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CE8602 STRUCTURAL ANALYSIS II 

UNIT I INFLUENCE LINES FOR DETERMINATE BEAMS 
 

Influence lines for reactions in statically determinate beams – Influence lines for shear force and 

bending moment – Calculation of critical stress resultants due to concentrated and distributed 

moving loads – absolute maximum bending moment - influence lines for member forces in pin 

jointed plane frames. 

 

INTRODUCTION 

An influence line is a diagram whose ordinates, which are plotted as a function of 

distance along the span, give the value of an internal force, a reaction, or a displacement at a 

particular point in a structure as a unit load move across the structure. An influence line is a 

curve the ordinate to which at any point equals the value of some particular function due to unit 

load acting at that point. An influence line represents the variation of the reaction, shear, 

moment, or deflection at a specific point in a member as a unit concentrated force moves over 

the member. 

 
INFLUENCE LINES FOR REACTIONS IN STATICALLY DETERMINATE BEAMS 

 

Problem: 

1. Construct the influence line for the reaction at support B for the beam of span 10 m. The 

beam structure is shown in Fig. 

 

 
 

 
A unit load is places at distance x from support A and the reaction value R is calculated 

B 

by taking moment with reference to support A. Let us say, if the load is placed at 2.5 m. from 

support A then the reaction R can be calculated as follows 
B 

 

Σ M
A 

= 0 : R
B 

x 10 - 1 x 2.5 = 0 ⇒ R
B 

= 0.25 



 

 

the load can be placed at 5.0, 7.5 and 10 m. away from support A and reaction R can be 
B 

computed and tabulated as given below. 

 

 
 

Influence Line Equation: 

When the unit load is placed at any location between two supports from support A at distance x 

then the equation for reaction R can be written as 
B 

 

Σ M = 0 : R x 10 – x = 0 ⇒ R = x/10 
A B B 

 

2. Construct the influence line for support reaction at B for the given beam as shown in Fig. 

 

 
A unit load is places at distance x from support A and the reaction value R

B 
is calculated by 

taking moment with reference to support A. Let us say, if the load is placed at 2.5 m. from 

support A then the reaction R
B 

can be calculated as follows. 

Σ M
A 

= 0 : R
B 

x 7.5 - 1 x 2.5 = 0 ⇒ R
B 

= 0.33 



 

 

 

 

 

 

 

 

Similarly one can place a unit load at distances 5.0 m and 7.5 m from support A and compute reaction at 

B. When the load is placed at 10.0 m from support A, then reaction at B can be computed using following 

equation. 

Similarly a unit load can be placed at 12.5 and the reaction at B can be computed. 

Graphical representation of influence line for R is shown in Fig. 
B 

 

Applying the moment equation at A, 

Σ M = 0 : R x 7.5 - 1 = 0 ⇒ R = x/7.5 
A B B 

 

INFLUENCE LINES FOR SHEAR FORCE AND BENDING MOMENT 

 

3. Construct the influence line for shearing point C of the beam. 

 

 
Place a unit load at different location at distance x from support A and find the reactions at A and 

finally computer shear force taking section at C. The shear force at C should be carefully 

computed when unit load is placed before point C and after point C. The resultant values of shear 

force at C are tabulated as follows. 



 

The beam structure – a unit load before section 
 

 
 

The beam structure - a unit load before section 

 

 
Graphical representation of influence line for V is shown in Fig. 

c 

Influence line for shear point C 

 
4. Construct the influence line for the moment at point C of the beam shown in Fig. 

Beam structure 



A unit load at different location between two supports and find the support reactions. 

Once the support reactions are computed, take a section at C and compute the moment. For 

example, we place the unit load at x=2.5 m from support A, then the support reaction at A will be 

0.833 and support reaction B will be 0.167. Taking section at C and computation of moment at C 

can be given by 

 
Σ M = 0 : - M R x 7.5 - = 0 ⇒ - M 0.167 x 7.5 - = 0 ⇒ M = 1.25 

c c + B c + c 

 

 

 

 

 

 

 

 

 

A unit load before section 

 

 
Similarly, compute the moment M for difference unit load position in the span. 

c 

Graphical representation of influence line for M is shown in Fig. 
c 

Influence line for moment at section C 

 
5. Construct the influence line for the moment at point C of the beam shown in Fig. 

Overhang beam structure 

 
A unit load at different location between two supports and find the support reactions. Once the 

support reactions are computed, take a section at C and compute the moment. For example as 

shown in Figure 37.20, we place a unit load at 2.5 m from support A, then the support reaction at 

A will be 0.75 and support reaction B will be 0.25. 



 

A unit load before section C 

 
Taking section at C and computation of moment at C can be given by 

Σ M = 0 : - M R x 5.0 - = 0 ⇒ - M 0.25 x 5.0 = 0 ⇒ M = 1.25 
c c + B c + c 

 

Graphical representation of influence line for M is shown in Fig. 
c 

Influence line of moment at section C 

 
There will be two influence line equations for the section before point C and after point C. 

When a unit load is placed before point C then the moment equation for given Fig. can be given 

by 

 
Σ M = 0 : M + 1(5.0 –x) – (1-x/10)x5.0 = 0 ⇒ M = x/2, where 0 ≤ x ≤ 5.0 

c c c 

 

 
 

A unit load before section C 

 
When a unit load is placed after point C then the moment equation for given Fig. can be given by 

 
Σ M

c 
= 0 : M

c 
– (1-x/10) x 5.0 = 0 ⇒ M

c 
= 5 - x/2, where 5 < x ≤ 15 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

A unit load after section C 

 
CALCULATION OF CRITICAL STRESS RESULTANTS DUE TO CONCENTRATED 

AND DISTRIBUTED MOVING LOADS 

Generally in beams/girders are main load carrying components in structural systems. 

Hence it is necessary to construct the influence line for the reaction, shear or moment at any 

specified point in beam to check for criticality. Let us assume that there are two kinds of load 

acting on the beam. They are concentrated load and uniformly distributed load (UDL). 

 
Concentrated load 

Let us say, point load P is moving on beam from A to B. Looking at the position, we 

need to find out what will be the influence line for reaction B for this load. Hence, to generalize 

our approach, like earlier examples, let us assume that unit load is moving from A to B and 

influence line for reaction A can be plotted as shown in Fig. Now we want to know, if load P is 

at the center of span then what will be the value of reaction A? From Fig., we can find that for 

the load position of P, influence line of unit load gives value of 0.5. Hence, reaction A will be 

0.5xP. Similarly, for various load positions and load value, reactions A can be computed. 

 

Beam structure 



 

Influence line for support reaction at A 

Uniformly Distributed Load 

Beam is loaded with uniformly distributed load (UDL) and our objective is to find 

influence line for reaction A so that we can generalize the approach. For UDL of w on span, 

considering for segment of dx, the concentrated load dP can be given by w.dx acting at x. Let us 

assume that beam’s influence line ordinate for some function (reaction, shear, and moment) is y 

as shown in Fig. In that case, the value of function is given by (dP)(y) = (w.dx).y. For 

computation of the effect of all these concentrated loads, we have to integrate over the entire 

length of the beam. Hence, we can say that it will be ∫w.y.dx = w ∫y.dx. The term ∫y.dx is 

equivalent to area under the influence line. 

 

Uniformly distributed load on beam 
 

 

Segment of influence line diagram 

 
For a given example of UDL on beam as shown in Fig, the influence line for reaction A can be 

given by area covered by the influence line for unit load into UDL value. i.e. [0.5x (1)xl] w = 0.5 

w.l. 



 
 

UDL on simply supported beam 
 

 
 

Influence line for support reaction at A. 

 
6. Find the maximum positive live shear at point C when the beam is loaded with a 

concentrated moving load of 10 kN and UDL of 5 kN/m. 

 

Simply supported beam 

 
As discussed earlier for unit load moving on beam from A to B, the influence line for the shear at 

C can be given by following Fig. 

 

Influence line for shear at section C. 



Concentrated load: As shown in Fig., the maximum live shear force at C will be when the 

concentrated load 10 kN is located just before C or just after C. Our aim is to find positive live 

shear and hence, we will put 10 kN just after C. In that case, 

V = 0.5 x 10 = 5 kN. 
c 

 

 

UDL: As shown in Fig., the maximum positive live shear force at C will be when the UDL 5 

kN/m is acting between x = 7.5 and x = 15. 

V = [0.5 x (15 –7.5) (0.5)] x 5 = 9.375 
c 

 

Total maximum Shear at C:  
(V ) max = 5 + 9.375 = 14.375. 

c 

 

ABSOLUTE MAXIMUM MOMENT 

From design point of view it is necessary to know the critical location of the point in the beam 

and the position of the loading on the beam to find maximum shear and moment induced by the 

loads. 

 
Maximum Shear: As shown in the Fig., for the cantilever beam, absolute maximum shear will 

occur at a point located very near to fixed end of the beam. After placing the load as close as to 

fixed support, find the shear at the section close to fixed end. 

 

Absolute maximum shear case – cantilever beam 

 
Similarly for the simply supported beam, as shown in Fig., the absolute maximum shear will 

occur when one of the loads is placed very close to support. 

 

Absolute maximum shear – simply supported beam 



Moment: 

The absolute maximum bending moment in case of cantilever beam will occur where the 

maximum shear has occurred, but the loading position will be at the free end as shown in Fig. 

 

 

 

 
Absolute maximum moment – cantilever beam 

 
The absolute maximum bending moment in the case of simply supported beam, one cannot 

obtain by direct inspection. However, we can identify position analytically. In this regard, we 

need to prove an important proposition. 

 
Proposition: 

When a series of wheel loads crosses a beam, simply supported ends, the maximum bending 

moment under any given wheel occurs when its axis and the center of gravity of the load system 

on span are equidistant from the center of the span. 

 
Let us assume that load P , P P etc. are spaced shown in Fig. and traveling from left to right. 

1 2,    3 

Assume P to be resultant of the loads, which are on the beam, located in such way that it nearer 
R 

to P at a distance of d as shown in Fig. 
3 1 

 

Absolute maximum moment case – simply supported beam 

 
If P is resultant of P and P and distance from P is d . 

12 1 2, 3 2 

 

6. The beam is loaded with two loads 25 kN each spaced at 2.5 m is traveling on the beam 

having span of 10 m. Find the absolute maximum moment. 

When the load of 25kN and center of gravity of loads are equidistant from the center of span then 

absolute bending moment will occur. Hence, place the load on the beam as shown in Fig. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simply supported beam 

 

 
The influence line for M is shown in Fig. 

x 

Influence line for moment at X 

 
Compute the absolute maximum bending moment for the beam having span of 30 m and loaded 

with a series of concentrated loads moving across the span as shown in Fig. 

 

Simply supported beam 



100(2)+ 250(5)+150(8)+ 100(11) 
= 5.357m.

 
100+100+250 150+100 

 

 

Now place the loads as shown in Fig. 

 

Simply supported beam with load positions 

 

 

 
Also, draw the influence line as shown in Fig. 

 

 
 

Influence Line for moment at section X 

 
Mx = 100(4.97) + 100(5.982) + 250(7.5) + 150(6.018) + 100(4.535) = 4326.4kN.m 



INFLUENCE LINES FOR MEMBER FORCES IN PIN JOINTED PLANE FRAMES. 

 
7. Construct the influence line for the force in member GB of the bridge truss shown in Fig. 

 

Bridge Truss 

 
In this case, successive joints L , L , L , L , and L are loaded with a unit load and the force F 

0 1 2 3 4 L2U3 

in the member L U are using the method of sections. Fig. shows a case where the joint load is 
2   3 

applied at L and force F is calculated. 
1 L2U3 

MEMBER FORCE F
L2U3 

CALCULATION USING METHOD OF SECTIONS. 



 
 

INFLUENCE LINE FOR MEMBER FORCE F 
L2U3 

 

 

 

8. Tabulate the influence line values for all the members of the bridge truss shown in 

Fig. 

 

Bridge Truss 

 
To construct the influence line for all the members of the bridge truss, hence it is necessary to 

place a unit load at each lower joints and find the forces in the members. Typical cases where the 

unit load is applied at L
1, 

L
2 

and L
3 

are shown in Fig. and forces in the members are computed 

using method of joints and are tabulated below. 



 

MEMBER FORCES CALCULATION WHEN UNIT LOAD IS APPLIED AT L 
1 

 

 

 

 

MEMBER FORCES CALCULATION WHEN UNIT LOAD IS APPLIED AT L 
2 

 

 
 

MEMBER FORCES CALCULATION WHEN UNIT LOAD IS APPLIED AT L
3
 



 

Member 
Member force due to unit load at: 

L0 L1 L2 L3 L4 L5 L6 

L L 
0 1 0 0.8333 0.6667 0.5 0.3333 0.1678 0 

L L 
1 2 0 0.8333 0.6667 0.5 0.3333 0.1678 0 

L L 
2 3 0 0.6667 1.3333 1.0 0.6667 0.3336 0 

L L 
3 4 0 0.3336 0.6667 1.0 1.3333 0.6667 0 

L L 
4 5 0 0.1678 0.3333 0.5 0.6667 0.8333 0 

L L 
5 6 0 0.1678 0.3333 0.5 0.6667 0.8333 0 

U U 
1   2 0 -0.6667 -1.333 -1.0 -0.6667 -0.333 0 

U U 
2   3 0 -0.50 -1.000 -1.5 -1.0 -0.50 0 

U U 
3   4 0 -0.50 -1.000 -1,5 -1.0 -0.50 0 

U U 
4   5 0 -0.333 -0.6667 -1.0 -1.333 -0.6667 0 

L U 
0   1 0 -1.1785 -0.9428 -0.7071 -0.4714 -0.2357 0 

L U 
1   1 0 1 0 0 0 0 0 

L U 
2   1 0 -0.2357 0.9428 0.7071 0.4714 0.2357 0 

L U 
2   2 0 0.167 0.3333 -0.50 -0.3333 -0.3333 0 

L U 
3   2 0 -0.2357 -0.4714 0.7071 0.4714 0.2357 0 

L U 
3   3 0 0 0 0 0 0 0 

L U 
3   4 0 0.2357 0.4714 0.7071 -0.4714 -0.2357 0 

L U 
4   4 0 -03333 -0.3333 -0.50 0.3333 0.167 0 

L U 
4   5 0 0.2357 0.4714 0.7071 0.9428 -0.2357 0 

L U 
5   5 0 0 0 0 0 1 0 

L U 
6   5 0 -0.2357 -0.4714 -0.7071 -0.9428 -1.1785 0 



UNIT-II 

MOVING LOADS AND INFLUENCE LINES 

In engineering, an influence line graphs the variation of a function (such as the 

shear felt in a structure member) at a specific point on a beam or truss caused by a unit load 

placed at any point along the structure. Some of the common functions studied with 

influence lines include reactions (the forces that the structure’s supports must apply in 

order for the structure to remain static), shear, moment, and deflection. Influence lines are 

important in the designing beams and trusses used in bridges, crane rails, conveyor belts, 

floor girders, and other structures where loads will move along their span. The influence 

lines show where a load will create the maximum effect for any of the functions studied. 

Influence lines are both scalar and additive. This means that they can be used even 

when the load that will be applied is not a unit load or if there are multiple loads applied. 

To find the effect of any non-unit load on a structure, the ordinate results obtained by the 

influence line are multiplied by the magnitude of the actual load to be applied. The entire 

influence line can be scaled, or just the maximum and minimum effects experienced along 

the line. The scaled maximum and minimum are the critical magnitudes that must be 

designed for in the beam or truss. 

