellman algorithm has two attractive features:

 Secret keys are created only when needed. There is no need to store secret keys
for a long period of time, exposing them to increased vulnerability.

 The exchange requires no preexisting infrastructure other than an agreement on
the global parameters.

Features of Oakley

The Oakley algorithm is characterized by five important features:

 It employs a mechanism known as cookies to thwart clogging attacks.

 It enables the two parties to negotiate a group; this, in essence, specifies the
global parameters of the Diffie-Hellman key exchange.

 It uses nonces to ensure against replay attacks.

 It enables the exchange of Diffie-Hellman public key values.

 It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle attacks.
Three different authentication methods can be used with Oakley:

 Digital signatures

 Public-key encryption

 Symmetric-key encryption
ISAKMP

ISAKMP defines procedures and packet formats to establish, negotiate, modify, and
delete security associations.
ISAKMP Header Format

An ISAKMP message consists of an ISAKMP header followed by one or more payloads.
It consists of the following fields:

 Initiator Cookie (64 bits): Cookie of entity that initiated SA establishment, SA
notification, or SA deletion.

 Responder Cookie (64 bits): Cookie of responding entity; null in first message
from initiator.

 Next Payload (8 bits): Indicates the type of the first payload in the message;
payloads are discussed in the next subsection.

 Major Version (4 bits): Indicates major version of ISAKMP in use.

 Minor Version (4 bits): Indicates minor version in use.

 Exchange Type (8 bits): Indicates the type of exchange.

 Flags (8 bits): Indicates specific options set for this ISAKMP exchange.

 Message ID (32 bits): Unique ID for this message.

 Length (32 bits): Length of total message (header plus all payloads) in octets.

Fig 5.13: ISAKMP Header Format

5.3 WEB SECURITY

 WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server application running over the
Internet and TCP/IP intranets.
Web Security Threats

A Comparison of Threats on the Web

 Threats Consequences Countermeasures

Integrity Modification of user
data Trojan horse
browser
Modification of memory
Modification of
message traffic in
transit

Loss of information
Compromise of
machine
Vulnerability to all
other threats

Cryptographic
checksums

Confidentiality Eavesdropping on the
Net Theft of info from
server Theft of data
from client Info about
network configuration
Info about which client
talks to server

Loss of information
Loss of privacy

Encryption, web proxies

Denial of
Service

Killing of user threads
Flooding machine with
Bogus requests
Filling up disk or
memory Isolating
machine by DNS
attacks

Disruptive Annoying
Prevent user from
getting work done

Difficult to prevent

Authentication Impersonation of
legitimate users Data
forgery

Misrepresentation of
user Belief that false
information is valid

Cryptographic
techniques

Two types of attacks are:

Passive attacks include eavesdropping on network traffic between browser and server

and gaining access to information on a Web site that is supposed to be restricted.

Active attacks include impersonating another user, altering messages in transit

between client and server, and altering information on a Web site.

 WEB TRAFFIC SECURITY APPROACHES

One way to provide Web security is to use IP Security. The advantage of using IPSec is
that it is transparent to end users and applications and provides a general-purpose solution.

HTTP FTP SMTP

SSL/TLS

TCP

HTTP FTP SMTP

TCP

IP/IPSec

(a) Network level (b) Transport Level

(c) Application
Level

Fig5.14: Relative
Facilities in the TCP/IP

Location of Security
Protocal Stack

 SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY
 SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end secure service.
The SSL Record Protocol provides basic security services to various higher-layer

protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer
service for Web client/server interaction, can operate on top of SSL. Three higher-layer
protocols are defined as part of SSL: the Handshake Protocol, The Change Cipher Spec
Protocol, and the Alert Protocol.

Fig 5.15: SSL Protocol Stack

Two important SSL concepts are the SSL session and the SSL connection, which are
defined in the specification as follows:
Connection:

A connection is a transport (in the OSI layering model definition) that provides a suitable

type of service. For SSL, such connections are peer-to-peer relationships. The connections are
transient. Every connection is associated with one session.

Session:

An SSL session is an association between a client and a server. Sessions are created
by the Handshake Protocol. Sessions define a set of cryptographic security parameters, which
can be shared among multiple connections. Sessions are used to avoid the expensive
negotiation of new security parameters for each connection.

A session state is defined by the following parameters

IP

 S/MIME PGP SET

Kerberos SMTP HTTP

UDP TCP

IP

 Session identifier

 Peer certificate

 Compression method

 Cipher spec

 Master secret

 Is resumable
A connection state is defined by the following parameters:

 Server and client random

 Server write MAC secret

 Client write MAC secret

 Server write key

 Client write key.

