

 UNIT

 OVERVIEW AND INSTRUCTION

Functional Units – Basic Operational Concepts – Performance – Instructions: Language of the

Computer – Operations, Operands – Instruction representation – Logical operations – decision

making – MIPS Addressing

COMPUTER ARCHITECTURE

 Computer Architecture deals with designing and implementation of instruction

set, information format and memory addressing techniques of a computer.

 Computer Organization refers to the operational units and their interconnections

that describe the function and design of various units of a computer.

 A Computer Architect performs instruction set design, and memory addressing

modes.

1.1 EIGHT IDEAS

In the last 60 years of computer design, computer architects have proposed 8 great

ideas. They are,

1. Design for Moore's Law

2. Use Abstraction to Simplify Design

3. Make the Common Case Fast

4. Performance via Parallelism

5. Performance via Pipelining

6. Performance via Prediction

7. Hierarchy of Memories

8. Dependability via Redundancy

1.1.1 Design for Moore’s law

 Developed by Gordon E. Moore, co-founder of Intel.

 The design of a computer takes many years.

1

Overview and Instruction 1.2

 The design of a system may start with an existing technology

 At the end of the product, the technology may grow and the product has to be

reworked.

 Hence, computer architects must imagine about the future technology (technology

at the finish time of the project) rather than designing with the existing one.

 Moore's Law graph is given by

 The graph represents the concept: “up and to the right”, which means that the

technology changes rapidly.

1.1.2 Use Abstraction to Simplify Design

 Computer architects and programmers use abstractions (Generalization of

concepts) to represent the design at several levels.

 The detail represented at each level hides the details of lower levels.

 This may improve productivity since abstraction simplifies design and thus the

design time decreases.

 This provides a simpler design model due to abstraction.

 Example

o Operating systems hide the details involved in handling input and output

devices.

o High-level languages hide the details of the sequence of instructions need

to accomplish a task.

1.1.3 Make the common case fast

 The performance shall be improved by improving the common case rather than

developing the rare case.

 This makes the design process simpler and faster.

 The concept is often called the Amdahl's law.

 Example

o It is easier to design a sports car having a capacity of one / two passengers

than to design a minivan with a capacity of six /seven.

1.3 Computer Architecture

1.1.4 Performance via parallelism

 Parallelism is a process of performing multiple jobs simultaneously.

 A processor engages in several activities in the execution of an instruction.

 Each instruction is executed at the same time to increase the performance.

 Larger problems are often subdivided into smaller units and are solved

concurrently through parallelism.

1.1.5 Performance via pipelining

 Pipelining is an extension of the idea of parallelism.

 Pipeline is a set of jobs connected in series, where output of one element is the

input of the next one.

 Here, the independent elements are executed in parallel to improve performance.

 Rather than processing each instruction sequentially, every instruction is split up

into a sequence of steps so that different steps can be executed concurrently and

in parallel, to improve performance.

1.1.6 Performance via prediction

 Branch statements may cause unconditional wait, reducing the performance.

Overview and Instruction 1.4

 This can be reduced by using branch predictor that guesses the path taken by a

branch statement before it is actually known.

 The branch predictor improves the flow of execution in the instruction pipeline.

 It is performed by predicting the outcome of the condition test and then start

executing the indicated instruction rather than waiting for correct answer.

 Performance is improved if the guesses are reasonably accurate and the penalty of

wrong guesses is not too severe.

1.1.7 Hierarchy of memories

 Users need the memory to be very fast, large, and cheap.

 Computer has a range of memory units with cache and register memories being

fast and small and secondary storage memories being slow and large.

 Cache memory is a small high-speed memory that holds recently accessed data.

 The memory hierarchy is given by,

https://en.wikipedia.org/wiki/Branch_(computer_science)
https://en.wikipedia.org/wiki/Instruction_pipeline

1.5 Computer Architecture

1.1.8 Dependability via redundancy

 Computers need to be dependable since any device can fail.

 Hence several redundant modules (copies of data) can be maintained that helps the

user to recover data when a failure occurs.

 One of the finest ideas in data storage is the RAID concept (Redundant Array of

Inexpensive Disks).

 Data is stored redundantly on multiple disks that services us to recover them back.

1.2 COMPONENTS OF A COMPUTER SYSTEM

Concept

 A computer is an information processing machine.

 It consists of a number of interrelated components that work together to convert

data into information.

 The processing is carried out electronically, usually with no intervention from a

human user.

 Input unit accepts the information from the user using input devices.

 The information received is either stored in the computer’s memory for later

reference or immediately used by the arithmetic and logic unit to perform the

desired operations.

 The information is processed using the instructions (software) stored in the

computer.

 The results are sent back to the user through the output unit.

 All the above actions are coordinated by the control unit.

 The list of instructions that performs a task is called a program, which is stored in

the memory.

Overview and Instruction 1.6

Components of a computer

1. Hardware component

2. Software component

1.2.1 Hardware component

The electronic components interconnected in the computer system constitute the

hardware components of a system.

A computer consists of the following functional units.

 Input Unit

 Central Processing Unit

o Memory Unit – Primary memory, secondary memory, Cache memory,

Registers

o Arithmetic and logic Unit

o Control Unit

 Output Unit

Functional units of a Computer

ALU

Memory unit

Control unit

Output unit Input unit

1.7 Computer Architecture

1.2.1.1 Input Unit

 They are electromechanical devices that allow the user to provide information into

the computer for analysis and storage inside the CPU.

 Input device captures information and translates it into a form that can be

processed by the CPU.

 Computer accepts input in two ways. They are,

o Manual entry the information is entered using keyboard or mouse.

o Direct entry the information is fed into the computer automatically from

a source document like barcode.

 Examples for Input devices: Keyboard, pointing devices like Mouse, Joystick.

 Whenever a key is pressed, the corresponding letter or digit is automatically

translated into its corresponding binary code

 It is then transmitted over a cable to either the computer memory or the processor.

1.2.1.2 Central Processing Unit (CPU)

 It is referred as ‘the brain of a computer system’.

 It converts data (input) into meaningful information (output).

 It is a highly complex, extensive set of electronic circuitry which executes stored

program instructions called software.

 It controls all internal and external devices and performs arithmetic and logic

operations

 It controls the usage of main memory to store data and instructions and controls the

sequence of operations.

 It consists of three main subsystems.

o Arithmetic and Logic Unit (ALU)

o Memory Unit

o Control Unit (CU)

1.2.1.3 Arithmetic Logic Unit (ALU)

It contains the electronic circuitry that executes all arithmetic and logical operations on

the data. ALU comprises of two units

Overview and Instruction 1.8

Arithmetic Unit

 Contains the circuitry that is responsible for performing the actual computing and

carrying out the arithmetic calculations (+, -, *, /).

 To perform these operations, operands from the main memory is bought into

processor

 After performing the operation results are stored in the memory location

 It can perform these operations at very high speed.

Logic Unit

 It enables the CPU to perform logical operations based on the instructions provided

to it.

 Example: Logical comparison between data. (Logical Operations : =, <, >

conditions)

1.2.1.4 Memory Unit

 Memory refers to the electronic holding place for instructions and data.

 Memory also stores the intermediate results and output.

 Memory is mainly classified into two categories: primary and secondary.

Primary Memory

 It is also knows as main memory/ internal memory/ in-built memory.

 It stores data and instructions for processing.

 It is an integral component of CPU.

 It is a fast memory that operates at electronic speeds.

 The memory contains large no of semiconductor storage cells.

 Each cell carries 1 bit of information.

 The Cells are processed in a group of fixed size called Words.

 To provide easy access to any word in a memory, a distinct address is associated

with each word location.

 Addresses are numbers that identify successive locations.

 The number of bits in each word is called the word length.

 The word length ranges from 16 to 64 bits.

 It can be classified as random access memory (RAM) and Read only memory

(ROM).

1.9 Computer Architecture

Differences between RAM and ROM

Features RAM ROM

Stands for Random Access Memory Read-only memory

Volatility RAM is volatile

i.e. its contents are lost when the

device is powered off.

It is non-volatile

i.e. its contents are retained even

when the device is powered off.

Types The two main types of RAM are static

RAM and dynamic RAM.

The types of ROM include PROM,

EPROM and EEPROM.

Use RAM allows the computer to read

data quickly to run applications. It

allows reading and writing.

ROM stores the program required to

initially boot the computer. It only

allows reading.

Definition Random Access Memory or RAM is a

form of data storage that can be

accessed randomly at any time, in any

order and from any physical location.

Read-only memory or ROM is also a

form of data storage that cannot be

easily altered or reprogrammed.

Secondary Memory

 It is also known as auxiliary memory or external memory.

 It is used for storing software programs and data.

 It is less expensive and stores huge volume of data than primary memory.

 The data and instructions stored on such devices are permanent in nature.

 It can be removed only if the user wants or if the device is destroyed.

 Example: Pen drive, Floppy Disk, Compact Disk, External hard disk, etc.

Differences between primary and secondary memory

Sl.

No.

Primary Memory Secondary Memory

1. It is also called as Main or Internal

or Built-in memory.

It is also known as Secondary or Auxiliary or

External memory.

2. It is present inside the computer. It is present external to the computer that can

be connected.

Overview and Instruction 1.10

3. It is smaller in size and holds

limited data.

It is larger in size and holds massive amount

of data.

4. Due to its locality, it transfers data

faster.

Since it is outside the CPU, it is slower when

compared to primary memory.

5. It is costlier than secondary

memory.

It is cheaper than main memory.

6. Example: RAM, ROM Example: Disk drives, optical disks, magnetic

tape drives.

Cache memory

 Cache is a high speed memory located in between RAM and the CPU.

 It increases the speed of processing since it holds the most frequently used data.

 It is highly expensive and smaller in size.

 It is present in two or three forms in a system – L1, L2 L3 cache memories.

 The memory ranges from 256 KB to 2 MB.

Register memory

 Registers are special-purpose, high speed temporary memory units

 It holds various types of information such as data, instructions, addresses and the

intermediate result of calculations.

 It holds the information that the CPU is currently working on.

 It is said to be “CPU’s working memory” or an additional storage location that

offers the advantage of speed.

 Registers are of two types: general purpose and special purpose registers.

o General purpose registers

 These are a set of registers that store temporary data and

addresses by the programmer.

 It includes floating point registers, constant registers, vector

registers etc.

o Special purpose registers

 These are registers that are meant for performing special

purposes by the CPU.

1.11 Computer Architecture

 They include Program counter (PC), accumulator (ACC),

instruction register (IR), memory address register (MAR),

memory buffer register (MBR), memory data register (MDR)

etc.

 Program counter contains the address of the next instruction

to be processed.

 Accumulator stores the result of various arithmetic and

logical operations.

 Instruction register holds the current instruction that is

fetched.

 MAR contains the address of the next location in the

memory that is to be accessed.

 MBR stores the temporary data and MDR stores the

operands of the expression processed.

1.2.1.5 Control Unit

 This unit checks the correctness of sequence of operations.

 It fetches the instructions from the primary memory, interprets them and

ensures correct execution of the program.

 It also controls the input and output devices

 Directs the overall functioning of the other units of the computer.

 Control Unit

o Supervises and controls the path of information that runs over the

processor.

o Organizes the various activities of those units that lie inside it.

o Guides the flow of data through the different parts of the computer.

o Interprets the instructions.

o Regulates the time controls of the processor.

o Sends and receives control signals from various peripheral devices.

1.2.1.6 Output Devices

 Output Devices take the machine-coded output results from the CPU and

convert them into a form that is easily readable by human beings.

Overview and Instruction 1.12

 The output can be obtained in two forms: hardcopy and softcopy.

o The physical form of the output is called as hardcopy.

o The output which resides in the memory is called as softcopy.

 Example: Monitors, Printers, Plotters and audio response etc.

1.2.2 Software Component

 Software is the collection of instructions written in a computer language.

 It is responsible for controlling, integrating and managing the hardware

components of a computer and to accomplish a specific task.

 Software instructs the hardware to perform the desirable task to be done.

Types

 System Software

 Application Software

1.2.2.1 System Software

 System software is a program that manages and supports the computer

resources and operations of a computer system.

 It executes various tasks such as processing data and information, controlling

hardware components, and allowing users to use application software.

o It is more transparent and less noticed by the users.

o They usually interact with the hardware or the applications.

o Basic functionality includes file management, visual display, keyboard

input, etc.

 Example: Operating systems, device drivers, language translators, text editors,

utilities, loaders, linkers, etc.

Operating System

 An operating system (OS) is a collection of software that manages computer

hardware resources and provides common services for computer programs.

 The operating system is a vital component of the system software in a

computer system. Application programs require an operating system to

function.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Software_utility

1.13 Computer Architecture

 The functions of OS include Disk Access, Memory Management, Task

Scheduling, and User Interfacing.

 Provides a software platform on top of which other programs run.

 Example: MS –DOS, WINDOWS, LINUX, UNIX.

Device Drivers

 These are system programs which are responsible for proper functioning of

devices.

 Whenever a new device is added to a computer system the driver must be

installed before the device is used.

 It acts as a translator between the device and the program that uses the device.

 It is not an independent program; it assists or is assisted by the OS for proper

functioning.

 Example: printer, monitor, mouse, keyboard.

Programming Language Translators

 The language translators transform the instructions prepared by programmers

in a high level language into the form which can be understood by the

computer.

 Translators are divided into 3 categories: compiler, interpreter, and assembler.

 Compiler

 Compiler translates the high level programming language into machine

language.

 It translates source code into object code.

 It can be used for larger applications.

 Example: C, C++, PASCAL compilers.

 Interpreter

 Interpreters translate the source code into object code in line-by-line

manner, without looking at the entire program.

 Programs produced by compilers run much faster than interpreter.

 It is easier to modify the source code.

 Example: Basic.

Overview and Instruction 1.14

 Assembler

 Assemblers translate assembly language program into machine

language.

System Utility

 These programs perform day-to-day tasks related to the maintenance of the

computer system.

 They are used to support, enhance and secure existing programs and data in the

computer system.

 They are generally small programs having specific task to perform.

1.2.2.2 Application Software

 This is the most used software by the users.

 It is used to accomplish specific tasks.

 Application software consists of a single program (Ex. Notepad) or a collection of

programs (software package) (Ex. Microsoft Office Suite).

Some of the most commonly used application software are as follows.

Word Processors

 A word processor is software used to compose, format, edit and print electronic

documents.

 We can include pictures, graphs, and charts and allows changes in alignments,

margins, font, and color and also allows spell checking.

 Example: Microsoft word, word perfect

Spreadsheets

 A spreadsheet application is a rectangular grid, which allows text, numbers and

complex functions to be entered into a matrix of thousands of individual cells.

 Applications include payroll processing, financial record maintenance.

 Example: Microsoft Excel, Lotus 1-2-3.

Image Editors

 Image editor programs are designed specifically for capturing, creating, editing

and manipulating images.

1.15 Computer Architecture

 The programs provide a variety of special features for creating and altering

images.

 They also enable the user to create and superimpose layers, import and export

graphic files, adjust an image and improve its appearance

 Example: Adobe Photoshop, Adobe Corel Draw.

Database Management Systems

 Database Management software is a collection of computer programs that

supports structuring of the database in a standard format

 It provides tools for data input, verification, storage, retrieval, query and

manipulation in an efficient manner.

 It controls the security and integrity of the database from unauthorized access.

 Example: Oracle, FoxPro.

Presentation Applications

 A Presentation is a means of assessment, which requires presentation providers

to present their work orally in the presence of an audience.

 It combines both visual and verbal elements.

 Presentation software allows the user to create presentations by producing

slides/hand-outs for the presentation of projects.

 Example: Microsoft PowerPoint.

Desktop Publishing Software

 The desktop publishing is a technique of using a personal computer to design

images and pages, and assemble type and graphics, then using a printer to

output the assembled pages onto paper.

 This software is used for creating magazines, books etc.

 Example: Adobe PageMaker, Quark Express.

1.3 BUS STRUCTURE

 A group of lines that serves as the connecting path from one device to another

is called a Bus.

 A Bus may be defined as a set of communication lines/ data paths that carry the

data, address or control signal among various units of a CPU.

Overview and Instruction 1.16

 A memory/ system bus interconnects the processor with memory units and I/O

units.

 When a word of data is transferred between units, all bits are transferred in

parallel.

 The bits are transferred simultaneously over many wires, or lines, with one bit

per line.

 There are 2 types of Bus structures. They are,

o Single Bus Structure

o Multiple Bus Structure

Single Bus Structure

 All the components (I/O, memory and processor) are connected to a common

bus.

 It allows only one transfer at a time because only two units can actively use the

bus at any given time.

 Advantage of using single bus structure is

o Low cost

o High flexibility in attaching peripheral devices.

 The only problem is that the performance is low due to slow data transfer.

Multiple Bus Structure

 To achieve high performance, multiple bus structures are used.

 This allows two or more transfers to be carried out at the same time,

concurrently.

 This provides a better performance but at an increased cost.

1.17 Computer Architecture

 The devices connected to a bus vary widely in their speed of operation.

 Hence buffer registers are used to hold information during transfers.

 Thus, the buffer register prevents a high speed processor from being locked to

a slow I/O device during data transfer.

 This allows the processor to switch rapidly from one device to another.

1.4 TECHNOLOGIES FOR BUILDING PROCESSORS AND MEMORY

 A computer architect must plan the design based on the future technology

changes

 The designer must be aware of rapid changes in implementation technology.

 There are four implementation technologies to be considered. They are,

o Integrated Circuit logic technology

o Semiconductor DRAM

o Magnetic disk technology

o Network technology

Integrated circuit logic technology

 A transistor is a small electronic device made of semiconductor material that

carries current and amplify.

 It was used in II generation computers and was very slow.

 Due to its low capacity, Integrated circuits(IC) were introduced.

 The IC technology emerged with the fabrication of transistors on a single chip.

 The Small Scale Integration (SSI) technology involved few transistors (< 100)

on a silicon chip.

 Then emerged the Medium Scale Integration (MSI) composing hundreds of

transistors on a chip.

Overview and Instruction 1.18

 The III generation computers relied on SSI and MSI technology.

 The IV generation computers used Large Scale Integration (LSI) and Very

Large Scale Integration (VLSI) technology that was composed of thousands of

transistors on a single chip.

 The V generation computers being dependent on the Ultra Large Scale

Integration (ULSI) technology that possesses several millions of transistors on

a chip.

 The transistor density increases by about 35% per year.

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit 900

1995 Very large-scale integrated circuit 2,400,000

2005 Ultra large-scale integrated circuit 6,200,000,000

Semiconductor DRAM (dynamic random-access memory)

 DRAM is a semiconductor memory device that stores each bit of data in a

separate passive electronic component like capacitor.

 Capacity increases by about 40% per year every two years.

Magnetic disk technology

 Magnetic storage is the storage of data on a magnetized medium.

 The density increased by about 30% per year before 1990, and increased to

100% per year in 1996.

 It has again dropped back to 30% per year since 2004.

 But still, disks are still 50 –100 times cheaper per bit than DRAM.

Network technology

 In order to provide communication from one computer to another, LAN (Local

Area Network) like Ethernet, MAN (Metropolitan Area Network), WAN

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Magnet

1.19 Computer Architecture

(Wide Area Network) like internet and Wireless Network like Wi-Fi, Bluetooth

were introduced.

 Networking technologies allow data sharing, communication

 Although technology improves continuously, the impact of these improvements

can be in distinct leaps.

1.5 PERFORMANCE

 The prime factors of the success of a computer are the speed and cost.

 Performance depends on how fast machine instructions can be brought into the

processor for execution and how fast they can be executed.

 The performance of a computer is dependent on

o the design of the compiler

o the machine instruction set

o the hardware

Terminologies

Response time

 It is the time between the start and completion of a task.

 It refers the execution time of a set of instructions.

 The faster execution of instructions leads to reduction in response time, thus

increases throughput.

Throughput

 It is the total work done in a unit time period.

Elapsed Time

 The total time required to execute the program is called the elapsed time.

 It depends on all the units in computer system.

Processor Time

 The period in which the processor is active is called the processor time.

 It depends on hardware involved in the execution of the machine instruction.

Overview and Instruction 1.20

Clock

 The Processor circuits are controlled by a timing signal called a clock.

Clock Cycle

 The clock defines a regular time interval called clock cycle.

Bandwidth

 The amount of data that can be transferred from one point to another in a given

time period is called bandwidth.

 It is expressed in bits per second (bps).

Clock cycles per instruction (CPI)

 Average number of clock cycles per instruction for a program or program

fragment.

CPU clock cycles = Instructions for a program × Average clock cycles per instruction

Execution of an Instruction

 At the start of execution all program instructions and the required data are

stored in the main memory.

 As execution proceeds, instructions are fetched one by one over the bus into

the processor, and a copy is placed in the cache.

 When the execution of an instruction calls for data located in the main

memory, the data are fetched and a copy is placed in the cache.

 A Program will be executed faster if the movement of instruction and data

between the main memory and the processor is minimized, which is achieved

by using the Cache.

 To execute a machine instruction, the processor divides the action to be

performed into a sequence of basic steps; each step can be completed in one

clock cycle.

Clock Rate, R =1/P (measured in cycles per second)

where, P Length of one clock cycle

Basic Performance Equation

Let

T the processor time required to execute a program.

1.21 Computer Architecture

N the actual number of instruction executions

S Average number of basic steps needed to execute one machine instruction

If the clock rate is R cycles/second, the program execution time is given by

T = (N*S)/R

where, TPerformance Parameter

RClock Rate in cycles/sec

NActual number of instruction executions

SAverage number of basic steps needed to execute one machine instruction

To achieve high performance, the computer designer must reduce the value of T,

which means reducing N and S, increasing R.

N, S<R

The value of N is reduced if the source program is compiled into fewer machine

instructions. The value of S is reduced if instructions have a smaller number of basic steps to

perform or if the execution of instructions is overlapped.

Pipelining

A considerable improvement in performance can be achieved by overlapping the

execution of successive instructions. This technique is called pipelining.

Superscalar Operation

Multiple instruction pipelines can be implemented in the processor that allows several

instructions can be executed in parallel by creating parallel paths. This mode of operation is

called the Superscalar execution.

Clock Rate

There are 2 possibilities to increase the clock rate(R).They are,

 Improving the integrated Chip(IC) technology makes logic circuits faster,

which reduces the time needed to complete a basic step. This allows the clock

period, P, to be reduced and the clock rate, R, to be increased.

 Reducing the amount of processing done in one basic step also helps to reduce

the clock period P.

Performance Improvement

 To maximize the performance, minimize the response time or execution time

for some task.

Overview and Instruction 1.22

 The performance of the computer is directly related to performance and

execution time for computer, X.

1
X

X

Performance
ExecutionTime

 For two computers X and Y, the performance of X is greater than Y then we

have

X YPerformance Performance

1 1

X YExecutionTime ExecutionTime

Example

Time taken to run a program = 10s on A, 15s on B

Relative performance =Execution TimeB / Execution TimeA

 =15s/10s

 =1.5

So A is 1.5 times faster than B

Measuring Performance

 Measured in terms of seconds per program

 Defined as the total time taken to complete a task. The task includes

o disk access

o memory access

o I/O activities

o Execution of Instructions

 This time taken is known as wall-clock time / response time.

CPU Time

 Time the CPU spends computing for particular task and does not include the

time waiting for I/O.

