
Combinational & Sequential
Logic Circuits

Department of ECE
MSAJCE

INTRODUCTION

• In digital circuit theory, sequential logic is a type
of logic circuit whose output depends not only on
the present value of its input signals but on the
sequence of past inputs, the input history as well.
This is in contrast to combinational logic, whose

output is a function of only the present input.

• Difference between combinational and
sequential circuit. ...

• Sequential circuits are those which are dependent on
clock cycles and depends on present as well as past inputs
to generate any output.

• Combinational Circuit –

• In this output depends only upon present input.

• The sequential logic has memory while combinational logic
does not.

• They employ a feedback loop to give output back to input.
Sequential logic circuits is a form of binary circuit; its
design employs one or more inputs and one or more
outputs.

• A combinational logic circuit performs an operation
assigned logically by a Boolean expression or truth table.
Examples of common combinational
circuits include:
adders, multiplexers,

half adders,
demultiplexers, encoders

logic
full
and

decoders .

• A Sequential logic circuits is a form of binary circuit; its
design employs one or more inputs and one or more
outputs, whose states are related to some definite rules
that depends on previous states. ... Examples of
such circuits include clocks, flip-flops, bi-stables, counters,
memories, and registers.

• There are two types of sequential circuit, synchronous
and asynchronous. Synchronous types use pulsed or level
inputs and a clock input to drive the circuit(with
restrictions on pulse width and circuit propagation).
Asynchronous sequential circuits do not use a clock
signal as synchronous circuits do.

• Flip flop is a sequential circuit which generally samples
its inputs and changes its outputs only at particular
instants of time and not continuously. Flip flop is said to be
edge sensitive or edge triggered rather than being level
triggered like latches.

Hal f adder
• An adder is a digital circuit that performs addition of

numbers. Half adder has only two inputs and two outputs.
The half adder adds two binary digits called as augend
and addend and produces two outputs as sum and carry;
XOR is applied to both inputs to produce sum and AND gate
is applied to both inputs to produce carry.

• By using half adder, you can design simple addition with
the help of logic gates.

Circuit Implementation

Truth Table

Block Diagram

Why it is called as Half-adder ?

• The half adder can add only two input bits (A and B) and
has nothing to do with the carry if there is any in the input.
So if the input to a half adder have a carry, then it will
neglect it and adds only the A and B bits. That means the
binary addition process is not complete and that's why it
is called a half adder

How Half Adder works ?

• Half adder is a simple combinational circuit used to add
two single bits. It accepts two inputs and produce two
outputs that is a sum output and a carry output. A half
adder consists of two logic gates 1) XOR and 2) AND gate.
And the carry operation performed by AND gate thus carry
out put will be A+B.

FULL ADDER
The full adder adds 3 one bit numbers, where two can be referred

to as operands and one can be referred to as bit carried in. It
produces 2-bit output and these can be referred to as output
carry and sum.

The full-adder has three inputs and two outputs. The first two
inputs are A and B and the third input is an input carry as C-IN.
When a full-adder logic is designed, you string eight of them
together to create a byte-wide adder and cascade the carry bit
from one adder to the next.

Truth Table

Block Diagram

Circuit Implementation

•With the truth-table, the full adder logic can be implemented. You can see
that the output S is an XOR between the input A and the half-adder,
SUM output with B and C-IN inputs. We take C-OUT will only be true if any
of the two inputs out of the three are HIGH.

•So, we can implement a full adder circuit with the help of two half adder
circuits. At first, half adder will be used to add A and B to produce a partial
Sum and a second half adder logic can be used to add C-IN to the Sum
produced by the first half adder to get the final S output.

• If any of the half adder logic produces a carry, there will be an output
carry. So, C-OUT will be an OR function of the half-adder Carry outputs.

•The implementation of larger logic diagrams is possible with the above full
adder logic a simpler symbol is mostly used to represent the operation.
Given below is a simpler schematic representation of a full adder.

• A full adder is a digital circuit that performs addition. Full
adders are implemented with logic gates in hardware.
A full adder adds three one-bit binary numbers, two
operands and a carry bit. The adder outputs two numbers,
a sum and a carry bit.

• The Boolean expression for a full adder is as follows.

• For the CARRY-OUT (Cout) bit: CARRY-OUT = A AND B OR
Cin(A XOR B) = A.B + Cin(A⊕ B)

• A binary parallel adder is a digital function that produces
the arithmetic sum of two binary numbers in parallel.

• FOUR-BIT BINARY PARALLEL ADDER is a circuit in which
two binary numbers each of n bits can be added by means
of a full adder circuit. Consider the example that two 4-bit
binary numbers B 4B 3B 2B 1 and A 4A 3A 2A 1 are to be
added with a carry input C1.

• A group of four bits is called a nibble. A basic 4-bit parallel
adder is implemented with four full-adder stages as shown
in Figure.