 Initialization vectors

 Sequence numbers

SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections:

Confidentiality: The Handshake Protocol defines a shared secret key that is used for

conventional encryption of SSL payloads.
Message Integrity: The Handshake Protocol also defines a shared secret key that is

used to form a message authentication code (MAC).

The diagram indicates the overall operation of the SSL Record Protocol. The Record
Protocol takes an application message to be transmitted, fragments the data into manageable
blocks, optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits
the resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and
reassembled and then delivered to higher-level users.

The first step is fragmentation. Each upper-layer message is fragmented into blocks of
214 bytes (16384 bytes) or less. Next, compression is optionally applied. Compression must be
lossless and may not increase the content length by more than 1024 bytes. In SSLv3 (as well as
the current version of TLS), no compression algorithm is specified, so the default compression
algorithm is null.

The next step in processing is to compute a message authentication code over the

compressed data.

The final step of SSL Record Protocol processing is to prepend a header, consisting of
the following fields:

 Content Type (8 bits): The higher layer protocol used to process the enclosed
fragment.

 Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the value is

3.

 Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value is 0.

 Compressed Length (16 bits): The length in bytes of the plaintext fragment (or

compressed fragment if compression is used). The maximum value is 214 + 2048.

Fig 5.16: SSL Record Protocol Operation

Change Cipher Spec Protocol

This protocol consists of a single message which consists of a single byte with the value
1.
Alert Protocol

The Alert Protocol is used to convey SSL-related alerts to the peer entity.
Each message in this protocol consists of two bytes The first byte takes the value

warning(1) or fatal(2) to convey the severity of the message. The second byte contains a code
that indicates the specific alert.

 unexpected_message: An inappropriate message was received.

 bad_record_mac: An incorrect MAC was received.

 decompression_failure: The decompression function received improper input (e.g.,

unable to decompress or decompress to greater than maximum allowable length).

 handshake_failure: Sender was unable to negotiate an acceptable set of security
parameters given the options available.

 illegal_parameter: A field in a handshake message was out of range or inconsistent

with other fields.
The remainder of the alerts is the following:

 Close notify: Notifies the recipient that the sender will not send any more messages
on this connection. Each party is required to send a close_notify alert before closing
the right side of a connection.

 No certificate: May be sent in response to a certificate request if no appropriate
certificate is available.

 bad_certificate: A received certificate was corrupt (e.g., contained a signature that

did not verify).

 unsupported_certificate: The type of the received certificate is not supported.

 certificate_revoked: A certificate has been revoked by its signer.

 certificate_expired: A certificate has expired.

 certificate_unknown: Some other unspecified issue arose in processing the
certificate, rendering it unacceptable.

Handshake Protocol

This protocol allows the server and client to authenticate each other and to negotiate an

encryption and MAC algorithm and cryptographic keys to be used to protect data sent in an SSL
record. The Handshake Protocol is used before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by client and
server.

Establish Security Capabilities

This phase is used to initiate a logical connection and to establish the security

capabilities that will be associated with it. The exchange is initiated by the client, which sends a
client_hello message with the following parameters:

1. Version: The highest SSL version understood by the client.
2. Random: A client-generated random structure, consisting of a 32-bit timestamp and

28 bytes generated by a secure random number generator. These values serve as nonces and
are used during key exchange to prevent replay attacks.

3. Session ID: A variable-length session identifier. A nonzero value indicates that the
client wishes to update the parameters of an existing connection or create a new connection on
this session.

4. CipherSuite: This is a list that contains the combinations of cryptographic algorithms
supported by the client, in decreasing order of preference.

5. Compression Method: This is a list of the compression methods the client supports.

After sending the client_hello message, the client waits for the server_hello message,
which contains the same parameters as the client_hello message.

Server Authentication and Key Exchange
The server begins this phase by sending its certificate; The certificate message is

required for any agreed-on key exchange method except anonymous Diffie-Hellman.
Next, a server_key_exchange message may be sent if it is required. The certificate

request message includes two parameters: certificate_type and certificate_authorities.
Client Authentication and Key Exchange

If the server has requested a certificate, the client begins this phase by sending a
certificate message.Next is the client_key_exchange message, which must be sent in this
phase.

Finally, in this phase, the client may send a certificate_verify message to provide explicit
verification of a client certificate.

SSL Handshake Protocol Message Types

Message Type Parameters

hello_request null

client_hello version, random, session id, cipher suite, compression method

server_hello version, random, session id, cipher suite, compression method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

SSL Handshake Protocol Message Types

Message Type Parameters

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value

Fig 5.17: Handshake Protocol Action

Finish

This phase completes the setting up of a secure connection. The client sends a
change_cipher_spec message and copies the pending CipherSpec into the current CipherSpec.