 This is also called as CPU execution time

Y XExecutionTime ExecutionTime

1.23 Computer Architecture

Formula

 operating sy

()

)stem(

CPU time spent in the program
CPU time

CPU time spent in the

user CPU time

system CPU time

Example

Let

 User CPU time = 90.7 seconds

 System CPU time = 12.9 seconds

 Elapsed time = 2 minutes and 39 seconds (159 seconds)

 CPU time

90.7 12.9
CPU Time 0.65

159

Performance Equation I

CPU executiontime for a program CPU clock cycles for a program Clock cycletime

Clock rate is inverse of clock cycle time

 CPU Execution time

CPU clock cycles for a program
CPU executiontime for a program

Clock rate

 Performance is improved by reducing the length of the clock cycle or

number of clock cycle required for a program

 Execution time depends on the number of instructions in a program

 Number of clock cycles

CPU clock cycles Instructions for a program Averageclock cycles per instruction

 Clock cycles per instruction (CPI)

o Average number of clock cycles in which each instruction takes to

execute

Overview and Instruction 1.24

Performance Equation II

 CPU Execution Time in terms of instruction count, CPI and clock cycle

time

CPU Execution time = Instruction count CPI Clock cycle time

 (OR)

Instruction Count CPI
CPU Execution Time

Clock Rate

1.6 POWER WALL

 Processors run at high clock speed and it generates more heat and consumes

high power to improve performance.

 If clock rate increases, power consumption also gets increased.

Power Issues

 Power has to be provided to the processor and it has to be distributed around

the chip.

 Power consumed by a device dissipates it in terms of heat and it must be

removed.

Power Consumption

 In CMOS chips, dynamic power refers to the dominant energy consumption in

switching transistors.

 The power required per transistor is proportional to the product of the load

capacitance of the transistor, the square of the voltage, and the frequency of

switching.

 Power consumed by CPU is given by

Pdynamic = CV2F

 where,

 P is Power

 C is capacitive loading

 V is voltage applied

 F is frequency running

1.25 Computer Architecture

 Mobile devices care about battery life more than power, so energy is the proper

metric to be considered.

 Energy is measured in joules.

Energydynamic = Capacitive load x Voltage2

 In CMOS, static power is becoming an important issue because leakage current

flows even when a transistor is off.

 Thus, increasing the number of transistors increases power even if they are

turned off, and leakage current increases in processors with smaller transistor

sizes.

 As a result, very low power systems are even gating the voltage to inactive

modules to control loss due to leakage.

Power static = Current static x Voltage

1.7 UNIPROCESSORS TO MULTIPROCESSORS

 Because of limitation forced by power consumption there is a change in the

design of microprocessor.

 Rather than continuing to decrease the response time of a single program

running on the single processor, designer came up with multiple processors

per chip.

 Intention is to reduce the throughput rather than decreasing the response

time.

 To reduce the confusion between the words processor and microprocessor,

processors are referred as core such microprocessors are known as”

multicore microprocessor”.

 Example

o Dual core microprocessor is a chip that contains two processors or

cores.

o Quad core microprocessor is a chip that contains four processors or

cores.

 In previous days, programmers rely on hardware, architecture and compiler

to double their performance of the program.

 Now-a-days, programmers rewrite their programs to support parallelism.

Overview and Instruction 1.26

1.7.1 Multi-Processor

 Computers that contain several processor units are called multiprocessor

system.

 These systems either execute a number of different application tasks in

parallel or execute subtasks of a single large task in parallel.

 All processors have access to all memory locations and they are called

shared memory multiprocessor systems.

 The high performance of these systems comes with much increased

complexity and cost.

1.7.2 Advantage of Multiprocessor System

 Improves cost or performance ratio of the system.

 Tasks are divided among several modules/processors.

 If failure occurs, it is cheaper and easier to find and replace the

malfunctioning processor.

 If fault occurs in one processor, the others processor can take the

responsibility of performing the task of failure processor.

1.8 INSTRUCTIONS

 An instruction is a piece of a program that performs an operation issued by the

computer processor.

 Every instruction is defined by the instruction set of the processor.

1.27 Computer Architecture

1.8.1 Instruction Set

 A list of all the instructions with all their variants that can be executed by a

processor is called instruction set.

 It is a group of commands defined by the processor in machine understandable

language.

Example

 Arithmetic instructions Add, Subtract, Multiply and Divide

 Logic instructions And (Conjunction) , Or (Disjunction), Not (negation)

 Control flow instructions Goto, if ... goto, call, and return

 Data handling and memory instructions Read, Write, Copy, Set, Load, Store

Instruction Sets are differentiated based on

 Operand storage in the CPU (data can be stored in a stack structure or in

registers)

 Number of explicit operands per instruction (zero, one, two, and three address)

 Operand location (instructions can be classified as register-to-register, register-

to-memory or memory-to-memory)

 Operations

 Type and size of operands (operands can be addresses, numbers, or even

characters)

Format

An instruction has three fields, namely-

 Operation code (Opcode) specifies which type of operation to be performed.

 Mode Field specifies the way the operand or effective address is determined.

 Address Field specifies memory address or a processor register.

1.8.2 Types of Instruction format

0 – Operand instruction

 These instructions have no address fields.

 They are also called as Zero address instruction or Stack instruction.

 They do not have source / destination addresses. The address is implicit.

Opcode Mode field Address field

Overview and Instruction 1.28

 All the operations are done using stack data structure.

 The operands are present on the top of the stack.

 In other words, the absolute address of the operand is held in a special

register that is automatically incremented (or decremented) to point to

the location of the top of the stack.

 Syntax

 Stack_Operation / Operation

 Example

To perform C = A + B, the instructions are,

PUSH A //Inserts the data A onto the stack

PUSH B //Inserts the data B onto the stack

ADD //Adds the value of A and B

POP C //Gets the added value from the stack

 Advantages

o It is a simple model of expression evaluation.

o The instructions are short.

 Disadvantages

o A stack can't be randomly accessed.

o This makes it hard to generate effective code.

o Since the same stack is used for every operation, it creates a

bottleneck.

1 – Operand instruction

 These instructions contain one address field.

 They are also known as one address instruction or Accumulator

instruction.

 Accumulator (ACC) register is used for manipulation of data.

o All the operations are carried out between the accumulator

register and a memory operand.

 Syntax

Operation Destination_Location

1.29 Computer Architecture

 Example

ADD A is equivalent to ACC ←ACC + A

Where, A Destination operand

The Arithmetic Operation, C = A + B is performed as,

 LOAD A

ADD B

STORE C

 Advantage

o The instructions are short.

 Disadvantage

o The accumulator is only a temporary storage so memory traffic

is the highest for this approach also.

2 - Operand Instructions

 These instructions contain two address fields namely, the source and the

destination.

 Each address field specifies either a processor register or a memory.

 They are also called as two – Address instructions or general purpose

register instructions.

 Syntax

Operation Destination_Location, Source_Location

 Example

To perform C = A + B, an intermediate register R1 is used as,

LOAD R1, A

ADD R1, B

STORE C, R1

or

LOAD R1,A

LOAD R2, B

ADD R1, R2

STORE C, R1

Overview and Instruction 1.30

 Advantage

o Makes code generation easy.

 Disadvantage

o All operands must be named leading to longer

instructions.

3 - Operand instruction

 These instructions contain three address fields.

 They are also called as three address instructions or general

purpose register instruction.

 Register address field may be a processor register or a memory

operand.

 Syntax

Operation Source1_Location, Source2_location,

 Destination_Location

 Example: To perform C = A + B, the code is

ADD A, B, C

or

MOVE R1, A

ADD C, R1,B

or LOAD R1, A

LOAD R2, B

ADD R3, R1, R2

STORE C, R3

 Advantage

o Makes code generation easy.

 Disadvantage

o All operands must be named leading to longer

instructions.

1.8.3 Instruction Execution

The four phases in instruction execution are

 Fetch the Instruction from memory - the instruction is fetched from the memory

location whose address is in Program Counter (PC) and is placed in the instruction

register.

1.31 Computer Architecture

 Decode the Instruction.

 Execute the Instruction - the operands are fetched from the memory or processor

registers, and the operation is performed.

 Store the result in the destination location.

1.8.4 MIPS Instruction Formats

 R - Format

o Opcode = 0

o Three register operands: rs, rt, and rd

 rs and rt - sources

 rd - destination

o shamt field - used only for shifts

o funct field - The ALU function (add, sub, and, or, and slt) and is

decoded by the ALU control design

ALU control lines Function

000 AND

001 OR

010 Add

110 Subtract

111 Set on less than

 I - Format

o For load and store instructions

 Opcode = 35(for load) and Opcode = 43(for store)

 rs - the base register

Overview and Instruction 1.32

 rt is

 For loads, the destination register for the

loaded value

 For stores, the source register whose value

should be stored into memory

 The memory address is computed as

Memory address = base register +16-bit address field

o For branch instructions

 Opcode = 4

 rs and rt are the source registers that are compared

for equality

 The branch target address is computed as

Target address = PC + (signed-extended 16-bit offset address

 << 2)

 J – Format

o Opcode = 2

o The destination address is computed as

Target address = PC [31-28] (offset address << 2)

1.9 LOGICAL INSTRUCTIONS

 Instructions that perform logical operations and manipulate Boolean values are

called as logical instructions.

 They include Logical AND, OR, and NOT.

1.9.1 AND instruction

 It contains three register operands.

 These instructions perform bitwise AND operation between the source registers

and stores the result in the destination register.

 It is also called as conjunction operation.

1.33 Computer Architecture

 Syntax

Operation destination, source1, source2

 Example

AND R3, R1, R2 //Equivalent to R3 = R1 & R2

1.9.2 OR instruction

 OR instruction contains three register operands.

 It performs bitwise OR operation between the source registers and stores the result

in the destination register.

 This is also called as disjunction operation.

 Syntax

Operation destination, source1, source2

 Example

OR R3, R1, R2 //Equivalent to R3 = R1 | R2

1.9.3 NOR instruction

 These instructions have three register operands.

 It performs bitwise NOR operation (OR operation followed by NOT) between two

source registers and stores the result in the destination register.

 Syntax

Operation destination, source1, source2

 Example

NOR R1, R2, R3 // Equivalent to R1 = ~ (R2 | R3)

1.9.4 AND Immediate (ANDI) instruction

 This instruction contains three register operands.

 It performs bitwise AND operation between a source register and specified

immediate value and stores the result in the destination register.

 Syntax

Operation destination, source1, Immediate_Value

 Example

AND R1, R2, Immediate_Value // Equivalent to R1 = R2 & Imm_Val

Overview and Instruction 1.34

1.9.5 OR Immediate (ORI) instruction

 This instruction has three register operands.

 It perform bitwise OR operation between a source registers and specified

immediate value and finally stores the result in the destination register.

 Syntax

Operation destination, source1, Immediate_Value

 Example

 OR $1, $2, immediate_Value //Equivalent to R1 = R2 | Imm_Val

1.9.6 Shift Left Logical instruction

 This instruction contains three register operands.

 It shifts the given register value left by the shift amount listed in the instruction and

stores the result in a third register.

 Syntax

Operation destination, source1, constant

 Example

SLL R1, R2, 10 // Equivalent to R1 = R2 << 10

1.9.7 Shift Right Logical instruction

 This instruction has three register operands.

 It shifts the specified register value right by the shift amount listed in the

instruction and stores the result in a third register.

 Syntax

Operation destination, source1, Constant

 Example

SRL R1, R2, 10 // Equivalent to R1 = R2 >> 10

1.9.8 Shift Right Arithmetic instruction

 This instruction possesses three register operands.

 It shifts a register value right by the shift amount listed in the instruction and places

the result in a third register.

1.35 Computer Architecture

 Syntax

Operation destination, source1, Constant

 Example

SRA R1, R2, 10 // Equivalent to R1 = R2 >> 10

1.10 CONTROL OPERATIONS

 Control statements are those that take a decision out of or without a condition.

 These instructions perform a test by evaluating a logical condition.

 Depending on the outcome of the condition, it modifies the PC to take the

branch or continue to the next instruction.

 Control operations are of two types.

 Conditional branch Performs branching based on a condition

 Unconditional branch Performs branching without any condition

1.10.1 Conditional Branch

An instruction that directs the computer to another part of the program based on the

results of a comparison is called conditional branching.

1.10.1.1 BEQ Instruction

 BEQ stands for branch on equal.

 The instruction checks if the two register values are equal. If so, it branches to the

specified offset.

 Syntax

Operation source1, source2, offset

 Example

BEQ R1, R2, OFFSET // Equivalent to

if (R1==R2) goto L1;

 a=b+c;

L1: a=b-c;

Overview and Instruction 1.36

1.10.1.2 BNE Instruction

 BNE stands for branch on not equal.

 The instruction performs branching if the two registers values are not equal.

 Syntax

Operation source1, source2, offset

 Example

BNE R1, R2, OFFSET // Equivalent to

 if (R1 != R2) goto L1;

 a=b+c;

L1: a=b-c;

1.10.2 Unconditional Branch

An instruction that directs the computer to another part of the program without any

test/condition operation is called unconditional branching.

1.10.2.1 J Instruction

 J stands for jump.

 It Jumps to the specified address.

 Syntax

Operation offset

 Example

J Target_Address;

1.10.2.2 JAL Instruction

 JAL stands for Jump and link.

 The instruction jumps to the specified address and stores the return address.

 Syntax

Operation offset

 Example

JAL Target_Address;

1.37 Computer Architecture

1.10.2.3 JR Instruction

 JR stands for Jump Register.

 It jumps to the address contained in the specified register R.

 Syntax

Operation source

 Example

JAL R1;

1.11 MIPS ADDRESSING AND ADDRESSING MODES

 There are various ways to specify the address of the operands for any given

operations such as load, add or branch. The different ways of determining the

address of the operands specified in an instruction are called addressing modes. In

other words, addressing mode specifies how address is determined which may be

either memory or register.

 MIPS addressing modes are as follows:

 Immediate addressing: The operand is a constant within the instruction itself

 Register addressing: The operand is a register

 Base or displacement addressing: The operand is at the memory location

whose address is the sum of a register and a constant in the instruction

 PC-relative addressing: The branch address is the sum of the PC and a

constant in the instruction

 Pseudo-direct addressing: The jump address is the 26 bits of the instruction

concatenated with the upper bits of the PC

1.11.1 Immediate Addressing

 The instruction contains an immediate operand that has a constant value or an

expression.

Overview and Instruction 1.38

 Instruction

op rs rt Immediate

 The operand is embedded inside the instruction

 Since the instruction does not require an extra memory access to fetch the operand,

it executes faster.

 Example:

1.11.2 Register Addressing

 It is the simplest addressing modes of all. The instruction works on register

operands. It works much faster than other addressing modes because it does not

involve with memory access.

 The register address is specified as a part of the instruction.

Effective Address, EA = Register Address, A

 Instruction

 Opcode Register Address

 Example

 Register

Operand

1.39 Computer Architecture

1.11.3 Base Addressing

 The address of the operand is the sum of the immediate and the value in a register

(rs). 16-bit immediate is a two’s complement number

 Effective Address = A + (R)

 Examples:

1.11.4 PC Relative Addressing

 For relative addressing, the implicitly referenced register is the program counter (PC).

 PC-relative addressing is used for conditional branches. The address is the sum of the

program counter and a constant in the instruction.Example

Overview and Instruction 1.40

1.11.5 Pseudo Direct Addressing

In Register Direct Addressing, the value the (memory) effective address is in a

register. It is also called “Indirect Addressing”. Special case of base addressing where offset is

0. Used with the jump register instructions.

Example: jr $31

Direct Addressing: the address is “the immediate”. 32-bit address cannot be embedded in a

32-bit instruction.

Pseudodirect addressing: 26 bits of the address is embedded as the immediate, and is used as

the instruction offset within the current 256MB (64MWord) region defined by the MS 4 bits

of the PC.

Example: j Label

1.41 Computer Architecture

 UNIT

 ARITHMETIC OPERATIONS

Addition and Subtraction – Multiplication – Division – Floating Point Representation –

Floating Point Operations – Subword Parallelism

2.1 ALU

 An arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and

logical operations.

 The ALU is a fundamental building block of the central processing unit (CPU)/

processor of a computer.

 The processors are composed of very powerful and very complex ALUs.

 The ALU was proposed by the famous mathematician, John von Neumann in 1945.

 The ALU works on two types of numbers

1. Fixed point numbers

2. Floating point numbers

 The basic operations are implemented in hardware level. ALU is having collection

of two types of operations, namely -

1. Arithmetic operations

2. Logical operations

Consider an ALU having 4 arithmetic operations and 4 logical operations.

 To identify any one of these four logical operations or four arithmetic operations,

two control lines are needed.

 Also to identify the any one of these two groups- arithmetic or logical, another

control line is needed.

 So, with the help of three control lines, any one of these eight operations can be

identified.

 Arithmetic operations include addition, subtraction, multiplication and division.

Overview and Instruction 1.42

 The four logical operations include OR, AND, NOT & EX-OR.

 We need three control lines to identify any one of these operations.

 The input combination of these control lines are shown below.

 Control line C2 is used to identify the group: logical or arithmetic,

o C2=0: arithmetic operation

o C2=0: logical operation.

 Control lines C0 and C1are used to identify any one of the four operations in a

group. One possible combination is given here.

 A 3 x 8 decoder is used to decode the instruction.

 The block diagram of the ALU is shown.

Figure 2.1: Block Diagram of the ALU

1.43 Computer Architecture

 The ALU has got two input registers named as A and B and one output storage

register, named as C.

 It performs the operation as: C = A operator B

 The input data are stored in A and B, and according to the operation specified in

the control lines, the ALU perform the operation and put the result in register C.

Example

 If the contents of controls lines are, 000, then the decoder enables the addition

operation and it activates the adder circuit and the addition operation is performed

on the data that are available in storage register A and B.

 After the completion of the operation, the result is stored in register C.

2.1.1 Logic Gates

 There are several logic gates exists in digital logic circuit.

 These logic gates can be used to implement the logical operation.

 Some of the common logic gates are AND, OR, EX-OR etc.

AND gate

 The AND gate produces output is high (1) if both the inputs are high (1).

 The AND gate and its truth table are as shown.

AND gate and its truth table.

OR gate

 The output of the OR gate is high if any one of the input is high.

 The OR gate and its truth table are as shown.

Overview and Instruction 1.44

OR gate and its truth table

EX-OR gate

 The output of the EX-OR gate is high if either of the input is high.

 The EX-OR gate and its truth table is given as follows.

EX-OR gate and its truth table

2.1.2 Number System

 Every computer stores numbers, letters, and other special characters in coded form.

 The number system is classified based on the number of characters/symbols/

numbers that it supports, which is called as the base or radix of a number system.

 The most commonly used number systems are

o Decimal number system

o Binary Number System

Decimal Number System

 The base of the decimal number system is 10.

 The digits start from 0 to 9.

1.45 Computer Architecture

 The successive positions, read from left to right represent units, tens, hundreds,

thousands, and so on.

 Example: the decimal number 7516 (written as 751610) consists of the digit 6 in the

units position, 1 in the tens position, 5 in the hundreds position, and 7 in the

thousands position, and its value can be written as:(7x1000) + (5x100) + (1x10) +

(6xl)(or)2000 + 500 + 80 + 6(or)2586.

Binary Number System

 The base of the binary number system is 2.

 "Binary digit" is often referred to by the common abbreviation as ‘bit’.

 A "bit" in computer terminology means either a 0 or a 1.

 Each position in a binary number represents a power of the base (2).

1

Bit

2 Bit 3 Bit 4 Bit Decimal

Value

1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 1 1

 1 0 0 1 0 0 0 1 0 2

 1 1 0 1 1 0 0 1 1 3

 1 0 0 0 1 0 0 4

 1 0 1 0 1 0 1 5

 1 1 0 0 1 1 0 6

 1 1 1 0 1 1 1 7

 1 0 0 0 8

 1 0 0 1 9

 1 0 1 0 10

 1 0 1 1 11

 1 1 0 0 12

 1 1 0 1 13

 1 1 1 0 14

 1 1 1 1 15

Overview and Instruction 1.46

2.1.3 Fixed Point (Integer) Representation

 A fixed-point number representation is a real data type for a number.

 It has a set of digits after and before the radix point ('.').

 Fixed-point numbers are useful for representing fractional values (decimal and binary

numbers).

 It is used in low-cost embedded microprocessors since

o the processor has no floating point unit (FPU).

o it provides improved performance or accuracy.

2.1.4 Signed Numbers Representation

 This is used to represent zero, positive and negative numbers.

 Three representation schemes had been proposed for signed integers:

1. Sign-Magnitude representation

2. 1's Complement representation

3. 2's Complement representation

1. Sign-Magnitude representation

 An n-bit signed binary number consists of two parts

o Sign bit

 It is the left most bit.

 It is also called as the Most Significant Bit (MSB)

 Sign Bit Value

 0 - Positive Integer or Zero

 1 - Negative Integer or Zero

o Magnitude bits

 Remaining n-1 bits - Magnitude

1.47 Computer Architecture

 Sign Magnitude representation from -127 to +127 integer

 Example

o Suppose that n=8 and the binary representation is 0 100 00012

 Sign bit

 0 ⇒ positive

 Absolute value

 100 00012 = 6510

Hence, the integer is +6510

o Suppose that n=8 and the binary representation is 1 100 00012

 Sign bit

 1 ⇒ Negative

 Absolute value

 100 00012 = 6510

Hence, the integer is -6510

 Drawbacks

o Two representations (0000 00002 and 1000 00002) for the number zero,

which could lead to inefficiency and confusion

o Positive and negative integers need to be processed separately

Overview and Instruction 1.48

2. 1's Complement representation

 An n-bit signed binary number consists of two parts

o Sign bit

 The left most bit, also called the Most Significant Bit (MSB)

 Sign Bit Value

 0 - Positive Integer or Zero

 1 - Negative Integer or Zero

o Magnitude

 Remaining n-1 bits - Magnitude

 Positive Integer

o Absolute value of the integer is equal to “the

magnitude of the (n-1)-bit binary pattern”

 Negative Integer

o Absolute value of the integer is equal to “the

magnitude of the complement (inverse) of the (n-1)-

bit binary pattern”

 Hence called 1's complement

 1’s Complement representation from -127 to +127 integer

1.49 Computer Architecture

 Example

o Suppose that n=8 and the binary representation is 0 100 00012

 Sign bit

 0 ⇒ positive

 Absolute value

 100 00012 = 6510

Hence, the integer is +6510

o Suppose that n=8 and the binary representation is 1 100 00012

 Sign bit

 1 ⇒ Negative

 Absolute value

 100 00012 = 011 11102 (1’s Complement)

= 6210

Hence, the integer is -6210

 Drawbacks

o Two representations (0000 00002 and 1111 11112) for the number zero,

which could lead to inefficiency and confusion

o Positive and negative integers need to be processed separately

3. 2's Complement representation

 An n-bit signed binary number consists of two parts

o Sign bit

 The left most bit, also called the Most Significant Bit (MSB)

 Sign Bit Value

 0 - Positive Integer or Zero

 1 - Negative Integer or Zero

Overview and Instruction 1.50

o Magnitude

 Remaining n-1 bits - Magnitude

 Positive Integer

o Absolute value of the integer is equal to “the

magnitude of the (n-1)-bit binary pattern”

 Negative Integer

o Absolute value of the integer is equal to “the

magnitude of the complement (inverse) of the (n-1)-

bit binary pattern plus one”

 Hence called 2's complement

 2’s Complement representation from -127 to +127 integer

 Example

o Suppose that n=8 and the binary representation is 0 100 00012

 Sign bit

 0 ⇒ positive

1.51 Computer Architecture

 Absolute value

 100 00012 = 6510

Hence, the integer is +6510

o Suppose that n=8 and the binary representation is 1 100 00012

 Sign bit

 1 ⇒ Negative

 Absolute value

 100 00012 = 011 11102 (1’s Complement)

= 011 11112 (2’s Complement)

= 6310

Hence, the integer is -6310

2.1.5 Unsigned Numbers

 An n-bit unsigned binary number contains only magnitude part

o All n bits – Magnitude

o Represent integers from 0 to 2n-1

n Minimum Maximum

8 0 28-1 =255

16 0 216-1 =65,535

32 0 232-1 =4,294,967,295 (9+ digits)

….

