DEPARTMENT OF CIVIL ENGINEERING
 (ACADEMIC YEAR: 2021-2022)

CE8601 -DESIGN OF STEEL STRUCTURAL ELEMENTS

(Regulation 2017)

Semester-VI

NAME-
REG NO-

STRUCTURAL STEEL
Steel can be divided into two principal groups:
(i) steel structures-made largely of plates or sheets Ex: Tanks, bins, Chimney and steel roof, etc.
(ii) Framed structures - assemblies of tension, compression and flexural members.
Ex: Truss-frame, rigid frames, girder and columns, etc ADVANTAGES: OF STRUCTURAL STEEL:

1. High strength per unit weight
2. Ductile material. No sudden failure, but shows impending failure by large deflection.
3. Tough - Hey have both strength and ductility.
4. Easy handling and transportation'. Mostly used for prefabrication.
5. Long life if properly maintained,
6. Properties donot change with time.
7. Additions and alterations can be easily made.
8. Can be erected at a faster rate.
9. High scrap value amongst all building materials. (Reused).
10. Recyclable material

DISADVANTAGES:

1. Steel structures, exposed to environment. are subjected to corrosion,
2. Steel structures need fire proof treatment, which increases cost.
3. Fatigue in steel, results in reduction of strength when subjected to cyclic loads/reversal loads,
4. At places of stress concentration, under certain conditions, steel may lose its ductility.
APPLICATIONS:
5. High rise building skeletons.
6. Industrial buildings.
7. Transmission towers.
8. Railway bridges.
9. Overhead tanks.
10. Chimneys (stacks).
11. Bunkers and silos.

WMÉMEHANICAL PROPERTIES of STEEL:
mechanical properties of steel depends upon the following factors:
(a) Chemical composition;
(b) Rolling methods;
(c) Rolling thickness;'
(d) Heat treatment; and
(e) Stress history.

Important mechanical properties are:

1. Ultimate strength
2. Yield stress (or proof stress).
3. Ductility.
A. Weldability:
4. Toughness.
5. Corrosion resistance, and
7). Machinability.
6. ULYIMATE STRENGTH:

Steel is designated in India; as Fe 310 , Fellow A, $\mathrm{Fe} 54 \mathrm{OB}, \mathrm{Fe} 590$, etc, where Fe stands for the steel and the number after $F e$ is the characteri ultimate tensile stress (in Pa). The letters A, B or C. indicates the grade of steel. $W \rightarrow$ steel is weldable.

Intended use of grades of steel (IS 2062):
(i) Grade A - structures subject to normal conditions. and for non- critical loading.
(ii) Grade B -critical loading applications.
(iii) Grade C -Risk of brittle fracture requires consideration due to their design, size and/or service conditions.
2. YIELD STRESS:

strain ($\mathrm{mm} / \mathrm{mm}$)
Fig 1: Stress - strain curve of mild steel specimen

* Modulus of Elasticity $(E)=\frac{\text { stress within the proportional limit }(\$)}{\text { strain (} \varepsilon)}$
* E value vary in range of 200,000 to $210,000 \mathrm{MPa}$
- Steel obeys hooks law in this linear range Clastic range).
* The limit of elastic behaviour is associated with the yield stress f_{y} and the corresponding yield strain $\varepsilon_{y}=f_{y} / E$.
* Beyond yield limit, the steel flows plastically without increase in stress until the 'strain hardening' strain $\varepsilon_{s h}$ is reached,
This plastic range is usually considerable, and accounts for the ductility of steel.
* The stress increases above the yield stress $f_{y} ;$ when the strain hardening strain $\varepsilon_{s h}$ is exceeded, until the ultimate tensile stress f_{u} is reached Large reduction of C / s occurs at this stage,
\Rightarrow The initial slope of strain-hardening part. of the. curve is termed the strais-hardening modulus, Est'
$*$ Yield stress $=E \times \varepsilon y$

$$
\left(f_{y}\right)
$$

Ey. for mild steel is of the order of $0: 0012.5$. or 0.125%
3. DUCTHITY:

Ability of a material to change its shape without fracture.

* Stress - strain curve of a material also indicates ductility \rightarrow it is the amount of permanent strain, measured by determining the percentage elongation

Gauge length $=5.65 \sqrt{ } A_{0}$.
A_{D} - initial cross sectional area.
Percentage elongation = (elongated length b/w gauge point - gauge length) $\times 100$ gauge length

* Minimum required percentage elongations of steel produced in India is given is Table l of IS: 800:2007.
* Eurocode 3, (i) Elongation at failure $>15 \%$
(ii) $\frac{f_{u}}{f_{y}} \geqslant 1.10$
(iii) $\varepsilon_{u} \geqslant 15 \varepsilon_{y}$

4. WELDABILITY:

Ability to weld material without failure caused by Lamellar tearing.
Mostly occurs in large weld placed on thick plate.
5. TOUGHNESS:

Ability of steel to resist fracture under impact loading (ie) the capacity to absorb large amounts of energy.

* Toughness is an important design interion to we considered. sanders for earthquake loads.
* The area under stress-strain curve is a measure of toughness.
* At room temperature, structural steel is very tough A fails in ductile manner.
At temperature below $0^{\circ} \mathrm{C}$, the yield strength of steel is only marginally affected, while there is substantial reduction in ductility Δ toughness ${ }^{50}$ [(a) low temperature, steel fails suddenly without in warning]

6. CORROSION RESISTANCE:

* Exposure to sea water, acid, or alkaline vapours hasten the process of corrosion.
* 0.075 mm thickness reduced due to sulphur dioxide in atmosphere.
* Protection method - use of paint or metallic coating, or a plastic coat in case of metallic sheeting,.
steel with copper content of 0.2 to 0.5% have improved resistance to atmospheric corrosion but needs protection.

7. HARDNESS:

It is the measure of resistance. of the material to indentations and scratching.

* Brinell Hardness Number - 150 to 190.
* Vickers Hardness Number - 157 to 190
* Rockwell hardness - 80 to 105 .

8. FATIGUE RESISTANCE:

Fatigue is the term used in connection with the initiation and propogation of microscopic cracks into microcracks by repeated application of alternating stresses.

The damage and failure of materials under cyclic loads is called fatigue damage.

Following members should be designed for fatigue:
(i) Members supporting lifting or moving loads,
(ii) Members subjected to wind-induced oscillations or large numbers of cycles.
(iii) Members subjected to repeated stress cycles from vibrating machinery, and,
(iv) members subjected to crowd -induced oscillations.

STRUCTURAL STEEL PRODUCTS

- Structural steel products can be divided into the following categories:

1) Flat hot-rolled products
2) Hot-rolled sections
3) Bolts
4) Welding electrodes, and.
5) Cold-rolled shapes.
6) FLAT HOT-ROLLED PRDDUCTS:

- Plates, flat bars, sheets and strips:
\Rightarrow Plate
- Designated as:- *Plate - ISPL-lengtti \times urditb \times thickness
$*$ Sheets -IISH - length \times width \times thickness
* Strips - ISS T- width x tHickness
* Flats-ISF-thickness.
- Produced in steel. plants from red hot steel billets by passing them through a series of rollers

2) HOT - ROLLED SECTIONS:

- Rectangular hollow sections and tubes are manufactured by the process of extrusion
- In this process, heated metal billets are forced to pass through a die plate which has an opening of required size and shape.

Hot-rolled sections consists of the following:
(i) Rolled beams: (IS: 808:1989)

- Indian Standard Junior Beams (IS JB)
- Indian standard Light weight beams (I SLB)
- Indian standard Medium weight beams (ISMB)
- Indian Standard Wide flange beams (ISWB) [abb. as $J B, L B, M B$ \& $W B$ respectively].
(ii) Columns/Heavy weight beams: (IS: 808:1989)
- Indian standard Column sections (ISSC)
- Indian Standard Heavy weight Beam (ISH B). [abbreviated as $S C, H B$ respectively]
(iii) Parallel Flange Beam and Column Sections [IS 12778 :
- Indian Standard Narrow Parallel Flange Beams (ISNPB)
- Indian standard Wide Parallel flange Beams (ISWPPB)
$\left.\begin{array}{c}18.4 \\ \text { mot io } \\ \text { kg } \\ \text { in }\end{array}\right][a b$
(iv) Channels: (IS: 808: 1989)
- Indian Standard Junior Channels (ISJC)
- Indian standard light Weight Channels (ISLC)
- Indian standard Medium weight Channels. (ISMC)
- Indian Standard Medium Weight Parallel flange channels (ISMCP)
[abb. as JC, LC, $M C \& M C P$ respectively]
- Indian standard equal/unequal angles (ISEA or ISA. [abbreviated as \angle; Ex: $\angle 200 \times 100 \times 10 \rightarrow 200 \& 100=$ length of legs, $10=$ thickness (in mm)]
(vi) T-sections: (IS 1173: 1978)
- Indian Standard rolled Normal Tee Bars (ISNT)
- Indian standard rolled Deep legged Tee bars'(ISDT)
- Indian standard alit light weight Tee bars (ISLT)
- Indian standard slit Medium weight Tee bars (ISMT)
- Indian standard slit Tee bars for H sections (ISHT), [abbe as $N T, D T, L T, M T$ \& HT]
(vii) Tubular Sections
- As per IS 1161: 1998
(viii) Rectangular \$quare Hollow Sections:
- As per Is 4923:1997
\Rightarrow Rectangular Hollow section
Z) Cold FORMED LGGHT-GAUGE SECTLONSI (IS811-1987)
- Used when hot-rolled sections becomes unecoromical especially in small buildings subjected to lighter loads.

(a) Rolled beams (S-shape)

(d) Channels

(b) Columns/

Heavy -wt. beams (W shapes)

(c) Parallel flange beam / column Section

(f) Structural T-section out from W-, shape

Fig 2: Types of hot rolled sections.
LIMIT STATE DESIGN CONCEPTS
To safeguard a structure against the risk of failure, safety margins are normally provided in design, Safety margins in Working stress methed-permissible stresses; in Limit state Design method -load factors.
\rightarrow Uncertainities in design may be caused by variables such as loads, material strength and member dimension: Hence the structure must be designed to provide for the possibilities of overload.

* Factors affecting strength \& serviceability are:-
- Construction method
- Werkmanship
- Quality control
- intended levice life of the structure
- Heman errors
- change of use in future
- Frequency of looding, ete,
(‥) * LIMIT STATE is a state of impending failere beyond which a structure ceases to perform its intended function satisfactorily;

Limit state considered

Ulimate limit state

- Strength
- Stability against overturning \& sway
- Failure due to excessive deformation or rupture
- Fracture due to fatigue
- Brittle fracture

Serviciability limit state

- Deformation i deflection
- Vibration
- Repairable damage due to fatigue,
- Corrosion a durability.
- Fire

LIMIT STATE OF STRENGTH:

- Multiple safety factor design format
- Load and resistance factor design format
- Partial safety factor format
(i) Multiple Safety factor design format:

In this method, the load factor shall be chooses to result in 'target reliability', such that it will produce designs which will provide the required amount of safety and at the same time results in economic structures [\$< safety + economy]
(ii) Load and resistance factor design format:

Design resistance $\left(\phi R_{n}\right) \geqslant$ Design load effect $\left(\Sigma \gamma_{i} Q_{j}\right)$ where,
$R_{n} \rightarrow$ nominal strength
$\phi \rightarrow$ strength reduction factor. (accounts for . understrength)
$Q_{i} \rightarrow$ various loads (DL, LL, WL, etc). respective
$\gamma_{i} \rightarrow$ Overload factor
$\Rightarrow \phi$ accounts for:- $(\phi$ is <unity).

* deviation of material strength
* Reduction in member strength due to fabrication s tolerances.
* Variation in member sixes
* Uncertainties in theorritical assumptions, and

T miertcuruties i" lis unurauvil of stringing of member
$\Rightarrow \gamma_{i}$ accounts for:- $\left(\gamma_{i}\right.$ always $>$ unity $)$

* Deviation of load from characteristic value
* inaccurate assessment of load.
* Uncertainity in the assessment of effects of the load
* uncertainity in assessment of limit state being considered.
$\Sigma Q_{i}<R_{n}\left(\frac{\gamma}{\phi}\right)$, repersents the working stress concept.
$\frac{\gamma}{\phi} \rightarrow$ denotes 'factor of safety' applied to material strength; so-called 'load factor' applied to. load in order to arrive at the ultimate load for design.
(iii) Partial safety factor format:

Multiple safety factor adopted by the code is is th i so. Called partial safety factor format

$$
R_{d} \geqslant \sum \gamma_{i f} Q_{i d}
$$

where,

$$
R_{d}=\text { design strength }=\frac{R_{u}}{\gamma_{m}}
$$

$R_{u} \rightarrow$ characteristic material'strength $\gamma_{m} \rightarrow$ partial safety factor for the material

LOADS ON STRUCTURES
Most unfavourable load combination, should be considered for designing the structure.
usual forms of loads:-
(i) Dead Loads. (DL)
(ii) Imposed loads/Live loads. (LL (IL)
(iii) Wind Loads. (WL)
(iv) Earthquake loads. (EL)
(v) Snow loads (varies with place popery)
(vi) Ice loads caries with place)
(vii) Crane loads (In industrial buildings)
(viii) Temperature loads
(ix) Erection \& fabrication loads.
(x) Dynamic loads (due to earttrquake \& wind)
(xi) Impact loads (bridges \& cranes)
(xii) Longitudinal' loads (due to vehicle/moving loads)
(xii) Blast or explosive loads
(xiv) Loading due to fire.
(xv) Foundation settlement (especially differential settlement)
(xvi) Hydrostatic loads (liquid retaining structures)

- uncertainties in theoritical assumptions, and
(xvii) Wave and current loads (Marine 1 offshore structures)
(xviii) Earth pressure (Basements, Retaining Walls, columns, footings, etc.)
(xix) Creep \& Shrinkage loads
($x \times$) Fatigue effects
(xxi) Dust loads (in deserts)
(xii) Prestressing loads,
(xxiii) Effect due to stress concentration 4 eccentric connections, rigidity of joints differing from design assumptions, etc.
(xxiv) Construction loads, elastic shortening of members, \Rightarrow Loads on the structure may be due to the following :-

1. Mass 4 gravitational effects
2. Mass 4 acceleration effects.
3. Environmental effects.
\Rightarrow Is $800: 2007$ classifies actions or loads as follows:
4. Permanent actions $\left(Q_{p}\right)$
5. Variable actions $\left(Q_{v}\right)$
6. (Accidental actions $\mathcal{C Q} a)$

Design a suitable I beam for a simply supported span of 5 m . and carrying a dead load of $20 \mathrm{kN} / \mathrm{m}$ and imposed load of $40 \mathrm{kN} / \mathrm{m}$. Take fy $=250 \mathrm{MPa}$

Design load calculations:

Factored load $=\gamma_{\text {LD }} \times 20+\gamma_{\text {LL }} \times 40$
Using partial safety factors for D.L YLD $=1.50$ and for L.L YLL $=1.5$ (Cl. 5.3.3 Table 4, Page 29)

Total factored load $=1.50 \times 20+1.5 \times 40=90 \mathrm{kN} / \mathrm{m}$

Factored Bending Moment $M=90 \times 5 \times 5 / 8$

$$
=281.25 \mathrm{kN} . \mathrm{m}
$$

$Z p$ required for value of $f y=250 \mathrm{MPa}$ and

$$
Y_{m o}=1.10
$$

(Table 5, Page 30)

$$
\begin{aligned}
Z p & =(281.25 \times 1000 \times 1000 \times 1.1) / 250=1237500 \mathrm{~mm}^{3} \\
& =1237.50 \mathrm{~cm} 3
\end{aligned}
$$