The client then immediately sends the finished message under the new algorithms, keys,
and secrets.
Cryptographic Computations
Master Secret Creation

The shared master secret is a one-time 48-byte value (384 bits) generated for this
session by means of secure key exchange. The creation is in two stages.

First, a pre_master_secret is exchanged. Second, the master_secret is calculated by

both parties. For pre_master_secret exchange, there are two possibilities:

 RSA: A 48-byte pre_master_secret is generated by the client, encrypted with the
server's public RSA key, and sent to the server. The server decrypts the ciphertext using
its private key to recover the pre_master_secret.

 Diffie-Hellman: Both client and server generate a Diffie-Hellman public key. After these
are exchanged, each side performs the Diffie-Hellman calculation to create the shared
pre_master_secret.

 SECURE ELECTRONIC TRANSACTION

SET is an open encryption and security specification designed to protect credit card
transactions on the Internet.

SET is not itself a payment system. Rather it is a set of security protocols and formats
that enables users to employ the existing credit card payment infrastructure on an open
network, such as the Internet, in a secure fashion.

SET provides three services:

 Provides a secure communications channel among all parties involved in a
transaction

 Provides trust by the use of X.509v3 digital certificates

 Ensures privacy because the information is only available to parties in a
transaction when and where necessary

 Key Features of SET

 Confidentiality of information

 Integrity of data

 Cardholder account authentication

 Merchant authentication

 SET Participants

 Cardholder: A cardholder is an authorized holder of a payment card (e.g., MasterCard,
Visa) that has been issued by an issuer.

 Merchant: A merchant is a person or organization that has goods or services to sell to
the cardholder.

 Issuer: This is a financial institution, such as a bank, that provides the cardholder with
the payment card.

 Acquirer: This is a financial institution that establishes an account with a merchant and
processes payment card authorizations and payments.

 Payment gateway: This is a function operated by the acquirer or a designated third

party that processes merchant payment messages.

 Certification authority (CA): This is an entity that is trusted to issue X.509v3 public-key

certificates for cardholders, merchants, and payment gateways.

Fig 5.18: Secure Electronic Commerce Components

 SET Transaction

 Customer opens account: The customer obtains a credit card account, such as

MasterCard or Visa, with a bank that supports electronic payment and SET.

 Customer receives a certificate: After verification the customer receives X.509V3,

digital certificate which is signed by the bank. This certificate verifies the customer‟s RSA
public key and expiration date.

 Merchants have their own certificates:

 Merchants who accepts card need to have 2 certificates for 2 public keys owned
by them.

 One certificate is used for signing of message and the other is used for key
exchange.

 The merchants also need the copy of payment gateway‟s public key certificate.

 Customer places an order:
 The customer places the order containing the list of items to be purchased to the

merchant.
 The merchant returns the order form having the items, price, total price and order

number.

 Merchant is verified: The merchant along with the order form sends its certificate

copy. The customer can verify the same.

 Order and payment are sent:
 The customer sends order and payment information into the merchant along with

customer‟s certificate.
 This is order conformation of the order form.
 The payment contains the card details. This is encrypted, so it cannot be read by

the merchant.
 The certificate sent can be verified by the merchant.

 Merchant requests payment authorization: The merchant sends the payment

information to the payment gateway. The merchant requests for authentication of the
customer, credit limit, validity.

 Merchant confirms order: The merchant sends conformation of the order to the

customer.

 Merchant provides goods or service

 Merchant requests payment

 Dual Signature

The purpose of the dual signature is to link two messages that are intended for two

different recipients. In this case, the customer wants to send the order information (OI) to the
merchant and the payment information (PI) to the bank. The merchant does not need to know
the customer's credit card number, and the bank does not need to know the details of the
customer's order.

The customer takes the hash (using SHA-1) of the PI and the hash of the OI. These two
hashes are then concatenated and the hash of the result is taken. Finally, the customer
encrypts the final hash with his or her private signature key, creating the dual signature. The
operation can be summarized as

DS = E(PRc, [H (H (PI) || H (O I)])

Where PRc is the customer's private signature key. Now suppose that the merchant is in
possession of the dual signature (DS), the OI, and the message digest for the PI (PIMD). The
merchant also has the public key of the customer, taken from the customer's certificate. Then
the merchant can compute the quantities

H (PIMS || H[OI]); D(PUc, DS)

Where PUc is the customer's public signature key. If these two quantities are equal, then

the merchant has verified the signature.

