MOHAMED SATHAK A J COLLEGE OF ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

QUESTION BANK

EN8491-WATER SUPPLY ENGINEERING

Regulation – 2017

PREPARED BY

RAKESH R B

Assistant Professor / Civil

OUESTION BANK

(As per Anna University 2017 Regulation)

SUBJECT CODE/NAME: EN8491-WATER SUPPLY ENGINEERING

SEM/YEAR: V/III

UNIT I - SOURCES OF WATER

Public water supply system -Planning - Objectives -Design period - Population forecasting - Water demand -Sources of water and their characteristics -Surface and Groundwater- Impounding Reservoir- Development and selection of source - Source Water quality - Characterization -Significance-Drinking water quality standards

	PART A			
Q.NO	QUESTIONS	BT LEVEL	COMPETENCE	
1.	Define potable water.	BT-1	Remembering	
2.	List out the various reasons for water demand encountered in recent Times.	BT-1	Remembering	
3.	Define design period.	BT-1	Remembering	
4.	Name the drinking water quality standards for any four physic- Chemical parameters.	BT-1	Remembering	
5.	What are the components of water supply system?	BT-1	Remembering	
6.	Outline the various sources of water.	BT-2	Understanding	
7.	Compare and contrast between carbonate and non-carbonate hardness.	BT-2	Understanding	
8.	Explain the factors influencing the design period.	BT-4	Analyzing	
9.	 Write the maximum acceptable limit of the following for the public drinking water. i. Color ii. pH iii. Chlorides iv. Sulphates. 	BT-5	Evaluating	

10.	Write in brief about the recharge of ground water.	BT2	Understanding
11.	What is water demand? State its types	BT3	Applying
12.	Define per capita demand. How is per capita demand for water Calculated?	BT4	Analyzing
13.	Define BOD	BT5	Evaluating

PART B

1.	i. Descrit	be a few lin	es about w	ater demand	1.	(3)	BT-1	Remembering
	ii. In two 50000 the nex	periods e to 110000 t 20 years a	ach of 20 and 16000 and also the	years a ci 0. Tell the j e saturation	ty has grow population ex population. (vn from xpectedin (10)		
2.	Identify the da water demand below. Census Year Population	ily water o is 135 Lpc 1950 25000	demand of cd and the 1965 52000	the city in city popula 1980 94000	2031, if the tion records 1995 164000	e per capita is as given 2010 247000	BT-1	Remembering
3.	The population the population method and inc 135 LPCD for t Census Year Population	of a town a in the yea cremental in the year 20 1935 39250	as per cens ar 2020 an ncrease me 35. 1955 54390	us records is d 2035 usin thod. Estim 1975 68010	s given below ng arithmetic ate the water 1995 83630	w. Calculate cal increase r demand at 2015 99850	BT-1	Remembering

4.	i. Discuss the factors to be considered in fixing the design	BT-2	Understanding
	period for water supply components. (8)		
	ii. Discuss about the drinking water quality standards as perBIS.(5)		
5.	i. Briefly discuss about the various types of aquifer's with neat sketch.	BT-2	Understanding
	(7) ii. What are the factors influencing the population forecasting? (6)		
6.	i. Discuss the factors that affect the rate of water demand (7)	BT-3	Applying
	ii. Explain about fire demand-its characteristics and the method of		
	estimating it (6)		
7.	Describe the different sources of water and their characteristics	BT-1	Remembering
	with respect to Turbidity, Hardness, Chloride and Microbiology.		
8.	i. Classify the different types of springs. (5)	BT-4	Analyzing
	ii. With neat sketch, explain how water is drawn from infiltration		
	galleries. (8)		
9.	Summarize various sources of water and give a brief account of the	BT-2	Understanding
	characteristics of water.		
10.	Explain the different methods used for prediction of future population of	BT-4	Analyzing
	a city, with reference to the design of a water supply system.		

PART C

1.	i. Discuss about the water quality standards available to	BT-2	Understanding
	characterize the drinking water quality. (5)		
	ii. Explain the chemical characteristics of water (10)		
2.	Briefly discuss about the various physic-chemical test on water and write their limitation for domestic and industrial purpose.	BT-1	Remembering
3.	Enumerate and explain the characteristics of surface water and	BT-4	Analyzing
	ground water and state their environmental significance.		

UNIT II - CONVEYANCE FROM THE SOURCE

Water supply -intake structures -Functions -Pipes and conduits for water- Pipe materials - Hydraulics of flow in pipes -Transmission main design -Laying, jointing and testing of pipes - appurtenances - Types and capacity of pumps -Selection of pumps and pipe materials.