In cases where multiple loads may be in effect, the influence lines for the individual 

loads may be added together in order to obtain the total effect felt by the structure at a 

given point. When adding the influence lines together, it is necessary to include the 

appropriate offsets due to the spacing of loads across the structure. For example, if it is 

known that load A will be three feet in front of load B, then the effect of A at x feet along 

the structure must be added to the effect of B at (x – 3) feet along the structure—not the 

effect of B at x feet along the structure Many loads are distributed rather than concentrated. 

Influence lines can be used with either concentrated or distributed loadings. For a 

concentrated (or point) load, a unit point load is moved along the structure. For a 

distributed load of a given width, a unit-distributed load of the same width is moved along 

the structure, noting that as the load nears the ends and moves off the structure only part of 

the total load is carried by the structure. The effect of the distributed unit load can also be 

obtained by integrating the point load’s influence line over the corresponding length of the 

structure. 

http://en.wikipedia.org/wiki/Beam_(structure)
http://en.wikipedia.org/wiki/Truss
http://en.wikipedia.org/wiki/Shear_force
http://en.wikipedia.org/wiki/Bending_moment
http://en.wikipedia.org/wiki/Deflection_(engineering)
http://en.wikipedia.org/wiki/Bridges
http://en.wikipedia.org/wiki/Conveyor_belt
http://en.wikipedia.org/wiki/Scalar
http://en.wikipedia.org/wiki/Additive_function


 
 

 

When designing a beam or truss, it is necessary to design for the scenarios causing 

the maximum expected reactions, shears, and moments within the structure members in 

order to ensure that no member will fail during the life of the structure. When dealing with 

dead loads (loads that never move, such as the weight of the structure itself), this is 

relatively easy because the loads are easy to predict and plan for. For live loads (any load 

that will be moved during the life of the structure, such as furniture and people), it becomes 

much harder to predict where the loads will be or how concentrated or distributed they will 

be throughout the life of the structure. 

Influence lines graph the response of a beam or truss as a unit load travels across it. 

The influence line allows the designers to discover quickly where to place a live load in 

order to calculate the maximum resulting response for each of the following functions: 

reaction, shear, or moment. The designer can then scale the influence line by the greatest 

expected load to calculate the maximum response of each function for which the beam or 

truss must be designed. Influence lines can also be used to find the responses of other 

functions (such as deflection or axial force) to the applied unit load, but these uses of 

influence lines is less common. 

http://en.wikipedia.org/wiki/Dead_and_live_loads
http://en.wikipedia.org/wiki/Dead_and_live_loads


Influence Lines 

The major difference between shear and moment diagrams as compared to 

influence lines is that shear and bending moment diagrams show the variation of the shear 

and the moment over the entire structure for loads at a fixed position. An influence line for 

shear or moment shows the variation of the function at one section cause by a moving load. 

Influence lines for functions of deterministic structures consist of a set of straight lines. 

The   shape   of   influence   lines   for   truss   members   is   a   bit    more   deceptive. 

What we have looked at is quantitative influence lines. These have numerical values and 

can be computed. Qualitative influence lines are based on a principle by Heinrich Müller 

Breslau, which states: " The deflected shape of a structure represents to some scale the 

influence line for a function such as reaction, shear or moment, if the function in question 

is allowed to act through a small distance. " In other words, is that the structure draws its 

own influence lines from the deflection curves. The shape of the influence lines can be 

created by deflecting the location in question by a moment, or shear or displacement to get 

idea of the behavior of the influence line. Realizing that the supports are zero values or 

poles. 

Müller's principle for statically determinate structures is useful, but for 

indeterminated structures it is of great value. You can get an idea of the behavior of the 

shear and moment at a point in the beam. 

Using influence lines to calculate values From the previous examples of a twenty 

foot beam for the reactions, shear, and moment. We can use the values from the influence 

lines to calculate the shear and moment at a point. 

RAy = (Fi)* Value of the influence line of RAy @ location of the force 

V11 = (Fi)* Value of the influence line of V11 @ location of the force 

M11 = (Fi)* Value of the influence line of M11 @ location of the force 

 

 
If we are looking at the forces due to uniform loads over the beam at point. The shear or 

moment is equal to the area under the influence line times the distributed load. 

 
RAy = (wi)* Area of the influence line of RAy over which w covers 

V11 = (wi)* Area of the influence line of V11 over which w covers 

M11 = (wi)* Area of the influence line of M11 over which w covers 
 

 

For moving set of loads the influence lines can be used to calculate the maximum function. 

This can be done by moving the loads over the influence line find where they will generate 



the largest value for the particular point. Panels or floating floor 

The method can be extend to deal with floor joist and floating floors in which we deal with 

panels, which are simple beam elements acting on the floor joist. You will need to find the 

fore as function of the intersection. You are going to find the moment and the shear as you 

move across the surface of the beam. 

An example problem is used to show how this can be used to find the shear and moment at 

a point for a moving load. This technique is similar to that used in truss members. 

Methods for constructing influence lines 

There are three methods used for constructing the influence line. The first is to 

tabulate the influence values for multiple points along the structure, then use those points 

to create the influence line. The second is to determine the influence-line equations that 

apply to the structure, thereby solving for all points along the influence line in terms of x, 

where x is the number of feet from the start of the structure to the point where the unit load 

is applied. The third method is called the Müller-Breslau principle. It creates a qualitative 

influence line. This influence line will still provide the designer with an accurate idea of 

where the unit load will produce the largest response of a function at the point being 

studied, but it cannot be used directly to calculate what the magnitude that response will 

be, whereas the influence lines produced by the first two methods can. 

Influence-line equations 

It is possible to create equations defining the influence line across the entire span of 

a structure. This is done by solving for the reaction, shear, or moment at the point A caused 

by a unit load placed at x feet along the structure instead of a specific distance. This 

method is similar to the tabulated values method, but rather than obtaining a numeric 

solution, the outcome is an equation in terms of x. It is important to understanding where 

the slope of the influence line changes for this method because the influence-line equation 

will change for each linear section of the influence line. Therefore, the complete equation 

will be a piecewise linear function which has a separate influence-line equation for each 

linear section of the influence line. 

Müller-Breslau Principle 

The Müller-Breslau Principle can be utilized to draw qualitative influence lines, which are 

directly proportional to the actual influence line.” Instead of moving a unit load along a 

beam, the Müller-Breslau Principle finds the deflected shape of the beam caused by first 

releasing the beam at the point being studied, and then applying the function (reaction, 

shear, or moment) being studied to that point. The principle states that the influence line of 

a function will have a scaled shape that is the same as the deflected shape of the beam 

when the beam is acted upon by the function. 

http://en.wikipedia.org/wiki/M%C3%BCller-Breslau_principle
http://en.wikipedia.org/wiki/Qualitative
http://en.wikipedia.org/wiki/Piecewise_linear_function
http://en.wikipedia.org/wiki/Qualitative


In order to understand how the beam will deflect under the function, it is necessary to 

remove the beam’s capacity to resist the function. Below are explanations of how to find 

the influence lines of a simply supported, rigid beam 

 

When determining the reaction caused at a support, the support is replaced with a roller, 

which cannot resist a vertical reaction. Then an upward (positive) reaction is applied to the 

point where the support was. Since the support has been removed, the beam will rotate 

upwards, and since the beam is rigid, it will create a triangle with the point at the second 

support. If the beam extends beyond the second support as a cantilever, a similar triangle 

will be formed below the cantilevers position. This means that the reaction’s influence line 

will be a straight, sloping line with a value of zero at the location of the second support. 

 

When determining the shear caused at some point B along the beam, the beam must be cut 

and a roller-guide (which is able to resist moments but not shear) must be inserted at point 

B. Then, by applying a positive shear to that point, it can be seen that the left side will 

rotate down, but the right side will rotate up. This creates a discontinuous influence line 

which reaches zero at the supports and whose slope is equal on either side of the 

discontinuity. If point B is at a support, then the deflection between point B and any other 

supports will still create a triangle, but if the beam is cantilevered, then the entire 

cantilevered side will move up or down creating a rectangle. 

 

When determining the moment caused by at some point B along the beam, a hinge will be 

placed at point B, releasing it to moments but resisting shear. Then when a positive 

moment is placed at point B, both sides of the beam will rotate up. This will create a 

continuous influence line, but the slopes will be equal and opposite on either side of the 

hinge at point B. Since the beam is simply supported, its end supports (pins) cannot resist 

moment; therefore, it can be observed that the supports will never experience moments in a 

static situation regardless of where the load is placed. 

 

The Müller-Breslau Principle can only produce qualitative influence lines. This means that 

engineers can use it to determine where to place a load to incur the maximum of a function, 

but the magnitude of that maximum cannot be calculated from the influence line. Instead, 

the engineer must use statics to solve for the functions value in that loading case. 

 

For example, the influence line for the support reaction at A of the structure shown in 

Figure 1, is found by applying a unit load at several points (See Figure 2) on the structure 

and determining what the resulting reaction will be at A. This can be done by solving the 



support reaction YA as a function of the position of a downward acting unit load. One such 

equation can be found by summing moments at Support B. 

 

Figure 1 - Beam structure for influence line example 

 
 

Figure 2 - Beam structure showing application of unit load 

 

MB = 0 (Assume counter-clockwise positive moment) 

-YA(L)+1(L-x) = 0 

YA = (L-x)/L = 1 - (x/L) 

 
The graph of this equation is the influence line for the support reaction at A (See Figure 3). 

The graph illustrates that if the unit load was applied at A, the reaction at A would be equal 

to unity. Similarly, if the unit load was applied at B, the reaction at A would be equal to 0, 

and if the unit load was applied at C, the reaction at A would be equal to -e/L. 

 

Figure 3 - Influence line for the support reaction at A 

 

Once an understanding is gained on how these equations and the influence lines they 

produce are developed, some general properties of influence lines for statically determinate 

structures can be stated. 

 

1. For a statically determinate structure the influence line will consist of only straight 

line segments between critical ordinate values. 

2. The influence line for a shear force at a given location will contain a translational 

discontinuity at this location. The summation of the positive and negative shear 

forces at this location is equal to unity. 

3. Except at an internal hinge location, the slope to the shear force influence line will 

be the same on  each side of the critical section since the  bending moment is 

continuous at the critical section. 



4. The influence line for a bending moment will contain a unit rotational discontinuity 

at the point where the bending moment is being evaluated. 

5. To determine the location for positioning a single concentrated load to produce 

maximum magnitude for a particular function (reaction, shear, axial, or bending 

moment) place the load at the location of the maximum ordinate to the influence 

line. The value for the particular function will be equal to the magnitude of the 

concentrated load, multiplied by the ordinate value of the influence line at that 

point. 

6. To determine the location for positioning a uniform load of constant intensity to 

produce the maximum magnitude for a particular function, place the load along 

those portions of the structure for which the ordinates to the influence line have the 

same algebraic sign. The value for the particular function will be equal to the 

magnitude of the uniform load, multiplied by the area under the influence diagram 

between the beginning and ending points of the uniform load. 

 

There are two methods that can be used to plot an influence line for any function. In the 

first, the approach described above, is to write an equation for the function being 

determined, e.g., the equation for the shear, moment, or axial force induced at a point due 

to the application of a unit load at any other location on the structure. The second approach, 

which uses the Müller Breslau Principle, can be utilized to draw qualitative influence lines, 

which are directly proportional to the actual influence line. 

 

The following examples demonstrate how to determine the influence lines for reactions, 

shear, and bending moments of beams and frames using both methods described above. 

 

For example, the influence line for the support reaction at A of the structure shown in 

Figure 1, is found by applying a unit load at several points (See Figure 2) on the structure 

and determining what the resulting reaction will be at A. This can be done by solving the 

support reaction YA as a function of the position of a downward acting unit load. One such 

equation can be found by summing moments at Support B. 

 

Figure 1 - Beam structure for influence line example 



 
 

Figure 2 - Beam structure showing application of unit load 

 

MB = 0 (Assume counter-clockwise positive moment) 

-YA(L)+1(L-x) = 0 

YA = (L-x)/L = 1 - (x/L) 

 
The graph of this equation is the influence line for the support reaction at A (See Figure 3). 

The graph illustrates that if the unit load was applied at A, the reaction at A would be equal 

to unity. Similarly, if the unit load was applied at B, the reaction at A would be equal to 0, 

and if the unit load was applied at C, the reaction at A would be equal to -e/L. 

 

Figure 3 - Influence line for the support reaction at A 

 

PROBLEM 

 
Draw the influence lines for the reactions YA, YC, and the shear and bending moment at 

point B, of the simply supported beam shown by developing the equations for the 

respective influence lines. 

 

Figure 1 - Beam structure to analyze 

 

 

 

 

 Reaction YA 

 
The influence line for a reaction at a support is found by independently applying a unit load 

at several points on the structure and determining, through statics, what the resulting 

reaction at the support will be for each case. In this example, one such equation for the 

influence line of YA can be found by summing moments around Support C. 



 
 

Figure 2 - Application of unit load 

 

MC = 0 (Assume counter-clockwise positive moment) 

-YA(25)+1(25-x) = 0 

YA = (25-x)/25 = 1 - (x/25) 

 
The graph of this equation is the influence line for YA (See Figure 3). This figure illustrates 

that if the unit load is applied at A, the reaction at A will be equal to unity. Similarly, if the 

unit load is applied at B, the reaction at A will be equal to 1-(15/25)=0.4, and if the unit 

load is applied at C, the reaction at A will be equal to 0. 

 

Figure 3 - Influence line for YA, the support reaction at A 

 

The fact that YA=1 when the unit load is applied at A and zero when the unit load is 

applied at C can be used to quickly generate the influence line diagram. Plotting these two 

values at A and C, respectively, and connecting them with a straight line will yield the the 

influence line for YA. The structure is statically determinate, therefore, the resulting 

function is a straight line. 

 

Reaction at C 

 
The equation for the influence line of the support reaction at C is found by developing an 

equation that relates the reaction to the position of a downward acting unit load applied at 

all locations on the structure. This equation is found by summing the moments around 

support A. 

 

Figure 4 - Application of unit load 



MA = 0  (Assume counter-clockwise positive moment) 

YC(25)-1(x) = 0 

YC = x/25 

 

The graph of this equation is the influence line for YC. This shows that if the unit load is 

applied at C, the reaction at C will be equal to unity. Similarly, if the unit load is applied at 

B, the reaction at C will be equal to 15/25=0.6. And, if the unit load is applied at A, the 

reaction at C will equal to 0. 

 

Figure 5 - Influence line for the reaction at support C 

 

The fact that YC=1 when the unit load is applied at C and zero when the unit load is applied 

at A can be used to quickly generate the influence line diagram. Plotting these two values 

at A and C, respectively, and connecting them with a straight line will yield the the 

influence line for YC. Notice, since the structure is statically determinate, the resulting 

function is a straight line. 

 

 Shear at B 

 
The influence line for the shear at point B can be found by developing equations for the 

shear at the section using statics. This can be accomplished as follows: 

 

a) if the load moves from B to C, the shear diagram will be as shown in Fig. 6 below, this 

demonstrates that the shear at B will equal YA as long as the load is located to the right of 

B, i.e., VB = YA. One can also calculate the shear at B from the Free Body Diagram (FBD) 

shown in Fig. 7. 

 

Figure 6 - Shear diagram for load located between B and C 

 
 

Figure 7 - Free body diagram for section at B with a load located between B and C 



b) if the load moves from A to B, the shear diagram will be as shown in Fig. 8, below, this 

demonstrates that the shear at B will equal -YC as long as the load is located to the left of 

B, i.e., VB = - YC. One can also calculate the shear at B from the FBD shown in Fig. 9. 

 

Figure 8 - Shear diagram for load located between A and B 

 
 

Figure 9 - Free body diagram for section at B with a load located between A and B 

 

The influence line for the Shear at point B is then constructed by drawing the influence line 

for YA and negative YC. Then highlight the portion that represents the sides over which the 

load was moving. In this case, highlight the the part from B to C on YA and from A to B on 

-YC. Notice that at point B, the summation of the absolute values of the positive and 

negative shear is equal to 1. 

