MOHAMED SATHAK A J COLLEGE OF ENGINEERING

Fromat no.	TLP 05
Rev.Date	$01 / 02 / 2021$
Rev. No.	0

12	uniformly distributed load, uniformly varying load and concentrated	T1	2	BB	L4	CO 2	PO1,PO2,PO3,PO4
13	Theory of Simple Bending - Stress Distribution due to bending moment and shearing force	T1	1	PPT	L3	CO 2	PO1,PO2,PO3,PO4
14	Flitched Beams - Leaf Springs.	T2	1	PPT	L4	CO2	PO1,PO2,PO3, PO4

Suggested Activity: Assignment - Shear force and bending moment
Evaluation method :Paper base evaluation
UNIT III DEFLECTION OF BEAMS

$\mathbf{1 5}$	Elastic curve	T 1	1	PPT	L 3	CO	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{1 6}$	Governing differential equation - Double integration method	T 1	2	BB	L 4	CO	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{1 7}$	Macaulay's method	T 2	2	BB	L 3	CO	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{1 8}$	Area moment method	R 4	2	BB	$\mathrm{L4}$	CO	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{1 9}$	conjugate beam method for computation of slope and deflection of determinant beams	R 4	2	BB	$\mathrm{L3}$	CO	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$

Suggested Activity: Assignment -Conjugate beam method for computation of slope and deflection of determinant beams							
Evaluation method :Paper base evaluation							
UNIT IV TORSION							
20	Theory of Torsion	R2	1	PPT	L3	CO4	PO1,PO2,PO3,PO4
21	Stresses and Deformations in Solid and Hollow Circular Shafts	R3	1	PPT	L5	CO4	PO1,PO2,PO3,PO4
22	combined bending moment and torsion of shafts	T2	2	PPT	L4	CO4	PO1,PO2,PO3,PO4
23	Power transmitted to shaft	T1	1	PPT	L2	CO4	PO1,PO2,PO3, PO4
24	Shaft in series and parallel	T2	1	PPT	L3	CO 4	PO1,PO2,PO3, PO4
25	Closed and Open Coiled helical springs	T2	1	PPT	L3	CO4	PO1,PO2,PO3,PO4
26	Springs in series and parallel	T1	1	PPT	L3	CO 4	PO1,PO2,PO3, PO 4
27	Design of buffer springs.	T2	1	PPT	L3	CO4	PO1,PO2,PO3, PO4

Suggested Activity: Assignment - Design of buffer springs.
Evaluation method : Paper based evaluation
UNIT V ANALYSIS OF TRUSSES

$\mathbf{2 8}$	Determinate and indeterminate trusses	T 1	2	PPT	L 3	CO	$\mathrm{PO}, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{2 9}$	Analysis of pin jointed plane determinate trusses by method of	T 2	2	PPT	L 5	CO 5	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{3 0}$	method of sections and tension coefficient	T 1	2	PPT	L 5	CO 5	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{3 1}$	Analysis of Space trusses by tension coefficient method.	T 2	2	PPT	L 5	CO 5	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$
$\mathbf{3 2}$	Analysis of Space trusses by tension coefficient method.	T 1	1	PPT	$\mathrm{L4}$	CO 5	$\mathrm{PO} 1, \mathrm{PO} 2, \mathrm{PO} 3, \mathrm{PO} 4$

Suggested Activity: Presentation on Trusses
Evaluation method :Powerpoint presentation base evaluation
Content Beyond the Syllabus Planned
1 Simulation of beam deflection
2 Distortion and deforming of solids under stresses