Similarly, if the bank is in possession of DS, PI, the message digest for OI (OIMD), and

the customer's public key, then the bank can compute

H(H[OI]||OIMD); D(PUc, DS)

PI = Payment information PIMD = PI message digest
OI = Order information OIMD = OI message digest
H = Hash function(SHA-1) POMD = Payment order message digest
II = Concatenation E = Encryption(RSA)

PRC = Customer‟s private signature key
Payment Processing

 Purchase request

 Payment authorization

 Payment capture

Purchase Request

Before the Purchase Request exchange begins, the cardholder has completed browsing,

selecting, and ordering. The end of this preliminary phase occurs when the merchant sends a
completed order form to the customer.

The purchase request exchange consists of four messages: Initiate Request, Initiate
Response, Purchase Request, and Purchase Response.

 verifies cardholder certificates using CA sigs

 verifies dual signature using customer's public signature key to ensure order has
not been tampered with in transit & that it was signed using cardholder's private
signature key

 processes order and forwards the payment information to the payment gateway
for authorization (described later)

 sends a purchase response to cardholder

Fig 5.19: Purchase Request – Customer

Payment Authorization

The payment authorization ensures that the transaction was approved by the issuer.

This authorization guarantees that the merchant will receive payment; the merchant can
therefore provide the services or goods to the customer. The payment authorization exchange
consists of two messages: Authorization Request and Authorization response.

 Verifies all certificates

 Decrypts digital envelope of authorization block to obtain symmetric key & then
decrypts authorization block

 Verifies merchant's signature on authorization block

 Decrypts digital envelope of payment block to obtain symmetric key & then decrypts
payment block

 Verifies dual signature on payment block

 Verifies that transaction ID received from merchant matches that in PI received
(indirectly) from customer

 Requests & receives an authorization from issuer

 Sends authorization response back to merchant

Fig 5.20: Purchase Request – Merchant

Payment Capture

To obtain payment, the merchant engages the payment gateway in a payment capture
transaction, consisting of a capture request and a capture response message.

 Merchant sends payment gateway a payment capture request

 Gateway checks request

 Then causes funds to be transferred to merchants account

 Notifies merchant using capture response

SYSTEM SECURITY:

