
1

CS8494-SOFTWARE ENGINEERING

UNIT-I

1.1. INTRODUCTION TO SOFTWARE ENGINEERING

Software definition:

Definition 1: Software is instructions (computer programs) that are intended to provide desired

 Features, function, and performance;

Definition 2: Software is a data structure that enables the programs to adequately manipulate information.

Characteristics of software are

1. Software is developed or engineered; it is not manufactured in the classical sense.

In both activities, high quality is achieved through good design, but the manufacturing phase

for hardware can introduce quality problems that are nonexistent for software

2. Software doesn’t “wear out.”

The failure rate curve for software should take the form of the “idealized curve” shown in

Figure. Undiscovered defects will cause high failure rates early in the life of a program. However,

these are corrected and the curve flattens as shown. The idealized curve is a gross oversimplification

of actual failure models for software. However, the implication is clear—software doesn’t wear out.

But it does deteriorate!

3. Although the industry is moving toward component-based construction, most software continues

to be custom built.

Software Application Domains

Seven broad categories of computer software

1) System software—a collection of programs written to service other programs. Some system

software are compilers, editors, and assembler. The purpose of the sysem software is to establish

a communication with the hardware.

2) Application software—stand-alone programs that solve a specific business need.

3) Engineering/scientific software—has been characterized by “number crunching” algorithms.

4) Embedded software—resides within a product or system and is used to implement and control

features and functions for the end user and for the system itself.

5) Product-line software—designed to provide a specific capability for use by many different

customers.

6) Web applications—called “WebApps,” this network-centric software category spans a wide

array of applications.

7) Artificial intelligence software—makes use of non numerical algorithms to solve complex

problems that are not amenable to computation or straightforward analysis.

2

Legacy software systems:

Legacy software systems . . . were developed decades ago and have been continually modified to meet

changes in business requirements and computing platforms.

 A few simple realities to build software that is ready to meet the challenges of the twenty-first century

are:

1. A concerted effort should be made to understand the problem before a software solution is developed.

2. Design becomes a pivotal activity

3. Software should exhibit high quality

4. Software should be maintainable

 Software in all of its forms and across all of its application domains should be engineered.

Software engineering:

A definition proposed by Fritz Bauer is

[Software engineering is] the establishment and use of sound engineering principles in order to

obtain economically software that is reliable and works efficiently on real machines.

The IEEE definition is:

Software Engineering is the application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of engineering to software. .

Software engineering is a layered technology.

1) Quality focus

A disciplined quality management is a backbone of software engineering technology.

2) Process layer:

The foundation for software engineering is the process layer. Process defines a framework that

must be established for effective delivery of software engineering technology.

3) Methods:

Software engineering methods provide the technical how-to’s for building software. Methods encompass

a broad array of tasks that include communication, requirements analysis, design modeling, program

construction, testing, and support.

4) Tools:

Software engineering tools provide automated or semiautomated support for the process and the methods.

When tools are integrated so that information created by one tool can be used by another, a system for the

support of software development, called computer-aided software engineering, is established.

1.2. SOFTWARE PROCESS:

• A process is a collection of activities, actions, and tasks that are performed when some work

product is to be created.

• An activity strives to achieve a broad objective (e.g., communication with stakeholders) and is

applied regardless of the application domain, size of the project, complexity of the effort, or

degree of rigor with which software engineering is to be applied.

• An action (e.g., architectural design) encompasses a set of tasks that produce a major work

product (e.g., an architectural design model).

3

• A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that produces a

tangible outcome.

• In the context of software engineering, a process is not a rigid prescription for how to build

computer software. Rather, it is an adaptable approach that enables the people doing the work

(the software team) to pick and choose the appropriate set of work actions and tasks. The intent is

always to deliver software in a timely manner and with sufficient quality to satisfy those who

have sponsored its creation and those who will use it.

A process framework establishes the foundation for a complete software engineering process by

identifying a small number of framework activities that are applicable to all software projects, regardless

of their size or complexity.

A generic process framework for software engineering encompasses five activities:

1) Communication:

 Before any technical work can commence, it is critically important to communicate and collaborate with

the customer. The intent is to understand stakeholders’ objectives for the project and to gather

requirements that help define software features and functions.

2) Planning:

software project plan—defines the software engineering work by describing the technical tasks to be

conducted, the risks that are likely, the resources that will be required, the work products to be produced,

and a work schedule.

3) Modeling:

Software engineers will create models to better understand software requirements and the design that will

achieve those requirements.

4) Construction:

This activity combines code generation and the testing that is required uncovering errors in the code.

5) Deployment:

The software is delivered to the customer who evaluates the delivered product and provides feedback

based on the evaluation.

These five generic framework activities can be used during the development of small, simple programs,

the creation of large Web applications, and for the engineering of large, complex computer-based

systems.

Umbrella activities:

 Umbrella activities are applied throughout a software project and help a software team manage and

control progress, quality, change, and risk.

 Typical umbrella activities include:

1) Software project tracking and control—allows the software team to assess progress against the

project plan and take any necessary action to maintain the schedule.

2) Risk management—assesses risks that may affect the outcome of the project or the quality of the

product.

3) Software quality assurance—defines and conducts the activities required to ensure software

quality.

4) A technical review—assesses software engineering work products in an effort to uncover and

remove errors before they are propagated to the next activity.

5) Measurement—defines and collects process, project, and product measures that assist the team

in delivering software that meets stakeholders’ needs.

6) Software configuration management—manages the effects of change throughout the software

process.

7) Reusability management—defines criteria for work product reuse (including software

components) and establishes mechanisms to achieve reusable components.

4

 8) Work product preparation and production—encompasses the activities required to create work

products such as models, documents, logs, forms, and lists.

1.3.PRESCRIPTIVE PROCESS MODELS (OR) LIFE CYCLE MODELS:

The process model can be defined as the abstract representation of process. The

appropriate process model can be chosen based on abstract representation of process. These

process models will follow some rules for correct usage.

It is called “prescriptive” model because they prescribe a set of process elements—framework

activities, software engineering actions, tasks, work products, quality assurance, and change control

mechanisms for each project. Each process model also prescribes a process flow (also called a work

flow)—that is, the manner in which the process elements are interrelated to one another.

5

1.3.1.The Waterfall Model (or)classic life cycle (or) sequential life cycle model

 (or) Software Development Life Cycle (SDLC)

 (or) Systems development life cycle (SDLC)

• The waterfall model, sometimes called the classic life cycle, suggests a systematic, sequential

approach to software development that begins with customer specification of requirements and

progresses through planning, modeling, construction, and deployment, culminating in ongoing

support of the completed software.

• The waterfall model is the oldest paradigm for software engineering.

• In requirement gathering and analysis phase the basic requirements of the system must be

understood by software engineer, who is called analyst.

• The design is an intermediate step between requirements analysis and coding.

Design focuses on:

1) Data Structure

2) Software architecture

3) Interface representation

4) Algorithm details

• Coding is a step in which design is translated into machine readable form.

• Testing begins when coding is done. The purpose of testing is to uncover errors, fix the bugs and

meet the customer requirements.

• Maintenance is the longest life cycle phase. The purpose of maintenance is when the system is

installed and put in practical use then error may get introduced, correcting such errors and putting

it in use.

Advantages:

1) The waterfall model is simple to implement

2) For implementation of small systems it is usefull.

Problems in waterfall model:

1. Real projects rarely follow the sequential flow that the model proposes. Changes can cause

confusion as the project team proceeds.

2. It is difficult for the customer to state all requirements explicitly. The waterfall model requires

this and has difficulty accommodating the natural uncertainty that exists at the beginning of many

projects.

3. The customer must have patience. A working version of the program(s) will not be available

until late in the project time span. A major blunder, if undetected until the working program is reviewed,

can be disastrous.

6

V-Model: In each phase, testing will be done.

A variation in the representation of the waterfall model is called the V-model.

• The V-model depicts the relationship of quality assurance actions to the actions associated with

communication, modeling, and early construction activities. As a software team moves down the

left side of the V, basic problem requirements are refined into progressively more detailed and

technical representations of the problem and its solution.

• Once code has been generated, the team moves up the right side of the V, essentially performing

a series of tests (quality assurance actions) that validate each of the models created as the team

moved down the left side.

• In reality, there is no fundamental difference between the classic life cycle and the V-model. The

V-model provides a way of visualizing how verification and validation actions are applied to

earlier engineering work.

1.3.2. Incremental Process Models

• The incremental model combines elements of linear and parallel process flows.

• The incremental model delivers series of releases to the customer. These releases are called

increments. More and more functionality is associated with each increment.

• The incremental model combines elements of linear and parallel process flows. The incremental

model applies linear sequences in a staggered fashion as calendar time progresses.

• Each linear sequence produces deliverable “increments” of the software in a manner that is

similar to the increments produced by an evolutionary process flow.

When we can choose incremental:

1) When initial software requirements are reasonably well defined

2) When the overall scope of the development effort precludes a purely linear process.

3) When limited set of software functionality needed quickly

7

• The incremental model applies linear sequences in a staggered fashion as calendar time

progresses.

• For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the first increment;

more sophisticated editing and document production capabilities in the second increment;

Spelling and grammar checking in the third increment; and advanced page layout capability in the

fourth increment. It should be noted that the process flow for any increment can incorporate the

prototyping paradigm.

• The first increment is often a core product. That is, basic requirements are addressed but many

supplementary features remain undelivered.

• The core product is used by the customer. As a result of use, a plan is developed for the next

increment. The plan addresses the modification of the core product to better meet the needs of the

customer and the delivery of additional features and functionality. This process is repeated

following the delivery of each increment, until the complete product is produced.

• Incremental development is particularly useful when staffing is unavailable for a complete

implementation by the business deadline that has been established for the project. Early

increments can be implemented with fewer people.

• If the core product is well received, then additional staff (if required) can be added to implement

the next increment. In addition, increments can be planned to manage technical risks.

Advantages:

1) Generates working software quickly and early during the software life cycle.

2) This model is more flexible – less costly to change scope and requirements.

3) It is easier to test and debug during a smaller iteration.

4) In this model customer can respond to each built.

5) Lowers initial delivery cost.

6) Easier to manage risk because risky pieces are identified and handled during it’d iteration.

Disadvantages:

1) Needs good planning and design.

2) Needs a clear and complete definition of the whole system before it can be broken down and built

incrementally.

3) Total cost is higher than waterfall.

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/

8

1.3.3. Evolutionary Process Models

• Business and product requirements often change as development proceeds, making a straight line

path to an end product unrealistic; In such case, the iterative approach needs to be adopted. Evolutionary

process model is also called as iterative process model

• Evolutionary models are iterative. They are characterized in a manner that enables you to develop

increasingly more complete versions of the software.

1.3.3.1.Prototyping

• Software prototyping, refers to the activity of creating prototypes of software applications, i.e.,

incomplete versions of the software program being developed. It is an activity that can occur in software

development and is comparable to prototyping as known from other fields, such as mechanical

engineering or manufacturing.

• When we can choose Prototype:

o A customer defines a set of general objectives for software, but does not identify detailed

requirements for functions and features.

o The developer may be unsure of the efficiency of an algorithm, the adaptability of an

operating system

o When requirements are fuzzy

• Although prototyping can be used as a stand-alone process model, it is more commonly used as a

technique that can be implemented within the context of any one of the process models.

• Although prototyping can be used as a stand-alone process model, it is more commonly used as a

technique that can be implemented within the context of any one of the process models.

• The prototyping assists you and other stakeholders to better understand what is to be built when

requirements are fuzzy.

• The prototyping paradigm begins with communication. You meet with other stakeholders to

define the overall objectives for the software, identify whatever requirements are known, and outline

areas where further definition is mandatory.

• A prototyping iteration is planned quickly, and modeling (in the form of a “quick design”) occurs.

A quick design focuses on a representation of those aspects of the software that will be visible to end

users (e.g., human interface layout or output display formats).

• The quick design leads to the construction of a prototype. The prototype is deployed and

evaluated by stakeholders, who provide feedback that is used to further refine requirements.

http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Prototyping
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Manufacturing

9

• Iteration occurs as the prototype is tuned to satisfy the needs of various stakeholders, while at the

same time enabling you to better understand what needs to be done

• Ideally, the prototype serves as a mechanism for identifying software requirements. If a working

prototype is to be built, you can make use of existing program fragments or apply tools (e.g., report

generators and window managers) that enable working programs to be generated quickly.

• In most projects, the first system built is barely usable. It may be too slow, too big, awkward in

use or all three. There is no alternative but to start again, smarting but smarter, and build a redesigned

version in which these problems are solved.

• The prototype can serve as “the first system.” The one that Brooks recommends you throw away.

But this may be an idealized view. Although some prototypes are built as “throwaways,” others are

evolutionary in the sense that the prototype slowly evolves into the actual system.

• Both stakeholders and software engineers like the prototyping paradigm. Users get a feel for the

actual system, and developers get to build something immediately.

Advantages:

1) Users are actively involved in the development

2) Since in this methodology a working model of the system is provided, the users get a better

understanding of the system being developed.

3) Errors can be detected much earlier.

4) Quicker user feedback is available leading to better solutions.

5) Missing functionality can be identified easily

6) Confusing or difficult functions can be identified Requirements validation, Quick implementation

of, incomplete, but functional, application.

Disadvantages:

1) Stakeholders see what appears to be a working version of the software, unaware that the

prototype is held together haphazardly, unaware that in the rush to get it working you haven’t

considered overall software quality or long-term maintainability.

2) Software engineer make implementation compromises in order to get a prototype working

quickly.

3) An inappropriate operating system or programming language may be used simply because it is

available and known; an inefficient algorithm may be implemented simply to demonstrate

capability.

Usage of prototyping:

• Although problems can occur, prototyping can be an effective paradigm for software

Engineering. The key is to define the rules of the game at the beginning; that is, all stakeholders should

agree that the prototype is built to serve as a mechanism for defining requirements. It is then discarded (at

least in part), and the actual software is engineered with an eye toward quality.

1.3.3.2.The Spiral Model.

• The spiral model is an evolutionary software process model that couples the iterative nature of

prototyping with the controlled and systematic aspects of the waterfall model. It provides the potential for

rapid development of increasingly more complete versions of the software.

• The spiral development model is a risk-driven process model generator that is used to guide

multi-stakeholder concurrent engineering of software intensive systems.

 It has two main distinguishing features.

(1) One is a cyclic approach for incrementally growing a system’s degree of definition and

implementation while decreasing its degree of risk.

10

(2) The other is a set of anchor point milestones for ensuring stakeholder commitment to feasible and

mutually satisfactory system solutions.

• A spiral model is divided into a set of framework activities defined by the software engineering

team. Each of the framework activities represent one segment of the spiral path.

• The spiral model is a realistic approach to the development of large-scale systems and

software. Because software evolves as the process progresses, the developer and customer better

understand and react to risks at each evolutionary level.

• The spiral model uses prototyping as a risk reduction mechanism but enables you to apply the

prototyping approach at any stage in the evolution of the product. It maintains the systematic

stepwise approach suggested by the classic life cycle but incorporates it into an iterative

framework that more realistically reflects the real world.

• The spiral model demands a direct consideration of technical risks at all stages of the project and,

if properly applied, should reduce risks before they become problematic.

The functions of these four quadrants are discussed below-

• Objectives determination and identify alternative solutions (Concept development

projects): Requirements are gathered from the customers and the objectives are identified,

elaborated and analyzed at the start of every phase. Then alternative solutions possible for the

phase are proposed in this quadrant.

• Identify and resolve Risks (New product development projects): During the second quadrant

all the possible solutions are evaluated to select the best possible solution. Then the risks

associated with that solution is identified and the risks are resolved using the best possible

strategy. At the end of this quadrant, Prototype is built for the best possible solution.

• Develop next version of the Product (Product Enhancement projects): During the third

quadrant, the identified features are developed and verified through testing. At the end of the third

quadrant, the next version of the software is available.

• Review and plan for the next Phase (product Maintenance projects): In the fourth quadrant,

the Customers evaluate the so far developed version of the software. In the end, planning for the

next phase is started.

Advantages:

• High amount of risk analysis hence, avoidance of Risk is enhanced.

• Good for large and mission-critical projects.

11

• Strong approval and documentation control.

• Additional Functionality can be added at a later date.

• Software is produced early in the software life cycle.

Disadvantages:

• Can be a costly model to use.

• Risk analysis requires highly specific expertise.

• Project’s success is highly dependent on the risk analysis phase.

• Doesn’t work well for smaller projects.

1.3.4. Concurrent development Models

• The concurrent development model, sometimes called concurrent engineering, allows a software

team to represent iterative and concurrent elements of any of the process models.

• For example, the modeling activity defined for the spiral model is accomplished by invoking one

or more of the following software engineering actions: prototyping, analysis, and design.

• Figure provides a schematic representation of one software engineering activity within the

modeling activity using a concurrent modeling approach. The activity—modeling—may be in any one of

the states noted at any given time.

• Similarly, other activities, actions, or tasks (e.g., communication or construction) can be

represented in an analogous manner. All software engineering activities exist concurrently but reside in

different states.

• For example, early in a project the communication activity (not shown in the figure) has completed

its first iteration and exists in the awaiting changes state. The modeling activity (which existed in the

inactive state while initial communication was completed, now makes a transition into the under

development state.

• If the customer indicates that changes in requirements must be made, the modeling activity moves

from the under development state into the awaiting changes state.

• Concurrent modeling defines a series of events that will trigger transitions from state to state for

each of the software engineering activities, actions, or tasks.

• For example, during early stages of design (a major software engineering action that occurs

during the modeling activity), an inconsistency in the requirements model is uncovered. This

generates the event analysis model correction, which will trigger the requirements analysis action

from the done state into the awaiting changes state.

• Concurrent modeling is applicable to all types of software development and provides an accurate

picture of the current state of a project. Rather than confining software engineering activities,

actions, and tasks to a sequence of events, it defines a process network.

• Each activity, action, or task on the network exists simultaneously with other activities, actions,

or tasks. Events generated at one point in the process network trigger transitions among the states.

Advantages:

1) The concurrent development model, sometimes called concurrent engineering. It’s can be

represented schematically as a series of frame work activities, software engineering actions,

software engineering task and their associated states.

2) The concurrent process model defines a series of events that will trigger transition from state to

state for each of the software engineering activities and action or task.

3) The concurrent process model is applicable to all types of software development and provides an

accurate picture of the current state of a project.

http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/

12

Disadvantages:

1) The SRS must be continually updated to reflect changes.

2) It requires discipline to avoid adding too many new features too late in the project.

1.4. SPECIALIZED PROCESS MODELS

• Specialized process models take on many of the characteristics of one or more of the traditional

models. However, these models tend to be applied when a specialized or narrowly defined software

engineering approach is chosen.

1.4.1. Component-Based Development

• Commercial off-the-shelf (COTS) software components, developed by vendors who offer them as

products, provide targeted functionality with well-defined interfaces that enable the component to be

integrated into the software that is to be built.

• The component-based development model incorporates many of the characteristics of the spiral

model. It is evolutionary in nature, demanding an iterative approach to the creation of software.

• However, the component-based development model constructs applications from prepackaged

software components.

• Modeling and construction activities begin with the identification of candidate components.

These components can be designed as either conventional software modules or object-oriented classes or

packages16 of classes.

• Regardless of the technology that is used to create the components, the component-based

development model incorporates the following steps (implemented using an evolutionary approach):

1) Available component-based products are researched and evaluated for the application domain in

question.

2) Component integration issues are considered.

3) Software architecture is designed to accommodate the components.

13

4) Components are integrated into the architecture.

5) Comprehensive testing is conducted to ensure proper functionality.

• The component-based development model leads to software reuse, and reusability provides

software engineers with a number of measurable benefits. Your software engineering team can achieve a

reduction in development cycle time as well as a reduction in project cost if component reuse becomes

part of your culture.

Advantages:

• The component based development model leads to software re-used and re-usability provides a

number of tangible benefits.

• It leads to reduction in development cycle time.

• It leads to significant reduction in project cost.

• It leads to significant increase in productivity.

Disadvantages:

1) Customization

2) Problem to adapt a component

3) The integration of a reusable component into new component is also a major problem

4) Security is another major concern for the developers

5) Efficiency of the Software applications developed using CBD is also debatable.

1.4.2. The Formal Methods Model

• The formal methods model encompasses a set of activities that leads to formal mathematical

specification of computer software. Formal methods enable you to specify, develop, and verify a

computer-based system by applying a rigorous, mathematical notation. A variation on this approach,

called clean room software engineering is currently applied by some software development organizations.

• When formal methods are used during development, they provide a mechanism for eliminating

many of the problems that are difficult to overcome using other software engineering paradigms.

• Ambiguity, incompleteness, and inconsistency can be discovered and corrected more easily—not

through ad hoc review, but through the application of mathematical analysis. When formal methods are

used during design, they serve as a basis for program verification and therefore enable you to discover

and correct errors that might otherwise go undetected.

Advantage:

• Although not a mainstream approach, the formal methods model offers the promise of defect-free

software.

Disadvantages:

1) The development of formal models is currently quite time consuming and expensive.

2) Because few software developers have the necessary background to apply formal methods,

extensive training is required.

3) It is difficult to use the models as a communication mechanism for technically unsophisticated

customers.

1.4.3. Aspect-Oriented Software Development

• Regardless of the software process that is chosen, the builders of complex software invariably

implement a set of localized features, functions, and information content. These localized software

characteristics are modeled as components (e.g., objectoriented classes) and then constructed within the

context of a system architecture.

• As modern computer-based systems become more sophisticated (and complex), certain

concerns—customer required properties or areas of technical interest—span the entire architecture.

http://it.toolbox.com/wiki/index.php?title=Advantages_of_Componenet_Based_Model:&action=edit

14

• Some concerns are high-level properties of a system (e.g., security, fault tolerance). Other

concerns affect functions (e.g., the application of business rules), while others are systemic (e.g., task

synchronization or memory management).

• When concerns cut across multiple system functions, features, and information, they are often

referred to as crosscutting concerns. Aspectual requirements define those crosscutting concerns that have

an impact across the software architecture.

• Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides a process

and methodological approach for defining, specifying, designing, and constructing aspects—

“mechanisms beyond subroutines and inheritance for localizing the expression of a crosscutting concern”

• A distinct aspect-oriented process has not yet matured. However, it is likely that such a process

will adopt characteristics of both evolutionary and concurrent process models. The evolutionary model is

appropriate as aspects are identified and then constructed.

• The parallel nature of concurrent development is essential because aspects are engineered

independently of localized software components and yet, aspects have a direct impact on these

components. Hence, it is essential to instantiate asynchronous communication between the software

process activities applied to the engineering and construction of aspects and components.

COMPARISON OF DIFFERENT SDLC MODELS

Waterfall Model Spiral Model Prototyping Model Incremental Model

Requirements must be

clearly understood and

defines at the beginning

only.

The requirements analysis

and gathering can be done

in iteration because

requirements get changed

quite often.

Requirements analysis

can be made in the later

stages of the

development cycle.

Because requirements

get changed quite often.

Requirements analysis

can be made in the later

stages of the

development cycle.

The development team

having the adequate

experience of working on

the similar project is

chose to work on this

type of process model

The development team

having the adequate

experience of working on

the similar project is

allowed in this process

model.

The development team

having the adequate

experience of working

on the similar project is

allowed in this process

model.

The development team

having the adequate

experience of working

on the similar project is

chose to work on this

type of process model

There is no user

involvement in all the

phases of development

process.

There is no user

involvement in all the

phases of development

process.

There is user

involvement in all the

phases of development

process.

There is user

involvement in all the

phases of development

process.

When the requirements

are reasonably well

defined and the

development effort

suggests a purely linear

effort then the waterfall

model is chosen.

Due to iterative nature of

this model, the risk

identification and

rectification is done before

they get problematic.

Hence for handling real

time problems the spiral

model is chosen.

When developer is

unsure about the

efficiency of an

algorithm or the

adaptability of an

operating system then

the prototyping model

is chosen.

When the requirements

are reasonably well

defined and the

development effort

suggests a purely linear

effort and when limited

set of software

functionality is needed

quickly then the

incremental model is

chosen.

15

The comparison of the different models is represented in the following table on the basis of certain

features.

1.5 Introduction to Agility:

Agile is a time-bound, iterative approach to software delivery that builds software incrementally

from the start of the project, instead of trying to deliver all at once.

The agile manifesto for agile software development is a formal declaration of four values and 12

principles to guide an iterative and people centric approach to software development

Individuals and interactions over Process and Tools

Working software over Comprehensive documentation

Customer collaboration over Contact negotiation

Responding to changes over Following a Plan

Fig. Agile Manifesto

Why Agile?

 Technology in this current era is progressing faster than ever, enforcing the global software

companies to work in a fast-paced changing environment. Because these businesses are operating in an

ever-changing environment, it is impossible to gather a complete and exhaustive set of software

requirements. Without these requirements, it becomes practically hard for any conventional software

model to work.

 Agile was specially designed to meets the needs of the rapidly changing environment by

embracing the idea of incremental development and develop the actual final product.

1.6. Agile Process:

• In 1980’s the heavy weight, plan based software development approach was used to develop any

software product.

16

• In this approach too many things are done which were not directly related to software product

being produced.

• If requirements get changed, then rework was essential. Hence new methods were proposed in

1990’s which are known as agile process.

• The agile process is light-weight methods which are people-based rather than plan-based

methods.

• The agile process forces the development team to focus on software itself rather than design and

documentation.

• The agile process believes in iterative method.

• The aim of agile process is to deliver the working model of software quickly to the customer.

Conventional software Development Methodology:

• The conventional wisdom in software development is that the cost of change increases nonlinearly

as a project progresses.

• It is relatively easy to accommodate a change when a software team is gathering requirements. A

usage scenario might have to be modified, a list of functions may be extended, or a written

specification can be edited.

• As the progresses and if the customer suggest the changes during the testing phase of the SDLC

then to accommodate these changes the architectural design needs to be modified and ultimately

these changes will affect other phases of SDLC. These changes are actually costly to execute.

Agile Methodology:

When incremental delivery is coupled with other agile practices such as continuous unit testing and

pair programming then the cost of changes can be controlled.

The following graph represents the how the software development approach has a strong influence on

the development cost due to changes suggested.

1.6.1Principles:

There are famous 12 principles used as agile principles:

1. Highest priority is to satisfy the customer through early and continuous delivery of valuable

software.

2. It welcomes changing requirements, even late in development.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shortest timescale.

4. Business people and developers must work together throughout the project.

5. Build projects around motivated individuals. Give them the environment and the support they

need, and trust them to get the job done.

17

6. The most efficient and effective method of conveying information to and within a development

team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote constant development. The sponsors, developers, and users should be

able to maintain a constant.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity the art of maximizing the amount of work not done is essential.

11. The team must be self– organizing teams for getting best architectures, requirements, and designs

emerge from

12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its

behavior accordingly

1.7 Extreme programming:

Extreme programming (XP) is one of the best known agile processes.

1.7.1 XP values:

The set of five values that serve as a basis for all work performed as part of XP—communication,

simplicity, feedback, courage, and respect. Each of these values is used as a driver for specific XP

activities, actions, and tasks.

1. Communication:

To achieve effective communication between software engineers in order to covey

important concepts and to get continuous feedback.

2. Simplicity:

XP focuses on the current needs instead of future needs to incorporate in the design.

Hence the XP believes that the Software design should be simple.

3. Feedback:

The feedback for the software product can be obtained from the developers of the

software, customers and other software team members.

4. Courage:

the strict adherence to certain XP practices require courage. The agile XP team must be

disciplined to design the system today, recognize the future requirements and make the

changes dramatically as per demand.

5. Respect:

By following the above states XP values the agile team can win the respect of the

stakeholders.

1.7.2 Process:

The extreme programming process is explained as follows -

• Customer specifies and priorities the system requirements. Customer becomes or of the important

members of development team. The developer and customer together prepare a story-card in which

customer needs are mentioned.

• The developer team then aims to implement the scenarios in the story-card.

• After developing the story-card the development team breaks down the total work in small tasks. The

efforts and the estimated resources required for these tasks are estimated.

• The customer priorities the stories for implementation. If the requirement changes then sometimes

unimplemented stories have to be discarded. Then release the complete software in small and

frequent releases.

• For accommodating new changes, new story-card must be developed.

• Evaluate the system along with the customer.

18

Various rules and practices used in extreme programming are as given below-

XP Principle Description

Planning

User story-cards Instead of creating a large requirement document user stories are

written by the customer in which what they need is mentioned.

Release planning A release plan for overall project is

prepared from which the iteration plan can be prepared for individual

iteration

Small releases The developer breaks down the user

Stories into small releases and a plan for releasing the small

functionalities is prepared.

Iterative process Divide the development work into small iterations. Keep the iteration

of nearly constant length. Iterative development helps in quick or agile

development.

Stand up

meetings

The stand up meetings must be, conducted for the current outcomes of

the project.

Designing

Simple design

Simple design always takes less time than the complex design. It is always

good to keep the things simple to meet the current requirements

Spike solution For answering the tough technical

problems create the spike solutions. The goal of these solutions

should be to reduce the technical risks.

Refactoring

Refactoring means reductions in the redundancy, elimination of

unused functionalities, redesign the obsolete designs. This will

improve the quality of the project.

Coding

Customer

availability

The most essential requirement of the XP is availability of the

customer. In Extreme programming the customer not only helps

the developer team but it should be the part of the project.

19

Paired

programming

All the code to be included in the project must be coded by groups

of two people working at the same computer. This will increase

the quality of coding

Collective

code

ownership

By having collective code ownership approach the everyone

contributes new ideas and not any single person becomes the

bottleneck of the project. Anyone can change any line of code to

fix a bug or to refactor.

Testing

Unit testing The test framework that contains automated test case suite is used to

the code. All the code must be using unit testing before its release.

Continuous

integration

As soon as one task is finished integrate it into the whole system.

Again after such integration unit testing must be conducted

No overtime Working overtime loses the spirit and motivation of the team. Conduct

the release of the team. Conduct the release planning meeting to

change the project scope or to reschedule the project

Applications of Extreme Programming (XP): Some of the projects that are suitable to develop

using XP model are given below:

• Small projects: XP model is very useful in small projects consisting of small teams as face to

face meeting is easier to achieve.

• Projects involving new technology or Research projects: This type of projects face changing

of requirements rapidly and technical problems. So XP model is used to complete this type of

projects.

1.7.3. Industrial XP:

The industrial XP (IXP) is an organic evolution of XP. It is customer-centric. It has expanded role for

customers, and its advanced technical practices.

Various new practices that are appended to XP to create IXP are as follows:

1. Readiness Assessment:

Prior to the initiation of an IXP project, the organization should conduct a readiness

assessment.

(1) an appropriate development environment exists to support IXP

(2) The team should contain appropriate and skilled stakeholders

(3) The organization has a distinct quality program and supports continuous improvement

(4) The organizational culture will support the new values of an agile team.

(5) The broader project community will be populated appropriately.

2. Project Community:

Skilled and efficient people must be chosen as the agile team members for the success of the

project. The team is reffered as the community when extreme programming approach is

considered. The project community consists of technologies, customers, and other stakeholders

20

who play rthe vital role for the success of the project. The role of the community members must

be explicitly defined

3. Project charting:

Project charting means assessing the justification for the project as a business application. That

means, the IXP team assess whether the project satisfies the goals and objectives of the

organization.

4. Test driven management:

For assessing the state of the project and its progress the industrial XP needs some measurable

criteria. In test driven management the project is tested with the help of these measurable criteria.

5. Retrospectives:

After delivering the software increment, the specialized review is conducted which is called as

retrospective. The intention of retrospective is to improve the industrial XP process.

1.8 CMMI:

The Capability Maturity Model Integration (CMMI) is a capability maturity model developed by the

Software Engineering Institute, part of Carnegie Mellon University in Pittsburgh, USA. The CMMI

principal is that “the quality of a system or product is highly influenced by the process used to develop

and maintain it”. CMMI can be used to guide process improvement across a project, a division, or an

entire organization.

CMMI provides:

• Guidelines for processes improvement

• An integrated approach to process improvement

• Embedding process improvements into a state of business as usual

• A phased approach to introducing improvements

CMMI Models

CMMI consists of three overlapping disciplines (constellations) providing specific focus into the

Development, Acquisition and Service Management domains respectively:

• CMMI for Development (CMMI-DEV) – Product and service development

• CMMI for Services (CMMI-SVC) – Service establishment, management, and delivery

• CMMI for Acquisition (CMMI-ACQ) – Product and service acquisition

Originating in software engineering, CMMI has been highly generalised over the years to embrace other

business processes such as the development of hardware products, service delivery and purchasing which

has had the effect of abstracting CMMI.

21

ANNA UNIVERSITY QUESTIONS

PART A

1. What is Software Engineering? NOV/DEC 2013, NOV / DEC 2014, APRIL/MAY 2017,

APRIL/MAY 2017

Software engineering is the application of a systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software as well as the study of approaches of the

same.

2. 'Software doesn't wear out'. Justify. NOV/DEC 2013, MAY/JUNE 2016

The failure rate curve for software should take the form of the “idealized curve” shown in Figure.

Undiscovered defects will cause high failure rates early in the life of a program. However, these are

corrected and the curve flattens as shown. The idealized curve is a gross oversimplification of actual

failure models for software. However, the implication is clear—software doesn’t wear out. But it does

deteriorate!

Figure : Failure curves for software

3. Differentiate : Verification Vs Validation. NOV / DEC 2014

 Verification Validation

The set of activities that ensure that software

correctly implements a specific function.

The set of activities that ensure that the

software has been built is traceable to customer

requirements

Verification represents the set of activities that

are carried out to confirm that the software

correctly implements the specific functionality

Validation represents the set of activities that

ensure that the software that has been

built is satisfying the customer requirements.

4. Write the Process framework and Umbrella activities. APRIL/MAY 2015

• Software project tracking and control.

• Risk management.

• Software Quality Assurance.

• Formal Technical Reviews.

• Software Configuration Management.

• Work product preparation and production.

• Reusability management.

• Measurement.

5. What are the pros and cons of Iterative software development models? NOV/DEC 2015

The advantage of this model is that there is a working model of the system at a very early stage of

development which makes it easier to find functional or design flaws. Finding issues at an early

stage of development enables to take corrective measures in a limited budget.

22

The disadvantage with this SDLC model is that it is applicable only to large and bulky software

development projects. This is because it is hard to break a small software system into further

small serviceable increments/modules.

6. If you have to develop a word processing software product, what process model will you

choose? Justify your answer. NOV/DEC 2016

Incremental model: incremental paradigm might deliver basic file management, editing, and

document production functions in the first increment; more sophisticated editing and document

production capabilities in the second increment; Spelling and grammar checking in the third

increment; and advanced page layout capability in the fourth increment

7. Depict the relationship between Work product, task, activity and System. NOV/DEC 2016,

APRIL/MAY 2017

• Each framework activity under umbrella activities of software process framework consists of

various task set.

• Each task set consists of work task, work products, quality assurance points and project

milestones. The task also accommodates the needs of the system getting developed.

8. List two deficiencies in waterfall model. Which process model do you suggest to overcome each

deficiency? APRIL/MAY 2017

i. It is difficult to define all the requirements at the beginning of project, this model is not suitable

for accommodating any changes.

To overcome this efficiency: prototyping

ii. It does not scale up to large project

To overcome this efficiency: spiral model.

9. What is software? List the characteristics. APRIL/MAY 2018

Software is instructions (computer programs) that are intended to provide desired Features,

function, and performance

Characteristics:

• Software is developed or engineered;

• Software doesn’t “wear out”

• most software continues to be custom built.

10. How does “project Risk” factor affect the spiral model of software development?

The spiral model demands considerable risk assessment because if a major risk is not uncovers

and managed, problems will occur in the project and then it will not be acceptable by end user.

11. What led to the transition from product oriented development to process oriented development

to process oriented development? APRIL/MAY 2016

The software process model led to the transition from product oriented development to process

oriented development.

12. What is the significance of the spiral model when compared with other models.

NOV/DEC 2017

 1. High amount of risk analysis.

 2. Good for large and mission-critical projects.

 3. Software is produced early in the software life cycle.

13. Write a note on the unique characters of software. NOV/DEC 2017

• Functionality

• Reliability

• Usability

• Efficiency

23

• Maintainability

• Portability

14. What is software process?

The process model can be defined as the abstract representation of process. The appropriate

process model can be chosen based on abstract representation of process. These process models will

follow some rules for correct usage.

15. Define an evolutionary prototype.

• Evolutionary models are iterative. They are characterized in a manner that enables you to develop

increasingly more complete versions of the software.

• Software prototyping, refers to the activity of creating prototypes of software applications, i.e.,

incomplete versions of the software program being developed.

16. List any two agile process model.

The following are the agile process model.