 

Figure 10 - Influence line for shear at point B 

 

 

 

 

 Moment at B 

 
The influence line for the moment at point B can be found by using statics to develop 

equations for the moment at the point of interest, due to a unit load acting at any location 

on the structure. This can be accomplished as follows. 

 

a) if the load is at a location between B and C, the moment at B can be calculated by using 

the FBD shown in Fig. 7 above, e.g., at B, MB = 15 YA - notice that this relation is valid if 

and only if the load is moving from B to C. 

 

b) if the load is at a location between A and B, the moment at B can be calculated by using 

the FBD shown in Fig. 9 above, e.g., at B, MB = 10 YC - notice that this relation is valid if 

and only if the load is moving from A to B. 



The influence line for the Moment at point B is then constructed by magnifying the 

influence lines for YA and YC by 15 and 10, respectively, as shown below. Having plotted 

the functions, 15 YA  and 10 YC, highlight the portion from B to C of the function 15 YA 

and from A to B on the function 10 YC. These are the two portions what correspond to the 

correct moment relations as explained above. The two functions must intersect above point 

B. The value of the function at B then equals (1 x 10 x 15)/25 = 6. This represents the 

moment at B if the load was positioned at B. 

 

Figure 11 - Influence line for moment at point B 

 

 

 

InfluenceLines 

Qualitative Influence Lines using the Müller Breslau Principle 

 Müller Breslau Principle 

The Müller Breslau Principle is another alternative available to qualitatively develop the 

influence lines for different functions. The Müller Breslau Principle states that the ordinate 

value of an influence line for any function on any structure is proportional to the ordinates 

of the deflected shape that is obtained by removing the restraint corresponding to the 

function from the structure and introducing a force that causes a unit displacement in the 

positive direction. 

 

Figure 1 - Beam structure to analyze 

 

 
For example, to obtain the influence line for the support reaction at A for the beam shown 

in Figure 1, above, remove the support corresponding to the reaction and apply a force in 

the positive direction that will cause a unit displacement in the direction of YA. The 

resulting deflected shape will be proportional to the true influence line for this reaction. 

i.e., for the support reaction at A. The deflected shape due to a unit displacement at A is 

shown below. Notice that the deflected shape is linear, i.e., the beam rotates as a rigid body 

without any curvature. This is true only for statically determinate systems. 



 

Fig. 2 -Support removed, unit load applied, and resulting influence line for support reaction 

at A 

Similarly, to construct the influence line for the support reaction YB, remove the support at 

B and apply a vertical force that induces a unit displacement at B. The resulting deflected 

shape is the qualitative influence line for the support reaction YB. 

Fig. 3 - Support removed, unit load applied, and resulting influence line for support 

reaction at B 

Once again, notice that the influence line is linear, since the structure is statically 

determinate. 

This principle will be now be extended to develop the influence lines for other functions. 

 Shear at s 

To determine the qualitative influence line for the shear at s, remove the shear resistance of 

the beam at this section by inserting a roller guide, i.e., a support that does not resist shear, 

but maintains axial force and bending moment resistance. 

Figure 4 - Structure with shear capacity removed at s 

Removing the shear resistance will then allow the ends on each side of the section to move 

perpendicular to the beam axis of the structure at this section. Next, apply a shear force, 

i.e., Vs-R and Vs-L that will result in the relative vertical displacement between the two ends 

to equal unity. The magnitude of these forces are proportional to the location of the section 

and the span of the beam. In this case, 

Vs-L = 1/16 x 10 = 10/16 = 5/8 

Vs-R = 1/16 x 6 = 6/16 = 3/8 

 
The final influence line for Vs is shown below. 



 
 

Figure 5 - Influence line for shear at s 

 
 

 Shear just to the left side of B 

The shear just to the left side of support B can be constructed using the ideas explained 

above. Simply imagine that section s in the previous example is moved just to the left of B. 

By doing this, the magnitude of the positive shear decreases until it reaches zero, while the 

negative shear increases to 1. 

Figure 6 - Influence line for shear just to the left of B 

 
 

 Shear just to the right side of B 

To plot the influence line for the shear just to the right side of support B, Vb-R, release the 

shear just to the right of the support by introducing the type of roller shown in Fig. 7, 

below. The resulting deflected shape represents the influence line for Vb-R. Notice that no 

deflection occurs between A and B, since neither of those supports were removed and 

hence the deflections at A and B must remain zero. The deflected shape between B and C 

is a straight line that represents the motion of a rigid body. 

 

Figure 7 - Structure with shear capacity removed at just to the right of B and the resulting 

influence line 

 

 Moment at s 

To obtain a qualitative influence line for the bending moment at a section, remove the 

moment restraint at the section, but maintain axial and shear force resistance. The moment 

resistance is eliminated by inserting a hinge in the structure at the section location. Apply 

equal and opposite moments respectively on the right and left sides of the hinge that will 

introduce a unit relative rotation between the two tangents of the deflected shape at the 

hinge. The corresponding elastic curve for the beam, under these conditions, is the 



influence line for the bending moment at the section. The resulting influence line is shown 

below. 

 

 

 

 

 

 

Figure 8 - Structure with moment capacity removed at s and the resulting influence line 

The values of the moments shown in Figure 8, above, are calculated as follows: 

a. when the unit load is applied at s, the moment at s is YA x 10 = 3/8 x 10 = 3.75 

(see the influence line for YA, Figure 2, above, for the value of YA with a unit load 

applied at s) 

b. when the unit load is applied at C, the moment at s is YA x 10 = -3/8 x 10 = -3.75 

(again, see the influence line for YA for the value of YA with a unit load applied at 

C) 

Following the general properties of influence lines, given in the Introduction, these two 

values are plotted on the beam at the locations where the load is applied and the resulting 

influence line is constructed. 

 Moment at B 

The qualitative influence line for the bending moment at B is obtained by introducing a 

hinge at support B and applying a moment that introduces a unit relative rotation. Notice 

that no deflection occurs between supports A and B since neither of the supports were 

removed. Therefore, the only portion that will rotate is part BC as shown in Fig. 9, below. 

Figure 9 - Structure with moment capacity removed at B and the resulting influence line 

 Shear and moment envelopes due to uniform dead and live loads 

The shear and moment envelopes are graphs which show the variation in the minimum and 

maximum values for the function along the structure due to the application of all possible 

loading conditions. The diagrams are obtained by superimposing the individual diagrams 

for the function based on each loading condition. The resulting diagram that shows the 

http://www.public.iastate.edu/~fanous/ce332/influence/homepage.html


upper and lower bounds for the function along the structure due to the loading conditions is 

called the envelope. 

The loading conditions, also referred to as load cases, are determined by examining the 

influence lines and interpreting where loads must be placed to result in the maximum 

values. To calculate the maximum positive and negative values of a function, the dead load 

must be applied over the entire beam, while the live load is placed over either the 

respective positive or negative portions of the influence line. The value for the function 

will be equal to the magnitude of the uniform load, multiplied by the area under the 

influence line diagram between the beginning and ending points of the uniform load. 

For example, to develop the shear and moment envelopes for the beam shown in Figure 1, 

first sketch the influence lines for the shear and moment at various locations. The influence 

lines for Va-R, Vb-L, Vb-R, Mb, Vs, and Ms are shown in Fig. 10. 

 
 

 

Figure 10 - Influence lines 

 
 

These influence lines are used to determine where to place the uniform live load to yield 

the maximum positive and negative values for the different functions. For example; 

 
 

Fig. 11 - Support removed, unit load applied, and resulting influence line for support 

reaction at A 



The maximum value for the positive reaction at A, assuming no partial loading, will 

occur when the uniform load is applied on the beam from A to B (load case 1) 

 
 

 

Figure 12 - Load case 1 
 

 

The maximum negative value for the reaction at A will occur if a uniform load is placed 

on the beam from B to C (load case 2) 

 

Figure 13 - Load case 2 

Load case 1 is also used for: 

 maximum positive value of the shear at the right of support A 

 maximum positive moment Ms 

Load case 2 is also used for: 

 maximum positive value of the shear at the right of support B 

 maximum negative moments at support B and Ms 

Load case 3 is required for: 

 maximum positive reaction at B 

 maximum negative shear on the left side of B 
 

 

 

 

Figure 14 - Load case 3 



Load case 4 is required for the maximum positive shear force at section s 
 

 

 
 

Figure 15 - Load case 4 
 

 

Load case 5 is required for the maximum negative shear force at section s 

Figure 16 - Load case 5 

 
 

To develop the shear and moment envelopes, construct the shear and moment diagrams for 

each load case. The envelope is the area that is enclosed by superimposing all of these 

diagrams. The maximum positive and negative values can then be determined by looking at 

the maximum and minimum values of the envelope at each point. 

Individual shear diagrams for each load case; 
 

 

 

 

 

Figure 17 - Individual shear diagrams 



Superimpose all of these diagrams together to determine the final shear envelope. 
 

 

 
 

Figure 18 - Resulting superimposed shear envelope 

 

 

 
Individual moment diagrams for each load case; 

 

 

 

 

 

Figure 19 - Individual moment diagrams 



Superimpose all of these diagrams together to determine the final moment envelope. 
 

 

 

Figure 20 - Resulting superimposed moment envelope 

 

 
 

Qualitative Influence Lines for a Statically Determinate Continuous Beam 

problem 

Draw the qualitative influence lines for the vertical reactions at the supports, the shear and 

moments at sections s1 and s2, and the shear at the left and right of support B of the 

continuous beam shown. 

 

Figure 1 - Beam structure to analyze 

 
 Reactions at A, B, and C 

 
Qualitative influence lines for the support reactions at A, B, and C are found by using the 

Müller Breslau Principle for reactions, i.e., apply a force which will introduce a unit 

displacement in the structure at each support. The resulting deflected shape will be 

proportional to the influence line for the support reactions. 

 

The resulting influence lines for the support reactions at A, B, and C are shown in Figure 2, 

below. 



 

 

Figure 2 - Influence lines for the reactions at A, B, and C 

 
Note: Beam BC does not experience internal forces or reactions when the load moves from 

A to h. In other words, influence lines for beam hC will be zero as long as the load is 

located between A and h. This can also be explained by the fact that portion hC of the 

beam is supported by beam ABh as shown in Figure 3, below. 

 

Figure 3 - Beam hC supported by beam ABh 

 
Therefore, the force Yh required to maintain equilibrium in portion hC when the load from 

h to C is provided by portion ABh. This force, Yh, is equal to zero when the load moves 

between A an h, and hence, no shear or moment will be induced in portion hC. 

 

 Shear and moment at section S1 and S2 

 
To determine the shear at s1, remove the shear resistance of the beam at the section by 

inserting a support that does not resist shear, but maintains axial force and bending moment 

resistance (see the inserted support in Figure 4). Removing the shear resistance will allow 

the ends on each side of the section to move perpendicular to the beam axis of the structure 

at this section. Next, apply shear forces on each side of the section to induce a relative 

displacement between the two ends that will equal unity. Since the section is cut at the 

midspan, the magnitude of each force is equal to 1/2. 



Figure 4 - Structure with shear capacity removed at s1 and resulting influence line 
 

 

For the moment at s1, remove the moment restraint at the section, but maintain axial and 

shear force resistance. The moment resistance is eliminated by inserting a hinge in the 

structure at the section location. Apply equal and opposite moments on the right and left 

sides of the hinge that will introduce a unit relative rotation between the two tangents of the 

deflected shape at the hinge. The corresponding elastic curve for the beam, under these 

conditions, is the influence line for the bending moment at the section. 

 

Figure 5 - Structure with moment capacity removed at s1 and resulting influence line 

 
The value of the moment shown in Figure 5, above, is equal to the value of Ra when a unit 

load is applied at s1, multiplied by the distance from A to s1. Ms1 = 1/2 x 4 = 2. 

 

The influence lines for the shear and moment at section s2 can be constructed following a 

similar procedure. Notice that when the load is located between A and h, the magnitudes of 

the influence lines are zero for the shear and moment at s1. The was explained previously 

in the discussion of the influence line for the support reaction at C (see Figures 2 and 3). 

 

Figure 6 - Structure with shear capacity removed at s2 and resulting influence line 



Figure 7 - Structure with moment capacity removed at s2 and resulting influence line 
 

 

 Shear at the left and right of B 

 
Since the shear at B occurs on both sides of a support, it is necessary to independently 

determine the shear for each side. 

 

To plot the influence line for Vb-L, follow the instructions outlined above for plotting the 

influence line for the shear at s1. To construct the shear just to the left of support B, 

imagine that the section s1 has been moved to the left of B. In this case, the positive 

ordinates of the influence line between A and B will decrease to zero while the negative 

ordinates will increase to 1 (see Figure 8). 

 

Figure 8 - Structure with shear capacity removed at the left of B and the resulting influence 

line 

 

The influence line for the shear forces just to the right of support B, Vb-R, is represented by 

the resulting deflected shape of the beam induced by shear forces acting just to the right of 

support B. Notice that the portion of the beam from B to h moves as a rigid body (see 

explanation in the Simple Beam with a Cantilever example) while the influence line varies 

linearly from h to C. This is due to the fact that the deflection at C is zero and the 

assumption that the deflection of a statically determinate system is linear. 

 

Figure 9 - Structure with shear capacity removed at the right of B and the resulting ILline 

http://www.public.iastate.edu/~fanous/ce332/influence/simplecantenvelope.html


 

2.A single rolling load of 100 kN moves on a girder of span 20m.(a) Construct the 

influence lines for (i) shear force and (ii) bending moment for a section 5m from 

the left support. (b) Construct the influence lines for points at which the 

maximum shears and maximumbending moment develop. Determine these 

values. 

Solution: 

(a) To find maximum shear force and bending moment at 

5m from the left support: 

For the ILD for shear, 

IL ordinate to the right of D = 
l  x 

 
20  5 

 0.75 

l 

For the IL for bending moment, IL ordinate at D = 

     x(l  x) 
 

5 *15 
 3.75 m

 

l 20 

 

(i) Maximum positive shear force 

By inspection of the ILD for shear force, it is 

evident that maximum positive shear force occurs when the 

load is placed just to the right of D. 

Maximum positive shear force = load * ordinate = 100 * 7.5 

At D, 

SFmax + = 75 kN. (ii) 

Maximum negative 

shear force 

 

 

the left D. 

Maximum negative shear force occurs when the load is placed 

just to 

 
Maximum negative shear force = load * ordinate = 100 * 0.25 

At D, SFmax = -25 kN. 

(iii) Maximum bending moment 

Maximum bending moment occurs when the load is placed on the 

section D itself. 

Maximum bending moment = load * ordinate = 100 * 3.75 = 375 kNm 

(b) Maximum positive shear force will occur at A. Maximum negative shear 

force will occur at B. Maximum bending moment will occur at mid span. 



 

The ILs are sketched in fig. 

 

 
(i) Positive shear force 

Maximum positive shear force occurs when the load is placed at A. 

Maximum positive shear force = load * ordinate = 100*1 

SFmaxmax + = 100 kN 

(ii) Negative shear force 

Maximum negative shear force occurs when the load is placed at B. 

Maximum negative shear force = load * ordinate = 100 * (-1) 

SFmaxmax = - 100 kN 

(iii) Maximum bending moment 

Maximum bending moment occurs when the load is at mid span 

Maximum bending moment = load * ordinate = 100 * 5 = 500 kNm 

 
3. Draw the ILD for shear force and bending moment for a section at 5m 

from the left hand support of   a   simply   supported   beam,   20m   long. 