Using shape factor $=1.14, Z e=1237.50 / 1.14=1085.52 \mathrm{~cm} 3$

Options ISWB 400 @ $66.7 \mathrm{~kg} / \mathrm{m}$ or ISLB 450 @ $65.3 \mathrm{~kg} / \mathrm{m}$
Try ISLB 450
$\mathrm{Ze}=1223.8 \mathrm{~cm}^{3}>1085.52$
$D=450 \mathrm{~mm}, B=170 \mathrm{~mm}, t f=13.4 \mathrm{~mm}, t w=8.6 \mathrm{~mm}, h 1=384 \mathrm{~mm}, h 2=33$
$m m$
$\mid x x=27536.1 \mathrm{~cm} 4$

As $f y=250 \mathrm{MPa}$,

Section Classification :
$B / 2 t f=85 / 13.4=6.34<9.4 \varepsilon$
$\mathrm{h} 1 / \mathrm{tw}=384 / 8.6=44.65<83.9 \varepsilon$

Section is Classified as Plastic
$Z p=1.14 \times 1223.8=1395.132 \mathrm{~cm} 3$

Design Bending Strength: Md

$>281.25 k N . m$
$\beta b=1.0$ for plastic section (Cl. 8.2.1.2, Page 53)

Check for Serviceability - Deflection
Load factor $=\gamma L D$ and $\gamma L L=1.00$ both, (Cl. 5.6.1, Page 31)
Design load $=20+40=60 \mathrm{kN} / \mathrm{m}$

$$
\delta=\frac{5 \times 60 \times(5000)^{4}}{384 \times 2 \times 10^{5} \times 27536.1 \times 10^{4}}=8.866 \mathrm{~mm}
$$

Limiting deflection $=$ Span/360 (Table. 5.3, Page 52)

$$
=5000 / 360=13.889 \mathrm{~mm} \ldots . O K
$$

Hence Use ISLB 450

Working Stress Method IS : 800-1984

Max Bending Moment $=60 \times 5 \times 5 / 8=187.5 \mathrm{kN} . \mathrm{m}$ Max Shear Force $=60 \times 5 / 2=150 \mathrm{kN}$

$$
\text { Zreq }=\frac{187.5 \times 10^{6}}{165}=1136.3 \mathrm{~cm}^{3}
$$

Select ISLB $450 \mathrm{Zxx}=1223.8$ Moment Capacity

$$
=201.927 \mathrm{kN} . \mathrm{m}
$$

Check for Shear

$$
q_{a v}=\frac{150 \times 1000}{450 \times 8.6}=38.76 \mathrm{MPa}<100 \mathrm{MPa}
$$

Check for Deflection

$$
\begin{aligned}
& \delta=\frac{5 \times 60 \times(5000)^{4}}{384 \times 2 \times 10^{5} \times 27536.1 \times 10^{4}}=8.866 \mathrm{~mm} \\
& \text { Limitingdeflection }=\text { Span } 325=5000 / 325 \\
&=15.38 \mathrm{~mm} \ldots . .0 \mathrm{~K}
\end{aligned}
$$

Comparison of ISLB 450 Section

	Working Stress Method	Limit State Method
Moment Capacity	$201.927 \mathrm{kN} . \mathrm{m}>$	$317.075 \mathrm{KNm}>$ 187.5 KNm
Shear Capacity	$387 \mathrm{KN}>150 \mathrm{KN}$	$507.497 \mathrm{KN}>225$ KN
Section Designed	ISLB 450@65.3 Kg / m	ISLB 450 @ 65.3 kg / m

The Section designed as per LSM is having more reserve capacity for both BM and SF as compared to WSM

CE8601 - DESIGN OF STEEL STRUCTURES
 UNIT - 2
 CONNECTIONS IN STEEL STRUCTURES

TOPICS TO LEARN:

1. Bolted connections - Lap joint, single cover butt joint, double cover butt joint.
a. Analysis - Computation of efficiency, strength of joint.
b. Design of connection.
2. Welded connections - Fillet weld, groove weld, plug weld connections
a. Analysis - Computation of efficiency, strength of joint.
b. Design of connection.
3. Rivet connections - Lap joint, butt joint - single cover and double cover
a. Analysis - Computation of efficiency, strength of joint.
b. Design of connection.

BOLTED CONNECTIONS

Failure modes of bolted connections: a) tear-out failure of sheet, b) bearing failure of sheet, c) tension failure of net section, d) bolt shear failure	(a) (b) (d)
A_{nb}	$0.78 \mathrm{x}\left(\frac{\pi}{4} \mathrm{~d}^{2}\right)$
n_{n}	1
$\mathrm{n}_{\text {s }}$	0 (since, in at least one plane of the connection threads are present)
$\mathrm{A}_{\text {sb }}$	$\frac{\pi}{4} \mathrm{~d}^{2}$
D	Diameter of the bolt
d_{0} or d_{h}	Diameter of hole $=\mathrm{d}+2(\mathrm{~mm})$
f_{ub}	Ultimate tensile strength of bolts - table I IS 800 page 13 \& 14
f_{u}	Ultimate tensile strength of plate

$\mathrm{t}_{\text {pkg }}$	Thickness of packing plate $=$ difference between plates to be connected
T	Design thickness of plate = least of the following: i. Main plates to be connected [NOTE: Theoretically it is assumed that cover plate and packing plates do not carry any load]
Thickness of cover plate	Greater than $5 / 8$ times of ' t ' (here, t is the lowest thickness of the main plates)
Design Shear strength of bolt ($\mathrm{V}_{\text {dsb }}$)	Clause 10.3 .3 - page 75 IS 800 $V_{\mathrm{dsb}}=V_{\mathrm{nsb}} / \gamma_{\mathrm{mb}}$ where $\begin{aligned} & V_{\mathrm{nab}}= \text { nominal shear capacity of a bolt, } \\ & \text { calculated as follows: } \\ & V_{\mathrm{n} \mathrm{~b}}=\frac{f_{\mathrm{u}}}{\sqrt{3}}\left(n_{\mathrm{n}} A_{\mathrm{nb}}+n_{3} A_{\mathrm{b}}\right) \end{aligned}$ [Note: 1. In case of double cover butt joint, the bolt will be subjected to double shear, therefore shear strength of bolt should be multiplied with a factor 2 , which denotes the number of shear planes 2. If the plates of unequal thickness are to be joined, packing plate should be provided. 3. Depending on the thickness of packing plate, reduction factor as per clause 10.3.3.3 should be applied to design shear strength of bolt - i.e. $\mathrm{V}_{\text {dsb }}=$ $\mathrm{V}_{\mathrm{dsb} \text {,calculated from equation }} \mathrm{X} \beta_{\rho \mathrm{pkg}}$ $B_{p k}=\left(1-0.0125 t_{\mathrm{pk}}\right)$ where $t_{\mathrm{pk}}=\text { thickness of the thicker packing, in mm. }$
Design bearing strength of bolt $\left(\mathrm{V}_{\mathrm{dpb}}\right)$	Clause 10.3.4 page 75 $V_{\mathrm{tpb}}=V_{\mathrm{app}} / \gamma_{\mathrm{mb}}$ where $\begin{aligned} V_{\mathrm{npb}} & =\text { nominal bearing strength of a bolt } \\ & =2.5 k_{\mathrm{b}} d_{t} f_{\mathrm{u}} \end{aligned}$ where $k_{\mathrm{b}} \text { is smaller of } \frac{e}{3 d_{0}}, \frac{p}{3 d_{0}}-0.25, \frac{f_{\mathrm{ub}}}{f_{\mathrm{u}}}, 1.0 \text {; }$
Design tension capacity of plate (T_{db})	Clause 10.3.5

	$T_{\mathrm{b}} \leq T_{\mathrm{db}}$ where $\begin{aligned} T_{\mathrm{dh}}= & T_{\mathrm{nb}} / \gamma_{\mathrm{mb}} \\ T_{\mathrm{nh}}= & \text { nominal tensile capacity of the bolt, } \\ & \text { calculated as: } \\ & 0.90 f_{\mathrm{ub}} A_{\mathrm{n}}<f_{\mathrm{yb}} A_{\mathrm{sb}}\left(\gamma_{\mathrm{mb}} / \gamma_{\mathrm{mb}}\right) \end{aligned}$ where, Net area Chain bolting, $A_{n}=\left[p-d_{h}\right] t$ $A_{\mathrm{n}}=\left[b-n d_{\mathrm{n}}+\sum_{\mathrm{i}} \frac{p_{\mathrm{si}}^{2}}{4 g_{\mathrm{i}}}\right] t$ Staggered bolding, where,
Strength of plate (T_{dn})	$\begin{aligned} & \text { Clause } 10.3 .5 \\ & T_{\mathrm{dn}}=0.9 \mathrm{~A}_{\mathrm{n}} f_{\mathrm{u}} / \gamma_{\mathrm{ml}} \\ & \text { where, Net area } \mathrm{A}_{\mathrm{n}}=\mathrm{pt} \end{aligned}$
P	Pitch distance $=2.5 \mathrm{~d}$
E	Edge distance $=1.5 \mathrm{~d}_{0}$
Joint efficiency	(Strength of bolt/strength of plate) $\times 100$
Eccentrically loaded connections	$\begin{aligned} & \begin{array}{l} \mathrm{F}_{1}=\text { direct force }=\mathrm{P} / \mathrm{n} \\ \mathrm{~F}_{2}=\text { radial force }=\mathrm{Mr} / \sum \mathrm{r}^{2} \\ \text { Resultant force }<\mathrm{V}_{\mathrm{sb}} \\ \text { Resultant force }=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta} \\ \text { where, } \\ \mathrm{n}=\text { number of bolts }=\sqrt{\frac{6 M}{V_{s b} p^{\prime}}} \\ \mathrm{n}^{\prime}=\text { number of rows in which bolts are arranged } \\ \mathrm{p}-\text { pitch } \\ \mathrm{V}_{\text {sb }}-\text { design strength of bolt (lowest of shearing and } \\ \text { bearing strength of bolt }) \\ \mathrm{M}-\text { bending moment }=\mathrm{Pe} \\ \mathrm{e}=\text { distance between the eccentric load and the } \mathrm{C} . \mathrm{G} . \text { of } \\ \text { gusset plate. } \\ \mathrm{P}=\text { eccentric load } \\ \mathrm{r}=\text { radius of extreme bolt from the } \mathrm{CGC} \text { of the gusset } \end{array} \\ & \hline \end{aligned}$

	plate. $\sum r^{2}=$ summation of radius from the CGC to all the bolts in the connection $\cos \theta=$ angle between F_{1} and $F_{2}=p / r$

Figures for reference

(a) Bolt-components

(b) Bolted connection in construction

(c) Bolted connection with gusset plate

WELDED CONNECTIONS

Failure modes of welded connections: a) tensile fracture b) Shear yielding	
Types of welded connections	i. Fillet weld ii. Grove weld (or butt weld) iii. Plug weld iv. Slot weld v. Spot weld
Types of fillet weld	TYPES OF FILLET WELD
Fillet weld - fails mostly by shear	
Failure plane in fillet weld	

(b)
(b) Components in Fillet weld

(c) Fillet weld

(d) Groove weld

Failure modes of riveted connections:	i. Tension failure of platesii. Shearing failure of rivets across one or moreiii.planes. iv. Plate shear or shear out failure in the plate.
Failure patterns in rivet connec	
Tension capacity of the plates / Tensile strength	```\(P_{t}=f_{1} x\) resisting section \(=f_{t}\left(p-n_{1} d\right) t\) where, \(\mathrm{f}_{\mathrm{l}}=\) working stress in axial tension \(=0.6 \mathrm{f}_{\mathrm{y}}\) \(f_{v}=\) yield stress in steel \(p=\) pitch distance \(\mathrm{d}=\) gross diameter of the rivet \(=\) nominal diameter of rivet +1.5 (in mm) \(n_{1}=\) number of rows in which rivets are arranged \(t=\) thickness of the plate (least of the plates connected)```
Shear capacity of the rivet/Shear strength	$P_{S}=f_{S} \times \frac{\pi}{4} d^{2}$ (for single shear) $P_{S}=f_{\mathrm{s}} \times 2 \frac{\pi}{4} d^{2}$ (for double shear) where, $\mathrm{f}_{\mathrm{s}}=\text { stress in shear }$
Bearing capacity of rivets/Bearing strength	$\begin{aligned} & \mathrm{P}_{\mathrm{b}}=n d t \mathrm{f}_{\mathrm{b}} \\ & \text { where, } \\ & \mathrm{n}=\text { number of bolts in one row } \\ & \mathrm{f}_{\mathrm{b}}=\text { working stress in bearing } \end{aligned}$
Strength of solid un-riveted plate	$=\mathrm{ptf}_{\mathrm{l}}$
P	same as in the case of bolted connections

(a) Components of rivet

(b) Rivet connection

STEPS INVOLVED IN SOLVING PROBLEMS

BOLTED CONNECTION - ANALYSIS:

1. Calculate the shear strength of bolt
2. Calculate the bearing strength of bolt
3. Calculate the tensile strength of plate when bolts are provided
4. Strength of bolt $=$ least of [1], [2] and [3]
5. Calculate the strength of plate.
6. Determine efficiency.

BOLTED CONNECTION - DESIGN:

1. Determine cover plate thickness, if not provided for single cover or double cover butt joint.
2. Calculate the shear strength of bolt. [Apply correction factor for packing plate, if packing plates are provided]
3. Determine pitch and edge distance.
4. Calculate the bearing strength of bolt.
5. Calculate the tensile strength of plate when bolts are provided
6. Strength of bolt = least of [2], [4] and [5]
7. Calculate the tensile force acting on the connection if not given. [NOTE: Sometimes $\mathrm{T}=$ capacity of plate $=$ strength of unbolted plate]
8. Determine the number of bolts to be provided = Tensile load acting on plate/Strength of bolt.
9. Arrange the bolts within the given dimension of the plate. [if restriction of the plate dimension is given, i.e width of the plate given in question]
10. Detail with diagram.

BOLTED CONNECTION - DESIGN - ECCENTRIC LOAD:

1. Determine cover plate thickness, if not provided for single cover or double cover butt joint.
2. Calculate the shear strength of bolt. [Apply correction factor for packing plate, if packing plates are provided]
3. Determine pitch and edge distance.
4. Calculate the bearing strength of bolt.
5. Calculate the tensile strength of plate when bolts are provided
6. Strength of bolt $=$ least of [2], [4] and [5]
7. Calculate the moment induced by eccentric load (M)
8. Calculate the number of bolts
9. Determine direct force and radial force
10. Calculate the resultant force, resultant force $<\mathrm{V}_{\text {sb }}$
11. Detail with diagram.

BOLTED CONNECTION - ANALYSIS - ECCENTRIC LOAD:

1. Determine cover plate thickness, if not provided for single cover or double cover butt joint.
2. Calculate the shear strength of bolt. [Apply correction factor for packing plate, if packing plates are provided]
3. Determine pitch and edge distance.
4. Calculate the bearing strength of bolt.
5. Strength of bolt $=$ least of [2] and [4]
6. Calculate the moment induced by eccentric load (M), keep the eccentric load ' P ' as unknown.
7. Determine direct force and radial force, keep ' P ' as unknown.
8. Calculate the resultant force, keep ' P ' as unknown.
9. Equate resultant force $=\mathrm{V}_{\mathrm{sb}}$. Calculate ' P '.
10. Calculate safe load to be carried by the eccentric connection $=\mathrm{P} /$ Load factor.
11. Load factor $=1.5$

WELDED CONNECTION - ANALYSIS:

1. Calculate the thickness of weld/size of weld.
2. Calculate the length of weld.
3. Calculate the strength of weld [Lowest of tensile strength and shear strength for groove weld, shear strength for fillet weld].
4. Calculate the strength of plate.
5. Determine efficiency.

WELDED CONNECTION - DESIGN:

1. Calculate the thickness of weld/size of weld.
2. Calculate the strength of weld, keeping length of weld as 1 mm . [Lowest of tensile strength and shear strength for groove weld, shear strength for fillet weld]
3. Calculate the load acting on plate, if not given in question.
4. Determine the length of weld = Load acting on plate/Strength of weld.
5. Arrange the weld in straight line of as plug welded connection [if $\mathrm{I}_{\mathrm{w}}>\mathrm{b}$]
6. Detail with diagram.