• Extreme Processing (XP)

• Agile Modeling

• Scrum

PART B

1. Compare the following life cycle models based on their distinguishing factors, strengths and

weaknesses — Waterfall Model, RAD Model, Spiral Model and Formal Methods Model. (Present in

the form of table only — use diagrams wherever necessary) NOV/DEC 2013, NOV/DEC 2018

2. Assume that you are the technical manager of a software development organization. A client

approached you for a software solution. The problems stated by the client have uncertainties which

lead to loss if it not planned and solved. Which software development model you will suggest for this

project – Justify. Explain that model with its pros and cons and neat sketch. NOV/DEC 2015

3. Explain the various levels of capability maturity model integration. NOV/DEC 2015

4. Discuss the prototyping model. What is the effect of designing a prototype on the overall cost of the

software project? MAY/JUNE 2016

5. Describe the type of situations where iterative enhancement model might lead to difficulties

MAY/JUNE 2016

6. Elucidate the key features of the software process models with suitable examples. MAY/JUNE 2016

7. What is the role of user participation in the selection of a life cycle model? MAY/JUNE 2016

8. Which process model is best suited for risk management? Discuss in detail with an example. Give the

advantages and disadvantages of the model. NOV/DEC 2016

9. List the principles of agile software development. NOV/DEC 2016, NOV/DEC 2019

10. What is a process model? Describe the process model that you would choose to manufacture a car.

Explain giving suitable reasons. MAY/JUNE 2017, NOV/DEC 2019 (Spiral Model)

QUESTION BANK

PART A

1. What is the impact of reusability in software development process?

2. Explain the component based software development model with a neat sketch.

3. What are the characteristics of software?

4. Software doesn’t wears out. Justify

5. What are the layers of software engineering?

6. Write down the generic process framework that is applicable to any software project.

7. List the goals of Software Engineering

http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Software

24

8. Give two reasons why system engineers must understand the environment of a system.

9. What are the two types of software products?

10. What is Software Engineering? What are their applications?

11. List out evolutionary software process model.

11. What are the difference between product and process?

12. What are the advantages and disadvantages of Waterfall Model?

13. What are the advantages and disadvantage of Incremental Model?

14. What are the advantages and disadvantages of Spiral Model?

15. Define Computer based system and specify its components.

16. What are the advantages and disadvantages of Prototyping Model?

17. Depict the relationship between work product, task, activity and system.

18. List two deficiencies in waterfall model. Which process model do you suggest to

overcome each deficiency?

19. What are the pros and cons of Iterative software development models?

20. What is legacy software? What are characteristics of legacy software?

21. What is an agile process?

22. List out the principles of Agile.

PART B

1. Explain the following: (i) waterfall model (ii) Spiral model (iii) Prototyping model

2. Discuss the various life cycle models in software development.

3. Compare and contrast the different lifecycle models.

4. Discuss in detail about any two evolutionary process models.

5. Explain in detail about the software process.

6. Which process model is best suit for risk management? Discuss in detail with an example. Give

advantages and disadvantages of the model.

7. List the principles of agile development.

8. Explain in details about extreme programming XP process.

9. Explain about agile process.

1

CS6403 / SOFTWARE ENGINEERING

UNIT II- REQUIREMENTS ANALYSIS AND SPECIFICATION

2.1. SOFTWARE REQUIREMENTS:

• The process of finding out, analyzing, documenting and checking these services and

constraints is called Requirements engineering (RE).

• ‘User requirements’ to mean the high-level abstract requirements and ‘system requirements’

to mean the detailed description of what the system should do.

1. User requirements are statements, in a natural language plus diagrams, of what services

the system is expected to provide to system users and the constraints under which it must operate.

2. System requirements are more detailed descriptions of the software system’s functions,

services, and operational constraints. The system requirements document (sometimes called a

functional specification) should define exactly what is to be implemented. It may be of the contract

between the system buyer and the software developers.

Figure. Readers of different types of requirements specification

Software system requirements are classified as functional requirements, nonfunctional

requirements and domain requirements:

1. Functional requirements:

 These are statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations. In some cases, the

functional requirements may also explicitly state what the system should not do.

2. Non-functional requirements

These are constraints on the services or functions offered by the system. They include timing

constraints, constraints on the development process and standards. Non-functional requirements

often apply to the system as a whole. They do not usually just apply to individual system features or

services.

3. Domain requirements

 These are requirements that come from the application domain of the system and that reflect

characteristics and constraints of that domain. They may be functional or non-functional

requirements

SYLLABUS:

Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software

Requirements Document – Requirement Engineering Process: Feasibility Studies, Requirements elicitation

and analysis, requirements validation, requirements management-Classical analysis: Structured system

Analysis, Petri Nets- Data Dictionary.

2

2.2. FUNCTIONAL REQUIREMENTS:

• The functional requirements for a system describe what the system should do. These

requirements depend on the type of software being developed, the expected users of the

software, and the general approach taken by the organization when writing requirements.

• When expressed as user requirements, functional requirements are usually described in an

abstract way that can be understood by system users.

• More specific functional system requirements describe the system functions, its inputs and

outputs, exceptions, etc., in detail.

• The functional requirements part discusses the functionalities required from the system. The

system is considered to perform a set of high level functions {fi}. The functional view of the

system is shown in fig. Each function fi of the system can be considered as a transformation

of a set of input data (ii) to the corresponding set of output data (oi).

Fig: View of a system performing a set of functions

• The user can get some meaningful piece of work done using a high-level function.

• The functional requirements specification of a system should be both complete and

consistent.

• Completeness means that all services required by the user should be defined.

• Consistency means that requirements should not have contradictory definitions.

• In practice, for large, complex systems, it is practically impossible to achieve requirements

consistency and completeness.

 Reasons are:

1. It is easy to make mistakes and omissions when writing specifications for complex systems.

2. There are many stakeholders in a large system. A stakeholder is a person or role that is

affected by the system in some way. Stakeholders have different— and often inconsistent—

needs. These inconsistencies may not be obvious when the requirements are first specified,

so inconsistent requirements are included in the specification.

Identifying functional requirements from a problem description:

The high-level functional requirements often need to be identified either from an informal problem

description document or from a conceptual understanding of the problem. Each high-level

requirement characterizes a way of system usage by some user to perform some meaningful piece

of work. There can be many types of users of a system and their requirements from the system may

be very different. So, it is often useful to identify the different types of users

who might use the system and then try to identify the requirements from each user’s perspective.

Here we list all functions {fi} that the system performs. Each function fi is considered as a

transformation of a set of input data to some corresponding output data.

Example:-

Consider the case of the library system, where -

F1: Search Book function (fig. 3.3)

Input: an author’s name

Output: details of the author’s books and the location of these books in the library

3

Fig: Book Function

So the function Search Book (F1) takes the author's name and transforms it into

book details.

Functional requirements actually describe a set of high-level requirements, where

each high-level requirement takes some data from the user and provides some

data to the user as an output. Also each high-level requirement might consist of

several other functions.

Documenting functional requirements:

For documenting the functional requirements, we need to specify the set of functionalities

supported by the system. A function can be specified by identifying the state at which the data is to

be input to the system, its input data domain, the output data domain, and the type of processing to

be carried on the input data to obtain the output data. Let us first try to document the withdraw-cash

function of an ATM (Automated Teller Machine) system. The withdraw-cash is a high-level

requirement. It has several sub-requirements corresponding to the different user interactions. These

different interaction sequences capture the different scenarios.

Example: - Withdraw Cash from ATM

R1: withdraw cash

Description: The withdraw cash function first determines the type of account that the user has and

the account number from which the user wishes to withdraw cash. It checks the balance to

determine whether the requested amount is available in the account. If enough balance is available,

it outputs the required cash, otherwise it generates an error message.

R1.1 select withdraw amount option

Input: “withdraw amount” option

Output: user prompted to enter the account type

R1.2: select account type

Input: user option

Output: prompt to enter amount

R1.3: get required amount

Input: amount to be withdrawn in integer values greater than 100 and less than

10,000 in multiples of 100.

Output: The requested cash and printed transaction statement.

Processing: the amount is debited from the user’s account if sufficient balance is available,

otherwise an error message displayed.

2.3. NON-FUNCTIONAL REQUIREMENTS:

• Non-functional requirements are requirements that are not directly concerned with the

specific services delivered by the system to its users.

• They may relate to emergent system properties such as reliability, response time, and store

occupancy. Alternatively, they may define constraints on the system implementation such as

the capabilities of I/O devices or the data representations used in interfaces with other

systems.

• Non-functional requirements, such as performance, security, or availability, usually specify

or constrain characteristics of the system as a whole.

• Non-functional requirements are often more critical than individual functional requirements.

4

• System users can usually find ways to work around a system function that doesn’t really

meet their needs.

• However, failing to meet a non-functional requirement can mean that the whole system is

unusable.

Example:

• If an aircraft system does not meet its reliability requirements, it will not be certified as safe

for operation; if an embedded control system fails to meet its performance requirements, the

control functions will not operate correctly.

• Although it is often possible to identify which system components implement specific

functional requirements, it is often more difficult to relate components to non-functional

requirements.

Reasons are:

1. Non-functional requirements may affect the overall architecture of a system rather than the

individual components.

2. A single non-functional requirement, such as a security requirement, may generate a number

of related functional requirements that define new system services that are required.

Figure. Types of non-functional requirement

Non-functional requirements arise through user needs, because of budget constraints, organizational

policies, the need for interoperability with other software or hardware systems, or external factors

such as safety regulations or privacy legislation.

Classifications of non-functional requirements are

1. Product requirements:

• These requirements specify or constrain the behavior of the software.

• Examples include performance requirements on how fast the system must execute

and how much memory it requires, reliability requirements that set out the

acceptable failure rate, security requirements, and usability requirements.

2. Organizational requirements

• These requirements are broad system requirements derived from policies and

procedures in the customer’s and developer’s organization.

• Examples include operational process requirements that define how the system will

be used, development process requirements that specify the programming language,

5

the development environment or process standards to be used, and environmental

requirements that specify the operating environment of the system.

3. External requirements:

• This broad heading covers all requirements that are derived from factors external to

the system and its development process.

• Regulatory requirements set out what must be done for the system to be approved for

use by a regulator, such as a central bank;

• Legislative requirements that must be followed to ensure that the system operates

within the law;

• Ethical requirements that ensure that the system will be acceptable to its users and

the general public.

Metrics for specifying non-functional requirements

Identifying non-functional requirements:

Nonfunctional requirements are the characteristics of the system which can not be expressed as

functions - such as the maintainability of the system, portability of the system, usability of the

system, etc.

Nonfunctional requirements may include:

reliability issues,

performance issues,

human - computer interface issues,

interface with other external systems,

security and maintainability of the system, etc.

2.4. DOMAIN REQUIREMENTS:

6

• Domain requirements are derived from the application domain of the system rather than

from the specific needs of system users.

• They usually include specialised domain terminology or reference to domain concepts. They

may be new functional requirements in their own right, constrain existing functional

requirements or set out how particular computations must be carried out.

• Because these requirements are specialised, software engineers often find it difficult to

understand how they are related to other system requirements.

• Domain requirements are important because they often reflect fundamentals of the

application domain. If these requirements are not satisfied, it may be impossible to make the

system work satisfactorily.

2.5. USER REQUIREMENTS:

• The user requirements for a system should describe the functional and non functional

requirements. So that they are understandable by system users without detailed technical

knowledge.

• They should only specify the external behavior of the system and should avoid, system

design characteristics.

• Consequently, if you are writing user requirements, you should not use software jargon,

structured notations or formal notations, or describe the requirement by describing the

system implementation.

• User requirements are written in simple language, with simple tables and forms and intuitive

diagrams.

However, various problems can arise when requirements are written in natural language

sentences in a text document:

1. Lack of clarity: It is sometimes difficult to use language in a precise and unambiguous

way without making the document wordy and difficult to read.

2. Requirements confusion: Functional requirements, non-functional requirements, system

goals and design information may not be clearly distinguished.

 3. Requirements amalgamation: Several different requirements may be expressed together

as a single requirement.

It is good practice to separate user requirements from more detailed system requirements in

a requirements document. Otherwise, non-technical readers of the user requirements may be

overwhelmed by details that are really only relevant for technicians.

Guidelines to minimize misunderstandings when writing user requirements are:

1. Invent a standard format and ensure that all requirement definitions adhere to that format.

2. Use language consistently.

3. Use text highlighting (bold, italic or colour) to pick out key parts of the requirement.

4. Avoid the use of computer jargon.

2.6. SYSTEM REQUIREMENTS:

• System requirements are expanded versions of the user requirements that are used by

software engineers as the starting point for the system design. They add detail and explain

how the user requirements should be provided by the system.

• They may be used as part of the contract for the implementation of the system and should

therefore be a complete and consistent specification of the whole system.

• The system requirements should simply describe the external behavior of the system and its

operational constraints. They should not be concerned with how the system should be

designed or implemented.

7

• However, at the level of detail required to completely specify a complex software system, it

is impossible to exclude all design information.

There are several reasons for this:

1. There may be need to Design an initial architecture of the system to help structure the

requirements specification. The system requirements are organized according to the

different sub-systems that make up the system.

2. In most cases, systems must interoperate with other existing systems. These constrain the

design, and these constraints impose requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements may be necessary.

An external regulator who needs to certify that the system is safe may specify that an

architectural design that has already been certified be used.

• Natural language is often used to write system requirements specifications as well as user

requirements.

• However, because system requirements are more detailed than user requirements,

natural language specifications can be confusing and hard to understand:

1. Natural language understanding relies on the specification readers and writers using the

same words for the same concept.

2. A natural language requirements specification is over flexible.

3. There is no easy way to modularize natural language requirements.

• Because of these problems, requirements specifications written in natural language are

prone to misunderstandings. These are often not discovered until later phases of the software

process and may then be very expensive to resolve.

Figure .Notations for requirements specification

 Structured language specifications:

• Structured natural language is a way of writing system requirements where the freedom of

the requirements writer is limited and all requirements are written in a standard way.

8

• The advantage of this approach is that it maintains most of the expressiveness and

understandability of natural language but ensures that some degree of uniformity is imposed

on the specification.

• Structured language notations limit the terminology that can be used and use templates to

specify system requirements. They may incorporate control constructs derived from

programming languages and graphical highlighting to partition the specification.

• To use a form-based approach to specifying system requirements, define one or more

standard forms or templates to express the requirements.

• The specification may be structured around the objects manipulated by the system, the

functions performed by the system or the events processed by the system.

• The insulin pump bases its computations of the user’s insulin requirement on the rate of

change of blood sugar levels. These rates of change computed using the current and

previous readings.

Figure. System requirements specification using a standard form

• When a standard form is used for specifying functional requirements, the following

information should be included:

1. Description of the function or entity being specified

2. Description of its inputs and where these come from

3. Description of its outputs and where these go to

4. Indication of what other entities are used (the requires part)

5. Description of the action to be taken

6. If a functional approach is used, a pre-condition setting out what must be true before the

function is called and a post-condition specifying what is true after the function is called

7. Description of the side effects (if any) of the operation.

• Using formatted specifications removes some of the problems of natural language

specification. Variability in the specification is reduced and requirements are organised

more effectively. However, it is difficult to write requirements in an unambiguous way,

particularly when complex computations are required.

9

• To address this problem, you can add extra information to natural language requirements

using tables or graphical models of the system.

• These can show how computations proceed, how the system state changes, how users

interact with the system and how sequences of actions are performed.

• Tables are particularly useful when there are a number of possible alternative situations and

you need to describe the actions to be taken for each of these.

Figure. Tabular specification of computation

Graphical models:

• Graphical models are most useful when you need to show how state changes or where you

need to describe a sequence of actions.

• Figure illustrates the sequence of actions when a user wishes to withdraw cash from an

automated teller machine (ATM).

Figure. Sequence diagram of ATM withdrawal

There are three basic sub-sequences:

1. Validate card the user’s card is validated by checking the card number and user’s PIN.

10

2. Handle request the user’s request is handled by the system. For a withdrawal, the database

must be queried to check the user’s balance and to debit the amount withdrawn. Notice the

exception here if the requestor does not have enough money in their account.

3. Complete transaction The user’s card is returned and, when it is removed, the cash and

receipt are delivered.

2.7. Software document (or)

Software requirements document (or)

Software Rrequirements Specification (SRS)

• The software requirements document (or) SRS is an official statement of what the system

developers should implement.

• A software requirements specification (SRS) is a document that is created when a detailed

description of all aspects of the software to be built must be specified before the project is to

commence. It is important to note that a formal SRS is not always written.

• In fact, there are many instances in which effort expended on an SRS might be better spent

in other software engineering activities. However, when software is to be developed by a

third party, when a lack of specification would create severe business issues, or when a

system is extremely complex or business critical, an SRS may be justified.

• It should include both the user requirements for a system and a detailed specification of the

system requirements.

• Sometimes, the user and system requirements are integrated into a single description. In

other cases, the user requirements are defined in an introduction to the system requirements

specification. If there are a large number of requirements, the detailed system requirements

may be presented in a separate document.

• The requirements document has a diverse set of users, ranging from the senior management

of the organization that is paying for the system to the engineers responsible for developing

the software.

Figure. Users of a requirements document

• IEEE (Institute of Electrical and Electronics Engineers) standard suggest the following

structure for requirements documents.

11

• Although IEEE standard is not ideal, it contains good deal of good advice on how to write

requirements and how to avoid problems.

Figure. The structure of a requirements document

Software Requirements Specification Template

Table of Contents

1. Introduction

1.1 Purpose

1.2 Document Conventions

1.3 Intended Audience and Reading Suggestions

1.4 Project Scope

1.5 References

2. Overall Description

2.1 Product Perspective

2.2 Product Features

2.3 User Classes and Characteristics

2.4 Operating Environment

12

2.5 Design and Implementation Constraints

2.6 User Documentation

2.7 Assumptions and Dependencies

3. System Features

3.1 System Feature 1

3.2 System Feature 2 (and so on)

4. External Interface Requirements

4.1 User Interfaces

4.2 Hardware Interfaces

4.3 Software Interfaces

4.4 Communications Interfaces

5. Other Nonfunctional Requirements

5.1 Performance Requirements

5.2 Safety Requirements

5.3 Security Requirements

5.4 Software Quality Attributes

6. Other Requirements

Appendix A: Glossary

Appendix B: Analysis Models

Properties of a good SRS document:

• The important properties of a good SRS document are the following:

 Concise. The SRS document should be concise and at the same time unambiguous, consistent,

and complete.

 Structured. It should be well-structured. A well-structured document is easy to understand and

modify.

 Black-box view. It should only specify what the system should do and refrain from stating how

to do these. This means that the SRS document should specify the external behavior of the system.

 Conceptual integrity. It should show conceptual integrity so that the reader can easily

understand it.

 Response to undesired events. It should characterize acceptable responses to undesired events.

Problems without a SRS document

• The important problems that an organization would face if it does not develop an SRS document

are as follows:

 Without developing the SRS document, the system would not be implemented according to

customer needs.

 Software developers would not know whether what they are developing is what exactly required

by the customer.

 Without SRS document, it will be very much difficult for the maintenance engineers to

understand the functionality of the system.

 It will be very much difficult for user document writers to write the users’ manuals properly

without understanding the SRS document.

13

2.8. REQUIREMENTS ENGINEERING PROCESSES:

❖ Requirements engineering (RE) refers to the process of defining, documenting and

maintaining requirements.

❖ Requirements engineering emphasizes the use of systematic and repeatable techniques that

ensure the completeness, consistency, and relevance of the system requirements.

❖ The goal of the requirements engineering process is to create and maintain a system

requirements document.

Requirements engineering process includes four sub-processes.

1) Feasibility study: Assessing whether the system is useful to the business.

2) Elicitation and analysis :

• Requirements elicitation is the process of discovering, reviewing, documenting, and

understanding the user's needs and constraints for the system.

• Requirements analysis is the process of refining the user's needs and constraints.

3) Specification: Converting these requirements into some standard form. It is the process of

documenting the user's needs and constraints clearly and precisely.

4) Validation: Checking that the requirements actually define the system that the customer

wants.

Figure. The requirements engineering process

• Figure illustrates the relationship between the activities. It also shows the documents

produced at each stage of the requirements engineering process.

• The activities are concerned with the discovery, documentation and checking of

requirements.

• In all systems, normally requirements change frequently.

o Reasons for changing requirements:

o The people involved, develop a better understanding of what they want the software

to do;

o The organisation buying the system changes;

o Modifications are made to the system’s hardware, software and organisational

environment.

• The process of managing these changing requirements is called requirements management.

14

Figure .Spiral models of requirements engineering processes

Spiral model of requirements engineering process

• An alternative perspective on the requirements engineering process is spiral model of

requirements engineering process. This presents the process as a three-stage activity where

the activities are organized as an iterative process around a spiral.

• The amount of time and effort devoted to each activity in iteration depends on the stage of

the overall process and the type of system being developed.

• Early in the process, most effort will be spent on understanding high-level business and non-

functional requirements and the user requirements.

• Later in the process, in the outer rings of the spiral, more effort will be devoted to system

requirements engineering and system modeling.

• This spiral model accommodates approaches to development in which the requirements are

developed to different levels of detail. The number of iterations around the spiral can vary,

so the spiral can be exited after some or all of the user requirements have been elicited.

• If the prototyping activity shown under requirements validation is extended to include

iterative development, this model allows the requirements and the system implementation to

be developed together.

15

2.9. FEASIBILITY STUDIES:

For all new systems, the requirements engineering process should start with a feasibility study. The

input to the feasibility study is:

❖ A set of preliminary business requirements, an outline description of the system and how the

system is intended to support business processes.

 The results of the feasibility study should be

❖ A report that recommends whether or not it is worth carrying on with the requirements

engineering and system development process.

A feasibility study is a short, focused study that aims to answer a number of questions:

1. Does the system contribute to the overall objectives of the organisation?

2. Can the system be implemented using current technology and within given cost and schedule

constraints?

3. Can the system be integrated with other systems which are already in place?

Carrying out a feasibility study involves 3 activities

1) Information assessment

2) Information collection

3) Report writing.

1) Information assessment:

❖ The information assessment phase identifies the information that is required to answer the

three questions set out above.

❖ Once the information have been identified, then talk with information sources to discover

the answers to these questions.

Some examples of possible questions that may be put are:

a) How would the organization cope if this system were not implemented?

b) What are the problems with current processes and how would a new system help alleviate

these problems?

c) What direct contribution will the system make to the business objectives and requirements?

d) Can information be transferred to and from other organizational systems?

e) Does the system require technology that has not previously been used in the organization?

f) What must be supported by the system and what need not be supported?

2) Information collection :

❖ Consult with information sources such as the managers of the departments where the system

will be used, software engineers who are familiar with the type of system that is proposed,

technology experts and end-users of the system.

❖ Feasibility study should be completed in two or three weeks.

3) Report writing:

❖ Once information is collected, write the feasibility study report. Report can contain a

recommendation about whether or not the system development should continue.

❖ Report can propose changes to the scope, budget and schedule of the system and suggest

further high-level requirements for the system.

16

2.10. REQUIREMENTS ELICITATION AND ANALYSIS:

• Software engineers work with customers and system end-users to find out about the

application domain, what services the system should provide, the required performance of

the system, hardware constraints, and so on.

• Requirements elicitation and analysis may involve a variety of people in an organisation.

• The term stakeholder is used to refer to any person or group who will be affected by

the system, directly or indirectly.

o Stakeholders include end-users who interact with the system and everyone else in an

organization that may be affected by its installation.

o Other system stakeholders may be engineers who are developing or maintaining

related systems, business managers, domain experts and trade union representatives.

Eliciting and understanding stakeholder requirements is difficult for several reasons:

1) Stakeholders often don’t know what they want from the computer system except in the most

general terms.

2) Stakeholders naturally express requirements in their own terms and with implicit knowledge

of their own work.

3) Different stakeholders have different requirements.

4) Political factors may influence the requirements of the system.

Figure. The requirements elicitation and analysis process

• The activities are interleaved as the process proceeds from the inner to the outer rings of the

spiral.

The process activities are:

1. Requirements discovery:

This is the process of interacting with stakeholders in the system to collect their

requirements. Domain requirements from stakeholders and documentation are also

discovered during this activity.

2. Requirements classification and organization :

This activity takes the unstructured collection of requirements, groups related requirements

and organizes them into coherent clusters.

17

3. Requirements prioritization and negotiation :

Inevitably, where multiple stakeholders are involved, requirements will conflict. This

activity is concerned with prioritizing requirements, and finding and resolving requirements

conflicts through negotiation.

4. Requirements documentation:

The requirements are documented and input into the next round of the spiral. Formal or

informal requirements documents may be produced.

2.10.1 Requirements discovery:

Requirements discovery is the process of gathering information about the proposed and existing

systems and distilling the user and system requirements from this information.

Sources of information during the requirements discovery phase include

• documentation,

• System stakeholders and

• Specifications of similar systems.

Interact with stakeholders through interviews and observation, and may use scenarios and

prototypes to help with the requirements discovery.

Stakeholders range from system end-users through managers and external stakeholders such as

regulators who certify the acceptability of the system.

For example: 1. System stakeholders for a bank ATM include:

a) Current bank customers who receive services from the system

b) Representatives from other banks who have reciprocal agreements that allow each other’s

ATMs to be used

c) Managers of bank branches who obtain management information from the system

d) Counter staff at bank branches who are involved in the day-to-day running of the system

e) Database administrators who are responsible for integrating the system with the bank’s

customer database

f) Bank security managers who must ensure that the system will not pose a security hazard

g) The bank’s marketing department who are likely be interested in using the system as a

means of marketing the bank

h) Hardware and software maintenance engineers who are responsible for maintaining and

upgrading the hardware and software

i) National banking regulators who are responsible for ensuring that the system conforms to

banking regulations

For example: 2. System stakeholders for the mental healthcare patient information system

include:

1. Patients whose information is recorded in the system.

2. Doctors who are responsible for assessing and treating patients.

3. Nurses who coordinate the consultations with doctors and administer some treatments.

4. Medical receptionists who manage patients’ appointments.

5. IT staff who are responsible for installing and maintaining the system.

6. A medical ethics manager who must ensure that the system meets current ethical

guidelines for patient care.

7. Healthcare managers who obtain management information from the system.

8. Medical records staff who are responsible for ensuring that system information can be

maintained and preserved, and that record keeping procedures have been properly implemented.

In addition to system stakeholders, requirements may come from the application domain and

from other systems that interact with the system being specified. All of these must be considered

during the requirements elicitation process.

18

Techniques used for requirements discovery are

1) Viewpoint

2) Interviewing

3) Scenarios

4) Ethnography

1) Viewpoints:

• The requirements sources (stakeholders, domain, systems) can all be represented as system

viewpoints, where each viewpoint presents a sub-set of the requirements for the system.

• Each viewpoint provides a fresh perspective on the system, but these perspectives are not

completely independent—they usually overlap so that they have common requirements.

• A key strength of viewpoint-oriented analysis is that it recognizes multiple perspectives and

provides a framework for discovering conflicts in the requirements proposed by different

stakeholders.

• Viewpoints can be used as a way of classifying stakeholders and other sources of

requirements.

Three generic types of viewpoint are

a) Interactor viewpoints: It represents people or other systems that interact directly with the

system. In the bank ATM system, examples of interactor viewpoints are the bank’s

customers and the bank’s account database.

b) Indirect viewpoints: It represents stakeholders who do not use the system themselves but

who influence the requirements in some way. In the bank ATM system, examples of indirect

viewpoints are the management of the bank and the bank security staff.

c) Domain viewpoints: It represents domain characteristics and constraints that influence the

system requirements. In the bank ATM system, an example of a domain viewpoint would be

the standards that have been developed for interbank communications.

• Interactor viewpoints provide detailed system requirements covering the system features

and interfaces.

• Indirect viewpoints are more likely to provide higher-level organizational requirements and

constraints.

• Domain viewpoints normally provide domain constraints that apply to the system.

Figure.Viewpoints in LIBSYS

Engineering viewpoints may be important for two reasons.

a) The engineers developing the system may have experience with similar systems and may be

able to suggest requirements from that experience.

b) Technical staff who have to manage and maintain the system may have requirements that

will help simplify system support.

19

• Viewpoints that provide requirements may come from the marketing and external affairs

departments in an organisation. This is especially true for web-based systems, particularly e-

commerce systems and shrink-wrapped software products.

• Web-based systems must present a favourable image of the organisation as well as deliver

functionality to the user. For software products, the marketing department should know what

system features will make the system more marketable to potential buyers.

• Viewpoints in the same branch are likely to share common requirements.

• Once viewpoints have been identified and structured, try to identify the most important

viewpoints and start with them when discovering system requirements.

2) Interviewing:

• Formal or informal interviews with system stakeholders are part of most requirements

engineering processes.

• In these interviews, the requirements engineering team puts questions to stakeholders about the

system that they use and the system to be developed. Requirements are derived from the

answers to these questions.

 Interviews may be of two types:

(1) Closed interviews where the stakeholder answers a predefined set of questions.

(2) Open interviews where there is no predefined agenda.

• Interviews are good for getting an overall understanding of what stakeholders do, how

they might interact with the system and the difficulties that they face with current systems.

• People like talking about their work and are usually happy to get involved in interviews.

However, interviews are not so good for understanding the requirements from the application

domain.

It is hard to elicit domain knowledge during interviews for two reasons:

(1) All application specialists use terminology and jargon that is specific to a domain.

(2) Some domain knowledge is so familiar to stakeholders that they either find it difficult to

explain or they think it is so fundamental that it isn’t worth mentioning.

Two characteristics of Effective interviewers:

(1) They are open-minded, avoid preconceived ideas about the requirements and are willing

to listen to stakeholders. If the stakeholder comes up with surprising requirements, they are

willing to change their mind about the system.

(2) They prompt the interviewee to start discussions with a question, a requirements

proposal or by suggesting working together on a prototype system. Saying to people ‘tell me

what you want’ is unlikely to result in useful information. Most people find it much easier to

talk in a defined context rather than in general terms.

Interviews should be used alongside other requirements elicitation techniques.

3) Scenarios:

• Scenarios can be particularly useful for adding detail to an outline requirements description.

They are descriptions of example interaction sessions.

• Each scenario covers one or more possible interactions. Several forms of scenarios have been

developed, each of which provides different types of information at different levels of detail

about the system.

• The scenario starts with an outline of the interaction, and, during elicitation, details are added to

create a complete description of that interaction.

A scenario may include:

1. A description of what the system and users expect when the scenario starts

2. A description of the normal flow of events in the scenario

3. A description of what can go wrong and how this is handled

4. Information about other activities that might be going on at the same time

5. A description of the system state when the scenario finishes.

20

• Scenario-based elicitation can be carried out informally, where the requirements engineer works

with stakeholders to identify scenarios and to capture details of these scenarios.

• Scenarios may be written as text, supplemented by diagrams, screen shots, and so on.

• Alternatively, a more structured approach such as event scenarios or usecases may be adopted.

As an example of a simple text scenario, consider how a user of the LIBSYS library system may

use the system.

Figure. Scenario for article downloading in LIBSYS

Use-cases:

Figure . A simple use-case for article printing

• Use-cases are a scenario-based technique for requirements elicitation which were first

introduced in the Objectory method. They have now become a fundamental feature of the UML

notation for describing object-oriented system models. A use-case identifies the type of

interaction and the actors involved.

21

Figure . Use cases for the library system

• Actors in the process are represented as stick figures, and each class of interaction is

represented as a named ellipse.

• The set of use-cases represents all of the possible interactions to be represented in the

system requirements.

• Use-cases identify the individual interactions with the system. They can be documented with

text or linked to UML (Unified Modelling Language) models that develop the scenario in

more detail.

Sequence diagrams:

• Sequence diagrams are often used to add information to a use-case. These sequence

diagrams show the actors involved in the interaction, the objects they interact with and the

operations associated with these objects.

Figure. System interactions for article printing

22

• In Figure, there are four objects of classes—Article, Form, Workspace and Printer—involved in

this interaction. The sequence of actions is from top to bottom, and the labels on the arrows

between the actors and objects indicate the names of operations.

• Essentially, a user request for an article triggers a request for a copyright form. Once the user

has completed the form, the article is downloaded and sent to the printer. Once printing is

complete, the article is deleted from the LIBSYS workspace.

• Scenarios and use-cases are effective techniques for eliciting requirements for interactor

viewpoints, where each type of interaction can be represented as a usecase.

• They can also be used in conjunction with some indirect viewpoints where these viewpoints

receive some results from the system.

Drawbacks:

• They are not as effective for eliciting constraints or high-level business and non-functional

requirements from indirect viewpoints or for discovering domain requirements.

4) Ethnography:

Ethnography is an observational technique that can be used to understand social and organizational

requirements.

• An analyst immerses him or herself in the working environment where the system will be

used. He or she observes the day-to-day work and notes made of the actual tasks in which

participants are involved.

• The value of ethnography is that it helps analysts discover implicit system requirements that

reflect the actual rather than the formal processes in which people are involved.

• Social and organizational factors that affect the work but that are not obvious to individuals

may only become clear when noticed by an unbiased observer.

Ethnography is particularly effective at discovering two types of requirements:

1. Requirements that are derived from the way in which people actually work rather than the

way in which process definitions say they ought to work.

2. Requirements that are derived from cooperation and awareness of other people’s activities.

Figure. Ethnography and prototyping for requirements

• Ethnography may be combined with prototyping .The ethnography informs the development

of the prototype so that fewer prototype refinement cycles are required.

• Furthermore, the prototyping focuses the ethnography by identifying problems and

questions that can then be discussed with the ethnographer.

• Ethnographic studies can reveal critical process details that are often missed by other

requirements elicitation techniques.

Drawbacks:

(1) This approach is not appropriate for discovering organisational or domain requirements.

(2) Ethnographic studies cannot always identify new features that should be added to a system.

(3) Ethnography is not a complete approach to elicitation on its own, and it should be used to

complement other approaches, such as use-case analysis.

23

2.11. REQUIREMENTS VALIDATION

• Requirements validation is concerned with showing that the requirements actually define the

system that the customer wants. Requirements validation overlaps analysis in that it is

concerned with finding problems with the requirements.

• Requirements validation is important because errors in a requirements document can lead to

extensive rework costs when they are discovered during development or after the system is

in service. The cost of fixing a requirements problem by making a system change is much

greater than repairing design or coding errors.

• The reason for this is that a change to the requirements usually means that the system design

and implementation must also be changed and then the system must be tested again.

• During the requirements validation process, checks should be carried out on the

requirements in the requirements document.

These checks include:

1. Validity checks :A user may think that a system is needed to perform certain functions.

2. Consistency checks: Requirements in the document should not conflict.

3. Completeness checks: The requirements document should include requirements, which define

all functions, and constraints intended by the system user.

4. Realism checks: Using knowledge of existing technology, the requirements should be checked

to ensure that they could actually be implemented.

5. Verifiability: To reduce the potential for dispute between customer and contractor, system

requirements should always be written so that they are verifiable.

A number of requirements validation techniques can be used in conjunction or individually:

i) Requirements reviews: The requirements are analysed systematically by a team of

reviewers.

ii) Prototyping: In this approach to validation, an executable model of the system is

demonstrated to end-users and customers. They can experiment with this model to see if

it meets their real needs.

iii) Test-case generation: Requirements should be testable. If the tests for the requirements are

devised as part of the validation process, this often reveals requirements problems. If a

test is difficult or impossible to design, this usually means that the requirements will be

difficult to implement and should be reconsidered. Developing tests from the user

requirements before any code is written is an integral part of extreme programming.

1. Requirements reviews:

• A requirements review is a manual process that involves people from both client and

contractor organisations.

• They check the requirements document for anomalies and omissions. The review process

may be managed in the same way as program inspections.

• Alternatively, it may be organised as a broader activity with different people checking

different parts of the document.

• Requirements reviews can be informal or formal.

• Informal reviews simply involve contractors discussing requirements with as many system

stakeholders as possible. Many problems can be detected simply by talking about the system

to stakeholders before making a commitment to a formal review.

• In a formal requirements review, the development team should ‘walk’ the client through

the system requirements, explaining the implications of each requirement.

• The review team should check each requirement for consistency as well as check the

requirements as a whole for completeness.

Reviewers may also check for:

24

1. Verifiability: Is the requirement as stated realistically testable?

2. Comprehensibility: Do the procurers or end-users of the system properly understand the

requirement?

3. Traceability: Is the origin of the requirement clearly stated? You may have to go back to the

source of the requirement to assess the impact of a change. Traceability is important as it

allows the impact of change on the rest of the system to be assessed.

4. Adaptability: Is the requirement adaptable? That is, can the requirement be changed without

large-scale effects on other system requirements?

• Conflicts, contradictions, errors and omissions in the requirements should be pointed out

by reviewers and formally recorded in the review report. It is then up to the users, the

system procurer and the system developer to negotiate a solution to these identified problems.

2.12. REQUIREMENTS MANAGEMENT

• The requirements for large software systems are always changing. One reason for this is that

these systems are usually developed to address ‘wicked’ problems.

• Because the problem cannot be fully defined, the software requirements are bound to be

incomplete.

• During the software process, the stakeholders’ understanding of the problem is constantly

changing. These requirements must then evolve to reflect this changed problem view.

• Furthermore, once a system has been installed, new requirements inevitably emerge.

• It is hard for users and system customers to anticipate what effects the new system will have on

the organisation.

Once end-users have experience of a system, they discover new needs and priorities:

1. Large systems usually have a diverse user community where users have different

requirements and priorities. These may be conflicting or contradictory.

2. The people who pay for a system and the users of a system are rarely the same people.

 3. The business and technical environment of the system changes after installation, and

these changes must be reflected in the system.

• Requirements management is the process of understanding and controlling changes to system

requirements.

• You need to keep track of individual requirements and maintain links between dependent

requirements so that you can assess the impact of requirements changes.

• You need to establish a formal process for making change proposals and linking these to system

requirements.

• The process of requirements management should start as soon as a draft version of the

requirements document is available, but you should start planning how to manage changing

requirements during the requirements elicitation process.

Enduring and volatile requirements:

• Requirements evolution during the RE process and after a system has gone into service is

inevitable.

• Developing software requirements focuses attention on software capabilities, business

objectives and other business systems.

• As the requirements definition is developed, you normally develop a better understanding of

users’ needs.

• This feeds information back to the user, who may then propose a change to the

requirements. Furthermore, it may take several years to specify and develop a large system.