4-Bit Parallel Binary adder :

• Again, the LSBs (A1 and B1) in each number being added go into the right-
most full-adder: the higher-order bits are applied as shown to the successively
higher-order adders, with the MSBs (A4 and B4) in each number being applied
to the left-most full-adder. The carry output of each adder is connected to the
carry input of the next higher-order adder as indicated. These are called
internal carries. In keeping with most manufacturers' data sheets, the input
labeled C, is the input carry to the least significant bit adder; C4 in the case of
four bits, is the output carry of the most significant bit adder; and ∑1 (LSB)
through ∑4 (MSB) are the sum outputs. The logic symbol for 4-bit parallel
adder is shown in Figure.

• Two binary numbers each of n bits can be added by means of a full adder
circuit. Consider the example that two 4-bit binary numbers B 4B 3B 2B 1 and
A 4A 3A 2A 1 are to be added with a carry input C 1. This can be done by
cascading four full adder circuits as shown in figure. The least significant bits
A 1, B 1, and C 1 are added to the produce sum output S 1 and carry output C 2.
Carry output C 2 is then added to the next significant bits A 2 and B 2 producing
sum output S 2 and carry output C 3. C 3 is then added to A 3 and B 3 and so on.
Thus finally producing the four-bit sum output S 4S 3S 2S 1 and final carry
output Cout. Such type of four-bit binary adder is commercially available in an
IC package.

• A half subtractor is an arithmetic circuit that subtracts two bits and
produces their difference. The circuit has two inputs minuend (X) and
subtrahend (Y) and two output bits, one is the difference bit (D) and
the other is the borrow bit (B).

• As like addition operation of 2 binary digits, which produces SUM and
CARRY, the subtraction of 2 binary digits also produces two outputs
which are termed as difference and borrow. The simplest possible
subtraction of 2-bit binary digits consists of four possible operations,
they are 0-0, 0-1, 1-0 and 1-1. The operations 0-0, 1-0 and 1-
1 produces a subtraction of 1-bit output whereas, the remaining
operation 0-1 produces a 2-bit output. They are referred
as difference and borrow bit respectively. This borrow bit is used for
subtraction of the next higher pair bit.

• So, we can define half subtractor as a combinational circuit which is
capable of performing subtraction of 2-bit binary digits is known as a
half subtractor. Here, the binary digit from which the other digit is
subtracted is called minuend and the binary digit which is to be
subtracted is known as the subtrahend.

Half Substractor :

• It performs the operation X – Y. It should be noted that the
weight of the output borrow bit is -2, while the weight of
the output difference bit is +1.

• The truth table of the half subtractor is shown. The
Boolean functions for the two outputs can be obtained
directly from the truth table as:

D = (XY + XY) = X⊕Y

• The half subtractor boolean expressions are :

• D = (X’Y + XY’) = X⊕ Y

• B = X’Y

• A full subtractor is a combinational circuit that performs a subtraction
between two bits, taking into account that a 1 may have been borrowed
by a lower significant bit. The circuit has three inputs and two outputs.

• Input variables are minuend (X), subtrahend (Y), and previous borrow
(Z); output variables are difference (D) and output borrow (B).

• It performs the operation X – Y – Z. It should be noted that the weight
of the output borrow bit is -2, while the weight of the output difference
bit is +1. The truth table of the full subtractor is shown.

• The full subtractor boolean expressions are :

• (X’Y’Z + X’YZ’ + XY’Z’ + XYZ) = X⊕ Y⊕ Z

• (X’Y’Z + X’YZ’ + X’YZ + XYZ) = X'(Y ⊕ Z) + YZ

•

Full Substractor:

• When there is a situation where the minuend and subtrahend number
contains more significant bit, then the borrow bit which is obtained
from the subtraction of 2-bit binary digits is subtracted from the next
higher order pair of bits. In such situation, the subtraction involves the
operation of 3 bits. Such situation of subtraction can’t handle by a
simple half subtractor. So, combining two half subtractor we can form
another combinational circuit which can perform this type of
operation. This circuit is known as the full subtractor.

• So we can define full subtractor as a combinational circuit which takes
three inputs and produces two outputs difference and borrow. Above
is the truth table of the full subtractor, we have used three input
variables X, Y and Z which refers to the term minuend,
subtrahend and borrow bit respectively. The two
outputs difference and borrow are named as D and B respectively.

• The construction of full subtractor circuit diagram involves two half
subtractor joined by an OR gate as shown in the above circuit diagram
of the full subtractor. The two borrow bits generated by two separate
half subtractor are fed to the OR gate which produces the final borrow
bit. The final difference bit is the combination of the difference output
of the first half adder and the next higher order pair of bits.