Hence, calculate the maximum bending moment and shear force at the 

section, due to a uniformly distributed rolling load of length 8m and 

intensity 10 kN/m run.(Apr/May 05) 

Solution: 

(a) Maximum bending moment: 

Maximum bending moment at a D due to a udl shorter than the span 

occurs when the section divides the load in the same ratio as it divides the 

span. 

 

In the above fig. 

 
 

Ordinates: 

A1D AD 
 



B1 D BD 

 
 0.25, A1D  2M , B1D  6M 

Ordinate under A1 = (3.75/5)*3 = 2.25 

Ordinate under B1 = (3.75/15)*9 = 2.25 

Maximum bending moment = Intensity of load * Area of ILd under the load 

= 10 * 
(3.75  2.25) * 8 

2 



 

At D, Mmax = 240 kNm 

(b) Maximum positive shear force 

Maximum positive shear force occurs when the tail of the UDL is at D 

as it traverses from left to right. 

0.75 

Ordinate under B1 = * (15  8)  0. 

15 



 

(c) Maximum negative shear force 

Maximum negative shear force occurs when the head of the UDL is at D 

as it traverses from left to right. 

 

 
Maximum negative shear force = Intensity of load * Area of ILD under the load 

= 10(1/2*0.25*5) 

Negative SFmax = 6.25 kN. 

 

Begg’s deformeter 

Begg’s deformeter is a device to carry out indirect model analysis on 

structures. It has the facility to apply displacement corresponding to moment, shear 

or thrust at any desired point in the model. In addition, it provides facility to 

measure accurately the consequent displacements all over the model. 

 

‘dummy length’ in models tested with Begg’s deformeter. 

Dummy length is the additional length (of about 10 to 12 mm) left at 

the extremities of the model to enable any desired connection to be made with the 

gauges. 

 

 

 

Three types of connections possible with the model used with 

Begg’s deformeter. 

(i) Hinged connection 

(ii) Fixed connection 

(iii) Floating connection 

 

 

 

Use of a micrometer microscope in model analysis with Begg’s deformeter 

Micrometer microscope is an instrument used to measure the displacements of 

any point in the x and y directions of a model during tests with Begg’s deformeter. 

 
Name the types of rolling loads for which the absolute maximum bending 

moment occurs at the mid span of a beam. 



 

Types of rolling loads: 

(i) Single concentrated load 

(ii) Udl longer than the span 

(iii) Udl shorter than the span 

 
 

Absolute maximum bending moment in a beam 

When a given load system moves from one end to the other end of a 

girder, depending upon the position of the load, there will be a maximum 

bending moment for every section. The maximum of these maximum bending 

moments will usually occur near or at the mid span. This maximum of 

maximum bending moment is called the absolute maximum bending moment, 

Mmaxmax. 

The portal frame in fig. is hinged at D and is on rollers at A. Sketch the 

influence line for bending moment at B. 

 
To get the influence line diagram for MB, we shall introduce a hinge 

at B (and remove the resistance to bending moment). Now we get a unit rotation 

between BA and BC at B. 

BC cannot rotate since column CD will prevent the rotation. BA 

would rotate freely (with zero moment). For θ =1 at B, displacement at A = 3m. The 

displaced position shows the influence line for MB as shown in fig. 



 

UNIT- III- ARCHES 

Arches - Types of arches – Analysis of three hinged, two hinged and fixed arches - 

Parabolic and circular arches – Settlement and temperature effects. 
 

Arch 

An arch is a curved beam in which horizontal movement at the support is wholly 

or partially prevented. Hence there will be horizontal thrust induced at the supports. The 

shape of an arch doesn’t change with loading and therefore some bending may occur. 

Types of Arches 

On the basis of material used arches may be classified into and steel arches, 

reinforced concrete arches, masonry arches etc. 

.Linear arch 

If an arch is to take loads, say W1, W2, and W3    and a vector diagram 

and funicular polygon are plotted as shown; the funicular polygon is known as the linear 

arch or theoretical arch. 

 
 

The polar distance ‘ot’ represents the horizontal thrust. 

The links AC, CD, DE and EB will br under compression and there will be no 

bending moment. If an arch of this shape ACDEB is provided, there will be no bending 

moment. 

Eddy’s theorem. 

Eddy’s theorem states that “The bending moment at any section of an arch is 

proportional to the vertical intercept between the linear arch (or theoretical arch) and the 

center line of the actual arch”. 

 
BMx = ordinate O2 O3 * scale factor 



 

On the basis of structural behavior arches are classified as : 

Three hinged arches:- Hinged at the supports and the crown. 

Hinged at the 

crown 
 

 

 

Rise 

 

Springing 
Span 

 

 

Hinged at the 

support 
 

 

Two hinged arches:- Hinged only at the support 
 

 

 

 

Rise 
Rib of the arch 

 

Span 
 

 

Hinges at the 

support 
 

 

The supports are fixed 

 
A 3-hinged arch is a statically determinate structure. A 2-hinged arch is an 

indeterminate structure of degree of indeterminacy equal to 1. A fixed arch is a statically 

indeterminate structure. The degree of indeterminacy is 3. 

Depending upon the type of space between the loaded area and the rib arches can 

be classified as open arch or closed arch (solid arch). 



 

Analysis of 3-hinged arches 

It is the process of determining external reactions at the support and internal 

quantities such as normal thrust, shear and bending moment at any section in the arch. 

Procedure to find reactions at the supports 

1. Sketch the arch with the loads and reactions at the support. 

2. Apply equilibrium conditions namely  Fx  0,  Fy  0 andM 0 

3. Apply the condition that BM about the hinge at the crown is zero (Moment of all 

the forces either to the left or to the right of the crown). 

4. Solve for unknown quantities. 
 

Let us take a section X of an arch. Let θ be the inclination of the tangent at X. if H 

is the horizontal thrust and V the net vertical shear at X, from the free body of the 

RHS of the arch, it is clear that V and H will have normal and radial components 

given by, 

N = H cos θ + V sin θ 

R = V cosθ – H sin θ 

 
The normal thrust and radial shear in an arch rib. 

Parabolic arches are preferable to carry distributed loads. Because, both, the shape of the 

arch and the shape of the bending moment diagram are parabolic. Hence the intercept 

between the theoretical arch and actual arch is zero everywhere. Hence, the bending 

moment at every section of the arch will be zero. The arch will be under pure 

compression that will be economical. 

 
Difference between the basic action of an arch and a suspension cable. 

An arch is essentially a compression member, which can also take bending 

moments and shears. Bending moment and shears will be absent if the arch is parabolic 

and the loading uniformly distributed. A cable can take only tension. A suspension 

bridge will therefore have a cable and a stiffening girder. The girder will take the 

bending moment and shears in the bridge and the cable, only tension. Because of the 

thrust in cables and arches, the bending moments are considerably reduced. If the 

load on the girder in uniform. The bridge will have only cable tension and no 

bending moment on the girder. 

 
Under what conditions will the bending moment in an arch be zero 

throughout 

The bending moment in an arch throughout the span will be zero, if 

(i) The arch is parabolic and 

(ii) The arch carries udl throughout the span 
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h = 10m 
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C 

B 
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A 
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1. A 3-hinged arch has a span of 30m and a rise of 10m. The arch carries UDL 

of 0.6 kN/m on the left half of the span. It also carries 2 concentrated loads of 

1.6 kN and 1 kN at 5 m and 10 m from the ‘right’ end. Determine the 

reactions at the support. (Sketch not given). 
 

0.6 kN/m 
C

 1 kN 1.6 kN 

 

 

 

 
 

HB = 4.275 A B HB = 4.275 
 

VA = 7.35 L = 30m VB = 4.25 
 
 

 Fx
  0 

H  H  0 

H  H ------ (1) 
 

To find vertical reaction. 

 Fy
  0 

VA  VB  0.6 x1511.6 

 
 11.6 

 

 

  (2) 

 

 MA
  0 

 VB  x 30  1.6 x 25 1x 20  (0.6 x15) 7.5  0 

V B 4.25 kN 

VA  4.25  11.6 

AA  7.35 kN 

 

To find horizontal reaction. 

M  0 

1x5 1.6x10  4.25x15  H x10  0 

H  4.275kN 

H  4.275kN 

B 



 

4.2752  7.352 

 
MC  0 

OR 

 
7.375x15  HA x10  (0.6x15)7.5 

HA  4.275kN 

HB   4.275kN 

 

To find total reaction 

VA = 7.35 kN RB 

RA 

 

 
VB = 4.25 kN 

A 

A 
HA = 4.275 kN 

A 
HB = 4.275 kN 

 

 

 

R A 





 8.5kN 
 

1  VA  0 
 A  tan    59 .82 

 HA 


R B  


1 VB 

 B  tan    44.83 
 HB 





2. A 3-hinged parabolic arch of span 50m and rise 15m carries a load of 10kN at 

quarter span as shown in figure. Calculate total reaction at the hinges. 

10 kN 
C

 

 
15 m 

 

HA  A 

VA 

 
 

12.5 m 

 

 

50 m 

B HB 

VB 

H A 

2 
 V 

2 

A 

H 2  V 2  6.02kN B B 



 

A 

B B 

 Fx
  0 

H  H 
 

To find vertical reaction. 

 Fy  0 

VA VB  10 

 

 

 
------ (1) 

 

 

 MA   
 0 

 VB x 50  10 x12.5  0 

VB  2.5 kN 

 

VA  7.5 kN 

 

To find Horizontal reaction 

MC  0 

V  25  H 15  0 
 

To find total reaction. 
 

VA = 7.5 

RA 

A 

A 
HA = 4.17 

 
VB = 4.25 

 

 
HB = 4.17 

 

 

HB  4.17 kN  HA 

 

R A 

R A  8.581kN 

 
1  VA  0 

 A   tan    60 .92 
 HA 



R B 


R B  4.861kN 
1  VB  0 

 B  tan    30 .94 
 HB 

4.172  7.52 

H 
A 

2 
 V 

2 

B 

RB 

B 



 

A B 

A 

A 

A 

3. Determine the reaction components at supports A and B for 3-hinged arch shown 

in fig. 

10 kN/m 
C

 

 

2.5 m 

180 kN 

 

HA  A 

VA 

 
 

10 m 

 

 

 
 
2 .4 m 

B HB 

 

 

 
 

8 m 6 m 

VB 

 
 

To find Horizontal reaction 

 Fx
  0 

H  H  0 

H  H ------ (1) 
 

 

 

 

To find vertical reaction. 

 Fy
  0 

V  V 

V  V 

 
 180  10 x10 

 280 

 

 

  (2) 

 

 MA
  0 

 VB x24  HB x 2.4  180 x18  10 x 10 x 

 

5  0 
 

2.4HB  24VB   3740 ------ (3) 
 

HB 10VB  1558.33 

B 

B 

B 



 

B 

B 

B 

MC  0 

180 x 8  V 

 
x14  H 

 
x 4.9  0 

 

H x 4.9  V 14  1440 ------ (4) 
 

 H  2.857 V  293.87 
 

Adding 2 and 3 

 10VB 

 
 2.857VB  1558.33 293.87 

 

VB 177kN 

VA  103kN 

HB 10 x177  1558.33 

HB  211.67kN  HA 

4. A symmetrical 3-hinged parabolic arch has a span of 20m. It carries UDL of 

intensity 10 kNm over the entire span and 2 point loads of 40 kN each at 2m and 

5m from left support. Compute the reactions. Also find BM, radial shear and 

normal thrust at a section 4m from left end take central rise as 4m. 

 

40 kN 40 kN 10 kN/m 
 
 

  
 

 

 
 Fx  

 0 

HA 

 

 

 
 
 HB  0 

2 m 3m 20 m 

 

 

 

  (1) 

HA  HB 

C 

4 m 

M 

B 

B 

B 



 

 Fy  
 0 

VA  VB  40  40 10 x 20  0 

 
VA  VB  280 

 MA  
 0 

Mc  0 

 

 
 

  (2) 

 (10 x10) 5  HB x 4 114 x10  0 
 

HB 160 kN 
 

HA 160 kN 
 

 
VERTICAL 

 
 

10 kN/m 40 kN  64.35 NORMAL 
M 

 = 25.64 

160 kN 

y = 2.56 

86 kN 

HORIZONT 

160 kN 2 m 
4
 

REDIAL 

166 kN 
 

 

BM at M 

= - 160 x 2.56 

+ 166 x 4 – 40 x 2 

- (10 x 4)2 

= + 94.4 kNm 

 
 

y  
4hx 

L  x 
L2 

 
4 x 4 x 4 

20  4
202

 

y  2.56m 

tan  
4h 

L  2x 
L2 

= 
4 x 4 

20  2 x 4
202

 

m 



 

  250.64 
 

Normal thrust = N = + 160 Cos 25.64 

+ 86 Cos 64.36 

= 181.46 kN 

S = 160 Sin 25.64 

- 86 x Sin 64.36 

S = - 8.29 kN 

 
5. A three-hinged semicircular arch carries a point load of 100 kN at the crown. 

The radius of the arch is 4m. Find the horizontal reactions at the supports. 

 
VA = VB = 50 kN 

 

 

Equating the moment about C to Zero, VA * 4 – H*4 = 0 

H = VA 

Horizontal reaction, H = 50 kN 

 
6. Determine H, VA and VB in the semicircular arch shown in fig 

 



 

Equating moments about A to Zero, 

VB * 12 – 12 * 9 = 0; 

VB = 9 kN and VA = 3 kN Equating moments to the 

left of C to zero, 

H = VA = 3 kN; 

H= 3 kN 

 
7. Distinguish between two hinged and three hinged arches. 

SI. 
NO 

Two hinged arches Three hinged arches 

1. 
Statically indeterminate to first 

degree 
Statically determinate 

2. Might develop temperature stresses. 
Increase in temperature causes 

increases 

 
3. 

 
Structurally more efficient. 

Easy to analyse. But, in construction, 

the central hinge may involve 

additional expenditure. 

4. 
Will develop stresses due to sinking 

of supports 

Since this is determinate, no stresses 

due to support sinking 

 

 
Rib – shorting in the case of arches. 

In a 2-hinged arch, the normal thrust, which is a compressive force along the 

axis of the arch, will shorten then rib of the arch. This is turn will release part of 

the horizontal thrust. 

Normally, this effect is not considered in the analysis (in the case of two 

hinged arches). Depending upon the important of the work we can either take into 

account or omit the effect of rib shortening. This will be done by considering (or 

omitting) strain energy due to axial compression along with the strain energy due 

to bending in evaluating H. 

 
Effect of yielding of support in the case of an arch. 

Yielding of supports has no effect in the case of a 3 hinged arch which is 

determinate. 

 
8. A three-hinged parabolic arch has a horizontal span of 36m with a central rise of 

6m. A point load of 40 kN moves across the span from the left to the right. 

What is the absolute maximum positive bending moment that wills occur in the arch? 



 

 
 

 

 

 

For a single concentrated load moving from one end to the other, absolute maximum 

positive bending moment 

= 0.096wl = 0.096*40 * 36=138.24 kNm 

This occurs at 0.211 l = 0.211 * 36 = 7.596 m from the ends. 

Absolute maximum positive bending moment = 138.24 kNm at 7.596 m 

from the ends. 

 

 
9. A 3 hinged arch of span 40m and rise 8m carries concentrated loads of 200 kN 

and 150 kN at a distance of 8m and 16m from the left end and an udl of 50 kN/m 

on the right half of the span. Find the horizontal thrust. 
 