Over that time, the system’s environment and the business objectives change, and the

requirements evolve to reflect this.

25

Figure. Requirements evolution

From an evolution perspective, requirements fall into two classes:

1. Enduring requirements: These are relatively stable requirements that derive from the core

activity of the organisation and which relate directly to the domain of the system. For example,

in a hospital, there will always be requirements concerned with patients, doctors, nurses and

treatments.

2. Volatile requirements: These are requirements that are likely to change during the system

development process or after the system has been become operational. An example would be

requirements resulting from government healthcare policies.

1) Requirements management planning:

Planning is an essential first stage in the requirements management process.

Requirements management is very expensive. For each project, the planning stage establishes the

level of requirements management detail that is required.

Figure. Classification of volatile requirements

During the requirements management stage, you have to decide on:

1. Requirements identification:

Each requirement must be uniquely identified so that it can be cross-referenced by other

requirements and so that it may be used in traceability assessments.

2. A change management process:

This is the set of activities that assess the impact and cost of changes. .

3. Traceability policies:

These policies define the relationships between requirements, and between the requirements

and the system design that should be recorded and how these records should be maintained.

4. CASE tool support :

Requirements management involves the processing of large amounts of information about the

requirements. Tools that may be used range from specialist requirements management systems

to spreadsheets and simple database systems.

26

There are three types of traceability information that may be maintained:

1. Source traceability information links the requirements to the stakeholders who proposed

the requirements and to the rationale for these requirements. When a change is proposed, you

use this information to find and consult the stakeholders about the change.

2. Requirements traceability information links dependent requirements within the

requirements document. Use this information to assess how many requirements are likely to be

affected by a proposed change and the extent of consequential requirements changes that may

be necessary.

3. Design traceability information links the requirements to the design modules where these

requirements are implemented. Use this information to assess the impact of proposed

requirements changes on the system design and implementation.

• Traceability information is often represented using traceability matrices, which relate

requirements to stakeholders, each other or design modules.

• In a requirements traceability matrix, each requirement is entered in a row and in a column in

the matrix. Where dependencies between different requirements exist, these are recorded in the

cell at the row/column intersection.

Figure .A traceability matrix

• A ‘D’ in the row/column intersection illustrates that the requirement in the row depends on the

requirement named in the column; an ‘R’ means that there is some other, weaker relationship

between the requirements.

• Traceability matrices may be used when a small number of requirements have to be managed,

but they become unwieldy and expensive to maintain for large systems with many requirements.

• For large systems, capture traceability information in a requirements database where each

requirement is explicitly linked to related requirements.

• Assess the impact of changes by using the database browsing facilities. Traceability matrices

can be generated automatically from the database. Requirements management needs automated

support; the CASE tools for this should be chosen during the planning phase.

Tools are needed to support:

1. Requirements storage:

The requirements should be maintained in a secure, managed data store that is accessible to

everyone involved in the requirements engineering process.

2. Change management:

The process of change management is simplified if active tool support is available.

3. Traceability management:

Tool support for traceability allows related requirements to be discovered. Some tools use

natural language processing techniques to help you discover possible relationships between the

requirements.

27

2) Requirements change management:

Requirements change management should be applied to all proposed changes to the

requirements. The advantage of using a formal process for change management is that all change

proposals are treated consistently and that changes to the requirements document are made in a

controlled way.

Figure. Requirements change management

Three principal stages to a change management process:

1. Problem analysis and change specification:

✓ The process starts with an identified requirements problem or, sometimes, with a specific

change proposal.

✓ During this stage, the problem or the change proposal is analyzed to check that it is valid.

The results of the analysis are fed back to the change requestor, and sometimes a more

specific requirements change proposal is then made.

2. Change analysis and costing:

✓ The effect of the proposed change is assessed using traceability information and general

knowledge of the system requirements.

✓ The cost of making the change is estimated in terms of modifications to the requirements

document and, if appropriate, to the system design and implementation. Once this analysis

is completed, a decision is made whether to proceed with the requirements change.

3. Change implementation:

✓ The requirements document and, where necessary, the system design and implementation

are modified.

✓ Organize the requirements document so that you can make changes to it without extensive

rewriting or reorganization.

✓ Changeability in documents is achieved by minimizing external references and making the

document sections as modular as possible. Thus, individual sections can be changed and

replaced without affecting other parts of the document.

2.13. CLASSICAL ANALYSIS

Specification document must satisfy two mutually contradictory requirements

1. It must be clear and intelligible to client

✓ Client probably not a computer expert

✓ Client must understand it in order to authorize

2. It must be complete and detailed - Sole source of information available to the design team

Classification of Requirement specification techniques

(1) Informal: Written in a natural language

(2) Formal: Techniques such as Petri nets and Z

(3) Semiformal: Techniques between informal and formal.eg. structured system analysis

2.14. STRUCTURED SYSTEMS ANALYSIS

The structured system analysis is a technique in which the system requirements are

converted into specifications and then into computer programs, hardware configurations and related

manual procedures.

Structured Analysis views a system from the perspective of the data flowing through it. The

function of the system is described by processes that transform the data flows. Structured analysis

takes advantage of information hiding through successive decomposition (or top down) analysis.

28

DATA FLOW DIAGRAM

• A Data Flow Diagram (DFD) is a graphical representation of the "flow" of data through an

information system.

• It is common practice to draw a System Context Diagram first which shows the interaction

between the system and outside entities.

• The DFD is designed to show how a system is divided into smaller portions and to highlight the

flow of data between those parts.

• Level 0 DFD i.e. Context level DFD should depict the system as a single.

• Primary input and primary output should be carefully identified.

• Information flow from continuity must be maintained from level to level

 Four basic symbols

Symbol Notation

External Entity: External entities are objects

outside the system, with which the system

communicsates. External entities are sources

and destinations of the system’s inputs and

outputs.

Process : A process tranforms incoimg data

flow into outgoing data flow

Transition: It represents the flow of

information from one entity to another

Data Store: Data store are repositories of data

in the system. They are sometimes also

referred to as files or databases.

Figure .symbol of structured system analysis

Rules for Designing DFD:

1. No process can have only outputs or only inputs. The process must have both Outputs and

inputs.

2. The verb phrases in the problem description can be identified as processes in the system.

3. There should not be a direct flow between data stores and external entity. This flow should go

through a process.

External Entity

Level

Process

29

4. Data store labels should be noun phrases from problem description.

5. No data should move directly between external entities. The data flow should go through a

process.

6. Generally source and sink labels are noun phrases.

Step 1: Draw the Data Flow Diagram (DFD)

• A pictorial representation of all aspects of the logical data flow

✓ Logical data flow — What happens

✓ Physical data flow — How it happens

• Any non-trivial product contains many elements

• DFD is developed by stepwise refinement

• For large products a hierarchy of DFDs instead of one DFD

• Constructed by identifying data flows: Within requirements document or rapid prototype

Step 2: Decide what sections to computerize and how (batch or online)

✓ Depending on client’s needs and budget limitations ƒ
✓ Cost-benefit analysis is applied

Step 3: Determine details of data flows

✓ Decide what data items must go into various data flows

✓ Stepwise refinement of each flow

✓ For larger products, a data dictionary is generated.

✓ Data dictionary - keeps track of all data element.

o A data dictionary is a collection of data about data.

o It maintains information about the definition, structure, and use of each data element

that an organization uses.

Step 4: Define logic of processes

✓ Determine what happens within each process

✓ Use of decision trees to consider all cases

Step 5: Define data stores

✓ Exact contents of each store and its representation (format)

Step 6: Define physical resources

✓ File names, organization (sequential, indexed, etc.), storage medium, and records

✓ If a database management system (DBMS) used: Relevant information for each table

Step 7: Determine input-output specifications

✓ Input forms and screens

✓ Printed outputs

30

Step 8: Determine sizing

✓ Computing numerical data to determine hardware requirements

✓ Volume of input (daily or hourly)

✓ Frequency of each printed report and its deadline

✓ Size and number of records of each type to pass between CPU and mass storage

✓ Size of each file

✓

Step 9: Determine hardware requirements

✓ Use of sizing information to determine mass storage requirements

✓ Mass storage for backup

✓ Determine if client’s current hardware system is adequate

After approval by client: Specification document is handed to design team, and software process

continues

2.15. PETRI NETS

• Petri nets are a basic model of parallel and distributed systems. The basic idea is to describe

state changes in a system with transitions.

• Petri nets — Formal technique for describing concurrent interrelated activities

• Invented by Carl Adam Petri, 1962

Petri net Consists of four parts

(1) A set of places

(2) A set of transitions

(3) An input function

(4) An output function

• Petri nets contain places (Stelle) and transitions or | (Transition) that may be

connected by directed arcs.

• Transitions symbolise actions; places symbolise states or conditions that need to be met before

an action can be carried out.

● Marking of a Petri net

✓ Assignment of tokens

✓ Tokens enable transitions

● Petri nets are non-deterministic

Petri nets and their firing rule:

A place may contain several tokens, which may be interpreted as resources.

• There may be several input and output arcs between a place and a transition.

• The number of these arcs is represented as the weight of a single arc.

• A transition is enabled if its each input place contains at least as many tokens as the

corresponding input arc weight indicates.

• When an enabled transition is fired, its input arc weights are subtracted from the input place

markings and its output arc weights are added to the output place markings.

31

 Fig.A Pertinet Fig. A marked Petrinet

More formally, a Petri net is a 4-tuple C = (P, T, I, O)

 P = {p , p ,…,p } is a finite set of places, n ≥ 0

 T = {t1, t2,…,tm} is a finite set of transitions, m ≥ 0, with P and T

 I : T → P∞ is the input function, a mapping from transitions to bags of places

 O : T → P∞ is the output function, a mapping from

Petri net in the above figure has,

Set of places P is {p1, p2, p3, p4}

Set of transitions T is {t1, t2}

Input functions: I(t1) = {p2, p4}

I(t2)= {p2}

Output functions: O(t1) = {p1}

O(t2) = {p3, p3}

Fig. After transision t1 fires Fig. After transition t2 fire

Fig. A petrinet with an inhibitor arc

Inhibitor arcs:

An inhibitor arc is marked by a small circle, not an arrowhead. Transition t1 is enabled.

A marked Petri net is then a 5-tuple (P, T, I, O, M).

In general, a transition is enabled if there is at least one token on each (normal) input arc, and no

tokens on any inhibitor input arcs.

CASE Tools for Classical Analysis

● Two classes of CASE tools are helpful during classical analysis

32

● A graphical tool for drawing data flow diagrams, Petri nets, etc.

✓ Drawing by hand is a lengthy and time consuming process

✓ Changes can result in having to redraw from scratch

● A data dictionary

✓ A tool for storing name and representation (format) of every component of every data item

● CASE tools to combine graphical tools and data dictionaries

✓ E.g., Analyst/Designer, Software through Pictures, System Architect

✓ Incorporate an automatic consistency checker: Consistency between specification document

and design document

● An analysis technique is unlikely to receive widespread acceptance unless a tool-rich CASE

environment supports that technique

Metrics for Classical Analysis

✓ It is necessary to measure five fundamental metrics: Size, cost, duration, effort, and quality

✓ Number of pages in specification document

✓ Fault statistics of specification inspection

✓ Number of items in data dictionary

Challenges of Classical Analysis

• Resolving contradiction of specification document being simultaneously informal enough

for client to understand and formal enough for development team to use as sole description

of product to be built

• The boundary line between analysis (“what”) and design (“how”) is all too easy to cross

✓ Specification document describes what to do, and not how to do it

✓ List all constraints without stating how to achieve them

Comparison of Classical Analysis Techniques

Classical Analysis

Method

Category Strength Weaknesses

Natural Language Informal • Easy to learn

• Easy to use

• Easy for the client to

understand

• Imprecise

• Specification can

be ambiguous,

contradictory or

incomplete

Entity Relationship

modelling

Semiformal

• Can be understood by

client

• More precise than

informal techniques

• Not as precise as

formal techniques

• Cannot handle

timing

Structured system

Analysis

Petrinet Formal • Extremely Precise

• Can reduce analysis faults

• Can reduce development

cost and effort

• Can support for

correctness proving

• Hard for the

development team

to learn

• Hard to use

• Impossible for

most clients to

understand

2.16. DATA DICTIONARY

33

• Data dictionaries are generally useful when developing system models and may be used to manage

all information from all types of system models.

• A data dictionary is an alphabetic list of the names included in the system models. As well as the

name, the dictionary should include an associated description of the named entity and, if the name

represents a composite object, a description of the composition.

• Other information such as the date of creation, the creator and the representation of the entity may

also be included depending on the type of model being developed.

Name of data element Description Narrative

Order Record comprising fields The field contain all details of an order

 Order identification

 Customer name

Customer address

.

.

 Package name

 Package price

.

Order_identification 12-digit number Unique number generated by procedure

Verify_order_ is_valid Procedure: This procedure takes order as input

 Input parameter:order and check the validity of every field.

Output parameter:no_of_error

Fig. Data dictionary - keeps track of all data element

Advantages:

1. It is a mechanism for name management.

Many people may have to invent names for entities and relationships when developing a

large system model. These names should be used consistently and should not clash. The data

dictionary software can check for name uniqueness where necessary and warn requirements

analysts of name duplications.

2. It serves as a store of organisational information.

As the system is developed, information that can link analysis, design, implementation

and evolution is added to the data dictionary, so that all information about an entity is in one

place.

34

ANNA UNIVERSITY QUESTIONS AND ANSWERS

PART A: 2 Marks

1. Draw a use case diagram for an online shopping which should provide provisions for

registering, authenticating the customers and also for online payment through any

payment gateway like paypal. (NOV / DEC 2017)

2. Define Quality Function Development (QFD)? (NOV / DEC 2017)

Quality Function Deployment (QFD) is a structured approach to defining customer needs or

requirements and translating them into specific plans to produce products to meet those needs.

3. Differentiate between normal and exciting requirements. (APRIL/MAY 2017)

Normal requirements
Exciting requirements

Normal Requirements are what the

stakeholders communicate during

traditional facilitated sessions or in

interviews. They cover the base

functionality of the application. These

requirement contribute proportionally

to customer satisfaction and

expectations

Exciting Requirements are aspects

which the users do not expect. Often

exciting requirements involve

innovation of the business process or

new ways of handling functionality.

Stakeholder satisfaction with the

application can be dramatically

improved through the implementation

of a few exciting requirements.

35

4. What is the purpose of Data dictionaries? (APRIL/MAY 2017)

Data dictionaries are generally useful when developing system models and may be used to manage all

information from all types of system models.

5. What is the purpose of a Petri Net? (APRIL/MAY 2017, APRIL/MAY 2019)

Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and

concurrent execution. Petri nets have an exact mathematical definition of their execution

semantics, with a well-developed mathematical theory for process analysis.

6. What is Volatile Requirements? (APRIL/MAY 2017)

These are relatively stable requirements that derive from the core activity of the

organisation and which relate directly to the domain of the system. For example, in a hospital,

there will always be requirements concerned with patients, doctors, nurses and treatments.

7. What is Elicitation? (NOV/DEC 2017)

Requirements elicitation is the process of discovering, reviewing, documenting, and

understanding the user's needs and constraints for the system.

8. List the characteristics of a good SRS. (APRIL/MAY 2016)

i. Correct – The SRS should be made up to date when appropriate requirements are identified.

ii. Unambiguous – When the requirements are correctly understood then only it is possible to

write an unambiguous software.

iii. Complete – To make SRS complete,it shold be specified what a software designer wants to

create software.

iv. Consistent – It should be consistent with reference to the functionalities identified.

v. Specific – The requirements should be mentioned specifically.

vi. Traceable – What is the need for mentioned requirement? This should be correctly

identified.

9. What are the linkages between data flow and E-R Diagram? (APRIL/MAY 2016)

 An ER diagram is the Entity Relationship Diagram, showing the relationship between different

entities in a process.

A Data Flow diagram is a symbolic structure showing how the flow of data is used in different

process stages.

10. Classify the following as functional / non-functional requirements for a banking system.

(NOV/DEC 2016)

 (a) Verifying bank balance - functional Requirements

 (b) Withdrawing money from bank - functional Requirements

(c) Completion of transactions in less than one second – Non-functional Requirements

(d) Extending the system by providing more tellers for customers.- functional Requirements

11. What is a data dictionary? (NOV/DEC 2016) (NOV/DEC 2015)

 The data dictionary can be defined as an organized collection of all the data elements of the

system with precise and rigorous definitions so that user and system analyst will have a

common understanding of inputs, outputs, components of stores and intermediate calculations.

12. Define feasibility study and list the types. (NOV/DEC 2015)

Feasibility is defined as the practical extent to which a project can be performed successfully.

Type of feasibility: 1. technical feasibility, 2.operational feasibility, and 3.economic feasibility

https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Concurrent_computing

36

13. What is the need for feasibility analysis? (APRIL/MAY 2015)

A feasibility analysis evaluates the project's potential for success; therefore, perceived

objectivity is an important factor in the credibility of the study for potential investors and

lending institutions.

14. How are the requirements validated? (APRIL/MAY 2015)

While designing the user interface of software the requirement collection can be done by

focusing on the profile of user who will interact with the system. Skill level, business

understanding and general grasping to the new system are recorded. Users can be categorized

into different categories and for each category of user requirements are elicitations.

15. What do you mean by Functional and non-functional requirement? (APRIL/MAY 2014,

APR/MAY 2019)

Functional requirements:

These are statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations. In some cases, the

functional requirements may also explicitly state what the system should not do.

Non-functional requirements

These are constraints on the services or functions offered by the system. They include timing

constraints, constraints on the development process and standards. Non-functional requirements

often apply to the system as a whole. They do not usually just apply to individual system

features or services.

16. What is the notation used in DFD?

 Transition

Date Store

17. What is Petri net? NOV/DEC 2019

• Petri nets are a basic model of parallel and distributed systems. The basic idea is to describe

state changes in a system with transitions.

• Petri nets — Formal technique for describing concurrent interrelated activities

18. What are non-functional requirements? NOV/DEC 2019

Nonfunctional requirements are the characteristics of the system which cannot be expressed as

functions - such as the maintainability, portability, usability, robustness, ease of use of the system.

External Entity

Level

Process

37

PART B – ANNA UNIVERSITY QUESTIONS

1. What is feasibility study? How it helps in requirement engineering process? NOV / DEC 2017

2. How will you classify the requirement types for a project, give examples. NOV / DEC 2017

3. List the stake holders and all types of requirements for an online train reservation system NOV /

DEC 2017

4. Consider the process of ordering a pizza over the phone. Draw the usecase diagram and also sketch

the activity diagram representing each step of the process, from the moment you pick the phone to

the point where you start eating the pizza. Include activities that others need to perform. Add

exception handling to the activity diagram you developed. Consider at least two exceptions (e.g.

delivery person wrote down wrong address, deliver person brings wrong pizza) NOV / DEC 2017

5. What is requirement engineering? Explain in detail the various processes in requirements

engineering. APRIL / MAY 2017, NOV/DEC 2019

6. Explain the feasibility studies. What are the outcomes? Does it have implicit or explicit effects on

software requirement collection? APRIL / MAY 2017

7. Write a note on what are the difficulties in elicitation, requirement elicitation. APRIL / MAY 2017,

APRIL/MAY 2017

8. Explain the organization of SRS and highlight the importance of each subsection. MAY /JUNE

2016, APRIL/MAY 2017

9. Requirements analysis is unquestionably the most communication intensive step in the software

engineering process. Why does the communication path frequently breaks down? MAY /JUNE

2016

10. Differentiate between user and system requirements. MAY /JUNE 2016

11. Describe the requirements change management process in detail. MAY /JUNE 2016

12. What is requirements elicitation? Briefly describe the various activities performed in requirements

elicitation phase with an example of a watch system that facilitates to set time and alarm. NOV /

DEC 2016

13. Explain the software requirement engineering process with neat diagram. NOV / DEC 2015

14. Draw Use Case and Data Flow diagrams for a Restaurant System. The activities of the Restaurant

system are listed below.

Receive the Customer food Orders. Produce the customer ordered foods, Serve the customer with

their ordered foods, Collect Payment from customers, Store customer payment details, Order Raw

Materials for food products, Pay for Raw Materials and Pay for Labor. NOV / DEC 2015

15. Draw a Petri Net that depicts the operation of an “Automated Teller Machine” State the functional

requirements you are considering. NOV/DEC 2019

1

CS6403 SOFTWARE ENGINEERING

UNIT- III SOFTWARE DESIGN

Design process – Design Concepts-Design Model– Design Heuristic – Architectural Design –

Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface

Design: Interface analysis, Interface Design –Component level Design: Designing Class based

components, traditional Components.

3.1. INTRODUCTION

• Software design encompasses the set of principles, concepts, and practices that lead to the

development of a high-quality system or product.

• Design creates representation or model of the software. Design model provides detail about

software architecture, data structure, interfaces and components that are necessary to implement

the system.

• Software design sits at the technical kernel of software engineering and is applied regardless of

the software process model that is used.

• Beginning once software requirements have been analyzed and modeled, software design is the

last software engineering action within the modeling activity and sets the stage for construction

(code generation and testing).

Figure. Translating the requirements model into the design model

Four design models required for a complete specification of design

1) Data/class design

The data/class design transforms class models into design class realizations and the requisite data

structures required to implement the software.

The objects and relationships defined in the CRC(class responsibility collaborator) diagram and

the detailed data content depicted by class attributes and other notation provide the basis for the

data design action.

2) Architectural design

 The architectural design defines the relationship between major structural elements of the

software, the architectural styles and design patterns and the constraints that affect the way in

which architecture can be implemented.

3) Interface design

The interface design describes how the software communicates with systems that interoperate

with it, and with humans who use it. An interface implies a flow of information and a specific

type of behavior. Therefore, usage scenarios and behavioral models provide much of the

information required for interface design.

4) Component-level design

The component-level design transforms structural elements of the software architecture into a

procedural description of software components. Information obtained from the class-based

models, flow models, and behavioral models serve as the basis for component design.

2

3.2. DESIGN PROCESS:

Software design is an iterative process through which requirements are translated into a “blueprint” for

constructing the software.

Software Quality Guidelines and Attributes

Three characteristics that serve as a guide for the evaluation of a good design: (or) goals of good design

1. The design must implement all of the explicit requirements contained in the requirements

model, and it must accommodate all of the implicit requirements desired by stakeholders.

2. The design must be a readable, understandable guide for those who generate code and for

those who test and subsequently support the software.

3. The design should provide a complete picture of the software, addressing the data,

functional, and behavioral domains from an implementation perspective.

Quality Guidelines

1. A design should exhibit an architecture that

a. Has been created using recognizable architectural styles or patterns,

b. Is composed of components that exhibit good design characteristics

c. Can be implemented in an evolutionary fashion, thereby facilitating implementation and

testing.

2. A design should be modular; that is, the software should be logically partitioned into elements or

subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and components.

4. A design should lead to data structures that are appropriate for the classes to be implemented

and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information obtained

during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its meaning.

Quality Attributes.

A set of software quality attributes that has been given the acronym FURPS—functionality,

usability, reliability, performance, and supportability.

The FURPS quality attributes represent a target for all software design:

• Functionalityis assessed by evaluating the feature set and capabilities of the program, the

generality of the functions that are delivered, and the security of the overall system.

• Usabilityis assessed by considering human factors, overall aesthetics, consistency, and

documentation.

• Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of

output results, the mean-time-to-failure (MTTF), the ability to recover from failure, and the

predictability of the program.

• Performance is measured by considering processing speed, response time, resource

consumption, throughput, and efficiency.

• Supportability combines the ability to extend the program (extensibility), adaptability,

serviceability—these three attributes represent a more common term, maintainability—and in

addition, testability, compatibility, configurability (the ability to organize and control elements

of the software configuration), the ease with which a system can be installed, and the ease with

which problems can be localized.

• Not every software quality attribute is weighted equally as the software design is developed.

• One application may stress functionality with a special emphasis on security.

• Another may demand performance with particular emphasis on processing speed.

• A third might focus on reliability.

• Regardless of the weighting, it is important to note that these quality attributes must be

considered as design commences, not after the design is complete and construction has begun.

3

3.3. DESIGN CONCEPTS:

Design creates a representation or model of the software, the design model provides detail about software

architecture, data structures, interfaces, and components that are necessary to implement the system.

Fundamental software design concepts provide the necessary framework for “getting it right”.

Important software design concepts

1. Abstraction

2. Architecture

3. Patterns

4. Separation of Concerns

5. Modularity

6. Information Hiding

7. Functional Independence

8. Refinement

9. Aspects

10. Refactoring

11. Object-Oriented Design Concepts

12. Design Classes

1) Abstraction

“Abstraction permits one to concentrate on a problem at some level of abstraction without regard to low

level details”

• Procedural Abstraction

– Sequence of instructions that have a specific and limited function.

– Instructions are given in a named sequence

– Each instruction has a limited function

– The name of a procedural abstraction implies these functions, but specific details are

suppressed.

– An example of a procedural abstraction would be the word open for a door. Open implies

a long sequence of procedural steps (e.g., walk to the door, reach out and grasp knob,

turn knob and pull door, step away from moving door, etc.)

• Data Abstraction

– This is a named collection of data that describes a data object.

– Data abstraction includes a set of attributes that describe an object.

– The data abstraction for door would encompass set of attributes that describe the door

(e.g., door type, swing direction, opening mechanism, weight, dimensions). It follows

that the procedural abstraction open would make use of information contained in the

attributes of the data abstraction door.

• Control Abstraction

– A program control mechanism without specifying internal details, e.g., semaphore,

rendezvous

2) Architecture

Architecture is the structure or organization of program components (modules), the manner in which

these components interact, and the structure of data that are used by the components. Components can be

generalized to represent major system elements and their interactions.

Desired properties of an architectural design

• Structural Properties

4

– This defines the components of a system and the manner in which these interact with one

another.

• Extra Functional Properties

– This addresses how the design architecture achieves requirements for performance,

reliability, capacity, adaptability, and security

• Families of Related Systems

– The ability to reuse architectural building blocks

Kinds of Models

1) Structural models: represent architecture as an organized collection of components.

2) Framework models: increase the level of design abstraction by identifying repeatable architecture

design frameworks (patterns)

3) Dynamic models: address the behavior aspects of the program architecture

4) Process models: focus on the design of the business or technical process

5) Functional models: can be used to represent the functional hierarchy of a system

Program Structure Partitioning

• Horizontal Partitioning

– Easier to test

– Easier to maintain (questionable)

– Propagation of fewer side effects (questionable)

– Easier to add new features

F1 (Ex: Input) F2 (Process) F3(Output)

• Vertical Partitioning

– Control and work modules are distributed top down

– Top level modules perform control functions

– Lower modules perform computations

• Less susceptible to side effects

• Also very maintainable

3) Pattern

• A design pattern describes a design structure that solves a particular design problem within a

specific context and amid “forces” that may have an impact on the manner in which the pattern is

applied and used.

The intent of each design pattern is to provide a description that enables a designer to determine

(1) Whether the pattern is applicable to the current work,

(2) Whether the pattern can be reused (hence, saving design time), and

(3) Whether the pattern can serve as a guide for developing a similar, but functionally or structurally

different pattern.

4) Separation of Concerns

❖ Separation of concerns is a design concept that suggests that any complex problem can be more

easily handled if it is subdivided into pieces that can each be solved and/or optimized

independently.

❖ A concern is a feature or behavior that is specified as part of the requirements model for the

software.

5

❖ By separating concerns into smaller, and therefore more manageable pieces, a problem takes less

effort and time to solve.

❖ For two problems, p1 and p2, if the perceived complexity of p1 is greater than the perceived

complexity of p2, it follows that the effort required to solve p1 is greater than the effort required

to solve p2. As a general case, this result is intuitively obvious. It does take more time to solve a

difficult problem.

❖ It also follows that the perceived complexity of two problems when they are combined is often

greater than the sum of the perceived complexity when each is taken separately. This leads to a

divide-and-conquer strategy

5) Modularity

Software is divided into separately named and addressable components called modules that are integrated

to satisfy problem requirements.

• Follows “divide and conquer” concept, a complex problem is broken down into several manageable

pieces

• Let p1 and p2 be two program parts, and E the effort to solve the problem. Then,

 E(p1+p2) > E(p1)+E(p2), often >>

• A need to divide software into optimal sized modules.

• Monolithic software (i.e., a large program composed of a single module) cannot be easily grasped by

a software engineer. The number of control paths, span of reference, number of variables, and overall

complexity would make understanding more difficult.

Modularity & Software Cost

Objectives of modularity in a design method

• Modular Decomposability

– Provide a systematic mechanism to decompose a problem into sub problems

• Modular Composability

– Enable reuse of existing components to be assembled into a new system

• Modular Understandability

– Can the module be understood as a stand alone unit? Then it is easier to understand and

change.

• Modular Continuity

– If small changes to the system requirements result in changes to individual modules,

rather than system-wide changes, the impact of the side effects is reduced

• Modular Protection

– If there is an error in the module, then those errors are localized and not spread to other

modules

Benefits of modularize a design

• Development can be more easily planned;

• Software increments can be defined and delivered;

• Changes can be more easily accommodated;

• Testing and debugging can be conducted more efficiently,

• Long-term maintenance can be conducted without serious side effects.

6) Information Hiding

• Modules are characterized by design decisions that are hidden from others. Modules should be

specified and designed so that information (algorithms and data) contained within a module is

inaccessible to other modules that have no need for such information.

• Modules communicate only through well defined interfaces

6

• Enforce access constraints to local entities and those visible through interfaces

• Very important for accommodating change and reducing coupling.

• Abstraction helps to define the procedural (or informational) entities that make up the software.

• Hiding defines and enforces access constraints to both procedural detail within a module and

any local data structure used by the module

Benefits Information Hiding:

• Inadvertent errors introduced during modification are less likely to propagate

• Reduces the likelihood of “side effects”

• Limits the global impact of local design decisions

• Emphasizes communication through controlled interfaces

• Discourages the use of global data

• Leads to encapsulation—an attribute of high quality design

• Results in higher quality software

7) Functional Independence

• Functional independence is achieved by developing modules with “singleminded” function and

an “aversion” to excessive interaction with other modules.

• Each module addresses a specific subset of requirements and has a simple interface when

viewed from other parts of the program structure.

• Critical in dividing system into independently implementable parts

• Measured by two qualitative criteria

– Cohesion : Relative functional strength of a module

– Coupling : Relative interdependence among modules

Modular Design – Cohesion

• A cohesive module performs a single task requiring little interaction with other components in

other parts of a program.

• Different levels of cohesion

– Coincidental, logical, temporal, procedural, communications, sequential, functional

• Coincidental Cohesion

- The parts of a component are not related but simply bundled into a single

component.

- Harder to understand and not reusable

• Logical Cohesion

- Similar functions such as input, error handling, etc. put together. Functions fall

in same logical class. May pass a flag to determine which ones executed.

- Interface difficult to understand. Code for more than one function may be

intertwined, leading to severe maintenance problems.

- Difficult to reuse

• Temporal Cohesion

- All of statements activated at a single time, such as start up or shut down, are

brought together. Initialization, clean up.

- Functions weakly related to one another, but more strongly related to functions

in other modules so may need to change lots of modules when do maintenance.

• Procedural cohesion:

- A single control sequence, e.g., a loop or sequence of decision statements. Often

cuts across functional lines. May contain only part of a complete function or

parts of several functions.

- Functions still weakly connected, and again unlikely to be reusable in another

product.

7

• Communicational cohesion:

- Operate on same input data or produce same output data. May be performing

more than one function. Generally acceptable if alternate structures with higher

Cohesion cannot be easily identified.

- Still problems with reusability.

• Sequential cohesion:

- Output from one part serves as input for another part. May contain several

functions or parts of different functions.

• Informational cohesion:

- Performs a number of functions, each with its own entry point, with independent

code for each function, all performed on same data structure. Different than

logical cohesion because functions not intertwined.

• Functional cohesion:

- Each part necessary for execution of a single function. e.g., compute square root

or sort the array.

- Usually reusable in other contexts. Maintenance easier.

• Type cohesion:

- Modules that support a data abstraction.

- Not strictly a linear scale. Functional much stronger than rest while first two

much weaker than others. Often many levels may be applicable when

considering two elements of a module. Cohesion of module considered as

highest level of cohesion that is applicable to all elements in the module.

Modular Design – Coupling

• Coupling describes the interconnection among modules

• Coupling depends on the interface complexity between modules, the point at which entry

orreference is made to a module, and what data pass across the interface.

• Data coupling

– Occurs when one module passes local data values to another as parameters

• Stamp coupling

– Occurs when part of a data structure is passed to another module as a parameter

– similar to common coupling except that global variables are shared selectively among

routines that require the data. E.g., packages in Ada. More desirable than common

coupling because fewer modules will have to be modified if a shared data structure is

modified. Pass entire data structure but need only parts of it.

• Control Coupling

– Occurs when control parameters are passed between modules. So that one module

controls the sequence of processing steps in another module

• Common Coupling

– Occurs when multiple modules access common data areas such as Fortran Common or

C extern

• Content Coupling

– If one module directly references the contents of the other.

– When one module modifies local data values or instructions in another module.

– If one refers to local data in another module.

– If one branches into a local label of another.
• Subclass Coupling

– The coupling between a class and its parent class

8

Examples of Coupling

Different between Cohesion and Coupling

Cohesion Coupling

Cohesion is the indication of the relationship within module. Coupling is the indication of the relationships

between modules.

Cohesion shows the module’s relative functional strength. Coupling shows the

relative independence among the modules.

Cohesion is a degree (quality) to which a component / module

focuses on the single thing.

Coupling is a degree to which a component /

module is connected to the other modules.

While designing you should strive for high cohesion i.e. a

cohesive component/ module focus on a single task (i.e., single-

mindedness) with little interaction with other modules of the

system.

While designing you should strive for low

coupling i.e. dependency between modules

should be less.

Cohesion is the kind of natural extension of data hiding for

example, class having all members visible with a package having

default visibility.

Making private fields, private methods and non

public classes provides loose coupling.

Cohesion is Intra – Module Concept. Coupling is Inter -Module Concept.

8) Refinement

• Refinement is actually a process of elaboration.

• Refinement is a process where one or several instructions of the program are decomposed into

more detailed instructions.

• Begin with a statement of function (or description of information) that is defined at a high level

of abstraction and then elaborate on the original statement, providing more and more detail as

each successive refinement (elaboration) occurs.

• Refinement helps to reveal low-level details as design progresses.

• Stepwise refinement is a top down strategy

– Basic architecture is developed iteratively

– Step wise hierarchy is developed

9) Aspects

• An aspect is a representation of a crosscutting concern.

• For example, generic security requirement that states that a registered user must be validated prior to

using an application. This requirement is applicable for all functions that are available to registered

users of the system.

• The design representation, of the requirement a registered user must be validated prior to using the

system, is an aspect of the system.

9

• An aspect is implemented as a separate module (component) rather than as software fragments that

are “scattered” or “tangled” throughout many components

• The design architecture should support a mechanism for defining an aspect—a module that enables

the concern to be implemented across all other concerns that it crosscuts.

10) Refactoring

• "Refactoring is the process of changing a software system in such a way that it does not alter the

external behavior of the code [design] yet improves its internal structure.”

• Refactoring is a reorganization technique that simplifies the design (or code) of a component

without changing its function or behavior.

• When software is refactored, the existing design is examined for

– Redundancy

– Unused design elements

– Inefficient or unnecessary algorithms

– Poorly constructed or inappropriate data structures or any other design failure that can be

corrected to yield a better design.

11) Object-Oriented Design Concepts

• The object-oriented (OO) paradigm is widely used in modern software engineering.

• OO design concepts such as classes and objects, inheritance, messages, and polymorphism are

utilized to achieve high quality software.

12) Design class

• The requirements model defines a set of analysis classes. Each describes some element of the

problem domain, focusing on aspects of the problem that are user visible. The level of abstraction

of an analysis class is relatively high.

• As the design model evolves, we will define a set of design classes that refine the analysis classes

by providing design detail that will enable the classes to be implemented, and implement a

software infrastructure that supports the business solution.

Five different types of design classes

1) User interface classes define all abstractions that are necessary for human computer

interaction (HCI).

2) Business domain classes are often refinements of the analysis classes defined earlier. The

classes identify the attributes and services (methods) that are required to implement some

element of the business domain.

3) Process classes implement lower-level business abstractions required to fully manage the

business domain classes.

4) Persistent classes represent data stores (e.g., a database) that will persist beyond the

execution of the software.

5) System classes implement software management and control functions that enable the

system to operate and communicate with in its computing environment and with the outside

world.

Four characteristics of a well-formed design class:

1) Complete and sufficient.

• A design class should be the complete encapsulation of all attributes and methods that can

reasonably be expected to exist for the class.

2) Primitiveness.

• Methods associated with a design class should be focused on accomplishing one service for the

class. Once the service has been implemented with a method, the class should not provide

another way to accomplish the same thing.

3) High cohesion

• A cohesive design class has a small, focused set of responsibilities and single-mindedly

applies attributes and methods to implement those responsibilities.

4) Low coupling.

• Within the design model, it is necessary for design classes to collaborate with one another.

However, collaboration should be kept to an acceptable minimum.

• This restriction, called the Law of Demeter, suggests that a method should only send

messages to methods in neighboring classes.

10

Figure. Design class for FloorPlan and composite aggregation for the class

3.4 . DESIGN MODEL

The design model can be viewed in two different dimensions:

(1) The process dimensionindicates the evolution of the design model as design tasks are executed

as part of the software process.