RIVETED CONNECTION - ANALYSIS:

1. Calculate the shear strength of rivet.
2. Calculate the bearing strength of rivet
3. Calculate the tearing strength of plate.
4. Strength of rivet $=$ least of [1], [2] and [3]
5. Calculate the strength of un-riveted plate.
6. Determine efficiency.
7. Detail with diagram.

RIVETED CONNECTION - DESIGN:

1. Determine the nominal diameter and gross diameter of rivet.
2. Calculate the shear strength of rivet.
3. Calculate the bearing strength of rivet
4. Strength of rivet $=$ least of [1] and [2]
5. Determine the number of rivets = Factored load/Strength of rivet
6. Detail with diagram.

ECCENTRIC CONNECTIONS

Direct shear stress in the weld is

$$
q_{1}=\frac{p}{(2 b+d)} t
$$

where: P is the load (eccentrically acting).
d is the depth of the weld
b is the width of the weld t is the effective throat thickness The stress in the weld due to twisting moment (caused by eccentric loading) is the maximum in the weld at the extreme distance from the CG of the group of weld and acts perpendicular to the radius vector.
\therefore Maximum stress due to moment;

$$
q_{2}=\frac{p \times e \times r_{\max }}{I_{22}}
$$

where,
$I_{z 2}=I_{x x}+I_{y y} \rightarrow$ polar moment of inertia (of welded section eccentrically located)
$r_{\max }=$ distance of the extreme weld from the $C G$ of the group
\therefore Vector sum of the stress is,

$$
q=\sqrt{q_{1}^{2}+q_{2}^{2}+2 q_{1} q_{2} \cos \theta}
$$

- For safe design, q should be less than the resistance per unit area.

PROBLEMS
BOLT $\&$ RIVET CONNECTIONS
APRIMAY 2017
1.1 A single bolted double cover butt joint is used to connect two plates of 8 mm thickness. Assume 20 mm bolts at 50 mm pitch. Calculate the efficiency of the joint. The thickness of cover plate is 4 mm .
Soln:-
$m 20$
\uparrow
20 mm (bolts)

Assume grade of bolt as $4.6,-f_{y}=410 \mathrm{~N} / \mathrm{mm}^{2}$ Referring table I (s. No. iv) of IS $800-2007$,

$$
f_{u b}=400 \mathrm{MPa}
$$

Step 1:
Area of bolt at throat/ $\}=A_{n b}=0.78$
Net: tensile stress area $\}=A_{\text {nb }}=0.78 \mathrm{~A} \mathrm{sb}$ of bolt

$$
\begin{aligned}
& =0.78 \times \frac{\pi}{4} \times 20^{2} \\
& =245 \mathrm{~mm}^{2}
\end{aligned}
$$

Step 2:
Shear strength of one bolt in double shear

$$
\begin{aligned}
V_{d s b} & =\frac{V_{n s b}}{\gamma_{m b}} \\
V_{n s b} & =\frac{f_{u b}}{\sqrt{3}}\left(n_{n} A_{n b}+n_{s} A_{s b}\right) \\
& =\frac{400}{\sqrt{3}}\left[\left(10^{1} \times 245\right)+\left(0 \times \frac{\pi}{4} \times 20^{2}\right)\right] \\
& =56.58 \times 10^{3} 56.58 \\
V_{d s b} & =\frac{56.58}{1.25}=10^{3}=45.26
\end{aligned}
$$

Step 3:
Design strength of one bolt in bearing

$$
V_{n p b}=2.5 k_{b} d t f_{u}
$$

k_{b}
Minimum edge distance, $e=1.5 d_{\theta}$ [clause 10.2.4.28
10.2.4.3- IS: 800: 2007.

$$
\begin{gathered}
=1.5(20)=30 \mathrm{~mm} \\
d_{0}=\text { dea. of bolt }+2 \mathrm{~mm}=20+2=22 \mathrm{~mm}
\end{gathered}
$$

(a) $\frac{e}{3 d_{0}}=\frac{30}{2(22)}=0.455$
(b) $\frac{p}{3 d_{0}}-0.25$

$$
\begin{array}{r}
\text { [} \mathrm{Min} \cdot \text { pitch distance }=2.5 \mathrm{~d} \quad(\text { clause } 10.2 .2 \\
\text { Is } 800: 2007)
\end{array}
$$

$$
\begin{aligned}
& =2.5(20)=50 \mathrm{~mm}=\text { given value }] \\
& \text { given }
\end{aligned}
$$

$$
\therefore \frac{p}{3 d_{0}}-0.25=\frac{50^{\swarrow} \text { given }}{3(22)}-0.25
$$

$$
=0.507
$$

(c) f

$$
\frac{f_{u b}}{f_{u}}=\frac{400}{410}=0.976
$$

(d) 1.0

Least value of $(a),(b),(c) \&(d)$ is 0.455

$$
\therefore k_{b}=0.455
$$

$$
d=20 \mathrm{~mm}
$$

$t=$ th. of main plate or sum of thickness of two cover plates whichever is less

$$
\begin{aligned}
& =8 \mathrm{~mm} \text { or } 2(4)=8 \mathrm{~mm} \\
\therefore t & =8 \mathrm{~mm} \\
V_{n p b} & =2.5 \times 0.455 \times 20 \times 8 \times 410=74620 \mathrm{~N} \\
& =74.62 \mathrm{kN}
\end{aligned}
$$

Design strength in bearing

$$
V_{d p b}=\frac{V_{n p b}}{\gamma_{m b}}=\frac{74.62}{1.25}=59.70 \mathrm{kN}
$$

Step 4:
Strength of main plate in tearing /

$$
\begin{aligned}
& \text { Strength of pitch } \\
& \text { section per } \\
& \text { length }
\end{aligned}
$$

$$
\begin{aligned}
& =0.9 A_{n} \frac{f_{u}}{\gamma_{m l}} \\
& =0.9(p-d) t \frac{f_{u}}{\gamma_{m l}}=0.9(50-20) \times 8 \times \frac{410}{1.25} \\
& =70848 \mathrm{~N} \approx 70.85 \mathrm{kN}
\end{aligned}
$$

Strength of joint per pitch length
$=59.70 \mathrm{kN}$ (least of step 2,384)
Step 5:
Strength of solid plate per pitch length

$$
\begin{aligned}
& =\frac{\left.0.9 f_{u} A^{(p \times t}\right)_{\text {of plate }}}{\gamma_{\mathrm{ml}}}=\frac{0.9 \times 410 \times 50 \times 8}{1.25} \\
& =118080 \mathrm{~N}=118.08 \mathrm{kN}
\end{aligned}
$$

Step 6:

$$
\text { Joint efficiency, } \begin{aligned}
\eta & =\frac{\text { strength of joint }}{\text { strength of solid plate }} \times 100 \\
& =\frac{59.70}{118.08} \times 100=50.55 \%
\end{aligned}
$$

NOV DEC 2016
1.2 A bracket connection is shown in figure below with 24 mm diameter bolts of grade 4.6 and plate ECCNNTRONS of grade Fe 410 steel, determine the safe load (P) COM That could be transferred through the connection

Soln: Step 1: Material properties:
For bole M 24 bolts of grade 4.6 ,

$$
\begin{aligned}
& d=24 \mathrm{~mm}, \quad d_{0}=24+2=26 \mathrm{~mm} \\
& f_{u_{b}}=f_{u}=400 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

For rolled steel sections, $f_{u}=410 \mathrm{~N} / \mathrm{mm}^{2}$ Assume web section as, ISMC 350, is Thickness of web $=8.1 \mathrm{~mm}$ (refer steed table)

Step 2: Design strength:
\because this is a lap joint between bracket plate and web of ISMC 300, the bolts are in single shear,

$$
\begin{aligned}
& \text { (a) } \therefore \text { Design strength of bolts in shear } A_{s b} \\
& V_{d s b}=\frac{V_{n s b}}{8_{m b}}=\frac{f_{u b}}{\sqrt{3}}\left(n_{n} A_{n b}+n_{s} A_{s b}\right) \\
& \gamma_{m b} \\
&=\left[\frac{400}{\sqrt{3}}\left(0.78 \times \pi / 4 \times 24^{2}\right)\right] / .25 \\
&=65192 \mathrm{~N}
\end{aligned}
$$

(b) Strength in bearing against 8.1 mm web of ISMC 350.
k_{b} is least of
(i) $\frac{e}{3 d_{0}}=\frac{\left(\frac{350}{2}-\frac{125}{2}\right)}{3 \times 26}=1.442$
(ii) $\frac{p}{3 d_{0}}-0.25 \frac{\pi}{3 \times 26}=\frac{75}{3 \times 26}-0.25=0.712$
(iii) $\frac{f_{u b}}{f_{u}}=\frac{400}{410}=0.976$
(iv) 1.0

$$
\therefore k_{b}=0.712
$$

\therefore Design strength of bolt in bearing

$$
\begin{aligned}
V_{d p h} & =\frac{V_{n p t}}{\gamma_{m b}}=\frac{2.5 k_{b} d t f_{u_{2}}}{\gamma_{m b}} \\
& =\frac{1}{1.25} \times 2.5 \times 0.712 \times 24 \times 8.1 \times 410 \\
& =113498 \mathrm{~N}
\end{aligned}
$$

\therefore Design strength of bolt $=65192 \mathrm{~N}$ least of (a) \& (b)]

Step 3: Shear force on bolt:

$$
\text { Direct shear force } F_{1}=\frac{\text { Total vertical load }}{\text { Number of bolts }}
$$

Force dice to moment $\left(F_{2}\right)^{\text {a ats at }}$, the radial line 125 C.G. of the bolted connection is at centre corner 4
The ' r ' value of 1 bolts

$$
=\sqrt{75^{2}+\left(\frac{125}{2}\right)^{2}}=97.6 \mathrm{~mm}
$$

The ' γ ' value of centre 2 bolts

$$
\begin{aligned}
= & \frac{125}{2}=62.5 \mathrm{~mm} \\
\Sigma r^{2}= & \left(\begin{array}{c}
\left.4 \times 97.6^{2}\right)+\left(2 \times 62.5^{2}\right)=45915.54 \mathrm{~mm}^{2} \\
\\
\\
\\
\text { no of resp } \\
\text { bolt } r^{\prime} \text { value }
\end{array}\right. \\
\Rightarrow \text { approx } \Sigma r^{2}= & 45915 \mathrm{~mm}^{2}
\end{aligned}
$$

Force due to moment un extreme bolt
load eccentricity from centre

$$
=\frac{M r}{\Sigma r^{2}}=\frac{(P e)^{(L)} r}{\Sigma \gamma^{2}}
$$ of gait

$$
\begin{aligned}
e & =150+\frac{125}{2} \\
& =212.5 \mathrm{~mm}
\end{aligned}
$$

(extreme bolt alone)
$=P \times 212.5 \times 97.6 \quad$ [rotation possible only due to corner bolts]

$$
=0.452 \mathrm{P} .
$$

Angle between the two forces F_{1} and F_{2} is given by

$$
\begin{aligned}
& \tan \theta=\frac{75}{62.5}=1.2 \\
& \theta=50.19^{\circ}
\end{aligned}
$$

Total shear force on the extreme bolt is given by

$$
\begin{aligned}
& =\sqrt{F_{1}{ }^{2}+F_{2}{ }^{2}+2 F_{1} F_{2} \cos \theta} \\
& =\sqrt{(0.167 P)^{2}+(0.452 P)^{2}+2(0.167 P)(0.452 P) \cos 50.16} \\
& =P(0.573)
\end{aligned}
$$

Step 4: Safe load (P)
Equating total shear force strength of bolt

$$
\Rightarrow \quad 0.573 P=65192
$$

$$
\Rightarrow P=113773 \mathrm{~N}=113.773 \mathrm{kN}
$$

Assume load factor of $1 . \frac{5}{2}$.
\therefore Safe load that would be carried by the bracket $=\frac{113.773}{1.5}=75.849 \mathrm{kN}$.

BASIC PROBLEMS
1.3 Design a lap joint between two plates as shown in Bolt figure so as to transmit a factored load of 70 kN using M16 bolts of grade 4.6 and grade 410 plates

Son: Step 1:
Nominal diameter of the bolt $=16 \mathrm{~mm}$
(d)
diameter of hole $=d_{0}=16+2=18 \mathrm{~mm}$
Step 2:
Bolts are in single shear and hence shear capacity of the balt;

$$
\begin{aligned}
V_{d s b} & \left.=\frac{\left(J_{u} / \sqrt{3}\right)\left(n_{n}{ }^{4} n b\right.}{}+{ }^{\prime} s^{r_{s} b}\right) \\
& =\frac{400}{\sqrt{3}}\left(1 \times 0.78 \times \pi / 4 \times 16^{2}\right) / 1.25 \\
& =28974 \mathrm{~N}=28.97 \mathrm{kN} \approx 29 \mathrm{kN}
\end{aligned}
$$

Bearing capacity of the thinner plates

$$
=2.5 k_{b} d t \cdot f_{u} / \gamma_{m b}
$$

k_{b} is smaller of $\left(e=\begin{array}{l}1.5 \times 16=24 \\ \text { say } 30 \mathrm{~mm}\end{array}\right)$

$$
\begin{aligned}
& k_{b} \text { is smaller of } \\
& \frac{e^{-1.5 d}}{3 d_{0}}, \frac{p^{c^{2}}}{3 d_{0}}-0.25 d \\
&= \frac{f_{u b}}{f_{u}}, 1 . \\
&=0 \times 18
\end{aligned} \frac{2.5 \times 16}{3 \times 18}-0.25, \frac{400}{410}, 110.5550 .491,0.975,1 .
$$

$$
\begin{aligned}
& \therefore K_{b}=0.491 \\
& \text { Bearing capacity }=V_{\text {deb }}=\frac{2.5 \times 0.491 \times 16 \times 12 \times 410}{1.25}
\end{aligned}
$$

$$
=47303 \mathrm{~N}=77.3 \mathrm{kN}
$$

\therefore Bolt value $=29 \mathrm{kN}$ (Bolt strength)
Step 3:

$$
\begin{aligned}
\text { Required number of bolts }= & \frac{\text { Factored load }}{\text { Bolt strength }} \\
& =\frac{70}{29}=2.41 \approx 3 \text { bolts }
\end{aligned}
$$

Step 4:

$$
\text { Minimum pitch }=2.5 d=2.5 \times 16=40 \mathrm{~mm}
$$

Minimum edge distance
1.4 Design a hanger joint as shown in figure to carry a factored load of 300 kN . Use an end plate of size $250 \mathrm{~mm} \times 150 \mathrm{~mm}$ and appropriate thickness M24 HSFG bolts (2nos) and Fe 410 steel for end plate $\left(f_{y}=250 \mathrm{MPa}\right)$.