Q.N O	QUESTIONS	BT LEVEL	COMPETENCE
1.	Define intake.	BT-1	Remembering
2.	List functions of intake structures.	BT-1	Remembering
3.	List out the various joint's in cast iron pipes.	BT-1	Remembering
4.	Name the types of intake according to their position.	BT-1	Remembering
5.	How the corrosion of metal pipes is reduced?	BT-2	Remembering
6.	Predict the factors controlling the choice of materials for water conduits.	BT-4	Analyzing
7.	Illustrate the properties of Ductile Iron pipes.	BT-3	Applying
8.	Compare gravity conduits with pressure conduits.	BT-4	Analyzing
9.	What are the advantages and limitations of RCC pipes?	BT-6	Evaluating
10.	Write down the formulae to find out head loss caused by pipe friction.	BT-5	Creating
11.	Define pipe appurtenances and identify their role.	BT-1	Remembering
12.	Highlight the criteria required for the pipe materials in the water supply system.	BT-1	Remembering
13.	Explain the various pipe appurtenances used in water conveyance system.	BT-4	Analyzing
14.	Mention the basis for the selection of types and capacity of pumps.	BT2	Understanding
15.	What is meant by economic diameter of a pumping main?	BT-4	Analyzing

PART 2	B
--------	---

1.	i. List out the important considerations which govern the selection of site of an intake structure? (6)	BT-1	Remembering
	ii. Describe the salient features of river intake with the aid of a neat sketch. (7)		
2.	What are the basic requirements of a pipe joint? Describe the various pipe joints with neat sketches.	BT-1	Remembering
3.	Discuss about the wet and dry intake tower to draw water from the reservoir.	BT-2	Understanding
4.	Classify the types of intakes. Also explain the working of a reservoir intake with a neat sketch.	BT-2	Understanding
5.	i. List the requirements of a good piping material. (6) ii.Quantity of water required by a town is 20,000m3/day. The pumps are working against a total head of 40m, for 8 hours. Total length of the main is 20km, f=0.075. Design the size of the main using Darcy-Weisbach formula. Assume any other data required.(7)	BT-5	Evaluating
6.	 i. List the factors to be considered in the selection of Pipe material for water transmission and describe it briefly. (6) ii. Explain the methods of transmission main system. (7) 	BT-1	Remembering
7.	What are the different types of pipe materials used in the water transmission?	BT-1	Remembering
8.	Summarize few lines about the functioning of a jet pump with a neat sketch.	BT-2	Understanding
9.	Illustrate the different types of pipe appurtenances used in water supply project.	BT-3	Applying
10.	Explain the different types of pumps used in water supplies with a neat sketch.	BT-4	Analyzing
11.	i. Prepare the key features of testing and laying of pipeline.(8)ii. Explain the principle operation of a centrifugal pump with neat sketch.(5)	BT-6	Creating

DA	рт	C
ΓA	KI	U

1.	Mention the points which should be taken into consideration in		
	deciding the location of an intake for the water supply of a large		Creating
	town, the source being a perennial river. Draw a neat sketch of a	B1-0	Creating
	canal intake and explain the salient features.		
2.	i. Explain briefly the steps involved in water supply pipe line		
	installation. (9)		
		BT-2	Understanding
	ii. Write brief notes on laying pipe lines and testing of		
	pipelines. (6)		
3.	Give a detailed account on the selection of pumps and pipe		
	materials suitable for the conveyance system.	BT-3	Applying

UNIT - III WATER TREATMENT

Objectives - Unit operations and processes - Principles, functions design of water treatment plant units, Aerators of Flash mixers, Coagulation and flocculation -Clariflocculator-plate and tube settlers-Pulsator clarifier-Sand filters-Disinfection - Residue management-Construction, Operation & Maintenance aspects.

	PART A			
Q.NO	QUESTIONS	BT LEVEL	COMPETENCE	
1.	Define: Detention time and surface over flow rate.	BT 1	Remembering	
2.	Explain the term coagulation.	BT 5	Evaluating	
3.	List out advantages of rapid sand filter.	BT 1	Remembering	
4.	Mention the advantages of chlorine, as disinfectant.	BT 1	Remembering	
5.	State the function of sedimentation tanks.	BT 1	Remembering	
6.	Write the nature of any four coagulants.	BT 6	Creating	
7.	Differentiate between unit operation and unit process.	BT 2	Understanding	
8.	Discuss the significances of velocity gradient in flocculator design.	BT 2	Understanding	
9.	Differentiate between sterilization and disinfection.	BT 2	Understanding	
10.	Describe the tests to be done to find the residual chlorine in water.	BT 2	Understanding	
11.	Illustrate the mechanism of disinfection process.	BT 3	Applying	
12.	Discover the factors which depends the dose of coagulants.	BT 3	Applying	
13.	Show the layout plan of water treatment plant.	BT 3	Applying	
14.	Compare the objectives of Screen chamber and Grit chamber.	BT 4	Analyzing	
15.	What are Flocculators?	BT2	Understanding	