(2) The abstraction dimensionrepresents the level of detail as each element of the analysis model is

transformed into a design equivalent and then refined iteratively.

• The elements of the design model use many of the same UML diagrams that were used in the

analysis model.

• The difference is that these diagrams are refined and elaborated as part of design;

• More implementation-specific detail is provided, and

• Architectural structure and style, components that reside within the architecture, and interfaces

between the components and with the outside world are all emphasized.

Fig. Dimension of design model

1. Data Design Elements:

• Data design creates a model of data and/or information that is represented at a high level of

abstraction. This data model is then refined into progressively more implementation-specific

representations that can be processed by the computer-based system.

11

At the program component level:- design of data structures and the associated algorithms required to

manipulate them is essential to the creation of high-quality applications.

At the application level:- translation of a data model into a database is pivotal to achieving the business

objectives of a system.

At the business level:- the collection of information stored in disparate databases and reorganized into a

“data warehouse” enables data mining or knowledge discovery that can have an impact on the success of

the business itself.

2. Architectural Design Elements:

The architectural model is derived from three sources:

(1) Information about the application domain for the software to be built;

(2) Specific requirements model elements such as data flow diagrams or analysis classes, their

relationships and collaborations for the problem at hand;

 (3) The availability of architectural styles and patterns

• The architectural design element is usually depicted as a set of interconnected subsystems, often

derived from analysis packages within the requirements model. Each subsystem may have its

own architecture.

3. Interface Design Elements:

The interface design elements for software depict information flows into and out of the system and how it

is communicated among the components defined as part of the architecture.

An interface is a set of operations that describes some part of the behavior of a class and provides access

to these operations.

There are three important elements of interface design:

(1) The user interface (UI);

(2) External interfaces to other systems, devices, networks, or other producers or consumers of

information;

(3) Internal interfaces between various design components.

• These interface design elements allow the software to communicate externally and enable

internal communication and collaboration among the components that populate the software

architecture.

• Usability design incorporates aesthetic elements (e.g., layout, color, graphics, interaction

mechanisms), ergonomic elements (e.g., information layout and placement, metaphors, UI

navigation), and technical elements (e.g., UI patterns, reusable components

• The design of external interfaces requires definitive information about the entity to which

information is sent or received.

• The design of external interfaces should incorporate error checking and (when necessary)

appropriate security features.

• The design of internal interfaces is closely aligned with component-level design. Design

realizations of analysis classes represent all operations and the messaging schemes required to

enable communication and collaboration between operations in various classes.

EXAMPLE:

12

Fig. Interface representation for Control- Panel

4. Component-Level Design Elements:

• The component-level design for software fully describes the internal detail of each software

component.

• The component-level design defines data structures for all local data objects and algorithmic

detail for all processing that occurs within a component and an interface that allows access to all

component operations (behaviors).

Fig. A UML component diagram

• The SensorManagementcomponent performs all functions associated with SafeHomesensors

including monitoring and configuring them.

5. Deployment-Level Design Elements:

• Deployment-level design elements indicate how software functionality and subsystems will be

allocated within the physical computing environment that will support the software.

Fig. A UML deployment diagram

 EXAMPLE:

The elements of the SafeHomeproduct are configured to operate within three primary computing

environments—a home-based PC, the SafeHomecontrol panel, and a server housed at CPI Corp.

(providing Internet-based access to the system).

• In the figure, three computing environments are shown (in actuality, there would be more

including sensors, cameras, and others).

• The subsystems (functionality) housed within each computing element are indicated. For

example, the personal computer houses subsystems that implement security, surveillance, home

management, and communications features.

• In addition, an external access subsystem has been designed to manage all attempts to access the

SafeHomesystem from an external source. Each subsystem would be elaborated to indicate the

components that it implements.

• The diagram shown in Figure is in descriptor form. This means that the deployment diagram

shows the computing environment but does not explicitly indicate configuration details. For

example, the “personal computer” is not further identified. It could be a Mac or a Windows-based

PC, a Sun workstation, or a Linux-box. These details are provided in instance form.

13

3.5. DESIGN HEURISTIC

The program structure can be manipulated according to the following set of heuristics:

1. Evaluate the "first iteration" of the program structure to reduce coupling and improve cohesion.

❖ Once the program structure has been developed, modules may be exploded or imploded with an

eye toward improving module independence. An exploded module becomes two or more

modules in the final program structure.

❖ An imploded module is the result of combining the processing implied by two or more modules.

An exploded module often results when common processing exists in two or more modules and

can be redefined as a separate cohesive module. When high coupling is expected, modules can

sometimes be imploded to reduce passage of control, reference to global data, and interface

complexity.

2. Attempt to minimize structures with high fan-out; strive for fan-in as depth increases. The

structure shown inside the cloud in figure does not make effective use of factoring. All modules are

“pancaked” below a single control module. In general, a more reasonable distribution of control is shown

in the upper structure. The structure takes an oval shape, indicating a number of layers of control and

highly utilitarian modules at lower levels.

3.Keep the scope of effect of a module within the scope of control of that module. The scope of effect

of module e is defined as all other modules that are affected by a decision made in module e. The

scope of control of module e is all modules that are subordinate and ultimately subordinate to module e

4. Evaluate module interfaces to reduce complexity and redundancy and improve consistency.

Module interface complexity is a prime cause of software errors .Interfaces should be designed to pass

information simply and should be consistent with the function of a module. Interface inconsistency (i.e.,

seemingly unrelated data passed via an argument list or other technique) is an indicationof low cohesion.

The module in question should be reevaluated.

5. Define modules whose function is predictable, but avoid modules that are overly restrictive.

❖ A module is predictable when it can be treated as a black box; that is, the same external data will

be produced regardless of internal processing details. Modules that have internal "memory" can

be unpredictable unless care is taken in their use.

❖

A module that restricts processing to a single subfunction exhibits high cohesion and is viewed

with favor by a designer. However, a module that arbitrarily restricts the size of a local data

structure, options within control flow, or modes of external interface will invariably require

maintenance to remove such restrictions.

6. Strive for “controlled entry” modules by avoiding "pathological connections." This design

heuristic warns against content coupling. Software is easier to understand and therefore easier to maintain

when module interfaces are constrained and controlled. Pathological connection refers to branches or

references into the middle of a module.

Effective Modular Design

1. Information hiding:

Modules should be specified and designed so that the internal details of modules should be

invisible or inaccessible to other modules.

Major benefits:reduce the change impacts in testing and maintenance

2. Functional independence:

 Design modules based on independent functional features

Major benefits:effective modularity

3. Cohesion:a natural extension of the information hiding concept

• A cohesive module performs a single task requiring little interaction with other

components in other parts of a program.

• Different levels of cohesion

– Coincidental, logical, temporal, procedural, communications, sequential, functional

• Coincidental Cohesion

– Occurs when modules are grouped together for no reason at all

• Logical Cohesion

– Modules have a logical cohesion, but no actual connection in data and control

• Temporal Cohesion

14

– Modules are bound together because they must be used at approximately the same time

• Communication Cohesion

– Modules grouped together because they access the same Input/Output devices

• Sequential Cohesion

– Elements in a module are linked together by the necessity to be activated in a particular

order

• Functional Cohesion

– All elements of a module relate to the performance of a single function

4. Coupling

• Coupling describes the interconnection among modules

• Coupling depends on the interface complexity between modules, the point at which entry

orreference is made to a module, and what data pass across the interface.

Types of coupling

• Data coupling

– Occurs when one module passes local data values to another as parameters

• Stamp coupling

– Occurs when part of a data structure is passed to another module as a parameter

• Control Coupling

– Occurs when control parameters are passed between modules

• Common Coupling

– Occurs when multiple modules access common data areas such as Fortran Common or

C extern

• Content Coupling

– if one module directly references the contents of the other

• Subclass Coupling

– The coupling between a class and its parent class

3.6. ARCHITECTURAL DESIGN-INTRODUCTION

❖ Architectural design represents the structure of data and program components that are required

to build a computer-based system.

It considers

➢ The architectural style that the system will take

➢ The structure and properties of the components that constitute the system

➢ The interrelationships that occur among all architecturalcomponents of a system.

Software Architecture:

The software architecture is the structures of the system, which comprise software components,

the externally visible properties of those components, and the relationships among them.

The architecture is not the operational software. Rather, it is a representation that enables you to

 (1) Analyze the effectiveness of the design in meeting its stated requirements,

(2) Consider architectural alternatives at a stage when making design changes is still relatively easy

(3) Reduce the risks associated with the constructionof the software.

Difference between the terms architecture and design:

❖ A design is aninstance of an architecture similar to an object being an instance of a class.

❖ For example,consider the client-server architecture. I can design a network-centric software

system inmany different ways from this architecture using either the Java platform (Java EE)

orMicrosoft platform (.NET framework). So, there is one architecture, but many designs canbe

created based on that architecture. Therefore, you cannot mix “architecture” and“design” with

each other.

Design of software architecture considers two levels of the design pyramid

1) Data design

2) Architectural design.

Data design enables you to represent the data component of the architecture in conventional systems

and class definitions (encompassing attributes and operations) in object-oriented systems.

Architectural design focuses on therepresentation of the structure of software components, their

properties, and interactions.

15

3.7. ARCHITECTURAL STYLES

❖ The software that is built for computer-based systems also exhibits one of manyarchitectural

styles. Each style describes a system category that encompasses

 (1) A set of components (e.g., a database, computational modules) that perform a

functionrequired by a system;

 (2) A set of connectors that enable “communication, coordination and cooperation” among

components;

(3) Constraints that define how components can be integrated to form the system;

(4) Semantic models that enable a designer to understand the overall properties of a system by

analyzing the known properties of its parts.

❖ An architectural style is a transformation that is imposed on the design of an entire system. The

intent is to establish a structure for all components of the system.

 A pattern differs from a style in a number of fundamental ways:

(1) The scope of a pattern is less broad, focusing on one aspect of the architecture rather than the

architecture in its entirety;

(2) A pattern imposes a rule on the architecture, describing how the software will handle some aspect of

its functionality at the infrastructure level (e.g., concurrency);

(3) Architectural patterns tend to address specific behavioral issues within the context of the architecture

(e.g., how real-time applications handle synchronization or interrupts). Patterns can be used in

conjunction with an architectural style to shape theoverall structure of a system.

 ARCHITECTURAL STYLES ARE:

1) Data-centered architectures.

• A data store (e.g., a file or database) resides at the center of this architecture and is accessed

frequently by other components that update, add, delete, or otherwise modify data within the

store. Client software accesses a central repository.

• In some cases the data repository is passive. That is, client software accesses the data

independent of any changes to the data or the actions of other client software. A variation on this

approach transforms the repository into a “blackboard” that sends notifications to client software

when data of interest to the client Changes.

Figure.Data-centered architecture

• Data-centered architectures promote integrability. That is, existingcomponents can be changed

and new client components added to the architecturewithout concern about other clients.

• Data can be passed among clients using the blackboard mechanism. Client components

independently executeprocesses.

2) Data-flow architectures.

• This architecture is applied when input data are to be transformed through a series of

computational or manipulative components into output data. A pipe-and-filter pattern has a set of

components, called filters, connected by pipes that transmit data from one component to the next.

• Each filter works independently of those components upstream and downstream, is designed to

expect data input of a certain form, and produces data output (to the nextfilter) of a specified

form.

16

• If the data flow degenerates into a single line of transforms, it is termed batch sequential.This

structure accepts a batch of data and then applies a series of sequential components (filters) to

transform it.

Figure. Data-flow architecture

3) Call and return architectures.

• This architectural style enables you to achieve aprogram structure that is relatively easy to

modify and scale. A number of substyles exist within this category:

• Main program/subprogram architectures. This classic program structure decomposes function

into a control hierarchy where a “main” program invokes a number of program components that

in turn may invoke still other components. Figure illustrates architecture of this type.

• Remote procedure call architectures. The components of mainprogram/subprogram architecture

are distributed across multiple computerson a network.

Figure. Main program/subprogram architecture

4) Object-oriented architectures.

• The components of a system encapsulate data and the operations that must be applied to

manipulate the data. Communication and coordination between components are accomplished via

message passing.

5) Layered architectures.

• A number of different layers are defined, each accomplishing operations that progressively

become closer to the machine instruction set.

• At the outerlayer, components service user interface operations.

• At the inner layer, components perform operating system interfacing.

• Intermediate layers provide utility services and application software functions.

17

Figure. Layered architecture

• These architectural styles are only a small subset of those available. Once requirements

engineering uncovers the characteristics and constraints of the system to be built, the

architectural style and/or combination of patterns that best fits those characteristics and

constraints can be chosen.

Architectural Patterns

• Architectural patterns address an application-specific problem within a specific context and under

a set of limitations and constraints.

• The pattern proposes an architectural solution that can serve as the basis for architectural

design.Most applications fit within a specific domain and that one or more architectural styles

may be appropriate for that genre.

• For example, the overall architectural style for an application might be call-and return or object-

oriented. But within that style, you will encounter a set of commonproblems that might best be

addressed with specific architectural patterns.

3.8 . ARCHITECTURAL DESIGN

• As architectural design begins, the software to be developed must be put into context—that is,

the design should define the external entities (other systems, devices,people) that the software

interacts with and the nature of the interaction. This information can generally be acquired from

the requirements model and all other information gathered during requirements engineering.

Once context is modeled and all external software interfaces have been described, you can

identify a set of architectural archetypes.

• An archetype is an abstraction (similar to a class) that represents one element of system behavior.

The set of archetypes provides a collection of abstractions that must be modeled architecturally if

the system is to be constructed,but the archetypes themselves do not provide enough

implementation detail.

• Therefore, the designer specifies the structure of the system by defining and refining software

components that implement each archetype. This process continues iteratively until a complete

architectural structure has been derived.

3.8.1. Representing the System in Context:

At the architectural design level, a software architect uses an architectural context diagram(ACD)

to model the manner in which software interacts with entities external to its boundaries. Systems that

interoperate with the target system (the system for which an architectural design is to be developed) are

represented as

• Superordinate systems—those systems that use the target system as part of some higher-level

processing scheme.

• Subordinate systems—those systems that are used by the target system and provide data or

processing that are necessary to complete target system functionality.

• Peer-level systems—those systems that interact on a peer-to-peer basis (i.e.,information is

either produced or consumed by the peers and the targetsystem.

• Actors—entities (people, devices) that interact with the target system by producing or

consuming information that is necessary for requisite processing.

18

❖ Each of these external entities communicates with the target system through an interface(the

small shaded rectangles).

❖ To illustrate the use of the ACD, consider the home security function of the SafeHomeproduct.

The overall SafeHomeproduct controller and the Internet-basedsystem are both superordinate to

the security function .The surveillance function is a peer system and uses (is used by)the home

security function in later versions of the product.

❖ The homeowner and controlpanels are actors that are both producers and consumers of

informationused/produced by the security software. Finally, sensors are used by the

securitysoftware and are shown as subordinate to it.

Figure. Architectural context diagram

Figure. Architectural context diagram for the SafeHomesecurity function

❖ As part of the architectural design, the details of each interface would have to be specified. All

data that flow into and out of the target systemmust be identified at this stage.

3.8.2. Defining Archetypes:

❖ An archetype is a class or pattern that represents a core abstraction that is critical to the design of

an architecture for the target system. In general, a relatively small set of archetypes is required to

design even relatively complex systems.

❖ The target system architecture is composed of these archetypes, which represent stable elements

of the architecture but may be instantiated many different ways based on the behavior of the

system.

❖ In many cases, archetypes can be derived by examining the analysis classes definedas part of the

requirements model. SafeHomehome security function archetypes are:

• Node. Represents a cohesive collection of input and output elements ofthe home security

function. For example a node might be comprised of(1) various sensors and (2) a variety of alarm

(output) indicators.

19

• Detector. An abstraction that encompasses all sensing equipment that feedsinformation into the

target system.

Figure.UML relationships for SafeHomesecurity function archetypes

• Indicator. An abstraction that represents all mechanisms (e.g., alarm siren,flashing lights, bell)

for indicating that an alarm condition is occurring.

• Controller. An abstraction that depicts the mechanism that allows the arming or disarming of a

node. If controllers reside on a network, they havethe ability to communicate with one another.

3.8.3. Refining the Architecture into Components:

❖ As the software architecture is refined into components, the structure of the system begins to

emerge. The analysis classes represent entities within the application(business) domain that must

be addressed within the software architecture. Hence, the application domain is one source for

the derivation and refinement of components.

❖ Another source is the infrastructure domain. The architecture must accommodate many

infrastructure components that enable application components but have no business connection to

the application domain.

❖ The interfaces depicted in the architecture context diagram imply one or more specialized

components that process the data that flows across the interface.

❖ Continuing the SafeHomehome security function example, you might define the set of top-level

components that address the following functionality:

• External communication management—coordinates communication of the security function

with external entities such as other Internet-based systems and external alarm notification.

• Control panel processing—manages all control panel functionality.

• Detector management—coordinates access to all detectors attached to the system.

• Alarm processing—verifies and acts on all alarm conditions.

❖ The control panel processing component interacts with the homeowner to arm/disarm the security

function. The detector management component polls sensors to detect an alarm condition, and the alarm

processing component produces output when an alarm is detected.

20

3.8.4. Describing Instantiations of the System:

❖ The architectural design that has been modeled to this point is still relatively high level. The

context of the system has been represented, archetypes that indicate the important abstractions

within the problem domain have been defined, the overall structure of the system is apparent, and

the major software components havebeen identified. However, further refinement isstill

necessary.

❖ To accomplish this, an actual instantiation of the architecture is developed. By this, the

architecture is applied to a specific problem with the intent of demonstratingthat the structure and

components are appropriate.

❖ For example, the detector management component interacts with a scheduler infrastructure

component that implements polling of each sensor object used by the security system. Similar

elaboration is performed for each of the components represented in Figure.

Figure. An instantiation of the security function with component elaboration

3.9. ARCHITECTURAL MAPPING USING DATA FLOW

❖ The architectural styles represent radically different architectures.So it should come as no

surprise that a comprehensive mapping that accomplishes the transition from the requirements

model to a variety of architectural styles does not exist.

❖ In fact, there is no practical mapping for some architectural styles, and the designer must

approach the translation of requirements to design for these styles in using the techniques.

❖ To illustrate one approach to architectural mapping, consider the call and return architecture—an

extremely common structure for many types of systems.

❖ The call and return architecture can reside within other more sophisticated architectures. For

example, the architecture of one or more components of client-server architecture might be call

and return.

❖ A mapping technique, called structured design, is often characterized as adata flow-

oriented design method because it provides a convenient transition from adata flow

diagram to software architecture.

❖ The transition from information flow (represented as a DFD) to program structure is

accomplished as part of a sixstepprocess:

(1) The type of information flow is established

(2) Flow boundaries are indicated

(3) The DFD is mapped into the program structure

(4) Control hierarchy is defined

(5) The resultant structure is refined using design measures and heuristics, and

 (6) The architectural description is refined and elaborated.

21

❖ In transaction flow, a single data item, called a transaction, causes the data flow to branch along

one of a number of flow paths defined by the nature of the transaction.

TRANSFORM MAPPING:

Transform mapping is a set of design steps that allows a DFD with transform flowcharacteristics

to be mapped into a specific architectural style. To illustrate this approach, we again consider the

SafeHomesecurity function. One element of theanalysis model is a set of data flow diagrams that describe

information flow within the security function. To map these data flow diagrams into a software

architecture,you would initiate the following design steps:

Step 1. Review the fundamental system model.

❖ The fundamental system modelor context diagram depicts the security function as a single

transformation, representingthe external producers and consumers of data that flow into and out

of thefunction.

Figure. Context-level DFD for the SafeHomesecurity function

Figure. Level 0 DFD for the SafeHomesecurity function

Figure. Level 2 DFD that refines the monitor sensors transform

22

Figure. Level 3 DFD for monitor sensors with flow boundaries

Step 2. Review and refine data flow diagrams for the software.

❖ Information obtained from the requirements model is refined to produce greater detail. For

example, the level 2 DFD for monitor sensors is examined, and a level 3 data flow diagram is

derived. At level 3, each transform inthe data flow diagram exhibits relatively high cohesion.

❖ That is, the Process implied by a transform performs a single, distinct function that can be

implemented as a component in the SafeHome software. Therefore, the DFD inFigure contains

sufficient detail for a “first cut” at the design of architecture for the monitor sensors subsystem,

and we proceed without further refinement.

Step 3. Determine whether the DFD has transform or transaction flow characteristics.

❖ Evaluating the DFD, we see data entering the software along one incoming path and exiting

along three outgoing paths. Therefore, an overall transform characteristic will be assumed for

information flow.

Step 4. Isolate the transform center by specifying incoming and outgoingflow boundaries.

❖ Incoming data flows along a path in which information is converted from external to internal

form; outgoing flow converts internalized data to external form. Incoming and outgoing flow

boundaries are open to interpretation.

❖ That is, different designers may select slightly different points in the flow as boundary locations.

In fact, alternative design solutions can be derived by varying the placement of flow boundaries.

Although care should be taken when boundaries are selected, a variance of one bubble along a

flow path will generally have little impacton the final program structure.

23

Step 5. Perform “first-level factoring.”

❖ The program architecture derived using this mapping results in a top-down distribution of

control. Factoring leads to a program structure in which top-level components perform decision

making and low level components perform most input, computation, and output work. Middle-

level components perform some control and do moderate amounts of work.

❖ When transform flow is encountered, a DFD is mapped to a specific structure(a call and return

architecture) that provides control for incoming, transform, and outgoing information processing.

A main controller (called monitor sensorsexecutive) resides at the top of the program structure

and coordinates the following subordinate control functions:

• An incoming information processing controller, called sensor input controller,coordinates receipt of all

incoming data.

• A transform flow controller, called alarm conditions controller, supervises all operations on data in

internalized form (e.g., a module that invokes various data transformation procedures).

• An outgoing information processing controller, called alarm output controller,coordinates production of

output information.

Figure. First-level factoring for monitor sensors

Step 6. Perform “second-level factoring.”

❖ Second-level factoring is accomplished by mapping individual transforms (bubbles) of a DFD

into appropriate modules within the architecture. Beginning at the transform center boundary and

moving outward along incoming and then outgoing paths, transforms are mapped into

subordinate levels of the software structure. The general approach to second level factoring is

illustrated in Figure.

❖ Although Figure illustrates a one-to-one mapping between DFD transforms and software

modules, different mappings frequently occur. Two or even three bubbles can be combined and

represented as one component, or a single bubble may be expanded to two or more components.

Practical considerations and measures of design quality dictate the outcome of second-level

factoring. Review and refinement may lead to changes in this structure, but it can serve as a

“first-iteration”design.

❖ Second-level factoring for incoming flow follows in the same manner. Factoring is again

accomplished by moving outward from the transform center boundary on the incoming flow side.

The transform center of monitor sensors subsystem software is mapped some what differently. A

completed first-iteration architecture is shownin Figure .

❖ The components mapped in the preceding manner and shown in Figure represent an initial design

of software architecture. Although components are named in a manner that implies function, a

brief processing narrative (adapted fromthe process specification developed for a data

transformation created duringrequirements modeling) should be written for each.

24

Figure. Second-level factoring for monitor sensors

❖ The narrative describes the component interface, internal data structures, a functional narrative,

and a brief discussion of restrictions and special features (e.g., file input-output, hardware

dependent characteristics, special timing requirements).

Figure. First-iteration structure for monitor sensors

Step 7. Refine the first-iteration architecture using design heuristics for improved software quality.

❖ First-iteration architecture can always be refined by applying concepts of functional

independence. Components are exploded or imploded to produce sensible factoring, separation of

concerns, good cohesion,minimal coupling, and most important, a structure that can be

implemented withoutdifficulty, tested without confusion, and maintained without grief.

❖ Refinements are dictated by the analysis and assessment methods, as well as practical

considerations and common sense.

❖ The objective of the preceding seven steps is to develop an architectural representation of

software. That is, once structure is defined, we can evaluate and refine software architecture by

25

viewing it as a whole. Modifications made at this time require little additional work, yet can have

a profound impact on software quality.

Figure. Refined program structure for monitor sensors

3.10. USER INTERFACE DESIGN

User interface design creates an effective communication medium between a human and a computer.

1. GOLDEN RULES:

1) Place the user in control.

2) Reduce the user’s memory load.

3) Make the interface consistent.

These golden rules actually form the basis for a set of user interface design principles that guide this

important aspect of software design.

1) Place the User in Control:

Most interface constraints and restrictions that are imposed by a designer are intended to

simplify the mode of interaction. But for whom?.

 As a designer, you may be tempted to introduce constraints and limitations to simplify the

implementation of the interface. The result may be an interface that is easy to build, but

frustrating to use.
Design principles that allow the user to maintain control are

1. Use modes judiciously (modeless)

2. Allow users to use either the keyboard or mouse (flexible)

3. Allow users to change focus (interruptible)

4. Display descriptive messages and text(Helpful)

5. Provide immediate and reversible actions, and feedback (forgiving)

6. Provide meaningful paths and exits (navigable)

7. Accommodate users with different skill levels (accessible)

8. Make the user interface transparent (facilitative)

9. Allow users to customize the interface (preferences)

10. Allow users to directly manipulate interface objects (interactive)

2) Reduce the User’s Memory Load:

The more a user has to remember, the more error-prone the interaction with the system will be. It is for

this reason that a well-designed user interface does not tax the user’s memory. Whenever possible, the

system should “remember” pertinent information and assist the user with an interaction scenario that

assists recall

Design principles that enable an interface to reduce the user’s memory load are

1. Relieve short-term memory (remember)

2. Rely on recognition, not recall (recognition)

26

3. Provide visual cues (inform)

4. Provide defaults, undo, and redo (forgiving)

5. Provide interface shortcuts (frequency)

6. Promote an object-action syntax (intuitive)

7. Use real-world metaphors (transfer)

8. User progressive disclosure (context)

9. Promote visual clarity (organize)

3) Make the Interface Consistent:

The interface should present and acquire information in a consistent fashion. This implies that

(1)All visual information is organized according to design rules that are maintained throughout

all screen displays

(2) Input mechanisms are constrained to a limited set that is used consistently throughout the

application

(3) Mechanisms for navigating from task to task are consistently defined and implemented.

 Set of design principles that help make the interface consistent are:

1. Sustain the context of users’ tasks (continuity)

2. Maintain consistency within and across products (experience)

3. Keep interaction results the same (expectations)

4. Provide aesthetic appeal and integrity (attitude)

5. Encourage exploration (predictable)

2. USER INTERFACE ANALYSIS AND DESIGN

• The overall process for analyzing and designing a user interface begins with the creation of

different models of system function.

1) Interface Analysis and Design Models:

Four different models come into play when a user interface is to be analyzed and designed.

i) User model: Establishes the profile of the end-users of the system Based on age, gender,

physical abilities, education, cultural or ethnic background, motivation, goals, and

personality. A human engineer or the software engineer establishes a user model

ii) Design model: The software engineer creates a design model. Derived from the analysis model

of the requirements. Incorporates data, architectural, interface, and procedural representations

of the software.

iii) Mental model: The end user develops a mental image. Often called the user's system perception.

Consists of the image of the system that users carry in their heads.

iv) Implementation model: The implementers of the system create an implementation model.

Consists of the look and feel of the interface combined with all supporting information

(books, videos, help files) that describe system syntax and semantics

Users can be categorized as:

i) Novices: No syntactic knowledge1 of the system and little semantic knowledge2

of the application or computer usage in general.

ii) Knowledgeable, intermittent users: Reasonable semantic knowledge of the application

but relatively low recall of syntactic information necessary to use the interface.

iii) Knowledgeable, frequent users: Good semantic and syntactic knowledge that often

leads to the “power-user syndrome”; that is, individuals who look for shortcuts and abbreviated modes of

interaction.

2) The Process:

The analysis and design process for user interfaces is iterative and can be represented using a spiral

model.

27

Fig. The user interface design process

Four distinct framework activities are

 (1) Interface analysis and modeling

 (2) Interface design

 (3) Interface construction

 (4) Interface validation.

The spiral implies that each of these tasks will occur more than once, with each pass around the spiral

representing additional elaboration of requirements and the resultant design.

 In most cases, the construction activity involves prototyping—the only practical way to validate what

has been designed.

(1) Interface analysis focuses on the profile of the users who will interact with the system.

❖ Skill level, business understanding, and general receptiveness to the new system are recorded;

and different user categories are defined.

❖ For each user category, requirements are elicited. In essence, understand the system perception

for each class of users.

❖ Once general requirements have been defined, a more detailed task analysis is conducted. Those

tasks that the user performs to accomplish the goals of the system are identified, described, and

elaborated over a number of iterative passes through the spiral.

❖ Finally, analysis of the user environment focuses on the physical work environment. Among the

questions to be asked are

• Where will the interface be located physically?

• Will the user be sitting, standing, or performing other tasks unrelated to the interface?

• Does the interface hardware accommodate space, light, or noise constraints?

• Are there special human factors considerations driven by environmental factors?

❖ The information gathered as part of the analysis action is used to create an analysis model for the

interface. Using this model as a basis, the design action commences.

(2) The goal of interface design is to define a set of interface objects, actions and their screen

representations that enable a user to perform all defined tasks in a manner that meets every

usability goal defined for the system.

(3) Interface construction normally begins with the creation of a prototype that enables usage

scenarios to be evaluated. As the iterative design process continues, a user interface tool kit may

be used to complete the construction of the interface.

 (4) Interface validation focuses on

❖ The ability of the interface to implement every user task correctly, to accommodate all task

variations, and to achieve all general user requirements;

❖ The degree to which the interface is easy to use and easy to learn

❖ The users’ acceptance of the interface as a useful tool in their work.

❖ Subsequent passes through the process elaborate task detail, design information, and the

operational features of the interface.

28

3.11. INTERFACE ANALYSIS

Understand the problem before you attempt to design a solution. In the case of user interface design,

understanding the problem means understanding

(1) The people (end users) who will interact with the system through the interface

(2) The tasks that end users must perform to do their work

(3) The content that is presented as part of the interface

(4) The environment in which these tasks will be conducted.

1. User Analysis:

❖ The phrase “user interface” is probably all the justification needed to spend some time

understanding the user before worrying about technical matters.

❖ Information from a broad array of sources can be used.

User Interviews.

❖ The most direct approach, members of the software team meet with end users to better

understand their needs, motivations, work culture, and a myriad of other issues. This can be

accomplished in one-on-one meetings or through focus groups.

Sales input.

❖ Sales people meet with users on a regular basis and can gather information that will help the

software team to categorize users and better understand their requirements.

Marketing input.

❖ Market analysis can be invaluable in the definition of market segments and an understanding of

how each segment might use the software in subtly different ways.

Support input.

❖ Support staff talks with users on a daily basis. They are the most likely source of information on

what works and what doesn’t, what users like and what they dislike, what features generate

questions and what features are easy to use.

The following set of questions will help you to better understand the users of a system:

• Are users trained professionals, technicians, clerical, or manufacturing workers?

• What level of formal education does the average user have?

• Are the users capable of learning from written materials or have they expressed a desire for

classroom training?

• Are users expert typists or keyboard phobic?

• What is the age range of the user community?

• Will the users be represented predominately by one gender?

• How are users compensated for the work they perform?

• Do users work normal office hours or do they work until the job is done?

• Is the software to be an integral part of the work users do or will it be used only occasionally?

• What is the primary spoken language among users?

• What are the consequences if a user makes a mistake using the system?

• Are users experts in the subject matter that is addressed by the system?

• Do users want to know about the technology that sits behind the interface?

2. Task Analysis and Modeling:

The goal of task analysis is to answer the following questions:

• What work will the user perform in specific circumstances?

• What tasks and subtasks will be performed as the user does the work?

• What specific problem domain objects will the user manipulate as work is performed?

• What is the sequence of work tasks—the workflow?

• What is the hierarchy of tasks?

Use cases.

❖ The use case describes the manner in which an actor interacts with a system. When used as part

of task analysis, the use case is developed to show how an end user performs some specific work-

related task.

29

❖ In most instances, the use case is written in an informal style (a simple paragraph) in the first-

person.

❖ Use case provides a basic description of one important work task for the computer-aided design

system. From it, you can extract tasks, objects, and the overall flow of the interaction.

Task elaboration.

❖ Elaboration is a mechanism for refining the processing tasks that are required for software to

accomplish some desired function.

❖ Task analysis for interface design uses an elaborative approach to assist in understanding the

human activities the user interface must accommodate.

Task analysis can be applied in two ways.

i) An interactive computer-based system is often used to replace a manual or semi-manual activity.

To understand the tasks that must be performed to accomplish the goal of the activity, you

must understand the tasks that people currently perform and then map these into a similar set

of tasks that are implemented in the context of the user interface.

ii) Study an existing specification for a computer-based solution and derive a set of user tasks that

will accommodate the user model, the design model, and the system perception.

❖ Regardless of the overall approach to task analysis, first define and classify tasks.

Example :

❖ By observing an interior designer at work, interior design comprises a number of major activities:

furniture layout, fabric and material selection, wall and window coverings selection, presentation

(to the customer), costing, and shopping. Each of these major tasks can be elaborated into

subtasks.

Using information contained in the use case, furniture layout can be refined into the following tasks:

 (1) Draw a floor plan based on room dimensions,

 (2) Place windows and doors at appropriate locations,

 (3a) use furniture templates to draw scaled furniture outlines on the floor plan,

 (3b) use accents templates to draw scaled accents on the floor plan,

 (4) Move furniture outlines and accent outlines to get the best placement,

 (5) Label all furniture and accent outlines,

 (6) Draw dimensions to show location, and

 (7) Draw a perspective-rendering view for the customer.

Object elaboration.

❖ Rather than focusing on the tasks that a user must perform, examine the use case and other

information obtained from the user and extract the physical objects that are used by the interior

designer.

❖ These objects can be categorized into classes.

❖ Attributes of each class are defined, and an evaluation of the actions applied to each object

provide a list of operations.

❖ For example, the furniture template might translate into a class called Furniture with attributes

that might include size, shape, location, and others.

❖ The interior designer would select the object from the Furniture class, move it to a position on

the floor plan (another object in this context), draw the furniture outline, and so forth.

❖ The tasks select, move, and draw are operations. The user interface analysis model would not

provide a literal implementation for each of these operations. However, as the design is

elaborated, the details of each operation are defined.

Workflow analysis.

❖ When a number of different users, each playing different roles, makes use of a user interface, it is

sometimes necessary to go beyond task analysis and object elaboration and apply workflow

analysis. This technique allows you to understand how a work process is completed when several

people (and roles) are involved.

30

❖ Consider a company that intends to fully automate the process of prescribing and delivering

prescription drugs. The entire process will revolve around a Web-based application that is

accessible by physicians (or their assistants), pharmacists, and patients.

❖ Workflow can be represented effectively with a UML swimlane diagram (a variation on the

activity diagram).

❖ We consider only a small part of the work process: the situation that occurs when a patient asks

for a refill.

❖ swimlane diagram indicates the tasks and decisions for each of the three roles noted earlier. This

information may have been elicited via interview or from use cases written by each actor.

❖ Regardless, the flow of events enables you to recognize a number of key interface characteristics:

Hierarchical representation.

❖ A process of elaboration occurs as you begin to analyze the interface. Once workflow has been

established, a task hierarchy can be defined for each user type.

❖ The hierarchy is derived by a stepwise elaboration of each task identified for the user. For

example, consider the following user task and subtask hierarchy.

User task: Requests that a prescription be refilled

• Provide identifying information.

• Specify name.

• Specify userid.

• Specify PIN and password.

• Specify prescription number.

• Specify date refill is required.

❖ To complete the task, three subtasks are defined. One of these subtasks, provide identifying

information, is further elaborated in three additional sub-subtasks.

3. Analysis of Display Content:

❖ The user tasks identified lead to the presentation of a variety of different types of content.

❖ For modern applications, display content can range from character-based reports (e.g., a

spreadsheet), graphical displays (e.g., a histogram, a 3-D model, a picture of a person), or

specialized information (e.g., audio or videofiles).

❖ The analysis modeling techniques identify the output data objects that are produced by an

application.

 These data objects may be

 (1) Generated by components in other parts of an application

 (2) Acquired from data stored in a database that is accessible from the application

 (3) Transmitted from systems external to the application in question.

❖ During this interface analysis step, the format and aesthetics of the content are considered.

Among the questions that are asked and answered are:

• Are different types of data assigned to consistent geographic locations on the screen (e.g., photos

always appear in the upper right-hand corner)?

• Can the user customize the screen location for content?

• Is proper on-screen identification assigned to all content?

• If a large report is to be presented, how should it be partitioned for ease of understanding?

• Will graphical output be scaled to fit within the bounds of the display device that is used?

• How will color be used to enhance understanding?

• How will error messages and warnings be presented to the user?

The answers to these questions will help to establish requirements

4. Analysis of the Work Environment:

❖ People do not perform their work in isolation. They are influenced by the activity around them,

the physical characteristics of the workplace, the type of equipment they are using, and the work

relationships they have with other people.

❖ If the products you design do not fit into the environment, they may be difficult or frustrating to

use.

❖ In some applications the user interface for a computer-based system is placed in a “user-friendly

location” (e.g., proper lighting, good display height, easy keyboard access), but in others (e.g., a

factory floor or an airplane cockpit), lighting may be suboptimal, noise may be a factor, a

keyboard or mouse may not be an option, display placement may be less than ideal.

❖ The interface designer may be constrained by factors that mitigate against ease of use.

31

❖ In addition to physical environmental factors, the workplace culture also comes into play.

• Will system interaction be measured in some manner (e.g., time per transaction or accuracy of a

transaction)?