Topic 1: Firewalls

Topic 2: Intruders

Topic 3: Malicious software

Topic 4: Viruses

Scanned by CamScanner

	UNIT I INTRODUCTION
	SECURITY TRENDS
	Figure 1.1 CIA triad
	Figure 1.2 Security Trends
	LEGAL, ETHICAL AND PROFESSIONAL ASPECTS OF SECURITY
	Cryptography and Law
	Intellectual Properties.
	Ethical issues related to computer and info systems
	NEED FOR SECURITY AT MULTIPLE LEVELS
	Security Policies
	Role of the Security Policy in Setting up Protocols
	Structure of a Security Policy
	Types of Policies
	A MODEL FOR NETWORK SECURITY
	Figure 1.3 Model for Network Security
	Figure 1.4 Network Access Security Model
	THE OSI SECURITY ARCHITECTURE
	ATTACKS
	Passive Attacks
	Figure 1.5 Passive Attacks
	Figure 1.6 Active Attacks
	Table 1.2 Security Services (X.800)
	CLASSICAL ENCRYPTION TECHNIQUES
	SYMMETRIC CIPHER MODEL
	Figure 1.7 Simplified Model of Symmetric Encryption
	Figure 1.8 Model of Symmetric Cryptosystem
	Cryptography
	The type of operations used for transforming plaintext to ciphertext:
	3. Cryptanalysis and Brute-Force Attack
	Table 1.4 Types of Attacks on Encrypted Messages
	SUBSTITUTION TECHNIQUES
	1. Caesar Cipher
	Figure 1.9 Brute-Force Cryptanalysis of Caesar Cipher
	Figure 1.10 Relative Frequencies of Letters in English Text
	it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow
	3. Playfair Cipher
	4. Hill Cipher
	or
	5. One Time Pad Cipher (or) Vernam Cipher
	OTP Encryption
	OTP Decryption
	6. Polyalphabetic Ciphers
	TRANSPOSITION TECHNIQUES
	STEGANOGRAPHY
	Foundations of modern cryptography
	Characteristics of Modern Cryptography
	Context of Cryptography
	Cryptography (1)
	Cryptanalysis
	Note − Cryptography concerns with the design of cryptosystems, while cryptanalysis studies the breaking of cryptosystems.
	Key
	Symmetric key encryption
	Asymmetric Key Encryption
	Security Services of Cryptography
	Cryptography Primitives
	Perfect Security
	Information Theory
	Product Cryptosystems
	CRYPTANALYSIS
	Other Attacks using Cryptanalysis
	UNIT II SYMMETRIC KEY CRYPTOGRAPHY
	Figure 2.1 Common Algebraic Structures
	2.1.1 Groups, Rings, Fields
	Groups
	(A1) Closure: If a and b belong to G, then a*b is also in G. (A2) Associative: a*(b*c)=(a*b)*c for all a, b, , in G .
	that a*e=e*a=a for all in G .
	a’ in G such that a*a’=a’*a=e .
	(A5) Commutative: a*b = b*a for all a b, in G.
	Rings
	Fields
	Figure 2.2 Groups, Ring and Field
	Modular Arithmetic Operations
	EUCLID’ S ALGORITHM
	Greatest Common Divisor
	Algorithm
	Extended Euclidean Algorithm
	Example 2
	CONGRUENCE AND MATRICES
	Congruences have the following properties:
	FINITE FIELDS FINITE FIELDS OF THE FORM GF(p)
	Finite Fields of Order p
	Polynomial Arithmetic
	Ordinary Polynomial Arithmetic
	Polynomial Arithmetic with Coefficients in
	Figure 2.3 Examples of Polynomial Arithmetic
	SYMMETRIC KEY CIPHERS
	Figure 2.4 Simplified Model of Symmetric Encryption
	Figure 2.5 Overview of S-DES Algorithm
	S-DES Key Generation
	Figure 2.6 S-DES Key Generation
	Figure 2.7 S-DES Encryption
	DATA ENCRYPTION STANDARD
	DES Encryption
	General Depiction of DES Encryption Algorithm Phase 1
	Phase 2:
	Phase 3:
	Operation on key:
	Figure 2.8 DES Encryption Algorithm
	Permutation Tables for DES
	Inverse Initial Permutation (IP-1)
	Permutation Function (P)
	Details of Single Round
	Figure 2.9 Single Round of DES Algorithm
	Definition of S-Boxes
	Fig 2.10 Calculation of F(R, K)
	DES Key Schedule Calculation
	(c) Permuted Choice Two (PC-2)
	DES Decryption:
	The Avalanche Effect:
	THE STRENGTH OF DES
	1. The Use of 56-Bit Keys
	2. The Nature of the DES Algorithm
	3. Timing Attacks
	Attacks on DES:
	Differential Cryptanalysis
	Differential Cryptanalysis Attack:
	Linear Cryptanalysis
	BLOCK CIPHER PRINCIPLES
	Number of Rounds
	Design of Function F
	Criteria needed for F,
	Key Schedule Algorithm
	Stream Cipher and Block Cipher
	Figure 2.11 Stream Cipher and Block Cipher
	Feistel cipher structure
	Figure 2.12 Feistel Encryption and Decryption (16 rounds)
	LE16 = RE15
	LEi = REi-1
	BLOCK CIPHER MODES OF OPERATION
	Multiple Encryption and Triple DES
	Double DES
	Figure 2.13 Multiple Encryption
	Meet-in-the-Middle Attack
	Triple DES with Two Keys
	Figure 2.14 Triple DES
	1. Merkle and Hellman
	2. known - plaintext attack:
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	MODE 1: Electronic Code Book
	Disadvantage:
	Figure 2.15 Electronic Code Book (ECB) Mode Properties for Evaluating and Constructing ECB
	MODE 2: Cipher Block Chaining Mode
	Figure 2.16 Cipher Block Chaining (CBC) Mode
	Reason for protecting the IV:
	MODE 3: Cipher Feedback Mode:
	Encryption:
	Decryption:
	Figure 2.17 S-bit Cipher Feedback (CFB) mode
	Output Feedback Mode
	Comparison between OFB and CFB
	Figure 2.18 Output Feedback Mode
	Disadvantage: (1)
	Counter Mode
	Advantage:
	Figure 2.19 Counter Mode
	Finite Field Arithmetic
	The definition consists of the following elements.
	AES Structure General Structure
	Figure 2.20 AES Encryption Process
	Detailed Structure
	Fig: 2.21 Detail AES structure Overall detail about AES structure.
	Fig 2.22 AES Encryption and Decryption
	Fig 2.23 AES Encryption Round
	AES Transformation Functions
	Substitute Bytes Transformation
	Figure 2.24 AES Byte level Operations
	Figure 2.26 Construction of S-Box and IS-Box
	Type 2: Inverse Substitute Byte Transformation:
	Type 3: Shift Rows Transformation
	Figure 2.27 Forward Shift Row Transformation
	Figure 2.28 AES Row and Column Operations
	Type 5: AddRoundKey Transformation Forward and Inverse Transformations
	Fig 2.29 AES Key Expansion Type 6: Key Expansion Algorithm
	Figure 2.30 Key Expansion Algorithm
	An AES Example
	Results
	Table 2.4 Expansion of the 16-byte key into 10 round keys
	Table 2.5 progression of State through the AES encryption process
	2.13.1 Key Generation Algorithm
	Initialization of S
	Pseudo random generation algorithm (Stream Generation)
	Figure 2.32 PRGA Algorithm
	Encrypt using XOR
	Figure 2.34 RC4 Encryption
	Figure 2.35 RC4 Decryption
	Key Distribution
	Key Distribution Centre
	Key Distribution Scenario
	Session Key Lifetime