 Represent zero and positive integers, but not negative integers

Floating-point Number

 The fractional binary numbers are represented by considering the binary point.

 If binary point is assumed to the right of the sign bit ,we represent the fractional binary

numbers as,

Overview and Instruction 1.52

2.2 ADDITION AND SUBTRACTION OF SIGNED NUMBERS

2.2.1 Addition of numbers

 The ALU performs addition by adding each bit of the addend with every bit of the

augend from right to left.

 At the end of every bit by bit addition, the sum bit is noted and the carry bit is

passed to the immediate digit to the left.

Terminologies

Carry

This represents the overflow result while performing addition of two or more binary

numbers.

Example

Carry 0 1 1 -

Augend 1 0 1 1

Addend 0 0 1 1

Operator +

Resultant 1 1 1 0

Least Significant Bit (LSD)

The leftmost bit of every binary number is the LSD of the binary number.

Most significant Bit (MSD)

The rightmost bit of every binary number is the MSD of the binary number.

Example

1 1 0 0

↑ ↑

MSD LSD

 Binary addition always starts from LSD and move towards MSD with or without

having carry bit.

 The table below shows the binary addition rules which are followed while performing

addition of two binary numbers.

1.53 Computer Architecture

Let the general expression be: operand1 + operand2.

Operand1 Operand2 Result Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

For the expression that involves three operands, the general expression shall be:

 operand1 + operand2 + operand3.

Operand1 Operand2 Operand3 Result Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Steps involved in performing addition of two binary numbers are,

Step 1: Start form the LSD of both the numbers by applying the rules of binary

 addition.

Step 2: The result of adding the individual bits of each column is noted in the result

 row, with the carry bit carried over to the preceding column.

Step 3: The carry bit is considered while adding the preceding column bits.

Step4: Repeat the above steps unlit MSD is processed.

Overview and Instruction 1.54

Example

1. Add (101)2 with (1110)2.

 Carry 1 1 0 0 -

↓

Augend 1 0 1

Addend 1 1 1 0

Operator +

Sum 1 0 0 1 1

Result = (10011)2

2. Add (100)2 with (11)2.

Carry 0 0 -

Augend 1 0 0

Addend 0 1 1

Operator +

Sum 1 1 1

Result = (111)2

3. Add (1110)2 with (1101)2.

 Carry 1 1 0 0 -

↓

Augend 1 1 1 0

Addend 1 1 0 1

Operator +

Sum 1 1 0 1 1

Result = (11011)2

1.55 Computer Architecture

Other Examples:

1. (00011010)2 + (00001100)2

 1 1

carry

 0 0 0 1 1 0 1 0 = 26(base 10)

+ 0 0 0 0 1 1 0 0

 = 12(base 10)

 0 0 1 0 0 1 1 0 = 38(base 10)

2. (00010011)2 + (00111110)2

 1 1 1 1 1

carry

 0 0 0 1 0 0 1 1 = 19(base 10)

+ 0 0 1 1 1 1 1 0

 = 62(base 10)

 0 1 0 1 0 0 0 1 = 81(base 10)

2.2.2 Adder Circuits

2.2.2.1 Binary Adder circuit

 Binary adder is used to add two binary numbers.

 The adder circuit needs two binary inputs and two binary outputs.

 The input variables elect the augends and addend bits.

 The output variables produce the sum and carry.

Truth table

C: Carry Bit

S: Sum Bit

The simplified sum of products expressions are

S x 'y xy '

C xy

Overview and Instruction 1.56

The circuit is implemented as follows.

Circuit diagram and Block diagram of Half Adder

This circuit cannot handle the carry input, so it is termed as half adder.

2.2.2.2 Full Adder circuit

 A full adder is a combinational circuit that forms the arithmetic sum of three bits.

 It consists of three inputs and two outputs.

 Two of the input variables, denoted by x and y, represent the two bits to be added.

 The third input Z, represents the carry from the previous lower position.

Block Diagram

 The complete circuit for single stage of addition is given

At the ith stage:

 Input:

o xi, the first input

o yi, the second input

o ci, the carry-in

 Output:

o si is the sum

o ci+1 carry-out to (i+1)st state

1.57 Computer Architecture

Truth Table

xi yi Carry-in

Ci

Sum

S

Carry-out

C

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The simplified expression for Sum, S and C are

S x 'y'z x 'yz ' xy z̀ xyz

C xy xz yz

 xy xy'z x 'yz

The above expressions can be written as follows.

S z (x y)

 z'(xy' x 'y) z(xy' x 'y')

 z'(xy' x 'y) z(xy x 'y')

 xy'z ' x 'yz ' xyz x 'y'z

C z(xy' x 'y) xy xy'z x 'yz xy

Circuit diagram - full adder

Full Adder

Overview and Instruction 1.58

2.2.2.3 4 – bit Adder circuit

 To get the four bit adder, we have to use 4 full adder blocks.

 The carry output the lower bit is used as a carry input to the next higher bit.

 4-bit adder circuit

2.2.2.4 n-bit ripple-carry adder

 Cascade n full adder (FA) block to form a n-bit adder.

 Each full adder inputs a Cin, which is the Cout of the previous adder

o This adder is called as a n-bit ripple carry adder

 Each carry bit “ripples” or “propagates” to the next full adder

Block Diagram

o Used to add two input X and Y

o xn-1 and yn-1 – Sign bits

 Carry-in c0 into the LSB position provides a convenient way to perform subtraction

1.59 Computer Architecture

Advantage

 Allows for fast design time

Disadvantage

 Relatively slow

o Each full adder must wait for the carry bit to be calculated from the

previous full adder

2.2.2.5 Cascade of k n-bit Adders

 Circuit to add K n-bit numbers by cascading k n-bit adders

 Each n-bit adder forms a block, so this is cascading of blocks

 Carries ripple or propagate through blocks, Blocked Ripple Carry Adder

Block Diagram

 The carry-in, c0, into the least-significant-bit(LSB) position provides a convenient

means of adding 1 to a number

 Forming the 2's-complement of a number involves adding 1 to the 1's complement

of the number

2.2.3 Subtraction of numbers

 The ALU performs subtraction by subtracting each bit of the minuend with every

bit of the subtrahend from right to left.

 At the end of every bit by bit subtraction, the difference bit is noted and the borrow

bit is passed to the immediate digit to the left.

Overview and Instruction 1.60

Terminologies

Borrow

This represents the underflow value while performing subtraction of two or more

binary numbers.

Borrowing occurs whenever a smaller bit (0) is subtracted by a larger bit (1).

Example

Borrow - 1 -

 0

↑

10

↑

Minuend 1 0 1

Subtrahend 0 1 1

Operator -

Difference 0 1 0

 Binary subtraction starts from LSD and move towards MSD with or without

borrowing a bit from the preceding bit.

 The table below shows the binary addition rules which are followed while performing

subtraction of two binary numbers.

Let the general expression be: operand1 - operand2.

Operand1 Operand2 Result Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

1.61 Computer Architecture

Steps involved in performing subtraction of two binary numbers

Step 1: Start form the LSD of both the numbers by applying the rules of binary

subtraction.

Step 2: The difference of each column is noted, with the borrow bit taken from the

 preceding column, if required.

Step 3: The borrow bit is considered while subtracting the preceding column bits.

Step4: Repeat the above steps unlit MSD is processed.

 Step 5: If the borrow bit of the MSD of the minuend is ’0’, the resultant difference is a

 positive value. Stop the operation.

 Step 6: If the borrow bit of the MSD of the minuend is ’1’, the resultant difference is a

 negative value. Hence perform two’s complementation of the difference value

 and stop the operation.

Finding Two’s complement

1. Take one’s complement by inverting 0’s by 1’s and 1’s by 0’s.

2. Add ‘1’ to the one’s complement result.

Example: 1. Subtract (110)2 by (101)2.

Borrow 0 0 1

 0

↑

10

↑

Minuend 1 1 0

Subtrahend 1 0 1

Operator -

Difference 0 0 1

Result = (001)2

Overview and Instruction 1.62

Example: 2. Subtract (100)2by (11)2.

Borrow 0 1 1

 1

↑

10

↑

10

↑

Minuend 1 0 0

Subtrahend 0 1 1

Operator -

Difference 0 0 1

Example: 3. Subtract (101)2 by (110)2.

 Borrow 1 1 0

 0

↑

10

↑

Minuend 1 0 1

Subtrahend 1 1 0

Operator -

Difference 1 1 1

Taking two’s complement of (111) 000 + 1 001.

Result = - (001)2[‘-‘ is indicated since the borrow bit of the minuend’s MSD is 1]

1.63 Computer Architecture

Example: 4. Subtract (11)2by (100)2.

Borrow 1 0 0

 10

↑

Minuend 0 1 1

Subtrahend 1 0 0

Operator -

Difference 1 1 1

Taking two’s complement of (111) 000 + 1 001.

Result = - (001)2[‘-‘ is indicated since the borrow bit of the minuend’s MSD is 1]

Other Examples

1. 00100101 – 00010001 = 00010100

 0 1

borrows

 0 0 1 0 0 1 0 1 = 37(base 10)

- 0 0 0 1 0 0 0 1

 = 17(base 10)

 0 0 0 1 0 1 0 0 = 20(base 10)

2. 00110011 – 00010110 = 00011101 1

 0 0 1 1

borrows

 0 0 1 1 0 0 1 1 = 51(base 10)

- 0 0 0 1 0 1 1 0

 = 22(base 10)

 0 0 0 1 1 1 0 1 = 29(base 10)

2.2.4 Binary Subtractor circuit

 The subtraction operation can be implemented with the help of binary adder circuit,

since (A – B) = A + (-B).

 2's complement representation of a number is treated as a negative number of the given

number.

 2's complement of a number shall be calculated by complementing each bit and adding

1 to it.

Overview and Instruction 1.64

 The circuit for subtracting A-B consist of an added with inverter placed between each

data input B and the corresponding input of the full adder.

 The input carry C0 must be equal to 1 when performing subtraction.

 The operation thus performed becomes A, plus the 1's complement of B , plus 1.

 This is equal to A plus 2's complement of B.

 With this principle, a single circuit can be used for both addition and subtraction.

4-bit adder subtractor

 The circuit diagram of a 4-bit adder subtractor is shown above.

 Here, the mode (M) is the selection input line, which will determine the operation,

 If M=0, then addition, A+B is performed.

 If M=1, then (A – B) = A + (-B) is performed.

The operation of OR gate:

x 0 x

x 1 x '

If M=0, i iB 0 B

i iB 1 B '

2.2.5 Addition / Subtraction Logic Unit

 Perform subtraction operation, X-Y

o Find 2’s complement of Y

o Add it with X

1.65 Computer Architecture

 Add/Sub control

o Used to decide whether addition or subtraction is performed

o 0 – Addition

 Supply the Y-vector unchanged to one of the adder input

 Carry-in signal value is 0

o 1 - Subtraction

 Supply the 1’s complement of Y-vector

 Carry-in signal value is 1

2.2.6 Overflow in Addition and Subtraction

 An overflow occurs when the result of the operation cannot be represented with the

available hardware; here it is 32–bit word. While adding or subtracting two 32-bit

numbers may yield a result that needs 33rd bit to be full expressed.

 Overflow cannot occur when adding operands with different signs. The reason is the

sum must be no larger than one of the operands.

 For example, -10 + 4 = -6. Since the operands fit in 32 bits and the sum is no larger

than an operand, the sum must fit in 32 bits as well. Therefore, no overflow can occur

when adding positive and negative operands.

 Similarly in Subtraction we subtract by negating the second operand and then add i.e.

x - y = x + (-y). Therefore, when we subtract operands of the same sign we are actually

adding operands of different signs.

 When can overflow occur then?

o In addition, overflow occurs, when adding two positive numbers ends up in a

negative result or vice versa. This means a carry out occurred in the sign bit.

Overview and Instruction 1.66

o In Subtraction, overflow occurs when we subtract a negative number from a

positive number and get a negative result, or vice versa. This means borrow

occurred from the sign bit.

o Unsigned integers are commonly used for memory addresses where overflows

are ignored.

Operation Operand A Operand B Result indicating overflow

A+B (+) ve (+) ve (-) ve

A+B (-) ve (-) ve (+) ve

A-B (+) ve (-) ve (-) ve

A-B (-) ve (+) ve (+) ve

 The MIPS solution is to have two kinds of arithmetic instructions to recognize the two

choices:
o Add (add), add immediate (addi), and subtract (sub) cause exceptions on

overflow.

o Add unsigned (addu), add immediate unsigned (addiu), and subtract unsigned

(subu) do not cause exceptions on overflow.

 MIPS detects overflow with an exception, also called an interrupt on many

computers. An exception or interrupt is essentially an unscheduled procedure call.

The address of the instruction that overflowed is saved in a register, and the

computer jumps to a predefined address to invoke the appropriate routine for that

exception. The interrupted address is saved so that in some situations the program

can continue after corrective code is executed.

 MIPS includes a register called the exception program counter (EPC) to contain

the address of the instruction that caused the exception

2.3 MULTIPLICATION

 Multiplication of two numbers is also performed on binary digits.

 The operand to be multiplied is called the multiplicand.

 The second operand that quantifies the multiplicand is called the multiplier.

 The final result is the product value that is obtained after multiplication.

2.3.1 Manual multiplication algorithm

 Multiplication process involves generation of partial product, one for each digit in

multiplier

o Partial products are added to produce the final product

 In binary system partial products are easily defined

1.67 Computer Architecture

o If multiplier bit is 0, the partial product is 0

o If multiplier bit is 1,the partial product is multiplicand

 Product of two n-digit numbers can be accommodated in 2n digits

 So, product of the two 4-bit numbers fits into 8 bits

Example

Multiplying 1101 by 1011

 First operand is called Multiplicand, second one is Multiplier and final result is

called product

 Each successive partial product is shifted one position to the left relative to the

next partial product

 Final product is produced by summing the partial products

2.3.1.1 Multiplication Hardware – First Version

 The hardware given below is used to multiply two binary data.

 The Multiplicand register, the ALU and the product register handle 64 bits whereas

the multiplier register can handle 32 bits.

 The multiplicand is processed from right to left, by shifting left one bit on each

step.

 The multiplier is shifted in the opposite direction at each step.

 The product register is initialized to 0. The value changes based on the control test

decision.

Overview and Instruction 1.68

 The control test component selects when to shift the multiplicand and the

multiplier and when to write product bits in product register.

Flowchart

1.69 Computer Architecture

 The least significant bit of the multiplier (Multiplier0) determines whether the

multiplicand is added to the Product register.

 The left shift in step 2 has the effect of moving the intermediate operands to the

left, just as when multiplying by hand.

 The shift right in step 3 gives us the next bit of the multiplier to examine in the

following iteration.

 These three steps are repeated 32 times to obtain the product.

 If each step took a clock cycle, this algorithm would require almost 100 clock

cycles to multiply two 32-bit numbers.

 The relative importance of arithmetic operations like multiply varies with the

program, but addition and subtraction may be anywhere from 5 to 100 times more

popular than multiply.

Overview and Instruction 1.70

2.3.1.2 Multiplication Hardware - Refined Version

 The refined version has 32 bit Multiplicand register and ALU, with the product

register having 64 bits long.

 The multiplier register is placed instead of the right half of the product register.

 Based on the decision made by the control test, the product register is shifted right

one bit at each step.

2.3.1.3 Array Implementation of positive binary operands

 Implemented in a combinational two-dimensional logic array

 Full Adder(FA)

o Main component in each cell

 AND gate

o Determines whether a multiplicand bit, mj, is added to the incoming partial-

product bit, based on the value of the multiplier bit, qi.

 If qi=0, PPi is passed vertically downward unchanged.

 If qi=1, PPi is added with the multiplicand to generate PP(i+1), for each row 0 ≤ i ≤ 3.

 PP0 is all 0’s.

 PP4 is the desired product.

1.71 Computer Architecture

2.3.1.4 Sequential Circuit Binary Multiplier

Register Configuration

Overview and Instruction 1.72

Algorithm

 Multiplier is loaded into the register Q and multiplicand is loaded into the register

B

 Register C and A is initially set to 0

 Check the whether q0 of Q register bit is 0 or 1

 If q0 bit is 1

o Add multiplicand and partial product

o Shift all bits of C,A and Q registers to the right one bit

 C bit goes to An-1,A0 goes to Qn-1, Q0 is lost

 If q0 bit is 0

o No need to perform addition

o Shift all bits of C,A and Q registers to the right one bit

 Repeat the step to get the desired results in A and Q registers

Flowchart

1.73 Computer Architecture

Example

 Multiplicand (M) : 1101

 Multiplier (Q) : 1011

Longhand Multiplication

Multiplying 1101 by 1011

Overview and Instruction 1.74

Multiplication Process

 Initially

 First Cycle

 Second Cycle

 Third Cycle

 Fourth Cycle

1.75 Computer Architecture

Illustration

2.3.1.5 Signed-Operand Multiplication

Example

Considering 2’s-complement signed operands, perform (-13) (+11) if the same

unsigned multiplication method is followed.

Overview and Instruction 1.76

 For a negative multiplier, a straightforward solution is to form the 2’s-complement of

both the multiplier and the multiplicand and proceed as in the case of a positive

multiplier

o Possible because complementation of both operands does not change the value

or the sign of the product

2.3.2 Booth’s Algorithm

 A technique that works equally well for both negative and positive multipliers.

 Generates a 2n-bit product and treats both positive and negative 2’s complement n-bit

operands uniformly.

 Consider a multiplication, where the multiplier is positive 0011110 (30)

 To reduce the number of required operations

o Represent the multiplier in terms of difference between two numbers(2n-bit

product)

 64 32 16 8 4 2 1

 0 0 1 1 1 1 0 → 30

o Represent 30 as 32(25) – 2(21)

 64 32 16 8 4 2 1

25 → 32 → 0 1 0 0 0 0 0

21 → 2 - → 0 0 0 0 0 1 0 -

 30 0 0 1 1 1 1 0

1.77 Computer Architecture

o Multiplication

2.3.2.1 Booth recoding of a multiplier

 In the Booth scheme,

o -1 times the shifted multiplicand is selected when moving from 0 to 1, and

o +1 times the shifted multiplicand is selected when moving from 1 to 0, as the

multiplier is scanned from right to left

 Example

0 0 1 0 1 1 0 0 1 1 0

0 +1 -1 +1 0 -1 0 +1 0 -1

2.3.2.2 Booth multiplication with a negative multiplier

Multiplicand: (+13) → 0 1 1 0 1
→

0 1 1 0 1

Multiplier: (-6) → × 1 1 0 1 0 0 -1 +1 -1 0

Overview and Instruction 1.78

Booth multiplier Recoding Table

Multiplier Version of

multiplicand

selected by bit i Bit i Bit i-1

0 0 0 × M

0 1 +1 × M

1 0 -1 × M

1 1 0 × M

16-bit Multiplier Types

 Best case

o a long string of 1’s (skipping over 1s)

 Worst case

o 0’s and 1’s are alternating

Worst Case

Multiplier :

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 ↓

 +1 -

1

+1 -1 +1 -

1

+1 -

1

+1 -1 +1 -

1

+1 -

1

+1 -

1

Ordinary

Multiplier :

1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0

 ↓

 0 -

1

0 0 +1 -

1

+1 0 -1 +1 0 0 0 -

1

0 0

Good Multiplier: 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1

 ↓

 0 0 0 +1 0 0 0 0 -1 0 0 0 +1 0 0 -1

Advantage

 Used for both negative and positive integers

 Achieves more efficiency in number of addition

1.79 Computer Architecture

2.3.3 Fast Multiplication

The techniques used for speeding up the multiplication operation are

 Bit-Pair Recoding of Multipliers

 Carry-Save Addition of Summands

2.3.3.1 Bit-Pair Recoding of Multipliers

 Halves the maximum number of summands (versions of the multiplicand)

 Derived from the booth algorithm

Multiplicand selection decisions table

Multiplier bit-

pair

Multiplier bit on the

right

i-1

Multiplicand selected at

position i

i+1 i

0 0 0 0 × M

0 0 1 +1 × M

0 1 0 +1 × M

0 1 1 +2 × M

1 0 0 -2 × M

1 0 1 -1 × M

1 1 0 -1 × M

1 1 1 0 × M

Example

Using Booth Recoding

Overview and Instruction 1.80

Using Bit-Pair Recoding

Fast Multiplication hardware

2.3.3.2 Carry-Save Addition (CSA) of Summands

 Reduces the time needed to add the summands and Speed up the addition process

Ripple-carry Array

 Also called row ripple form

 Each row consists of AND gates that implement the bit products

o First Row bit products: m3q0, m2q0, m1q0 and m0q0

1.81 Computer Architecture

 Carries are ripple along the rows

Carry-save Array

 Carries are saved and introduced into the next row

o Frees up an input to three full adders in the first row

o Inputs are introduced the third summand bit products m2q2, m1q2 and

m0q2

o Two inputs of each full adder in the second row are fed by sum and

carry outputs from the first row

o Third input is used to introduce the bit products m2q3, m1q3 and m0q3 of

the fourth summand

o High-order bit products m3q2 and m3q3 of the third and fourth

summands are introduced into the remaining free inputs at the left end

in the second and third rows

o Saved carry bits and sum bits from the second row are added in the

third row to produce final product bits

 The delay through the carry-save array is somewhat less than delay through the

ripple-carry array. This is because the S and C vector outputs from each row

are produced in parallel in one full-adder delay.

Overview and Instruction 1.82

 Consider the addition of many summands,

o Group the summands in threes and perform carry-save addition on each of

these groups in parallel to generate a set of S and C vectors in one full-adder

delay

o Group all of the S and C vectors into threes, and perform carry-save addition

on them, generating a further set of S and C vectors in one more full-adder

delay

o Continue with this process until there are only two vectors remaining

o It can be added in a RCA or CLA to produce the desired product

Example

1.83 Computer Architecture

Overview and Instruction 1.84

Schematic representation of the carry-save addition operations

 When the number of summands is large, the time saved is proportionally much

greater.

 Some omitted issues

o Sign-extension

o Computation width of the final CLA/RCA

o Bit-pair recoding

2.4 DIVISION

2.4.1 Longhand Division

Steps

 Position the divisor appropriately with respect to the dividend and performs a

subtraction

 If the remainder is zero or positive,

 a quotient bit of 1 is determined

 the remainder is extended by another bit of the dividend

 the divisor is repositioned, and

 another subtraction is performed

 If the remainder is negative

 a quotient bit of 0 is determined

 the dividend is restored by adding back the divisor, and

 the divisor is repositioned for another subtraction.

1.85 Computer Architecture

Example

 Decimal

 Binary

2.4.2 Restoring Division

Basic Operation

 Initially

o An n-bit positive-divisor is loaded into register M

o An n-bit positive-dividend is loaded into register Q at the start of the operation

o Register A is set to 0

 After division operation

o An n-bit quotient is in register Q

o Remainder is in register A

Overview and Instruction 1.86

Steps in division operation

1. Shift A and Q left one binary position

2. Subtract M from A, and place the answer back in A

 For subtraction, find 2’s complement of M and add with A

o A- B = A + 2’s complement(B)

3. If the sign of A is 1,

 Set q0 to 0 and add M back to A (restore A)

Otherwise,

 Set q0 to 1

4. Repeat these steps n times

Logic Diagram

1.87 Computer Architecture

Implementation hardware

 The 32-bit Quotient register set to 0.

 Every iteration of the algorithm needs to move the divisor to the right one digit.

 We start with the divisor placed in the left half of the 64-bit Divisor register and

shift it right 1 bit each step to align it with the dividend.