• Will two or more people have to share information before an input can be provided?

• How will support be provided to users of the system? These and many related questions should

be answered before the interface design commences.

3.12. INTERFACE DESIGN STEPS

❖ Once interface analysis has been completed, all tasks (or objects and actions) required by the end

user have been identified in detail and the interface design activity commences.

❖ Interface design is an iterative process. Each user interface design step occurs a number of times,

elaborating and refining information developed in the preceding step.

❖ Although many different user interface design models have been proposed, all suggest some

combination of the following steps:

1. Using information developed during interface analysis define interface objects and actions

(operations).

2. Define events (user actions) that will cause the state of the user interface to change. Model this

behavior.

3. Depict each interface state as it will actually look to the end user.

4. Indicate how the user interprets the state of the system from information provided through the

interface.

Regardless of the sequence of design tasks, you should

 (1) Always follow the golden rules

 (2) Model how the interface will be implemented

 (3) Consider the environment (e.g., display technology, operating system, development tools) that will be

used.

1. Applying Interface Design Steps:

❖ The definition of interface objects and the actions that are applied to them is an important step in

interface design.

❖ To accomplish this, user scenarios are parsed. That is, a use case is written.

❖ Nouns (objects) and verbs (actions) are isolated to create a list of objects and actions.

❖ Once the objects and actions have been defined and elaborated iteratively, they are categorized

by type.

❖ Target, source, and application objects are identified. A source object (e.g., a report icon) is

dragged and dropped onto a target object (e.g., a printer icon).

❖ The implication of this action is to create a hard-copy report. An application object represents

application-specific data that are not directly manipulated as part of screen interaction.

❖ For example, a mailing list is used to store names for a mailing. The list itself might be sorted,

merged, or purged (menu-based actions), but it is not dragged and dropped via user interaction.

❖ When you are satisfied that all important objects and actions have been defined (for one design

iteration), screen layout is performed.

❖ Like other interface design activities, screen layout is an interactive process in which graphical

design and placement of icons, definition of descriptive screen text, specification and titling for

windows, and definition of major and minor menu items are conducted.

❖ If a real-world metaphor is appropriate for the application, it is specified at this time, and the

layout is organized in a manner that complements the metaphor.

❖ To provide a brief illustration of the design steps noted previously, consider a user scenario for

the SafeHome system (discussed in earlier chapters). A preliminary use case (written by the

homeowner) for the interface follows:

Based on this use case, the following homeowner tasks, objects, and data items are identified:

• accesses the SafeHome system

• enters an ID and password to allow remote access

• checks system status

• arms or disarms SafeHome system

• displays floor plan and sensor locations

• displays zones on floor plan

• changes zones on floor plan

• displays video camera locations on floor plan

• selects video camera for viewing

32

• views video images (four frames per second)

• pans or zooms the video camera

❖ Objects (boldface) and actions (italics) are extracted from this list of homeowner tasks. The

majority of objects noted are application objects. However, video camera location (a source

object) is dragged and dropped onto video camera (a target object) to create a video image (a

window with video display).

Fig. Preliminary screen layout

❖ A preliminary sketch of the screen layout for video monitoring is created . To invoke the video

image, a video camera location icon, C, located in the floor plan displayed in the monitoring

window is selected. In this case a camera location in the living room (LR) is then dragged and

dropped onto the video camera icon in the upper left-hand portion of the screen.

❖ The video image window appears, displaying streaming video from the camera located in the LR.

The zoom and pan control slides are used to control the magnification and direction of the video

image.

❖ To select a view from another camera, the user simply drags and drops a different camera

location icon into the camera icon in the upper left-hand corner of the screen.

❖ The layout sketch shown would have to be supplemented with an expansion of each menu item

within the menu bar, indicating what actions are available for the video monitoring mode (state).

A complete set of sketches for each homeowner task noted in the user scenario would be created

during the interface design.

2. User Interface Design Patterns:

❖ Graphical user interfaces have become so common that a wide variety of user interface design

patterns has emerged. As I noted earlier in this book, a design pattern is an abstraction that

prescribes a design solution to a specific, well-bounded design problem.

❖ As an example of a commonly encountered interface design problem, consider a situation in

which a user must enter one or more calendar dates, sometimes months in advance. There are

many possible solutions to this simple problem, and a number of different patterns that might be

proposed.

❖ Laakso suggests a pattern called CalendarStrip that produces a continuous, scrollable calendar

in which the current date is highlighted and future dates may be selected by picking them from

the calendar. The calendar metaphor is well known to every user and provides an effective

mechanism for placing a future date in context.

3. Design Issues:

Six common design issues are

i) System response time

ii) User help facilities

iii) Error information handling

iv) Command labeling

33

v) Application accessibility.

vi) Internationalization.

❖ Unfortunately, many designers do not address these issues until relatively late in the design

process.

❖ Unnecessary iteration, project delays, and end-user frustration often result. It is far better to

establish each as a design issue to be considered at the beginning of software design, when

changes are easy and costs are low.

i) Response time.

❖ System response time is the primary complaint for many interactive applications. In general,

system response time is measured from the point at which the user performs some control action

(e.g., hits the return key or clicks a mouse) until the software responds with desired output or

action.

❖ System response time has two important characteristics: length and variability. If system

response is too long, user frustration and stress are inevitable.

❖ Variability refers to the deviation from average response time, and in many ways, it is the most

important response time characteristic. Low variability enables the user to establish an interaction

rhythm, even if response time is relatively long.

❖ For example, a 1-second response to a command will often be preferable to a response that varies

from 0.1 to 2.5 seconds. When variability is significant, the user is always off balance, always

wondering whether something “different” has occurred behind the scenes.

ii) Help facilities.

❖ Almost every user of an interactive, computer-based system requires help now and then. In some

cases, a simple question addressed to a knowledgeable colleague can do the trick. In others,

detailed research in a multivolume set of “user manuals” may be the only option.

❖ In most cases, however, modern software provides online help facilities that enable a user to get a

question answered or resolve a problem without leaving the interface.

A number of design issues must be addressed when a help facility is considered:

• Will help be available for all system functions and at all times during system interaction? Options

include help for only a subset of all functions and actions or help for all functions.

• How will the user request help? Options include a help menu, a special function key, or a HELP

command.

• How will help be represented? Options include a separate window, a reference to a printed

document (less than ideal), or a one- or two-line suggestion produced in a fixed screen location.

• How will the user return to normal interaction? Options include a return button displayed on the

screen, a function key, or control sequence.

• How will help information be structured?

• Options include a “flat” structure in which all information is accessed through a keyword, a

layered hierarchy of information that provides increasing detail as the user proceeds into the

structure, or the use of hypertext.

iii) Error handling.

❖ Error messages and warnings are “bad news” delivered to users of interactive systems when

something has gone awry. At their worst, error messages and warnings impart useless or

misleading information and serve only to increase user frustration.

❖ There are few computer users who have not encountered an error of the form: “Application XXX

has been forced to quit because an error of type 1023 has been encountered.” Somewhere, an

explanation for error 1023 must exist; otherwise, why would the designers have added the

identification?

❖ Yet, the error message provides no real indication of what went wrong or where to look to get

additional information. An error message presented in this manner does nothing to assuage user

anxiety or to help correct the problem.

In general, every error message or warning produced by an interactive system should have the following

characteristics:

• The message should describe the problem in jargon that the user can understand.

• The message should provide constructive advice for recovering from the error.

• The message should indicate any negative consequences of the error (e.g., potentially corrupted

data files) so that the user can check to ensure that they have not occurred (or correct them if they

have).

34

• The message should be accompanied by an audible or visual cue. That is, a beep might be

generated to accompany the display of the message, or the message might flash momentarily or

be displayed in a color that is easily recognizable as the “error color.”

• The message should be “nonjudgmental.” That is, the wording should never place blame on the

user.

❖ Because no one really likes bad news, few users will like an error message no matter how well

designed. But an effective error message philosophy can do much to improve the quality of an

interactive system and will significantly reduce user frustration when problems do occur.

iv) Menu and command labeling.

❖ The typed command was once the most common mode of interaction between user and system

software and was commonly used for applications of every type.

❖ Today, the use of window-oriented, point-and pick interfaces has reduced reliance on typed

commands, but some power-users continue to prefer a command-oriented mode of interaction. A

number of design issues arise when typed commands or menu labels are provided as a mode of

interaction:

• Will every menu option have a corresponding command?

• What form will commands take? Options include a control sequence (e.g., alt-P), function keys,

or a typed word.

• How difficult will it be to learn and remember the commands? What can be done if a command is

forgotten?

• Can commands be customized or abbreviated by the user?

• Are menu labels self-explanatory within the context of the interface?

• Are submenus consistent with the function implied by a master menu item?

v) Application accessibility.

❖ Accessibility for users who may be physically challenged is an imperative for ethical, legal, and

business reasons.

❖ A variety of accessibility guidelines many designed for Web applications but often applicable to

all types of software—provide detailed suggestions for designing interfaces that achieve varying

levels of accessibility.

❖ Others provide specific guidelines for “assistive technology” that addresses the needs of those

with visual, hearing, mobility, speech, and learning impairments.

vi) Internationalization.

❖ Software engineers and their managers invariably underestimate the effort and skills required to

create user interfaces that accommodate the needs of different locales and languages. Too often,

interfaces are designed for one locale and language and then

Make shift to work in other countries.

❖ The challenge for interface designers is to create “globalized” software. That is, user interfaces

should be designed to accommodate a generic core of functionality that can be delivered to all

who use the software. Localization features enable the interface to be customized for a specific

market.

❖ A variety of internationalization guidelines are available to software engineers. These guidelines

address broad design issues and discrete implementation issues The Unicode standard has been

developed to address the daunting challenge of managing dozens of natural languages with

hundreds of characters and symbols.

3.13. COMPONENT-LEVEL DESIGN

Introduction

❖ Component-level design occurs after the first iteration of the architectural design

❖ It strives to create a design model from the analysis and architectural models

✓ The translation can open the door to subtle errors that are difficult to find and correct

later

✓ “Effective programmers should not waste their time debugging – they should not

introduce bugs to start with.” Edsgar Dijkstra

❖ A component-level design can be represented using some intermediate representation (e.g.

graphical, tabular, or text-based) that can be translated into source code

35

❖ The design of data structures, interfaces, and algorithms should conform to well-established

guidelines to help us avoid the introduction of errors

The Software Component

❖ A software component is a modular building block for computer software

✓ It is a modular, deployable, and replaceable part of a system that encapsulates

implementation and exposes a set of interfaces

❖ A component communicates and collaborates with

✓ Other components

✓ Entities outside the boundaries of the system

❖ Three different views of a component

1) An object-oriented view

2) A conventional view

3) A process-related view

1) Object-oriented View:

❖ A component is viewed as a set of one or more collaborating classes

❖ Each problem domain (i.e., analysis) class and infrastructure (i.e., design) class is elaborated to

identify all attributes and operations that apply to its implementation

✓ This also involves defining the interfaces that enable classes to communicate and

collaborate

❖ This elaboration activity is applied to every component defined as part of the architectural design

❖ Once this is completed, the following steps are performed

✓ Provide further elaboration of each attribute, operation, and interface

✓ Specify the data structure appropriate for each attribute

✓ Design the algorithmic detail required to implement the processing logic associated with

each operation

✓ Design the mechanisms required to implement the interface to include the messaging that

occurs between objects

2) Conventional View:

❖ A component is viewed as a functional element (i.e., a module) of a program that incorporates

✓ The processing logic

✓ The internal data structures that are required to implement the processing logic

✓ An interface that enables the component to be invoked and data to be passed to it

❖ A component serves one of the following roles

✓ A control component that coordinates the invocation of all other problem domain

components

✓ A problem domain component that implements a complete or partial function that is

required by the customer

✓ An infrastructure component that is responsible for functions that support the processing

required in the problem domain

❖ Conventional software components are derived from the data flow diagrams (DFDs) in the

analysis model

✓ Each transform bubble (i.e., module) represented at the lowest levels of the DFD is

mapped into a module hierarchy

✓ Control components reside near the top

✓ Problem domain components and infrastructure components migrate toward the bottom

✓ Functional independence is strived for between the transforms

❖ Once this is completed, the following steps are performed for each transform

✓ Define the interface for the transform (the order, number and types of the parameters)

✓ Define the data structures used internally by the transform

✓ Design the algorithm used by the transform (using a stepwise refinement approach)

3) Process-related View:

❖ Emphasis is placed on building systems from existing components maintained in a library rather

than creating each component from scratch

❖ As the software architecture is formulated, components are selected from the library and used to

populate the architecture

❖ Because the components in the library have been created with reuse in mind, each contains the

following:

36

✓ A complete description of their interface

✓ The functions they perform

✓ The communication and collaboration they require

3.14. DESIGNING CLASS-BASED COMPONENTS

• When an object-oriented software engineering approach is chosen, component-level design

focuses on the elaboration of problem domain specific classes and the definition and refinement

of infrastructure classes contained in the requirements model.

• The detailed description of the attributes, operations, and interfaces used by these classes is the

design detail required as a precursor to the construction activity.

1. Basic Design Principles:

• Four basic design principles are applicable to component-level design and have been widely

adopted when object-oriented software engineering is applied. Use these principles as a guide

as each software component is developed.

Component-level design principles:

❖ Open-closed principle(OCP):

✓ A module or component should be open for extension but closed for modification.

✓ The designer should specify the component in a way that allows it to be extended without

the need to make internal code or design modifications to the existing parts of the

component.

Example:

• Assume that the SafeHome security function makes use of a Detector class that must check

the status of each type of security sensor. It is likely that as time passes, the number and types

of security sensors will grow.

• If internal processing logic is implemented as a sequence of if-then-else constructs, each

addressing a different sensor type, the addition of a new sensor type will require additional

internal processing logic (still another if-then-else). This is a violation of OCP.

• One way to accomplish OCP for the Detector class is illustrated in Figure. The sensor

interface presents a consistent view of sensors to the detector component. If a new type of

sensor is added no change is required for the Detector class (component). The OCP is

preserved.

Fig. Following the OCP

❖ Liskov substitution principle(LSP):

✓ Subclasses should be substitutable for their base classes.

✓ A component that uses a base class should continue to function properly if a subclass of

the base class is passed to the component instead.

❖ Dependency inversion principle(DIP):

✓ Depend on abstractions (i.e., interfaces); do not depend on concretions.

✓ The more a component depends on other concrete components (rather than on the

interfaces) the more difficult it will be to extend.

❖ Interface segregation principle(ISP):

✓ Many client-specific interfaces are better than one general purpose interface

37

✓ For a server class, specialized interfaces should be created to serve major categories of

clients.

✓ Only those operations that are relevant to a particular category of clients should be

specified in the interface .

Component Packaging Principles

❖ Release reuse equivalency principle(REP):

✓ The granularity of reuse is the granularity of release.

✓ Group the reusable classes into packages that can be managed, upgraded, and controlled

as newer versions are created.

❖ Common closure principle(CCP)

✓ Classes that change together belong together.

✓ Classes should be packaged cohesively; they should address the same functional or

behavioral area on the assumption that if one class experiences a change then they all

will experience a change.

❖ Common reuse principle(CRP):

✓ Classes that aren't reused together should not be grouped together.

✓ Classes that are grouped together may go through unnecessary integration and testing

when they have experienced no changes but when other classes in the package have been

upgraded.

2. Component-Level Design Guidelines:

❖ Components

✓ Establish naming conventions for components that are specified as part of the

architectural model and then refined and elaborated as part of the component-level

model.

✓ Obtain architectural component names from the problem domain and ensure that they

have meaning to all stakeholders who view the architectural model (e.g., Calculator).

✓ Use infrastructure component names that reflect their implementation-specific meaning

(e.g., Stack).

❖ Interfaces.

• Interfaces provide important information about communication and collaboration.

However, unfettered representation of interfaces tends to complicate component

diagrams. Ambler recommends that

(1) Lollipop representation of an interface should be used in lieu of the more formal UML box

and

 Dashed arrow approach, when diagrams grow complex;

(2) For consistency, interfaces should flow from the left-hand side of the component box;

 (3) Only those interfaces that are relevant to the component under consideration should be shown,

 Even if other interfaces are available.

• These recommendations are intended to simplify the visual nature of UML component

diagrams.

❖ Dependencies and inheritance in UML

✓ Model any dependencies from left to right and inheritance from top (base class) to

bottom (derived classes).

Consider modeling any component dependencies as interfaces rather than representing them as a direct

component-to-component dependency.

3. Cohesion

❖ Cohesion is the “single-mindedness’ of a component

❖ It implies that a component or class encapsulates only attributes and operations that are closely

related to one another and to the class or component itself

❖ The objective is to keep cohesion as high as possible.

38

FIG. Layered cohesion

❖ The kinds of cohesion can be ranked in order from highest (best) to lowest (worst)

1) Functional

• A module performs one and only one computation and then returns a result

2) Layer

• A higher layer component accesses the services of a lower layer component

3) Communicational

• All operations that access the same data are defined within one class

4) Sequential

• Components or operations are grouped in a manner that allows the first to

provide input to the next and so on in order to implement a sequence of

operations

5) Procedural

• Components or operations are grouped in a manner that allows one to be invoked

immediately after the preceding one was invoked, even when no data passed

between them

6) Temporal

• Operations are grouped to perform a specific behavior or establish a certain state

such as program start-up or when an error is detected

7) Utility

• Components, classes, or operations are grouped within the same category

because of similar general functions but are otherwise unrelated to each other

4. Coupling:

❖ As the amount of communication and collaboration increases between operations and classes, the

complexity of the computer-based system also increases

❖ As complexity rises, the difficulty of implementing, testing, and maintaining software also

increases

❖ Coupling is a qualitative measure of the degree to which operations and classes are connected to

one another

❖ The objective is to keep coupling as low as possible

❖ The kinds of coupling can be ranked in order from lowest (best) to highest (worst)

1) Data coupling

• Operation A() passes one or more atomic data operands to operation B(); the less

the number of operands, the lower the level of coupling

2) Stamp coupling

• A whole data structure or class instantiation is passed as a parameter to an

operation

3) Control coupling

• Operation A() invokes operation B() and passes a control flag to B that directs

logical flow within B()

• Consequently, a change in B() can require a change to be made to the meaning of

the control flag passed by A(), otherwise an error may result

4) Common coupling

• A number of components all make use of a global variable, which can lead to

uncontrolled error propagation and unforeseen side effects

5) Content coupling

• One component secretly modifies data that is stored internally in another

component

39

❖ Other kinds of coupling (unranked)

1) Subroutine call coupling

• When one operation is invoked it invokes another operation within side of it

2) Type use coupling

• Component A uses a data type defined in component B, such as for an instance

variable or a local variable declaration

• If/when the type definition changes, every component that declares a variable of

that data type must also change

3) Inclusion or import coupling

• Component A imports or includes the contents of component B

4) External coupling

• A component communicates or collaborates with infrastructure components that

are entities external to the software (e.g., operating system functions, database

functions, networking functions)

3.15. DESIGNING TRADITIONAL COMPONENTS

❖ Conventional design constructs emphasize the maintainability of a functional/procedural program

❖ The constructs are Sequence, condition, and repetition. These three constructs are fundamental to

structured programming—an important component-level design technique.

❖ Each construct has a predictable logical structure where control enters at the top and exits at the

bottom, enabling a maintainer to easily follow the procedural flow

❖ The structured constructs were proposed to limit the procedural design of software to a small

number of predictable logical structures.

❖ Complexity metrics indicate that the use of the structured constructs reduces program

complexity and thereby enhances readability, testability, and maintainability. The use of a limited

number of logical constructs also contributes to a human understanding process that

psychologists call chunking.

❖ Various notations depict the use of these constructs

1) Graphical design notation

• Sequence, if-then-else, selection, repetition

2) Tabular design notation

3) Program design language

• Similar to a programming language; however, it uses narrative text embedded

directly within the program statements

1) Graphical Design Notation:

❖ A picture is worth a thousand words.

❖ The activity diagram allows to represent sequence, condition, and repetition— all elements of

structured programming—and is a descendent of an earlier pictorial design representation called

a flowchart.

Fig. Flowchart constructs

40

❖ A flowchart, like an activity diagram, is quite simple pictorially.

❖ A box is used to indicate a processing step.

❖ A diamond represents a logical condition, and arrows show the flow of control.

❖ The sequence is represented as two processing boxes connected by a line (arrow) of control.

❖ Condition, also called if-then-else, is depicted as a decision diamond that, if true, causes then-

part processing to occur, and if false, invokes else-part processing.

❖ Repetition is represented using two slightly different forms. The do while tests a condition and

executes a loop task repetitively as long as the condition holds true.

❖ A repeat until executes the loop task first and then tests a condition and repeats the task until the

condition fails. The selection (or select-case) construct shown in the figure is actually an

extension of the if-then-else.

2) Tabular Design Notation:

❖ In many software applications, a module may be required to evaluate a complex combination of

conditions and select appropriate actions based on these conditions.

❖ Decision tables provide a notation that translates actions and conditions into a tabular form. The

table is difficult to misinterpret and may even be used as a machine-readable input to a table-

driven algorithm.

Fig. Decision table organization

❖ The table is divided into four sections. The upper left-hand quadrant contains a list of all

conditions. The lower left-hand quadrant contains a list of all actions that are possible based on

combinations of conditions.

❖ The right-hand quadrants form a matrix that indicates condition combinations and the

corresponding actions that will occur for a specific combination. herefore, each column of the

matrix may be interpreted as a processing rule.

The following steps are applied to develop a decision table:

i) List all actions that can be associated with a specific procedure (or component).

ii) List all conditions (or decisions made) during execution of the procedure.

iii) Associate specific sets of conditions with specific actions, eliminating impossible combinations

of conditions; alternatively, develop every possible permutation of conditions.

iv) Define rules by indicating what actions occur for a set of conditions.

3) Program Design Language:

❖ Program design language (PDL), also called structured English or pseudocode, incorporates the

logical structure of a programming language with the free-form expressive ability of a natural

language (e.g., English).

❖ Narrative text (e.g., English) is embedded within a programming language-like syntax.

Automated tools can be used to enhance the application of PDL.

41

❖ A basic PDL syntax should include constructs for component definition, interface description,

data declaration, block structuring, condition constructs, repetition constructs, and input-output

(I/O) constructs.

❖ It should be noted that PDL can be extended to include keywords for multitasking and/or

concurrent processing, interrupt handling, interprocess synchronization, and many other features.

Example:

42

ANNA UNIVERSITY QUESTIONS AND ANSWERS

2 MARK

1. Draw diagrams to demonstrate the architectural styles. (APRIL/MAY 2015)

Data-centered architecture

2. List down the steps to be followed for User Interface design. (APRIL/MAY 2015)

1. Using information developed during interface analysis, define interface objects

and actions (operations).

2. Define events (user actions) that will cause the state of the user interface to

change. Model this behavior.

3. Depict each interface state as it will actually look to the end user.

4. Indicate how the user interprets the state of the system from information provided

through the interface.

3.What are the golden rules for an interface design? (NOV/DEC 2015)

• Place the User in Control

• Reduce the User's Memory Load

• Make the Interface Consistent

4. Write a note on FURPS model of design quality. (NOV/DEC 2015) (NOV/DEC 2017)

FURPS is an acronym representing a model for classifying software quality attributes

(functional and non-functional requirements):

• Functionality - Capability (Size & Generality of Feature Set), Reusability

(Compatibility, Interoperability, Portability), Security (Safety & Exploitability)

• Usability (UX) - Human Factors, Aesthetics, Consistency, Documentation,

Responsiveness

• Reliability - Availability (Failure Frequency (Robustness/Durability/Resilience),

Failure Extent & Time-Length (Recoverability/Survivability)), Predictability

(Stability), Accuracy (Frequency/Severity of Error)

• Performance - Speed, Efficiency, Resource Consumption (power, ram, cache, etc.),

Throughput, Capacity, Scalability

• Supportability (Serviceability, Maintainability, Sustainability, Repair Speed) -

Testability, Flexibility (Modifiability, Configurability, Adaptability, Extensibility,

Modularity), Installability, Localizability

https://en.wikipedia.org/wiki/Functional_requirements
https://en.wikipedia.org/wiki/Non-functional_requirements
https://en.wikipedia.org/wiki/Requirements
https://en.wikipedia.org/wiki/Functional_requirements
https://en.wikipedia.org/wiki/Usability
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Serviceability_%28computer%29

43

5. If a module has logical cohesion, what kind of coupling is this module likely to have?

(MAY/JUNE 2016)

When a module that performs a tasks that are logically related with each other is called

logically cohesive. For such module content can be suitable for coupling with other modules.

The content coupling is a kind of coupling when one module makes use of data or control

information maintained in other module.

6. What is the need for architectural mapping using data flow? (MAY/JUNE 2016,

APRIL/MAY 2017)

It Provides a method to go from a DFD to program structure

1. The type of information flow is established

2. Flow boundaries are indicated

3. The DFD is mapped into program structure

4. Control hierarchy is defined

5. Resultant structure is refined using design measures and heuristics

6. The architectural description is refined and elaborated

7. What architectural styles are preferred for the following systems? Why? (NOV/DEC

2016)

 (a) Networking - Client server Architecture/Remote procedure call architectures

 (b) Web based systems - N-Tier / 3-Tier Architecture

 (c) Banking system. - Layered Architecture

8. What UI design patterns are used for the following? (NOV/DEC 2016) (APRIL/MAY

2017)

(a) Page layout – cards, Grid

(b) Tables - Alternating row color, Table filter, sort by column

(c) Navigation through menus and web pages - vertical dropdown menu, horizontal

dropdown menu, accordion menu

(d) Shopping cart- product page, pricing table, coupon, shopping cart

 9. Draw the context flow graph of a ATM automation system. (NOV/DEC 2017)

44

10. What is Inheritance? NOV/DEC 2019

Inheritance in software design model is interfacing module will be done from top (base

class) to bottom (derived classes)

11. Define a component. Give example. NOV/DEC 2019
❖ Component-level design occurs after the first iteration of the architectural design

❖ A component-level design can be represented using some intermediate representation (e.g.

graphical, tabular, or text-based) that can be translated into source code

❖ The design of data structures, interfaces, and algorithms should conform to well-established

guidelines to help us avoid the introduction of errors

ANNA UNIVERSITY QUESTIONS

PART B

1. Explain the various coupling and cohesion methods used in Software design. (APR/MAY 2015

and NOV/DEC 2015, APR/MAY 2017)

2. For a Case study of your choice show the architectural and Component design.(APR/MAY

2015)

3. Discuss about User Interface Design of a software with an example and neat sketch .

(NOV/DEC 2015 and NOV/DEC 2017)

4. Write short notes on the following

(i) Design heuristics

(ii) User-interface design

(iii) Component level design

(iv) Data/Class design (APR/MAY 2016)

5. What is modularity ? State its importance and explain coupling and cohesion. (APR/MAY 2016)

6. Discuss the differences between Object Oriented and Function Oriented Design. (APR/MAY

2016)

7. What is structured design? Illustrate the structured design process from DFD to structured chart

with a case study. (NOV/DEC 2016)

8. Describe the golden rules for interface design. (NOV/DEC 2016)

9. Explain component level design with suitable examples. (NOV/DEC 2016)

10. What is software architecture? Describe in detail different types of software architectures with

illustrations. (APR/MAY 2017,NOV/DEC 2019) – Architectural styles

11. Discuss about the design concepts in a software development process. (NOV/DEC 2017)

12. Outline the steps in designing class based components with an example. NOV/DEC 2019

1

CS6403-SOFTWARE ENGINEERING

UNIT IV- TESTING AND IMPLEMENTATION

 Software testing fundamentals-Internal and external views of Testing-white box testing-

basis path testing-control structure testing-black box testing- Regression Testing – Unit Testing –

Integration Testing – Validation Testing – System Testing And Debugging – Software

Implementation Techniques: Coding practices-Refactoring-Maintenance and Reengineering –

BPR model – Reengineering process model-Reverse and Forward Engineering.

4.1. SOFTWARE TESTING FUNDAMENTALS:

Objective of Testing:

The goal of testing is to find errors, and a good test is one that has a high probability of

finding an error. The tests must exhibit a set of characteristics that achieve the goal of

finding the most errors with a minimum of effort.

Testability.

 “Software testability is simply how easily a computer program can be tested.”

Characteristics of testability:

1. Operability - “The better it works, the more efficiently it can be tested.”

2. Observability - “What you see is what you test.”

3. Controllability - “The better we can control the software, the more the testing can be

automated and optimized.”

4. Decomposability - “By controlling the scope of testing, we can more quickly isolate

problems and perform smarter retesting.”

5. Simplicity - “The less there is to test, the more quickly we can test it.”

6. Stability - “The fewer the changes, the fewer the disruptions to testing.”

7. Understandability - “The more information we have, the smarter we will test.”

Test Characteristics.

The following are attributes of a “good” test:

1) A good test has a high probability of finding an error.

2) A good test is not redundant.

3) A good test should be “best of breed”

4.2. INTERNAL AND EXTERNAL VIEWS OF TESTING:

(OR)

WHITE BOX AND BLACK BOX TESTING

Any engineered product can be tested in one of two ways:

The first test approach takes an external view and is called black-box testing. The second

requires an internal view and is termed white-box testing.

1. Black-box testing (External testing):

Black-box testing are conducted at the software interface. A black-box test examines

some fundamental aspect of a system with little regard for the internal logical structure of

the software.

2

2. White-box testing(Internal Testing):

White-box testing of software is predicated on close examination of procedural detail.

Logical paths through the software and collaborations between components are tested by

exercising specific sets of conditions and/or loops.

4.3. WHITE-BOX TESTING

White-box testing, sometimes called glass-box testing or structural testing is a test-case

design philosophy that uses the control structure described as part of component-level design to

derive test cases.

 Using white-box testing methods, you can derive test cases that

 (1) Guarantee that all independent paths within a module have been exercised at least

once

 (2) Exercise all logical decisions on their true and false sides

 (3) Execute all loops at their boundaries and within their operational bounds

(4) Exercise internal data structures to ensure their validity.

4.3.1 BASIS PATH TESTING

Basis path testing is a white-box testing technique. The basis path method enables the

test-case designer to derive a logical complexity measure of a procedural design and use this

measure as a guide for defining a basis set of execution paths.

Test cases derived to exercise the basis set are guaranteed to execute every statement in

the program at least one time during testing.

4.3.1.1 Flow Graph Notation

 The flow graph depicts logical control flow using the notation illustrated in Figure. Each

structured construct has a corresponding flow graph symbol.

Figure. Flow graph Notation

❖ Each circle, called a flow graph node, represents one or more procedural statements. A

sequence of process boxes and a decision diamond can map into a single node. The

arrows on the flow graph, called edges or links, represent flow of control and are

analogous to flowchart arrows.

❖ An edge must terminate at a node, even if the node does not represent any procedural

statements. Areas bounded by edges and nodes are called regions. When counting

regions, we include the area outside the graph as a region.

3

(a) Flowchart and (b) flow graph

4.3.1.2. Independent Program Paths

❖ An independent path is any path through the program that introduces at least one new set

of processing statements or a new condition. When stated in terms of a flow graph, an

independent path must move along at least one edge that has not been traversed before

the path is defined. For example, a set of independent paths for the flow graph illustrated

in Figure (b) is

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11

Path 3: 1-2-3-6-8-9-10-1-11

Path 4: 1-2-3-6-7-9-10-1-11

❖ Note that each new path introduces a new edge. The path is not considered to be an

independent path because it is simply a combination of already specified paths and does

not traverse any new edges.

❖ Cyclomatic complexity is software metric that provides a quantitative measure of the

logical complexity of a program. When used in the context of the basis path testing

method, the value computed for cyclomatic complexity defines the number of

independent paths in the basis set of a program and provides you with an upper bound for

the number of tests that must be conducted to ensure that all statements have been

executed at least once.

Complexity is computed in one of three ways:

1. The number of regions of the flow graph corresponds to the cyclomatic complexity.

2. Cyclomatic complexity V(G) for a flow graph G is defined as

V(G)= E- N+ 2

where E is the number of flow graph edges and N is the number of flow graph nodes.

3. Cyclomatic complexity V(G) for a flow graph G is also defined as

V(G) = P+ 1

where P is the number of predicate nodes contained in the flow graph G.

❖ Referring once more to the flow graph in Figure (b), the cyclomatic complexity can be

computed using each of the algorithms just noted:

1. The flow graph has four regions.

2. V(G) = 11 edges - 9 nodes + 2 = 4.

3. V(G)= 3 predicate nodes +1 = 4.

❖ Therefore, the cyclomatic complexity of the flow graph in Figure (b) is 4.

.

4

4.3.1.3. Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source code.

The following steps can be applied to derive the basis set:

1) Using the design or code as a foundation, draw a corresponding flow graph.

A flow graph is created using the symbols and construction rules .

2) Determine the cyclomatic complexity of the resultant flow graph.

The cyclomatic complexity V(G) is determined by applying the algorithms . It should be

noted that V(G) can be determined without developing a flow graph by counting all conditional

statements in the PDL (for the procedure average, compound conditions count as two) and

adding 1.

Compute Cyclomatic Complexity using formulas

 V(G) = e – n + 2

 = 9 – 9 + 2 = 2

Therefore we have to find 2 independence paths for basis path testing

3) Prepare test cases that will force execution of each path in the basis set.

Independent path X Y Expected Result (z)

Path 1

2-3-4-5-6-8-9-10

10 5 5

End program

Path 2

 2-3-4-5-7-8-9-10

5 10 5

End program

4) Determine a basis set of linearly independent paths.

The value of V(G) provides the upper bound on the number of linearly independent paths

through the program control structure. In the case of procedure average, we expect to specify 2

paths:

 Path 1-: 2-3-4-5-6-8-9-10

Path 2 -: 2-3-4-5-7-8-9-10

❖ Data should be chosen so that conditions at the predicate nodes are appropriately set as

each path is tested. Each test case is executed and compared to expected results.

5

4.3.1.4 .Graph Matrices

❖ A graph matrix is a square matrix whose size (i.e., number of rows and columns) is

equal to the number of nodes on the flow graph. Each row and column corresponds to an

identified node, and matrix entries correspond to connections (an edge) between nodes.

Figure. Graph matrix

❖ The link weight provides additional information about control flow. In its simplest form,

the link weight is 1 (a connection exists) or 0 (a connection does not exist). But link

weights can be assigned other, more interesting properties:

• The probability that a link (edge) will be execute.

• The processing time expended during traversal of a link

• The memory required during traversal of a link

• The resources required during traversal of a link.

 The analysis required to design test cases can be partially or fully automated.

4.3.2 CONTROL STRUCTURE TESTING

The basis path testing technique is one of a number of techniques for control structure

testing. Although basis path testing is simple and highly effective, it is not sufficient in itself.

The following control structure testing broadens testing coverage and improves the quality of

white-box testing.

1) Condition Testing:

Condition testing is a test-case design method that exercises the logical conditions

contained in a program module. A simple condition is a Boolean variable or a relational

expression, possibly preceded with one NOT (¬) operator. A relational expression takes the form

E1 <relational-operator> E2

where E1 and E2 are arithmetic expressions and <relational-operator> is one of the following:

<,<=,=,!= (nonequality),>, or >=.

2) Data Flow Testing:

❖ The data flow testing method selects test paths of a program according to the locations of

definitions and uses of variables in the program.

❖ For a statement with S as its statement number,

(S) = {X | statement S contains a definition of X}

(S) = {X | statement S contains a use of X}

6

❖ If statement S is an if or loop statement, its DEF set is empty and its USE set is based on

the condition of statement S. The definition of variable X at statement S is said to be live

at statement S’ if there exists a path from statement S to statement S’ that contains no

other definition of X.

❖ A definition-use (DU) chain of variable X is of the form [X, S, S’], where S and S’ are

statement numbers, X is in DEF(S) and USE(S’), and the definition of X in statement S is

live at statement S’.

3) Loop Testing

❖ Loops are the cornerstone for the vast majority of all algorithms implemented in

software. And yet, we often pay them little heed while conducting software tests. Loop

testing is a white-box testing technique that focuses exclusively on the validity of loop

constructs. Four different classes of loops can be defined: simple loops, concatenated

loops, nested loops, and unstructured loops.

Figure. Classes of Loops

Simple loops.

❖ The following set of tests can be applied to simple loops, where n is the maximum

number of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -1, n, n +1 passes through the loop.

Nested loops.

❖ If we were to extend the test approach for simple loops to nested loops, the number of

possible tests would grow geometrically as the level of nesting increases. This would

result in an impractical number of tests. an approach that will help to reduce the number

of tests are:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their

minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range or

excluded values.

7

3. Work outward, conducting tests for the next loop, but keeping all other outer loops at

minimum values and other nested loops to “typical” values.

4. Continue until all loops have been tested.

Concatenated loops.

❖ Concatenated loops can be tested using the approach defined for simple loops, if each of

the loops is independent of the other. However, if two loops are concatenated and the

loop counter for loop 1 is used as the initial value for loop 2, then the loops are not

independent. When the loops are not independent, the approach applied to nested loops is

recommended.

Unstructured loops.

❖ Whenever possible, this class of loops should be redesigned to reflect the use of the

structured programming constructs.

4.4. BLACK-BOX TESTING

❖ Black-box testing, also called behavioral testing, focuses on the functional requirements

of the software. That is, black-box testing techniques enable you to derive sets of input

conditions that will fully exercise all functional requirements for a program.

❖ Black-box testing is not an alternative to white-box techniques. Rather, it is a

complementary approach that is likely to uncover a different class of errors than white -

box methods.