Soln: Step 1:
Distance from the centre line of the bolt to the toe of the weld,

$$
l_{v}=\left(\frac{250}{2}-\frac{20}{2}-8-40\right)=67 \mathrm{~mm}
$$

Step 2:
For minimum thickness design,

$$
\begin{aligned}
& M=\frac{r^{\text {factored load } / 2}}{2}=\left(\frac{300}{2}\right) \times \frac{67}{2}=5025 \mathrm{kN}-\mathrm{m} \\
& t_{\text {min }}=\sqrt{\frac{4.4 M_{p}}{f_{y} b_{e}^{e}} \mathrm{~mm}} \text { in } N-m \\
& \mathrm{CNMm}^{2} \\
& =\sqrt{\frac{4.4 \times 5025 \times 10^{3}}{250 \times 150}}=\begin{array}{r}
24.56 \mathrm{~mm} \text { say } \\
25 \mathrm{~mm}
\end{array}
\end{aligned}
$$

Step 3:
Check for prying forces,
Distance l_{e} from the centre line of the bolt to the point where prying force acts is the minimum of edge distance 40 given or $L_{e}=1.1 t \sqrt{\frac{\beta f_{0} E}{f_{y}}}$ proof stress

$$
=1.1 \times 25 \sqrt{\frac{2 \times 197}{250}}=34.5 \approx 35 \mathrm{~mm}
$$

$$
\left[f_{0}=\text { proof stress }=197 \mathrm{~N} / \mathrm{mm}^{2} \text { for } 124 \text { bolt }\right]
$$

$$
\text { Prying force }=\frac{M}{l_{e}}=\frac{5025}{35}=143.6 \mathrm{kN}
$$

$$
\text { Bolt load }=\frac{300}{2}+143.6=293.6 \approx 293 \mathrm{kN}
$$

Tension capacity of M 24 bolt

$$
\begin{aligned}
& T_{n d}=\frac{0.9 f_{4} A_{n b}}{1.25}=\frac{\left(0.9 \times 800 \times 0.78 \times \frac{\pi}{4} \times 24^{2}\right)}{1.25} \\
& \therefore 203.249 \approx 203.3 \mathrm{kN}<293 \mathrm{kN} \\
& \text { Q Bolt load } \quad
\end{aligned}
$$

HSF G bolts cassuming grade HSFG 8.8 bolts $)\}$
\therefore Joint is unsafe.
Step 4::
To reduce prying force and hence bolt load, use a thicker plate. Assuming a 40 mm thick plate

$$
b_{e}=1.1 \times 40 \sqrt{\frac{2 \times 197}{250}}=55.2 \mathrm{~mm}
$$

Use $l_{e}=40 \mathrm{~mm}$ (edge distance)
Allowing prying force
factored tension

$$
\begin{aligned}
Q & =T_{n d}-\left(\frac{\text { factored load }}{2}\right) \\
& =203.3-\left(\frac{300}{2}\right)=53.3 \mathrm{kN}
\end{aligned}
$$

Moment at the toe of the weld : $=T l_{v}-Q l_{e}$

$$
\begin{aligned}
& =\left(\frac{300}{2}\right) \times 67-(53.3 \times 40) \\
& =7918 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Moment capacity } & =\frac{f_{y}}{1.10} \frac{b_{e} t^{2}}{4} \\
& =\left(\frac{250}{1.10} \times \frac{150 \times 40^{2}}{4}\right) \times 10^{-3} \\
& =13636 \mathrm{~N}-m>7.918 \mathrm{~N} \mathrm{~m}
\end{aligned}
$$

Hence the joint is safe.
Step 5:

$$
\begin{aligned}
& \text { Proof stress }=0.7 \times 800=560 \mathrm{MPa}=0.56 \mathrm{kN} / \mathrm{mm}^{12} \\
& \text { Prying force } Q=\frac{l_{v}}{2 l_{e}}\left[T_{e}-\frac{\beta \eta f_{0} b_{e} t^{4}}{27 l_{e} l_{v}^{2}}\right] \\
& \text { clause } 10.4 .7-I 5800: 2007 \\
& p q 77
\end{aligned}
$$

end plateeridth $=150 \mathrm{~mm}$ given
[NOTE: $b_{e}=$ effective width of flange per pair of bolts $\beta=2$ for non pre-tensioned bolt and

1 for pre-tensioned bolt

$$
\eta=1,5
$$

be - effective width of flange per pair of bolts $T_{e}=$ effective tension load $=T$. $]$

$$
\begin{aligned}
\therefore Q & =\frac{67}{2 \times 40}\left[150-\frac{2 \times 1.5 \times 0.560 \times 150 \times 40^{4}}{27 \times 40 \times 67^{2}}\right] \\
& =14.24 \mathrm{kN}<53.3 \mathrm{kN}
\end{aligned}
$$

\therefore The joint is safe,
1.5 A member of a truss consists of two angles ISA $75 \times 75 \times 6$ placed back to back. It carries an ultimate tensile load of 150 kN and is connected to a gusset plate 8 mm thick placed insetween the two connected legs. Determine the number of $16 \mathrm{~mm} \phi 4.6$ grade ordinary bolts required for the joint. Assume f_{u} of plate as 410 MPQ .

Soln: Step 1:
The bolts are in double shear, $V_{d s b}=29 \mathrm{kN}$,sill strength ar
(a) strength in double shear for $16 \mathrm{~mm} \oint 4.6$ grade

$$
\text { bolts }=2 \times 29=58 \mathrm{kN}
$$

(b) Strength in bearing on 8 mm plate

$$
\begin{aligned}
& =\frac{2.5 k_{b} d t f_{u}}{8_{\mathrm{mb}}} \quad\left[\begin{array}{l}
{\left[k_{b} \rightarrow\right. \text { from problem }} \\
1.3]
\end{array}\right. \\
& =\frac{2.5 \times 0.49 \times 16 \times 8 \times 400}{1.25} \quad \begin{aligned}
& k_{b}=0.491 \\
& \approx 0.49 \text { (approx) }
\end{aligned} \\
& =50176 \approx 50.2 \mathrm{kN} \\
&
\end{aligned}
$$

(c) Strength in bearing on two 6 mm thick angles

$$
\begin{aligned}
& =\frac{2.5 \times 0.49 \times 16 \times(2 \times 6) \times 400}{1.25 \times 10^{3}}=75.2 \mathrm{kN} \text { angles } \\
& 4 \mathrm{~N} \text { to } \mathrm{kN}
\end{aligned}
$$

\therefore Strength of bolt $=50.2 \mathrm{kN}$
Step 2:
Required number of bolts $=\frac{150}{50.2}=2.98 \approx 3$ bolts

NOTE:
Efficiency = strength of joint per pitch length strength of solid plate per pitch length
1.7 A single - bolted double -cover butt joint is used to connect two plates $6-\mathrm{mm}$ thick. Assuming the bolts of 20 mm diag at 60 mm pitch. Calculate the efficiency of the joint. Use 410 MPa plates and 4.6 grade bolts.

cover plate. (provided)

Solon: Step 1:
Strength of a 20 mm dia. bolt in double shear

$$
=45.3 \times 2=90.6 \mathrm{kN}
$$

Thickness of cover plate $>\frac{5 t}{8}=\frac{5 \times 6}{8 \times 6}=3.75 \mathrm{~mm}$ th. of plate
\therefore Provide 4 mm thick cover plate The thickness to be considored in the calculations are the thickness of the main plate or the sum of the cover plates whichever is less.
\therefore Strength of bolt in bearing

$$
\begin{aligned}
& =2.5 k_{b} d t f_{u} / \gamma_{m} \quad\left[\text { Take } k_{b}=1.00\right] \\
& =\frac{(2.5 \times 1 \times 20 \times 6 \times 400)}{(1.25 \times 1000)} \\
& =96 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\text { Strength of the plate in tearing } & =\frac{0.9 \mathrm{Afu}}{8_{\mathrm{ml}}} \\
& =\frac{0.9(60-22) \times 6 \times 410}{1.25 \times 1000} \\
& =67.3 \mathrm{kN}
\end{aligned}
$$

\therefore Strength of the joint $=67.3 \mathrm{kN}$ (minimum of the three).
Step 2:
Strength of the solid plate per pitch length

$$
=\frac{0.9 \times 60 \times 6 \times 410}{(1.25 \times 1000)}=106.3 \mathrm{kN}
$$

Step 3:

$$
\text { Joint efficiency }=\frac{67.3}{106.3} \times 100=63.3 \%
$$

1.8 Two plates 10 mm and 18 mm thick are to be jointed by a double -cover butt joint. Assuming
weer peeves of $\sigma \mathrm{mm}$ ineckness, design the font to transmit a factored load of 500 kN . Assume Fe 410 plate and grade 4.6 bolt.
Sols.

Assume 20 mm dia-bolt.
Step 1:

$$
\begin{aligned}
\text { Bolt strength in double shear } & =2 \times 45.3 \\
& =90.6 \mathrm{kN} \\
\text { Required number of bolts }=\frac{500}{90.6} & =5.5 \approx 6 \text { bolts }
\end{aligned}
$$

Provide 6 bolts, three in a row
Since the joint has a packing plate greater than 6 mm , the bolt strength has to be reduced by

$$
\begin{aligned}
\beta_{\text {pkg }} & =\left(1-0.0125 t_{\text {pleg }}\right) \\
& =(1-0.0125 \times 8)=0.9
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Bolt strength in shear } & =0.9 \times 90.6 \\
& =81.54 \mathrm{kN}
\end{aligned}
$$

Strength of bolt in bearing

$$
\begin{aligned}
& \text { of bolt in bearing th } \\
& =\frac{2.5 \times 1 \times 20 \times 10 \times 400}{1.25 \times 1000} \\
& =160 \mathrm{kN}
\end{aligned}
$$

\therefore Required number of bots $=\frac{500}{81.54}=6.13$
Provide 8 bolts in two rows (four in a row)
Step 2:

$$
\begin{aligned}
\text { strength of bolt } / \text { pitch Length } & =2 \times 81.54 \\
& =163.08 \mathrm{kN}
\end{aligned}
$$

strength of bolt/pitch length of the plate in tearing

$$
\begin{aligned}
& \Rightarrow 163.08=\frac{0.9(p-22) \times 10 \times 410}{1.25 \times 1000} \\
& \Rightarrow p=77.24 \mathrm{~mm}>2.5 d=50 \mathrm{~mm}
\end{aligned}
$$

$$
\therefore \text { provide pitch }=p=75 \mathrm{~mm}
$$

Provide additional these bolts of 20 mm cia on the packing plate.
$175 \times 10 \mathrm{~mm}$ (Fe 410 grade) using M 20 bolts. Arrange the bolts to give maximum efficiency,
Sols. Thickness of the cover plate $=\frac{5}{8} \times 10=6.25 \mathrm{~mm}$
Provide double cover plates each having a thickness of. 8 mm . The tensile force the. main plate can carry (assuming two bolts in a line)

$$
\begin{aligned}
& =\frac{0.9[175-2(22)] \times 10 \times 410}{1.25 \times 1000} \\
& =386.7 \mathrm{kN}
\end{aligned}
$$

Shear strength of the bolt $=2.5 d t f_{u} / P_{m}$

$$
\begin{aligned}
{\left[K_{b}=1.00\right] } & =\frac{2.5 \times 20 \times 10 \times 400}{1.25 \times 1000} \\
& =160 \mathrm{kN}
\end{aligned}
$$

$\left.\begin{array}{c}\text { Strength of bolt } \\ \text { is shear }\end{array}\right\}=2 \times V_{\text {dsb }}=2 \times 45.3=90.6 \mathrm{kN}$
\therefore strength of bolt $=90.6 \mathrm{kN}$. (least of threed.
Required number of bolts $=\frac{386.7}{90.6}=4.3$
\therefore Provide 5 bolts of 20 mm diameter

10 mm th. main plate.
1.10 An ISMB 600 is connected to a column by web cleats with a single now of bolts. If the reaction is 350 kN and there are four 20 mm dia. bolts through the web. Check if the section is adequate for block shear failure.
Sown.

NOTE: Block Shear Capacity

$$
\begin{aligned}
T_{d b_{1}} & =\frac{A_{v g} f_{v}}{\sqrt{3} \times 1.1}+\frac{0.9 f_{u} A_{t n}}{1.251} \\
T_{d b_{2}} & =\frac{0.9 f_{u} A_{v n}}{\sqrt{3} \times 1.25}+\frac{f_{y} A_{t g}}{1.1}
\end{aligned}
$$

Step 1:
Design strength of web $=350 \mathrm{~N} / \mathrm{mm}^{2}$
Plate or web th $=12 \mathrm{~mm} 3 p$.
Net length of shear face $=[(3 \times 50)+75]-(3.5 \times 22)$ $=148 \mathrm{~mm}$.
Net length of the tension face $=[60-22 / 2]$

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { distance } \\
\text { from edge }
\end{array}\right.} \\
=49 \mathrm{~mm}
\end{gathered}
$$

(a) $A_{v g}=t\left(3^{k^{n o}} 3^{3} \mathrm{c} / \mathrm{c}\right.$ dist \cdot b/w bolts + dist - of $1^{\text {st }}$ bolt from edge]

$$
=12 \times[3 \times 50+75]=2700 \mathrm{~mm}^{2}
$$

(b) $A_{V_{n}}=t \times$ net shear length

$$
=12 \times 148=1776 \mathrm{~mm}^{2}
$$

(c) $A_{t g}=t \times$ dist of bolt from edge

$$
=12 \times 60=720 \mathrm{~mm}^{2}
$$

(d) $A_{t_{n}}=t \times$ net length of tension face

$$
=12 \times 49=588 \mathrm{~mm}^{2}
$$

Step 2:

$$
\begin{aligned}
\frac{\text { ep 2: }}{T_{d b_{1}}} & =\left[\frac{2700 \times 250}{\sqrt{3} \times 1.1}+\frac{0.9 \times 410 \times 588}{1.25}\right] \times 10^{-3} \\
& =527.86 \mathrm{kN} \\
T_{d b_{2}} & =\left[\frac{0.9 \times 410 \times 1776}{\sqrt{3} \times 1.25}+\frac{250 \times 720}{1.1}\right] \times 10^{-3} \\
& =466.32 \mathrm{kN} \\
\therefore T_{d b} & =466.32 \mathrm{kN} \text { (lowest; of two) }
\end{aligned}
$$

The value of $T_{d b}$ is much higher than the applied reaction of 350 kN and hence there will not be any block shear failure in this case.
STIFPNED SEATED Design a seat angle connection between a beam MB 300 and column SC 200 for a reaction of a beam 100 kN . Using M20 bolts of property class 4.6. Take Fe 410 grade steel $\left(f_{y}=250 \mathrm{MPa}\right)$.

Soln:
Step 1: Thickness of column Henge ISSC 200

$$
=15 \mathrm{~mm}
$$

Strength in single shear (from prev prob)

$$
\begin{aligned}
&=45.3 \mathrm{kN} \\
& \text { Strength is bearing }=\frac{2.5 \times 1 \times 20 \times 15 \times 400}{1.25 \times 1000} \\
&=240 \mathrm{kN}
\end{aligned}
$$

Required number of bolts $=\frac{100}{45.3}=2.21$
Provide 4 bolts
Step 2:
Width of seat angle is 140 mm
Hence length of angle $=140 \mathrm{~mm}$
Length of bearing required at root line of beam

$$
\begin{aligned}
& \text { a) } \frac{R / k}{t_{\text {Lb }}}=\frac{R E \text { reaction/force }}{t_{\omega}\left(\frac{f_{y \omega}}{\gamma_{m 0}}\right)} \\
& =\frac{100 \times 10^{3} \mathrm{kN} \text { to } N}{7.7\left(\frac{250}{1.1}\right)}=57.15 \mathrm{~mm} \\
& \text { th. of ISMB300 }
\end{aligned}
$$

Assume end clearance of beam from face of Column as 5 mm and tolerance of $5 \mathrm{~mm} C=10 \mathrm{~mm}$
Required length of outstanding leg

$$
\begin{aligned}
&=\text { length of bearing }+10 \mathrm{~mm} \\
&=57.15+10=67.15 \mathrm{~mm}<75 \mathrm{~mm} \\
& \uparrow \\
& \text { length of } \\
& \text { leg adopted } \\
&=\text { 50 } \times 75 \times 12
\end{aligned}
$$

$$
\begin{aligned}
& \text { Length of bearing on cleat }=b_{1}= 57.15-(T+\gamma) \\
&=57.15-(13.1+14) \\
& \uparrow \\
&\left.t_{f} I S M B\right\rangle \gamma \text { of ISMB300 } \\
& \text { adopted }
\end{aligned}
$$

$$
=30.05 \mathrm{~mm}
$$

For $150 \times 75 \times 12$ angles, distance from the and of bearing on cleat. to moot angle

$$
\begin{aligned}
& b_{2}= b_{1}+10-\left(t+r_{a}\right) \text { of angle } \\
& \quad \begin{array}{l}
\text { clearance } \\
\\
\\
\quad \text { tolerance }
\end{array} \\
&=30.05+10-(12+10) \\
&=18.05 \mathrm{~mm} .
\end{aligned}
$$

ry.
Assume UDL over bearing length b_{1},
moment at root of angle (point B) due to load to right of B

$$
\begin{aligned}
& =\frac{100 \times 18.05}{30.05} \times \frac{\kappa^{R} b_{2}}{2} \\
& \hat{i}_{b_{1}} \\
& =542 \mathrm{~N}-\mathrm{m} \\
& \text { Moment capacity }=1.2 \mathrm{z} \frac{\mathrm{fy}^{(}}{\gamma_{\text {mo }}} \\
& =\left(1.2 \times \frac{140 \times 12^{2}}{6} \times \frac{250}{1.1}\right) \times 10^{-3} \\
& \text { R } \frac{b d^{2}}{6} \\
& =916 \mathrm{~N}-\mathrm{m}>542 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

\therefore Connection is safe
\therefore Provide $150 \times 75 \times 12 \mathrm{~mm}$ seating angle.
step 4::
Shear capacity of the outstanding leg of cleat

$$
=\frac{\omega t f_{y}}{\sqrt{3} \times 1.1}=\frac{140 \times 12 \times 250}{\sqrt{3} \times 1.1 \times 1000}=220 \mathrm{kN}>100
$$ force

Shear strength of beam

$$
\begin{aligned}
V_{d} & \left.=\frac{A_{v} f_{y}}{\sqrt{3} \times 1.10}=(30) \times d 70\right) \frac{(300 \times 7.5) \times 250}{(\sqrt{3} \times 1.10 \times 1000)} \\
& =303 \mathrm{kN}>100 \mathrm{kN}
\end{aligned}
$$

Hence web does not need any stiffener at support.