 The Remainder register is initialized with the dividend.

 The system first subtract the divisor in step 1

 If the result is positive, the divisor was smaller or equal to the dividend, so we

generate a 1 in the quotient (step 2a).

 If the result is negative, the next step is to restore the original value by adding the

divisor back to the remainder and generate a 0 in the quotient (step 2b).

 The divisor is shifted right and then we iterate again.

 The remainder and quotient will be found in their namesake registers after the

iterations are complete.

Revised hardware

 The following figure shows the revised hardware for multiplication.

 The speedup comes from shifting the operands and the quotient simultaneously

with the subtraction.

 This refinement halves the width of the adder and registers by noticing where there

are unused portions of registers and adders.

Overview and Instruction 1.88

Flowchart

1.89 Computer Architecture

Example

 Dividend (Q) : 1000

 Divisor (M) : 11

2’s Complement of M

M: 0 0 0 1 1

1’s Complement: 1 1 1 0 0

+1 : 1 +

2’s Complement: 1 1 1 0 1

Longhand Division

Restoring Division

 Initially

 First Cycle

Overview and Instruction 1.90

 Second Cycle

 Third Cycle

 Fourth Cycle

1.91 Computer Architecture

Illustration

Another Example

Divide: 710 by 210, or 0000 01112 by 00102.

Overview and Instruction 1.92

2.4.3 Non-restoring Division

 Avoid the need for restoring A after an unsuccessful subtraction

Steps

1. Repeat n times

 If the sign of A is 0,

o Shift A and Q left one bit position and subtract M from A

Otherwise

o Shift A and Q left and add M to A

 Now, if the sign of A is 0, set q0 to 1; otherwise, set q0 to 0

2. If the sign of A is 1, add M to A

Example

 Dividend (Q) : 1000

 Divisor (M) : 11

2’s Complement of M

M: 0 0 0 1 1

1’s Complement: 1 1 1 0 0

+1 : 1 +

2’s Complement: 1 1 1 0 1

Longhand Division

Restoring Division

 Initially

1.93 Computer Architecture

 First Cycle

 Second Cycle

 Third Cycle

 Fourth Cycle

Overview and Instruction 1.94

Restore Remainder

Add 1 1 1 1 1

M: 0 0 0 1 1 +

 0 0 0 1 0

 Remainder

Illustration

2.5 FLOATING POINT REPRESENTATION

2.5.1 Floating Point Number

A floating point is a computer arithmetic that represents numbers in which the binary

point is not fixed.

1.95 Computer Architecture

The numerical value of a finite number can be represented by four integer components.

 Sign (s)

 Base (b)

 Significant or Fraction (m)

 Exponent (e)

Representation: (-1)s m be

Example:

6.345×1023

-7.525×10-12

6.642×10-32

Terminologies

Scale factor

Scale factor indicates the position of the decimal point with respect to the significant

digits.

For the above example, the scale factor is 1023,10-12,10-32

Fraction (m) is represented in the following format

im im-1 …. i2 i1 i0. F1 F2 … Fn-1 Fn

Where

i - integer parts

F - fraction parts

Overflow (floating-point)

Overflow is a situation in which a positive exponent becomes too large to fit in the

exponent field.

Underflow (floating-point)

Underflow is a situation in which a negative exponent becomes too large to fit in the

exponent field.

One way to reduce chances of underflow or overflow is to choose another format that

has a larger exponent – double precision format.

Double precision

Double precision is a floating point value that is represented in two 32-bit words.

Overview and Instruction 1.96

Single precision

Single precision is a floating point value which is represented in a single 32-bit word.

2.5.2 IEEE format for Single-Precision Floating-Point Numbers

In 32-bit single-precision floating-point representation:

Most significant bit is the sign bit (S),

0 - Positive numbers

1 - Negative numbers

Next 8 bits represent exponent (E)

Remaining 23 bits represents fraction (F)

Value represented = 1.F 2E-127

Example

0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 …………… 0

Value represented = 1.001010 0 2-87

2.5.3 IEEE format for Double-Precision Floating-Point Numbers

In 64-bit double-precision floating-point representation:

Most significant bit is the sign bit (S),

0 - Positive numbers

1 - Negative numbers

1.97 Computer Architecture

Next 11 bits represent exponent (E)

Remaining 52 bits represents fraction (F)

Value represented = 1.F 2E-1023

2.5.4 Special Values

 End values in E : 0 and 255

o Used to represent special values

 Different Special Values

E Value F Value S Value Represented Value

0 0 0 +0

1 -0

255 0 0

1

0 ≠ 0 Denormal

255 ≠ 0 NaN (Not a Number)

2.5.5 Exceptions

 In IEEE standard, processor set exception flags when the exception occurs

 Types of Exception

o Underflow

 Occurs when an number requires an exponent less than -126

(for single precision) or -1022(for double precision) to represent

it in normalized form

o Overflow

Overview and Instruction 1.98

 Occurs when an number requires an exponent greater than +127

(for single precision) or +1023(for double precision) to

represent it in normalized form

o Divide by Zero

 Occurs when any number is divided by zero

o Inexact

 Occurs when any result requires rounding in order to be

represented in one of the normal formats

o Invalid

 Occurs when the operations such as
0

0
 or 1 are attempted

2.6 FLOATING POINT OPERATIONS

2.6.1 Floating-Point Addition

 First, convert the two representations to scientific notation. Thus, we explicitly

represent the hidden 1.

 In order to add, we need the exponents of the two numbers to be the same.

 This is done by rewriting Y. This will result in Y being not normalized, but value

is equivalent to the normalized Y.

 Add x - y to Y's exponent. Shift the radix point of the mantissa (significant) Y left

by x - y to compensate for the change in exponent.

 Add the two mantissas of X and the adjusted Y together.

 If the sum in the previous step does not have a single bit of value 1, left of the

radix point, and then adjust the radix point and exponent until it does.

 Convert back to the one byte floating point representation.

1.99 Computer Architecture

Flowchart

Overview and Instruction 1.100

Hardware Implementation

2.6.2 Floating point Multiplication

 First, convert the two representations to scientific notation. Thus, we explicitly

represent the hidden 1.

 Let x be the exponent of X. Let y be the exponent of Y. The resulting exponent (call

it z) is the sum of the two exponents. z may need to be adjusted after the next step.

 Multiply the mantissa of X to the mantissa of Y. Call this result m.

 If m is does not have a single 1 left of the radix point, and then adjust the radix point

so it does, and adjust the exponent z to compensate.

 Add the sign bits, mod 2, to get the sign of the resulting multiplication.

 Convert back to the one byte floating point representation, truncating bits if needed.

1.101 Computer Architecture

Flowchart

2.7 ACCURATE ARITHMETIC

 Unlike integers, which can represent exactly every number between the smallest

and largest number, floating-point numbers are normally approximations for a

number they can’t really represent.

Overview and Instruction 1.102

 IEEE 754 has two extra bits on the right during intermediate additions, called

guard and round, respectively

 Guard - The first of two extra bits kept on the right during intermediate

calculations of floating point numbers; used to improve rounding accuracy.

 Round - Method to make the intermediate floating point result fit the floating

point format; the goal is typically to find the nearest number that can be

represented in the format.

 IEEE 754 has four rounding modes: always round up (toward +∞), always round

down (toward – ∞), truncate, and round to nearest even

 Sticky bit - A bit used in rounding in addition to guard and round that is set

whenever there are nonzero bits to the right of the round bit

2.8 SUBWORD PARALLELISM

 A Subword is a lower precision unit of data contained within a word.

 In subword parallelism, multiple subwords are packed into a word and then process

whole words.

 With the appropriate subword boundaries, this technique results in parallel

processing of subwords.

 Since the same instruction is applied to all subwords within the word - form of

SIMD(Single Instruction Multiple Data) processing.

 Possible to apply subword parallelism to noncontiguous subwords of different

sizes within a word

 Practical implementation is simple if subwords are same size and they are

contiguous within a word

 The data parallel programs that benefit from subword parallelism tend to process

data that are of the same size

 Also called data-level parallelism, vector parallelism, or Single Instruction,

Multiple Data (SIMD)

 Subword parallelism is an efficient and flexible solution for media processing

because algorithm exhibit a great deal of data parallelism on lower precision data.

 Useful for computations unrelated to multimedia that exhibit data parallelism on

lower precision data

1.103 Computer Architecture

Example

Basic idea

Treat a 64-bit register as a vector of 2 32-bit or 4 16-bit or 8 8-bit values (short

vectors)

Partition 64-bit datapaths to handle multiple narrow operations in parallel

 Graphics and audio applications can take advantage of performing simultaneous

operations on short vectors

o Example: 128-bit adder:

 Sixteen 8-bit adds

 Eight 16-bit adds

 Four 32-bit adds

These are also called as data-level parallelism, vector parallelism, or Single

Instruction, Multiple Data (SIMD).

Overview and Instruction 1.104

 UNIT

 PROCESSOR AND CONTROL UNIT

Basic MIPS implementation – Building data path – Control Implementation scheme –

Pipelining – Pipelined data path and control – Handling Data hazards & Control hazards –

Exceptions.

3.1 INTRODUCTION

 The CPU performs all the operations that are required by the system for its smooth

functioning.

 It works on stored program concept.

 The control unit issues control signals and provide direction to the compiler.

 The operation or task performed by the CPU to perform instruction execution are:

o Fetch Instruction: The CPU reads an instruction from memory.

o Interpret/Decode Instruction: The instruction is decoded to determine

what action is required.

o Fetch Data: The execution of an instruction may require reading data from

memory or I/O module.

o Execute/ Process Instruction: The execution of an instruction may require

performing some arithmatic or logical operation on data.

o Write data: The result of an execution may require writing data to memory

or an I/O module.

 The major components of the CPU are an arithmatic and logic unit (ALU) and a

control unit (CU).

 The ALU does the actual computation or processing of data.

 The CU controls the movement of data and instruction into and out of the CPU and

controls the operation of the ALU.

3

1.105 Computer Architecture

Basic terminologies

 Response time/ Execution time is the total time required for the computer to

complete a task, including disk accesses, memory accesses, I/O activities, operating

system overhead, CPU execution time, and so on.

 Throughput is the total amount of work done in a given time.

 The user CPU time is the CPU time spent in a program itself.

 The system CPU time is the CPU time spent in the operating system performing tasks

on behalf of the program.

 The clock cycle, also called tick/ clock tick/ clock period/ clock/ cycle is the time for

one clock period, usually of the processor clock, which runs at a constant rate.

 The clock period is the length of each clock cycle.

Performance and Execution Time

 The response time of a CPU should decrease in order to increase the performance. Ths

is also accopmplished by increasing the throughput.

 The relationship between the performance and execution time of a computer, X is

given by

x

x

1
Performance

Execution time

 Consider two computers X and Y. If the performance of X is greater than the

performance of Y, then

xPerformance Performance

x

1 1

Execution time Execution time

xExecution time Execution time

 The execution time on Y is longer than that on X, if X is faster than Y.

xPerformance

Performance

 If X is n times faster than Y, then the execution time on Y is n times longer than it is

on X.

x

x

Execution timePerformance

Performance Execution time

Overview and Instruction 1.106

 The performance of the CPU is measured by the following factors

 Instruction count

o Determined by Instruction Set Architecture(ISA) and the compiler

 Cycles per Instruction (CPI) and Clock Cycle time

o Determined by CPU hardware

 The basic performance equation is given as

CPU time = Instruction count CPI Clock cycle

(or)

Instruction Court CPI
CPU time

Clock Rate

3.1.1 MIPS

 MIPS stands for Million Instructions Per Second (MIPS)

 Simplest metrics used to measure CPU performance

 MIPS is computed as the instruction count divided by the product of the execution

time and 106.

6

Instruction Court
MIPS

Execution Time 10

3.1.2 Types of Instruction

The MIPS instruction set includes the following

 Memory-reference instructions

o load word (lw) and store word (sw)

 Arithmetic and logical instructions

o add, sub, and, or, and slt

 Control Flow Instructions

o Branch equal (beq)instructions

o Jump (j) instruction

3.1.3 MIPS Instruction Execution

MIPS instructions classically take five steps:

1. Fetch instruction from memory

1.107 Computer Architecture

2. Read registers while decoding the instruction. The format of MIPS instructions

allows reading and decoding to occur simultaneously

3. Execute the operation or calculate an address

4. Access an operand in data memory

5. Write the result into a register

3.1.4 MIPS Instruction Formats

 R - Format

o Opcode = 0

o Three register operands: rs, rt, and rd

 rs and rt - sources

 rd - destination

o shamt field - used only for shifts

o funct field - The ALU function (add, sub, and, or, and slt) and is decoded by

the ALU control design

ALU control lines Function

000 AND

001 OR

010 Add

110 Subtract

111 Set on less than

 I - Format

o For load and store instructions

 Opcode = 35(for load) and Opcode = 43(for store)

Overview and Instruction 1.108

 rs - the base register

 rt is

 For loads, the destination register for the loaded value

 For stores, the source register whose value should be stored into

memory

 The memory address is computed as

Memory address = base register +16-bit address field

o For branch instructions

 Opcode = 4

 rs and rt are the source registers that are compared for equality

 The branch target address is computed as

Target address = PC + (signed-extended 16-bit offset address << 2)

 J – Format

o Opcode = 2

o The destination address is computed as

Target address = PC[31-28] (offset address << 2)

3.2 BASIC MIPS IMPLEMENTATION

Overview of the CPU

 The high-level view of MIPS implementation with the major functional units and the

major connections between them is shown in the following diagram.

 A control unit has the instruction as an input.

 It is used to determine how to set the control lines for the functional units and two of

the multiplexors.

 The third multiplexor, which determines whether PC + 4 or the branch destination

address is written into the PC, is set based on the zero output of the ALU, which is

used to perform the comparison of a BEQ instruction.

1.109 Computer Architecture

MIPS subset

 Program counter supplies the instruction address to the instruction memory.

 The instructions are fetched from the instruction memory.

 After the instruction is fetched, the register operands are fetched from the instruction

fields.

 Once the register operands have been fetched, the operands are operated to compute a

memory address (for a load or store), to compute an arithmetic result (for an integer

arithmetic-logical instruction), or a compare (for a branch).

 If the instruction is an arithmetic-logical instruction, the result from the ALU must be

written to a register.

 If the operation is a load or store,

o the ALU result is used as an address to either store a value from the registers or

load a value from memory into the registers.

o the result from the ALU or memory is written back into the register file.

 If the operation is branch,

o the ALU output is used to determine the next instruction address, which comes

from either the ALU (where the PC and branch offset are summed) or from an

adder that increments the current PC by 4.

 The thick lines interconnecting the functional units represent buses, which consist of

multiple signals.

 The arrows are used to guide the reader in knowing how information flows.

Overview and Instruction 1.110

 Since signal lines may cross, we explicitly show when crossing lines are connected by

the presence of a dot where the lines cross.

Implementation of MIPS

 The circuit consists of two multiplexor controls – topmost and bottommost.

o The top one replaces the PC (PC + 4 or the branch destination address);

 The multiplexor is controlled by the gate that “ands” together the Zero

output of the ALU and a control signal that indicates that the instruction

is a branch.

 The multiplexor whose output returns to the register file is used to

navigate the output of the ALU or the output of the data memory for

writing into the register file.

o The bottommost multiplexor is used to determine whether the second ALU

input is from the registers or from the offset field of the instruction.

 The added control lines determine the operation performed at the ALU.

 They predict whether the data memory should read or write, and whether the registers

should perform a write operation.

1.111 Computer Architecture

Finally, the single-cycle datapath must have separate instruction and data memories because

 the format of data and instructions is different in MIPS and hence different memories

are needed

 having separate memories is less expensive

 the processor operates in one cycle and cannot use a single-ported memory for two

different accesses within that cycle

3.3 BUILDING DATA PATH

3.3.1 Datapath

 The datapath is the pathway that the data takes through the CPU.

 As the data travels through the datapath, the control unit regulates interaction between

the datapath and the data according to the instruction being executed.

 The datapath consists of functional units that perform data processing operations such

as addition, subtraction, logical AND, OR, inverting, and shifting.

3.3.2 Datapath Elements

 A datapath element is a functional unit used to operate on or hold data within a

processor.

 The datapath elements are

o the instruction memory

o the data memory

o the register file

o the arithmetic logic unit (ALU)

o adders

Instruction Memory

 A memory unit that is used to store the instructions of a program and supply

instructions given an address

Overview and Instruction 1.112

Program Counter (PC)

 PC is used to hold the address of the instruction in the program being executed.

 It is a 32-bit register.

 PC will be written at the end of every clock cycle and thus does not need a write

control signal.

Adder

 Adders increment the PC to enable it to point the address of the next instruction.

 An ALU performs the addition of its two 32-bit inputs and place the result on its

output.

Registers

 Registers are the data storage locations available in the processor.

 Register file is a structure that stores the processor’s 32 general-purpose registers.

 A state element that consists of a set of registers that can be read and written by

supplying a register number to be accessed

 It holds a total of four inputs (three for register numbers and one for data).

o two read ports - read two data words from the register file

o One write port - write one data word into the register file

o One write Data

 It posseses two outputs (both for data)

o Two read data that carry the value that has been read from the registers

o Register number inputs are 5 bits wide to specify one of 32 registers (32 = 25)

o Data input and two data output buses are each 32 bits wide

1.113 Computer Architecture

ALU

 Takes two 32-bit inputs

 Produces a 32-bit result, as well as a 1-bit signal if the result is 0

 ALU operation signal controls the operation to be performed by the ALU

 4 bits wide

Data Memory unit

 It is a state element with two inputs for the address and the write data.

 A single output for the read result contains separate read and write controls.

 The sign-extension unit takes a 16-bit input that is sign-extended into a 32-bit result.

 The sign-extend is used to increase the size of a data item by replicating the high-order

sign bit of the original data item in the highorder bits of the larger, destination data

item.

Overview and Instruction 1.114

Mux/Multiplexer

 It is also called as data selector.

 It allows multiple connections to the input of an element and have a control signal

select among the inputs.

Branch Instructions

 The beq instruction has three operands, two registers that are compared for equality,

and a 16-bit offset used to compute the branch target address relative to the branch

instruction address.

 The Branch target address is the address specified in a branch, which becomes the new

program counter (PC) if the branch is taken.

 The branch target is given by the sum of the offset field of the instruction and the

address of the instruction following the branch.

o Format: beq R1,R2,offset

 To implement this instruction, we must compute the branch target address

by adding the sign-extended offset field of the instruction to the PC.

 It is necessary to determine whether the next instruction is the instruction that follows

sequentially or the instruction at the branch target address.

 When the condition is true (i.e., the operands are equal), the branch target address

becomes the new PC, called as the branch taken.

 Branch taken is a branch where the branch condition is satisfied and the program

counter (PC) becomes the branch target. All unconditional branches are taken

branches.

 If the operands are not equal, the incremented PC should replace the current PC (just

as for any other normal instruction), which is stated as the branch not taken.

 Branch not taken is a branch where the branch condition is false and the program

counter (PC) becomes the address of the instruction that sequentially follows the

branch.

Delayed Branch

 Branches are delayed if the instruction immediately following the branch is always

executed, independent of whether the branch condition is true or false.

 When the condition is false, the execution looks like a normal branch.

 When the condition is true, a delayed branch first executes the instruction immediately

following the branch in sequential instruction order before jumping to the specified

branch target address.

1.115 Computer Architecture

3.3.3 Building a Datapath

3.3.3.1 Fetching instructions

 To execute any instruction, the instructions have to be fetched from the memory.

 To prepare for executing the next instruction, the program counter is incremented by 4

bytes that points the next instruction to be executed.

3.3.3.2 Datapath for R-type instructions

 The following additional components are needed for the implementation of the

datapath for R-format instructions.

o Register file

o ALU

 The ALU accepts the input from the DataRead ports of the register file.

 The register file is written by the ALU in combination with the RegWrite signal.

Overview and Instruction 1.116

3.3.3.3 Datapath for Load/Store instruction

 The following additional components are added to build the datapath for load and

store instruction.

o Data Memory unit

o Sign Extension unit

 The register number inputs are read from the instruction field.

 Memory address is calculated based on the operands in the instruction field.

 For load instructions, the data at the memory address is read from data memory.

 For store instructions, the write data is written into the data memory at the memory

address.

3.3.3.4 Datapath for branch instruction

Basic Operation

 Compute the branch target address.

o Adder is used to compute the branch target address.

o It is computed as,

Branch Target = Incremented PC + sign-extended,

 Lower 16 bits of the instruction and,

 Shifted left 2 bits

1.117 Computer Architecture

 Compare the register contents.

o The ALU evaluates the branch condition.

3.3.4 Simple Implementation Scheme

3.3.4.1 Creating a single datapath

 Executing all instructions in a single clock cycle

o No datapath resource can be used more than once in an instruction

o Any element needed more than once must be duplicated

o Instruction memory must be separated from data (separate datapath

resources)

 Sharing datapath elements between different instruction classes

o Need multiple connections to the input of an element, selected by a control

signal

o Commonly achieved by a multiplexor

Overview and Instruction 1.118

3.3.4.2 Datapath for Arithmetic-logical (R-type) and Memory access (load/store)

 The main differences between the Arithmetic/Logical and Load/Store instruction

execution are

Feature Arithmetic/Logical Load/Store

Second operand input to

ALU

Register contents for R-

type

Sign-extended immediate

value (offset)

Value stored in

destination register

ALU output for R-type Data memory value

 For combing the two datapaths

o Select source of second ALU operand

o Select source of data to write to register

 Use 2 MUXes with control inputs

o ALUsrc for ALU

o MemtoReg for register write

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

M
u
x

M
u
xWrite

data

Sign

extend

ALU
result

Zero

ALU

Address

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

3.3.4.3 Combining datapaths: instruction fetch

 Need separate adder to

o increment PC

o perform ALU operation in same clock cycle

1.119 Computer Architecture

3.3.4.4 Combining datapaths: branch

 Datapath can execute the following basic instructions in a single clock cycle

o Load/store word

o ALU operations

o Branches

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Shift

left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

Overview and Instruction 1.120

 An additional multiplexor(MUX) is needed to integrate branches

o Uses PCSrc input to select:

 incremented PC or (PC + immediate) from second adder

o output goes to update PC

 Need to keep separate adder to compute branch address

3.3.4.5 The ALU Control

 Three control inputs (bits) - one for bnegate and two for operation

 Only five of possible eight combinations are used

 Depending on instruction class, ALU has to perform one of these five functions.

ALU Control Lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 Set on less than

1100 NOR

o For load and store word, ALU computes memory address by addition

o For R-type instructions, ALU does one of the five actions based on the value of

6-bit funct field in low-order bits of opcode

o For branch, ALU performs a subtraction

 Control unit for the 3-bit ALU control input

o Input from funct field of opcode and a 2-bit control field called ALUOP

o ALUOP indicates operation

1.121 Computer Architecture

Bits Operation

00 Add for load and store

01 Subtract for beq

10 Determined by operation encoded in funct field

o Output of ALU control is a 3-bit signal (one of five combinations) to

control the ALU

3.3.4.6 Setting of ALU control bits

 Setting ALU control inputs based on 2-bit ALUOP control and 6-bit funct field

o Opcode determines the setting of the ALUOp bits

 All the encodings are shown in binary

 When the ALUOp code is 00 or 01, the desired ALU action does

not depend on the function code field

 The function code value is “don’t care” which is shown as

xxxxxx

 When the ALUOp value is 10, then the function code is used to set

the ALU control input

Instruction

opcode

ALUOp

Instruction

operation

Funct

field

Desired ALU

action

ALU

control

input

LW 00 load word xxxxxx add 010

SW 00 store word xxxxxx add 010

Branch Equal 01 branch equal xxxxxx subtract 110

R-type 10 Add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10
Set on less

than
101010

set on less

than
111

Overview and Instruction 1.122

3.3.4.7 Truth table for the three ALU control bits

 Inputs: ALUOp and function code field

 Only the entries for which the ALU control is asserted are shown.