	Prime factorisation
	Fermat Theorem or Fermat’s little theorem
	If a belongs to integer , P is a prime number that does not divide a

	In special case
	It is mainly used to solve modular exponentiation. Eg. Compute the value of 2 10 mod 11
	Eg. Compute the value of 2 340 mod 11
)=(2
)

	//Proof.
	Take division algorithm
	let g.c.d (a,p) ie coprime
	fact says that if a leaves remainder r where 1<= r<= p-1 on dividing by p then ka,1<= k<= p-1 also leaves remainders from 1 to p-1.
	If a,2a,3a,…(p-1)a surely gives remainders 1,2,3,…(p-1)
	a p-1 ≡ 1 (mod p) [as mod p cannot divide (p-1)!]
	= 1 [as per theorem]
	=(52 mod 13) * (5 13 mod 13)
	=(12 * 5) mod 13

	Euler’s theorem
	If n and a are coprime positive intergers then a phi(n) ≡1 (mod)n
	n is prime number and phi(n) is Euler‘s phi function.

	Euler’s phi function or Euler’s totient function(
	Euler‘s phi function phi (n) returns the numbers of integers from 1 to n,that are relatively prime to n.
	1.If n is a prime number then phi (n) = n-1 2.If n is a composite number then
	2.2.Find prime powers (p n)of the given number n. For computing the phi value of
	Eg. Compute Eulers‘s totient function for the values 3,8 1. phi(3)=3-1=2
	2 (since p – p

	Primality Testing Methods
	1. Naive Algorithm:
	Naïve Algorithm is used to divide the given input number P by all the integers starting from 2 to root of P – 1

	Algorithm:
	1. Pick any integer P that is greater than 2
	3. If P is divisible by any one of these integer, we can conclude that P is a composite
	Example:
	2. 2,3,4,5,6,7,8,9

	2. Fermat’s Primality Test:
	Example:
	Check whether the given number 12 is prime number or not using Fermat‘s theorem
	To check whether 12 is prime number or not, we have to check aP-1 ≡ 1(mod P)
	Where 1 <= a < 12
	If it is equal to 1, then it is called prime number. Otherwise, it is called composite number.
	(i.e) 5 11 mod 12=5

	3. Miller – Rabin Primality Test
	Function Miller-Rabin (x)
	x-1 = (2)y //x is the input number for primality test
	select a randomly in the range [2, (x-1)]
	Z = a mod x
	{
	Z = Z mod x
	return composite
	Find the primality for 7 x = 7
	As per algorithm, x – 1 = 7 – 1 = 6 = 2 x 3
	Z = a mod 7
	Z = 2 mod 7 = 1
	States that when the moduli of a system of linear congruencies are pairwise prime, there is a unique solution of the system modulo, the product of the moduli.
	Chinese mathematician Sun Tsu Suan-Ching asking the following problem:
	(Otherwise) Mangos are divided into groups consisting of 3 mangos in each group remaining is 2. If the mangos are divided into groups consisting of 5 mangos in each group remaining 3.
	Let M1, M2, …, Mn be (pairwise) relatively prime numbers. Then the system: Step1: Calculate M

	
	x ≡ 2 mod(3)
	ii. For each equation calculate
	theorem or easy inverse method like 35 x ? mod 3=1 (ie) 2]
	= (140 + 63 + 30) mod 105
	