1.12 Design a stiffened seat angle for a reaction of 250 kN from a beam ISMB400 using M20 bolts of grade 4.6. The beam has to be connected to ISSC 200 column. Assume Fe 410 grade steel $\left(f_{y}=250 \mathrm{MPa}\right)$

Son ..

Step 1:
Length of bearing required at root line of beam

$$
=\frac{R}{\left(\frac{t_{\omega} f_{y \omega}}{\gamma_{m 0}}\right)}=\frac{250 \times 1000}{\left(8.9 \times \frac{250}{1.1}\right)}=106 \mathrm{~mm}
$$

Assuming clearance including tolerance of 10 mm Required length of the outstanding deg

$$
=106+10=116 \mathrm{~mm}
$$

Width of beam $=140 \mathrm{~mm}$
Provide a seat angle of $130 \times 130 \times 8 \mathrm{~mm}$ of length 140 mm connected to the beam by two M2D bolts

Step 2:
Stiffener angle,
Bearing area required for stiffener angle,

$$
A_{b r}=\frac{R}{\left(f_{y} / 8_{\mathrm{m}}\right)}=\frac{250 \times 10^{3}}{(250 / 1.1)}=1100 \mathrm{~mm}^{2}
$$

Select two angles ISA $80 \times 80 \times 8=1280 \mathrm{~mm}^{2}$
length of outstanding leg $=80-8^{t^{t}}=72 \mathrm{~mm}$
Thickness of the angle $t=8 \mathrm{~mm}$

$$
\frac{B}{t}=\frac{72}{8}=9<14
$$

Hence the thickness is fine
(Clause 8.7 .12 of IS code)
Distance of end reaction from column flange

$$
e_{x}=\frac{130}{2}=65 \mathrm{~mm}
$$

Provide 20 mm dias. grade 4.6 bolts at a pitch of 55 mm .
Step 3 (a)trength of bolt in single shear $=45.3 \mathrm{kN}$ (prob 1.6)
Strength of, bolt in bearing

$$
=\frac{2.5 \times 1 \times 20 \times 8 \times 400}{(1.25 \times 1000)}=128 \mathrm{kN}
$$

\therefore Strength of bolt $=45.3 \mathrm{kN}=V_{d f}$
Let us provide bolts is two rows with a pitch of

$$
\begin{aligned}
& 55 \mathrm{~mm} \text {. } \\
& n=\sqrt{\frac{6 M}{p^{\prime} n^{\prime} V_{d b}}}=\sqrt{\frac{(6 \times 250 \times 65)}{55 \times(2 \times 45.3)}} \\
& \text { 1. } \eta^{\prime} V_{d b} \\
& =4 \cdot 42
\end{aligned}
$$

Provide five bolts in each row with an edge distance of 45 mm
Step 4: Depth of stiffener angle $=(4 \times 55)+(2 \times 45)$

$$
\begin{array}{r}
=310 \mathrm{~mm} \\
h=310-45=265 \mathrm{~mm}
\end{array}
$$

The neutral axis lies at $\frac{h}{7}=\frac{265}{7}=37.86 \mathrm{~mm}$
Shear force in each bolt $=\frac{250}{10}=25 \mathrm{kN}=V_{\text {sf }}$
The critical bolt will be at the top of. the connection;

$$
\begin{aligned}
& \Sigma y=2[(45-37.86)+(100-37.86) \\
& +\left(155^{45+55755}-37.86\right)+(210-37.86) \\
& +(2655-37.86)] \\
& =2[7.14+62.14+117 \cdot 14+172 \cdot 14+227.14] \\
& \text { - } 1171.11 \mathrm{~mm}
\end{aligned}
$$

$$
=14136 \times 10^{3} \mathrm{~N}-\mathrm{mm}
$$

$$
\begin{aligned}
&=14136 \times 10^{3} \mathrm{~N}-\mathrm{mm} \\
& \text { Tensile force }=\frac{M^{\prime} y_{n} \text { last bolt }^{\text {cos }} y^{\prime}}{\sum y^{2}} \\
&=\frac{14136 \times 10^{3} \times 227.14}{197717.8}=16240 \mathrm{~N} \\
&=16.24 \mathrm{kN}=7 f
\end{aligned}
$$

Tensile strength of 20 mm bolt

$$
\begin{aligned}
& =\frac{0.90 f_{u b} A_{n}}{\gamma_{m b}}<\frac{f_{y_{b}} A_{s b}}{\gamma_{m 0}}\left(0.90 \times 400 \times\left(0.78 \times \frac{\pi}{4} \times 20^{2}\right)\right] /\left(1.25 \times 10^{3}\right) \\
& =\left[20 \times \frac{\pi}{4} \times 20^{2}\right] \times\left(1.1 \times 10^{3}\right) \\
& =\quad 70.572 \mathrm{kN}<68.54 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma y^{2}=2\left[7.14^{2}+62.14^{2}+117.14^{2}+172.14^{2}\right. \\
& \left.+227.14^{2}\right] \\
& =197717.8 \mathrm{~mm}^{2} \\
& M^{\prime}=\frac{M}{1+\left(\frac{2 h}{21}\right)\left(\frac{\Sigma y}{\Sigma y^{2}}\right)}=\frac{250 \times 10^{3} \times 65}{1+\left(\frac{2 \times 265}{21}\right)\left(\frac{1171.4}{197717.8}\right)}
\end{aligned}
$$

\therefore Tensile strength of bolt $=68.54 \mathrm{kN}=T_{d f}$
As per clause 10.4.6 Is :800-2007

$$
\begin{aligned}
& \left(\frac{V_{s f}}{V_{d f}}\right)^{2}+\left(\frac{T_{f}}{T_{d f}}\right)^{2} \leq 1.0 \\
\Rightarrow & \left(\frac{25}{45.3}\right)^{2}+\left(\frac{16.24}{68.54}\right)^{2}=0.36<1.03
\end{aligned}
$$

Hence the connection is safe,
Provide a top clip angle of $60 \times 60 \times 6 \mathrm{~mm}$ $4-M 16$ bots and a packing plate of size $188 \times 160 \times 8 \mathrm{~mm}$.

UNIT-I
2 Marks
1 Mention the advantages and disadvantages of Steel structures Advantages
\rightarrow Due to high Strength of Steel per unit quantity, small sized Seed Structural elements are Sufficient.
\rightarrow Speedy Construction is possible.
\rightarrow It can be strengthened at any later period, if necessary.
\rightarrow By using bolted Connection, the steel structures are easily dismantled and transported to other sites quickly.
\rightarrow Material used for Steel Structures are reusable.
Disadvantages
\rightarrow The Components are easily susceptible to corrosion.
\rightarrow Steel members are costly compared to RCC Structures.
\rightarrow Maintenance cost is high, since it reed painting to prevent Corrosion.
\rightarrow At high temperature steel loses most of its strength, leading to deformation or failure.

2 Define the limit states [AU May 2010]
The limit state design (LSM) aims for a comprehensive and rational solution to the design problem by considering safety at Ultimate loads and Serviceability at working loads. It uses multiple safety factor formats to provide safety. The limit States relevant for structural steel design can be grouped into two types.

Ultimate (Safety) Limit States
Serviceability Limit States
3. What are the load Combinations for the design purposes?
\rightarrow Dead load + Imposed Load
\rightarrow Dead Load + Imposed Load + Wind Load or earthquake load
\rightarrow Dead Load + Wind Load or Earthquake load
4. Which type of Steed is most Commonly used in gen eral Construction? Why?

Mild Steel is most commonly used in general Construction because of its durability and malleability.
5. How the rolled steel sections are classified? (or) classify the Structures based on shape and geometry. [AU MAY 2013]
\rightarrow Indian Standard Rolled Steel Joist (or) I section
\rightarrow Indian Standard Rolled Steel Channel Section
\rightarrow Indian Standard Rolled steel Angle section
\rightarrow Indian Standard Rolled Steel T section
\rightarrow Flat Plates
\rightarrow Strips
\rightarrow Round Bars
\rightarrow Hollow Tubes
6. Define characteristic Actions

The characteristic action or characteristic load may be defined as the load which will not exceeded by a Certain accepted or pro assigned probaility (usually 5%) during the life of the Structure. Using the normal distribution the characteristic load can be expressed as

$$
Q_{c}=Q_{m}+1.65 \sigma
$$

7 Define Partial Safty Factor
The factor used to calculate the design strength or resistance from the characteristic strength is known as partial safety factor. This factor is dived into two (i) For materials and for loads
8. What is working stress method (WSM)?

The stresses caused by the characteristic loads are checked against the permissible (allowable) stresses, which is a fraction of yield stress. The permissible stresses are defined by means of a factor of safety, which takes care of overload or other unknown factors.

$$
\text { Permissible stress }=\frac{\text { Yield } \text { Stress }}{\text { FOS }}
$$

Hence in working stress method
working stress \leq permissible Stress
9. Methods of Structural Analysis
\rightarrow Elastic Analysis
\rightarrow Plastic Analysis
\rightarrow Advanced Analysis
\rightarrow Dynamic Analysis

10 Mention the Physical properties of structural steel
\rightarrow Unit mass of steel, $P=7850 \mathrm{~kg} / \mathrm{m}^{3}$
\rightarrow Modulus of Elasticity, $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
\rightarrow Poisson Ratio, $\mu=0.3$
\rightarrow Modulus of Rigidity, $G=0.769 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
\rightarrow Coefficient of thermal expansion, $\alpha=12 \times 10^{-6} \%$

ONIT-2
BOLTED CONNECTION

1. List out the uses of Bolted Connection
(AU May 2011)
\rightarrow Bolts can be used for making end connections in tension and Compression members.
\rightarrow Bolts can also be used to hold down column bases in Position.
\rightarrow They can be used as separators for purling and beams in foundations, etc
2. Define Pitch
[AUMay 2012]
Pitch is the distance between the centre of two consecutive rivets measured abng a row of rivets

3 Define Efficiency of the joint [AUMay 2014, NOU2013]
It is the ratio of the strength of the joint to the strength of the main member expressed as a percentage. The effectiveness of a particular riveted joint is measured by the efficiency.

4 What do you mean by staggered pitch? [AU May 2011]
This is also known as alternate or reeled pitch. It is the distance measured along one bolt line, from the Centre of a bolt on it to the centre of the adjoining bolt on a lower and parallel bolt line.
5. Define High tension Bolts. How it is different from Common black bolt? [AUNOV 2012, May 2011]

If the bolts are made from bars of medium Carbon steel then it is referred as tight strength Bolts. The high strength is achieved by quenching and tempering process or by alloying steel. This makes the bolts less ductile
than bolts. For these types, proof load is used instead of yield stress. The increased tensile strength redues the number of bolts. Also the vibration and impact resistance of the joints are improved considerably. These bolts are tightened to a proof load using calibrated wrenches. Hence they grip the members tightly

6 Name the different types of Connections
\rightarrow Riveted Connections
\rightarrow Welded Connections
\rightarrow Bolted Connections
\rightarrow Pinned Connections
7 What is meant by bolt value?
The least of the strengths in shearing and bearing of one bolt is equal to the bolt value.
8 Mention the types of failure of a bolted joint. [AU May 2014]
\rightarrow Tearing failure of the plate
\rightarrow Shear failure of the plate
\rightarrow Shear failure of the bolt
\rightarrow Bearing failure of the bolt
\rightarrow Splitting failure of plate
9 List out the different types of bolts (AU NOV 2015, May 2012]
\rightarrow Black Bolts or unfinished Bolts or C grade Bolts
\rightarrow Turned Bolts or Close Tolerance Bolts
\rightarrow Precision Bolts or A grade Bolts
(1) Semi Precision Bolts or B grade Bolts
(2) Ribbed Bolts
\rightarrow High strength bolts.

9 What do you understand by prying action (AU NOV 2013)
In moment resisting beam -to. column Connection, the bolts will transfer the load by direct tension which is generally located at the end of connection. The additional farce induced in the bolt is mainly due to the flexibility of connected plates is known as Prying forces

10 What is block Shear failure? (AU NOV 2013)
If failure occurs in shear at a row of bolt holes Parallel to the applied loads, accompanied by tensile rupture along a perpendicular face then it is referred as block shear failure. This type of failure results in a block of material being torn out by the applied shear force.

DEPARTMENT OF CIVIL ENGINEERING

2 MARKS

UNIT -1 \& 2

1. Define Rivet line.
2. What is slip factor?
3. What are the advantages of riveted connections?
4. Define the efficiency of a joint.
5. List any two limit states.
6. Name the various types of bolted connections.
7. Write the equation for calculating the effective throat thickness of a weld.
8. A single riveted double cover butt joint in plates 12 mm thick is made with 20 mm diameter power driven rivets at a pitch of 90 mm . Find the safe load per pitch length of the joint.
9. A circular plate of 150 mm diameter is welded to another plate by means of 6 mm fillet weld. Calculate the greatest twisting moment that can be resisted by the weld if the permissible shearing stress in the weld is $110 \mathrm{~N} / \mathrm{mm}^{2}$.
10. List out some major types of connections.
11. In what circumstances the joints are most suitable
12. What is the difference between pitch and staggered pitch?
13. The minimum pitch allowed in the code is \qquad
14. The maximum longitudinal pitch allowed in a bolted compression member is \qquad
\qquad
15. The maximum longitudinal pitch allowed in a bolted tension member is \qquad
16. The minimum edge distance in a member with rolled edge is approximately \qquad
17. Write short notes on pinned connection.
18. List out some simple connections used in steel structures.
19. Write short notes on :i) Lap joint ii) Butt joint.
20. What is the difference between unstiffened and stiffened seat connection?
21. List some important advantages of welding over bolting.
22. List some important disadvantages of welding? What are they?
23. List out four types of welds.
24. Minimum thickness of fillet weld should be -------. Minimum length of fillet weld should be \qquad
25. What is the main drawback of a butt joint?