 Some don’t-care entries have been added.

 Example

o ALUOp does not use the encoding 11

 so, truth table can contain entries 1X and X1, rather than 10 and 01.

o Also, when the function field is used, the first two bits (F5 and F4) of these

instructions are always 10

 So, they are don’t-care terms and are replaced with XX in the truth

table

ALUOp Funct field Operation

 ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 x x x x x x 0010

x 1 x x x x x x 0110

1 x x x 0 0 0 0 0010

1 x x x 0 0 1 0 0110

1 x x x 0 1 0 0 0000

1 x x x 0 1 0 1 0001

1 x x x 1 0 1 0 0111

3.4 CONTROL IMPLEMENTATION SCHEME

3.4.1 Control Unit

 Instruction bit numbers for register numbers, opcode, function

 MUX to select destination register

o RegDst: selects $rd or $rt to write data

 ALU control: uses function code and ALUOp to generate ALU operation selection

o ALUOp: 2-bit code generated by main control

1.123 Computer Architecture

3.4.2 Effect of Control Signal

Signal

Name

Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number

for the Write register comes

from the rt field (bits 20:16)

The register destination number for

the Write register comes from the rd

field (bits 15:11)

RegWrite None The register on the Write register

input is written with the value on the

Write data input.

ALUSrc The second ALU operand

comes from the second register

file output (Read data 2)

The second ALU operand is the

sign-extended, lower 16 bits of the

instruction.

PCSrc The PC is replaced by the

output of the adder that

computes the value of PC + 4.

The PC is replaced by the output of

the adder that computes the branch

target.

MemRead None Data memory contents designated by

the address input are put on the Read

data output

Overview and Instruction 1.124

MemWrite None Data memory contents designated by

the address input are replaced by the

value on the Write data input

MemtoReg The value fed to the register

Write data input comes from

the ALU

The value fed to the register Write

data input comes from the data

memory

3.4.3 Simple Datapath with Control unit

 Input to the control unit is the 6-bit opcode field from the instruction

 Outputs of the control unit consist of

o three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc,

and MemtoReg),

o three signals for controlling reads and writes in the register file and data

memory (RegWrite, MemRead, and MemWrite),

o a 1-bit signal used in determining whether to possibly branch (Branch), and

o a 2-bit control signal for the ALU (ALUOp).

1.125 Computer Architecture

 An AND gate

o Used to combine the branch control signal and the Zero output from the

ALU.

o Output controls the selection of the next PC.

 PCSrc is now a derived signal, rather than one coming directly from the control

unit.

3.4.4 Setting of control bits

 R-format instructions (add, sub, and, or, and slt).

o For all these instructions, the source register fields are rs and rt, and the

destination register field is rd; this defines how the signals ALUSrc and

RegDst are set.

o Furthermore, an R-type instruction writes a register (RegWrite = 1), but

neither reads nor writes data memory.

o Branch = 0

 the PC is unconditionally replaced with PC + 4;

 Otherwise, the PC is replaced by the branch target if the Zero output

of the ALU is also high.

o The ALUOp field for R-type instructions is set to 10 to indicate that the

ALU control should be generated from the funct field.

 lw and sw Instructions

o ALUSrc and ALUOp fields are set

 To perform the address calculation.

o MemRead and MemWrite are set

 To perform the memory access.

o RegDst and RegWrite are set for a load

 To cause the result to be stored into the rt register.

 Branch instruction

o Sends the rs and rt registers to the ALU.

o ALUOp field for branch is set for a subtract (ALU control = 01)

 Used to test for equality.

Overview and Instruction 1.126

o MemtoReg field is don’t care when the RegWrite signal is 0

 Since the register is not being written, the value of the data on the

register data write port is not used.

o Don’t cares can also be added to RegDst when RegWrite is 0

Instruction RegDst ALUSrc
Memto-

Reg

Reg

Write

Mem

Read

Mem

Write

Branch

ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

Lw 0 1 1 1 1 0 0 0 0

Sw x 1 X 0 0 1 0 0 0

Beq x 0 x 0 0 0 1 0 1

3.4.5 Datapath: R-type

1. Fetch instruction and increment PC

2. Obtain operands from register file, based on source register numbers

3. Perform ALU operation, using ALU control to select, ALUSrc = 0

4. Select output from ALU using MemtoReg = 0

5. Write back to destination register (RegWrite = 1, RegDst = 1 for $rd)

1.127 Computer Architecture

3.4.6 Datapath: Memory Access (load)

1. Fetch instruction and increment PC

2. Obtain base register operand (Read data 1) from register file

3. Perform addition of register value with sign-extended immediate operand in ALU,

using ALU control to select operation, ALUSrc = 1 to select immediate

4. Use ALU result as address for data memory

5. Use MemtoReg = 1 to select Read data and write back to destination register

Controls: RegWrite = 1, RegDst = 0 for $rt

3.4.7 Datapath: memory access (store)

1. Fetch instruction and increment PC

2. Obtain base register (Read data 1) and data (Read data 2) from register file

Overview and Instruction 1.128

3. Perform addition of register value with sign-extended immediate operand in ALU,

using ALU control to select operation, ALUSrc = 1 to select immediate

4. Use ALU result as address for data memory

5. Using MemWrite = 1, write data operand to memory address

Note that MemtoReg and RegDst are don't cares

3.4.8 Datapath: branch

1. Fetch instruction and increment PC

2. Read 2 registers from register file for comparison

3. ALU subtracts data values, using ALU control to select operation and ALUSrc = 0

4. Generate branch address: add (PC + 4) to sign-extended offset, shifted left by 2

5. Use Zero output from ALU (and Branch control) to determine which result to use

to update PC

 If equal, use branch address

 else use incremented PC

1.129 Computer Architecture

3.4.9 Datapath: jump

Overview and Instruction 1.130

1. Shift instruction bits 25-0 left 2 bits to create 28 bit value Fig. 5.29

2. Combine with bits 31-28 of (PC + 4) to produce 32-bit jump address

3. Additional MUX uses Jump control to select instruction address

0: Incremented PC or branch target

1: Jump address

3.5 PIPELINING

 Pipelining is an implementation technique in which multiple instructions are

overlapped in execution.

 This enables the processors to complete the tasks faster.

 Pipeline is divided into five stages.

 Each stage completes a part of an instruction in parallel.

 The stages are connected one to the next to form a pipe like structure.

 Instructions enter at one end, progress through the stages, and exit at the other end.

Pipelining and Performance

 Pipelining does not decrease the time for individual instruction execution.

 Instead, it increases instruction throughput.

 The throughput of the instruction pipeline is determined by how often an instruction

exits the pipeline.

 Instruction pipeline is to overlap the operation of the different stages and maximize

the throughput.

nonpipelined

pipelined

Time between instructions
Time between instruction

Number of pipe stages

Single-Cycle vs. Pipeline

Instruction class Instruction

fetch

Register

read

ALU

operation

Data

access

Register

write

Total

time

Load word (lw) 2ns 1ns 2ns 2ns 1ns 8ns

Store word (sw) 2ns 1ns 2ns 2ns 7ns

R-format (add, sub,

and,or, slt)

2ns 1ns 2ns 1ns 6ns

Branch (beq) 2ns 1ns 2ns 5ns

1.131 Computer Architecture

Example – Need for Pipelining

 Consider the following instructions which is executed with and without pipeline

 I1: lw $1, 100($0)

 I2: lw $2, 200($0)

 I3: lw $3, 300($0)

Without Pipeline

 Execution of instructions without pipeline is called sequential pipeline. Every

instruction is

 The execution is done as

 Total Clock Cycle = 24 ns

With Pipeline

 Total Clock Cycle = 14 ns

Overview and Instruction 1.132

3.5.1 Stages of a pipeline

 MIPS pipeline classically take the following five steps:

1. Fetch instruction from memory (IF)

2. Read registers while decoding the instruction (ID)

 In MIPS implementation reading and decoding occur simultaneously.

3. Execute the operation or calculate an address(EX)

4. Access an operand in data memory(MEM)

5. Write back the result into a register(WB)

3.5.1.1 Graphical representation

 Time represents Clock Cycle

Symbols

 IF for the instruction fetch stage, with the box representing instruction memory

 ID for the instruction decode/register file read stage, with the drawing showing the

register file being read

 EX for the execution stage, with the drawing representing the ALU

 MEM for the memory access stage, with the box representing data memory

 WB for the write back stage, with the drawing showing the register file being

written

Shading

 Shading indicates the element is used by the instruction

 Non Shading indicates the element is not used by the instruction

o Example: MEM has a white background because add does not access the

data memory.

1.133 Computer Architecture

 Shading on the right half of the register file or memory means the element is read

in that stage

o Example: Right half of ID is shaded in the second stage because the register

file is read

 Shading of the left half of the register file or memory means it is written in that

stage

o Example: Left half of WB is shaded in the fifth stage because the register

file is written

3.5.2 Pipeline Hazards

 Any condition that causes the pipeline to stall is called a hazard.

 It prevents the next instruction in the instruction stream from being executing

during its designated clock cycle.

 These events are called hazards, and there are three different types.

 They are

o Data hazard

o Control/ Instruction hazard

o Structural hazard

Terminologies

Forwarding is also called bypassing. It is a method of resolving a data hazard by

retrieving the missing data element from internal buffers rather than waiting for it to arrive

from programmer-visible registers or memory.

Load-use data hazard is a specific form of data hazard in which the data requested by

a load instruction has not yet become available when it is requested.

Pipeline stall is also called bubble. A stall initiated in order to resolve a hazard.

3.5.2.1 Structural Hazards

 It occurs when two instructions use the same resource at the same time.

 It means that the hardware cannot support the combination of instructions that we

want to execute in the same clock cycle.

 Structural hazard is an occurrence in which a planned instruction cannot execute in

the proper clock cycle because the hardware cannot support the combination of

instructions that are set to execute in the given clock cycle.

Overview and Instruction 1.134

P
ro

g
ra

m
 E

x
ec

u
ti

o
n

o
rd

er
(i

n
 i

n
st

ru
ct

io
n
s)

←

Time→ cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8

lw $1,

100($0)

IF ID EX MEM WB

lw $2,

200($0)

 IF ID EX MEM WB

lw $3,

300($0)

 IF ID EX MEM WB

lw $4,

400($0)

 IF ID EX MEM WB

 In cc4, First instruction is accessing data from memory, while Fourth instruction is

fetching an instruction from that same memory.

o Without two memories, our pipeline could have a structural hazard.

3.5.2.2 Data Hazards

 It occurs when the data are not available at the time expected in the pipeline.

 It is also called pipeline data hazard.

 It is an occurrence in which a planned instruction cannot execute in the proper

clock cycle because data that is needed to execute the instruction is not yet

available.

 A data hazard is any condition in which either the source or the destination

operands of an instruction are not available at the time expected in the pipeline.

 As a result some operation has to be delayed, and the pipeline stalls.

Classification

Consider two instructions I1 and I2, with I1 occurring before I2.

The possible data hazards are:

 RAW (read after write)

o I2 reads a source before I1 writes it,

o So, I2 incorrectly gets the old value

 WAW (write after write)

o I2 tries to write an operand before it is written by I1.

1.135 Computer Architecture

o The writes end up being performed in the wrong order, leaving the value

written by I1 rather than the value written by I2 in the destination.

 WAR (write after read)

o I2 tries to write a destination before it is read by I1

o So, I1 incorrectly gets the new value

Handling Methods (Read-After-Write (RAW) Hazard)

o Forwarding

Consider the following instructions

It is equivalent to the following statement

$s0 = $t0 + $t1

$t2 = $s0 + $t3

Here, the add instruction followed immediately by a subtract instruction that uses the sum

($s0) is represented

o Sub instruction will read an old value of R0

o Pipeline Stall sub in ID for 3 cycles until result written to R0.

o Solution

add $s0, $t0, $t1

sub $t2, $s0, $t3

Overview and Instruction 1.136

1. Insert bubbles

2. Use internal data forwarding

 Also called bypassing

 Adding extra hardware to retrieve the missing item early from the internal

resources.

Note:

 “Forwarding” comes from the idea that the result is passed forward

from an earlier instruction to a later instruction.

 “Bypassing” comes from passing the result by the register file to the

desired unit.

Graphical representation of forwarding

 The connection shows the forwarding path from the output of the EX stage of

add to the input of the EX stage for sub, replacing the value from register $s0

read in the second stage of sub.

o MEM Forwarding (for Load-use Data Hazard)

Consider the following instructions

It is equivalent to the following statement

$s0 = $t1

$t2 = $s0 - $t3

lw $s0, 20($t1)

sub $t2, $s0, $t3

1.137 Computer Architecture

Here, the result from lw will not be available until after MEM stage.

 Path from memory access stage output to execution stage input would be

going backwards in time

Solution

 One bubble need to be inserted.

3.5.2.3 Control Hazards

 It is also called branch hazard or instruction hazard.

 It occurs when the branching decisions are made before branch condition is

evaluated.

 It is an occurrence in which the proper instruction cannot execute in the proper

clock cycle because the instruction that was fetched is not the one that is needed.

 The flow of instruction addresses is not what the pipeline expected.

Overview and Instruction 1.138

Handling Methods

Stall the pipeline

 A one-stage pipeline stall, or bubble, after the branch

 Drawback:

o The cost is too high to use. So, predict method is used

Predict branch not taken

 One simple approach to always predict that branches will fail (Not taken)

Predict branch taken

 Pipeline stall occur only when branches are taken

 A bubble is inserted at least during the first clock cycle immediately following the

branch.

 This simplifies the tasks.

1.139 Computer Architecture

Branch Prediction

 A method of resolving a branch hazard that assumes a given outcome for the branch

and proceeds from that assumption rather than waiting to ascertain the actual outcome.

Delayed Branch

 Executes the next sequential instruction, with the branch taking place after that one

instruction delay.

 Add instruction before the branch does not affect the branch.

 Can be moved to the delayed branch slot following the branch.

3.6 PIPELINED DATAPATH

MIPS pipeline classically take the following five steps:

1. Fetch instruction from memory (IF)

2. Read registers while decoding the instruction (ID)

3. Execute the operation or calculate an address(EX)

4. Access an operand in data memory(MEM)

5. Write back the result into a register(WB)

Overview and Instruction 1.140

3.6.1 Single Cycle Datapath

Exceptions

The following two exceptions arise when the instructions are flow from left-to-right:

 Write-back stage - places the result back into the register file in the middle of the

datapath.

 Selection of the next value of the PC, choosing between the incremented PC and the

branch address from the MEM stage.

3.6.2 Graphical representation

 Shows the execution of the instructions by displaying their private datapaths on a

common time line.

1.141 Computer Architecture

Single clock cycle pipeline diagram

3.6.3 Pipelined version of the datapath

 Pipeline registers

o Separate each pipeline stage

 No pipeline register is available at the end of the write-back stage

o All instructions must update some state in the processor—the register file,

memory, or the PC

o So a separate pipeline register is redundant to the state that is updated

Overview and Instruction 1.142

3.6.4 Demonstration

3.4.4.1 Load instruction

The active portions of the datapath highlighted as a load instruction goes through the

following five stages of pipelined execution

1. Instruction fetch

i. Instruction being read from memory using the address in the PC

a. Fetched instruction is placed in the IF/ID pipeline register.

ii. The PC address is incremented by 4 and then written back into the PC to be

ready for the next clock cycle

a. Incremented PC address is also saved in the IF/ID pipeline register

which is needed later for an instruction, such as beq

2. Instruction decode and register file read

i. Instruction portion of the IF/ID pipeline register supplies

a. Register numbers to read the two registers.

b. 16-bit immediate field, which is sign-extended to 32 bits

1.143 Computer Architecture

ii. The following values are stored in the ID/EX pipeline register

a. Incremented PC address

b. Data’s read from the two registers

c. 32-bit sign-extended value

3. Execute or address calculation

i. Reads the register1 contents and the sign-extended immediate from the

ID/EX pipeline register.

ii. Adds them using the ALU and that sum is placed in the EX/MEM pipeline

register.

Overview and Instruction 1.144

4. Memory access

i. Read the data memory using the address from the EX/MEM pipeline

register.

ii. Load the data into the MEM/WB pipeline register.

5. Write back

i. Read the data from the MEM/WB pipeline register.

ii. Write it into the register file in the middle of the figure.

1.145 Computer Architecture

3.4.4.2 Store Instruction

1. Instruction fetch

2. Instruction decode and register file read

3. Execute and address calculation

 Second register value is loaded into the EX/MEM pipeline register to be used

in the next stage.

4. Memory access

 Register containing the data to be stored was read and stored in ID/EX

 Only way to make the data available during the MEM stage is to place the data

into the EX/MEM pipeline register in the EX stage.

5. Write back

 No process is done

Overview and Instruction 1.146

3.7 PIPELINED CONTROL

 To specify control for the pipeline, the control values are set during each pipeline

stage.

3.7.1 Types of Control

Signal

Name

Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number

for the Write register comes

from the rt field (bits 20:16)

The register destination number for

the Write register comes from

the rd field (bits 15:11)

RegWrite None The register on the Write register

input is written with the value on the

Write data input.

ALUSrc The second ALU operand

comes from the second register

file output (Read data 2)

The second ALU operand is the

sign-extended, lower 16 bits of the

instruction.

1.147 Computer Architecture

PCSrc The PC is replaced by the

output of the adder that

computes the value of PC + 4.

The PC is replaced by the output of

the adder that computes the branch

target.

MemRead None Data memory contents designated

by the address input are put on the

Read data output

MemWrite None Data memory contents designated

by the address input are replaced by

the value on the Write data input

MemtoReg The value fed to the register

Write data input comes from the

ALU

The value fed to the register Write

data input comes from the data

memory

3.7.2 Graphical representation of Pipelined Control

Control lines are divided into five groups according to the pipeline stage

1. Instruction fetch

 The control signals to read instruction memory and to write the PC are

always asserted

o No control to set

2. Instruction decode and register file read

 No optional control lines to set

3. Execute and address calculation

 The signals to be set are

o RegDst - select the Result register

o ALUOp - select the ALU operation

o ALUSrc - select either Read data 2 or a sign-extended immediate

for the ALU

4. Memory Access

 The control lines set in this stage are

o Branch - set by the branch equal

o MemRead - set by the load instruction

Overview and Instruction 1.148

o MemWrite - set by the store instruction.

o PCSrc - selects the next sequential address unless control asserts

Branch and the ALU result was zero.

5. Write Back

 The two control lines are

o MemtoReg - Decides between sending the ALU result or the

memory value to the register file.

o RegWrite - Writes the chosen value.

3.8 EXCEPTIONS

 Exceptions are also called as interrupts.

 These are unscheduled events that disrupt the execution of programs.

1.149 Computer Architecture

Example

Consider the following instruction

ADD R1, R2, R1

 // Equivalent to the R1 = R2 + R1

 Arithmetic overflow has occurred

 Need to transfer control to the exception routine immediately after this instruction

o Not to contaminate other registers or memory locations

Solution

Flush the instructions that follow the add instruction from the pipeline and begin

fetching instructions from the new address.

 Flush the instruction in the IF stage by turning it into a nop

 Flush the instructions in the ID stage, the multiplexor already in the ID stage is

used that zeros control signals for stalls

o A new control signal, called ID.Flush, is ORed with the stall signal from

the Hazard Detection Unit to flush during ID.

 Flush the instructions in the EX phase.

o A new signal called EX.Flush is used to cause new multiplexors to zero the

control lines.

 Start fetching instructions from location 4000 0040hex (exception location for an

arithmetic overflow)

o Add an additional input to the PC multiplexor that sends 4000 0040hex to

the PC

Limitation

 If the execution is stopped in the middle of the instruction, the programmer will

not be able to see the original value of register R1 that helped cause the

overflow because it will be hit as the destination register of the add instruction.

 In order to overcome,

o Overflow exception is detected during the EX stage.

o Hence, the EX.Flush signal is used to prevent the instruction in the EX

stage from writing its result in the WB stage.

Overview and Instruction 1.150

Datapath to handle exceptions

Exception Support

 EPC (Exceptional Program Counter)

o A 32-bit register.

o Hold the address of the offending instruction.

 Cause

o A 32-bit register in MIPS (some bits are unused currently.)

o Record the cause of the exception.

Exception Detection

 Undefined instruction

o This exception is detected when no next state is defined from state 1 for the op

value.

 Handle this by defining the next state value for all op values other than

lw, sw, 0 (R-type), jmp, and beq as a new state, “other”.

1.151 Computer Architecture

 Arithmetic overflow

o It is detected with the Overflow signal out of the ALU.

 Signal is used in the modified FSM to specify an additional possible

next state.

Overview and Instruction 1.152

 UNIT

 PARALLELISM

Parallel processing challenges – Flynn‘s classification – SISD, MIMD, SIMD, SPMD, and Vector

Architectures - Hardware multithreading – Multi-core processors and other Shared Memory

Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers

and other Message-Passing Multiprocessors.

4.1 INTRODUCTION

 A computer system that has two or more processors is called as a multiprocessor

 As power is an overriding issue in processors, the computer architects had replaced

large inefficient processors with many smaller and efficient processors. This

provides improved power efficiency and scalable performance.

 Consider a multiprocessor system with ‘n’ processors. If a processor fails, the

system would continue to provide service with the remaining ‘n-1’ processors.

 Parallelism is a mode of operation in which a process is split into parts, which are

executed simultaneously on different processors attached to the same computer.

Goals of Parallelism

 Parallelism speeds up the computer processing capability (or) it increases the

computational speed.

 It increases throughput by making two or more ALUs in CPU can work

concurrently. [Throughput is the amount of processing that can be accomplished

during a given interval of time]

 It improves the performance of the computer for a given clock speed.

Types of Parallelism

 Instruction level parallelism

 Thread level or Task level Parallelism

1.153 Computer Architecture

 Bit-level Parallelism

 Data level parallelism

 Transaction level parallelism

4.2 INSTRUCTION-LEVEL-PARALLELISM

The technique used by overlapping the execution of instructions so as to improve the

performance is called instruction level parallelism.

ILP is the principle that there are many instructions in code that don’t depend on each

other so it’s possible to execute those instructions in parallel.

 Building compilers to analyze the code.

 Building hardware to be even smarter than that code.

There are two primary methods for increasing the performance of a system using

instruction-level parallelism.

 By increasing the depth of the pipeline to overlap more instructions.

 By replicating the internal components of the computer so that it can launch

multiple instructions in every pipeline stage. This technique is called as multiple

issue.

Multiple Issue

 Multiple issue is a scheme whereby multiple instructions are launched in 1 clock

cycle.

 There are two major ways to implement a multiple-issue processor

 The types differ in the division of work between the compiler and the hardware.

 They are

o Static multiple issue-Compiler decides multiple issue before execution.

o Dynamic multiple issue-Processor decides multiple issue before execution.

Static multiple issue is an approach to implementing a multiple-issue processor where

many decisions are made by the compiler before execution.

Overview and Instruction 1.154

Dynamic multiple issue is an approach to implementing a multiple-issue processor

where many decisions are made during execution by the processor.

There are two primary responsibilities that must be dealt with in a multiple-issue

pipeline:

 Packaging instructions into issue slots:

o It deals with the evaluation of the number of instructions and the type of

instructions that can be issued in a given clock cycle.

o This process is partially handled by the compiler in most of the static

multiple issue processors.

o In dynamic issue designs, it is normally dealt at the runtime by the

processor.