 
 



 

Solution: 

(a) Vertical reactions VA and VB : 

Taking moments about A, 

200(8) + 150(16) + 50 * 20 * (20 + 20/2) – VB (40) = 0 

1600 + 2400 + 30000 – 40 VB = 0 

VB = 850 kN 

VA = Total load – VB = 200 + 150 + 50 * 20 – 850 = 500 KN 

 
(b) Horizontal thrust (H) 

Taking moments about C, 

-H x 8 + VA (20) – 200 (20 – 8) – 150 (20 – 16) = 0 

-8H + 500 * 20 – 200 (12) – 150 (4) = 0 

H = 875 kN 

 

 
10. A parabolic 3-hinged arch carries a udl of 30kN/m on the left half of the 

span. It has a span of 16m and central rise of 3m. Determine the resultant 

reaction at supports. Find the bending moment, normal thrust and radial 

shear at xx, and 2m from left support. 

 

 

(1) Reaction at A nd B; 

(i) Vertical components of reactions; Taking moments about A, 

-VB (16) + 30 x 82 /2 = 0 

- VB (16) + 30 * 32 = 0 

VB = 60 kN 

VA = Total load – VB = 30 * 8 – 60 kN 

VA = 180 kN 



 

(ii) Horizontal components of reactions at A and 

Taking moments about the crown point C, VA * 8 – 30 * 8 *8/2 – HA * yc = 0 

180 * 8 -30 *32 = HA *3 

HA = 160 kN 

HB = HA = since 

HB = 160 kN 

(iii) Resultants reactions at A and B; 

 

 

 

 

 

(2) Bending moment at x = 2m from A: 

Bending moment = VA (2) – 30 * 2 *1 – HA(y) ---------- (1) 

Where, y = Rise of the arch at x = 2m from ‘A’: 

For parabolic arches, 

at a distance of ‘x’ from the support Where, r = rise of the arch at Crown Point = 3m 

Substitute in (1)y = 1.3125 m at x = 2m from ‘A’. 

Bending moment at x = 2m from A = 180 (2) – 30 * 2 * 1 – 160 * 1.3125 

Bending moment at xx = 90 kN-m 

 
(3) Radial shear force at x = 2m from A 

Shear force, RX = Vx cos θ – H sin θ 

Where, V = Net vertical shear force at x = 2m from A 

= VA - w (2) = 180 – 30 * 2 

V = 120 kN 

H = Horizontal shear force = 160 kN 

θ = 29º21’ 

R = 120 cos 29º21’ – 160 sin 29º21’ 

R = 26.15 kN 

 
(4) Normal thrust at x = 2m from A: 

Normal thrust PN = Vx sinθ + H cos θ = 120 sin 29º21’ + 160 cos 29º21’ 

PN = 198.28 kN. 

H 0 



 

TWO HINGED ARCH: 
 

11. A two hinged parabolic arch has a span of 32 m and a central rise of 7 m. Calculate 

the max. positive and negative bending moment at section distance 10m from the left 

support, due to single point load of 10 kN rolling from left to right. 

 

Rise of arch of section of 10m from left support. 

 
 

 
 

 

 
Maximum negative bending: 

 

 

 

i). max. positive bending moment at D: 

Max. +tive BM occurs under the point load. 

 

 
 

Where 

K Y 
 

 

 

Bending moment D = 2.37*10 

= 23.7 KN-m 

 
12. A two hinged parabolic arch of span 33 m and rise 7 m carries a UDL of 45 kN per 

meter on the whole span and a point load of 250 kN at a distance of 7m from the 

right end. Find the horizontal thrust, bending moment, normal thrust and radial 

shear at section 5 m from the left end. 



 

 

  = 0 
 

 

 
 

 

 
 

- 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BMD: 
 

 
 

 
BMD 

 

 
 

 
Radial shear at D: 

 

 
 

 
 

 

 
 

 

 

 
Normal thrust  

) + 999( ) 

 
 

 



 

CIRCULAR ARCH 

13. A symmetrical three hinged circular arch has a span of 13m and a rise to the central 

hinge of 3m. It carries a vertical load of 15 kN at 3m from the left hand end. Find 

i). The reaction at the support 

ii). Magnitude of the thrust at the springing. 

iii). B.M at 5m from the left hand hinge 

iv). The max. Positive and negative B.M. 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 



 

 

In the bending moment at x=5m from the left support, we find the radius and y value by 

using the formula. 

 

 
To find the radius (R):- 

 

 
 

 

 

 

 

 
 

 
 

 

 
 

 

 

 

 
 

 

i). Normal thrust (at x=5m from A) 

Here, 



 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 



 

 
 

 
 

 

 

 

 

 
 

 

 

 

FIXED ARCH 

14. A Fixed arch shown in fig carries loads as indicated Determine i). Resultant 

reactions at end support. Ii). Bending moment, shear (radial) and normal thrust at 

D, 5m from A. 

Vertical reaction: 

 

 

 

 

Taking moment about B: 

 

 
 

 

 

 
Horizontal reaction: 

 

Taking moment about C: 

 
 

 

 
Resultant Reaction: 

 

 
 

 

 



 

 
 

 

 

Maximum B.M: 
 

 

 
 

 
 

 

 

 
Radial shear force at x=5 from A: 

 

 
 

 

 

 

 
 

 
 

 

 
Normal thrust at x=5 from A 

= 

 

 
 

SETTLEMENT AND TEMPERATURE EFFECTS 
 

15. A symmetrical three hinged circular arch has a span of 13m and a rise to the central 

hinge of 3m. It carries a vertical load of 15 kN at 3m from the left hand end. Find 

i). The reaction at the support 

ii). Magnitude of the thrust at the springing. 

iii). B.M at 5m from the left hand hinge 

iv). The max. Positive and negative B.M. 



 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

In the bending moment at x=5m from the left support, we find the radius and y value by 

using the formula. 



 

 

 

To find the radius (R):- 

 

 
 

 

 

 

 
 

 
 

 

 
 

 

 

 

 
 

 

i). Normal thrust (at x=5m from A) 

Here, 
 

 
 

 
 



 

 
 

 

 

 
 
 

 

 
 

 
 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 



 

 
 

 
 

 

 
 

 

 

 

 

 

16. A Parabolic 3hinged arch shown in fig carries loads as indicated Determine i). 

Resultant reactions at end support. ii). Bending moment, shear (radial) and normal 

thrust at D, 5m from A. 

 
Vertical reaction: 

 

 

 

Taking moment about B: 

 

 
 

 

 

 
Horizontal reaction: 

 

Taking moment about C: 

 
 

 

 
Resultant Reaction: 

 

 
 

 

 
 

 
 



 

Maximum B.M: 
 

 

 
 

 
 

 

 

 
Radial shear force at x=5 from A: 

 

 
 

 

 

 

 
 

 
 

 

 
Normal thrust at x=5 from A 

= 

 



CE 8602 STRUCTURAL ANALYSIS - II 
 

 
 

 

UNIT – IV 
 

CABLES AND SUSPENSION BRIDGES 

 

 

Components and their functions 

1. Suspension cable: 

This is the main load bearing member. Suspension cable will have a central dip of 

1/10 to1/15 of the horizontal span. Suspension cables are flexible and hence can 

change their shape under the load systems since cables cannot take any bending 

moment and can take only direct tension. 

2. Suspenders: 

The stiffening girder with deck slab of roadway is suspended from the suspension 

cables by means of suspenders or hangers. Suspenders are closely spaced and 

transfer a part of the traffic load on the deck slab to the suspension cable as a 

uniformly distributed load. 

3. Supporting towers: 

Each suspension cable is supported on 2 towers or pylons on either side. A guide 

pulley or saddle placed on rollers is usually provided on the towers for passing the 

suspension cable on them. 



CE 8602 STRUCTURAL ANALYSIS - II 
 

 

REACTIONS, TENSION AND LENGTH OF SUSPENSION CABLE 
 

a) Supports at the same level 

VA = VB = 
Pl

 
2 

Taking moment about C, 

(VA × 
l
) — (P × 

l 
× 

l
) - (H × d) = 0 

  

2 2 4 
 
 

Pl 
×  

l l l 
 

( 
2 2

) — (P × 
2 

× 
4

) - (H × d) = 0 
 

Pl2 
H = ( 

8d 
) 

Px2 
Mx = (VA × x) — ( 

2  
) — (H × d1) = 0 

Mx = (
Pl 

× x) — ( 
2 

Px2 

2 
) — (H × d1) = 0 

d1 = 
4d 

[lx — x2] 
l2 

 

TA = TB = √V2 + H2 

tanθ = 
H 

= 
4d 

[l — 2x] 
  

V l2 

 
θ = tan–1 

 
l 

[
4d

]
 

 
 

 
b) Supports at the different level 

 
S = l + 

8d2 

3l 



CE 8602 STRUCTURAL ANALYSIS - II 
 

 

 
VA = Pl1; VB = Pl2 
Pl12 Pl22 

H =  ( 
2d1 

) (or) ( 
2d2 

) 

T = √V2 + H2 

l1 
(
l2

)
 
= √

d1 

d2 
 

 
 
 

Problem 

 
S = l + 

2d12 

3l1 
+

 

2d22 
 

 

3l2 

 

A suspension cable having supports at the same level has a span of 30m and a maximum dip of 

3m. The cable is loaded with a uniformly distributed load of 10kN/m throughout its length. Find 

the maximum tension in the cable. 

 

 

VA = VB = 
Pl 

=  
10 × 30 

= 150kN 
  

Pl2 
2 2 

10 × 302 
H =  ( 

8d 
) = 

8 × 3 
= 375kN 

 

Tmax = √V2 + H2 
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Tmax = √1502 + 3752 = 403.9 kN 

8d2 
S = l + 

3l
 

8 × 32 
S = 30 + 

3 × 30 
= 30.8m 

 
 

 
θ = tan–1 

l 
[
4d

] 

 
 

 
Problem 

θ =  tan–1 [  
30

 
4 × 3 

 
] = 68.2 

 

A suspension cable is supported at 2 points 25m apart. The left support is 2,5m above the right 

support. The cable is loaded with an udl of 10 kN/m throughout the span. The maximum dip in 

the cable from the left support is 4m. Find the maximum and minimum tension in the cable. 

 

 
 

l1 
(
l2

)
 
= √

d1 

d2 

 
 

l1 = √ 
4

 
1.5 

 

× l2 = 1.6329l2 

 

l1 + l2 = l 

1.6329l2 + l2 = 25 
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l2 = 9.495m 

l1 = 15.505m 

VA = Pl1 = 10 × 15.505 = 155.05kN 

VB = Pl2 = —10 × 9.495 = 94.95kN 

Pl12 
H = ( 

2d1 
) = ( 

Pl22 

10 × 15.5052 

2 × 4 
) = 300.51kN 

10 × 9.4952 
H = ( 

2d2 
) = ( 

2 × 1.5 
) = 300.51kN 

 

TA = √VA2 + H2 = √155.052 + 300.512 = 338.15kN 
 

TB = √VB2 + H2 = √94.952 + 300.512 = 315.15kN 

 
 

Problem 
 

A cable of horizontal span 21m is to be used to support six equal loads of 40kN each at 3m 

spacing. The central dip of the cable is limited to 2m. Find the length of the cable required and 

also its sectional area if the safe tensile stress is 750N/mm2 

 

 

VA = VB = 
total load 

=  
6 × 40 

= 120kN
 

  

2 2 
To find the horizontal pull 

 

(VA × 10.5) — (40 × 7.5) — (40 × 4.5) — (40 × 1.5) — (H × 2) = 0 

H = 360kN 
Equating moments about D to zero, 

(120 × 3) — (360 × d1) = 0 
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d1 = 1m 

Equating moments about E to zero, 
 

(120 × 6) — (40 × 3) — (360 × d2) = 0 

d2 = 1.667m 

Equating moments about F to zero, 

(120 × 9) — (40 × 6) — (40 × 3) — (360 × d3) = 0 

d3 = 2m 
 

Length 
 

AD = √32 + 12 = 3.162m 
 

DE = √32 + (1.667 — 1)2 = 3.073m 

EF = √32 + (2 — 1.667)2 = 3.018m 

S = 2(3.162 + 3.073 + 3.018 + 1.5) = 21.506m 
 

Tmax = √V2 + H2 

 

Tmax = √1202 + 3602 = 379.47 kN 

Tmax = σ × A 
 

 
 
 

Problem 

A = 
Tmax 

σ 
=  

379.47 × 1000 

750 

 
= 505.96 mm2 

 

A cable is used to support five equal and equidistant loads over a span of 45m. Find the length of 

the cable required and its sectional area if the safe tensile stress is 140N/mm2. The central dip of 

the cable is 3m and loads are 9kN each. 
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VA = VB = 
total load 

=  
5 × 9 

= 22.5kN 
  

2 2 
To find the horizontal pull 

 

(H × 3) + (9 × 7.5) + (9 × 15) — (VB × 22.5) = 0 

H = 101.25kN 
Equating moments about D to zero, 

(22.5 × 7.5) — (101.25 × d1) = 0 

d1 = 1.67m 

Equating moments about E to zero, 

(22.5 × 15) — (9 × 7.5) — (101.25 × d2) = 0 

d2 = 2.67m 

Length 
 

AD = √7.52 + 1.672 = 7.683m 
 

DE = √7.52 + (2.667 — 1.667)2 = 7.566m 

EF = √7.52 + (3 — 2.667)2 = 7.507m 

S = 2(7.683 + 7.566 + 7.507) = 45.512m 
 

Tmax = √V2 + H2 

 

Tmax = √22.52 + 101.252 = 103.72 kN 

Tmax = σ × A 
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A = 
Tmax 

σ 
=  

103.72 × 1000 

140 

 
= 740.85 mm2 

 
 
 

Problem 
 

A light suspension bridge is constructed to carry a pathway 3m broad over a channel 21m wide. 

The pathway is supported by six equidistant suspension rods. The cable has central dip of 2m. 

The lateral load on the platform is 10kN/m2. Find the maximum tension in the cable. 
 

 

load = 21 × 3 × 10 = 630 kN 
 

load on each cable = 
630

 
2 

 
= 315 kN 

 = each point load on cable ׵
315

 
5 

 
= 63 kN 

VA = VB = 
total load 

=  
5 × 63 

= 157.5kN 
  

2 2 
To find the horizontal pull 

 

(VA × 10.5) — (63 × 3.5) — (63 × 7) — (H × 2) = 0 

H = 496.125kN 
Equating moments about D to zero, 

(157.5 × 3.5) — (496.125 × d1) = 0 

d1 = 1.11m 

Equating moments about E to zero, 

(157.5 × 7) — (63 × 3.5) — (496.125 × d2) = 0 

d2 = 1.78m 
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Length 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 

 

 
 

AD = √3.52 + 1.112 = 3.672m 
 

DE = √3.52 + (1.78 — 1.11)2 = 3.56m 

EF = √3.52 + (2 — 1.78)2 = 3.507m 

S = 2(3.672 + 3.56 + 3.507) = 21.478m 
 

Tmax = √V2 + H2 

 

Tmax = √157.52 + 496.1252 = 520.5 kN 

 

A suspension bridge cable of span 80m and central dip 8m is suspended from the same level at 

two towers. the bridge cable is stiffened by a three hinged stiffening girder which carries a single 

concentrated load of 20 kN at a point of 30m from one end. Sketch the SFD for the girder. 