PART I	B
--------	---

1.	i. Develop the design for a rectangular sedimentation tank for 5 MLD flow (7)	BT 1	Remembering
	ii. Draw and label the parts of the rectangular sedimentation		
	tank(Longitudinal section) indicating the various zones. (6)		
2.	Estimate the volume of a clariflocculator for a proposed water	BT 2	Understanding
	treatment plant with a capacity of 80 ML/d and draw a neat sketch		
	of the unit.		
3.	i. Estimate the settling velocity of a particle of 0.06 mm	BT 2	Understanding
	diameter having specific gravity of 2.65 in temperature of		
	20°C. Take kinematic viscosity as 1.007 x 10 ⁻⁶ m ² / sec. (7)		
	ii White the design minsingles of flash minor and flash polyton (6)		
1	11. Write the design principles of hash mixer and hocculator.(6)		A 1 '
4.	Explain about slow sand filter and rapid sand filter with suitable	BI4	Analyzing
	Character design of a character of the formation of a multiple	DT 1	Demonstrations
5.	Show the design of a slow sand filer for a town of population	BII	Remembering
	filtration rate as 2.5 litersperminute m^2 L/B ratio as 2 maximum		
	demand as 1.8 times average demand.		
6.	Describe Chlorination and its types. Explain the various process or	BT 4	Analyzing
	methods.		
7.	i. Calculate the average chlorine required per day to treat	BT 3	Applying
	150MLD of water. Also calculate the storage required for		
	60 days. Assume an average chlorine dosage of 5mg/l. (7)		
	ii Illestante des continue continue continue continues and continues		
	ii. Indistrate the various unit operations and unit processes		
0	involved in water treatment. (6)		
8.	1. Design a flash mixer for a proposed water treatment plant	BI 2	Evaluating
	with a capacity of 25 ML/d and draw a neat sketch of the		
	unit. (7)		
	ii. Prepare a short note on "Break Point Chlorination". (6)		
9.	A new township is to have a population of 6,00,000 and 90 Lpcd of	BT 1	Remembering
	water supply. Find the rapid sand filter unit with details of under		
	drainage and water washingincluding gutter arrangement. Limit		
10	the maximum spent backwash water as 3.5%.	DT 6	Creating
10.	Examine the conventional and modern methods which are used to	D1 0	Creating
	disinfect water.		
1			

PART C

1.	i Calculate how many kg of bleaching powder with 25%	BT 3	Applying
	available chlorine is required daily to treat 5MLD of water		
	with 3mg/L of chlorine? (6)		
	ii With a neat sketch explain briefly about pulsator clarifier.(9)		
2.	Show the mechanism of sand filtration. Draw a neat sketch of filter	BT 1	Remember
	unitsand explain its working principle.		ing
3.	Explain about the practices adopted in Residue management.	BT 4	Analyzing

UNIT IV - ADVANCED WATER TREATMENT

Water softening - Desalination -R.O plant- demineralization -adsorption-Ion exchange- Membrane Systems-R.O Reject management- Iron and manganese removal- Defluoridation- Construction, Operation & Maintenance aspects-Recent advances-MBR process

PART – A				
Q.NO	QUESTIONS	BT LEVEL	COMPETENCE	
1.	Define reverse osmosis.	BT 1	Remembering	
2.	Show the methods of removing temporary and permanent hardness.	BT5	Evaluating	
3.	Define Zeolite process.	BT 1	Remembering	
4.	What is meant by adsorption isotherm?	BT 1	Remembering	
5.	List any four effects of hardness in water	BT 1	Remembering	
6.	How do you regenerate softener?	BT 1	Remembering	
7.	Distinguish between physical adsorption and chemical adsorption	BT 2	Understanding	
8.	Differentiate between demineralization and desalination.	BT 2	Understanding	
9.	Describe about the term water softening.	BT 2	Understanding	
10.	What are the recent advances in water treatment process?	BT 2	Understanding	
11.	What is the principle of Demineralization by Ion-exchange?	BT 3	Applying	
12.	Define Defluoridation.	BT 3	Applying	
13.	Examine how to remove iron and manganese from water.	BT 3	Applying	
14.	What are Membrane Bioreactors?	BT 5	Evaluating	
15.	Define RO reject management.	BT4	Analyzing	