 Dealing with data and control hazards:

o In static issue processors, some or all of the consequences of data and

control hazards are handled statically by the compiler.

o Most of the dynamic issue processors attempt to ease at least some classes

of hazards using hardware techniques operating at execution time.

Approaches to exploit ILP

The two separable approaches to exploit ILP are

 Dynamic, hardware intensive approach

o Rely on hardware to help discover and exploit the parallelism dynamically.

o Used in the desktop and server markets and in a wide range of processors

Example

 Pentium III and 4

 Athlon

 MIPS R10000/12000

 Sun Ultra SPARC-III

 PowerPC 603, G3, G4

1.155 Computer Architecture

 Alpha 21264

 Static, compiler intensive approach

o Rely on software technology to find parallelism, statically at compile-time.

o Broadly used in the embedded market than desktop/server market.

Example

 IA-64 architecture

 Intel’s Itanium

Static Multiple Issue Processors:-

 Compiler specifies a set of instruction that executes together in a given clock cycle.

 Simple hardware, complex compiler.

 Issue Packet:-

The set of instructions that issues together in one clock cycle; the packet may

be determined statically by the compiler or dynamically by the processor.

 Very Long Instruction Word (VLIW);-

A style of instruction set architecture that launches many operations that

are defined to be independent in a single wide instruction, typically with many

separate opcode fields.

 Compiler detects and avoids hazards.

Overview and Instruction 1.156

Dynamic multiple issue-Processors:-

 Hardware decides which instruction executes together.

 Complex hardware, simple compiler.

 The processor decides whether zero,one or more instructions can be issued in a

given clock cycle.

 Dynamic multiple-issue processors are also known as superscalar processors,

or simply superscalars.

1.157 Computer Architecture

 Many superscalars extend the basic framework of dynamic issue decisions to

include dynamic pipeline scheduling.

 Dynamic pipeline scheduling chooses which instructions to execute in a given

clock cycle while trying to avoid hazards and stalls.

 Let’s start with a simple example of avoiding a data hazard. Consider the following

code sequence:

 lw $t0, 20($s2)

addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

 Even though the sub instruction is ready to execute, it must wait for the lw and

addu to complete first, which might take many clock cycles if memory is slow.

 Dynamic pipeline scheduling allows such hazards to be avoided either fully or

partially.

Dynamic pipeline scheduling:-

 It chooses which instruction to execute in a given clock cycle while trying to avoid

hazards and stalls.

 It is divided into three major units,

1. Instruction fetch and issue unit

2. Multiple functional Units

3. Commit unit

 The first unit fetches instructions, decodes them, and sends each instruction to a

corresponding functional unit for execution.

 Each functional unit has buffers, called reservation stations, which hold the operands

and the operation.

Overview and Instruction 1.158

 As soon as the buffer contains all its operands and the functional unit is ready to

execute, the result is calculated.

 When the result is completed, it is sent to any reservation stations waiting for this

particular result as well as to the commit unit, which buffers the result until it is safe

to put the result into the register file or, for a store, into memory.

 The buffer in the commit unit, often called the reorder buffer, is also used to supply

operands, in much the same way as forwarding logic does in a statically scheduled

pipeline. Once a result is committed to the register file, it can be fetched directly from

there, just as in a normal pipeline.

 The combination of buffering operands in the reservation stations and results in the

reorder buffer provides a form of register renaming

 When an instruction is issued,

o It is copied to a reservation station for the appropriate functional unit. Any

operands that are available in the register file or reorder buffer are also

immediately copied into the reservation station. The instruction is buffered in

the reservation station until all the operands and the functional units are

available. For the issuing instruction, the register copy of the operand is no

longer required, and if a write to that register occurred, the value could be

overwritten.

o If an operand is not in the register file or reorder buffer, it must be waiting to

be produced by a functional unit. The name of the functional unit that will

produce the result is tracked. When that unit eventually produces the result, it

is copied directly into the waiting reservation station from the functional unit

by-passing the registers.

These steps effectively use the reorder buffer and the reservation stations to implement

register renaming.

1.159 Computer Architecture

The processor then executes the instructions in some order that preserves the data flow order

of the program. This style of execution is called an out-of-order execution, since the

instructions can be executed in a different order than they were fetched.

To make programs behave as if they were running on a simple in-order pipeline, the

instruction fetch and decode unit is required to issue instructions in order, which allows

dependences to be tracked, and the commit unit is required to write results to registers and

memory in program fetch order. This conservative mode is called in-order commit.

4.2.1 ILP Terminology - Basic block

 Basic block is a straight-line code sequence with no branches in except to the entry

and no branches out except at the exit.

 The amount of parallelism available within a basic block is quite small.

 The instructions in Basic block are likely to depend on each other.

Overview and Instruction 1.160

 The amount of overlap that can exploit within a basic block is likely to be much

less than the average basic blocks size.

4.2.1.1 Methods to enhance performance of ILP

To obtain substantial performance enhancements, the ILP across multiple basic blocks

are exploited.

Loop-level parallelism

 The simplest and most common way to increase the ILP is to exploit parallelism

among iterations of a loop.

 This type of parallelism is often called loop-level parallelism.

Example

for (i=0; i<=999; i=i+1)

x[i] = x[i] + y[i];

 Every iteration of the loop can overlap with any other iteration.

 There are a number of techniques for converting loop-level parallelism into

instruction-level parallelism.

 Those techniques work by unrolling the loop either statically by the compiler or

dynamically by the hardware.

 An important alternative method for exploiting loop-level parallelism is the use of

SIMD in both vector processors and Graphics Processing Units (GPUs).

Techniques to convert LLP to ILP

There are a number of techniques for converting such loop-level parallelism into

instruction-level parallelism.

Loop Unrolling:

 It is used for converting loop-level parallelism into instruction-level parallelism.

 Either the compiler or the hardware is able to exploit the parallelism inherent in

the loop.

for(i=1; i<=1000; i=i+4)

1.161 Computer Architecture

{

x[i] = x[i] + y[i];

x[i+1] = x[i+1] + y[i+1];

x[i+2] = x[i+2] + y[i+2];

x[i+3] = x[i+3] + y[i+3];

}

Such techniques work by unrolling the loop either

 Statically by the compiler or

 Dynamically by the hardware.

Vector instructions

 An important alternative method for exploiting loop-level parallelism is the use of

vector instructions.

 A vector instruction operates on a sequence of data items.

 The above code sequence could execute in four instructions on some vector

Processors

 Two instructions to load the vectors x and y from memory.

 One instruction to add the two vectors.

 One instruction to store back the result vector.

 Processors that exploit ILP have almost completely replaced vector-based

processors.

 Vector based processors are used in graphics, digital signal processing, and

multimedia applications.

4.2.2 Data Dependences and Hazards

 Determining how one instruction depends on another is critical to

Overview and Instruction 1.162

 Determine how much parallelism exists in a program

 Determine how that parallelism can be exploited.

In order to exploit instruction-level parallelism, which instructions can be executed in

parallel must be determined.

Parallel instructions

 If two instructions are parallel, they can execute simultaneously in a pipeline of

arbitrary depth without causing any stalls, assuming the pipeline has sufficient

resources.

Dependent instructions

 If two instructions are dependent, they are not parallel and must be executed in

order, although they may often be partially overlapped.

In both the cases, whether an instruction is dependent on another instruction must be

determined.

Types of dependences

There are three different types of dependences:

1. Data dependences

2. Name dependences

3. Control dependences

4.2.2.1 Data dependences

Dependence

Name Dependence Data Dependence Control Dependence

Anti-Dependence Output Dependence

1.163 Computer Architecture

Data dependences are also called true data dependences.

An instruction j is data dependent on instruction i if either of the following holds:

 Instruction i produces a result that may be used by instruction j,

Instruction i

Instruction j

or

 Instruction j is data dependent on instruction k, and instruction k is data dependent

on instruction I, which is called transitive dependence.

Instruction i

Instruction k

Instruction j

Example

Consider the following code sequence that increments a vector of values in memory

(starting at 0(R1), and with the last element at 8(R2)), by a scalar in register F2.

Loop: L.D F0, 0(R1) ; F0=array element

ADD.D F4, F0, F2 ; add scalar in F2

S.D F4, 0(R1) ; store result

DADDUI R1, R1, #-8 ; decrement pointer 8 bytes

BNE R1, R2, LOOP ; branch R1! =R2

The data dependence in the above code involve both the following part

 Floating-point data part

Loop: L.D F0,0(R1) ;F0=array element

ADD.D F4,F0,F2 ;add scalar in F2

S.D F4,0(R1) ;store result

 Integer data part

Overview and Instruction 1.164

DADDIU R1, R1,-8 ; decrement pointer

; 8 bytes (per DW)

BNE R1, R2, Loop ; branch R1! =R2

In both of the above dependent sequences, the arrows show

 Each instruction depending on the previous one

 Show the order that must be preserved for correct execution

 The arrow points from an instruction that must precede the instruction that

the arrowhead points to.

Dependent Instructions

 If two instructions are data dependent, they cannot execute simultaneously or be

completely overlapped.

 Executing the instructions simultaneously will cause a processor with pipeline

interlocks to detect a hazard and stall, thereby reducing or eliminating the overlap.

 If data dependence caused a hazard in pipeline, then it is called a Read After

Write (RAW) hazard.

 In a processor without interlocks that relies on compiler scheduling, the compiler

cannot schedule dependent instructions in such a way that they completely overlap,

since the program will not execute correctly.

Pipeline organization

 Dependences are a property of programs.

 The concern is to check whether a given dependence results in an actual hazard

being detected and whether that hazard actually causes a stall are properties of the

pipeline organization.

Property of Pipeline

The presence of dependence indicates potential for a hazard but the actual hazard and

the length of any stall is a property of the pipeline.

Importance of the data dependencies

1.165 Computer Architecture

The importance of data dependence is that the dependence conveys the following three

things

1. The possibility of a hazard

2. The order in which results must be calculated, and

3. An upper bound on how much parallelism can possibly be exploited.

Overcoming of data dependence

Dependence can be overcome in two different ways

 By maintaining the dependence but avoiding a hazard.

 By eliminating dependence by transforming the code.

Data Dependences through registers/memory

A data value may flow between instructions either through registers or through

memory locations.

Dependences through registers

Dependences through registers are easy since the register names are fixed in the

instructions

lw r10,10(r11)

add r12,r10,r8

just compare register names..

It gets more complicated when branches intervene and correctness concerns cause a

compiler or hardware to be conservative.

Dependences through memory

Dependences that flow through memory locations are more difficult to detect. Since

two addresses may refer to the same location but look different

For example, 100(R4) and 20(R6) may be identical memory addresses.

1.2.2.2 Name dependences

Overview and Instruction 1.166

Name dependence occurs when two instructions use the same register or memory

location, called a name, but there is no flow of data between the instructions associated with

that name.

Since there is no value being transmitted between the instructions in name dependence

is not a true dependence.

Types of name dependences

There are two types of name dependences between an instruction i that precedes

instruction j in program order:

1. Antidependence

An Antidependence between instruction i and instruction j occurs when instruction j writes

a register or memory location that instruction i reads.

The original ordering must be preserved to ensure that i reads the correct value.

2. Output dependence

An output dependence occurs when instruction i and instruction j write the same register

or memory location.

The ordering between the instructions must be preserved to ensure that the value finally

written corresponds to instruction j.

Register renaming

Since a name dependence is not a true dependence, instructions involved in a name

dependence can execute simultaneously or be reordered, if the name (register number or

memory location) used in the instructions is changed so the instructions do not conflict.

The renaming that can be done for register operands, where it is called register

renaming.

Register renaming can be done either statically by a compiler or dynamically by the

hardware.

4.2.2.3 Data Hazards

A hazard is created whenever there is dependence between instructions, and they are

close enough that the overlap caused by pipelining, or other reordering of instructions, would

change the order of access to the operand involved in the dependence.

1.167 Computer Architecture

The hazards are named by the ordering in the program that must be preserved by the

pipeline.

 Instruction i

Instruction j

Program Order

Hardware and Software techniques must preserve program order, a order instructions

would execute in if executed sequentially one at a time as determined by original source

program

HW/SW goal

 To exploit parallelism by preserving program order only where it affects the

outcome of the program.

Classification of Data Hazards

Data Hazards are classified into three types depending on the order of read and write

accesses in the instructions.

They are,

1. RAW (read after write)

2. WAW(Write after Write)

3. WAR(Write after Read)

Consider the two instructions i and j with i occurring before j in program order.

1. RAW (read after write)

 j tries to read a source before i writes it, so j incorrectly gets the old value. This hazard

is the most common type and corresponds to true data dependence.

 Program order must be preserved to ensure that j receives the value from i.

 In the simple common five-stage static pipeline a load instruction followed by an

integer ALU instruction that directly uses the load result will lead to a RAW hazard.

2. WAW(Write after Write)

Overview and Instruction 1.168

WAW: j tries to write an operand before it is written by i. The writes end up being

performed in the wrong order, leaving the value written by i rather than the value written

by j in the destination.

WAW hazards are present only in pipelines that write in more than one pipe stage or allow

an instruction to proceed even when a previous instruction is stalled.

The classic five-stage integer pipeline writes a register only in the WB stage and avoids

this class of hazards

WAW hazards can also between a short integer pipeline and a longer floating-point

pipeline.

Example

A floating point multiply instruction that writes F4, shortly followed by a load of F4 could

yield a WAW hazard, since the load could complete before the multiply completed.

InstructionJ writes operand before InstructionI writes it.

This is called “output dependence” by compiler writers.

This also results from the reuse of name “r1”. If output -dependence caused a hazard in the

pipeline, called a Write After Write (WAW) hazard.

3. WAR(Write after Read)

WAR: j tries to write a destination before it is read by i, so i incorrectly gets the new

value. This hazard arises from antidependence.

WAR hazards cannot occur in most static issue pipelines even deeper pipelines or floating

point pipelines because all reads are early (in ID) and all writes are late (in WB).

A WAR hazard occurs either when there are some instructions that write results early in

the instruction pipeline, and other instructions that read a source late in the pipeline or

when instructions are reordered.

InstrJ writes operand before InstrI reads it

1.169 Computer Architecture

It is called “anti-dependence” by compiler writers.

This results from reuse of the name “r1”. If anti-dependence caused a hazard in the

pipeline, then it is called a Write After Read (WAR) hazard.

RAR (Read after Read)

RAR is not a hazard since reading any number of times simultaneously does not create

issues.

4.2.2.4 Control dependences

A control dependence determines the ordering of an instruction, i, with respect to a

branch instruction so that the instruction i is executed in correct program order and only when

it should be.

Every instruction, except for those in the first basic block of the program, is control

dependent on some set of branches, and, in general, these control dependences must be

preserved to preserve program order.

Example

Consider the following code segment

if p1 {

S1;

}

if p2 {

S2;

}

S1 is control dependent on p1, and

S2 is control dependent on p2 but not on p1.

Control dependences constraints

Overview and Instruction 1.170

The Two constraints imposed by control dependences are

1. An instruction that is control dependent on a branch cannot be moved before the

branch so that its execution is no longer controlled by the branch.

Example

We cannot take an instruction from the then portion of if-statement and move it

before if-statement.

2. An instruction that is not control dependent on a branch cannot be moved after the

branch so that its execution is controlled by the branch.

Example

We cannot take a statement before if-statement and move it into the then portion.

Preserving Control dependence

Control dependence is preserved by two properties in a simple pipeline

1. Instructions execute in program order

 Ensures that an instruction that occurs before a branch is executed before the

branch.

2. Detection of control or branch hazards

 Ensures that an instruction that is control dependent on a branch is not executed

until the branch direction is known.

When processors preserve strict program order, they ensure that control dependences

are also preserved.

Example:

DADDU R2, R3, R4

BEQZ R2, L1

LW R1, 0(R2)

L1:

It is easy to see that if we do not maintain the data dependence involving R2, we can

change the result of the program.

1.171 Computer Architecture

Less obvious is the fact that if we ignore the control dependence and move the load

instruction before the branch, the load instruction may cause a memory protection exception.

To allow us to reorder these instructions, ignore the exception when the branch is

taken.

 Ignoring Control Dependence

Control dependence need not be preserved; instead the following two properties are

critical to program correctness

1. exception behavior

2. data flow

Preserving the exception behavior

This means that any changes in the ordering of instruction execution must not change

how exceptions are raised in the program.

Example

Consider this code sequence:

DADDU R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)

L1:

Problem with moving LW before BEQZ

If the data dependence involving R2 is not maintained, the result of the program can be

changed.

If we ignore the control dependence and move the load instruction before the branch,

the load instruction may cause a memory protection exception.

Preserving the data flow

The data flow is the actual flow of data values among instructions that produce results

and those that consume them. Branches make the data flow dynamic, since they allow the

source of data for a given instruction to come from many points.

Example

Consider the following code fragment:

Overview and Instruction 1.172

DADDU R1, R2, R3

BEQZ R4, L

DSUBU R1, R5, R6

L: ...

OR R7, R1, R8

 In the above example ,

o The value of R1 used by OR instruction depends on whether the branch is

taken or not.

o OR instruction is data dependent on both DADDU and DSUBU

 If the branch is taken the value of R1 computed by DADDU will be used by OR.

 If the branch is not taken, the value of R1 computed by DSUBU will be used by OR.

Speculation

The violation of the control dependence cannot affect either the exception behavior or

the data flows are determined by considering the following code sequence.

DADDU R1, R2, R3

BEQZ R12, skipnext

DSUBU R4, R5, R6

DADDU R5, R4, R9

Skipnext: OR R7, R8, R9

Liveness – The property of whether a value will be used by an upcoming instruction is

called liveness.

If R4 was unused after the instruction labeled skipnext, then changing the value of R4

just before the branch would not affect the data flow since R4 would be dead in the code

region after skipnext.

 Assume R4 is dead (rather than live) after skipnext.

 We can execute DSUBU before BEQZ since

o R4 could not generate an exception.

o The data flow cannot be affected.

1.173 Computer Architecture

 This type of code scheduling is called speculation.

o The compiler is betting on the branch outcome. In this case, the bet is that

the branch is usually not taken.

4.3 PARALLEL PROCESSING CHALLENGES

1. Concurrency

 Concurrency is a property of a system representing the fact that multiple activities

can be executed at the same time

 If an algorithm cannot be divided into groups of operations that can execute

concurrently, performance improvements due to parallelism cannot be achieved,

and any processors after the first will be of limited use in accelerating the

algorithm

 To a large extent, different problems inherently have differing amounts of

concurrency. For most problems, developing an algorithm that achieves its

maximal concurrency requires a combination of cleverness and experience from

the programmer

 The three fundamental ways of improving the performance of the application using

concurrency:

1. Reduce latency: A unit of work is executed in shorter time by subdivision

into parts that can be executed concurrently

2. Hide latency:

 Multiple long-running tasks are executed together by the underlying

system

 Effective when the tasks are blocked because of external resources they

must wait upon, such as disk or network I/O operations

3. Increase throughput

1. By executing multiple tasks concurrently, the general system

throughput can be increased

2. Also speeds up independent sequential tasks that have not been

specifically designed for concurrency yet.

2. Data Distribution

 Another challenge in parallel programming is the distribution of a problem’s data

 Most conventional parallel computers have a notion of data locality

Overview and Instruction 1.174

o Implies that some data will be stored in memory that is “closer” to a

particular processor and can therefore be accessed much more quickly

o Data locality may occur

 due to each processor having its own distinct local memory—as in a

distributed memory machine

 due to processor-specific caches as in a shared memory system.

 Due to the impact of data locality, a parallel programmer must pay attention to

where data is stored in relation to the processors that will be accessing it

 The more local the values are, the quicker the processor will be able to access them

and complete its work

 It should be evident that distributing work and distributing data are tightly coupled,

and that an optimal design will consider both aspects together

3. Inter-process Communication

 Inter-process communication (IPC) is a set of programming interfaces that allow a

programmer to coordinate activities among different program processes that can

run concurrently in an operating system.

o Allows a program to handle many user requests at the same time

 Factors to Consider

o Cost of communications

 Inter-processor communication virtually always implies overhead.

 Machine cycles and resources that could be used for computation

are instead used to package and transmit data.

o Latency vs. Bandwidth

 Latency is the time it takes to send a minimal (0 byte) message

from point A to point B. Commonly expressed as microseconds.

 Bandwidth is the amount of data that can be communicated per unit

of time. Commonly expressed as megabytes/sec or gigabytes/sec.

 Sending many small messages can cause latency to dominate

communication overheads.

 More efficient to package small messages into a larger

message, thus increasing the effective communications

bandwidth.

1.175 Computer Architecture

o Visibility of communications

 With the Message Passing Model, communications are explicit and

generally quite visible and under the control of the programmer.

 With the Data Parallel Model, communications often occur

transparently to the programmer, particularly on distributed memory

architectures. The programmer may not even be able to know

exactly how inter-task communications are being accomplished

o Synchronous vs. asynchronous communications

 Synchronous communications are often referred to as blocking

communications since other work must wait until the

communications have completed

 Asynchronous communications are often referred to as non-

blocking communications since other work can be done while the

communications are taking place

 Interleaving computation with communication is the single greatest

benefit for using asynchronous communications.

o Scope of communications

 Knowing which tasks must communicate with each other is critical

during the design stage of a parallel code.

o Efficiency of communications

4. Load Balancing

 Load balancing refers to the practice of distributing approximately equal

amounts of work among tasks so that all tasks are kept busy all of the time.

 Load balancing is important to parallel programs for performance reasons.

 Steps for achieving

o Equally partition the work each task receives

 For array/matrix operations where each task performs similar

work, evenly distribute the data set among the tasks.

 For loop iterations where the work done in each iteration is

similar, evenly distribute the iterations across the tasks.

 If a heterogeneous mix of machines with varying performance

characteristics is being used, be sure to use some type of

Overview and Instruction 1.176

performance analysis tool to detect any load imbalances. Adjust

work accordingly

 Use dynamic work assignment

o Certain classes of problems result in load imbalances even if data is

evenly distributed among tasks:

 Sparse arrays - some tasks will have actual data to work on

while others have mostly "zeros"

 Adaptive grid methods - some tasks may need to refine their

mesh while others don't

 N-body simulations - where some particles may migrate to/from

their original task domain to another task's; where the particles

owned by some tasks require more work than those owned by

other tasks

o When the amount of work each task will perform is intentionally

variable, or is unable to be predicted, it may be helpful to use a

scheduler - task pool approach. As each task finishes its work, it

queues to get a new piece of work

o It may become necessary to design an algorithm which detects and

handles load imbalances as they occur dynamically within the code

5. Implementation and Debugging

 Programmers often implement parallel algorithms by creating a single executable

that will execute on each processor

 The program is designed to perform different computations and communications

based on the processor’s unique ID to ensure that the work is divided between

instances of the executable.

o Referred to as the Single Program, Multiple Data (SPMD) model

 Attractiveness stems from the fact that only one program must be

written

o Alternative is to use the Multiple Program, Multiple Data (MPMD) model

 Several cooperating programs are created for execution on the

processor set

o In either case, the executables must be written to cooperatively perform the

computation while managing data locality and communication

o They must also maintain a reasonably balanced load across the processor

set

1.177 Computer Architecture

o It should be clear that implementing such a program will inherently require

greater programmer effort than writing the equivalent sequential program

6. Speed up Challenge

 To get good speed-up on a multiprocessor while keeping the problem size fixed

is harder than getting good speed-up by increasing the problem size

 Strong Scaling means measuring speed-up while keeping the problem size

fixed

 Weak Scaling means that the program size grows proportionally to the

increase in the number of processors.

 Amdahl’s Law says

 Modified Amdahl’s Law in terms of speed-up versus the original execution

time:

 Assuming Execution time before = 1 and

Execution time affected = fraction of time

Example

1. How will you achieve a speed-up of 90 times faster with 100 processors? What percentage

of the original computation can be sequential?