 

 

A and B are supports. E,G, F are the hinged points . C is the mid point of the cable. 

the applied load is shown in fig. 

 
taking moment about F, 

 

 

(VE × 80) — (20 × 50) = 0 
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VE = 12.5 kN 

VF = 7.5 kN 

moment at C, μc = VF × 
span

 
2 

μc = 7.5 × 
80

 
2 

μc = 300 kNm 

H = 
μc 

= 
300 

= 37.5kN 
  

d 8 

Bending moment 

Let 20 kN load is applied at I, 

 

 

 

 

 

 

 

 

 

Shear force 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problem 

B. M at I =  (VF × 50) — (H × y) = 0 

y = 
4d 

x[l — x] 
l2 

y = 
4 × 8 

× 50[80 — 50] = 7.5m 
802 

B. M at I = (7.5 × 50) — (300 × 7.5) = 93.75 kN 

 

 
S. F at I  =  Vb — Htanθ 

Vb = net vertical shear at I 

Vb = VE — 20 = —7.5kN 

 
tanθ = 

4d 
[l — 2x] 

l2 

tanθ = 
4 × 8 

[80 — 2 × 30] = 0.1 
802 

S. F at I = —7.5 — (37.5 × 0.1) = —11.25kN 
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A suspension bridge cable of span 90m and central dip 6m is suspended from the same level at 

two towers. the bridge cable is stiffened by a three hinged stiffening girder which carries a single 

concentrated load of 25 kN at a point of 40m from one end. Sketch the SFD for the girder. 

 
 

 

A and B are supports. E,G, F are the hinged points . C is the mid point of the cable. 

the applied load is shown in fig. 

 
taking moment about F, 

 

 

(VE × 90) — (25 × 50) = 0 

VE = 13.89 kN 

VF = 11.11 kN 

moment at C, μc = VF × 
span

 
2 

μc = 11.11 × 
90

 
2 

μc = 499.95 kNm 

H = 
μc 

= 
499.95 

= 83.325kN 
  

d 6 

Bending moment 
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Let 25 kN load is applied at I, 

B. M at I = (VF × 50) — (H × y) = 0 

y = 
4d 

x[l — x] 
l2 

y = 
4 × 6 

× 50[90 — 50] = 5.93m 
902 

B. M at I = (11.11 × 50) — (83.325 × 5.93) = 61.38 kN 
 

Shear force 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problem 

 
 

S. F at I  =  Vb — Htanθ 

Vb = net vertical shear at I 

Vb = VE — 25 = —11.11kN 

tanθ = 
4d 

[l — 2x] 
l2 

tanθ = 
4 × 6 

[90 — 2 × 40] = 0.03 
902 

S. F at I = —11.11 — (83.325 × 0.03) = —13.61kN 

 

A three hinged stiffening girder of a suspension bridge of 100m span subjected to two point 

loads 10 kN each placed at 20m and 40m, respectively from the left hand hinge. Determine the 

bending moment and shear force in the girder at section 30m from each end. Also determine the 

tension in the cable which has central dip of 10m. 
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taking moment about F,  
 

(VE × 100) — (10 × 60) — (10 × 40) = 0 

VE = 14 kN 

VF = 6 kN 

 
 

moment at C, μc = VF × 
span

 
2 

μc = 6 × 
1000

 
2 

μc = 300 kNm 

H = 
μc 

= 
300 

= 30kN 
  

d 10 

Bending moment at 30m from left hinge 

 

 

 

 

 

 

 

 

 

 

 

 

 
Shear force 

B. M at G =  (VE × 30) — (H × y) — (10 × 10) 

y = 
4d 

x[l — x] 
l2 

y = 
4 × 10 

× 30[100 — 30] = 8.4m 
1002 

B. M at G = (14 × 30) — (30 × 8.4) — (10 × 10) = 68kN 

B. M at I = (VF × 30) — (H × y) 

B. M at I = (6 × 30) — (30 × 8.4) = —72 kN 

 

 
S. F at G =  Vb — Htanθ 

Vb = net vertical shear at I 
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Vb = VE — 10 = 4kN 

 
tanθ = 

4d 
[l — 2x] 

l2 

tanθ = 
4 × 10 

[100 — 2 × 30] = 0.16 
1002 

S. F at G = 4 — (30 × 0.16) = 0.8kN 

S. F at I = —4 + (30 × 0.16) = 0.8kN 

 

BEAMS CURVED IN PLAN 
 

Arched beams have initial curvature. The curvature is visible only in elevation. in plan they 

would appear straight.bur beams also has curved in plan. Eg: curved beams, ring beams, 

supporting water tanks, silos etc. 

Curved beams, in addition to bending moment and shear the torsion moment also exist. 
 

 
U = ƒ 

M2ds 

2EI 
+ ƒ

 

T2ds 

2GJ 

And displacement 

ð = 
dU 

dp 
 
 
 
 
 

Problem: 
 

A curved beam in the form of a quadrant of a circle of radius R and having a uniform cross 

section is in a horizontal plane. It is fixed at A and free at B as shown I fig. it carries a vertical 

concentrated load W at free end B. compute the shear force, bending moment and twisting 

moment values and sketch variations of the above quantities. Also determine the vertical 

deflection of the free end B. 
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The given cantilever is a statically determinate structure. 

Consider any point X on the beam at an angle θ from OB 

 
CX = R (1 – cosθ) 

 

i) Shear force at the section X, 

Fθ = W 

Fθ is independent of θ, and uniform through out. 
 

ii) Bending moment at the section X,  
Mθ = -W(CB) 

Mθ = -W.R sinθ 

At θ = 0, MB = 0 
At θ = 

π 
, M 

 
 

= —WR 
2 B 

 
iii) Twisting moment at the section X, 

 

Tθ = -W(CX) 

Tθ = -WR (1 – cosθ) 
At θ = 0, TB = -WR (1 – cos0) = 0 

At θ = 
π π

 
 

2 
, TB = —WR (1 — cos 

2
) = —WR 
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0 

 

iv) Deflection at the free endB  
Mθ

2 
 

Tθ
2 

strain energy , U = ƒ 
2EI 

ds + ƒ 
2GJ

 
π 

U =   
1 2

 
 

 

π 
2 

1 2 
( ) 2 

 

2EI 
ƒ  (—WRsinθ) Rdθ + 

2GJ 
ƒ [—WR 1 — cosθ ] Rdθ 

U =  
1

 π    
0 2 

2    2 2 π 
0 1 2 
2    2 2 

 
 2EI 

ƒ  W
 R sin θ Rdθ + 

2GJ 
ƒ W R (1 + cos θ — 2cosθ) Rdθ 

U =  
1

 π 
0 2 
2    3 1 — cos2θ 

 
 

0
π

 1 2 
2    3 

 
 

1 — cos2θ 
 

2EI 
ƒ  W  R ( 

2 
) dθ + 

2GJ 
ƒ  W R (1 + ( 

2 
) — 2cosθ) dθ 

W2R3 
U = 

 

[θ — sin2θ π 
]2 + 
 

W2R3 
 

 

[3θ + sin2θ 
 

 

π 
— 4sinθ]2 

4EI 2 0 4GJ 2 0 

πW2R3 
U = 

8EI 
+

 

W2R3 

8GJ 
[3π — 8] 

ðB 

πWR3 

= 
dU 

dW 
WR3 

ðB = 
4EI  

+
 4GJ 

[3π — 8] 

 
 

0 
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Problem: 
 

A curved beam AB of uniform cross section is horizontal in plan and in the form of a quadrant of 

a circle of radius R. the beam is fixed at A and free at B. it carries a uniformly distributed load of 

W/unit run over the entire length of yhe beam as shown. Calculate the shaer force and bending 

moment and torsional moment values at A and B and sketch the variations same. Also deermine 

the deflection at the free end B. 

 
 

 

The given cantilever is a statically determinate structure. 
 

Consider any point X on the beam at an angle θ from OB 
 

i) Shear force at the section X, 

Fθ = W.Rθ 

At θ = 0, FB = 0 
At θ = 

π
 

 
 

π πWR 
 

2 
, FÆ = WR 

2 
= 

2
 

 
 

ii) Bending moment at the section X, 

The bending moment due to load will be negative since tension will occur at the top. 

Let us consider the bending moment Mθ at X, at θ from the free end. 

The bending moment due to load on an element Rdθ at an angleφ from OX is given 

by 
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Æ 

 

dMθ = -W.R dф Rsinф 
θ 

Mθ = — ƒ w RdØ RsinØ 
0 

θ 

Mθ = —wR2 ƒ sinØ dØ 
0 

Mθ = —wR2(1 — cosθ) 
At θ = 0, MB = 0 

At θ = 
π 

, M = —WR2 
2 Æ 

iii) Twisting moment at the section X, 

The twisting momet due to the udl will be negative since the twist would be anti 

clockwise an the right face. 
θ 

Tθ = — ƒ w RdØ R(1 — cosØ) 
0 

θ 

Tθ = —wR2 ƒ (1 — cosØ) dØ 
0 

Tθ = —wR2(θ — sinθ) 
At θ = 0, TB = 0 

At θ = 
π 

, T   = —WR2 
2 

π 
(
2 

— 1) 
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Problem: 

 

A curved beam semicircular in plan and supported on three equally spaced supports. The beam 

carries a udl of wl unit of the circular length. Analyse the beam and sketch the bending moment 

and twisting moment diagrams. 

 

 

The curved beam is shown in fig. the XX and YY axes are as shown and ZZ is vertical axis, the 

unknown reactions are VA,VB and VC. The end supported do not exert an moment reaction. 

There are three equations of static equilibrium equations. Hence the structure is externally 

determinate. 

 

 

total load = w × ɎR 
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θ 

θ 

 

taking moments of all forces at B 

2(VA × R) — πwR (R — 
2R

) = 0 
π 

VA = wR (
π — 2

) 
2 

VB = 2wR 
 

Bending and twisting moment: 
 

Consider a section X located at an angle θ with OA. 

Take segment Rdф at an angle ф from x. 

Bending moment at x is 
 

θ 

Mθ = VA × AN — ƒ w RdØ RsinØ 
0 

π — 2 θ 
Mθ = wR ( ) Rsinθ — ƒ  w RdØ RsinØ 

0 

M = wR2 [
π — 2 

sinθ — (1 — cosθ)] 
2 

At θ = 0, MA = 0 

At θ = 
π 

, M = —0.429WR2 
2 B 

 
 

 

Maximum bending moment might occur between A and B 

Maximum bending moment is 
dMθ 

= 0
 

dθ 
d 

wR2 [
π — 2 

sinθ — (1 — cosθ)] = 0 
dθ 2 

[
π — 2 

cosθ — sinθ)] = 0 
2 

tanθ = 
π — 2

 
2 

θ = 29.43 
 Mmax = 0.1515WR2 ׵
Point of contraflexure 

At point of contraflexure 

Mθ = 0 

M = wR2 [
π — 2 

sinθ — (1 — cosθ)] = 0 
2 

2 
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θ 

 
 

 

[
π — 2 

sinθ — (1 — cosθ)] = 0 
2 

(1 — cosθ) 
= [

π — 2
]
 

sinθ 2 
θ = 59.27 

Twisting moment 
 

θ 

Tθ = —VA × XN — ƒ w RdØ R(1 — cosØ) 
0 

T = wR2 [— (
π — 2

) (1 — cosθ) + θ — sinθ] = 0 
2 
At θ = 0, TA = 0 

At θ = 
π 

, T = 0 
2 B 

 

Maximum torsional moment is 
dTθ 

= 0 
dθ 

d 
wR2 [— (

π — 2
) (1 — cosθ) + θ — sinθ] = 0 

dθ 2 

[
π — 2 

cosθ — sinθ)] = 0 
2 

(1 — cosθ) 
= [

π — 2
]
 

sinθ 2 

θ = 59.27 

Tmax = wR2 [— (
π — 2

) (1 — cosθ) + θ — sinθ] = —0.1043wR2 
2 
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SPACE TRUSSES 

Space trusses are more common in practice than we care to think. A space truss or space frame is 

a three dimensional assemblage of line members each member being joined at its ends, either to 

the foundation or to other members by friction less ball and socket joints. The simplest space 

frame consists of six member joined to form a tetrahedron. Beginning with a six member 

tetrahedron, a stable space frame can be constructed by successive addition of three new 

members and a new joint. 

 

 
 

 

 
In frame trusses, the relationship between the number of members (m) and number of joints (j) is 

given by 
 

m=(3j-6) 
 

If the truss or frame has less number of members than what is given by the the above equation 

then the trusses or frame will be unstable. If it more members, the frame will be internally 

statically indeterminate. 
 

Tension coefficient method 
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The force per unit length of a member is usually known as the tension coefficient of the member. 

The tension coefficient of the member is defined as the pull or tension in that member divided by 

its length. Thus 

 

 
where, 

t = 
T

 
L 

 
t- Tension coefficient of the member 

T – Tension or pull in the member 

L – Length of the member 
 
 

 
Tx = Tijcosθ 

T = T xij 

x ij lij
 

Tij 

Tx = (
lij 

) xij 

xij = xj — xi 
Tx = tijxij 

Ty = tijyij 

lij = √xij
2 + yij

2
 

 
 
 

Analysis procedure using tension coefficients 
 

1. List the coordinates of each joint(node) of the truss. 

2. Determine the projected length xij and yij of each member of the truss. Determine the 

length lij of each member. 

3. Resolve the applied forces at each joint in the X and Y directions. Determine the 

support reactions and their X and Y components. 

4. Identify a node with only two unknown member forces and apply the equations of 

equilibrium. The solution yields the tension coefficients for the members at the node. 

5. Select the next joint with only two unknown and apply the equations of equilibrium 

and obtain the tension coefficients. 

6. Repeat the next step 5 till the tension coefficients of all the members are obtained. 
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7. Compute the member forces from the tension coefficients obtained as above, using the 

tension formula. 

Tij = tijxij 

Problem: 
 

Using tension coefficient method analyse the cantilever plane truss shown and find the member 

forces. 

 

 
 

 

S.no Member xi xj xij 

(xj - xi) 

yi yj yij 

(yj - yi) 

lij 

 
 

√xij
2 + yij

2
 

1 AB 0 2 2 3 3 0 2 

2 BC 2 4 2 3 3 0 2 

3 CD 4 2 -2 3 1.5 -1.5 2.5 
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4 DE 2 0 -2 1.5 0 -1.5 2.5 

5 AD 0 2 2 3 1.5 -1.5 2.5 

6 BD 2 2 0 3 1.5 -1.5 1.5 

 
 

Calculation of Tension coefficients  

 
Joint C, 

 

ΣH = 0 
 

(xcb×tcb) + (xcd×tcd) = 0 

-2 tcb -2 tcd =0 

tcb = tcd 

ΣV= 0 

(ycb×tcb) + (ycd×tcd) -4 = 0 

-1.5 tcd = 4 

tcd = -2.67 kN/m 

Joint B, 
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ΣH = 0 
 

(xba×tba) + (xbc×tbc) = 0 

-2 tba +2 tbc =0 

tba = tbc 

tba = 2.67 kN/m 

ΣV= 0 
 

(ybd×tbd) -4 = 0 

-1.5 tbd = 4 

tbd = -2.67 kN/m 

 

Joint D, 

 

 
ΣH = 0 

 

(xda×tda) +(xde×tde) + (xdc×tdc) = 0 

-2 tda -2 tde +(2×-2.67) =0 
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tda + tde = -2.67 ……… Eq1 

ΣV= 0 
 

(yda×tda) +(yde×tde) + (ydc×tdc) +(ybd×tbd) = 0 

tda - tde = 5.34 ................ Eq2 

solving equations 1 and 2 we get 

tda = 1.335 kN/m 

tde = -4 kN/m 
 

S.no Member tij lij 

 
 

√xij
2 + yij

2
 

Tij Nature 

1 AB 2.67 2 5.34 Tensile 

2 BC 2.67 2 5.34 Tensile 

3 CD -2.67 2.5 -6.675 compressive 

4 DE -4 2.5 -10 compressive 

5 AD 1.335 2.5 3.33 Tensile 

6 BD -2.67 1.5 -4 compressive 
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Problem: 
 

Using tension coefficient method analyse the plane truss shown and find the member forces. 
 