Black-box testing attempts to find errors in the following categories:

 (1) Incorrect or missing functions

 (2) Interface errors

 (3) Errors in data structures or external database access

 (4) Behavior or performance errors

 (5) Initialization and termination errors.

By applying black-box techniques, a set of test cases can be derived that satisfy the following

criteria:

 (1) Test cases that reduce, by a count that is greater than one, the number of additional test cases

that must be designed to achieve reasonable testing

 (2) Test cases that tell you something about the presence or absence of classes of errors, rather

than an error associated only with the specific test at hand.

4.4.1. Graph-Based Testing Methods

❖ The first step in black-box testing is to understand the objects that are modeled in

software and the relationships that connect these objects. Once this has been

accomplished, the next step is to define a series of tests that verify “all objects have the

expected relationship to one another”.

❖ Stated in another way, software testing begins by creating a graph of important objects

and their relationships and then devising a series of tests that will cover the graph so that

each object and relationship is exercised and errors are uncovered.

8

Figure. (a) Graph notation; (b) simple example

A number of behavioral testing methods that can make use of graphs are:

1) Transaction flow modeling.

2) Finite state modeling.

3) Data flow modeling.

4) Timing modeling.

4.4.2 .Equivalence Partitioning

❖ Equivalence partitioning is a black-box testing method that divides the input domain of a

program into classes of data from which test cases can be derived. An ideal test case

single-handedly uncovers a class of errors (e.g., incorrect processing of all character data)

that might otherwise require many test cases to be executed before the general error is

observed.

❖ Test-case design for equivalence partitioning is based on an evaluation of equivalence

classes for an input condition. Using concepts introduced in the preceding section, if a set

of objects can be linked by relationships that are symmetric, transitive, and reflexive, an

equivalence class is present.

❖ An equivalence class represents a set of valid or invalid states for input conditions.

Typically, an input condition is either a specific numeric value, a range of values, a set of

related values, or a Boolean condition.

Equivalence classes may be defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence classes

are defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence

classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid equivalence

class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

9

By applying the guidelines for the derivation of equivalence classes, test cases for each

input domain data item can be developed and executed. Test cases are selected so that the largest

number of attributes of an equivalence class are exercised at once.

Example#1:

For a software that computes the square root of an input integer which can assume values

in the range of 0 to 5000, there are three quivalence classes:

The set of negative integers,the set of integers in the range of 0 and 5000, and the integers larger

than 5000. Therefore, the test cases must include representatives for each ofthe three equivalence

classes and a possible test set can be: {-5,500,6000}.

Example#2:

Design the black-box test suite for the following program. The program computes the

intersection point of two straight lines and displays the result. It reads two integer pairs

(m1, c1) and (m2, c2) defining the two straight lines of the form y=mx + c.

The equivalence classes are the following:

•Parallel lines (m1=m2, c1≠c2)

•Intersecting lines (m1≠m2)

•Coincident lines (m1=m2, c1=c2)

Now, selecting one representative value from each equivalence class, the test suit (2, 2) (2, 5),

(5, 5) (7, 7) , (10, 10) (10, 10) are obtained.

4.4.3. Boundary Value Analysis

❖ A greater number of errors occurs at the boundaries of the input domain rather than in the

“center.” It is for this reason that boundary value analysis (BVA) has been developed as a

testing technique. Boundary value analysis leads to a selection of test cases that exercise

bounding values.

❖ Boundary value analysis is a test-case design technique that complements equivalence

partitioning. Rather than selecting any element of an equivalence class, BVA leads to the

selection of test cases at the “edges” of the class. Rather than focusing solely on input

conditions, BVA derives test cases from the output domain as well.

Guidelines for BVA are similar in many respects to those provided for equivalence

partitioning:

1) If an input condition specifies a range bounded by values a and b, test cases should be

designed with values a and b and just above and just below a and b.

2) If an input condition specifies a number of values, test cases should be developed that

exercise the minimum and maximum numbers. Values just above and below minimum and

maximum are also tested.

3) Apply guidelines 1 and 2 to output conditions. For example, assume that a

temperature versus pressure table is required as output from an engineering analysis program.

Test cases should be designed to create an output report that produces the maximum (and

minimum) allowable number of table entries.

4) If internal program data structures have prescribed boundaries (e.g., a table has a

defined limit of 100 entries), be certain to design a test case to exercise the data structure at its

boundary.

10

❖ Most software engineers intuitively perform BVA to some degree. By applying these

guidelines, boundary testing will be more complete, thereby having a higher likelihood

for error detection.

4.4.4. Orthogonal Array Testing

❖ . Orthogonal array testing can be applied to problems in which the input domain is

relatively small but too large to accommodate exhaustive testing.

❖ The orthogonal array testing method is particularly useful in finding region faults—an

error category associated with faulty logic within a software component.

❖ When orthogonal array testing occurs, an L9 orthogonal array of test cases is created. The

L9 orthogonal array has a “balancing property”.

❖ Detect all double mode faults.

 If there exists a consistent problem when specific levels of two parameters occur

together, it is called a double mode fault. Indeed, a double mode fault is an indication of

pairwise incompatibility or harmful interactions between two test parameters.

❖ Multimode faults.

Orthogonal arrays [of the type shown] can assure the detection of only single and double

mode faults. However, many multimode faults are also detected by these tests.

4.5. REGRESSION TESTING:

❖ Each time a new module is added as part of integration testing, the software changes.

New data flow paths are established, new I/O may occur, and new control logic is

invoked. These changes may cause problems with functions that previously worked

flawlessly.

❖ In the context of an integration test strategy, regression testing is the reexecution of some

subset of tests that have already been conducted to ensure that changes have not

propagated unintended side effects.

❖ In a broader context, successful tests (of any kind) result in the discovery of errors, and

errors must be corrected. Whenever software is corrected, some aspect of the software

configuration (the program, its documentation, or the data that support it) is changed.

Regression testing helps to ensure that changes (due to testing or for other reasons) do

not introduce unintended behavior or additional errors.

❖ Regression testing may be conducted manually, by reexecuting a subset of all test cases

or using automated capture/playback tools. Capture/playback tools enable the software

engineer to capture test cases and results for subsequent playback and comparison.

The regression test suite (the subset of tests to be executed) contains three different classes

of test cases:

1) A representative sample of tests that will exercise all software functions.

2) Additional tests that focus on software functions that are likely to be affected by the

change.

3) Tests that focus on the software components that have been changed.

11

❖ As integration testing proceeds, the number of regression tests can grow quite large.

Therefore, the regression test suite should be designed to include only those tests that

address one or more classes of errors in each of the major program functions.

❖ It is impractical and inefficient to reexecute every test for every program function once a

change has occurred.

4.6. UNIT TESTING:

❖ Unit testing focuses verification effort on the smallest unit of software design—the

software component or module.

❖ The relative complexity of tests and the errors those tests uncover is limited by the

constrained scope established for unit testing. The unit test focuses on the internal

processing logic and data structures within the boundaries of a component. This type of

testing can be conducted in parallel for multiple components.

Figure. Unit test

Unit-test considerations:

❖ The module interface is tested to ensure that information properly flows into and out of

the program.

❖ Local data structures are examined to ensure that integrity is maintained.

❖ All independent paths are exercised to ensure that all statements in a module have been

executed at least once.

❖ Boundary conditions are tested to ensure that the module operates properly at boundaries

established to limit or restrict processing.

❖ All error handling paths should be tested.

Unit-test procedures:

❖ The design of unit tests can occur before coding begins or after source code has been

generated. A review of design information provides guidance for establishing test cases

that are likely to uncover errors in each of the categories discussed earlier. Each test case

should be coupled with a set of expected results.

❖ Because a component is not a stand-alone program, driver and/or stub software must

often be developed for each unit test.

12

❖ In most applications a driver is nothing more than a “main program” that accepts test

case data, passes such data to the component (to be tested), and prints relevant results.

Stubs serve to replace modules that are subordinate (invoked by) the component to be

tested.

❖ A stub or “dummy subprogram” uses the subordinate module’s interface, may do

minimal data manipulation, prints verification of entry, and returns control to the module

undergoing testing.

❖ Drivers and stubs represent testing “overhead.” That is, both are software that must be

written (formal design is not commonly applied) but that is not delivered with the final

software product. If drivers and stubs are kept simple, actual overhead is relatively low.

❖ Unfortunately, many components cannot be adequately unit tested with “simple”

overhead software. In such cases, complete testing can be postponed until the integration

test step (where drivers or stubs are also used).

❖ Unit testing is simplified when a component with high cohesion is designed. When only

one function is addressed by a component, the number of test cases is reduced and errors

can be more easily predicted and uncovered.

Figure. Unit-test environment

4.7. INTEGRATION TESTING:

❖ Integration testing is a systematic technique for constructing the software architecture

while at the same time conducting tests to uncover errors associated with interfacing. The

objective is to take unit-tested components and build a program structure that has been

dictated by design.

❖ There is often a tendency to attempt non incremental integration; that is, to construct

the program using a “big bang” approaches. All components are combined in advance.

The entire program is tested as a whole. And chaos usually results! A set of errors is

encountered. Correction is difficult because isolation of causes is complicated by the vast

expanse of the entire program. Once these errors are corrected, new ones appear and the

process continues in a seemingly endless loop.

❖ In Incremental integration, the program is constructed and tested in small increments,

where errors are easier to isolate and correct; interfaces are more likely to be tested

completely; and a systematic test approach may be applied..

13

4.7.1.Top-down integration:

❖ Top-down integration testing is an incremental approach to construction of the software

architecture. Modules are integrated by moving downward through the control hierarchy,

beginning with the main control module (main program). Modules subordinate (and

ultimately subordinate) to the main control module are incorporated into the structure in

either a depth-first or breadth-first manner.

Figure. Top-down integration

❖ Referring to Figure, depth-first integration integrates all components on a major control

path of the program structure.

❖ For example, selecting the left-hand path, components M1, M2 , M5 would be integrated

first. Next, M8 or (if necessary for proper functioning of M2) M6 would be integrated.

Then, the central and right-hand control paths are built.

❖ Breadth-first integration incorporates all components directly subordinate at each level,

moving across the structure horizontally.

❖ From the figure, components M2, M3, and M4 would be integrated first. The next control

level, M5, M6, and so on, follows.

The integration process is performed in a series of five steps:

1) The main control module is used as a test driver and stubs are substituted for all

components directly subordinate to the main control module.

2) Depending on the integration approach selected (i.e., depth or breadth first), subordinate

stubs are replaced one at a time with actual components.

3) Tests are conducted as each component is integrated.

4) On completion of each set of tests, another stub is replaced with the real component.

5) Regression testing may be conducted to ensure that new errors have not been introduced.

As a tester, you are left with three choices:

 (1) Delay many tests until stubs are replaced with actual modules,

(2) Develop stubs that perform limited functions that simulate the actual module, or

(3) Integrate the software from the bottom of the hierarchy upward.

4.7.2.Bottom-up integration:

Bottom-up integration testing, as its name implies, begins construction and testing with

atomic modules (i.e., components at the lowest levels in the program structure). Because

components are integrated from the bottom up, the functionality provided by components

subordinate to a given level is always available and the need for stubs is eliminated.

A bottom-up integration strategy may be implemented with the following steps:

1. Low-level components are combined into clusters (sometimes called builds) that perform a

specific software subfunction.

14

2. A driver (a control program for testing) is written to coordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program structure.

Figure. Bottom-up Integration

As integration moves upward, the need for separate test drivers lessens. In fact, if the top

two levels of program structure are integrated top down, the number of drivers can be reduced

substantially and integration of clusters is greatly simplified.

4.7.3. Smoke Testing:

Smoke testing is an integration testing approach that is commonly used when product

software is developed. It is designed as a pacing mechanism for time-critical projects, allowing

the software team to assess the project on a frequent basis.

Smoke-testing approach encompasses the following activities:

1. Software components that have been translated into code are integrated into a build. A build

includes all data files, libraries, reusable modules, and engineered components that are required

to implement one or more product functions.

2. A series of tests is designed to expose errors that will keep the build from properly performing

its function.

3. The build is integrated with other builds, and the entire product (in its current form) is smoke

tested daily.

The daily frequency of testing the entire product may surprise some readers. However,

frequent tests give both managers and practitioners a realistic assessment of integration testing

progress.

The smoke test should exercise the entire system from end to end. It does not have to be

exhaustive, but it should be capable of exposing major problems. The smoke test should be

thorough enough that if the build passes, you can assume that it is stable enough to be tested

more thoroughly.

Smoke testing provides a number of benefits when it is applied on complex, time critical

software projects:

• Integration risk is minimized.

• The quality of the end product is improved.

• Error diagnosis and correction are simplified.

• Progress is easier to assess.

15

4.8 . VALIDATION TESTING:

❖ Validation testing begins at the culmination of integration testing, when individual

components have been exercised, the software is completely assembled as a package, and

interfacing errors have been uncovered and corrected.

❖ Validation succeeds when software functions in a manner that can be reasonably

expected by the customer.

1. Validation-Test Criteria:

❖ Software validation is achieved through a series of tests with requirements. A test plan

outlines the classes of tests to be conducted, and a test procedure defines specific test

cases that are designed to ensure that all functional requirements are satisfied, all

behavioral characteristics are achieved, all content is accurate and properly presented, all

performance requirements are attained, documentation is correct, and usability and other

requirements are met.

After each validation test case has been conducted, one of two possible conditions exists:

(1) The function or performance characteristic conforms to specification and is accepted or

(2) A deviation from specification is uncovered and a deficiency list is created.

2. Configuration Review:

An important element of the validation process is a configuration review. The intent of

the review is to ensure that all elements of the software configuration have been properly

developed, are cataloged, and have the necessary detail to bolster the support activities.

3. Alpha and Beta Testing:

It is virtually impossible for a software developer to how the customer will really use a

program. Instructions for use may be misinterpreted; strange combinations of data may be

regularly used; output that seemed clear to the tester may be unintelligible to a user in the field.

When custom software is built for one customer, a series of acceptance tests are

conducted to enable the customer to validate all requirements.

Conducted by the end user rather than software engineers, an acceptance test can range

from an informal “test drive” to a planned and systematically executed series of tests.

Acceptance testing can be conducted over a period of weeks or months, thereby

uncovering cumulative errors that might degrade the system over time.

Alpha Test:

The alpha test is conducted at the developer’s site by a representative group of end users.

The software is used in a natural setting with the developer “looking over the shoulder” of the

users and recording errors and usage problems. Alpha tests are conducted in a controlled

environment.

Beta Test:

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the

developer generally is not present. Therefore, the beta test is a “live” application of the software

in an environment that cannot be controlled by the developer. The customer records all problems

(real or imagined) that are encountered during beta testing and reports these to the developer at

regular intervals. As a result of problems reported during beta tests, you make modifications and

then prepare for release of the software product to the entire customer base.

16

Acceptance Testing:

A variation on beta testing, called customer acceptance testing, is sometimes performed

when custom software is delivered to a customer under contract. The customer performs a series

of specific tests in an attempt to uncover errors before accepting the software from the developer.

In some cases (e.g., a major corporate or governmental system) acceptance testing can be very

formal and encompass many days or even weeks of testing.

4.9. SYSTEM TESTING:

❖ Software is incorporated with other system elements (e.g., hardware, people,

information), and a series of system integration and validation tests are conducted.

❖ These tests fall outside the scope of the software process and are not conducted solely by

software engineers. However, steps taken during software design and testing can greatly

improve the probability of successful software integration in the larger system.

❖ A classic system-testing problem is “finger pointing.” This occurs when an error is

uncovered, and the developers of different system elements blame each other for the

problem.

Rather than indulging in such nonsense, you should anticipate potential interfacing problems and

(1) Design error-handling paths that test all information coming from other elements of the

system,

(2) conduct a series of tests that simulate bad data or other potential errors at the software

interface,

 (3) Record the results of tests to use as “evidence” if finger pointing does occur, and

(4) Participate in planning and design of system tests to ensure that software is adequately tested.

Types of system tests are

1) Recovery Testing

2) Security Testing

3) Stress Testing

4) Performance Testing

5) Deployment Testing

1) Recovery Testing:

Recovery testing is a system test that forces the software to fail in a variety of ways and

verifies that recovery is properly performed.

If recovery is automatic (performed by the system itself), reinitialization, checkpointing

mechanisms, data recovery, and restart are evaluated for correctness.

 If recovery requires human intervention, the mean-time-to-repair (MTTR) is evaluated to

determine whether it is within acceptable limits.

2) Security Testing:

Security testing attempts to verify that protection mechanisms built into a system will, in

fact, protect it from improper penetration.

 “The system’s security must be tested for invulnerability from frontal attack—but must

also be tested for invulnerability from flank or rear attack.”

During security testing, the tester may attempt to acquire passwords through external

clerical means; may attack the system, thereby denying service to others; may purposely cause

17

system errors, hoping to penetrate during recovery; may browse through insecure data, hoping to

find the key to system entry.

. The role of the system designer is to make penetration cost more than the value of the

information that will be obtained.

3) Stress Testing:

Stress tests are designed to confront programs with abnormal situations. In essence, the

tester who performs stress testing asks: “How high can we crank this up before it fails?”

Stress testing executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume.

For example,

 (1) Special tests may be designed that generate ten interrupts per second, when one or two is the

average rate.

(2) Input data rates may be increased by an order of magnitude to determine how input functions

will respond.

 (3) Test cases that require maximum memory or other resources are executed.

 (4) Test cases that may cause thrashing in a virtual operating system are designed.

 (5) Test cases that may cause excessive hunting for disk-resident data are created. Essentially,

the tester attempts to break the program.

A variation of stress testing is a technique called sensitivity testing. In some situations, a

very small range of data contained within the bounds of valid data for a program may cause

extreme and even erroneous processing or profound performance degradation. Sensitivity testing

attempts to uncover data combinations within valid input classes that may cause instability or

improper processing.

4) Performance Testing:

Performance testing is designed to test the run-time performance of software within the context

of an integrated system.

Performance testing occurs throughout all steps in the testing process. Even at the unit level, the

performance of an individual module may be assessed as white-box tests are conducted.

 However, it is not until all system elements are fully integrated that the true performance of a

system can be ascertained.

Performance tests are often coupled with stress testing and usually require both hardware and

software instrumentation.

5) Deployment Testing:

In many cases, software must execute on a variety of platforms and under more than one

operating system environment. Deployment testing, sometimes called configuration testing,

exercises the software in each environment in which it is to operate. In addition, deployment

testing examines all installation procedures and specialized installation software that will be used

by customers, and all documentation that will be used to introduce the software to end users.

4.10. DEBUGGING:

Software testing is a process that can be systematically planned and specified. Test case

design can be conducted, a strategy can be defined, and results can be evaluated against

prescribed expectations.

Debugging occurs as a consequence of successful testing. That is, when a test case

uncovers an error, debugging is the process that results in the removal of the error.

18

1. The Debugging Process:

The debugging process begins with the execution of a test case. Results are assessed and

a lack of correspondence between expected and actual performance is encountered.

 In many cases, the non corresponding data are a symptom of an underlying cause as yet

hidden. The debugging process attempts to match symptom with cause, thereby leading to error

correction.

The debugging process will usually have one of two outcomes:

(1) The cause will be found and corrected or

(2) The cause will not be found. In the latter case, the person performing debugging may suspect

a cause, design a test case to help validate that suspicion, and work toward error correction in an

iterative fashion.

 Few characteristics of bugs provide some clues:

1. The symptom and the cause may be geographically remote. That is, the symptom may appear

in one part of a program, while the cause may actually be located at a site that is far removed.

Highly coupled components exacerbate this situation.

2. The symptom may disappear (temporarily) when another error is corrected.

3. The symptom may actually be caused by non errors (e.g., round-off inaccuracies).

4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time application in

which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded systems that

couple hardware and software inextricably.

8. The symptom may be due to causes that are distributed across a number of tasks running on

different processors.

Figure.The debugging process

During debugging, you’ll encounter errors that range from mildly annoying (e.g., an

incorrect output format) to catastrophic (e.g., the system fails, causing serious economic or

physical damage). As the consequences of an error increase, the amount of pressure to find the

cause also increases. Often, pressure forces some software developers to fix one error and at the

same time introduce two more.

19

2 .Psychological Considerations:

Debugging is one of the more frustrating parts of programming. It has elements of

problem solving or brain teasers, coupled with the annoying recognition that you have made a

mistake.

Heightened anxiety and the unwillingness to accept the possibility of errors increases the

task difficulty. Fortunately, there is a great sigh of relief and a lessening of tension when the bug

is ultimately . . . corrected.

3. Debugging Strategies:

Regardless of the approach that is taken, debugging has one overriding objective— to

find and correct the cause of a software error or defect. The objective is realized by a

combination of systematic evaluation, intuition, and luck.

In general, three debugging strategies have been proposed:

(1) Brute force

 (2) Backtracking

(3) Cause elimination.

Each of these strategies can be conducted manually, but modern debugging tools can

make the process much more effective.

Debugging tactics.

1) Brute force:

The brute force category of debugging is probably the most common and least efficient

method for isolating the cause of a software error.

Using a “let the computer find the error”, memory dumps are taken, run-time traces

are invoked, and the program is loaded with output statements.

Although the mass of information produced may ultimately lead to success, it more

frequently leads to wasted effort and time.

2) Backtracking:

Backtracking is a fairly common debugging approach that can be used successfully in

small programs.

 Beginning at the site where a symptom has been uncovered, the source code is traced

backward (manually) until the cause is found. Unfortunately, as the number of source lines

increases, the number of potential backward paths may become unmanageably large.

3) Cause elimination:

The third approach to debugging—cause elimination—is manifested by induction or

deduction and introduces the concept of binary partitioning. Data related to the error occurrence

are organized to isolate potential causes.

Alternatively, a list of all possible causes is developed and tests are conducted to

eliminate each

Automated debugging.

 Each of these debugging approaches can be supplemented with debugging tools that can

provide you with semiautomated support as debugging strategies are attempted.

 Integrated development environments (IDEs) provide a way to capture some of the

language specific predetermined errors (e.g., missing end-of-statement characters, undefined

variables, and so on) without requiring compilation.”

20

 4. Correcting the Error:

Once a bug has been found, it must be corrected. But, as we have already noted, the

correction of a bug can introduce other errors and therefore do more harm than good.

Three simple questions that you should ask before making the “correction” that removes

the cause of a bug:

1. Is the cause of the bug reproduced in another part of the program?

2. What “next bug” might be introduced by the fix I’m about to make?

3.What could we have done to prevent this bug in the first place?

4.11. SOFTWARE IMPLEMENTATION TECHNIQUES:

4.11.1 Coding Practices

Best coding practices are a set of informal rules that the software development community has

learned over time which can help improve the quality of software.

4.11.1.1. Coding standards

"Establish programming conventions before you begin programming. It's nearly

impossible to change code to match them later."

The use of coding conventions is particularly important when a project involves more

than one programmer. It is much easier for a programmer to read code written by someone else if

all code follows the same conventions.

1. Commenting

Due to time restrictions or enthusiastic programmers who want immediate results for

their code, commenting of code often takes a back seat.

Programmers working as a team have found it better to leave comments behind.However,

some commenting can decrease the cost of knowledge transfer between developers working on

the same module.

In the early days of computing, one commenting practice was to leave a brief description of the

following:

1. Name of the module.

2. Purpose of the Module.

3. Description of the Module (In brief).

4. Original Author

5. Modifications

6. Authors who modified code with a description on why it was modified.

2. Naming conventions

Use of proper naming conventions is considered good practice. Sometimes programmers

tend to use X1, Y1, etc. as variables and forget to replace them with meaningful ones, causing

confusion.

In order to prevent this waste of time, it is usually considered good practice to use

descriptive names in the code since we deal with real data.

Example: A variable for taking in weight as a parameter for a truck can be named TrkWeight or

TruckWeight, with TruckWeight being the more preferable one, since it is instantly recognisable.

3. Keep the code simple

The code that a programmer writes should be simple. Complicated logic for achieving a

simple thing should be kept to a minimum since the code might be modified by another

http://en.wikipedia.org/wiki/Software_development

21

programmer in the future. The logic one programmer implemented may not make perfect sense

to another. So, always keep the code as simple as possible.

4. Portability

Program code should never ever contain "hard-coded", values referring to environmental

parameters, such as absolute file paths, file names, user names, host names, IP addresses, URLs,

UDP/TCP ports.

4.11.1.2.Code development

Code building

A best practice for building code involves daily builds and testing, or better still

continuous integration, or even continuous delivery.

Testing

Testing is an integral part of software development that needs to be planned. It is also

important that testing is done proactively; meaning that test cases are planned before coding

starts, and test cases are developed while the application is being designed and coded.

Debugging the code and correcting errors

Programmers tend to write the complete code and then begin debugging and checking for

errors. Though this approach can save time in smaller projects, bigger and complex ones tend to

have too many variables and functions that need attention.

4.11.2 Refactoring

 Refactoring is a technique to keep the code cleaner, simpler, extendable, reusable and

maintainable.

 Refactoring leads to constant improvement in software quality while providing reusable,

modular and service oriented components.

 It is a disciplined and controlled technique for improving the software code by changing

the internal structure of the code without affecting the functionalities.

Broadly refactoring can be divided in the following categories:

• Project / program structural refactoring: It includes code refactoring to achieve

better program structure. Movement of methods and classes to more logical units.

• Code clean up refactoring : It includes code refactoring to achieve removal of unused

code and classes, renaming of classes, methods and variables which are misleading or

confusing.

• Code standard refactoring : It includes code refactoring to achieve the quality code.

Examples are use of map keyset iterator instead of using entry-set iterator to get the

key/value pair in the code.

• User Interface refactoring: Changing the UI technology without affecting the

functionality incrementally.

• Database clean up refactoring : It includes cleaning of unnecessary and redundant data

without changing the data architecture. This includes data migration as well as data

cleaning.

• Database design & schema Refactoring : This task includes enhancing the database

schema leaving the actual fields required by the application intact.

http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_delivery

22

• Architecture refactoring : It includes modularization of application. Architecture

refactoring is achieved by code slicing, application reaggregation and consolidation.

Architecture driven refactoring is targeted to achieve certain business objectives where

existing practices fails to deliver those objective.

4.11.2.1 Why Refactoring needed?

Software refactoring or rewriting becomes essential for the organization when following

problems becomes visible in the software :. e.g

• Maintainability – Code is not easily maintainable

• Extendibility – Extending / adding new features in the application are not possible or

very expensive.

Refactoring is needed due to various reasons e.g.

1. Lack of Modularity – existing feature of one application can’t be used in another

application due to its tightly coupling with the application components

2. Lack of reusable components – There are instances of code duplicity and potential

reusable components dependency on application code.

3. Lack of pluggable components – existing components are not easily replaceable due to

its application code tightly coupling with the components.

4. Service oriented architecture - Scope for SOA components where each component can

work as a service and reusable

5. Code redundancy - Application has lots of dead code and duplicate code

6. Lack of layered architecture – Any change in one layer causing changes in all other

layers

7. Poor coding style – Coding standards has not been followed properly – it includes

improper names to object/methods, accessing the fields without getter/setters

8. Illogical methods composition – Illogical grouping of methods in one class.

9. Improper Packaging – Artifacts are placed in the application code which can be kept at

other locations; forcing developer to change the jars in each of the application manually

instead of updating it a centralized location.

10. Use of old version of third party application/jars – Application is using older version

of software’s instead of using latest version and hence new features can’t be used and

explored in the application.

4.11.2.2 Steps for Refactoring

1. Writing unit test cases – Test cases should be written to test the application behavior and

ensure that it is unchanged after every cycle of refactoring.

2. Identifying the task for refactoring –

a. Find the problem –what is the problem?

b. Evaluate / Analyze the problem

3. Design solution – Find out what will be the resultant code after refactoring of the code.

4. Modify the code – Refactor the code without changing the outer behavior of the code .

5. Test refactored code - repeat the refactoring in a different way.

6. Repeat above cycle until the current code moves to the target state.

23

4.11.2.3 Key benefits from refactoring:

1. Improves software expendability

2. Reduces code maintenance cost

3. Provides standarised code

4. Architecture improvement without impacting software behavior

5. Provides more readable and modular code

6. Refactored modular component – increase potential reusability

4.12. MAINTENANCE AND REENGINEERING :

• Software maintenance is an activity in which program is modified after it has been put

into use.

• In software maintenance usually it is not preferred to apply major software changes to

system’s architecture.

• Maintenance is a process in which changes are implemented by either modifying the

existinmg system’s architecture or by adding new components to the system.

Need for Maintenance:

• The system changes and hence maintenance must be performed in order to:

a. Correct faults

b. Improve design

c. Implement enhancement

d. Interface with other systems

e. Adaption of environment

f. Migrate legacy software

Types of Software Maintenance:

1. Adaptive – Modifications in system to keep it compatible with changing business and

technical environment.

2. Perfective – Fine tuning of all elements, functionalities and abilities to improve system

operations and perfectness.

3. Corrective – Detecting errors in the existing solution and correcting them to make it works

more efficiently.

4. Preventive – Preventive software maintenance services help in preventing the system from

any upcoming vulnerabilities.

Software Maintenance Process:

The software evolution process is dependent upon the type of software being maintained.

The software maintenance process can be as shown below

1. In the maintenance process initially the request for change is made.

2. Change management: In this phase the status of the entire change request is identified,

described.

3. Impact analysis: following activities are performed in this phase:

i. Identify all systems and system products affected by a change request.

ii. Make an estimate of the resources needed to effect the change.

iii. Analyze the benefits of the change

24

4. System release planning: in this phase the schedule and contents of software release is

planned. The changes can be to all types of software maintenance.

5. Change implementation: The implementation of changes can be done by fact designing the

changes, then coding for these changes and finally testing the changes. Preferably the

regression testing must be performed while testing the changes.

6. System release: During the software relase i) Documentation ii) Software iii) Training iv)

Hardware changes v) Data conversion should be described.

Factors affecting maintenance costs:

1. Module Independence – This is the ability to modify one part of the system.

2. Programming Language – For the higher level of the language, the maintenance is

cheaper.

3. Programming Style – The way in which a program is written makes difference in the

cost.

4. Program Validation and Testing – The more time and effort spent on design validation

and program testing, the fewer errors and the less the need for corrective maintenance.

5. Quality of Prof\gram Documentation – The better the documentation, the easier it is to

maintain.

6. Configuration Management Techniques - Keeping track of all the system documents

and ensuring they are consistent is a major cost of maintenance.

7. Age of the system – Older systems are difficult to maintain.

Issues in Software Maintenance:

1. Technical – This is a key issue in software maintenance. Technical maintenance is based

on following factors such as limited understanding of system, testing, impact analysis and

maintainability.

2. Management – Management issue includes organizational issues, staffing problem,

problem issue, organizational structure, outsouring.

3. Cost Estimation - This is one of the major issues in software maintenance. It is based on

cost, experience of projects.

4. Software maintenance measurement - The software measurement factors such as size

effort, schedule, quality, understandability, resource utilization, design complexity,

reliability and fault type distribution.

25

4.13. BUSINESS PROCESS REENGINEERING:

Definition: The Business Process Re-engineering (BPR) is the implementation of radical

change in the business process to achieve breakthrough results.

• A business process is “a set of logically related tasks performed to achieve a defined

business outcome”. Within the business process, people, equipment, material resources,

and business procedures are combined to produce a specified result.

• Examples of business processes include designing a new product, purchasing services

and supplies, hiring a new employee, and paying suppliers.

4.13.1 BPR Model:

Business process reengineering is iterative. Business goals and the processes that achieve

them must be adapted to a changing business environment

The model defines six activities:

Business definition. Business goals are identified within the context of four key drivers: cost

reduction, time reduction, quality improvement, and personnel development and

empowerment. Goals may be defined at the business level or for a specific component of the

business.

Process identification. Processes that are critical to achieving the goals defined in the business

definition are identified. They may then be ranked by importance, by need for change, or in

any other way that is appropriate for the reengineering activity.

Process evaluation. The existing process is thoroughly analyzed and measured. Process tasks

are identified; the costs and time consumed by process tasks are noted; and

quality/performance problems are isolated.

Fig: The BPR Model

Process specification and design. Based on information obtained during the first three BPR

activities, use cases are prepared for each process that is to be redesigned. Within the context

of BPR, use cases identify a scenario that delivers some outcome to a customer. With the use

case as the specification of the process, a new set of tasks are designed for the process.

26

Prototyping. A redesigned business process must be prototyped before it is fully integrated

into the business. This activity “tests” the process so that refinements can be made.

Refinement and instantiation. Based on feedback from the prototype, the business process is

refined and then instantiated within a business system.

 These BPR activities are sometimes used in conjunction with workflow analysis tools.

The intent of these tools is to build a model of existing workflow in an effort to better analyze

existing processes.

4.13.2 Reengineering process model:

• Software reengineering is a process of modifying the system for maintenance purpose.

• Reengineering of information systems is an activity that will absorb information

technology resources for many years. That’s why every organization needs a pragmatic

strategy for software reengineering. A workable strategy is encompassed in a

reengineering process model.

FIGURE: A software reengineering process model

For any particular cycle, the process can terminate after any one of these activities.

Inventory analysis:

• Every software organization should have an inventory of all applications. The inventory

can be nothing more than a spreadsheet model containing information that provides a

detailed description of every active application.

• Resources can then be allocated to candidate applications for reengineering work. It is

important to note that the inventory should be revisited on a regular cycle.

Document restructuring:

Weak documentation is the trademark of many legacy systems. But what can you do about it?

What are your options?

27

1. Creating documentation is far too time consuming. If the system works, you may choose

to live with what you have. In some cases, this is the correct approach. It is not possible

to re-create documentation for hundreds of computer programs.

2. Documentation must be updated, but your organization has limited resources. You’ll use

a “document when touched” approach. It may not be necessary to fully redocument an

application.

3. The system is business critical and must be fully redocumented. Even in this case, an

intelligent approach is to pare documentation to an essential minimum.

Each of these options is viable. Your software organization must choose the one that is most

appropriate for each case.

 Reverse engineering:

• Reverse engineering for software is the process of analyzing a program in an effort to

create a representation of the program at a higher level of abstraction than source code.

• Reverse engineering is a process of design recovery.

• Reverse engineering tools extract data, architectural, and procedural design information

from an existing program.

Code restructuring:

• The most common type of reengineering is code restructuring.

• The source code is analyzed using a restructuring tool. Violations of structured

programming constructs are noted and code is then restructured or even rewritten in a

more modern programming language.

• The resultant restructured code is reviewed and tested to ensure that no anomalies have

been introduced. Internal code documentation is updated.

Data restructuring:

• A program with weak data architecture will be difficult to adapt and enhance. In most

cases, data restructuring begins with a reverse engineering activity.

• Current data architecture is dissected, and necessary data models are defined.

• Data objects and attributes are identified, and existing data structures are reviewed for

quality. When data structure is weak then the data are reengineered.

Forward engineering:

• Forward engineering not only recovers design information from existing software but

uses this information to alter or reconstitute the existing system in an effort to improve its

overall quality.

• In most cases, reengineered software reimplements the function of the existing system

and also adds new functions and/or improves overall performance.

4.14 REVERSE ENGINEERING

Reverse engineering is a process of design recovery. Reverse engineering tools extract data,

architectural, and procedural design information from an existing program.

There are three important issues in reverse engineering:

1. Abstraction level :

• The abstraction level of a reverse engineering process and the tools used to refers to the

sophistication of the design information that can be extracted from source code.

• The abstraction level should be as high as possible.

• As the abstraction level increases, you are provided with information that will allow

easier understanding of the program.

28

2. Completeness Level:

• The completeness of a reverse engineering process refers to the level of detail that is

provided at an abstraction level. In most cases, the completeness decreases as the

abstraction level increases.

• For example, given a source code listing, it is relatively easy to develop a complete

procedural design representation. Simple architectural design representations may also be

derived, but it is far more difficult to develop a complete set of UML diagrams or models.

• Completeness improves in direct proportion to the amount of analysis performed by the

person doing reverse engineering. Interactivity refers to the degree to which the human is

“integrated” with automated tools to create an effective reverse engineering process.

3. Directionality level:

If the directionality of the reverse engineering process is one-way, all information

extracted from the source code is provided to the software engineer who can then use it

during any maintenance activity. If directionality is two-way, the information is fed to a

reengineering tool that attempts to restructure or regenerate the old program.

Figure - The reverse engineering process

• The reverse engineering process is represented in Figure. Before reverse engineering

activities can commence, unstructured (“dirty”) ource code is restructured so that it

contains only the structured programming constructs.

• Dirty source code Restructure code Clean source code Extract abstractions Initial

specification Refine & simplify Final specification This makes the source code easier to

read and provides the basis for all the subsequent reverse engineering activities.

• The core of reverse engineering is an activity called extract abstractions. You must

evaluate the old program and from the (often undocumented) source code, develop a

meaningful specification of the processing that is performed, the user interface that is

applied, and the program data structures or database that is used.

29

Difference between Software and Reverse Engineering

S.

No

Software Engineering Reverse Engineering

1 Software Engineering is a discipline in

which theories, methods and tools are

applied to develop a professional

software product.

Reverse engineering is a process in which the

dirty or unstructured code is taken processed

and it is restructured.

2 Initially only user requirements are

available for software engineering

process.

A dirty or unstructured code is available

initially

3 This process starts by understanding user

requirements

This process starts by understanding the

existing unstructured code

4 The software engineering is constructed

using requirement gathering, analysis,

design, implantation and testing

Thr reverse engineering is constructed using

restructuring the code, cleaning it, by

extracting the abstractions. After refinement

and simplification of the code final code gets

ready

5 It is simple and straightforward approach It is complex because cleaning the dirty or

unstructured code requires more efforts

6 Documentation or specification of the

product is useful to the end-user

Documentation or specification of the product

is useful to the developer.