• Both Latches and flip flops are circuit elements wherein the output not only
depends on the current inputs, but also depends on the previous input and
outputs. The main difference between the latch and flip flop is that a flip
flop has a clock signal, whereas a latch does not.

• A flip-flop or latch is a circuit that has two stable states and can be used to
store state information. A flip-flop is a bistable multivibrator. The circuit can
be made to change state by signals applied to one or more control inputs and
will have one or two outputs.

• Latches and flip-flops are the basic elements for storing information. One latch
or flip-flop can store one bit of information. The main difference between
latches and flip-flops is that for latches, their outputs are constantly affected by
their inputs as long as the enable signal is asserted. In other words, when they
are enabled, their content changes immediately when their inputs change. Flip-
flops, on the other hand, have their content change only either at the rising or
falling edge of the enable signal. This enable signal is usually the controlling
clock signal. After the rising or falling edge of the clock, the flip-flop content
remains constant even if the input changes.

Sequential Logic Circuits :

FLIP-FLOPS :

• There are basically four main types of latches and flip-
flops:

• SR, D, JK, and T. The major differences in these flip-flop
types are the number of inputs they have and how they
change state. For each type, there are also different
variations that enhance their operations.

• Each type can have different variations such as active high
or low inputs, whether they change state at the rising or
falling edge of the clock signal, and whether they have
asynchronous inputs or not. The flip-flops can be described
fully and uniquely by its logic symbol, characteristic table,
characteristic equation, state diagram, or excitation table,
and are summarized in Figure below.

Flip-Flops : SR, D, JK, and T Flip-Flops

• The bistable element is able to remember or store one bit of
information. However, because it does not have any inputs, we cannot
change the information bit that is stored in it. In order to change the
information bit, we need to add inputs to the circuit. The simplest way
to add inputs is to replace the two inverters with two NAND gates as
shown in Figure. This circuit is called a SR latch.

• In addition to the two outputs Q and Q', there are two inputs S' and R'
for set and reset respectively. Following the convention, the prime in S
and R denotes that these inputs are active low. The SR latch can be in
one of two states: a set state when Q = 1, or a reset state when Q = 0.

• Figure 4. SR latch: (a) circuit using NAND gates; (b) truth table; (c) logic
symbol; (d) timing diagram.

S-R Latch using NAND & NOR Gate :

• Like the NOR Gate S-R flip flop, this one also has four states. They are

• S=0, R=1—Q=0, Q’=1

• This state is also called the SET state.

• S=1, R=0—Q=1, Q’=0

• This state is known as the RESET state.

• In both the states you can see that the outputs are just compliments of
each other and that the value of

• Q follows the compliment value of S.

• S=0, R=0—Q=Q0, & Q’ =Q0’ No change

• If both the values of S and R are switched to 0, then the circuit
remembers the value of S and R in their previous state.

• S=1, R=1—Q & Q’= Remember

• If both the values of S and R are switched to 1 it is an invalid state
because the values of both Q and Q’ are 1. They are supposed to be
compliments of each other. Normally, this state must be avoided.

Continued…

• Another reason why we do not want both inputs to be asserted
i.e. R=S=1 is that when they are both asserted, Q is equal to Q',
but we usually want Q to be the inverse of Q'.

• Figure 5. SR latch: (a) circuit using NOR gates; (b) truth table; (c)
logic symbol.

Continued

S-R FLIP FLOP USING NAND GATE

S-R FLIP FLOP USING NOR GATE

• The problems with S-R flip flops using NOR and NAND gate is the
invalid state. This problem can be overcome by using a bistable SR flip-
flop that can change outputs when certain invalid states are met,
regardless of the condition of either the Set or the Reset inputs. For
this, a clocked S-R flip flop is designed by adding two AND gates to a
basic NOR Gate flip flop. The circuit diagram and truth table is shown
below.

• A clock pulse [CP] is given to the inputs of the AND Gate. When the
value of the clock pulse is ‘0’, the outputs of both the AND Gates
remain ‘0’. As soon as a pulse is given the value of CP turns ‘1’. This
makes the values at S and R to pass through the NOR Gate flip flop. But
when the values of both S and R values turn ‘1’, the HIGH value of CP
causes both of them to turn to ‘0’ for a short moment. As soon as the
pulse is removed, the flip flop state becomes intermediate. Thus either
of the two states may be caused, and it depends on whether the set or
reset input of the flip-flop remains a ‘1’longer than the transition to ‘0’
at the end of the pulse. Thus the invalid states can be eliminated.

Clocked S-R Flip-Flop :

Clocked S-R Flip-flop

• JK flip-flops are very similar to SR flip-flops. The J input is just like the S
input in that when asserted, it sets the flip-flop. Similarly, the K input is
like the R input where it clears the flip-flop when asserted. The only
difference is when both inputs are asserted. For the SR flip-flop,
the next state is undefined, whereas, for the JK flip-flop, the next
state is the inverse of the current state. In other words, the JK flip-
flop toggles its state when both inputs are asserted. The circuit,
truth table and the logic symbol for the JK flip-flop is shown in Figure
17.