 

 
 

Taking moment about A, 

(VC × 4) — (36 × 1.5) — (54 × 2) = 0 

VC = 40.5 kN 

VA = 13.5 kN 

ΣH = 0 
 

HA = 36 kN 
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S.no Member xi xj xij 

(xj - xi) 

yi yj yij 

(yj - yi) 

lij 

 
 

√xij
2 + yij

2
 

1 AB 0 2 2 0 0 0 2 

2 BC 2 4 2 0 0 0 2 

3 CD 4 2 -2 0 1.5 1.5 2.5 

4 DA 2 0 -2 1.5 0 -1.5 2.5 

5 BD 2 2 0 0 1.5 1.5 1.5 

 
 

Calculation of Tension coefficients  

 
Joint A, 

 

ΣH = 0 
 

(xad×tad) + (xab×tab) -36 = 0 

2 tad +2 tab = 36 

tad + tab = 18 

ΣV= 0 

(yad×tad) + (yab×tab) +13.5 = 0 

1.5 tad = -13.5 

tad = -9 kN/m 

tab = 27 kN/m 

Joint B, 

ΣH = 0 
 

(xba×tba) + (xbc×tbc) = 0 

-2 tba +2 tbc = 0 

tba = tbc 
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tbc = 27 kN/m 

ΣV= 0 
 

(ybd×tbd) -54 = 0 

1.5 tbd = 54 

tbd = 36 kN/m 

Joint C, 
 

ΣH = 0 
 

(xcd×tcd) + (xcb×tcb) = 0 

-2 tcd -2 tcb = 0 

tcd = -27 kN/m 

S.no Member tij lij 

 
 

√xij
2 + yij

2
 

Tij Nature 

1 AB 27 2 54 Tensile 

2 BC 27 2 54 Tensile 

3 CD -27 2.5 -67.5 compressive 

4 DA -9 2.5 -22.5 compressive 

5 BD 36 1.5 54 Tensile 
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PART-A 
 

1. What are cable structures? 
 

Long span structures subjected to tension and uses suspension cables for supports. Examples of 

cable structures are suspension bridges, cable stayed roof. 
 

Suspension bridge – cable structure 
 

2. What is the true shape of cable structures? 
 

Cable structures especially the cable of a suspension bridge is in the form of a catenary. Catenary 

is the shape assumed by a string / cable freely suspended between two points. 

 

 
3. What is the nature of force in the cables? 

 

Cables of cable structures have only tension and no compression or bending. 

 

 

4. What is a catenary? 
 

Catenary is the shape taken up by a cable or rope freely suspended between two supports and 

under its own self weight. 

 

 
5. Mention the different types of cable structures. 

 

Cable structures are mainly of two types: (a) Cable over a guide pulley 
 

(b) Cable over a saddle 

 

 

6. Briefly explain cable over a guide pulley. 
 

Cable over a guide pulley has the following properties: 
 

Ø Tension in the suspension cable = Tension in the anchor cable 
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Ø The supporting tower will be subjected to vertical pressure and bending due to net horizontal 

cable tension. 

 

 
7. Briefly explain cable over saddle. 

 

Cable over saddle has the following properties: 
 

Ø Horizontal component of tension in the suspension cable = Horizontal component of tension in 

the anchor cable 

Ø The supporting tower will be subjected to only vertical pressure due to cable tension. 

 

 

8. What are the main functions of stiffening girders in suspension bridges? 
 

Stiffening girders have the following functions. 

Ø They help in keeping the cables in shape 

Ø They resist part of shear force and bending moment due to live loads. 

 

 

9. What is the degree of indeterminacy of a suspension bridge with two hinged stiffening 

girder? 

The two hinged stiffening girder has one degree of indeterminacy. 

 

 

10. Differentiate between plane truss and space truss. 
 

Plane truss: 
 

Ø All members lie in one plane 
 

Ø All joints are assumed to be hinged. 

Space truss: 

Ø This is a three dimensional truss 
 

Ø All joints are assumed to be ball and socketed. 
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11. Define tension coefficient of a truss member. 
 

The tension coefficient for a member of a truss is defined as the pull or tension in the member 

divided by its length, i. e. the force in the member per unit length. 

 

 
12. Give some examples of beams curved in plan. 

Curved beams are found in the following structures. 

Ø Beams in a bridge negotiating a curve 

Ø Ring beams supporting a water tank 

Ø Beams supporting corner lintels 

Ø Beams in ramps 

 

 

13. What are the forces developed in beams curved in plan? 
 

Beams curved in plan will have the following forces developed in them: 

Ø Shear forces 

Ø Torsional moments 

 

 

14. What are the significant features of circular beams on equally spaced supports? 
 

Ø Slope on either side of any support will be zero. 

Ø Torsional moment on every support will be zero 

 

15. Give the expression for calculating equivalent UDL on a girder. 
 

Equivalent UDL on a girder is given by: 
 



CE 8602 STRUCTURAL ANALYSIS - II 
 

 

16. Give the range of central dip of a cable. 
 

The central dip of a cable ranges from 1/10 to 1/12 of the span. 

 

 

17. Give the expression for determining the tension T in the cable. 
 

The tension developed in the cable is given by 
 

Where, H = horizontal component and V = vertical component. 

 

 

18. Give the types of significant cable structures 
 

Linear structures: 
 

Ø Suspension bridges 
 

Ø Cable-stayed beams or trusses 

Ø Cable trusses 

Ø Straight tensioned cables 

Three-dimensional structures: 

Ø 3D cable trusses 
 

Ø Tensegrity structures 

Ø Tensairity structures 

 

19. What are cables made of? 
 

Cables can be of mild steel, high strength steel, stainless steel, or polyester fibres. Structural 

cables are made of a series of small strands twisted or bound together to form a much larger 

cable. Steel cables are either spiral strand, where circular rods are twisted together or locked coil 

strand, where individual interlocking steel strands form the cable (often with a spiral strand 

core). 
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Spiral strand is slightly weaker than locked coil strand. Steel spiral strand cables have a Young's 

modulus, E of 150 ± 10 kN/mm² and come in sizes from 3 to 90 mm diameter. Spiral strand 

suffers from construction stretch, where the strands compact when the cable is loaded. 
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UNIT – V 

PLASTIC ANALYSIS 

Assumptions made to evaluate the fully plastic moment of a section 
 

1. Plane transverse sections remain plane and normal to the longitudinal axis after bending, 

the effect of shear being neglected. 

2. Modulus of elasticity has the same value in tension and compression. 

3. The material is homogeneous and isotropic in both the elastic and plastic state 

4. There is no resultant axial force on the beam 

5. The cross section of the beam is symmetrical about an axis through its centroid parallel to 

the plane of bending. 

6. Longitudinal fibers are free to expand and contract without affecting the fibers in the 

lateral direction. 
 

MP = σy ×zp 

MP – plastic moment 

σy – yield stress 

zp – plastic modulus of the section 

Shape factor: 
 

It is defined as the ratio between plastic moment of a section to the yield moment of the section. 

S =  
Mp

 

My 

S = 
σy × Zp 

σy × Z 

 

S = 
Zp 

Z 

Derive the shape factor for a rectangular section 
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p 

 
 

 

S = 
Zp 

Z 

Z = 
A 

(y1 + y2) 
2 

Z = 
bd 

 
 

(
d 

+ 
d

) 
 

  

p 2 4 4 

bd d bd2 
Zp =  

2  
(
2

) = 
4

 

bd2 
Z = 

6
 

 

S = 
Zp 

Z 

bd2 6 
S = 

4 
× 

bd2 

S = 
6

 
4 

= 1.5 

Derive the shape factor for a diamond section 
 

y1 =  
1 d d

 
 

3 
× 

2 
= 

6 
y2 =  

1 d d
 

 

3 
× 

2 
= 

6 
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p 

p 

 
 

 

Z = 
A 

(y1 + y2) 
2 

Z = 
1 

× b  × d × 
1 

2 2 
(
d 

+ 
d

) 
6 6 

bd d bd2 
Zp = 

4  
(
3

) =  
12 

Z =  
I
 
y 

bd3 
I = 

12
 

1 d 3 
I = { 

12 
× b × (

2
) } × 2 

 
I = 

 
bd3 

bd3 

48 

2 

 
 
 

bd2 
Z = 

48 
× 

d 
= 

24 

bd2 24 
S = 

12 
× 

bd2 

S = 2 

 
 

Derive the shape factor for a triangular section 

 

Z =  
I
 

y 

bd3 
I = 

36
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bd3 3 bd2 
Z = 

36 
× 

2d 
= 

24 
 

 

b1 
= 

d1 
  

b d 

b1 = 
d1 

× b 
d 

 

 

A1 = A2 = 
A

 
2 

1 
× b1 × d1 = 

2 

1 1 

2 
× 

2 

 
× b × d 

d12 = 
d

 
2 

d1 =  
d

 
√2 

b1 = 
b

 
√2 

 

 

y1 = 
1 

×  
d

 
3 √2 

2 
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p 

p 

 
 

 

y2 = 
(√2b + 2b) 

× 
0.293d 

  

( 
b  

+ b) 
3 

√2 

Z = 
bd 

4 
(0.236d + 0.155d) 

Zp = 0.09775bd2 

S = 
Zp 

= 2.346 
Z 

 
 
 

Derive the shape factor for a circular section 

 

 

S = 
Zp 

Z 

I πd4 2 πd3 
Z = 

y 
= 

64  
× 

d 
=  

32 

Z = 
A 

(y1 + y2) 
2 

y1 = y2 =  
4r 

= 
2d

 
  

3π 3π 

π × d2 2d 2d d3 
Zp = 

8 
(
3π 

+ 
3π

) = 
6 

Zp d3 32 
S = 

Z 
= 

6 
× 

πd3 = 1.697 
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p 

p 

 

Derive the shape factor for a triangular section 
 

 

S = 
Zp 

Z 

I 1 d 3 

 
 

2 bd2 
Z = 

y 
= = 

12 
× b × (

2
)  × 2 × 

d 
= 

24
 

 

Z = 
A 

(y1 + y2) 
2 

Z = 
1 

× b  × d × 
1 

2 2 
(
d 

+ 
d

) 
6 6 

bd d bd2 
Zp = 

4  
(
3

) =  
12 

Zp bd2 24 
S = 

Z 
= 

12 
× 

bd2 
= 2

 

A mild steel I section 200mm wide and 250mm deep has a flange thickness of 20mm and a 

web thicknees of 10mm. calculate the shape factor. Find the fully plastic moment if σy = 

252N/mm2. 

Solution: 
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p 

p 

 
 

 

Z =  
I
 

y 

bd3 
I = 

 
200 × 2503 

12 

190 × 2103 
I = 

12 
— 

12
 

I = 113.78×106 mm4 

y = 
250 

= 125 mm 
2 

113.78 × 106 3 3 
 

Z = 
125 

= 910.27 × 10 mm 
 

 

Z = 
A 

(y1 + y2) 
2 

y1 = y2 = 
(a1y1 + a2y2) 

(a1 + a2) 
 

(105 × 10 × (
105

)) + (200 × 20 × (105 + 
20

)) 
2 2 

y1 = y2 = 
(105 × 10) + (200 × 20) 

= 102mm
 

Z = 
2(200 × 20) + (210 × 10) 

(102 + 102)
 

2 

Zp = 1030.2×103 mm3 

S = 
Zp 

= 1.132 
Z 

MP = σy ×zp 
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MP = 252 ×1030.2×103 

MP = 259.6 kNm 

Determine the shape factor of a T section beam of flange dimension 100 x 12 mm and web 

dimension 138 x 12 mm thick. 

Solution: 

 

 

ȳ = 
(a1y1 + a2y2) 

(a1 + a2) 
 

(138 × 12 × (
138

)) + (100 × 12 × (138 + 
12

)) 
2 2 

ȳ = 
(138 × 12) + (100 × 12) 

= 100.51mm
 

 

bd3 ¯2 
 

 
12 × 1383 

I = 
12 

+ ah 

138 2 
I = { 

12 
+ (12 × 138) ( 

2 
— 100.51) } 

100 × 123 
+ { 

12 
+ (100 × 12)( 144 — 100.51)2} 

 

I = 6556337.57 mm4 

Z = 
I 

= 
6556337.57 

= 65230.7mm3 
  

y 100.51 

Equal area axis 
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p 

p 

 
 

 

A 
= (100 × 12) + (12 × h) 

2 

(100 × 12) + (12 × 138) 
 

 

2 

 
= 1200 + (12 × h) 

H= 19 mm 

y1 = 
(a1y1 + a2y2) 

(a1 + a2) 
 
 
 

(100 × 12 × (19 + 
12

)) + (19 × 12 × (
19

)) 
2 2 

y1 = 
(100 × 12) + (19 × 12) 

= 22.52mm
 

y2 = 
119 

= 59.5mm 
2 

Z = 
A 

(y1 + y2) 
2 

Z  =  
2856 

(22.52 + 59.5) = 117138.84mm3 
2 

S = 
Zp 

= 1.08 
Z 



CE 8602 STRUCTURAL ANALYSIS - II 
 

 

Plastic hinge: 
 

Fully plastic moment is considered to have developed at any section of a structure subjected to a 

system of loads, when the section is completely yielded or plastified. The fibers on one side of 

the equal area axis of the section are in compression and tend to contract. The fibers on the other 

side of the axis are in tension and tend to expand. The section acts like a hinge. This hinge is 

known as a plastic hinge. 

The plastic hinge is defined as an yielded zone due to bending in a structural member, at which 

large rotations can take place at a section at a constant plastic moment, MP. 

Mechanism: 
 

A stable structure shall be able to resist displacement. There has to be a force corresponding to 

any displacement. A displacement without resistance is called a rigid body displacement. 

Structures have elastic displacement. Mechanisms have rigid body displacements. 

Types of mechanism: 

1. Independent mechanism 

2. Combined (or) composite mechanism 
 

Problem 
 

A simply supported beam of span 5m is to be designed for a udl of 25kN/m. design a 

suitable I section using plastic theory, assuming yield stress in steel as fy = 250N/mm2. 

 
Solution: 
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IWD = Mp × 2θ 
 

EWD = load × area 
 

EWD = 25 × 
1

 
2 

 
× 5 × 2.5θ 

 
 
 
 
 
 
 
 
 
 
 
 

Problem 

EWD = 156.25θ 

IWD = EWD 

Mp × 2θ=156.25θ 

Mp = 78.125 kNm 

MP = σy ×zp 

Zp = 
Mp 

= 312.5 × 103 mm3 
σy 

 

Determine the collapse load ‘W’ for a three span continuous beam of constant plastic 

moment Mp, loaded as shown in fig. 

 

 

Mechanism 1: 
 

IWD = (Mp × 2θ) + Mp θ = 3Mp θ 
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EWD = W × 
l 

× θ 
2 

 
 
 
 
 
 

 
Mechanism 2: 

IWD = EWD 

3Mpθ = W × 
l 

× θ 
2 

W = 
6Mp 

l 

 

 
 

ð = 
l
 

3 
× θ = 

2l
 

3 

θ = 
θ1 

2 

 
× θ1 

IWD = Mp θ+ Mp(θ+ θ1) + Mp θ1 = 3Mp θ 
 

EWD = W × 
l 

× θ 
3 

IWD = EWD 

3Mpθ = W × 
l 

× θ 
3 

W = 
9Mp 

l 
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Mechanism 3: 
 

 
IWD = (Mp × 2θ) + Mp θ = 3Mp θ 

 

EWD = 2W × 
l 

× θ 
2 

IWD = EWD 

3Mpθ = 2W × 
l  

× θ 
2 

W = 
3Mp 

l 

 the collapse load is ׵
3Mp

 
l 

Problem 
 

Determine the collapse load ‘W’ of the beam loaded as shown in fig. 
 