Difference between Reverse Engineering and Re-Engineering

Reverse Engineering Re-Engineering

Reverse Engineering is a process of finding out

how a product works from already created

software system

Re-Engineering is to observe the software

system and build it again for better use.

In Reverse Engineering, the source code is re-

created from the complied code

In Re-Engineering, new piece of code with

similar or better functionality than the existing

one is created.

Reverse Engineering is carried out for trying to

understand inner working of the artifact with

availability of any documents.

Re-Engineering is carried out for designing

something again. Many time from scratch.

4.15 FORWARD ENGINEERING

If the poorly designed and implemented code is to be modified then following alternatives can

be adopted:

1. Make lot of modifications to implement the necessary changes.

2. Understand inner workings of the program in order to make the necessary modifications.

3. Redesign, recode and test small modules of software that require modifications.

4. Completely redesign, recode and test the entire program using re-engineering tool.

Definition: Forward Engineering is a process that makes use of software engineering

principles, concepts and methods to re-create an existing application. This re-developed

program extends the capabilities of old programs.

Forward Engineering for Object Oriented Architecture:

Forward engineering is a process of re-engineering conventional software into the object

oriented implementation.

30

Following are the steps that can be applied for forward engineering the conventional software:

1. Existing software is reverse engineered in order to create data, functional, and behavioral

models.

2. If existing system extends the functionality of original application then use cases can be

created.

3. The data models created in this process are used to create the base for classes.

4. Class Hierarchies, object-relationship models, object behavioral models and subsystems

are defined.

During this forward engineering process, algorithms and data structures are reused from

existing conventional application.

Difference between Forward and Reverse Engineering:

• Forward engineering is a process of constructing a system for specific purpose.

• Reverse engineering is a process of de-constructing a system in order to extend the

functionalities or in order to understand the working of the system.

ANNA UNIVERSITY QUESTIONS AND ANSWERS

PART A

1. What is the need for regression testing? (APR/MAY 2015)

Regression testing may be conducted to ensure that new errors have not been introduced.

Regression Testing is required when there is a

• Change in requirements and code is modified according to the requirement

• New feature is added to the software

• Defect fixing

• Performance issue fix

2. Write the best practices for “CODING”. (APR/MAY 2015) (NOV/DEC 2015)

1. Know what the code block must perform

2. Indicate a brief description of what a variable is for (reference to commenting)

3. Correct errors as they occur.

4. Keep your code simple

5. Maintain naming conventions which are uniform throughout.

3. How will you test a simple loop? (NOV/DEC 2015)

Simple loops. The following set of tests can be applied to simple loops, where n is the

maximum number of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -1, n, n + 1 passes through the loop.

4. How can refactoring be made more effective? (APR/MAY 2016)

There are two general categories of benefits to the activity of refactoring.

1. Maintainability. It is easier to fix bugs because the source code is easy to read and the

intent of its author is easy to grasp. This might be achieved by reducing large monolithic

routines into a set of individually concise, well-named, single-purpose methods.

31

2. Extensibility. It is easier to extend the capabilities of the application if it uses

recognizable design patterns, and it provides some flexibility where none before may

have existed.

5. Why does software fail after it has passed from acceptance testing? (APR/MAY

2016)

• During acceptance testing, the random input is used for testing. This may lead to the

situation that some input values that may cause failure go unhandled. The practical

problem with acceptance testing is that it is time consuming. Hence in order to keep

testing cost low, there is restricted number of test cases.

6. What methods are used for breaking very long expression and statements?

(NOV/DEC 2016)

Statement testing can be improved if we allow program graphs to have nodes made up of

statement fragments rather than complete statements. For example, take the following line of

pseudo code:

If x > y then x else y

With average statement testing, this statement would be placed into a single node, and so only

one of the predicates would be tested. However, if we allow for statement fragments, then we

would get the following pseudo code:

If x > y then

x

Else y

With each of these statements now separate, they will each be placed in a different node. As a

result, statement testing will go through each node with the result that we also achieve predicate

outcome coverage.

7. What is the difference between verification and validation? Which types of testing

address verification? Which types of testing address validation? (NOV/DEC 2016)

(APR/MAY 2017) (NOV/DEC 2017)

 Verification Validation

Verification testing comprise of various

activities that ensure software correctly

implements the specific function

Validation refers to set of activities that

ensure that the software that has been built

is traceable to customer requirements

The performance testing is testing address

verification

The acceptance testing is testing address

validation.

8. What is smoke testing? (APR/MAY 2017)

 Smoke testing is the initial testing process exercised to check whether the software

under test is ready/stable for further testing

9. Mention the purpose of stub and Driver used for testing. (NOV/DEC 2017)

• The Drivers is a program that accepts the test data nad prints the relevant results.

• The stub is a subprogram that uses the module interfaces and performs the minimal data

manipulation if required.

https://en.wikipedia.org/wiki/Design_patterns

32

10. What are the testing principles the software engineer must apply while performing the

software testing? (MAY 18)

1. All tests must be traceable to customer requirements

2. Tests should be planned long before testing begins

3. Testing should begin in small and progress towards testing in large.

4. Exhaustive testing is not possible.

5. Testing should be done independent third party.

11. Identify the type of maintenance for each of the following: (MAY 18)

a) Correcting the software faults

b) Adapting the change in environment

Ans: 1. Corrective Maintenance 2. Adaptive Maintenance

12. What is test case? NOV/DEC 2019

A TEST CASE is a set of conditions or variables under which a tester will determine whether a

system under test satisfies requirements or works correctly.

13. Outline the needs of system testing. NOV/DEC 2019

A classic system-testing problem is “finger pointing.” This occurs when an error is

uncovered, and the developers of different system elements blame each other for the

problem.

14. List the levels of testing. APR/MAY 2019

The developed software should be tested in the following order

Unit Testing

Integration Testing

System testing

Acceptance Testing

15. Define Reverse Engineering. APR/MAY 2019

Reverse engineering is a process of de-constructing a system in order to extend the

functionalities or in order to understand the working of the system

ANNA UNIVERSITY QUESTIONS

PART B

1. State the need for refactoring. How can a development model benefit by the use of

refactoring? (APR/MAY 2016) (NOV/DEC 2016)

2. Why does software testing need extensive planning? Explain. (APR/MAY 2016)

3. Compare and contrast alpha and beta testing. (APR/MAY 2016)

4. Consider a program for determining the previous date. Its input is a triple of day, month

and year with the values in the range 1 ≤ month ≤ 12, 1 ≤ day ≤ 31, 1990 ≤ year ≤ 2014.

The possible outputs would be previous date or invalid input date. Design the boundary

value test cases. (APR/MAY 2016)

Answer:

Note:

In Boundary Value Analysis,

Min

Min +

Nominal

Max –

Max

33

Month [1-12] Day [1-31] Year [1990 – 2014]

Min :1

Min+ :2

Nominal : 6

Max - : 11

Max + : 12

1

2

15

30

31

1990

1991

2002

2013

2014

The boundary value test cases are

Test Case

ID

Month

(mm)

Day

(dd)

Year

(yyyy)

Expected Output

1 6 15 1990 14 June, 1990

2 6 15 1991 14 June, 1991

3 6 15 2002 14 June, 2002

4 6 15 2013 14 June, 2013

5 6 15 2014 14 June, 2014

6 6 1 2002 31 May, 2002

7 6 2 2002 1 June, 2002

8 6 30 2002 29 June, 2002

9 6 31 2002 Invalid Date as June

has 30 Days

10 1 15 2002 14 January, 2002

11 2 15 2002 14 February, 2002

12 11 15 2002 14 November, 2002

13 12 15 2002 14 December, 2002

5. Describe the various Black box and White box testing techniques.

Use Suitable examples for your explanation. (APR/MAY 2015)

6. Discuss about the various Integration and Debugging strategies followed in Software

development. (APR/MAY 2015)

7. What is white box testing'? Explain. (APR/MAY 2017)

8. Explain how the various types of loops are tested. (NOV/DEC 2017)

9. Differentiate black box and white box testing. (NOV/DEC 2017)

10. What is black box testing? Explain the different types of black box testing strategies.

Explain by considering suitable examples.

34

11. Explain unit testing and integration testing process with an example

12. What is integration. testing? Discuss any one method in detail. (APR/MAY 2017)

13. Consider the following program segment. (NOV/DEC 2017)

/* num is the number the function searches in a presorted integer array arr */

Int bin_search(int num)

{

Int min, max; min = 0; max = 100;

While (min != max) {

If(arr [(min + max) / 2 > num]

Max = (min + max) / 2;

Else if (arr[(min + max)/2])

Min = (min + max) / 2;

Else return ((min + max) / 2);

}

Return (-1);

}

(i)Draw the control flow graph for this program segment. (2)

Answer:

(ii) Define cyclomatic complexity. (2)

Answer:

Cyclomatic complexity is a software metric used to measure the complexity of a

program.This metric measures independent paths through the program's source code. An

independent path is defined as a path that has at least one edge which has not been traversed

before in any other paths.

Cyclomatic complexity can be calculated with respect to functions, modules, methods or classes

within a program.

(iii) Determine the cyclomatic complexity for this program. (Show the intermediate

steps in your computation. Writing only the final result is not sufficient)

Answer:

35

Three ways to compute cyclomatic complexity:

– The number of regions of the flow graph correspond to the cyclomatic complexity.

– Cyclomatic complexity, V(G), for a flow graph G is defined as V(G) = E - N + 2 (13-10+2=5)

where E is the number of flow graph edges and N is the number of flow graph nodes.

– Cyclomatic complexity, V(G) = P + 1 where P is the number of predicate nodes contained

in the flow graph G.

14. Consider the pseudocode for simple subtraction given below :

Program 'Simple Subtraction'

Input (x, y)

Output(x)

Output (y)

 If x > y then

 DO x y z

Else y x = z

Endlf

Output (z)

Output 'End Program"

Perform basic path testing and generate test cases. (APR/MAY 2017) (NOV/DEC 2016)

Answer:

Step 1:

36

Step 2: Compute Cyclomatic Complexity using formulas

V(G) = e – n + 2

 = 9 – 9 + 2 = 2

Therefore we have to find 2 independence paths for basis path testing

Step 3:

Path 1-: 2-3-4-5-6-8-9-10

Path 2 -: 2-3-4-5-7-8-9-10

Step 4: Tes test cases for these paths are as given below

Independent path X Y Expected Result (z)

Path 1

2-3-4-5-6-8-9-10

10 5 5

End program

Path 2

 2-3-4-5-7-8-9-10

5 10 5

End program

15. Describe black box testing. Design the black-box test suite for the following program. The

program computes the intersection point of two straight lines and displays the result. It

reads two integer pairs (m 1, cl) and (m2, c2) defining the two straight lines of the form y =

mx + c. (APR/MAY 2017)

Answer:

The equivalence classes are the following:

•Parallel lines (m1=m2, c1≠c2)

•Intersecting lines (m1≠m2)

•Coincident lines (m1=m2, c1=c2)

Now, selecting one representative value from each equivalence class, the test suit (2, 2) (2, 5),

(5, 5) (7, 7) , (10, 10) (10, 10) are obtained.

16. A program spacs state the following for an input field. The program shall accept an input

value of 4-digit integer equal or greater than 2000 and less than or equal 8000. Determine

the test cases using

2. Equivalence class partitioning

3. Boundary value analysis

Answer:

1. Equivalence class partitioning:

Test cases for input box accepting numbers between 2000 and 8000 using

Equivalence Partitioning:

1) One input data class with all valid inputs. Pick a single value from range 2000 to 8000

as a valid test case. If you select other values between 2000 and 8000 the result is going

to be same. So one test case for valid input data should be sufficient.

2) Input data class with all values below the lower limit. I.e. any value below 2000, as an

invalid input data test case.

3) Input data with any value greater than 8000 to represent third invalid input class.

37

2. Boundary value analysis

Test cases for input box accepting numbers between 1 and 1000 using Boundary

value analysis:

1) Test cases with test data exactly as the input boundaries of input domain i.e. values

2000 and 8000 in our case.

2) Test data with values just below the extreme edges of input domains i.e. values 1999

and 7999.

3) Test data with values just above the extreme edges of input domain i.e. values 2001

and 8000

17. Elaborate path testing and regression testing with an example. NOV/DEC2019

18. Explain how business process Reengineering helps to achieve a defined business

outcome. NOV/DEC2019

19. Outline how the reverse engineering process helps to improve the legacy software.

NOV/DEC2019

20. List the process in software reengineering process model and explain in detail.

APR/MAY 2019

21. Write the procedure for the following: Given three sides of triangle, return the type of

triangle that equilateral, isosceles, and scalene triangle. Draw the flow graph and

calculate cyclomatic complexity to calculate the minimum number of paths. Enumerate

the paths to be tested. APR/MAY 2019

1

CS6403-SOFTWARE ENGINEERING

UNIT V PROJECT MANAGEMENT

Software Project Management: Estimation – LOC, FP Based Estimation, Make/Buy Decision

COCOMO I & II Model – Project Scheduling – Scheduling, Earned Value Analysis

Planning – Project Plan, Planning Process, RFP Risk Management – Identification, Projection –

Risk Management-Risk Identification-RMMM Plan-CASE TOOLS

5.1. ESTIMATION

• Software cost and effort estimation will never be an exact science.

• The variables such as human, technical, political, environmental can affect the ultimate

cost of software and effort applied to develop it.

• To achieve reliable cost and effort estimates, a number of options arise:

1. Delay estimation until late in the project

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost and effort

estimates.

4. Use one or more empirical models for software cost and effort estimation.

A model is based on experience (historical data) and takes the form

 d = f (vi)

where,

 d is one of a number of estimated values (e.g., effort, cost, project duration)

vi are selected independent parameters (e.g., estimated LOC or FP).

Decomposition techniques

1. FP based

2. LOC based

Empirical models

1. COCOMO-II model

5.1.1 Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

1. The degree to which you have properly estimated the size of the product to be built.

2. The ability to translate the size estimate into human effort, calendar time, and dollars.

3. The degree to which the project plan reflects the abilities of the software team.

4. The stability of product requirements and the environment that supports the software

engineering effort.

Four different approaches to the sizing problem:

• “Fuzzy logic” sizing:

 The planner must identify the type of application, establish its magnitude on a

qualitative scale, and then refine the magnitude within the original range.

• Function point sizing:

 The planner develops estimates of the information domain characteristics.

• Standard component sizing:

 Software is composed of a number of different “standard components” that are

generic to a particular application area. For example, the standard components for an

information system are subsystems, modules, screens, reports, interactive programs,

batch programs, files, LOC, and object-level instructions.

2

The project planner estimates the number of occurrences of each standard

component and then uses historical project data to estimate the delivered size per

standard component.

• Change sizing:

This approach is used when a project encompasses the use of existing software

that must be modified in some way as part of a project. The planner estimates the number

and type of modifications that must be accomplished.

5.1.2 Problem-Based Estimation:

LOC and FP data are used in two ways during software project estimation:

(1) As estimation variables to “size” each element of the software

(2) As baseline metrics collected from past projects and used in conjunction with

estimation variables to develop cost and effort projections.

• Baseline productivity metrics (e.g., LOC/pm or FP/pm) are then applied to the

appropriate estimation variable, and cost or effort for the function is derived.

• Function estimates are combined to produce an overall estimate for the entire project.

Using historical data or intuition, estimate an optimistic, most likely, and pessimistic size value

for each function or count for each information domain value.

The expected value for the estimation variable (size) S can be computed as a weighted average of

the optimistic (sopt), most likely (sm), and pessimistic (spess) estimates.

5.2. Lines of Code (LOC)

• LOC metric is very popular because it is the simplest to use. Using this metric, the project

size is estimated by counting the number of source instructions in the developed program.

• Obviously, while counting the number of source instructions, lines used for commenting

the code and the header lines should be ignored.

• Determining the LOC count at the end of a project is a very simple job. However,

accurate estimation of the LOC count at the beginning of a project is very difficult.

• In order to estimate the LOC count at the beginning of a project, project managers usually

divide the problem into modules and each module into sub modules and so on, until the

sizes of the different leaf-level modules can be approximately predicted.

• To be able to do this, past experience in developing similar products is helpful. By using

the estimation of the lowest level modules, project managers arrive at the total size

estimation.

Advantages:

➢ LOC is the simplest among all metrics available to estimate project size.

➢ Many existing methods use LOC as a key input.

➢ A large body of literature and data based on LOC already exists.

Disadvantages:

1) LOC is dependent upon the programming language.

2) A good problem size measure should consider the overall complexity of the problem and

the effort needed to solve it.

3) This method is well designed but shorter program may get suffered.

4) It does not accommodate non procedural languages.

3

5) It is very difficult to accurately estimate LOC in the final. The LOC count can be

accurately computed only after the code has been fully developed.

EXAMPLE: LOC APPROACH

Average productivity for systems of this type = 620 LOC/pm and Burdened labor rate is Rs.

8000 per month. Find the total estimated project cost and effort.

Answer:

The cost per line of code = Cost / LOC = 8000/620 = Rs.13.

Based on the LOC estimate and the historical productivity data, the total estimated project cost is

(33200*13) Rs. 431,000 and the estimated effort is 54 person-months

5.3 Function point (FP)

• This is in contrast to the LOC metric, where the size can be accurately determined only

after the product has fully been developed.

• The conceptual idea behind the function point metric is that the size of a software product

is directly dependent on the number of different functions or features it supports.

• A software product supporting many features would certainly be of larger size than a

product with less number of features.

• Each function when invoked reads some input data and transforms it to the corresponding

output data.

• Besides using the number of input and output data values, function point metric computes

the size of a software product using three other characteristics of the product. The size of

a product in function points (FP) can be expressed as the weighted sum of these five

problem characteristics.

• The weights associated with the five characteristics were proposed empirically and

validated by the observations over many projects. Function point is computed in two

steps. The first step is to compute the unadjusted function point (UFP).

UFP = (Number of inputs)*4 + (Number of outputs)*5 +

 (Number of inquiries)*4 + (Number of files)*10 +

 (Number of interfaces)*10

Number of inputs:

✓ Each data item input by the user is counted. Data inputs should be distinguished from

user inquiries.

4

Number of outputs:

✓ Each user output that provides application data to the user is counted. E.g. screens,

reports, error messages.

Number of inquiries:

✓ Number of inquiries is the number of distinct interactive queries which can be made by

the users. These inquiries are the user commands which require specific action by the

system.

Number of files:

✓ Each logical file is counted. A logical file means groups of logically related data. Thus,

logical files can be data structures or physical files.

Number of interfaces:

✓ Here the interfaces considered are the interfaces used to exchange information with other

systems. Examples of such interfaces are data files on tapes, disks, communication links

with other systems etc.

• Once the unadjusted function point (UFP) is computed, the technical complexity factor

(TCF) is computed next.

• TCF refines the UFP measure by considering fourteen other factors such as high

transaction rates, throughput, and response time requirements, etc.

• Each of these 14 factors is assigned from 0 (not present or no influence) to 6 (strong

influence). The resulting numbers are summed, yielding the total degree of influence

(DI).

 TCF = (0.65+0.01*DI)

• As DI can vary from 0 to 70, TCF can vary from 0.65 to 1.35.

 FP=UFP*TCF

Advantages:

➢ Function point metric can be used to easily estimate the size of a software product

directly from the problem specification.

Disadvantages:

➢ Function point measure does not take into account the algorithmic complexity of a

software. That is, the function point metric implicitly assumes that the effort required to

design and develop any two functionalities of the system is the same.

Feature point metric :

• Feature point metric incorporates an extra parameter algorithm complexity. This

parameter ensures that the computed size using the feature point metric reflects the fact

that the more is the complexity of a function, the greater is the effort required to develop

it and therefore its size should be larger compared to simpler functions.

• Using historical data or (when all else fails) intuition, estimate an optimistic, most likely,

and pessimistic size value for each function or count for each information domain value.

An implicit indication of the degree of uncertainty is provided when a range of values is

specified.

• A three-point or expected value can then be computed. The expected value for the

estimation variable (size) S can be computed as a weighted average of the optimistic

(sopt), most likely

(5.1)

(sm), and pessimistic (spess) estimates.

5

EXAMPLE: FP APPROACH

• The estimated number of FP is derived:

•

• Organizational average productivity = 6.5 FP/pm.

• Burdened labor rate = $8000 per month, approximately $1230/FP.

• Based on the FP estimate and the historical productivity data, total estimated project cost

is $461,000 and estimated effort is 58 person-months.

5.4. THE MAKE/BUY DECISION

• In many software application areas, it is very cheap to acquire rather than develop

computer software.

• Software engineering managers are faced with a make/ buy decision that can be further

complicated by a number of acquisition options:

(1) Software may be purchased (or licensed) off-the-shelf,

(2) “full-experience” or “partial-experience” software components may be acquired and then

 modified and integrated to meet specific needs,

(3) Software may be custom built by an outside contractor to meet the purchaser’s specifications.

• The steps involved in the acquisition of software are defined by the criticality of the

software to be purchased and the end cost.

• In some cases (e.g., low-cost PC software), it is less expensive to purchase and

experiment than to conduct a lengthy evaluation of potential software packages.

 In the final analysis, the make/buy decision is made based on the following conditions:

(1) Will the delivery date of the software product be sooner than that for internally developed

 Software?

(2) Will the cost of acquisition plus the cost of customization be less than the cost of developing

the software internally?

(3) Will the cost of outside support (e.g., a maintenance contract) be less than the cost of

internal support? These conditions apply for each of the acquisition options.

6

5.4.1. Creating a Decision Tree

The steps just described can be augmented using statistical techniques such as decision tree

analysis.

• For example, Figure depicts a decision tree for a software based system X. In this case,

the software engineering organization can

 (1) Build system X from scratch

 (2) Reuse existing partial-experience components to construct the system

 (3) Buy an available software product and modify it to meet local needs

 (4) Contract the software development to an outside vendor

Fig. A decision tree to support the make/buy decision

• If the system is to be built from scratch, there is a 70 percent probability that the job will

be difficult. Using the estimation techniques discussed earlier in this chapter, the project

planner estimates that a difficult development effort will cost $450,000.

• A “simple” development effort is estimated to cost $380,000. The expected value for

cost, computed along any branch of the decision tree, is

 where i is the decision tree path. For the build path,

• Following other paths of the decision tree, the projected costs for reuse, purchase, and

contract, under a variety of circumstances, are also shown. The expected costs for these

paths are

• Based on the probability and projected costs that have been noted, the lowest expected

cost is the “buy” option.

7

• It is important to note, however, that many criteria—not just cost— must be considered

during the decision-making process. Availability, experience of the developer/

vendor/contractor, conformance to requirements, local “politics,” and the likelihood of

change are but a few of the criteria that may affect the ultimate decision to build, reuse,

buy, or contract.

5.4.2. Outsourcing

• Sooner or later, every company that develops computer software asks a fundamental

question: “Is there a way that we can get the software and systems we need at a lower

price?” The answer to this question is not a simple one, and the emotional discussions

that occur in response to the question always lead to a single word: outsourcing.

• In concept, outsourcing is extremely simple. Software engineering activities are

contracted to a third party who does the work at lower cost and, hopefully, higher quality.

Software work conducted within a company is reduced to a contract management

activity.

• The decision to outsource can be either strategic or tactical.

• At the strategic level, business managers consider whether a significant portion of all

software work can be contracted to others.

• At the tactical level, a project manager determines whether part or all of a project can be

best accomplished by subcontracting the software work.

• Regardless of the breadth of focus, the outsourcing decision is often a financial one.

Pros:

• Cost savings can usually be achieved by reducing the number of software people and the

facilities (e.g., computers, infrastructure) that support them.

Cons:

• A company loses some control over the software that it needs. Since software is a

technology that differentiates its systems, services, and products, a company runs the risk

of putting the fate of its competitiveness into the hands of a third party.

5.5 . COCOMO MODEL

Any software development project can be classified into one of the following three categories

based on the development complexity:

1) Organic

2) Semidetached

3) Embedded

1) Organic:

• A development project can be considered of organic type, if the project deals with

developing a well understood application program, the size of the development team is

reasonably small, and the team members are experienced in developing similar types of

projects.

2) Semidetached:

• A development project can be considered of semidetached type, if the development

consists of a mixture of experienced and inexperienced staff. Team members may have

limited experience on related systems but may be unfamiliar with some aspects of the

system being developed.

3) Embedded:

• A development project is considered to be of embedded type, if the software being

developed is strongly coupled to complex hardware, or if the stringent regulations on the

operational procedures exist.

8

COCOMO

COCOMO (Constructive Cost Estimation Model) was proposed by Boehm [1981]. According to

Boehm, software cost estimation should be done through three stages:

(1) Basic COCOMO

(2) Intermediate COCOMO

(3) and Complete COCOMO

(1) Basic COCOMO Model :

The basic COCOMO model gives an approximate estimate of the project parameters. The basic

COCOMO estimation model is given by the following expressions:

Effort = a
1

х (KLOC)
a2

PM

Tdev = b
1
x (Effort)

b2

Months

Where

• KLOC is the estimated size of the software product expressed in Kilo Lines of Code,

• a
1
, a

2
, b

1
, b

2
are constants for each category of software products,

• Tdev is the estimated time to develop the software, expressed in months,

• Effort is the total effort required to develop the software product, expressed in person

months (PMs).

The effort estimation is expressed in units of person-months (PM). It is the area under the

person-month plot. It should be carefully noted that an effort of 100 PM does not imply that 100

persons should work for 1 month nor does it imply that 1 person should be employed for 100

months, but it denotes the area under the person-month curve.

Fig. Person-month curve

Every line of source text should be calculated as one LOC irrespective of the actual number of

instructions on that line. Thus, if a single instruction spans several lines, it is considered to be

nLOC. The values of a
1
, a

2
, b

1
, b

2
for different categories of products (i.e. organic, semidetached,

and embedded) are summarized below. He derived the above expressions by examining

historical data collected from a large number of actual projects.

Estimation of development effort

For the three classes of software products, the formulas for estimating the effort based on the

code size are shown below:

Organic : Effort = 2.4(KLOC)
1.05

PM

Semi-detached : Effort = 3.0(KLOC)
1.12

PM

Embedded : Effort = 3.6(KLOC)
1.20

PM

9

Estimation of development time

For the three classes of software products, the formulas for estimating the development time

based on the effort are given below:

Organic : Tdev = 2.5(Effort)
0.38

Months

Semi-detached : Tdev = 2.5(Effort)
0.35

Months

Embedded : Tdev = 2.5(Effort)
0.32

Months

• Some insight into the basic COCOMO model can be obtained by plotting the estimated

characteristics for different software sizes. Fig. 11.4 shows a plot of estimated effort

versus product size. From fig. 11.4, we can observe that the effort is somewhat super

linear in the size of the software product. Thus, the effort required to develop a product

increases very rapidly with project size.

• The development time versus the product size in KLOC is plotted in fig. 11.5. From fig.

11.5, it can be observed that the development time is a sub linear function of the size of

the product, i.e. when the size of the product increases by two times, the time to develop

the product does not double but rises moderately.

• This can be explained by the fact that for larger products, a larger number of activities

which can be carried out concurrently can be identified. The parallel activities can be

carried out simultaneously by the engineers.

• This reduces the time to complete the project. Further, from fig. 11.5, it can be observed

that the development time is roughly the same for all the three categories of products.

• It is important to note that the effort and the duration estimations obtained using the

COCOMO model are called as nominal effort estimate and nominal duration estimate.

• The term nominal implies that if anyone tries to complete the project in a time shorter

than the estimated duration, then the cost will increase drastically.

• But, if anyone completes the project over a longer period of time than the estimated, then

there is almost no decrease in the estimated cost value.

10

Example:

Assume that the size of an organic type software product has been estimated to be 32,000 lines of

source code. Assume that the average salary of software engineers be Rs. 15,000/- per month.

Determine the effort required to develop the software product and the nominal development

time.

From the basic COCOMO estimation formula for organic software:

Effort = 2.4 х (32)
1.05

= 91 PM

Nominal development time = 2.5 х (91)
0.38

= 14 months

Cost required to develop the product = 14 х 15,000

= Rs. 210,000/-

(2) Intermediate COCOMO model :

• The intermediate COCOMO model recognizes refines the initial estimate obtained using

the basic COCOMO expressions by using a set of 15 cost drivers (multipliers) based on

various attributes of software development.

• If there are stringent reliability requirements on the software product, this initial estimate

is scaled upward. The project manager to rate these 15 different parameters for a

particular project on a scale of one to three.

• Then, depending on these ratings, he suggests appropriate cost driver values which

should be multiplied with the initial estimate obtained using the basic COCOMO.

 In general, the cost drivers can be classified as being attributes of the following items:

• Product attributes

o Required software reliability

o Size of application database

o Complexity of the product

• Hardware attributes

o Run-time performance constraints

o Memory constraints

o Volatility of the virtual machine environment

o Required turnabout time

• Personnel attributes

o Analyst capability

o Software engineering capability

o Applications experience

o Virtual machine experience

o Programming language experience

• Project attributes

o Use of software tools

o Application of software engineering methods

o Required development schedule

Each of the 15 attributes receives a rating on a six-point scale that ranges from "very low"

to "extra high" (in importance or value). An effort multiplier from the table below applies

to the rating. The product of all effort multipliers results in an effort adjustment factor

(EAF). Typical values for EAF range from 0.9 to 1.4.

The Intermediate COCOMO formula now takes the form:

Effort=a1(KLOC)a2.EAF

 Tdev=b1(Effort)b2 Months

11

(3) Complete COCOMO model :

• A major shortcoming of both the basic and intermediate COCOMO models is that they

consider a software product as a single homogeneous entity. However, most large

systems are made up several smaller sub-systems. These sub-systems may have widely

different characteristics.

• The complete COCOMO model considers these differences in characteristics of the

subsystems and estimates the effort and development time as the sum of the estimates for

the individual subsystems. The cost of each subsystem is estimated separately. This

approach reduces the margin of error in the final estimate.

• The following development project can be considered as an example application of the

complete COCOMO model. A distributed Management Information System (MIS)

product for an organization having offices at several places across the country can have

the following sub-components:

• Database part

• Graphical User Interface (GUI) part

• Communication part

5.6 COCOMO II Model

• A hierarchy of software estimation models bearing the name COCOMO, for

COnstructive COst MOdel.

• The original COCOMO model became one of the most widely used and discussed

software cost estimation models in the industry.

• It has evolved into a more comprehensive estimation model, called COCOMOII.

• Like its predecessor, COCOMO II is actually a hierarchy of estimation models that

address the following areas:

• Application composition model.

o Used during the early stages of software engineering, when prototyping of user

interfaces, consideration of software and system interaction, assessment of

performance, and evaluation of technology maturity are paramount.

• Early design stage model.

o Used once requirements have been stabilized and basic software architecture has

been established.

• Post-architecture-stage model.

o Used during the construction of the software

• COCOMO II models require sizing information. Three different sizing options are

available as part of the model hierarchy:

o Object points, Function points and Lines of code(LOC).

• The COCOMO II application composition model uses object points.

• The object point is an indirect software measure that is computed using counts of the

number of

 (1) screens (at the user interface)

 (2) Reports

 (3) Components likely to be required to build the application.

12

• Each object instance (e.g., a screen or report) is classified into one of three complexity

levels (i.e., simple, medium, or difficult).

• In essence, complexity is a function of the number and source of the client and server

data tables that are required to generate the screen or report and the number of views or

sections presented as part of the screen or report.

• Once complexity is determined, the number of screens, reports, and components are

weighted according to the table illustrated in Figure .

FIG. Complexity weighting for object types.

• The object point count is then determined by multiplying the original number of object

instances by the weighting factor in the figure and summing to obtain a total object point

count.

• When component-based development or general software reuse is to be applied, the

percent of reuse (%reuse) is estimated and the object point count is adjusted:

where NOP is defined as new object points.

• To derive an estimate of effort based on the computed NOP value, a “productivity rate”

must be derived.

for different levels of developer experience and development environment maturity. Once the

productivity rate has been determined, an estimate of project effort is computed using

In more advanced COCOMO II models, a variety of scale factors, cost drivers,and adjustment

procedures are required.

FIG. Productivity rate for object points.

13

Example:

Describe in detail COCOMO model for software cost estimation. Use it to estimate the

effort required to build software for a simple ATM that produces 12 screens, 10 reports

and has 80 software components. Assume average complexity and average developer

maturity. Use application composition model with object points. (NOV/DEC 2016)

Answer:

COCOMO Model Explanation and answer for problem need to write

Formula Note:

Object Point = (Screen * Weighting factor) + (Report * Weighting factor) + (Component

* Weighting factor)

NOP = (Object Points) *

PROD =

Estimated Effort =

Productivity Rate for Object point:

Developer Experience

Environment Maturity /

Capability

Very Low

Very Low

Low

Low

Nominal

Nominal

High

High

Very High

Very High

PROD 4 7 13 25 50

Solution for question:

Object Type Count
Complexity Weight

Simple Medium Difficult

Screen 12 2

Report 10 5

3 GL Component 80 10

(100 - % reuse)

100

NOP

Person/Month

 NOP

PROD

14

Object Point = 12 *2 + 10*5 + 80*10 = 874

Assume 80% of reuse

NOP = (Object Points) *

 = 874 * {(100 -80)/100}

 = 874*0.2

NOP = 174.8

Nominal Developer Experience

So, PROD = 13

Estimated Effort =

 = 174.8/13

 Estimated Effort = 13.45

5.7. SCHEDULING AND TRACKING

• Software project scheduling is an action that distributes estimated effort across the

planned project duration by allocating the effort to specific software engineering tasks.

During early stages of project planning, a macroscopic schedule is developed.

• This type of schedule identifies all major process framework activities and the product

functions to which they are applied. Here, specific software actions and tasks are

identified and scheduled.

• Scheduling for software engineering projects can be viewed from two rather different

perspectives.

1. In the first, an end date for release of a computer-based system has already (and

irrevocably) been established.

2. The second view of software scheduling assumes that rough chronological bounds

have been discussed but that the end date is set by the software engineering organization.

Basic Principles

1) Compartmentalization. The project must be compartmentalized into a number of

manageable activities and tasks. To accomplish compartmentalization, both the product

and the process are refined.

2) Interdependency. The interdependency of each compartmentalized activity or task must

be determined. Some tasks must occur in sequence, while others can occur in parallel.

Some activities cannot commence until the work product produced by another is

available. Other activities can occur independently.

(100 - % reuse)

100

NOP

PROD

15

3) Time allocation. Each task to be scheduled must be allocated some number of work units

(e.g., person-days of effort). In addition, each task must be assigned a start date and a

completion date that are a function of the interdependencies and whether work will be

conducted on a full-time or part-time basis.

4) Effort validation. Every project has a defined number of people on the software team. As

time allocation occurs, you must ensure that no more than the allocated number of people

has been scheduled at any given time.

5) Defined responsibilities. Every task that is scheduled should be assigned to a specific

team member.

6) Defined outcomes. Every task that is scheduled should have a defined outcome. For

software projects, the outcome is normally a work product (e.g., the design of a

component) or a part of a work product. Work products are often combined in

deliverables.

7) Defined milestones. Every task or group of tasks should be associated with a project

milestone. A milestone is accomplished when one or more work products has been

reviewed for quality and has been approved.

Each of these principles is applied as the project schedule evolves.

5.7.1 The Relationship between People And Effort

In small software development project a single person can analyze requirements, perform design,

generate code, and conduct tests. As the size of a project increases, more people must become

involved.

Fig. The relationship between effort and delivery time

• There is a common myth that is still believed by many managers who are responsible for

software development projects: “If we fall behind schedule, we can always add more

programmers and catch up later in the project.” Unfortunately, adding people late in a

project often has a disruptive effect on the project, causing schedules to slip even further.

The people who are added must learn the system, and the people who teach them are the

same people who were doing the work. While teaching, no work is done, and the project

falls further behind.

• The Putnam-Norden-Rayleigh (PNR) Curve provides an indication of the relationship

between effort applied and delivery time for a software project. A version of the curve,

representing project effort as a function of delivery time, is shown in Figure 27.1. The

16

curve indicates a minimum value to that indicates the least cost for delivery (i.e., the

delivery time that will result in the least effort expended). As we move left of to (i.e., as

we try to accelerate delivery), the curve rises nonlinearly.

• As an example, we assume that a project team has estimated a level of effort Ed will be

required to achieve a nominal delivery time td that is optimal in terms of schedule and

available resources. Although it is possible to accelerate delivery, the curve rises very

sharply to the left of td. In fact, the PNR curve indicates that the project delivery time

cannot be compressed much beyond 0.75td. If we attempt further compression, the

project moves into “the impossible region” and risk of failure becomes very high. The

PNR curve also indicates that the lowest cost delivery option,

• The number of delivered lines of code (source statements), L, is related to effort and

development time by the equation:

where E is development effort in person-months, P is a productivity parameter that reflects a

variety of factors that lead to high-quality software engineering work (typical values for P range

between 2000 and 12,000), and t is the project duration in calendar months.

Rearranging this software equation, we can arrive at an expression for development effort E:

where E is the effort expended (in person-years) over the entire life cycle for software

development and maintenance and t is the development time in years.

 The equation for development effort can be related to development cost by the inclusion of a

burdened labor rate factor ($/person-year).