• Figure 17. JK flip-flop: (a) circuit; (b) truth table; (c) logic symbol.

J-K FLIP-FLOP :

• A J-K flip flop can also be defined as
a modification of the S-R flip flop.
The only difference is that the
intermediate state is more refined
and precise than that of a S-R flip
flop.

• The behavior of inputs J and K is
same as the S and R inputs of the S-R
flip flop. The letter J stands for SET
and the letter K stands for CLEAR.

J-K Flip-Flop :

• When both the inputs J and K have a HIGH state, the flip-flop switch to
the complement state. So, for a value of Q = 1, it switches to Q=0 and for
a value of Q = 0, it switches to Q=1.

• The circuit includes two 3-input AND gates. The output Q of the flip
flop is returned back as a feedback to the input of the AND along with
other inputs like K and clock pulse [CP]. So, if the value of CP is 1, the
flip flop gets a CLEAR signal and with the condition that the value of Q
was earlier 1. Similarly output Q’ of the flip flop is given as a feedback
to the input of the AND along with other inputs like J and clock pulse
[CP]. So the output becomes SET when the value of CP is 1 only if the
value of Q’ was earlier 1.

• The output may be repeated in transitions once they have been
complimented for J=K=1 because of the feedback connection in
the JK flip-flop. This can be avoided by setting a time duration
lesser than the propagation delay through the flip-flop. The
restriction on the pulse width can be eliminated with a master-
slave or edge-triggered construction.

J-K Flip-Flop :

• Latches are often called level-sensitive because their output follows
their inputs as long as they are enabled. They are transparent during
this entire time when the enable signal is asserted. There are situations
when it is more useful to have the output change only at the rising
or falling edge of the enable signal. This enable signal is usually the
controlling clock signal. Thus, we can have all changes synchronized to
the rising or falling edge of the clock. An edge-triggered flip-flop
achieves this by combining in series a pair of latches. Figure shows a
positive edge-triggered D flip-flop where two D latches are connected
in series and a clock signal Clk is connected to the E input of the
latches, one directly, and one through an inverter. The first latch is
called the master latch. The master latch is enabled when Clk = 0 and
follows the primary input D. When Clk is a 1, the master latch is
disabled but the second latch, called the slave latch, is enabled so that
the output from the master latch is transferred to the slave latch. The
slave latch is enabled all the while that Clk = 1, but its content changes
only at the beginning of the cycle, that is, only at the rising edge of the
signal because once Clk is 1, the master latch is disabled and so the

D TYPE FLIP-FLOP :

• input to the slave latch will not change. The circuit of Figure 10(a) is
called a positive edge-triggered flip-flop because the output Q on the
slave latch changes only at the rising edge of the clock. If the slave latch
is enabled when the clock is low, then it is referred to as a negative
edge-triggered flip-flop. The circuit of Figure 10(a) is also referred to as
a masterslave D flip-flop because of the two latches used in the circuit.
Figure 10(b) and (c) show the truth table and the logic symbol
respectively. Figure 10(d) shows the timing diagram for the D flip-flop.

• Figure 10. Master-slave positive-edge-triggered D flip-flop: (a) circuit
using D latches; (b) truth table; (c) logic symbol; (d) timing diagram.

Continued…

D type Flip-Flop :
• The circuit diagram and truth

table is given in figure

• D flip flop is actually a slight
modification of the above
explained clocked SR flip-flop.
From the figure you can see that
the D input is connected to the S
input and the complement of the
D input is connected to the R
input. The D input is passed on to
the flip flop when the value of CP
is ‘1’.

• When CP is HIGH, the flip flop
moves to the SET state. If it is ‘0’,
the flip flop switches to the
CLEAR state.

• The T flip-flop has one input in addition to the clock. T stands for
toggle for the obvious reason. When T is asserted (T = 1), the flip-flop
state toggles back and forth, and when T is de-asserted, the flip-flop
keeps its current state. The T flip-flop can be constructed using a D flip-
flop with the two outputs Q and Q' feedback to the D input through a
multiplexer that is controlled by the T input as shown in Figure 18.

• Figure 18. T flip-flop: (a) circuit; (b) truth table; (c) logic symbol.

T type Flip-Flop :

• This is a much simpler version of
the J-K flip flop. Both the J and K
inputs are connected together and
thus are also called a single input J-
K flip flop. When clock pulse is
given to the flip flop, the output
begins to toggle. Here also the
restriction on the pulse width can
be eliminated with a master-slave
or edge-triggered construction.
Take a look at the circuit and truth
table is shown in figure.

T TYPE FLIP-FLOP :

THANK YOU