	 (1)
	 (2)
	Step 1: Split x and y into smaller parts using exponential rules as shown below: 290 mod 13 = 250 x 240
	240 mod 13 = 1099511627776 mod 13 = 3
	2 mod 13 = (2 x 2) mod 13
	Logarithms or Indices
	• Discrete logarithms are logarithms defined with regard to multiplicative cyclic groups. If G is a multiplicative cyclic group and g is a generator of G, then from the definition of cyclic groups, we know every element h in G can be written as
	g for some x. The discrete logarithm to the base g of h in the group G is defined
	• For example, if the group is Z5*, and the generator is 2, then the
	discrete logarithm of 1 is 4 because 2 ≡ 1 mod 5.
	• Goal: Find k such that ak
	= b(mod p). (In other words, find the position of y in
	the large list of {a, a , . . . , a }.
	• For example L14(5) = 10 mod 19, because 1410 = 5(mod 19).
	that is to find x where a = b mod p
	• if a is a primitive root then always exists
	c = M
	mod n
	Fig . Example of RSA Algorithm
	Figure. Uncontrolled Public-Key Distribution
	UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY
	4. AUTHENTICATION REQUIREMENT
	AUTHENTICATION FUNCTION
	Message Encryption:
	(a).Symmetric key encryption confidentiality, authentication and signature
	(b) Public key encryption confidentiality
	Figure (c) Public key encryption authentication and signature
	Figure (d) Public key encryption confidentiality, authentication and signature
	(e) Internal error control
	(g) Message Authentication
	Figure (i) Message authentication and confidentiality, authentication tied to ciphertext Requirements for MAC:
	Round 1
	Round 2
	MAC based on DES
	Figure.2 Data Authentication Algorithm 4.3.HASH FUNCTION
	Figure (a) Hash Function
	Figure (b & c) Basic use of Hash Function
	Figure (d,e & f) Basic use of Hash Function
	Requirements for a Hash Function
	Simple Hash Functions
	Birthday Attacks
	MEET-IN-THE-MIDDLE ATTACK.
	SECURITY OF HASH FUNCTION AND MAC
	Brute-Force Attacks
	Hash Functions
	Message Authentication Codes
	Cryptanalysis
	Hash Functions (1)
	General structure of secure hash code
	SHA
	Fig .Message Digest Generation Using SHA-512
	Figure. SHA-512 Processing of a Single 1024-Bit Block SHA-512 Round Function
	Figure.Creation of 80-word Input Sequence for SHA-512 Processing of Single Block
	Comparison of SHA-1 and MD5
	HMAC
	HMAC Algorithm:
	Figure .HMAC Structure
	Figure .Efficient Implementation of HMAC
	CMAC
	Fig .Cipher-based Message Authentication Code
	DIGITAL SIGNATURE AND AUTHENTICATION PROTOCOLS
	Direct Digital Signature
	Weakness of Direct Digital Signature:
	Arbitrated Digital Signatures
	Scheme 1: Conventional encryption, Arbiter sees the message:
	Scheme 2: Conventional encryption, Arbiter does not see the message:
	Scheme 2: Public key encryption, Arbiter does not see the message:
	Authentication Protocols
	Mutual Authentication
	Replay Attacks
	Countermeasures include
	Using Symmetric Encryption
	Needham-Schroeder Protocol
	Attacks:
	DenningProtocol:
	Using Public-Key Encryption
	Denning AS Protocol
	One-Way Authentication
	Using Symmetric Encryption (1)
	Public-Key Approaches
	DSS
	Figure 3.15 Two Approaches to Digital Signatures
	The Digital Signature Algorithm:
	Figure.The Digital Signature Algorithm (DSA)
	Figure DSS Signing and Verifying
	1.Authentication Requirements
	2.Authentication Functions
	KERBEROS
	Simple Authentication Dialogue
	More Secure Authentication Dialogue
	Once per user logon session:-
	Once per type of service:
	Once per service session:
	Kerberos V4 Authentication Dialogue Message Exchange
	Kerberos 4 Overview
	Kerberos Realms and Multiple Kerberi
	Fig .Request for service in another Realm
	The details of the exchanges illustrated in Fig 2are as follows:
	Differences between Versions 4 and 5
	Environmental shortcomings:
	8. Internet protocol dependence:
	9. Message byte ordering:
	10. Ticket lifetime:
	11. Authentication forwarding:
	Technical deficiencies in the version 4 protocol:
	The Version 5 Authentication Dialogue
	X.509 AUTHENTICATION SERVICES
	Certificates
	Fig X.509 AUTHENTICATION SERVICES
	Notation to define a certificate
	Generation and usage of certificate by a user
	Hierarchy of CAs
	Fig4.4 : Hierarchy of X.509
	Authentication Procedures
	One-Way Authentication (1)
	Two-Way Authentication
	Three-Way Authentication
	Fig: X509 Strong Authentication Procedure
	Key and Policy Information
	Certificate Subject and Issuer Attributes
	Certification Path Constraints

	UNIT V - SECURITY PRACTICE AND SYSTEM SECURITY
	Electronic Mail security
	PGP provides the confidentiality and authentication service that can be used for electronic mail and file storage applications.
	The steps involved in PGP are
	□ Integrate these algorithms into a general purpose application that is independent of operating system and processor and that is based on a small set of easy-touse commands.