Solution:

Speed-up to be achieved = 90

∴ 90 = ___________________1 __________________

 (1 − Fraction time affected) + Fraction time affected

 100

Then simplifying the formula and solving for fraction time affected:

90 × (1 – 0.99 × Fraction time affected) = 1

90 - (90 × 0.99 × Fraction time affected) = 1

90 - 1 = 90 × 0.99 × Fraction time affected

Fraction time affected = 89/89.1 = 0.999

Thus, to achieve a speed-up of 90 from 100 processors, the sequential percentage can only be

0.1%.

2. Suppose you want to perform two sums: one is a sum of 10 scalar variables, and one is a

matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10. What speed-up do

Overview and Instruction 1.178

you get with 10 versus 100 processors? Next, calculate the speed-ups assuming the matrices

grow to 100 by 100.c

Solution:

If we assume performance is a function of the time for an addition, t, then there are 10

additions that do not benefit from parallel processors and 100 additions that do. If the time for

a single processor is 110 t, the execution time for 10 processors is

Execution time affected improvement = (100t/10) + 10t = 20t

So the speed-up with 10 processors is 110t/20t = 5.5.

The execution time for 100 processors is

Execution time after improvement = (100t/100) + 10t = 11t

So the speed-up with 100 processors is 110t/11t s= 10.

4.4 FLYNN'S CLASSIFICATION

 First proposed by Michael J. Flynn in 1966

 Flynn uses the stream concept for describing a machine's structure

o Stream – It refers to sequence or flow of either instructions or data operated

on by the computer.

o Types

 Data Stream – The flow of operands between processor and

memory in bi-directional manner.

 Instruction Stream – the flow of instructions from main memory to

CPU

CPU Main Memory

Data Stream

1.179 Computer Architecture

 Classification of parallel computer architectures that are based on the number of

concurrent instruction and data streams

Categories

 SISD- Single Instruction Single Data Stream

 SIMD- Single Instruction Multiple Data Stream

 MISD- Multiple Instruction Single Data Stream

 MIMD- Multiple Instruction Multiple Data Stream

D
a
ta

 S
tr

ea
m

Instruction Stream

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple

Data
SIMD MIMD

4.4.1 SISD- Single Instruction Single Data Stream

 A Single computer which uses no parallelism in either the instruction or data

stream is called SISD.

 Single control unit fetches single instruction from memory then the control unit

generates appropriate control signals to direct single processing unit to operate

on single data stream.

CPU Main Memory

Instruction Stream

Overview and Instruction 1.180

Example

 IBM 704

 VAX

 CRAY - 1

Limitation

 Low level of parallelism

4.4.2 SIMD- Single Instruction Multiple Data Stream

 They have multiple processing/execution units and one control unit. Therefore

all processing/execution units are supervised by single control unit. All

processing element received same instruction from control unit but operate on

different data streams.

 The concept of achieving parallelism by performing the same operation on

independent data is called data level parallelism.

 Dedicated to array processing machines.

Characteristics of SIMD system:-

 Single machine instruction that controls simultaneous execution.

 Allow no of processing elements to perform in lock-step basis.

 Vectors or array processors are used for instruction execution.

Advantages of SIMD system:-

 Reduces the cost of Control unit bandwidth and space.

 It needs only one copy of code that is being simultaneously executed.

Control Unit Processor

(CPU)
Memory

I/O

Instruction Stream

Instruction Stream Data Stream

1.181 Computer Architecture

 This system in X86 is used for multimedia extension.

Example

 ILLIAC-IV

 MPP

 CM-2

 STARAN

4.4.3 MISD- Multiple Instruction Single Data Stream

 There are n number of processing units each receiving distinct instructions

operating over the same data stream and its derivatives.

 The result of one processor becomes the input of next processor in micro pipe.

 All processing units are interacting with common shared memory for

organization of single data stream.

Characteristics of MISD system:-

Control Unit

Processor

(CPU1)

Memory1

Instruction Stream Data Stream

Processor

(CPU2)
Memory2

Processor

(CPUn)
Memoryn

Overview and Instruction 1.182

 Each processor executes a different sequence of instruction in single data

stream.

 Each processing unit has associated data memory.

Example

 Pipeline Architecture

Limitation

 Low level of parallelism

 High bandwidth required

 High complexity

4.4.4 MIMD- Multiple Instruction Multiple Data Stream

 MIMD Computer implies interactions among the multiple processors because

all memory streams are derived from same data space shared by all processors.

 The Processors work on their own data with their own instructions.

 Tasks executed by different processors can start or finish at different time, but

run asynchronously. This classification is actually recognizes parallel

computer.

Characteristics of MIMD system:-

Control Unit Processor

(CPU1)

Instruction Stream Data Stream

Processor

(CPU2)

Memory

Processor

(CPUn)

Control Unit

Control Unit

1.183 Computer Architecture

 Each instruction operates on different data.

 Each processing elements are associated data memory.

Example

 Distributed Computing Systems

 IBM 370/168M

 CRAY XMP

4.4.5 SPMD - Single Program Multiple Data

 SPMD was proposed first in 1983 by Michel Auguin and François Larbey in the

OPSILA parallel computer. By the late 1980s, there were many distributed computers

with proprietary message passing libraries. The first SPMD standard was PVM. The

current de facto standard is MPI.

 In computing, SPMD (single program, multiple data) is a technique employed to

achieve parallelism;

 It is a subcategory of MIMD. Tasks are split up and run simultaneously on multiple

processors with different input in order to obtain results faster.

 SPMD is the most common style of parallel programming

Control Unit Processor

(CPU)
Memory

In
te

rc
o
n

n
ec

te
d

 N
et

w
o
rk

 I
/O

Instruction Stream Data Stream

Control Unit Processor

(CPU)
Memory

Overview and Instruction 1.184

Example

 Titanium

 MPI

Advantages of SPMD

 Data Locality

 Structured Parallelism

 Simple runtime implementation

Limitation

 Difficult to write divide and conquer problems

 Hard to get desired speed up

4.4.6 Vector Architecture

 An older interpretation of SIMD is called a vector architecture which has been

closely identified with Cray Computers.

 It is again a great match to problems with lots of data-level parallelism.

 Rather than having 64 ALUs perform 64 additions simultaneously, like the old

array processors, the vector architectures pipelined the ALU to get good

performance at lower cost.

 The basic philosophy of vector architecture is to collect data elements from

memory, put them in order into a large set of registers, operate on them

sequentially in registers, and then write the results back to memory.

 A key feature of vector architectures is a set of vector registers. Thus, a vector

architecture might have 32 vector registers, each with 64 64-bit elements.

1.185 Computer Architecture

Properties of Vector instructions

Vector instructions have several important properties compared to conventional instruction

set architectures, which are called scalar architectures in this context:

 A single vector instruction is equivalent to executing an entire loop. The time required

for instruction fetch and decode bandwidth is dramatically reduced.

 In a vector instruction, the computation of each result in the vector is independent of the

computation of other results in the same vector, so hardware does not have to check for

data hazards within a vector instruction. This reduces power consumption too.

 Vector architectures and compilers help to write efficient applications which have data-

level parallelism.

 The cost of the latency to main memory is seen only once for the entire vector, rather

than once for each word of the vector.

 As an entire loop is replaced by a vector instruction whose behavior is predetermined,

control hazards that would normally arise from the loop branch are non-existent.

For these reasons, vector operations can be made faster than a sequence of scalar operations

on the same number of data items, and designers are motivated to include vector units if the

application domain can use them frequently.

4.5 HARDWARE MULTITHREADING

Idea

 Allows multiple threads to share the functional units of a single processor in an

overlapped fashion. To allow this sharing the processor must duplicate the

independent state of each thread. i.e) each thread will have separate copy of

register file and program counter.

Use

 Promote utilization of existing hardware resources

Need

 To tolerate latency (initial motivation)

o Latency of memory operations, dependent instructions, branch resolution

o By utilizing processing resources more efficiently

 To improve system throughput

Overview and Instruction 1.186

o By exploiting thread-level parallelism

o By improving superscalar processor utilization

 To reduce context switch penalty

Three implementations

 Coarse-grained Multi Threading

 Fine-grained Multi Threading

 Simultaneous Multi Threading (SMT)

4.5.1 Coarse-grained Multi Threading

Idea

It won’t switch out the executing thread until it reaches a situation that triggers a

switch. This situation occurs when instruction execution reaches either a long latency

operation or explicit additional switch operation.

When a thread is stalled due to some event, switch to a different hardware context

 Switch-on-event multithreading

Advantages

 Reduces the penalty of high cost stalls.

 Less likely slow down the execution of individual thread.

 Relieves need to have very fast thread-switching

 Doesn’t slow down thread, since instructions from other threads issued only when

the thread encounters a costly stall.

Disadvantages

 Difficult to overcome throughout losses due to shorter stalls.

 When stall occurs, pipeline should be emptied.

4.5.2 Fine-grained Multi-Threading

Idea

 Switches between thread after every instruction. Such that no two instructions from

the thread are in the pipeline concurrently.

1.187 Computer Architecture

 It makes interleaved execution of multiple threads at same time. The interleaving is

done in round robin fashion on every clock cycle.

 Improves pipeline utilization by taking advantage of multiple threads

Advantages

 No need for dependency checking between instructions (only one instruction in

pipeline from a single thread)

 No need for branch prediction logic

 Bubble cycles used for executing useful instructions from different threads

 Improved system throughput, latency tolerance, utilization

 It hides throughput losses due to short and long stalls.

Disadvantages

 Extra hardware complexity: multiple hardware contexts, thread selection logic

 Reduced single thread performance (one instruction fetched every N cycles)

 Resource contention between threads in caches and memory

 Dependency checking logic between threads remains (load/store)

4.5.3 Simultaneous Multi Threading (SMT)

SMT is a variation on multithreading that uses resources of a multiple-issue,

dynamically scheduled processors to exploit TLP at the same time it exploits ILP i.e., convert

thread-level parallelism into more ILP. It shows the functional units dynamically and flexibly

between multiple threads so that no white boxes which are idle.

It exploits the following features of modern processors:

 Multiple functional units

o Modern processors typically have more functional units available

than a single thread can utilize

 Register renaming and dynamic scheduling

o Multiple instructions from independent threads can co-exist and co-

execute

Overview and Instruction 1.188

Advantages of SMT:-

 More functional unit, parallelism available then single threading.

 Register renaming and dynamic scheduling are used so that does not switch

resource for every cycle.

 Multiple instructions from independent threads can be issued without

regard to dependences among them.

Example:-

How four threads use the issue slots of a superscalar processor in different approaches?

 The four threads at the top show how each would execute running alone on

a standard superscalar processor without multithreading support.

 The three examples at the bottom show how they would execute running

together in three multithreading options.

 The horizontal dimension represents the instruction issue capability in each

clock cycle.

 The vertical dimension represents a sequence of clock cycles.

 An empty (white) box indicates that the corresponding issue slot is unused

in that clock cycle.

 The shades of gray and color correspond to four different threads in the

multithreading processors.

1.189 Computer Architecture

4.5.3.1 Design Challenges in SMT

 Impact of fine-grained scheduling on single thread performance

o A preferred thread approach sacrifices neither throughput nor single-thread

performance?

o Unfortunately, with a preferred thread, the processor is likely to sacrifice some

throughput, when preferred thread stalls

o Reason

 Pipeline is less likely to have a mix of instructions from several threads

resulting in greater probability that either empty slots or a stall will

occur.

Design challenges

 The Design challenges of SMT processor include the following

 Larger register file needed to hold multiple contexts

Overview and Instruction 1.190

 Not affecting clock cycle time, especially in

o Instruction issue - more candidate instructions need to be considered

o Instruction completion - choosing which instructions to commit may be

challenging

 Ensuring that cache and TLB conflicts generated by SMT do not degrade

performance

Observation

 The following two observations that are made with respect to these problems are

1. Potential performance overhead due to multithreading is small

2. Efficiency of current superscalar is low with the room for significant

improvement.

 Works well if

o Number of compute intensive threads does not exceed the number of

threads supported in SMT

o Threads have highly different characteristics (e.g. one thread doing mostly

integer operations, another mainly doing floating point operations)

 Does not work well if

o Threads try to utilize the same function units

o Assignment problems are found as follows:

 a dual processor system, each processor supporting 2 threads

simultaneously (OS thinks there are 4 processors)

 To compute intensive application processes might end up on the

same processor instead of different processors (OS does not see the

difference between SMT and real processors!)

4.5.3.2 Potential performance advantage from SMT

The following table shows the features of an aggesive SMT design incorporated into

an aggressive superscalar for the evaluation of an SMT extension starts with an aggressive

superscalar that has roughly double the capacity of existing superscalr processor.

1.191 Computer Architecture

Processor characteristic Capability

Integer functional units 6 (include 4 loads/stores per cycle)

Pipeline depth 9 stages

Floating-point functional units 4

Instruction queues 32

Renaming registers 100 each for integer and floating point

Commit capability Upro 12 instructions per cycle

TLB 128 entries each for instructions and data

Primary instruction cache
128 KB, 2-way set associative, single ported, 2-cycle

fill penalty, 32 outstanding misses

Primary data cache 128 KB, 2-way set associative, dual ported, 2-cycle fill

penalty

L2 cache
16 MB, direct-mapped,20-cycle latency, fully pipelined

L1-L2 bus/refill 256 bits wide, 2-cycle latency

Store buffer 32 entries

Memory System 90-cycle latency, fully pipelined

Branch-target buffer 1K entries, 4-way set associative

Hardware context for SMT 8

Fetch Policy 8 instructions pe clock.

Performance advantage

 The following diagram shows the advantage in throughput, which is measured as

instructions per clock, of SMT with eight contexts to the superscalar processor.

Overview and Instruction 1.192

Comparison of the SMT processor to the base superscalar processor

The SMT processor are compared to the base superscalar processor in several key

measures

 Utilization of functional units

 Utilization of fetch units

 Accuracy of branch predictor

 Hit rates of primary caches

 Hit rates of secondary caches

Comparison of the SMT processor to the base superscalar processor

Performance Improvement

1.193 Computer Architecture

The key to maximize SMT performance is to share the following

 Issue slots

 Functional Units

 Renaming registers

4.5.4 Illustration

 The following diagram illustrates the differences in a processor’s ability to exploit the

resources of a superscalar for the following processor configuration

(a) A superscalar processor with no multithreading support

(b) A superscalar processor with coarse-grain multithreading

(c) A superscalar processor with fine-grain multithreading

(d) A superscalar processor with simultaneous multithreading (SMT)

 (a) (b) (c) (d)

 Horizontal dimension represents the instruction issue capability in each clock

cycle.

 Vertical dimension represents a sequence of clock cycles.

 Empty slots indicate that the corresponding issue slots are unused in that clock

cycle.

Overview and Instruction 1.194

Superscalar processor with no multithreading support

The use of issue slots is limited by a lack of ILP. Stalls such as an instruction cache

miss leaver the entire processor idle.

Superscalar processor with coarse-grain multithreading

The long stalls are partially hidden by switching to another thread that uses the

resources of the processor.

 Reduced the number of completely idle clock cycles.

 But, the ILP limitations still lead to idle cycles.

Superscalar processor with fine-grain multithreading

The interleaving of threads eliminates fully empty slots.

The ILP limitations still lead to a significant number of time slots within individual

clock cycles because only one thread issues instructions in a given clock cycles.

Superscalar processor with simultaneous multithreading (SMT)

The thread-level parallelism (TLP) and instruction-level parallelism (ILP) are

exploited simultaneously with multiple threads using the issue slots in a single clock cycle.

The issue slot usage is limited by the following factors

 Imbalances in the resource needs

 Resource availability over multiple threads

 Number of active threads considered

 Finite limitations of buffer

 Ability to fetch enough instruction from multiple threads

 Practical limitations of what instructions combinations can issue from one thread

and multiple threads.

4.6 MULTICORE PROCESSORS AND OTHER SHARED MEMORY

MULTIPROCESSORS

4.6.1 MULTICORE PROCESSORS:-

1.195 Computer Architecture

Single core processor vs. multicore processor:-

A multi-core processor is an integrated circuit to which two or more processor have

attached for enhance performance and is is more efficient simultaneous processing of multiple

tasks. i.e) single physical processor contains the core logic of two or more processors.

 Multiple cores can run multiple instructions at the same time, increasing overall

speed

 Implements multiprocessing in a single physical package

The following figure shows how this appears in relation to previous technologies.

Overview and Instruction 1.196

Multi-Core processors have multiple execution cores on a single chip

In this design, each core has its own execution pipeline. And each core has the

resources required to run without blocking resources needed by the other software threads. It

is classified according to number of processors it contains,

Multi-core processors may have

 Two cores

o Dual-core CPUs

o Example AMD Phenom II X2 and Intel Core Duo

 Three cores

o Tri-core CPUs

o Example AMD Phenom II X3

 Four cores

o Quad-core CPUs

o Example AMD Phenom II X4, Intel's i5 and i7 processors

 Six cores

o Hexa-core CPUs

o Example AMD Phenom II X6 and Intel Core i7 Extreme Edition 980X

1.197 Computer Architecture

 Eight cores

o Octo-core CPUs

o Example Intel Xeon E7-2820 and AMD FX-8350

 Ten cores

o Example, Intel Xeon E7-2850) or more

Applications

Multi-core processors are widely used across many application domains including

 General-purpose

 Embedded

 Network

 Digital Signal Processing (DSP)

 Graphics

Multicore processor implements multiprocessing in a single physical package that can be

implemented by

o Distributed shared memory intercore message passing method

o Symmetric shared memory intercore message passing method

Symmetric shared memory intercore communication method:-

 A parallel processor with single physical address space is called shared memory

multiprocessor.

 Processors communicate through shared variables in memory.

 All processors can access any memory location so that independent jobs can run in

their own virtual address space, if they all share same physical address space.

Overview and Instruction 1.198

Types of memory access for single address space:-

Two types of memory access

 1. Uniform memory access (UMA)

Time taken to access a word from memory is uniform for all processors.

Latency to a word in memory does not depend on which processor asks for it.

 2. Non Uniform memory access (NUMA)

Time taken to access a word from memory is different for different

processors. Here main memory is divided and attached to different

microprocessors.

Need of Synchronization:-

The process of co-coordinating the behavior of two or more processes, which ay run on

different processors is called synchronization.

Locks:-

 A synchronization mechanism that allows access to data to only one processor at a tie

is called locks. Other processor must wait until the original process unlocks the variable.

Distributed shared memory intercore message passing method:-

 An alternative approach to sharing an address space is for all the processor to have

their own private physical address space. In this approach each processor will have their own

private physical address space. Communication between multiple processors is done by

explicitly sending and receiving information.

1.199 Computer Architecture

Routines for communication:-

o Send message routine:-

It is used to send message to other processor in a machine.

o Receive message routine:-

It is used to receive message from other processor in a machine.

If sender processor needs confirmation the message has reached the receiver then the

receiver processor can also send acknowledgement message back to the sender.

Advantage:-

 Lower Latency which leads to better communication, more efficient and enhanced

performance.

Disadvantages:-

o Cost for communication is very high.

o It n copies of operating system when memory is distributed.

Fundamental Theorem of Multi-Core Processors

Overview and Instruction 1.200

Multi-core processors take advantage of a fundamental relationship between power

and frequency.

By incorporating multiple cores, each core is able to run at a lower frequency, dividing

among them the power normally given to a single core.

The result is a big performance increase over a single core processor.

This fundamental relationship between power and frequency can be effectively used to

multiply the number of cores from two to four, and then eight and more, to deliver continuous

increases in performance without increasing power usage.

To do this though, there is much advancement that must be made that are only

achievable by a company like Intel.

These include:

 Continuous advances in silicon process technology from 65 nm to 45 nm and to

32 nm) to increase transistor density. In addition, Intel is committed to continuing

to deliver superior energy-efficient performance transistors.

 Enhancing the performance of each core and optimizing it for multi-core

through the introduction of new advanced microarchitectures about every two

years.

 Improving the memory subsystem and optimizing data access in ways that

ensure data can be used as fast as possible among all cores. This minimizes latency

and improves efficiency and speed.

 Optimizing the interconnect fabric that connects the cores to improve

performance between cores and memory units.

 Optimizing and expanding the instruction set to enhance the capabilities of

Intel® architecture and enable the industry to deliver advanced applications with

greater performance and lower power requirements. Some of these instructions

can effectively dedicate a core to deliver specific capabilities.

 Continuing to grow Intel’s commitment to developing multi-core software

tools and programs by working closely with developers, independent software

vendors (ISVs), operating system vendors (OSVs) and academia. Through these

efforts, Intel enables the industry to develop software that runs faster and better on

our energy-efficient performance multi-core platforms.

Heterogeneous Multi-Core Processors

1.201 Computer Architecture

Heterogeneous Multi-Core Processor is a processor in which Multiple cores of

different types are implemented in one CPU.

Heterogeneous Multi-Core Processor

Advantage

 Massive parallelism today

 Specialization of hardware for different tasks.

Disadvantage

 Developer productivity - use of the software tools requires special training.

 Portability - software written for GPUs will not run on other GPUs or on CPUs.

 Manageability - multiple GPUs and CPUs in a grid need their work allocated

and balanced, and event-based systems need to be supported.

4.6.2 SHARED MEMORY MULTIPROCESSOR:-

 A multiprocessor system consists of a number of processors capable of

simultaneously executing independent tasks.

 A task may encompass a few instructions for one pass through a loop, or

thousands of instructions executed in a subroutine.

 In a shared-memory multiprocessor, all processors have access to the same

memory.

Overview and Instruction 1.202

 Tasks running in different processors can access shared variables in the

memory using the same addresses. The size of the shared memory is likely to

be large.

 Implementing a large memory in a single module would create a bottleneck

when many processors make requests to access the memory simultaneously.

 An interconnection network enables any processor to access any module that is

a part of the shared memory.

 When memory modules are kept physically separate from the processors, all

requests to access memory must pass through the network, which introduces

latency.

Uniform Memory Access (UMA) multiprocessor:-

 A system which has the same network latency for all accesses from the processors to

the memory modules is called a Uniform Memory Access (UMA) multiprocessor.

 Although the latency is uniform, it may be large for a network that connects many

processors and memory modules.

 For better performance, it is desirable to place a memory module close to each processor.

The result is a collection of nodes, each consisting of a processor and a memory module.

Uniform Memory Access (UMA) multiprocessor

1.203 Computer Architecture

Non-Uniform Memory Access (NUMA) multiprocessors:-

 The network latency is avoided when a processor makes a request to access its local

memory. However, a request to access a remote memory module must pass through the

network.

 Because of the difference in latencies for accessing local and remote portions of the

shared memory, systems of this type are called Non-Uniform Memory Access

(NUMA) multiprocessors.

NON Uniform Memory Access (NUMA) multiprocessor

4.6.1 Interconnection Networks:-

 The interconnection network must allow information transfer between any pair of

nodes in the system.

 The network may also be used to broadcast information from one node to many other

nodes.

 The traffic in the network consists of requests (such as read and write) and data

transfers.

 The suitability of a particular network is judged in terms of cost, bandwidth, effective

throughput, and ease of implementation.

 The term bandwidth refers to the capacity of a transmission link to transfer data and is

expressed in bits or bytes per second.

 The effective throughput is the actual rate of data transfer. This rate is less than the

available bandwidth because a given link must also carry control information that

coordinates the transfer of data. Information transfer through the network usually takes

place in the form of packets of fixed length and specified format.