1	Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand \& company Ltd., New Delhi, 2015.													
2	Bansal. R.K. "Strength of Materials", Laxmi Publications Pvt. Ltd., New Delhi, 2010													
Reference Books														
1	Timoshenko.S.B. and Gere.J.M, "Mechanics of Materials", Van Nos Reinbhold, New Delhi 1999.													
2	Junnarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol I, Charotar Publishing House, New Delhi 2016.													
3	Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.													
4	Singh. D.K., " Strength of Materials", Ane Books Pvt. Ltd., New Delhi, 2016													
Website / URL References														
1	http://www.nptelvideos.in/2012/12/strength-of-materials.html													
Blooms Level														
Level 1 (L1) : Remembering					Lower Order Thinki ng	Fixed Hour Exams	Level 4 (L4) : Analysing						Higher Order Thinking	Projects / Mini Projects
Level 2 (L2) : Understanding							Level 5 (L5) : Evaluating							
Level 3 (L3) : Applying							Level 6 (L6) : Creating							
Mapping syllabus with Bloom's Taxonomy LOT and HOT														
Unit No		Unit Name				L1	L2	L3	L4	L5	L6	LOT	HOT	Total
Unit 1		STRESS, STRAIN AND DEFORMATION OF SOLIDS				1	1	4	0	2	0	5	3	8
Unit 2		TRANSFER OF LOADS AND STRESSES IN BEAMS				0	0	1	5	2	0	6	0	6
Unit 3		DEFLECTION OF BEAMS				0	1	5	2	0	0	3	2	5
Unit 4		TORSION				0	1	5	1	5	0	6	2	8
Unit 5		ANALYSIS OF TRUSSES				0	0	1	1	3	0	3	2	5
Total						1	3	16	9	12	0	23	9	32
Total Percentage						3.125	9.375	50	28.125	37.5	0	71.875	28.125	100
CO PO Mapping														
CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	3	2	1	1	0	0	0	0	1	0	0	0	1	2
CO2	3	2	2	1	0	0	0	0	0	0	0	0	1	2
CO 3	3	2	2	1	0	0	0	0	0	0	0	0	1	2
CO4	3	2	2	1	0	0	0	0	0	0	0	0	1	2
CO5	3	2	2	1	0	0	0	0	0	0	0	0	1	2
Avg	3	2	1.8	1	0	0	0	0	0.2	0	0	0	1	2
							ustificat	for C	PO map					
CO1	$\begin{aligned} & \text { POI: } \\ & \text { of stre } \\ & \text { proble } \\ & \text { and th } \\ & \text { the stu } \end{aligned}$			anal to be al and he con		ICS, sclen ess and es and t rk. PSO implem	nce, eng strain, trusses. 1 name ment it t	$\begin{aligned} & \text { ering } \\ & \text { cipal } \\ & 9: \text { Th } \\ & \text { bility } \\ & \text { t bett } \end{aligned}$	dament students design and outcome.	tocom princip an be m analyz	te var planes, to sol he stru	erastic 4 : lag the pro ral com	constants in investi lems dur ponents i	almerent types ion of complex tutorial hours hieved by mak
CO2	PO1: funda and de	Knowled ental 0 ign and		anism ethod ent of	of load This w lution	transfer ill help in PO3) an	in inde in probl nd lags	minat olvin vestig	ams hel ver diffe on of com	in gain ent load plex pr	stron ansfer em lik	ngineer chanism forma	g knowl on differ ons in the	e and beams (PO2) ams (PO4).
CO3	$\begin{aligned} & \text { PO1: } \\ & \text { PO2 : } \\ & \text { compr } \\ & \text { structu } \end{aligned}$	nowred Find the ssion m ral com	In C ad car bers . nents.		e derlec acity of estigatio	Hon of b columns n of com			ethods ed in col O1) app	d selec mns and the eng		d 10 d PO3 : d damen	ermining velopmen als helps	pe or deflectio solution for nalyzing

PO1: Knowledge in determine principal stresses and planes for an element in three dimensional state of stress and study various
CO4 theories of failure, PO2: Problem in determine principal stresses and planes for an element in three dimensional state of stress and study various theories of failure .PO4 : investigation of complex problem
PO1 : Calculating stresses due to unsymmetrical bending helps in applying engineering fundamentals and provides engineering solutions for complex problems. PO2 : This will help in problem solving and in designing and analyzing of curved beams helps in design . PO3: development of solution, PO4: investigation of complex problems in unsymmetrical . PSO1 : Applying the engineering fundamentals to analyze and design the various structural components

$\mathbf{3}$	High level	$\mathbf{2}$	Moderate level	$\mathbf{1}$	Low level
*Kindly sign with date					
Name \& Sign of Faculty Incharge : Name \& Sign of Subject Expert $:$ Head of the Department $\quad:$					