 

Mechanism 1: 
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ð = 1θ = 3θ1 

θ1 = 
θ

 
3 

IWD = Mp θ+ Mp(θ+ θ1) + Mp θ1 

IWD = 2Mp θ+ 2Mp θ1 

θ 
IWD = 2MPθ + 2MP 

3 
= 

θ 
EWD = Wθ + W × 

3 
= 

IWD = EWD 
 

8MPθ 
= 

4Wθ 
  

8MPθ 
 

 

3 

4Wθ 

3 

3 3 
 

 
Mechanism 2: 

W = 2MP 
 
 

 

ð = 3θ = 1θ1 

θ1 = 3θ 
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Mechanism 3: 

IWD = Mp θ+ Mp(θ+ θ1) + Mp θ1 

IWD = 2Mp θ+ 2Mp θ1 

IWD = 2MPθ + 2MP(3θ) = 8MPθ 

EWD = Wθ + Wθ1 = 4Wθ 

IWD = EWD 

8MPθ = 4Wθ 

W = 2MP 

 

 

ð = 2θ = 1θ1 

θ1 = 2θ 

IWD = Mp θ+ Mp(θ+ θ1) 

IWD = 2Mp θ+ Mp θ1 

IWD = 2MPθ + MP(2θ) = 4MPθ 

EWD = 2W × 2θ = 4Wθ 

IWD = EWD 

4MPθ = 4Wθ 

W = MP 

 the collapse load is W = MP ׵
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Problem 
 

Determine the collapse load ‘W’ for the continuous beam loaded as shown in fig. has 

uniform plastic moment Mp. 

 

 

 
 

 
Mechanism 1: 
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ð = 1θ = 2θ1 

θ1 = 
θ

 
23 

IWD = Mp(θ+ θ1) + Mp θ1 
 

IWD = Mp θ+ 2Mp θ1 

θ 
IWD = MPθ + 2MP 

2 
= 2MPθ 

 
 
 
 
 
 
 
 
 
 

Mechanism 2: 

θ 
EWD = Wθ + W × 

2 
= 

IWD = EWD 

2MPθ = 
3Wθ

 
2 

W = 
4MP 

3 

3Wθ 

2 

 

 
 

ð = 1θ 

IWD = Mpθ + Mp2 θ + Mp θ 
 

IWD = 4Mp θ 

θ 
IWD = MPθ + 2MP 

2 
= 2MPθ 

1 
EWD = 2W × 

2 
× 2 × 1θ = 2Wθ 

IWD = EWD 
 

2MPθ = 2Wθ 
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Mechanism 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problem 

W = MP 
 
 

 

 
IWD = (Mp × 2θ) + Mp θ = 3Mp θ 

 

EWD = W × 1.5 × θ 

IWD = EWD 
 

3Mpθ = W × 1.5 × θ 

W = 2MP 

 the collapse load is ׵
4Mp

 
3 

 

Analyse a propped cantilever of length ‘L’ and subjected to UDL of w/m length for the 

entire span and find the collapse load. 
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RA = RB = 
w

 
2 

Taking moment about XX axis at a distance x from B. 
 

 
Mx = 

wx 
— 

2 

wx2 

2l 

 
Mp + 

Mpx 
= 

l 

x 

wx 
— 

2 

w 

wx2 

2l 

x2 

Mp[1 + 
l 
] = 

2 
[x — 

l 
] 

w (lx — x2) 
Mp = 

2
 

(l + x) 
 

 
 
 

dMp 
= 

dx 

dMp 
= 0 

dx 

(l + x)(l — 2x) — (lx — x2)(1) 

(l + x)2 
= 0

 
 

(l + x)(l — 2x) — (lx — x2) = 0 

(l2 + xl — 2xl — 2x2 — lx + x2) = 0 

(l2 — 2xl — x2) = 0 

(x2 + 2xl — l2) = 0 

x = 
—2l ± √8l2 

2 

x = 0.414l 

0.586l × θ = 0.414l × θ1 

θ1 = 1.4155 × θ 

EWD = 
w 1

 
 

l 
× 

2 
× l × 0.586l × θ = 0.293wlθ 

IWD = Mp θ + 2.4155Mp θ = 3.4155Mp θ 
 

IWD = EWD 
 

0.293wlθ =3.4155Mp θ 
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Problem 

W =  
11.656Mp 

l 

 

A uniform beam of span 4m and fully plastic moment Mp is simply supported at one end 

and rigidly clamped at other end. A concentrated load of 15 kN may be applied anywhere 

within the span. Find the smallest value of Mp such that collapse would first occur when 

the load is in its most unfavorable position. 
 

 

 

ð = x θ = (4 — x)θ1 

θ1 = 
xθ

 
(4 — x) 

IWD = Mp θ1 + Mp (θ+ θ1) 
 

IWD = 2Mp θ1 + Mp θ 

IWD = Mp θ + 2Mp 
xθ

 
(4 — x) 

 

IWD = Mp θ [1 + 
2x 

] 
(4 — x) 

IWD = Mp θ 
(4 + x)

 
(4 — x) 

EWD = 15 X θ 



CE 8602 STRUCTURAL ANALYSIS - II 
 

 
 

 

IWD = EWD 

 

Mp θ 
(4 + x) 

= 15xθ 
(4 — x) 

 
(60x — 15x2) 

Mp = 
 

 

(4 + x) 
 

 
 
 

dMp 
= 

dx 

dMp 
= 0 

dx 

(4 + x)(60 — 30x) — (60x — 15x2)(1) 

(4 + x)2 
= 0

 
 

(4 + x)(60 — 30x) — (60x — 15x2) = 0 

(x2 + 8x — 16) = 0 

x = 1.66m 

(60(1.66) — 15(1.66)2) 
 
 
 
 

Problem 

Mp = 
 

 

(4 + 1.66) 

Mp = 10.29 kNm 

 

A uniform beam of span 5m and fully plastic moment Mp is simply supported at one end 

and rigidly clamped at other end. A concentrated load of 20 kN may be applied anywhere 

within the span. Find the smallest value of Mp such that collapse would first occur when 

the load is in its most unfavorable position. 
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ð = x θ = (5 — x)θ1 

 

θ1 =  
xθ 

(5 — x) 
 

IWD = Mp θ1 + Mp (θ+ θ1) 
 

IWD = 2Mp θ1 + Mp θ 

IWD = Mp θ + 2Mp 
xθ

 
(5 — x) 

 

IWD = Mp θ [1 + 
2x 

] 
(5 — x) 

IWD = Mp θ 
(5 + x)

 
(5 — x) 

EWD = 20 X θ 
 

IWD = EWD 

 

Mp θ 
(5 + x) 

= 20xθ 
(5 — x) 

 
(100x — 20x2) 

Mp = 
 

 

(5 + x) 

dMp 
= 0 

dx 

dMp 
= 

dx 

(5 + x)(100 — 40x) — (100x — 20x2)(1) 

(5 + x)2 
= 0

 
 

(5 + x)(100 — 40x) — (100x — 20x2) = 0 

(x2 + 10x — 25) = 0 

x = 2.071m 

(100(2.071) — 20(2.071)2) 
Mp = 

 
 

(5 + 2.071) 

Mp = 17.16 kNm 
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Problem 
 

A uniform beam of span 10m and fully plastic moment Mp is simply supported at one end 

and rigidly clamped at other end. A concentrated load of 40 kN may be applied anywhere 

within the span. Find the smallest value of Mp such that collapse would first occur when 

the load is in its most unfavorable position. 

 

 

 

 

 

 

 

 

 

 

 

 

ð = x θ = (10 — x)θ1 

θ1 = 
xθ

 
(10 — x) 

IWD = Mp θ1 + Mp (θ+ θ1) 
 

IWD = 2Mp θ1 + Mp θ 

IWD = Mp θ + 2Mp 
xθ

 
(10 — x) 

IWD = Mp θ [1 +
 2x 

] 
(10 — x) 

IWD = Mp θ 
(10 + x)

 
(10 — x) 

EWD = 40 X θ 
 

IWD = EWD 

 

Mp θ 
(10 + x) 

= 40xθ 
(10 — x) 
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Mp = 

(400x — 40x2) 

(10 + x) 

dMp 
= 0 

dx 

dMp 
= 

dx 

(10 + x)(400 — 80x) — (400x — 40x2)(1) 

(10 + x)2 
= 0

 
 

(10 + x)(400 — 80x) — (400x — 40x2) = 0 

(x2 + 20x — 100) = 0 

x = 4.14m 

(400(4.14) — 40(4.14)2) 
 
 
 
 

Problem 

Mp = 
 

 

(10 + 4.14) 

Mp = 68.63 kNm 

 

A rectangular portal frame of span L and height L/2 is fixed to the ground at both ends 

and has a uniform section throughout with its fully plastic moment of resistance equal to 

My. It is loaded with a point load W at the centre of span as well as a horizontal free W/2 at 

its top right corner. Calculate the value of W at collapse of the frame. 

 



CE 8602 STRUCTURAL ANALYSIS - II 
 

 
 

 

Beam mechanism 
 

 

 

 

IWD = Mp θ+ (Mp × 2θ) + Mp θ = 4Mp θ 
 

EWD = W × 
l 

× θ 
2 

 
 
 
 
 
 

 
Sway mechanism 

IWD = EWD 

4Mpθ = W × 
l 

× θ 
2 

W = 
8Mp 

l 

 
 

 
 

IWD = Mp θ+ Mp θ + Mp θ+ Mp θ = 4Mp θ 
 

EWD = 
W 

× 
l 

× θ 
  

2 2 

IWD = EWD 
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4Mpθ = 
W 

× 
l 

× θ 
  

2 2 
 
 

 
Combined mechanism 

W = 
16Mp 

l 

 

 
 

IWD = Mp θ+ Mp θ + Mp θ+ Mp (2θ)+ Mp θ = 6Mp θ 
 

EWD = { 
W 

× 
l 

× θ } + { W × 
l  

× θ } = 
3 

× Wl × θ 
    

2 2 2 4 

IWD = EWD 

 

6Mpθ = 
3 

× Wl × θ 
4 

W = 
8Mp 

l 

 therefore the critical load is ׵
8Mp

 
l 
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Problem 
 

Find the fully plastic moment required for the frame shown in fig if all the members have 

same value of Mp 

 

Beam mechanism 
 

 

 

 

IWD = Mp θ+ (Mp × 2θ) + Mp θ = 4Mp θ 
 

EWD = 5 × 2 × θ = 10 θ 

IWD = EWD 
 

4Mpθ = 10 θ 

Mp = 2.5 
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Sway mechanism 
 

 
 

 

∆ = 4 θ = 6 θ1 

θ1 = 
4 

θ 
6 

IWD = Mp θ+ Mp θ + Mp θ1+ Mp θ1 

 

IWD = 
10 

× Mp × θ 
3 

EWD = 2 × 4 θ 
 

IWD = EWD 

 
10 

× Mp × θ = 8 θ 
3 

 

Mp = 2.4 

Combined mechanism 
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∆ = 4 θ = 6 θ1 

θ1 = 
4 

θ 
6 

IWD = Mp θ+ Mp 2θ + Mp θ1+ Mp θ+ Mp θ1 

 

IWD = 
160 

× Mp × θ 
3 

EWD = (2 × 4 θ) + (5 × 2θ) =18 θ 
 

IWD = EWD 

16 
× Mp × θ = 18 θ 

3 

Mp = 3.38 
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PART-A 
 

1. What is a plastic hinge? 
 

When a section attains full plastic moment Mp, it acts as hinge which is called a plastic hinge. It 

is defined as the yielded zone due to bending at which large rotations can occur with a constant 

value of plastic moment Mp. 

2. What is a mechanism? 
 

When a n-degree indeterminate structure develops n plastic hinges, it becomes determinate and 

the formation of an additional hinge will reduce the structure to a mechanism. Once a structure 

becomes a mechanism, it will collapse. 

3. What is difference between plastic hinge and mechanical hinge? 
 

Plastic hinges modify the behavior of structures in the same way as mechanical hinges. The only 

difference is that plastic hinges permit rotation with a constant resisting moment equal to the 

plastic moment Mp. At mechanical hinges, the resisting moment is equal to zero. 

4. Define collapse load. 
 

The load that causes the (n + 1) the hinge to form a mechanism is called collapse load where n is 

the degree of statically indeterminacy. Once the structure becomes a mechanism 

5. List out the assumptions made for plastic analysis. 
 

The assumptions for plastic analysis are: 
 

Ø Plane transverse sections remain plane and normal to the longitudinal axis before and after 

bending. 

Ø Effect of shear is neglected. 
 

Ø The material is homogeneous and isotropic both in the elastic and plastic state. 

Ø Modulus of elasticity has the same value both in tension and compression. 

Ø There is no resultant axial force in the beam. 
 

Ø The cross-section of the beam is symmetrical about an axis through its centroid and parallel to 

the plane of bending. 

6. Define shape factor. 
 

Shape factor (S) is defined as the ratio of plastic moment of the section to the yield moment of 

the section. 
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S =  
Mp

 

My 

S = 
σy × Zp 

σy × Z 

 

S = 
Zp 

Z 
 
 

 
Where Mp = Plastic moment 

M = Yield moment 

Zp = Plastic section modulus 

Z = Elastic section modulus 

7. List out the shape factors for the following sections. 
 

(a) Rectangular section, S = 1.5 
 

(b) Triangular section, S = 2.346 (c) Circular section, S = 1.697 (d) Diamond section, S = 2 
 

8. Mention the section having maximum shape factor. 
 

The section having maximum shape factor is a triangular section, S = 2.345. 
 

9. Define load factor. 
 

Load factor is defined as the ratio of collapse load to working load and is given by 

λ = 
Wc 

W 
 

10. State upper bound theory. 
 

Upper bound theory states that of all the assumed mechanisms the exact collapse mechanism is 

that which requires a minimum load. 

11. State lower bound theory. 
 

Lower bound theory states that the collapse load is determined by assuming suitable moment 

distribution diagram. The moment distribution diagram is drawn in such a way that the 

conditions of equilibrium are satisfied. 

12. What are the different types of mechanisms? 
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The different types of mechanisms are: 
 

Ø Beam mechanism 

Ø Column mechanism 

Ø Panel or sway mechanism 

Ø Cable mechanism 

Ø Combined or composite mechanism 
 

13. Mention the types of frames. 
 

Frames are broadly of two types: 
 

(a) Symmetric frames 
 

(b) Un-symmetric frames 
 

14. What are symmetric frames and how they analyzed? 
 

Symmetric frames are frames having the same support conditions, lengths and loading conditions 

on the columns and beams of the frame. Symmetric frames can be analyzed by: 

(a) Beam mechanism 
 

(b) Column mechanism 
 

15. What are unsymmetrical frames and how are they analyzed? 
 

Un-symmetric frames have different support conditions, lengths and loading conditions on its 

columns and beams. These frames can be analyzed by: 

(a) Beam mechanism 
 

(b) Column mechanism 
 

(c) Panel or sway mechanism 
 

(d) Combined mechanism 
 

16. Define plastic modulus of a section Zp. 
 

The plastic modulus of a section is the first moment of the area above and below the equal area 

axis. It is the resisting modulus of a fully plasticized section. 

Zp = A/2 (y1 + y2) 
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17. How is the shape factor of a hollow circular section related to the shape factor of a 

ordinary circular section? 

The shape factor of a hollow circular section = A factor K x shape factor of ordinary circular 

section. 

SF of hollow circular section = SF of circular section x {(1 – c3)/ (1 – c4)} 
 

18. Give the governing equation for bending. 

The governing equation for bending is given by 

M/I =σ /y 

Where M = Bending moment 

I = Moment of inertia 

y = c. g. distance 
 

19. Give the theorems for determining the collapse load. 
 

The two theorems for the determination of collapse load are: 
 

(a) Static Method [Lower bound Theorem] 
 

(b) Kinematic Method [Upper bound Theorem] 