16 MARKS

UNIT -1 \& 2

1. Design riveted connections for a bracket as shown in fig, carrying an eccentric load of 250 kN at a distance of 300 mm from the centre line. Adopt limit state design concepts.
2. (i) Explain the advantages and disadvantages of bolted connections.
(ii) Two plates of 15 mm thickness have been connected in a lap joint using high strength friction grip bolts. Design the joint so as to transmit a pull equal to full strength of the plate.
3. Explain the possible failures of a riveted joint.
4. Fig. shows an arranged to support a bracket plate. The load applied to the bracket plate is 100 kN . Find the greatest resistance offered by the weld per mm length. If 6 mm fillet welds are used, find the greatest stress intensity in the weld.
5. A plate girder has flange plate of $440 \times 25 \mathrm{~mm}$ and it was found from the beam analysis that this place where a joint has to be provided is subjected to a tension of 1150 kN .Design a butt weld.
6. A 16 m span truss has a rafter consisting of 21SA 40,40,6 and which is subjected to 56.70 kN compression, design using rivets.
7. A 6 mm thick angle section is jointed to a 10 mm thick gusset plate. The angle is supporting a load of 60 kN . Find out the number of 16 mm diameter rivets.
8. A tie member $75 \mathrm{~mm} \times 8 \mathrm{~mm}$ is to transmit a load of 90 kN . Design the fillet weld and calculate the necessary overlap.
9. Calculate the maximum load carried by any rivet shown in fig. Rivet and B are $200 \mathrm{~mm}^{2}$ cross sectional area and rivet C of $400 \mathrm{~mm}^{2}$ area.
10. Design the welded joint of a truss shown in fig. take the permissible shear stress in the weld is $110 \mathrm{~N} / \mathrm{mm}^{2}$. Need not design the connection of the member.
11. Two plates 12 mm and 10 mm thick are joined by triple riveted lap joint, in which the pitch of the central row of rivets is 0.6 times the pitch of rivets in the outer rows. Design the joint and find its efficiency. Take $\sigma_{\mathrm{at}}=150$ $\mathrm{N} / \mathrm{mm}^{2}, \tau_{\mathrm{vf}}=80 \mathrm{~N} / \mathrm{mm}^{2}$ and $\sigma_{\mathrm{vf}}=250 \mathrm{~N} / \mathrm{mm}^{2}$.
12. A bracket carrying a load of 100 kN is connected to column by means of two horizontal fillet welds, of 130 mm effective length and 10 mm thick. the load acts at 70 mm from the face of the column as shown in fig. Find the throat stress.
13. Explain the possible failures of a riveted joint.
14. Fig. shows an arranged to support a bracket plate. The load applied to the bracket plate is 100 kN . Find the greatest resistance offered by the weld per mm length. If 6 mm fillet welds are used, find the greatest stress intensity in the weld.

DEPARTMENT OF CIVIL ENGINEERING

DESIGN OF STEEL STRUCTURAL ELEMENTS

Course material

Compiled by,

C.NAVANEETHA KRISHNAN M.E.,MISTE ASSISTANT PROFESSOR
DEPARTMENT OF CIVIL ENGINEERING MOHAMED SATHAK AJ COLLEGE OF ENGINEERING CHENNAI

UNIT III - DESIGN OF TENSION MEMBER

UNIT-III
DESIGN OF TENSION

Tension Members:-
Tension members are design to satisfy the design strength of the member against
(i) Yielding of gross section
(ii) Rupture of critical section
(iii) Block shear @ end of connection

Generally tension members are known as tie member.

The various shapes of tension members are solid circular sections, plates, angles, channels, I-sections, T-section \& built-up section.

1. Design strength of Tension Members are due to yielding:- [cls 6.2 IS 800-2007]

$$
T_{d g}=\frac{A_{g} f_{y}}{\gamma_{m o}}
$$

2. Design strength due to rupture of critical section:- [cls 6.3 IS 800-2007] (Ultimate)

$$
T_{d n}=\frac{0.9 \text { Anfu }}{\gamma_{m l}}
$$

Where,

$$
A n=\left[b-n d_{n}+\sum_{l} \frac{p_{s i}}{u_{g i}}\right] \mathrm{t}
$$

a) For Angular section design strength of rupture:-

$$
T_{d n}=\frac{0.9 \mathrm{~A}_{n e} f_{u}}{\gamma_{m l}}+\frac{\beta A_{g o} f_{y}}{\gamma_{m o}}
$$

Where,

$$
\beta=1.4-0.076\left({ }^{w} / /_{t}\left(f_{y} / f_{u}\right)\left({ }^{b_{s}} / l_{c}\right) \leq\left(\frac{f_{u} \gamma_{m o}}{f_{y} \gamma_{m l}}\right) \geq 0.7\right.
$$

3. Design strength of member due to block shear failure @ the end connection:- [cls 6.4 IS 800-2007]
a) Bolted Connections:- [cls 6.4.1]

$$
T_{d b}=\left\lceil\frac{A_{v g} f_{y}}{\sqrt{3} \gamma_{m o}}\right\rceil+\frac{0.9 \mathrm{~A}_{t n} f_{u}}{\gamma_{m l}}
$$

(or)

$$
T_{d b}=\left\lceil\frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m l}}\right\rceil+\frac{A_{t g} f_{y}}{\gamma_{m o}}
$$

(a)

(b)
b) Welded Connection:-

Appropriate length of member is considered around the end weld.
Preliminary section:- [cls 6.3.3 IS 800-2007]
Preliminary section is assumed from the relation is based on

$$
T_{d n}=\frac{\alpha A_{n} f_{u}}{\gamma_{m l}}
$$

1. Determine the design tensile strength of the plate of size 200x12mm with holes having bolts of dia 16 mm (M16). The grade of steel used is Fe410.

Given:-
Size of plate $=200 \mathrm{~mm} \times 12 \mathrm{~mm}$
Dia of bolt $=16 \mathrm{~mm}$
Grade $\mathrm{Fe} 410 \Rightarrow \mathrm{fu}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$
Sln:-

1. Design strength due to yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
T_{d g} & =\frac{A_{g} f_{y}}{\gamma_{m o}} \\
\mathrm{Ag} & =130 \times 12=1560 \mathrm{~mm}^{2} \\
& =\frac{1560 \times 250}{1.1 \Rightarrow(\text { table } 5)} \\
\mathrm{T}_{\mathrm{dg}} & =354.5 \mathrm{KN}
\end{aligned}
$$

2. Design strength of plate @ rupture: [Along critical section] [cls 6.3 IS 800-2007]

The critical section is along the line having 2 bolts

$$
\begin{aligned}
T_{d n} & =\frac{0.9 \mathrm{~A}_{n} f_{u}}{\gamma_{m l}} \\
A_{n} & =\left[b-n d_{n}\right] t \\
\mathrm{n} & =2 \\
\mathrm{~b} & =130 \mathrm{~mm} \\
& =[130-2 \times 18] 12 \\
A_{n} & =1128 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.9 \times 1128 \times 410}{1.25 \Rightarrow[\text { Table }-5]} \\
& T_{d n}=332.9 \mathrm{KN}
\end{aligned}
$$

3. Design strength due to block shear:- [cls 6.4 IS 800-2007]

$$
\begin{aligned}
& T_{d b}=\left\{\frac{A_{v g} f_{y}}{\sqrt{3 \gamma_{m o}}}\right\rfloor+\left\lfloor\frac{0.9 \mathrm{~A}_{t n} f_{u}}{\gamma_{m l}}\right] \\
& T_{d n}=\left\lceil\frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m n}}\right]+\left\lfloor\frac{A_{t g} f_{y}}{\gamma_{m o}}\right]
\end{aligned}
$$

Where,
Section considered for A_{vg} is (e +n 'p) $\mathrm{x} t$
Section considered for A_{vg} is (n 'g) x t
Section considered for $\mathrm{A}_{\mathrm{vn}} \& \mathrm{~A}_{\mathrm{tn}}$ is the net area after detecting the bolt hole.

$$
\begin{gathered}
\mathrm{A}_{\mathrm{vg}}=(35+60) 12=1140 \mathrm{~mm}^{2} \\
\mathrm{~A}_{\mathrm{tg}}=60 \mathrm{x} 12=720 \mathrm{~mm}^{2} \\
\mathrm{~A}_{\mathrm{vn}}=[35+60-18] \times 12=924 \mathrm{~mm}^{2} \\
\mathrm{~A}_{\mathrm{tn}}=[60-18] 12=504 \mathrm{~mm}^{2} \\
T_{d b_{1}}=\left[\frac{1140 \times 250}{\sqrt{3} \times 1.1}\right]+\left[\frac{0.9 \times 504 \times 410}{1.25}\right] \\
T_{d b}=298.36 \mathrm{KN} \\
\text { (or) } \\
T_{d b}=\left[\frac{0.9 \times 924 \times 410}{\sqrt{3} \times 1.25}\right]+\left[\frac{720 \times 250}{1.1}\right] \\
T_{d b_{2}}=321.12 \mathrm{KN}
\end{gathered}
$$

\therefore The least of the above 4 strength value is the design strength of the plate.
\therefore Design strength of the plate $=298.36 \mathrm{KN}$

1. A single unequal angle ISA $90 \times 60 \times 6 \mathrm{~mm}$ is connected to a 10 mm tk gusset plate at the ends with 5 Nos of 16 mm dia bolts to transfer tension. Determine the design tensile strength of the angle if the gusset is connected to the 90 mm leg.
Given:-

$$
\begin{aligned}
g & =50 \mathrm{~mm}, \text { if } 90 \mathrm{~mm} \text { leg is connected } \\
& =30 \mathrm{~mm}, \text { if } 60 \mathrm{~mm} \text { leg is connected }
\end{aligned}
$$

Unequal angle $=$ ISA $90 \times 60 \times 6$
Tks of gusset plate $=10 \mathrm{~mm}$

$$
\varphi \text { of bolt }=16 \mathrm{~mm}
$$

Nos of bolt $=5$ Nos.
Sln:-

1. Design strength of angle in yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
& T_{d g}=\frac{A_{g} f_{y}}{\gamma_{m o}} \\
& A_{g}=[(90-6 / 2)+(60-6 / 2)] \times 6 \\
& A_{g}=864 \mathrm{~mm}^{2} \\
& \quad=\frac{864 \times 250}{1.1} \\
& T_{d g}=196.36 \mathrm{KN}
\end{aligned}
$$

2. Design strength of angle against rupture [cls 6.3.3 IS 800-2007]

$$
\begin{aligned}
& T_{d n}=\frac{0.9 \mathrm{~A}_{n c} f_{u}}{\gamma_{m l}}+\frac{\beta A_{g_{o}} f_{y}}{\gamma_{m o}} \\
& \beta=1.4-0.076(w / t)\left(f_{y} / f_{u}\right)\left(/ b_{s} / L_{c}\right) \leq \frac{f_{u} \gamma_{m o}}{f_{y} \gamma_{m l}} \geq 0.7
\end{aligned}
$$

Where,
$A_{n}=>$ Net area of the connected leg $=(90-6 / 2-18) 6$

$$
\mathrm{A}_{\mathrm{n}}=414 \mathrm{~mm}^{2}
$$

$\mathrm{A}_{\mathrm{g}} \Rightarrow>$ Gross area of the outstanding leg $=(60-6 / 2) \times 6$

$$
\mathrm{Ag}_{\mathrm{g}}=342 \mathrm{~mm}^{2}
$$

$$
\mathrm{w}=>\text { outstanding leg width }=60 \mathrm{~mm}
$$

$$
\mathrm{t} \Rightarrow \mathrm{tks} \text { of angle }=6 \mathrm{~mm}
$$

$$
\mathrm{b}_{\mathrm{s}} \Rightarrow>\text { shear lag width }=\mathrm{w}+\mathrm{w}_{1}-\mathrm{t}
$$

Assume, $w_{1}=90 / 2=45 \mathrm{~mm} \simeq 50 \mathrm{~mm}$
Provide $\mathrm{w}_{1}=50 \mathrm{~mm}$

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{s}}=60+50-6 \quad \mathrm{~b}_{\mathrm{s}}=104 \mathrm{~mm} \\
& \mathrm{~L}_{\mathrm{c}}=>\text { length of the end connection }=90 \mathrm{~mm} \\
& =\left[1.4-0.076 \times \frac{60}{6} \times \frac{250}{410} \times \frac{104}{90}\right] \\
& \dot{<} \frac{410 \times 1.1}{250 \times 1.25} \geq 0.7 \\
& \beta=0.864 \leq 1.44 \geq 0.7
\end{aligned}
$$

Which is true $\left[\begin{array}{lll}0.7 & 0.864 & \text { ¿ } 1.44\end{array}\right]$

$$
\begin{aligned}
& \therefore \beta=0.864 \\
& T_{d n}=\frac{0.9 \times 414 \times 410}{1.25}+\frac{0.864 \times 342 \times 250}{1.1} \\
& \begin{array}{c}
T_{d n}=189.369 \\
\mathrm{KN}
\end{array}
\end{aligned}
$$

3. Design strength of plate against block shear of end connection: [cls 6.4 IS 800-2007]

$$
\begin{aligned}
& T=\frac{A_{v g} f_{y}}{\underline{d b}}+\frac{0.9 \mathrm{~A}_{t n} f_{u}}{\gamma_{m l}} \\
& T_{d b}=\frac{\sqrt{3} \gamma^{m o} \text { (or) }}{0.9 \mathrm{~A}_{v n} f_{u}} \frac{A_{t g} f_{y}}{\sqrt{3} \gamma_{m l}}+\frac{\gamma_{m o}}{\gamma_{m o}}
\end{aligned}
$$

Where,

$$
\mathrm{A}_{\mathrm{vg}}=(30+4 \times 50) 6=1380 \mathrm{~mm}^{2}
$$

$\mathrm{A}_{\mathrm{vn}}=[230-(4.5 \times 18)] 6=894 \mathrm{~mm}^{2}$
Block shear failure takes place along line 1 to 3
' A_{tg} ' is found along line 1-2
$\mathrm{A}_{\mathrm{vg}}=(30+4 \times 50) 6=1380 \mathrm{~mm}^{2}$
A_{tg} is taken along line 2-3

$$
\begin{aligned}
& A_{t n}=\left[40-\frac{1}{2} \times 18\right] 6 \\
& A_{t n}=186 \mathrm{~mm}^{2} \\
& T_{d b}=\frac{1380 \times 250}{\sqrt{3} \times 1.1}+\frac{0.9 \times 186 \times 410}{1.25} \\
& T_{d b}=235.98 \mathrm{KN} \\
& T_{d b}=\frac{(\text { or })}{\sqrt[0.9 \times 894 \times 410]{\sqrt{3} \times 1.25}+\frac{240 \times 250}{1.1}}
\end{aligned}
$$

$$
T_{d b}=206.9 \mathrm{KN}
$$

\therefore The least of strength of section in yielding, rupture and block shear is the design strength of the section.
\therefore Design strength of the section $=189.369 \mathrm{KN}$
3. Find the design strength if the 60 mm side is connected to the gusset plate as in the above problem.