	PGP has grown explosively and is now widely used.
	A number of reasons can be cited for this growth.
	□ It is based on algorithms that have survived extensive public review and are considered extremely secure.e.g., RSA, DSS and Diffie Hellman for public key encryption

	Operational description
	The actual operation of PGP consists of five services:
	2. Confidentiality
	4. E-mail compatibility
	□ The sender creates the message
	□ The hash code is encrypted with RSA using the sender‟s private key and the result is pretended to the message.
	2. Confidentiality
	Confidentiality and authentication
	3. Compression
	4. E-mail compatibility
	5. Segmentation and reassembly
	Cryptographic keys and key rings
	a. Session key generation
	b. Key identifiers
	1. Signing the message
	2. Encrypting the message
	Fig 5.5: PGP message generation
	1. Decrypting the message
	2. Authenticating the message
	S/MIME
	Multipurpose Internet Mail Extensions
	OVERVIEW
	5.1.3.1 MIME Content Types
	MIME Transfer Encodings
	Canonical Form
	S/MIME Functionality
	Functions:
	Cryptographic Algorithms
	5.1.3.6 S/MIME MESSAGES
	SECURING A MIME ENTITY
	1) Enveloped Data
	2) Signed Data
	3) Clear Signing
	Registration Request
	Certificates-Only Message
	S/MIME Certificate Processing
	User Agent Role
	Key generation:
	Registration:
	Certificate storage and retrieval:
	VeriSign Certificates
	Digital IDs can also contain other user-supplied information, including
	Enhanced Security Services
	Signed receipts:
	Security labels:
	Secure mailing lists:
	NON REPUDIATION
	5.2 IP SECURITY
	Applications of IPSec
	Benefits of IPSec:
	Routing Applications
	IP SECURITY ARCHITECTURE
	Architecture
	Encapsulating Security Payload (ESP):
	Authentication Header (AH):
	Encryption Algorithm:
	Authentication Algorithm:
	Key Management:
	Domain of Interpretation (DOI):
	IPSec Services
	The services are
	Security Associations
	SA Parameters
	a) Sequence Number Counter:
	b) Sequence Counter Overflow:
	c) Anti-Replay Window:
	d) AH Information:
	e) ESP Information:
	f) Lifetime of This Security Association:
	Modes of Transfer
	Transport Mode:
	Tunnel Mode:
	Authentication Header
	Fig 5.8: IPSec Authentication Header
	Integrity Check Value
	Transport and Tunnel Modes
	Encapsulating Security Payload
	Fig 5.9: Scope of AH Authentication
	Transport and Tunnel Modes (1)
	Fig 5.10: Transport Mode
	COMBINING SECURITY ASSOCIATIONS
	Transport adjacency:
	Iterated tunneling:
	Authentication plus Confidentiality
	ESP with Authentication Option
	Transport Adjacency
	Fig 5.11: Protocol Operation for ESP Basic Combinations of Security Associations
	KEY MANAGEMENT

	(firewall, router).These are illustrated in Figure .The lower part
	Oakley Key Determination Protocol
	Features of Oakley
	ISAKMP
	ISAKMP Header Format

	5.3 WEB SECURITY
	Web Security Threats
	WEB TRAFFIC SECURITY APPROACHES
	(a) Network level (b) Transport Level
	Level
	Location of Security Protocal Stack
	SSL Architecture
	Fig 5.15: SSL Protocol Stack
	Connection:
	Session:
	SSL Record Protocol
	Fig 5.16: SSL Record Protocol Operation Change Cipher Spec Protocol
	Alert Protocol
	Handshake Protocol
	Establish Security Capabilities
	Server Authentication and Key Exchange
	Client Authentication and Key Exchange
	Fig 5.17: Handshake Protocol Action
	Cryptographic Computations Master Secret Creation
	SECURE ELECTRONIC TRANSACTION
	Key Features of SET
	SET Participants
	Fig 5.18: Secure Electronic Commerce Components
	 Merchants have their own certificates:
	 Customer places an order:
	 Order and payment are sent:
	 Merchant provides goods or service
	Dual Signature
	Payment Processing
	Purchase Request
	Fig 5.19: Purchase Request – Customer
	Fig 5.20: Purchase Request – Merchant

	Topic 1: Firewalls
	Topic 3: Malicious software Topic 4: Viruses