 For example,

Overview and Instruction 1.204

o a read request is likely to be a single packet sent from a processor to a memory

module. The packet contains the node identifiers for the source and

destination, the address of the location to be read, and a command field that

indicates what type of read operation is required.

o A write request that writes one word in a memory module is also likely to be a

single packet that includes the data to be written. On the other hand, a read

response may involve an entire cache block requiring several packets for the

data transfer.

The following are the interconnection networks that are commonly used in multiprocessors.

Bus

 A bus is a set of lines (wires) that provide a single shared path for information transfer.

 Buses are most commonly used in UMA multiprocessors to connect a number of

processors to several shared-memory modules.

 Arbitration is necessary to ensure that only one of many possible requesters is granted

use of the bus at any time.

 The bus is suitable for a relatively small number of processors because of the

contention for access to the bus and the increased propagation delays caused by

electrical loading when many processors are connected.

 Higher performance can be achieved by using a split-transaction bus, in which a

request and its corresponding response are treated as separate events.

Consider a situation where multiple processors need to make read requests to the memory.

Arbitration is used to select the first processor to be granted use of the bus for its request.

After the request is made, a second processor is selected to make its request, instead of

leaving the bus idle. Assuming that this request is to a different memory module, the two read

accesses proceed in parallel. If neither module has finished with its access, a third processor is

selected to make its request, and so on.

Ring

A ring network is formed with point-to-point connections between nodes.

Two approaches are used

 1. Single Ring

 2. Hierarchy of rings

Single ring:-

1.205 Computer Architecture

A long single ring results in high average latency for communication between any

two nodes.

This high latency can be mitigated in two different ways.

A second ring can be added to connect the nodes in the opposite direction.

The resulting bidirectional ring halves the average latency and doubles the bandwidth.

However, handling of communications is more complex.

hierarchy of rings:-

 It is a two-level hierarchy.

 The upper-level ring connects the lower-level rings.

 The average latency for communication between any two nodes on lower

level rings is reduced with this arrangement.

 Transfers between nodes on the same lower-level ring need not traverse the

upper-level ring. Transfers between nodes on different lower-level rings

include a traversal on part of the upper-level ring.

Drawback of the Hierarchical Scheme:-

The upper-level ring may become a bottleneck when many nodes on different lower-

level rings communicate with each other frequently.

Figure Ring based inter connection network

Crossbar:-

 A crossbar is a network that provides a direct link between any pair of units

connected to the network.

Overview and Instruction 1.206

 It is typically used in UMA multiprocessors to connect processors to memory

modules. It enables many simultaneous transfers if the same destination is not

the target of multiple requests.

 For example, we can implement the structure using a crossbar that comprises a

collection of switches for n processors and k memories, n × k switches are

needed.

Figure Cross bar interconnection network

Mesh:-

 A natural way of connecting a large number of nodes is with a two-dimensional mesh.

Each internal node of the mesh has four connections, one to each of its horizontal and

vertical neighbors.

 Nodes on the boundaries and corners of the mesh have fewer neighbors and hence

fewer connections.

 To reduce latency for communication between nodes that would otherwise be far apart

in the mesh, wrap around connections may be introduced between nodes at opposite

boundaries of the mesh.

 A network with such connections is called a torus. All nodes in a torus have four

connections.

 Average latency is reduced, but the implementation complexity for routing requests

and responses through a torus is somewhat higher than in the case of a simple mesh.

1.207 Computer Architecture

Figure Two Dimensional mesh network

4.7 INTRODUCTION TO GRAPHICS PROCESSING UNITS

 The increasing demands of processing for computer graphics has led to the development

of specialized chips called graphics processing units (GPUs).

 The primary purpose of GPUs is to accelerate the large number of floating-point

calculations needed in high-resolution three-dimensional graphics, such as in video

games.

 Since the operations involved in these calculations are often independent, a large GPU

chip contains hundreds of simple cores with floating-point ALUs to perform them in

parallel.

 A GPU chip and a dedicated memory for it are included on a video card. Such a card is

plugged into an expansion slot of a host computer using an interconnection standard

such as the PCIe standard.

 A small program is written for the processing cores in the GPU chip and a large number

of cores execute this program in parallel. The cores execute the same instructions, but

operate on different data elements.

 A separate controlling program runs in the general-purpose processor of the host

computer and invokes the GPU program when necessary.

Overview and Instruction 1.208

 Before initiating the GPU computation, the program in the host computer must first

transfer the data needed by the GPU program from the main memory into the dedicated

GPU memory.

 After the computation is completed, the resulting output data in the dedicated memory

are transferred back to the main memory.

 The processing cores in a GPU chip have a specialized instruction set and hardware

architecture, which are different from those used in a general-purpose processor.

 An example is the Compute Unified Device Architecture (CUDA) that NVIDIA

Corporation uses for the cores in its GPU chips. To facilitate writing programs that

involve a general-purpose processor and a GPU, an extension to the C programming

language, called CUDA C, has been developed by NVIDIA . This extension enables a

single program to be written in C, with special keywords used to label the functions

executed by the processing cores in a GPU chip.

 The compiler and related software tools automatically partition the final object

program into the portions that are translated into machine instructions for the host

computer and the GPU chip. Library routines are provided to allocate storage in the

dedicated memory of a GPU-based video card and to transfer data between the main

memory and the dedicated memory.

 An open standard called Open CL has also been proposed by industry as a

programming framework for systems that include GPU chips from any vendor .

4.7.1 Key characteristics as to how GPUs vary from CPUs

 GPUs are accelerators that supplement a CPU, so they do not need be able to

perform all the tasks of a CPU. This role allows them to dedicate all their

resources to graphics.

 It's fine for GPUs to perform some tasks poorly or not at all, given that in a

system with both a CPU and a GPU, the CPU can do them if needed.

1.209 Computer Architecture

 The GPU problems sizes are typically hundreds of megabytes to gigabytes, but

not hundreds of gigabytes to terabytes.

These differences led to different styles of architecture:

 Perhaps the biggest difference is that GPUs do not rely on multilevel caches to

overcome the long latency to memory, as do CPUs.

 Instead, GPUs rely on hardware multithreading (Section 6.4) to hide the latency to

memory.

 That is, between the time of a memory request and the time that data arrives, the GPU

executes hundreds or thousands of threads that are independent of that request.

 The GPU memory is thus oriented toward bandwidth rather than latency.

 There are even special graphics DRAM chips for GPUs that are wider and have higher

bandwidth than DRAM chips for CPUs. In addition, GPU memories have traditionally

had smaller main memories than conventional microprocessors.

 In 2013, GPUs typically have 4 to 6 GIB or less, while CPUs have 32 to 256 GiB.

Finally, keep in mind that for general-purpose computation, you must include the time

to transfer the data between CPU memory and GPU memory, since the GPU is a

coprocessor.

 Given the reliance on many threads to deliver good memory bandwidth, GPUs can

accommodate many parallel processors (MIMD) as well as many threads.

 Hence, each GPU processor is more highly multithreaded than a typical CPU, plus they

have more processors.

An Introduction to the NVIDIA GPU Architecture

 NVIDIA decided that the unifying theme of all these forms of parallelism is the

CUDA Thread.

Overview and Instruction 1.210

 Using this lowest level of parallelism as the Programming primitive, the compiler

and the hardware can gang thousands of CUDA threads together to utilize the

various styles of parallelism within a GPU: multithreading, MIMD, SIMD, and

instruction-level parallelism.

 These threads are blocked together and executed in groups of 32 at a time.

 A multithreaded processor inside a GPU executes these blocks of threads, and a

GPU consists of 8 to 32 of these multithreaded processors.

 A multithreaded SIMD processor is similar to a Vector Processor, but the former

has many parallel functional units instead of just a few that are deeply pipelined,

as does the latter.

 GPU contains a collection of multithreaded SIMD processors; that is, a GPU is a

MIMD composed of multithreaded SIMD processors. For example, NVIDIA has

four implementations of the Fermi architecture at different price points with 7,

11, 14, or 15 multithreaded SIMD processors.

 To provide transparent scalability across models of GPUs with differing number

of multithreaded SIMD processors, the Thread Block Scheduler hardware

assigns blocks of threads to multithreaded SIMD processors.

1.211 Computer Architecture

 Simplified block diagram of the data path of a multithreaded SIMD

Processor. It has 16 SIMD lanes. The SIMD Thread Scheduler has many independent

SIMD threads that it chooses from to run on this processor.

 Dropping down one more level of detail, the machine object that the hardware

creates, manages, schedules, and executes is a thread of SIMD instructions, which also

call a SIMD thread. It is a traditional thread, but it contains exclusively SIMD

instructions. These SIMD threads have their own program counters and they run on

a multithreaded SIMD processor.

 The SIMD Thread Scheduler includes a controller that lets it know which threads of

SIMD instructions are ready to run, and then it sends them off to a dispatch unit to

be run on the multithreaded SIMD processor. It is identical to a hardware thread

scheduler in a traditional multithreaded processor, except that it is scheduling

threads of SIMD instructions.

Overview and Instruction 1.212

 Thus, GPU hardware has two levels of hardware schedulers:

1. The Thread Block Scheduler that assigns blocks of threads to multithreaded

SIMD processors, and

2. the SIMD Thread Scheduler within a SIMD processor, which schedules

when SIMD threads should run.

 The SIMD instructions of these threads are 32 wide, so each thread of SIMD

instructions would compute 32 of the elements of the computation. Since the

thread consists of SIMD instructions, the SIMD processor must have parallel

functional units to perform the operation.

NVIDIA GPU Memory Structures

GPU Memory structures

1.213 Computer Architecture

 GPU Memory is shared by the vectorized loops. All threads of SIMD instructions

within a thread block share Local Memory.

 The above diagram shows the memory structures of an NVIDIA GPU.

 On- chip memory that is local to each multithreaded SIMD processor Local Memory.

 It is shared by the SIMD Lanes within a multithreaded SIMD processor, but this

memory is not shared between multithreaded SIMD processors.

 Off- chip DRAM shared by the whole GPU and all thread blocks GPU Memory.

 Rather than rely on large caches to contain the whole working sets of an

application, GPUs traditionally use smaller streaming caches and rely on extensive

multithreading of threads of SIMD instructions to hide the long latency to DRAM,

since their working sets can be hundreds of megabytes. Thus, they will not fit in

the last level cache of a multicore microprocessor.

 Given the use of hardware multithreading to hide DRAM latency, the chip area used

for caches in system processors is spent instead on computing resources and on the

large number of registers to hold the state of the many threads of SIMD instructions.

Similarities and differences between mult icore with multimedia SIMD extensions

and recent GPUs.

 At a high level, multicore computers with SIMD instruction extensions do share

similarities with GPUs.

Overview and Instruction 1.214

 Both are MIMDs whose processors use multiple SIMD lanes, although GPUs

have more processors and many more lanes.

 Both use hardware multithreading to improve processor utilization, although GPUs

have hardware support for many more threads.

 Both use caches, although GPUs use smaller streaming caches and multicore

computers use large multilevel caches that try to contain whole working sets

completely.

 Both use a 64-bit address space, although the physical main memory is much

smaller in GPUs. While GPUs support memory protection at the page level, they do

not yet support demand paging.

 SIMD processors are also similar to vector processors. The multiple SIMD processors

in GPUs act as independent MIMD cores, just as many vector computers have

multiple vector processors.

 This view would consider the Fermi GTX 580 as a 16-core machine with hardware

support for multithreading, where each core has 16 lanes.

 The biggest difference is multithreading, which is fundamental to GPUs and missing

from most vector processors.

1.215 Computer Architecture

4.7.2 Clusters, Warehouse Scale Computers and other Message-Passing Multiprocessors.

The alternative approach to sharing an address space is for the processors to each

have their own private physical address space.

Message passing multiprocessor

The Classic organization of a multlprocessor with multiple private address spaces,

traditlonally called a message-passing multlprocessor.

 This alternative multiprocessor must communicate via explicit message

passing, which traditionally is the name of such style of computers.

 Provided the system has routines to send and receive messages, coordination is

built in with message passing, since one processor knows when a message is

sent, and the receiving processor knows when a message arrives.

 If the sender needs confirmation that the message has arrived, the receiving

processor can then send an acknowledgment message back to the sender.

 There have been several attempts to build large-scale computers based on

high-performance message-passing networks, and they do offer better

Overview and Instruction 1.216

absolute communication performance than clusters built using local area

networks.

 Indeed, many supercomputers today use custom networks. The problem is that

they are much more expensive than local area networks like Ethernet.

 Few applications today outside of high performance computing can justify the

higher communication performance, given the much higher costs.

 Computers that rely on message passing for communication rather than

cache coherent shared memory are much easier for hardware designers to

build .There is an advantage for programmers as well, in that communication is

explicit, which means there are fewer performance surprises than with the

implicit communication in cache-coherent shared memory computers.

 The downside for programmers is that it's harder to port a sequential program to

a message• passing computer, since every communication must be identified in

advance or the program doesn't work.

 Cache-coherent shared memory allows the hardware to figure out what data

needs to be communicated, which makes porting easier.

 There are differences of opinion as to which is the shortest path to high

performance, given the pros and cons of implicit communication, but there is

no confusion in the marketplace today.

 Multicore microprocessors use shared physical memory and nodes of a cluster

communicate with each other using message passing.

 Some concurrent applications run well on parallel hardware, independent of

whether it offers shared addresses or message passing. In particular, task-level

parallelism and applications with little communication-like Web search, mail

servers, and file servers--do not require shared addressing to run well.

1.217 Computer Architecture

 As a result, clusters have become the most widespread example today of the

message-passing parallel computer.

 Given the separate memories, each node of a cluster runs a distinct copy of the

operating system.

 In contrast, the cores inside a microprocessor are connected using a high-speed

network inside the chip, and a multichip shared memory system uses the

memory interconnect for communication.

 The memory interconnect has higher bandwidth and lower latency, allowing

much better communication performance for shared memory multiprocessors.

 The weakness of separate memories for user memory from a parallel

programming perspective turns into a strength in system dependability. Since a

cluster consists of independent computers connected through a local area

network, it is much easier to replace a computer without bringing down the

system in a cluster than in a shared memory multiprocessor.

 Fundamentally, the shared address means that it is difficult to isolate a

processor and replace it without heroic work by the operating system and in the

physical design of the server.

 It is also easy for clusters to scale down gracefully when a server fails, thereby

improving dependability. Since the cluster software is a layer that runs on top

of the local operating systems running on each computer, it is much easier to

disconnect and replace a broken computer

 Given that clusters are constructed from whole computers and independent,

scalable networks, this isolation also makes it easier to expand the system

without bringing down the application that runs on top of the cluster.

 Their lower cost, higher availability, and rapid, incremental expandability make

clusters attractive to service Internet providers, despite their poorer

Overview and Instruction 1.218

communication performance when compared to large-scale shared memory

multiprocessors.

 The search engines that hundreds of millions of us use every day depend

upon this technology. Amazon, Facebook, Google, Microsoft, and others all

have multiple datacenters each with clusters of tens of thousands of servers.

Clearly, the use of multiple processors in Internet service companies has been

hugely successful.

Warehouse-Scale Computers:-

 Internet services required the construction of new buildings to house, power,

and cool 100,000 servers. Although they may be classified as just large

clusters, their architecture and operation are more sophisticated.

 They act as one giant computer and cost on the order of $150M for the

building, the electrical and cooling infrastructure, the servers, and the

networking equipment that connects and houses 50,000 to 100,000 servers.

consider them a new class of computer, called Warehouse-Scale Computers

(WSC).

 The most popular framework for batch processing in a WSC is MapReduce

and its open-source twin Hadoop.

 Inspired by the Lisp functions of the same name, Map first applies a

programmer-supplied function to each logical input record. Map runs on

thousands of servers to produce an intermediate result of key- value pairs.

 Reduce collects the output of those distributed tasks and collapses them using

another programmer-defined function. With appropriate software support, both

are highly parallel yet easy to understand and to use. Within 30 minutes, a

novice programmer can run a MapReduce task on thousands of servers.

1.219 Computer Architecture

 For example, one MapReduce program calculates the number of occurrences

of every English word in a large collection of documents. Below is a

simplified version of that program, which shows just the inner loop and

assumes just one occurrence of all English words found in a document:

map(String key, String value):

// key: document name

// value: document contents for each word w in value:

EmitIntermediate(w, “1”); // Produce list of all words reduce(String key, Iterator values):

// key: a word

// values: a list of counts int result = 0;

for each v in values:

result += ParseInt(v); // get integer from key-value pair

Emit(AsString(result));

 The function EmitIntermediate used in the Map function emits each word in the

document and the value one.

 Then the Reduce function sums all the values per word for each document using

ParseInt() to get the number of occurrences per word in all documents.

 The MapReduce runtime environment schedules map tasks and reduce tasks to the

servers of a WSC.

 It requires innovation in power distribution, cooling, monitoring, and operations,

the WSC is a modern descendant of the 1970s supercomputers—making Seymour

Cray the godfather of today’s WSC architects.

 His extreme computers handled computations that could be done nowhere else, but

were so expensive that only a few companies could afford them.

 This time the target is providing information technology for the world instead of high

performance computing for scientists and engineers.

Overview and Instruction 1.220

 Hence, WSCs surely play a more important societal role today than Cray’s

supercomputers did in the past.

WSCs have three major distinctions:

1. Ample, easy parallelism:

 A concern for a server architect is whether the applications in the targeted

marketplace have enough parallelism to justify the amount of parallel hardware

and whether the cost is too high for sufficient communication hardware to exploit

this parallelism. A WSC architect has no such concern.

 First, batch applications like MapReduce benefit from the large number of

independent data sets that need independent processing, such as billions of Web

pages from a Web crawl.

 Second, interactive Internet service applications, also known as Software as a

Service (SaaS), can benefit from millions of independent users of interactive

Internet services.

 Reads and writes are rarely dependent in SaaS, so SaaS rarely needs to

synchronize. For example, search uses a read-only index and email is normally

reading and writing independent information.

 We call this type of easy parallelism Request-Level Parallelism, as many

independent efforts can proceed in parallel naturally with little need for

communication or synchronization.

2. Operational Costs Count:

 Traditionally, server architects design their systems for peak performance within

a cost budget and worry about energy only to make sure they don’t exceed the

cooling capacity of their enclosure.

1.221 Computer Architecture

 They usually ignored operational costs of a server, assuming that they pale in

comparison to purchase costs.

 WSC have longer lifetimes—the building and electrical and cooling

infrastructure are often amortized over 10 or more years—so the operational

costs add up: energy, power distribution, and cooling represent more than 30%

of the costs of a WSC over 10 years.

3. Scale and the Opportunities/Problems Associated with Scale:

 To construct a single WSC, you must purchase 100,000 servers along with the

supporting infrastructure, which means volume discounts.

 Hence, WSCs are so massive internally that you get economy of scale even if

there are not many WSCs.

 These economies of scale led to cloud computing, as the lower per unit costs of a

WSC meant that cloud companies could rent servers at a profitable rate and still

be below what it costs outsiders to do it themselves.

 The flip side of the economic opportunity of scale is the need to cope with the

failure frequency of scale.

 Even if a server had a Mean Time To Failure of an amazing 25 years (200,000

hours), the WSC architect would need to design for 5 server failures every day.

The annualized disk failure rate (AFR) was measured at Google at 2% to 4%. If

there were 4 disks per server and their annual failure rate was 2%, the WSC

architect should expect to see one disk fail every hour. Thus, fault tolerance is

even more important for the WSC architect than the server architect.

Overview and Instruction 1.222

	1.1.1 Design for Moore’s law
	 Developed by Gordon E. Moore, co-founder of Intel.
	 The design of a computer takes many years.
	 The design of a system may start with an existing technology
	 At the end of the product, the technology may grow and the product has to be reworked.
	 Hence, computer architects must imagine about the future technology (technology at the finish time of the project) rather than designing with the existing one.
	 Moore's Law graph is given by
	 The graph represents the concept: “up and to the right”, which means that the technology changes rapidly.
	1.1.2 Use Abstraction to Simplify Design
	 Computer architects and programmers use abstractions (Generalization of concepts) to represent the design at several levels.
	 The detail represented at each level hides the details of lower levels.
	 This may improve productivity since abstraction simplifies design and thus the design time decreases.
	 This provides a simpler design model due to abstraction.
	 Example
	o Operating systems hide the details involved in handling input and output devices.
	o High-level languages hide the details of the sequence of instructions need to accomplish a task.
	1.1.3 Make the common case fast
	 The performance shall be improved by improving the common case rather than developing the rare case.
	 This makes the design process simpler and faster.
	 The concept is often called the Amdahl's law.
	 Example (1)
	o It is easier to design a sports car having a capacity of one / two passengers than to design a minivan with a capacity of six /seven.
	1.1.4 Performance via parallelism
	 Parallelism is a process of performing multiple jobs simultaneously.
	 A processor engages in several activities in the execution of an instruction.
	 Each instruction is executed at the same time to increase the performance.
	 Larger problems are often subdivided into smaller units and are solved concurrently through parallelism.
	1.1.5 Performance via pipelining
	 Pipelining is an extension of the idea of parallelism.
	 Pipeline is a set of jobs connected in series, where output of one element is the input of the next one.
	 Here, the independent elements are executed in parallel to improve performance.
	 Rather than processing each instruction sequentially, every instruction is split up into a sequence of steps so that different steps can be executed concurrently and in parallel, to improve performance.
	1.1.6 Performance via prediction
	 Branch statements may cause unconditional wait, reducing the performance.
	 This can be reduced by using branch predictor that guesses the path taken by a branch statement before it is actually known.
	 The branch predictor improves the flow of execution in the instruction pipeline.
	 It is performed by predicting the outcome of the condition test and then start executing the indicated instruction rather than waiting for correct answer.
	 Performance is improved if the guesses are reasonably accurate and the penalty of wrong guesses is not too severe.
	1.1.7 Hierarchy of memories
	 Users need the memory to be very fast, large, and cheap.
	 Computer has a range of memory units with cache and register memories being fast and small and secondary storage memories being slow and large.
	 Cache memory is a small high-speed memory that holds recently accessed data.
	 The memory hierarchy is given by,
	1.1.8 Dependability via redundancy
	 Computers need to be dependable since any device can fail.
	 Hence several redundant modules (copies of data) can be maintained that helps the user to recover data when a failure occurs.
	 One of the finest ideas in data storage is the RAID concept (Redundant Array of Inexpensive Disks).
	 Data is stored redundantly on multiple disks that services us to recover them back.
	1.10.1.1 BEQ Instruction
	 BEQ stands for branch on equal.
	 The instruction checks if the two register values are equal. If so, it branches to the specified offset.
	1.10.1.2 BNE Instruction
	 BNE stands for branch on not equal.
	 The instruction performs branching if the two registers values are not equal.
	 J stands for jump.
	 JAL stands for Jump and link.
	 JR stands for Jump Register.
	2.5.2 IEEE format for Single-Precision Floating-Point Numbers
	Value represented = 1.F 2E-127
	Example
	Value represented = 1.001010 02-87
	2.5.3 IEEE format for Double-Precision Floating-Point Numbers
	Value represented = 1.F 2E-1023
	2.5.4 Special Values
	 End values in E : 0 and 255
	o Used to represent special values
	 Different Special Values
	2.5.5 Exceptions
	 In IEEE standard, processor set exception flags when the exception occurs
	 Types of Exception
	o Underflow
	 Occurs when an number requires an exponent less than -126 (for single precision) or -1022(for double precision) to represent it in normalized form
	o Overflow
	 Occurs when an number requires an exponent greater than +127 (for single precision) or +1023(for double precision) to represent it in normalized form
	o Divide by Zero
	 Occurs when any number is divided by zero
	o Inexact
	 Occurs when any result requires rounding in order to be represented in one of the normal formats
	o Invalid
	 Occurs when the operations such as or are attempted
	Hardware Implementation
	2.6.2 Floating point Multiplication
	Flowchart