Sln:-
Here the 60 mm side is connected to gusset plate.
\therefore Assume the line of bolts to be placed at a distance $60 / 2=30 \mathrm{~mm}$

1. Design strength of angle in yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
T_{d g} & =\frac{A_{g} f_{y}}{\gamma_{m o}} \\
A_{g} & =[(90-6 / 2)+(60-6 / 2)] \times 6 \\
A_{g} & =864 \mathrm{~mm}^{2} \\
& =\frac{864 \times 250}{1.1}
\end{aligned}
$$

$$
T_{d g}=196.36 \mathrm{KN}
$$

2. Design strength of angle against rupture [cls 6.3.3 IS 800-2007]

$$
T_{d n}=\frac{0.9 \mathrm{~A}_{n c} f_{u}}{\gamma_{m l}}+\frac{\beta A_{g o} f_{y}}{\gamma_{m o}}
$$

$$
\beta=1.4-0.076(\underline{w})\left(\overline{f_{f_{u}}}\right)\left(\overline{\xi_{c}}\right) \leq \overline{f_{y} \gamma_{y} \xi_{m q}} \geq 0.7
$$

\Downarrow
Where, [cls 6.3.3 IS 800-2007]

$$
\begin{aligned}
& A_{n c}=\left(60-\frac{6}{2}-18\right) 6 \\
& =234 \mathrm{~mm}^{2}
\end{aligned} \quad \begin{gathered}
A_{g}=\left(90-\frac{6}{2}\right) \times 6 \\
=522 \mathrm{~mm}^{2} \\
\mathrm{w}=>90 \mathrm{~mm} \\
\mathrm{t}=>6 \mathrm{~mm} \\
\mathrm{~b}_{\mathrm{s}}=\mathrm{w}+\mathrm{w}_{1}-\mathrm{t} \\
=90+30-6=114 \mathrm{~mm} \\
\mathrm{~b}_{\mathrm{s}}=114 \mathrm{~mm} \\
\mathrm{~L}_{\mathrm{c}}=60 \mathrm{~mm}
\end{gathered}
$$

$$
\beta=1.4-0.076\left(\frac{90}{6}\right)\left(\frac{250}{410}\right)\left(\frac{114}{60}\right) \leq\left(\frac{410 \times 1.1}{250 \times 1.25}\right) \geq 0.7
$$

$$
\beta=0.079 \leq 1.44 \geq 0.7
$$

Max. limit for β is $f_{u} \gamma_{\text {mo }}$
$\overline{f_{y} \gamma_{m l}}$
\therefore Provide $\beta=0.7$
$\therefore T_{d n}=\frac{0.9 \times 234 \times 410}{1.25}+\frac{0.7 \times 522 \times 250}{1.1}$

$$
T_{d n}=152.12 \mathrm{KN}
$$

3. Design strength of plate against block shear:- [cls 6.4 IS 800-2007]

Where,

$$
\begin{aligned}
& A_{v g}=[30+(4 \times 50)] 6 \\
& A_{g}=1380 \mathrm{~mm}^{2} \\
& A_{t g}=30 \times 6=180 \mathrm{~mm}^{2} \\
& A_{t n}=\left[30-\frac{18}{2}\right] \times 6 \\
& A_{t n}=126 \mathrm{~mm}^{2} \\
& A_{v n}=[230-(4.5 \times 18)] 6
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{A_{v g} f_{y}}{\underline{\sqrt{3}}}+\frac{0.9 \mathrm{~A}_{\text {tn }} f_{u}}{\gamma_{m l}} \\
& T \underset{d b}{=} \frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m l}}+\frac{A_{t g} f_{y}}{\gamma_{m o}}
\end{aligned}
$$

$$
\begin{aligned}
& A_{v n}=894 \mathrm{~mm}^{2} \\
& T_{d b}=\frac{1380 \times 250}{\sqrt{3} \times 1.1}+\frac{0.9 \times 126 \times 410}{1.25} \\
& \\
& T_{d b}=218.27 \mathrm{KN} \\
& T_{d b}=\frac{0.9 \times 894 \times 410}{\sqrt{3} \times 1.25}+\frac{180 \times 250}{1.1} \\
& \quad T_{d b}=193.27 \mathrm{KN} \\
& \therefore \text { Design strength } \\
& \text { of the section }= \\
& 152.12 \mathrm{KN}
\end{aligned}
$$

DESIGN OF TENSION MEMBER:-

Design Procedure:-

1. Find the reqd gross area to carry the factored load considering the strength at yielding.

$$
A_{q}=\frac{1.1 \mathrm{~T}_{u}}{f_{y}}
$$

2. Select suitable section depending upon the type of structure \& location of member such that the gross area is 25 to 40% [generally 30%] more than ' A_{g} ' calculated.
3. Determine the no. of bolts are length of weld reqd and arrange them appropriately. [design of connection]
4. Find the strength of the assumed section considering
(i) Strength of section in yielding of gross area
(ii) Strength of section in rupture of critical section.
(iii) Strength of section against block shear at the end o connection.
5. The strength of section obtained [Design strength of section] should be more than a factored tensile force ting on the section. If not, the section has to be revised and redesign the section.
6. The slenderness ratio has to be check for the tension member, as per table-3, IS 800-2007 [Pg.No:20]

$$
\text { Slenderness ratio, } \lambda=\frac{l_{e f f}}{\gamma_{\min }}
$$

Where,

$$
\gamma_{\min }=>\text { The least of } \gamma \times x \& \gamma \text { yy of the section. [from steel table] }
$$

1. Design a single angle section for tension member of a roof truss to carry a factored load of 225 KN . The member is subjected to possible reversal of stress due to the action of wind. The length of the member is 3 m . Use 20 mm shop bolts of grade 4.6 for the connection.
Given:-

$$
\begin{gathered}
\mathrm{T}_{\mathrm{u}}=225 \mathrm{KN} \\
\mathrm{~d}=20 \mathrm{~mm}
\end{gathered}
$$

$$
f_{y}=400^{N} / \mathrm{mm}^{2}
$$

$$
\text { Grade } 4.6 \Rightarrow f_{y}=250^{N} / \mathrm{mm}^{2}
$$

$$
d_{o}=22 \mathrm{~mm}
$$

Sln:-

$$
n=\frac{T_{u}}{v}
$$

Required area, $A_{g}=\frac{1.1 \mathrm{~T}_{u}}{f_{y}}$

$$
=\frac{1.1 \times 225 \times 10^{3}}{250}
$$

$$
A_{g}=990 \mathrm{~mm}^{2}
$$

To select ISA $100 \times 75 \times 8 \mathrm{~mm}$
$A_{g}=1336 \mathrm{~mm}^{2}$ [from steel table]

$$
\begin{aligned}
& \gamma_{\mathrm{xx}}=31.4 \mathrm{~mm} \quad \gamma \quad \mathrm{yy}=21.8 \mathrm{~mm} \\
& \gamma_{\min }=21.8 \mathrm{~mm}
\end{aligned}
$$

$\lambda=\overline{21.8}$ is connected to the gusset plate (assumed tks 10 mm) by lap jt along the 100 mm side.

BOLT VALUE:-[M20]

(i) Strength of bolt in single shear:- [cls 10.3.3 IS 800-2007]

$$
\begin{aligned}
& V_{d s p}=\frac{V_{n s p}}{\gamma_{m b}} \\
&=\frac{f_{u}\left(n_{n s p} A_{n b}+n_{s} A_{s b}\right)}{\sqrt{3}} \\
& V_{d s p}=\frac{f_{u}\left(n_{n} A_{n b}+n_{s} A_{s b}\right)}{\gamma_{m b}} \cdot \mathrm{n}_{\mathrm{s}}=0 \quad \mathrm{f} \cdot \mathrm{ss} \\
&=\frac{400}{\sqrt{3}}\left[1 \times \frac{\pi \times 20^{2} \times 0.78}{4}\right] \\
& 1.25 \text { Table } 5-\mathrm{IS} 800-2007
\end{aligned}
$$

$$
V_{d s p}=45.27 \mathrm{KN}
$$

(ii) Strength of the bolt in bearing:- [cls 10.3.4 IS 800-2007]

$$
\begin{aligned}
& V_{d s p}=\frac{V_{n b p}}{\gamma_{m b}}=\frac{2.5 \mathrm{k}_{b} d_{t} f_{u}}{\gamma_{m b}} \\
& \mathrm{k}_{\mathrm{b}}=\frac{e}{3 \mathrm{~d}_{o}}, \frac{p}{3 \mathrm{~d}_{o}}-0.25, \frac{f_{u b}}{f_{u}}, 1
\end{aligned}
$$

Assume, $\mathrm{e}=1.5 \mathrm{~d}_{0}=1.5 \times 22=33 \mathrm{~mm}$ ¿ 40 mm

$$
\begin{aligned}
& \mathrm{p}=2.5 \mathrm{~d}-2.5 \times 20=50 \mathrm{~mm} \\
& \mathrm{k} \\
& \mathrm{~b}
\end{aligned} \underset{3 \times 22}{\Rightarrow}, \frac{60}{3 \times 22}-0.25, \frac{400}{410}, 1
$$

$$
\begin{aligned}
& \therefore \mathrm{k}_{\mathrm{b}}=0.606 \text { (least value) } \\
& V_{d b p}=\frac{2.5 \times 0.606 \times 20 \times 8 \times 410}{1.25}
\end{aligned}
$$

$$
V_{d b p}=79.5 \mathrm{KN}
$$

\therefore Design strength of bolt value $=45.27 \mathrm{KN}$
\therefore No. of bolts, $\mathrm{n}=\frac{T_{u}}{v}$

$$
\begin{aligned}
& =\frac{225}{45.27} \\
& =4.97 \text {; } 5 \text { Nos. }
\end{aligned}
$$

\therefore Provide 5 Nos of 20 mm dia bolts pitch 60 mm and the edge distance 40 mm .
Check for strength of section:-

1. Strength of section against yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
T_{d g} & =\frac{A_{g} f_{y}}{\gamma_{m o}} \\
A_{g} & =[(100-8 / 2)+(75-8 / 2)] \times 8 \\
A_{g} & =1336 \mathrm{~mm}^{2} \\
& =\frac{1336 \times 250}{1.1}
\end{aligned}
$$

$$
T_{d g}=303.636 \mathrm{KN}
$$

2. Design strength of the section against rupture:- [cls 6.3.3 IS 800-2007]

$$
T_{d n}=\frac{0.9 \mathrm{~A}_{n c} f_{u}}{\gamma_{m l}}+\frac{\beta A_{g o} f_{y}}{\gamma_{m o}}
$$

Where,

$$
\begin{aligned}
& \beta=1.4-0.076\left(\frac{w}{t}\right)\left(\frac{f_{4}}{f_{u}}\right)\left(\frac{b_{5}}{L_{c}}\right) \leq \frac{f_{f} \gamma_{y}}{f_{y} \gamma_{m l}} \geq 0.7 \\
& A_{n c}=\left[100-22-\frac{8}{2}\right] 8 \\
& A_{n c}=592 \mathrm{~mm}^{2} \\
& A_{g o}=\left(75-\frac{8}{2}\right) 8 \\
& A_{g o}=568 \mathrm{~mm}^{2} \\
& \mathrm{w}=75 \mathrm{~mm} \\
& \mathrm{t}=50 \mathrm{~mm} \\
& \mathrm{~b}_{\mathrm{s}}=\mathrm{w}+\mathrm{w}_{1}-\mathrm{t} \\
& =75+50-8 \\
& \mathrm{~b}_{\mathrm{s}}=117 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{L}_{\mathrm{c}}=100 \mathrm{~mm} \\
\beta=1.4-0.076\left(\frac{75}{8}\right)\left(\frac{250}{410}\right)\left(\frac{117}{100}\right) \leq\left(\frac{410 \times 1.1}{250 \times 1.25}\right) \geq 0.7 \\
=0.89 \leq 1.44 \geq 0.7 \\
\beta=0.07 \leq 0.89 \leq 1.44 \\
\therefore \beta=0.89 \\
T_{d n}=\frac{0.9 \times 592 \times 410}{1.25}+\frac{0.89 \times 568 \times 250}{1.1} \\
T_{d n}=289.6 \mathrm{KN} \\
\text { > 225 KN } \\
\text { 3. Design strength of plate against block shear:- [cls 6.4 IS 800-2007] } \\
T=\frac{A_{v g} f_{y}}{0.9 \mathrm{~A}_{\text {tn }} f_{u}} \\
\gamma_{m l} \\
\sqrt{3 \gamma^{m o}}(\text { (or) } \\
T=\frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m l}}+\frac{A_{t g} f_{y}}{\gamma_{m o}}
\end{gathered}
$$

Where,

$$
\left.\begin{array}{rl}
A_{v g} & =[40+(4 \times 60)] \times 8 \\
A_{v g} & =2240 \mathrm{~mm}^{2} \\
A_{t g} & =50 \times 8 \\
A_{t g} & =400 \mathrm{~mm}^{2} \\
A_{v n} & =[280-(4.5 \times 22)] 8 \\
A_{v n} & =1448 \mathrm{~mm}^{2} \\
A_{t n} & =\left[50-2^{2}\right. \\
A_{t n} & =312 \mathrm{~mm}^{2} \\
T_{d b_{1}}=\left[\frac{2240}{\sqrt{3}} \times 2 \times 1.1\right.
\end{array}\right]+\left[\frac{0.9 \times 312 \times 410}{1.25}\right] .
$$

$$
T_{d b_{1}}=386.026 \mathrm{KN}
$$

$$
\begin{gathered}
T_{d b}=\left[\frac{0.9 \times 3 * 48 \times 410}{}\right]+\left[\frac{4001 \times 250}{}\right] \\
T_{d b_{2}}=337.697 \mathrm{KN}
\end{gathered}
$$

The above 2 values of strength against block shear $337.697 \mathrm{KN}>225 \mathrm{KN}$
The strength of the section against yielding, rupture \& block shear are greater than the external load of 225 KN .
\therefore The assume section ISA $100 \times 75 \times 8 \mathrm{~mm}$ is safe.
2. Solve the above problem using angle section on opposite sides of gusset plate Given:-

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{u}}=225 \mathrm{KN} \\
& \mathrm{~d}=20 \mathrm{~mm} \\
& \mathrm{~d}_{\mathrm{o}}=22 \mathrm{~mm}
\end{aligned}
$$

$$
\lambda a c t=\frac{l_{e f}}{\gamma_{\min }}
$$

$\lambda \max =350$ table 3
λ act $<\lambda \max$

Grade $4.6=>\mathrm{f}_{\mathrm{u}}=400 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$
Sln:-

To find Ag_{g} :-

$$
\begin{aligned}
A_{g} & =\frac{1.1 \mathrm{~T}_{u}}{f_{y}} \\
& =\frac{1.1 \times 225 \times 10^{3}}{250} \\
A_{g} & =990 \mathrm{~mm}^{2}
\end{aligned}
$$

Area each angle reqd $=990 / 2=495 \mathrm{~mm}^{2}$
\therefore Select the section from steel table having area 30% more than $495 \mathrm{~mm}^{2}$
Try ISA 70x70x5mm

$$
\mathrm{A}_{\mathrm{g}}=667 \mathrm{~mm}^{2}[\text { from steel table }]
$$

$\gamma_{x x}=21.5 \mathrm{~mm}$
$\gamma_{y y}=21.5 \mathrm{~mm}$
Bolt Value:- [M20]
(i) Strength of bolt in double shear:-

Assuming gusset plate of tks $=10 \mathrm{~mm}$

$$
\begin{aligned}
& V_{d s b}=\frac{V_{n s p}}{\gamma_{m b}} \\
& V_{n s p}=\frac{f_{u}}{\sqrt{3}}\left[n_{n} A_{n b}+n_{s} A_{s b}\right] \\
& n_{n}=n_{s}=1 \\
& A_{n b}=\frac{1.78 \times \pi \times 20^{2}}{4}, A_{s b}=\frac{\pi \times 20^{2}}{4}=314.16 \mathrm{~mm}
\end{aligned}
$$

$$
V_{d s b}=\frac{\frac{400}{\sqrt{3}}[1 \times 245+1 \times 314.16]}{1.25}
$$

$$
V_{d s b}=103.3 \mathrm{KN}
$$

(ii) Strength of bolt in bearing:-

$$
\begin{aligned}
V_{d b p} & =\frac{V_{n b p}}{\gamma_{m b}} \\
& =\frac{2.5 \mathrm{k}_{b} d_{t} f_{u}}{\gamma_{m b}}
\end{aligned}
$$

$$
\text { Assume } \mathrm{e}=1.5 \mathrm{~d}_{0}=33 \mathrm{~mm} \text { ¿ } 40 \mathrm{~mm}
$$

$$
\begin{aligned}
k & =\frac{40}{\mathrm{p}}=\frac{60}{3 \times 22}, \frac{5 \mathrm{~d}=50 \mathrm{~mm}}{3 \times 22}-0.25, \frac{\dot{400}}{410}, 1 \\
b & =0.606,0.659,0.975,1
\end{aligned}
$$

\therefore Take $\mathrm{k}_{\mathrm{b}}=0.606$ [least value]

$$
V_{d b p}=\frac{2.5 \times 0.606 \times 20 \times 10 \times 410}{1.25}
$$

$$
\begin{gathered}
V_{d b p}= \\
99.38 \mathrm{KN} \\
\hline
\end{gathered}
$$

\therefore Design strength of bolt value $=99.38 \mathrm{KN}$
\therefore No. of bolts $=225 / 99.38$

$$
=2.26 \text { ¿ } 3 \text { Nos. }
$$

\therefore Provide 3 nos. of 20 mm bolts for pitch $60 \mathrm{~mm} \&$ tks edge distance 40 mm .
Check for strength of section:-