This leads to some interesting results. Consider a complex, real-time software project estimated

at 33,000 LOC, 12 person-years of effort. If eight people are assigned to the project team, the

project can be completed in approximately 1.3 years. If, however, we extend the end date to 1.75

years, the highly nonlinear nature of the model described in Equation (27.1) yields:

E _ ~ 3.8 person-years

• This implies that, by extending the end date by six months, we can reduce the number of

people from eight to four! The validity of such results is open to debate, but the

implication is clear: benefit can be gained by using fewer people over a somewhat longer

time span to accomplish the same objective.

Effort Distribution

• Each of the software project estimation techniques leads to estimates of work units (e.g.,

person-months) required to complete software development. A recommended distribution

of effort across the software process is often referred to as the 40–20–40 rule. Forty

percent of all effort is allocated to frontend analysis and design. A similar percentage is

applied to back-end testing. You can correctly infer that coding (20 percent of effort) is

deemphasized.

• This effort distribution should be used as a guideline only.

17

5.7.2. A Task Set for the Software Project

• A task set is a collection of software engineering work tasks, milestones, work products,

and quality assurance filters that must be accomplished to complete a particular project.

The task set must provide enough discipline to achieve high software quality. But, at the

same time, it must not burden the project team with unnecessary work.

• In order to develop a project schedule, a task set must be distributed on the project time

line. The task set will vary depending upon the project type and the degree of rigor with

which the software team decides to do its work.

• Software organizations encounter the following projects:

1. Concept development projects that are initiated to explore some new business concept or

application of some new technology.

2. New application development projects that are undertaken as a consequence of a specific

customer request.

3. Application enhancement projects that occur when existing software undergoes major

modifications to function, performance, or interfaces that are observable by the end user.

4. Application maintenance projects that correct, adapt, or extend existing software in ways that

may not be immediately obvious to the end user.

5. Reengineering projects that are undertaken with the intent of rebuilding an existing (legacy)

system in whole or in part.

• Even within a single project type, many factors influence the task set to be chosen.

• These include: size of the project, number of potential users, mission criticality,

application longevity, stability of requirements, ease of customer/developer

communication, maturity of applicable technology, performance constraints, embedded

and non embedded characteristics, project staff, and reengineering factors.

• When taken in combination, these factors provide an indication of the degree of rigor

with which the software process should be applied.

A Task Set Example

• Concept development projects are initiated when the potential for some new technology

must be explored. There is no certainty that the technology will be applicable, but a

customer (e.g., marketing) believes that potential benefit exists. Concept development

projects are approached by applying the following actions:

1.1 Concept scoping determines the overall scope of the project.

1.2 Preliminary concept planning establishes the organization’s ability to undertake the work

implied by the project scope.

1.3 Technology risk assessment evaluates the risk associated with the technology to be

implemented as part of the project scope.

1.4 Proof of concept demonstrates the viability of a new technology in the software context.

1.5 Concept implementation implements the concept representation in a manner that can be

reviewed by a customer and is used for “marketing” purposes when a concept must be sold to

other customers or management.

1.6 Customer reaction to the concept solicits feedback on a new technology concept and targets

specific customer applications.

18

5.7.3. Defining a Task Network:

• A task network, also called an activity network, is a graphic representation of the task

flow for a project.

• It is sometimes used as the mechanism through which task sequence and dependencies

are input to an automated project scheduling tool.

• In its simplest form (used when creating a macroscopic schedule), the task network

depicts major software engineering actions. Figure shows a schematic task network for a

concept development project.

• The concurrent nature of software engineering actions leads to a number of important

scheduling requirements. Because parallel tasks occur asynchronously, you should

determine intertask dependencies to ensure continuous progress toward completion.

• In addition, you should be aware of those tasks that lie on the critical path. That is, tasks

that must be completed on schedule if the project as a whole is to be completed on

schedule.

Fig. A task network for concept development

5.7.4. SCHEDULING

• Scheduling of a software project does not differ greatly from scheduling of any multitask

engineering effort. Therefore, generalized project scheduling tools and techniques can be

applied with little modification for software projects.

• The project scheduling methods that can be applied to software development are

1. Program evaluation and review technique (PERT)

2. critical path method (CPM)

• Both techniques are driven by information already developed in earlier project planning

activities:

Estimates of effort

 A decomposition of the product function

The selection of the appropriate process model and task set

Decomposition of the tasks that are selected.

19

• Interdependencies among tasks may be defined using a task network. Tasks, sometimes

called the project work breakdown structure (WBS), are defined for the product as a

whole or for individual functions.

• Both PERT and CPM provide quantitative tools that allow you to

(1) determine the critical path—the chain of tasks that determines the duration of the

project

(2) establish “most likely” time estimates for individual tasks by applying statistical

models

(3) calculate “boundary times” that define a time “window” for a particular task.

5.7.4.1 Time-Line Charts

• When creating a software project schedule, you begin with a set of tasks (the work

breakdown structure).

• If automated tools are used, the work breakdown is input as a task network or task

outline.

• Effort, duration, and start date are then input for each task. In addition, tasks may be

assigned to specific individuals.

• As a result of this input, a time-line chart, also called a Gantt chart, is generated.

• A time-line chart can be developed for the entire project.

• Alternatively, separate charts can be developed for each project function or for each

individual working on the project.

• Figure illustrates the format of a time-line chart.

• It depicts a part of a software project schedule that emphasizes the concept scoping task

for a word-processing (WP) software product.

• All project tasks (for concept scoping) are listed in the lefthand column.

• The horizontal bars indicate the duration of each task.

• When multiple bars occur at the same time on the calendar, task concurrency is implied.

The diamonds indicate milestones.

Fig. An example time-line chart

20

Fig. An example project table Tracking the Schedule

5.7.5. Tracking the schedule:

• The project schedule becomes a road map that defines the tasks and milestones to be

tracked and controlled as the project proceeds.

• Tracking can be accomplished in a number of different ways:

o Conducting periodic project status meetings in which each team member reports

progress and problems

o Evaluating the results of all reviews conducted throughout the software engineering

process

o Determining whether formal project milestones (the diamonds shown in Figure)

have been accomplished by the scheduled date

o Comparing the actual start date to the planned start date for each project task listed in

the resource table

o Meeting informally with practitioners to obtain their subjective assessment of

progress to date and problems on the horizon

o Using earned value analysis to assess progress quantitatively.

• When faced with severe deadline pressure, experienced project managers sometimes use

a project scheduling and control technique called time-boxing. The time-boxing strategy

recognizes that the complete product may not be deliverable by the predefined deadline.

Therefore, an incremental software paradigm is chosen, and a schedule is derived for

each incremental delivery.

• The tasks associated with each increment are then time-boxed. This means that the

schedule for each task is adjusted by working backward from the delivery date for the

increment.

21

Tracking Progress for an OO Project

• Although an iterative model is the best framework for an OO project, task parallelism

makes project tracking difficult.

• In general, the following major milestones can be considered “completed” when the

criteria noted have been met.

Technical milestone: OO analysis completed

• All classes and the class hierarchy have been defined and reviewed.

• Class attributes and operations associated with a class have been defined and reviewed.

• Class relationships have been established and reviewed.

• A behavioral model has been created and reviewed.

• Reusable classes have been noted.

Technical milestone: OO design completed

• The set of subsystems has been defined and reviewed.

• Classes are allocated to subsystems and reviewed.

• Task allocation has been established and reviewed.

• Responsibilities and collaborations have been identified.

• Attributes and operations have been designed and reviewed.

• The communication model has been created and reviewed.

Technical milestone: OO programming completed

• Each new class has been implemented in code from the design model.

• Extracted classes (from a reuse library) have been implemented.

• Prototype or increment has been built.Technical milestone: OO testing

• The correctness and completeness of OO analysis and design models has been reviewed.

• A class-responsibility-collaboration network has been developed and reviewed.

• Test cases are designed, and class-level tests have been conducted for each class.

• Test cases are designed, and cluster testing is completed and the classes are integrated.

• System-level tests have been completed.

5.8. EARNED VALUE ANALYSIS

• A technique for performing quantitative analysis of progress is called earned value

analysis (EVA).

• The earned value system provides a common value scale for every [software project]

task, regardless of the type of work being performed. The total hours to do the whole

project are estimated, and every task is given an earned value based on its estimated

percentage of the total.

• Stated even more simply, earned value is a measure of progress. It enables you to assess

the “percent of completeness” of a project using quantitative analysis rather than rely on a

gut feeling.

• Fleming and Koppleman argue that earned value analysis “provides accurate and reliable

readings of performance from as early as 15 percent into the project.”

To determine the earned value, the following steps are performed:

1) The budgeted cost of work scheduled (BCWS) is determined for each work task

represented in the schedule. During estimation, the work (in person-hours or person-

days) of each software engineering task is planned. Hence, BCWSi is the effort

planned for work task i. To determine progress at a given point along the project

22

schedule, the value of BCWS is the sum of the BCWSi values for all work tasks that

should have been completed by that point in time on the project schedule.

2) The BCWS values for all work tasks are summed to derive the budget at completion

(BAC). Hence,

3) Next, the value for budgeted cost of work performed (BCWP) is computed. The

value for BCWP is the sum of the BCWS values for all work tasks that have actually

been completed by a point in time on the project schedule.

• The distinction between the BCWS and the BCWP is that the former represents the

budget of the activities that were planned to be completed and the latter represents the

budget of the activities that actually were completed.” Given values for BCWS, BAC,

and BCWP, important progress indicators can be computed:

• SPI is an indication of the efficiency with which the project is utilizing scheduled

resources. An SPI value close to 1.0 indicates efficient execution of the project schedule.

SV is simply an absolute indication of variance from the planned schedule.

It Provides an indication of the percentage of work that should have been completed by time t.

It provides a quantitative indication of the percent of completeness of the project at a

given point in time t.

It is also possible to compute the actual cost of work performed (ACWP). The value for

ACWP is the sum of the effort actually expended on work tasks that have been completed by a

point in time on the project schedule. It is then possible to compute

A CPI value close to 1.0 provides a strong indication that the project is within its defined

budget. CV is an absolute indication of cost savings (against planned costs) or shortfall at a

particular stage of a project.

Earned value analysis illuminates scheduling difficulties before they might otherwise be

apparent. This enables you to take corrective action before a project crisis develops.

5.9. PROJECT PLAN

 Plan-driven or plan-based development is an approach to software engineering where the

development process is planned in detail. A project plan is created that records the work to be

done, who will do it, the development schedule, and the work products.

Project and organization, plans normally include the following sections:

1. Introduction This briefly describes the objectives of the project and sets out the

constraints (e.g., budget, time, etc.) that affect the management of the project.

23

2. Project organization This describes the way in which the development team is

organized, the people involved, and their roles in the team.

3. Risk analysis This describes possible project risks, the likelihood of these risks arising,

and the risk reduction strategies that are proposed.

4. Hardware and software resource requirements This specifies the hardware and

support software required to carry out the development. If hardware has to be bought,

estimates of the prices and the delivery schedule may be included.

5. Work breakdown This sets out the breakdown of the project into activities and identifies

the milestones and deliverables associated with each activity. Milestones are key stages

in the project where progress can be assessed; deliverables are work products that are

delivered to the customer.

6. Project schedule This shows the dependencies between activities, the estimated time

required to reach each milestone, and the allocation of people to activities. The ways in

which the schedule may be presented are discussed in the next section of the chapter.

7. Monitoring and reporting mechanisms This defines the management reports that

should be produced, when these should be produced, and the project monitoring

mechanisms to be used.

Plan Description

Quality plan Describes the quality procedures and standards

that will be used in a project.

Validation plan Describes the approach, resources, and

schedule used for system validation.

Configuration management plan Describes the configuration management

procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements, costs,

and effort.

Staff development plan Describes how the skills and experience of the

project team members will be developed.

5.10. THE PLANNING PROCESS

Project planning is an iterative process that starts when you create an initial project plan during

the project startup phase. UML activity diagram shows a typical workflow for a project planning

process. Plan changes are inevitable.

24

• At the beginning of a planning process, you should assess the constraints affecting the

project. These constraints are the required delivery date, staff available, overall budget,

available tools, and so on.

• In conjunction with this, you should also identify the project milestones and deliverables.

Milestones are points in the schedule against which you can assess progress, for example,

the handover of the system for testing.

• Deliverables are work products that are delivered to the customer (e.g., a requirements

document for the system).

• The process then enters a loop. You draw up an estimated schedule for the project and the

activities defined in the schedule are initiated or given permission to continue.

• The outcome of a review may be a decision to cancel a project. This may be a result of

technical or managerial failings but, more often, is a consequence of external changes

that affect the project. The development time for a large software project is often several

years.

5. 8 . RISK MANAGEMENT

Risks – Definition

The risk denotes the uncertainty that may occur in the choices due to past actions and risk is

something which causes heavy losses.

Definition of risk Management:

Risk management refers to the process of making decisions based on an evalution of factors that

threats to the business.

Various activities that are carried out for risk management are-

1. Risk Identification 2. Risk Projection 3. Risk Refinement 4. Risk Mitigation,

Monitoring and Management

Reactive Risk Management

• project team reacts to risks when they occur

• mitigation—plan for additional resources in anticipation of fire fighting

• fix on failure—resource are found and applied when the risk strikes

• crisis management—failure does not respond to applied resources and project is in

jeopardy

Proactive Risk Management

• formal risk analysis is performed

• organization corrects the root causes of risk

✓ TQM concepts and statistical SQA

✓ examining risk sources that lie beyond the bounds of the software

✓ developing the skill to manage change

Software Risks

There are two characteristics of risks

1. The risk may or may not happen. It shows uncertainty of the risks.

2. When risks occur, unwanted consequences or losses will occur.

Types of risks:

1. Project risks:

Project risks arise in the software development process then they basically affect

budget, schedule, staffing, resources and requirements.

25

When project risks become severe then the total cost of project gets increased.

2. Technical risks:

These risks affect quality and timeliness of the project. If technical risks become

reality then potential design implementation, interface, verification and

maintenance problems gets created. Technical risks occur when problem becomes

harder to solve.

3. Business risks

When feasibility of software product is in suspect then business risks occur.

Business risks can be further categorized as

i. Marker risk

ii. Strategic risk

iii. Sales risk

iv. Management risk

v. Budget risk

4. Known risks

These are identified after evaluating the project plan. These risks can be identified

from other sources such as environment in which the product get developed,

unrealistic deadlines, poor requirement specification and software scope. There

are two types of known risks – Predictable and unpredictable risks.

Predictable risks Those risks that can be identified in advance based on past

experience

Unpredictable risks are those that cannot be guessed earlier.

Risk Management Paradigm

5.9. Risk Identification

Risk identification can be defined as the efforts taken to specify threats to the project plan. Risk

identification can be done bby identifying the known and predictable risks.

• Product size—risks associated with the overall size of the software to be built or

modified.

• Business impact—risks associated with constraints imposed by management or the

marketplace.

• Customer characteristics—risks associated with the sophistication of the customer and

the developer's ability to communicate with the customer in a timely manner.

• Process definition—risks associated with the degree to which the software process has

been defined and is followed by the development organization.

26

• Development environment—risks associated with the availability and quality of the tools

to be used to build the product.

• Technology to be built—risks associated with the complexity of the system to be built

and the "newness" of the technology that is packaged by the system.

• Staff size and experience—risks associated with the overall technical and project

experience of the software engineers who will do the work.

Assessing Project Risk-I

• Have top software and customer managers formally committed to support the project?

• Are end-users enthusiastically committed to the project and the system/product to be

built?

• Are requirements fully understood by the software engineering team and their customers?

• Have customers been involved fully in the definition of requirements?

• Do end-users have realistic expectations?

Assessing Project Risk-II

• Is project scope stable?

• Does the software engineering team have the right mix of skills?

• Are project requirements stable?

• Does the project team have experience with the technology to be implemented?

• Is the number of people on the project team adequate to do the job?

• Do all customer/user constituencies agree on the importance of the project and on the

requirements for the system/product to be built?

Risk Components

• performance risk—the degree of uncertainty that the product will meet its requirements

and be fit for its intended use.

• cost risk—the degree of uncertainty that the project budget will be maintained.

• support risk—the degree of uncertainty that the resultant software will be easy to correct,

adapt, and enhance.

• schedule risk—the degree of uncertainty that the project schedule will be maintained and

that the product will be delivered on time.

5.10.Risk Projection

• Risk projection, also called risk estimation, attempts to rate each risk in two ways

✓ the likelihood or probability that the risk is real

✓ the consequences of the problems associated with the risk, should it occur.

• The are four risk projection steps:

✓ establish a scale that reflects the perceived likelihood of a risk

✓ delineate the consequences of the risk

✓ estimate the impact of the risk on the project and the product,

✓ note the overall accuracy of the risk projection so that there will be no

misunderstandings.

Building a Risk Table

• A risk table provides us with a simple technique for risk projection

27

• A risk factor that has a high impact but a very low probability of occurrence should not

absorb a significant amount of management time.

• High-impact risks with moderate to high probability and low-impact risks with high

probability should be carried forward into the risk analysis steps that follow.

• All risks that lie above the cutoff line should be managed.

• Risk probability can be determined by making individual estimates and then developing a

single consensus value.

• Risk drivers can be assessed on a qualitative probability scale that has the following

values: impossible, improbable, probable, and frequent.

 Figure 5.10 Sample risk table prior to sorting

Figure 5.11 Risk and management concern

28

Assessing Risk Impact:

Three factors affect the consequences of a risk

i) Nature ii) Scope iii) Timing

• The nature of the risk indicates the problems that are likely if it occurs.

• The scope of a risk combines the severity with its overall distribution

• Finally, the timing of a risk considers when and for how long the impact will be felt.

• Steps to determine the overall consequences of a risk:

 (1) Determine the average probability of occurrence value for each risk component.

 (2) Determine the impact for each component based on the criteria shown.

 (3) Complete the risk table and analyze the results.

• The overall risk exposure, RE, is determined using the following relationship [Hal98]:

 RE = P x C

where

P is the probability of occurrence for a risk, and C is the cost to the project should the risk occur.

5.11. RISK MITIGATION, MONITORING, AND MANAGEMENT (RMMM)

• An effective strategy must consider three issues:

i) Risk avoidance

ii) Risk monitoring

iii) Risk management and contingency planning.

• If a software team adopts a proactive approach to risk, avoidance is always the best

strategy. This is achieved by developing a plan for risk mitigation.

• To mitigate this risk, you would develop a strategy for reducing turnover. Among the

possible steps to be taken are:

o Meet with current staff to determine causes for turnover (e.g., poor working

conditions, low pay, and competitive job market).

o Mitigate those causes that are under your control before the project starts.

o Once the project commences, assume turnover will occur and develop techniques

to ensure continuity when people leave.

o Organize project teams so that information about each development activity is

widely dispersed.

• As the project proceeds, risk-monitoring activities commence.

• The project manager monitors factors that may provide an indication of whether the risk

is becoming more or less likely.

• In addition to monitoring these factors, a project manager should monitor the

effectiveness of risk mitigation steps

• Risk management and contingency planning assumes that mitigation efforts have failed

and that the risk has become a reality.

• For a large project, you should adapt the Pareto 80–20 rule to software risk.

• Experience indicates that 80 percent of the overall project can be accounted for by only

20 percent of the identified risks. The work performed during earlier risk analysis steps

will help you to determine which of the risks reside in that 20.

• Software safety and hazard analysis are software quality assurance activities that focus

on the identification and assessment of potential hazards that may affect software

negatively and cause an entire system to fail.

29

 THE RMMM PLAN

• A risk management strategy can be included in the software project plan, or the risk

management steps can be organized into a separate risk mitigation, monitoring, and

management plan RMMM).

• The RMMM plan documents all work performed as part of risk analysis and is used by

the project manager as part of the overall project plan.

• Some software teams do not develop a formal RMMM document. Rather, each risk is

documented individually using a risk information sheet (RIS) .

• The RIS is maintained using a database system so that creation and information entry,

priority ordering, searches, and other analysis may be accomplished easily.

• Once RMMM has been documented and the project has begun, risk mitigation and

monitoring steps commence. Risk mitigation is a problem avoidance activity.

 Risk monitoring is a project tracking activity with three primary objectives:

(1) To assess whether predicted risks do, in fact, occur;

(2) To ensure that risk aversion steps defined for the risk are being properly applied; and

(3) To collect information that can be used for future risk analysis.

9.12 CASE TOOLS:

What is CASE?

The Computer Adied Software Engineering (CAES) tools automate the project management

activities, manage all the work products.

Importance of CASE Tools

CASE provides the software engineer with the ability to automate manual activities and to

improve engineering insight. Like computer-aided engineering and design tools that are used by

30

engineers in other disciplines, CASE tools help to ensure that quality is designed in before the

product is built.

9.12.1. BUILDING BLOCKS FOR CASE

• Computer aided software engineering can be as simple as a single tool that supports a

specific software engineering activity or as complex as a complete "environment" that

encompasses tools, a database, people, hardware, a network, operating systems, standards,

and myriad other components. This communication creates an integrated environment.

FIGURE : CASE building blocks

The bottom most layer consists of environment architecture and hardware platform. The

environment architecture consists of collection of system software and human work pattern that

is applied during the software engineering process.

• A set of Probability services connects the CASE tools with the integration framework.

• The integration framework is a collection of specialized programs which allows the

CASE tools to communicate with the database and to create same look and feel for the

end-user. Using probability services CASE tools can communicate with the cross

platform elements.

• At the top of this building block a collection of CASE tools exist. CASE tools basically

assist the software engineer in developing a complex component.

• CASE tools can exist in variety of manner. A single CASE tool can be used, or a

collection of CASE tools may exists which acts as some package. The CASE tools may

serve as a bridge between other tools.

FIGURE :Integration options

31

At the high end of the integration spectrum is the integrated project support environment (IPSE).

Standards for each of the building blocks have been created. CASE tool vendors use IPSE

standards to build tools that will be compatible with the IPSE and therefore compatible with one

another.

5.12.1 A TAXONOMY OF CASE TOOLS

To create an effective CASE environment, various categories of tools can be developed.

CASE tools can be classified by

1. By function or use

2. By user type

3. By stage in software engineering process

The taxonomy of CASE tools is given below.

1. Business process engineering tools.

 The primary objective for tools in this category is to represent business data objects,

their relationships, and how these data objects flow between different business areas within a

company.

2. Process modeling and management tools.

If an organization works to improve a business (or software) process, it must first

understand it. Process modeling tools (also called process technology tools) are used to represent

the key elements of a process so that it can be better understood.

3. Project planning tools.

Tools in this category focus on two primary areas: software project effort and cost

estimation and project scheduling.

4. Risk analysis tools.

Identifying potential risks and developing a plan to mitigate, monitor, and manage them

is of paramount importance in large projects. Risk analysis tools enable a project manager

to build a risk table by providing detailed guidance in the identification and analysis of

risks.

5. Project management tools.

The project schedule and project plan must be tracked and monitored on a continuing basis..

Tools in the category are often extensions to project planning tools.

6. Requirements tracing tools.

The objective of requirements tracing tools is to provide a systematic approach to the

isolation of requirements, beginning with the customer request for proposal or specification.

7. Metrics and management tools.

Software metrics improve a manager's ability to control and coordinate the software

engineering process and a practitioner's ability to improve the quality of the software that is

produced.

8. Documentation tools.

Most software development organizations spend a substantial amount of time developing

documents, and in many cases the documentation process itself is quite inefficient. For this

reason, documentation tools provide an important opportunity to improve productivity.

9. System software tools.

CASE is a workstation technology. Therefore, the CASE environment must

accommodate high-quality network system software, object management services, distributed

component support, electronic mail, bulletin boards, and other communication capabilities.

32

10. Quality assurance tools.

The majority of CASE tools that claim to focus on quality assurance are actually metrics

tools that audit source code to determine compliance with language standards. Other tools

extract technical metrics in an effort to project the quality of the software that is being built.

11. Database management tools.

Database management software serves as a foundation for the establishment of a CASE

database (repository) that we have called the project database.

12. Software configuration management tools.

Software configuration management lies at the kernel of every CASE environment. Tools

can assist in all five major SCM tasks—identification, version control, change control,

auditing, and status accounting.

13. Analysis and design tools.

The models contain a representation of data, function, and behavior (at the analysis level)

and characterizations of data, architectural, component-level, and interface design.

14. PRO/SIM tools. PRO/SIM (prototyping and simulation) tools

It provide the software engineer with the ability to predict the behavior of a real-time

system prior to the time that it is built.

15. Interface design and development tools.

Interface design and development tools are actually a tool kit of software components

(classes) such as menus, buttons, window structures, icons, scrolling mechanisms, device

drivers, and so forth.

16. Prototyping tools.

A variety of different prototyping tools can be used. Screen painters enable a software

engineer to define screen layout rapidly for interactive applications.

17. Programming tools.

The programming tools category encompasses the compilers, editors, and debuggers that

are available to support most conventional programming languages.

18. Web development tools.

The activities associated with Web engineering are supported by a variety of tools for

WebApp development. These include tools that assist in the generation of text, graphics,

forms, scripts, applets, and other elements of a Web page.

19. Integration and testing tools.

In their directory of software testing tools, Software Quality Engineering defines the

following testing tools categories:

• Data acquisition.

• Static measurement

• Dynamic measurement

• Simulation

• Test management

• Cross-functional tools

20. Static analysis tools.

 Static testing tools assist the software engineer in deriving test cases. Three different

types of static testing tools are used in the industry:

i. Code-based testing tools accept source code (or PDL) as input and perform a

number of analyses that result in the generation of test cases.

33

ii. Specialized testing languages (e.g., ATLAS) enable a software engineer to write

detailed test specifications that describe each test case and the logistics for its

execution.

iii. Requirements-based testing tools isolate specific user requirements and suggest

test cases (or classes of tests) that will exercise the requirements.

21. Dynamic analysis tools.

Dynamic testing tools interact with an executing program, checking path coverage,

testing assertions about the value of specific variables, and otherwise instrumenting the

execution flow of the program.

22. Test management tools.

Tools in this category manage and coordinate regression testing, perform comparisons

that ascertain differences between actual and expected output, and conduct batch testing,test

management tools also serve as generic test drivers.

23.Client/server testing tools.

The c/s environment demands specialized testing tools that exercise the graphical user

and the network communications requirements for client and server.

23. Reengineering tools.

Tools for legacy software address a set of maintenance activities that currently absorb a

significant percentage of all software-related effort. The reengineering tools category can

be subdivided into the following functions:

• Reverse engineering

• Code restructuring

• On-line system reengineering

5.11.2 Workbenches:

CASE workbench is a set of tools which supports a particular phase in the software process.

These tools work together to provide the complete support to the software development activity.

In the workbench common services are provided which are used by all the tools. Some kind of

data integration is also supported.

Advantages:

1. it is available at low cost

2. there is productivity improvement dur to support of workbenches

3. it results in standardized documentation for software system

Drawbacks:

1. These systems are closed environments with tight integration with tools.

2. The import and export facilities for various types of data are limited.

3. It is difficult to adapt method for specific organizational need.

5.11.3. Integrated CASE Environment:

• A software engineering team uses CASE tools, corresponding methods, and a process

framework to create a pool of software engineering information.

• The integration framework facilitates transfer of information into and out of the pool.

• To accomplish this, the following architectural components must exist: a database must be

created (to store the information); an object management system must be built (to manage

changes to the information); a tools control mechanism must be constructed (to coordinate

the use of CASE tools); a user interface must provide a consistent pathway between actions

34

made by the user and the tools contained in the environment. Most models of the integration

framework represent these components as layers.

• The user interface layer (in Figure) incorporates a standardized interface tool kit with a

common presentation protocol.

• The interface tool kit contains software for human/computer interface management and a

library of display objects. Both provide a consistent mechanism for communication between

the interface and individual CASE tools.

• The presentation protocol is the set of guidelines that gives all CASE tools the same look

and feel. Screen layout conventions, menu names and organization, icons, object names, the

use of the keyboard and mouse, and the mechanism for tools access are all defined as part of

the presentation protocol.

FIGURE :Architectural model for the integration framework

• The object management layer (OML) performs the configuration management functions.

• The shared repository layer is the CASE database and the access control functions that enable

the object management layer to interact with the database. Data integration is achieved by the

object management and shared repository layers.

5.11.4. THE CASE REPOSITORY

Various components of CASE tools are-

1. Central Rpository:

• The central repository contains the common, integrated and consistent information

• The central repository acts like a data dictionary

• It contains product specification, requirement documents, project information and reports.

2. Upper Case Tools:

• Uppercase tool focus on the planning, analysis phase and sometimes the design phase of

the software development lifecycle.

3. Lower case Tools:

• Lower CASE software tool that directly supports the implementation and integration

tasks.

35

4. Integrated CASE Tools:

• These are type of tools that integrate both upper and lower CASE, for example making it

possible to design a form and build the database to support it at the same time.

• An automated system development environment that provides numerous tools to create

diagrams, forms and reports.

• It also offers analysis, reporting and code generation facilities and seamlessly shares abd

integrates data across and between tools.

5.11.4.1. The Role of the Repository in CASE

The repository for an I-CASE environment is the set of mechanisms and data structures that

achieve data/tool and data/data integration. It provides the obvious functions of a database

management system, but in addition, the repository performs or precipitates the following

functions:

• Data integrity includes functions to validate entries to the repository, ensure consistency

among related objects, and automatically perform "cascading" modifications when a

change to one object demands some change to objects related to it.

• Information sharing provides a mechanism for sharing information among multiple

developers and between multiple tools, manages and controls multiuser access to data

and locks or unlocks objects so that changes are not inadvertently overlaid on one

another.

• Data/tool integration establishes a data model that can be accessed by all tools in the I-

CASE environment, controls access to the data, and performs appropriate configuration

management functions.

• Data/data integration is the database management system that relates data objects so that

other functions can be achieved.

• Methodology enforcement defines an entity-relationship model stored in the repository

that implies a specific paradigm for software engineering

• Document standardization is the definition of objects in the database that leads directly to

a standard approach for the creation of software engineering documents.

ANNA UNIVERSITY QUESTION AND ANSWERS

PART A

UNIT V

1. Highlight the activities in Project Planning. (APR/MAY 2015)

• Software scope

• Resources

• Project estimation

• Decomposition

2. State the importance of scheduling activity in project management. (APR/MAY

2015)

Accurate task duration estimates are defined in order to stabilizes customer relations and

maintain team morale. With defined task durations, the team knows what to expect and

what is expected of them.

3. Define risk and list its types. (NOV/DEC 2015)

Robert Charette presents a conceptual definition of risk: First, risk concerns future

happenings. second, that risk involves change, such as in changes of mind, opinion,

36

actions, or places. . . . [Third,] risk involves choice, and the uncertainty that choice itself

entails. Thus paradoxically, risk, like death and taxes, is one of the few certainties of life.

4. Mr.Koushan is the project manager on a project to build a new cricket stadium in

Mumbai, India. After six months of work, the project is 27% complete. At the start

of the project, Koushan estimated that it would cost $50,000,000, What is the earned

value? (NOV/DEC 2015)

 Budget at completion, BAC. Hence, BAC = 50,000,000

Project Percent Complete = (EV/BAC) * 100

27 /100 = (EV/50,000,000) x 100

27 = EV/50,000,000

EV = 27 X 50,000,000

EV = 1350000000

Estimate at completion (EAC) = BAC/CPI (The estimated total cost at project

completion.)

Variance at completion (VAC)= BAC-EAC (The estimated variance between actual

total cost and planned total cost at project completion).

5. Will exhaustive kiting guarantee that the program is 100% correct? (APR/MAY

2016)

No. There are many times a program runs correctly as designed, but I think there is no such thing

as 100% reliability even after very exhaustive testing. Many things within a person's computer

can cause a program to not function as designed even if it works for most other users of that

program.

6. What is risk management? (NOV/DEC 2016)

 Risk management—assesses risks that may affect the outcome of the project or the quality

of the product.

7. How is productivity and cost related to function points? (NOV/DEC 2016)

Inconsistent productivity rates between projects may be an indication that a

standard process is not being followed. Productivity is defined as the ratio of

inputs/outputs. For software, productivity is defined as the amount of effort required to

deliver a given set of functionality.

The true cost of software is the sum of all costs for the life of the project

including all expected enhancement and maintenance costs. The more invested up front

should reduce per unit cost for future enhancement and maintenance activities. The unit

cost can be hours/FP or $/FP.

8. What are the different types of productivity estimation measures? (APR/MAY

2017)

• Function Point and Function Point Analysis

• COCOMO

• Cyclomatic Complexity

9. List two customers related and technology related risks. (APR/MAY 2017)

Customer related risk

37

• Have you worked with the customer in the past?

• Does the customer have a solid idea of what is required?

• Technology related risk

• Is the technology to be built new to your organization?

• Do the customer’s requirements demand the creation of new algorithms or input or output

technology?

10. List out the principles of project scheduling. (NOV/DEC 2017)

-Compartmentalization

- Interdependency

- Time allocation

- Effort validation

- Defined responsibilities

- Defined outcomes

- Defined milestones

11. Write a note on Risk Information Sheet (RIS). (NOV/DEC 2017)

The Risk Information Sheet documents a Risk that may during the life-time of a specific

Software Project. Risk Information Sheets can be used in to supplement or in the place of a

formal Risk Mitigation, Monitoring and Management (RMMM) Plan.

12. List two advantages of COCOMO model. APR/MAY 2019

• COCOMO Model is used to estimate the project cost

• COCOMO is easy to interpret, predictable and accurate.

13. Compare project risk and Business risk. APR/MAY 2019

• Project risk - that the building costs may be higher than expected because of an

increase in materials or labor costs.

• Business risk - even if the stadium is constructed on time and within budget that

it will not make money for the business.

14. What is budgeted cost of work scheduled? NOV/DEC 2019

The budgeted cost of work scheduled (BCWS) is determined for each work task

represented in the schedule. During estimation, the work (in person-hours or person-days)

of each software engineering task is planned.

BCWS= sum of BCWSi

Hence, BCWSi is the effort planned for work task i.

15. Write any two differences between “known risk” and predictable risk”. NOV/DEC

2019

Known risk: It can be uncovered after careful evaluation project plan, business and

technical environment in which the project is being developed, other reliable information

resources. E.g. unrealistic delivery date, lack of software poor development environment.

Predictable risks are those risks that can be identified in advance based on pas project

experience. For example: Experienced and skilled staff leaving the organization in

between.

javascript:false;w=window.open(%20'http://www.rspa.com/docs/riskmmm.html'%20);w.focus();

38

ANNA UNIVERSITY QUESTION AND ANSWERS

PART B

1. State the need for Risk Management and explain the activities under Risk Management.

 (APRIL/MAY 2015) (NOV/DEC 2015) (APRIL/MAY 2017)

2. Write short notes on the following (APRIL/MAY 2015)

(i) Project Scheduling

(ii) Project Timeline chart and Task network

3. Discuss about COCOMO II model for software estimation.

 (NOV/DEC2015)(APRIL/MAY 2017)(NOV/DEC 2019)

4. Write short notes on the following : (2 x8 = 16) (APRIL/MAY 2016)

(i) Make/Buy decision

(ii) COCOMO II

5. An application has the following: 10 low external inputs, 8 high external outputs, 13 low

internal logical files, 17 high external interface files, 11 average external inquires and

complexity adjustment factor of 1.10. What are the unadjusted and adjusted function

point counts ? (APRIL/MAY 2016)

6. Discuss Putnam resources allocation model. Derive the time and effort equations.

 (APRIL/MAY 2016)

7. Suppose you have a budgeted cost of a project as Rs. 9,00,000. The project is to be

completed in 9 months. After a month, you have completed 10 percent of the project at a

total expense of Rs. 1,00,000. The planned completion should have been 15 percent. You

need to determine whether the project is on-time and on-budget? Use Earned Value

analysis approach and interpret. (NOV/DEC 2016)

Answer:

Budget at Completion (BAC) = 9,00,000

Actual Cost (AC) = 1,00,000

Planned Completion = 15%

Actual Completion = 10%

Planned Value (PV) = Planned Completion(%) * BAC

 = (15/100) * 900000

 =1, 35,000

Earned Value (EV) = Actual Completion * BAC

 =(10/100) *900000 = 90,000

Cost Performance Index (CPI) = EV/AC

 = 90000/100000

 CPI = 0.9

Scheduled performance index SPI = EV/PV

 = 90000 / 1, 35,000

 = 0.66

Therefore, CPI is close to 1 (i.e., 0.9). This means that 90% of work is performed.

39

But, SPI is less than 1, hence the project team is complexity only 0.66 (approximately 40 mins).

So the project is not on time, correction action should be taken.

8. Consider the following Function point components and their complexity. If the total

degree of influence is 52, find the estimated function points. (NOV/DEC 2016)

Function type Estimated count Complexity

 ELF 2 7

ILF 4 10

EQ 22 4

EO 16 5

EI 24 4

Answer:

Function type Estimated count Complexity Product of Count and Complexity

External Interface File – ELF 2 7 14

Internal Logical file – ILF 4 10 40

External Inquiries – EQ 22 4 88

External Output - EO 16 5 80

External Inputs – EI 24 4 96

Count Total 318

FP = UFP *TCF

TCF = (0.65+0.01*DI)

FP = 318 * (0.65 +0.01 * 52)

FP= 372.06

9. Describe in detail COCOMO model for software cost estimation. Use it to estimate the

effort required to build software for a simple ATM that produces 12 screens, 10 reports

and has 80 software components. Assume average complexity and average developer

maturity. Use application composition model with object points. (NOV/DEC 2016)

10. List the features of LOC and FP based estimation models. Compare the two models and

list the advantage of over one other. APR/ MAY 2019

11. Define risk. List types of risk and explain phases in risk management. APR/ MAY 2019,

NOV/DEC 2019