PA	RT	_	B

1.	Explain the various methods of removing excess Iron and	BT 4	Analyzing
	Manganese from Ground water.		
2.	Describe in detail about the principle and mechanism of	BT 1	Remembering
	desalination process.		
3.	Elaborate, how are defluoridation and demineralisation carried out	BT 1	Remembering
	in the advanced water treatment process.		
4.	i. Describe the types of hardness present in water. (5)	BT 2	Understanding
	ii. Discuss about the Ion exchange method of water softening		
	with a sketch. (8)		
5.	Explain the methods of removing temporary and permanent	BT 2	Understanding
	hardness from water.		
6.	Explain the Zeolite process for the removal of permanent hardness	BT 4	Analyzing
	from water.		
7.	i. Why and what pretreatment is required in the feed water to RO	BT 1	Remembering
	plant? (8)		
	ii. Explain the techniques adopted in PO reject management (5)		
8	Explain in detail with neat sketches about the Membrane	BT 3	Applying
0.	Bioreactor(MBR) process	D 1 <i>J</i>	Apprying
	Bioteactor(MBR) process.		
9.	Recommend the various techniques involved in defluoridation.	BT 5	Evaluating

PART C

1.	Explain the different methods of Water Softening.	BT 4	Analyzing
2.	With neat sketches explain desalination by Electrodialysis method and RO process.	BT 1	Remembering

UNIT V - WATER DISTRIBUTION AND SUPPLY

Requirements of water distribution -Components -Selection of pipe material-Service reservoirs -Functions - Network design -Economics - Analysis of distribution networks -Computer applications-Appurtenances - Leak detection. Principles of design of water supply in buildings -House service connection -Fixtures and fittings -Systems of plumbing and types of plumbing.

1.	What is an equivalent pipe?	BT 1	Remembering
2.	How will you calculate the service capacity of the reservoir?	BT6	Creating
3.	Mention the important components needed for the water distribution to buildings.	BT 1	Remembering
4.	Where the ring system of water distribution system is adopted?	BT 1	Remembering
5.	What are the requirements of water distribution system.	BT 1	Remembering
6.	Name the appurtenances used in water distribution system.	BT 1	Remembering
7.	Describe about air valves. Mention the different types of air valves.	BT 2	Understanding
8.	Extend a few lines on ferrule in water service connection.	BT 2	Understanding
9.	Predict the factors which control water supply to buildings.	BT 2	Understanding
10.	Discuss the methods available to find the leakages in pipelines.	BT 2	Understanding
11.	Explain Hardy Cross method of pipe network analysis.	BT 4	Analyzing
12.	Examine the prime functions of service reservoirs.	BT 3	Applying
13.	What is a surface reservoir?	BT3	Applying
14.	Analyze how to identify leakage in pipe lines.	BT 4	Analyzing
15.	List out the components of service connection pipe.	BT5	Evaluating

PART A

PART B

1.	What are the functions of service reservoir? Briefly outline the design aspects of service reservoir.	BT 1	Remembering
2.	Draw a sketch and label the parts of a water supply service connection from the street main to a residential building and state the functions of each fitting.	BT 1	Remembering
3.	What is the role of computer applications in the water distribution system?	BT 1	Remembering
4.	Discuss with neat sketches the various types of layout of distribution system and state their advantages and disadvantages.	BT 2	Understanding
5.	Classify the different plumbing systems with neat sketches. Also compare them for their cost, efficiency, easiness, etc.	BT 4	Analyzing
6.	Discuss in detail about i. Waste water detection method.(7) ii. Various pipe fitting with neat sketches.(6)	BT 2	Understanding
7.	Explain with neat sketches about the appurtenances, fixtures and fittings in water distribution system.	BT 4	Analyzing
8.	Summarize few lines about leak detection and explain its methods. How to maintain the drinking water pipe line system.	BT 6	Creating
9.	Discuss Hardy-cross method and Equivalent pipe method to analyse complex pipe network.	BT 2	Understanding

PART C

1.	Explain about the analysis of distribution networks in water distribution	BT 4	Analyzing
	and supply to buildings.		
2.	Design the pipe network shown below and tabulate the flow values in each of the pipe. $Q = 30 \text{ m}^3/\text{min}$ $L = 500 \text{ m}$ $L = 500 \text{ m}$ $L = 550 \text{ m}$ $L = 550 \text{ m}$ $L = 550 \text{ m}$ $L = 500 \text{ m}$ $Q = 9 \text{ m}^3/\text{min}$ $Q = 9 \text{ m}^3/\text{min}$	BT 6	Creating