1. Strength of section against yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
& T_{d g}=\frac{A_{g} f_{y}}{\gamma_{m o}} \\
& \begin{aligned}
A_{g} & =\left[\left[\left(0-\frac{5}{2}\right)+\left(70-\frac{5}{2}\right)\right] \times 5\right] \times 2 \\
A_{g} & =1334 \mathrm{~mm}^{2} \\
& =\frac{1334 \times 250}{1.1} \\
T_{d g}=303.18 \mathrm{KN} & >225 \mathrm{KN}
\end{aligned}
\end{aligned}
$$

2. Strength of section against rupture:- [cls 6.3.3 IS 800-2007]

$$
T_{d n}=\frac{0.9 \mathrm{~A}_{n c} f_{u}}{\gamma_{m l}}+\frac{\beta A_{g o} f_{y}}{\gamma_{m o}}
$$

Where,

$$
\begin{aligned}
& \beta=1.4-0.076\left(\frac{w}{t}\right)\left(\frac{f_{y}}{f_{u}}\right)\left(\frac{b_{s}}{L_{c}}\right) \leq \frac{f_{u} \gamma_{\text {mad }}}{f_{y} \gamma_{m l}} \geq 0.7 \\
& A_{n c}=\left[70-22-\frac{5}{2}\right] \times 5 \times 2 \\
& A_{n c}=456 \mathrm{~mm}^{2} \\
& \begin{array}{l}
A_{g o}=\left(70-\frac{5}{z}\right) \times 5 \times 2 \\
A_{g \sigma}=675 \mathrm{~mm}^{2}
\end{array} \\
& \mathrm{w}=70 \mathrm{~mm} \\
& \mathrm{w}_{1}=35 \mathrm{~mm} \text { ¿ } 40 \mathrm{~mm} \\
& \mathrm{~b}_{\mathrm{s}}=\mathrm{w}+\mathrm{w}_{1}-\mathrm{t} \\
& =70+40-10 \\
& =100 \\
& \beta=1.4-0.076\left(\frac{70}{100}\right)\left(\frac{250}{410}\right)\left(\frac{100}{160}\right) \leq\left(\frac{410 \times 1.1}{250 \times 1.25}\right) \geq 0.7 \\
& =1.89 \leq 1.44 \geq 0.7 \\
& \beta=0.7 \leq 1.19 \leq 1.44 \\
& \therefore \beta=1.19 \\
& T_{d n}=\frac{0.9 \times 456 \times 410}{1.25}+\frac{1.19 \times 675 \times 250}{1.1} \\
& T_{d n}=316.87 \mathrm{KN} \\
& >225 \mathrm{KN}
\end{aligned}
$$

3. Design strength of plate against block shear: [cls 6.4 IS 800-2007]

$$
\begin{aligned}
& T=\frac{A_{v g} f_{y}}{\underline{\sqrt{3} \gamma^{m o}}}+\frac{0.9 \mathrm{~A}_{t n} f_{u}}{\gamma_{m l}} \\
& T_{d} \overline{\bar{b}}=\frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m l}}+\frac{A_{t g} f_{y}}{\gamma_{m o}}
\end{aligned}
$$

$A_{v g} \& A_{v n}$ are found along section 1-2 and $A_{t g} \& A_{t n}$ are found along section 2-3

$$
\begin{aligned}
& A_{v g}=[[40+2(60)] 5] 2 \\
&=1600 \mathrm{~mm}^{2} \\
& A_{v n}=[[40+2(60)-2.5(22)] 5] 2 \\
&=1050 \mathrm{~mm}^{2} \\
& A_{t g}=30 \times 5 \times 2=300 \mathrm{~mm}^{2} \\
& A_{t n}=[[30-0.5(22)] 5] 2 \\
&=190 \mathrm{~mm}^{2} \\
& T_{d b_{1}}=\frac{1600 \times 250}{\sqrt{3} \times 1.1}+\frac{0.9 \times 190 \times 410}{1.25}
\end{aligned}
$$

$$
T_{d b_{1}}=266.03 \mathrm{KN}
$$

For 2 angles

$$
T_{d b_{2}}=\frac{0.9 \times 1050 \times 410}{\sqrt{3} \times 1.25}+\frac{300 \times 250}{1.1}
$$

$$
T_{d b_{2}}=247.137 \mathrm{KN}
$$

For 2 angles

$$
\mathrm{T}_{\mathrm{db}}=247.137 \mathrm{KN} \text { [least value of these two] }
$$

Hence 2 nos. of ISA 70x70x5mm is safe against yielding, rupture \& block shear conditions.

TENSION SPLICE:-

- When a single piece of reqd length is not available, for a tension member, splice plates are used to transverse the reqd tension force from 1 piece to another.
- The strength of the splice plates \& the bolts connecting them should have strength atleast equal to a design load.

1. Design a splice to connect a plate of size $300 \times 20 \mathrm{~mm}$ width a plate of size $300 \times 10 \mathrm{~mm}$. The design load is 500 KN . Use 20 mm block bolts fabricated in the shop. Provide a double cover butt joint with tks of cover as 10 mm .
Given:-
2. Plate of size $=300 \times 20 \mathrm{~mm}$
3. Plate of size $=300 \times 10 \mathrm{~mm}$

Tks of cover plate $=6 \mathrm{~mm}$
$\mathrm{d}=20 \mathrm{~mm}$
$\mathrm{d}_{\mathrm{o}}=22 \mathrm{~mm}$
Design load $=500 \mathrm{KN}$
Sln:-
Since plates have varying tks need to be provided packing plate is reqd to provide the two cover plates.

The bolts are under double shear.

1. Strength of bolt in double shear:- [cls 10.3.3 IS 800-2007]

$$
\begin{aligned}
& V_{d s b}=\frac{V_{n s p}}{\gamma_{m b}} \\
& \left.V_{n s p}=\frac{f_{u}}{\sqrt{3}} n_{n} A_{n b}+n_{s} A_{s b}\right] \\
& n_{n}=n_{s}=1 \\
& A_{n b}=\frac{0.78 \times \pi \times 20^{2}}{4}=245 \mathrm{~mm}^{2} \\
& A_{s b}=\frac{\pi \times 20^{2}}{4}=314.16 \mathrm{~mm} \\
& \beta_{p k}=\lfloor 1-0.0125 \mathrm{tpk}]
\end{aligned}
$$

$$
\begin{aligned}
&=[1-(0.0125 \times 10)] \\
& \beta_{p k}=0.875 \\
& V_{n s b}=\frac{400}{\sqrt{3}}[1 \times 245+1 \times 314.16] \times 0.875 \\
&=112.99 \mathrm{KN} \\
& V_{d s b}=\frac{112.99}{1.25} \\
& V_{d s b}=90.392 \\
& \mathrm{KN}
\end{aligned}
$$

1. Strength of bolt in bearing:- [cls 10.3.4 IS 800-2007]

$$
\begin{aligned}
V_{d b p} & =\frac{V_{n b p}}{\gamma_{m b}} \\
& =2.5 \mathrm{k}_{b} d_{t} f_{u}
\end{aligned}
$$

Assume $\mathrm{e}=1.5 \mathrm{~d}_{0}=33 \mathrm{~mm}$ ¿ 40 mm

$$
\begin{aligned}
k & =\frac{40}{\mathrm{p}}=\frac{605 \mathrm{~d}=50 \mathrm{~mm}}{3 \times 22}-0.25, \frac{400}{3 \times 22}, 1 \\
b & =0.606,0.659,0.975,1
\end{aligned}
$$

\therefore Take $\mathrm{k}_{\mathrm{b}}=0.606$ [least value]

$$
\begin{aligned}
V_{d b p} & =2.5 \times 0.606 \times 20 \times 10 \times 410 \\
& =124.23 \mathrm{KN}
\end{aligned}
$$

$$
V_{d b p}=
$$

99.38 KN
\therefore Design strength of bolt value $=90.39 \mathrm{KN}$
\therefore No. of bolts $=\frac{T_{u}}{v}$

$$
=\frac{500}{90.39}
$$

$$
n=5.5 \simeq 6 \mathrm{Nos}
$$

\therefore Provide 6 nos. of 20 mm bolts on each side
Providing the 6 bolts on each side of the connecting plate, it can be arrange along 2 vertical rows with 3 bolts on each vertical row as shown in fig.
Check for strength of section:-

1. Strength of the plate against yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
T_{d g} & =\frac{A_{g} f_{y}}{\gamma_{m o}} \\
A_{g} & =300 \times 10=3000 \mathrm{~mm}^{2}[\text { Tks of thinner plate }] \\
& =\frac{3000 \times 250}{1.1} \\
T_{d g} & =681.81 \mathrm{KN}>500 \mathrm{KN}
\end{aligned}
$$

2. Strength of the plate against rupture:- [cls 6.3.1 IS 800-2007]

$$
T_{d n}=\frac{0.9 \mathrm{~A}_{n} f_{u}}{\gamma_{m l}}
$$

$\mathrm{A}_{\mathrm{n}}=$ The critical section where carrying of plate is occurs along the vertical line passing through the 3 bolts.

$$
\begin{aligned}
&=[300-3 \mathrm{x}(22)] \times 10 \\
& \mathrm{~A}_{\mathrm{n}}=2340 \mathrm{~mm}^{2} \\
&=\frac{0.9 \times 2340 \times 410}{1.25} \\
& T_{d n}=690.77 \mathrm{KN}>500 \mathrm{KN}
\end{aligned}
$$

3. Strength of the plate against block shear:- [cls 6.4 IS 800-2007]

The block shear failure takes place along the lines $1,2,3,4$ as shown in fig. [The path of block shear failure is given in fig:7 IS 800-2007]
$A_{v g} \& A_{v n}$ are found along section 1-2 and
$A_{t g} \& A_{t n}$ are found along section 2-3

$$
\begin{aligned}
A_{v g} & =[40+60] \times 10=1000 \mathrm{~mm}^{2} \\
A_{v n} & =[(40+60)-1.5(22)] 10 \\
& =670 \mathrm{~mm}^{2} \\
A_{t g} & =[2 \times 110] 10=2200 \mathrm{~mm}^{2} \\
A_{t n} & =[2(110)-2(22)] 10 \\
& =1760 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
T_{d b_{1}}=\frac{1000 \times 250}{\sqrt{3} \times 1.1}+\frac{0.9 \times 1760 \times 410}{1.25}
$$

$$
T_{d b_{2}}=\frac{T_{d b_{1}}=650.76 \mathrm{KN}}{\frac{0.9 \times 670 \times 410}{\sqrt{3} \times 1.25}+\frac{2200 \times 250}{1.1}}
$$

$$
T_{d b_{2}}=614.190 \mathrm{KN}>500 \mathrm{KN}
$$

Hence the connection is safe.

LUG ANGLES:-

* The length of end connections of heavily loaded tension members may be reduced by using lug angles as shown in fig.
* There is savings in gusset plate but additional cost is incurred from the material of lug angles \& the connections for the lug angles.

$$
\begin{aligned}
& T=\frac{A_{v g} f_{y}}{\underline{\sqrt{3} \gamma^{m o}}}+\frac{0.9 \mathrm{~A}_{t n} f_{u}}{\gamma_{m l}} \\
& T \underset{d \bar{b}}{=} \frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m l}}+\frac{A_{t g} f_{y}}{\gamma_{m o}}
\end{aligned}
$$

* The design of tension member with the use of lug angles needs to be check for the load which is share equally by the connected leg and the outstanding leg.
The following guidelines need to be satisfied.

1. The eff. Connection of the lug angle shall as for as possible.
2. It is preferable to start the lug angle in advance of a member connected.
3. A mini of 2 bolts or rivets, are provided.
4. In case of angles, the whole area can be taken rather than the net eff. Area.
5. In case of channels, the lug angles should be placed simitrical and the strength of fasterness connecting lug angle to the gusset be 10% more than the outstanding leg.
[When main member is a channel]
6. In case of angle [Main member] the above values are 20% \& 40% respectively.

(a)

(b)
7. Design a tension member of a roof truss which carries a factored axial tension of 430KN.
Design the connection when
(i) No lug angle is provided
(ii) Lug angle is provided

Hints:-

1. Without lug angle, the connections are designed for ' T_{u} ' and member is check for design strength for ' T_{u} '.
2. When lug angle is provided, connection in main member is design for ' $\mathrm{T}_{\mathrm{u}} / 2$ ' and the connection in lug angle is design for ' $\mathrm{T}_{\mathrm{u}} / 2$ ', where the connection plate \& lug angle is increased by 20% and connection b / w lug angle \& main plate is increased by 40%
Given:-

$$
\mathrm{T}_{\mathrm{u}}=430 \mathrm{KN}
$$

Sln:-
(i) No lug angle is provided:-

Assume, $\mathrm{d}=20 \mathrm{~mm}$
$\mathrm{d}_{0}=22 \mathrm{~mm}$
Tks of gusset plate $=12 \mathrm{~mm}$

BOLT VALUE:- [M20]

$$
\begin{aligned}
A_{g} & =\frac{1.1 \mathrm{~T}_{u}}{f_{y}} \\
& =\frac{1.1 \times 440 \times 10^{3}}{250} \\
A_{g} & =1892 \mathrm{~mm}^{2}
\end{aligned}
$$

Select a section from steel table having area 30% more than the reqd area.
Select ISA 110x110x12mm

$$
\begin{aligned}
& A \quad g^{=}=2502 \mathrm{~mm}^{2} \\
& \gamma_{x x}=\gamma_{y y}=33.4 \mathrm{~mm}
\end{aligned}
$$

(i) Strength of bolt in single shear:- [cls 10.3.3 IS 800-2007]

$$
\begin{aligned}
& V_{d s b}=\frac{V_{n s p}}{\gamma_{m b}} \\
& V_{n s p}=\frac{f_{u}}{\sqrt{3}}\left[n_{n} A_{n b}+n_{s} A_{s b}\right] \\
& n_{n}=1, n_{s}=0 \\
& A_{n b}=245 \mathrm{~mm}^{2} \\
&=\frac{400}{\sqrt{3}}[1 \times 245] \\
& V_{n s b}=56.58 \mathrm{KN} \\
& V_{d s b}=\frac{56.58}{1.25} \\
& V_{d s b}=45.264 \mathrm{KN}
\end{aligned}
$$

(ii) Strength of bolt in bearing:- [cls 10.3.4 IS 800-2007]

$$
V_{d b p}=\frac{V_{n b p}}{\gamma_{m b}}
$$

$$
\begin{array}{r}
V_{n b p}=2.5 \mathrm{k}_{b} d_{t} f_{u} \\
\text { Assume e }=40 \mathrm{~mm} \\
\mathrm{P}=60 \mathrm{~mm}
\end{array}
$$

$$
K_{b}=\frac{40}{3 \times 22}, \frac{60}{3 \times 22}-0.25, \frac{400}{410}, 1
$$

$$
K_{b}=0.606,0.66,0.959,1
$$

$$
\therefore \text { Take } K_{b}=0.606
$$

$$
V_{d b p}=\frac{2.5 \times 0.606 \times 20 \times 12 \times 410}{1.25}
$$

$$
V_{d b p}=119.26 \mathrm{KN}
$$

\therefore Design strength of bolt value $=45.264 \mathrm{KN}$

$$
\begin{aligned}
\therefore \text { No. of bolts } & =\frac{T_{u}}{v} \\
& =\frac{430}{45.264} \\
& =9.49 ¿ 10 \text { Nos. }
\end{aligned}
$$

\therefore Provide 10 nos of 20 mm dia to bolts edge distance $40 \mathrm{~mm} \&$ pitch of 60 mm .
Check for strength of section:-

1. Strength of section against yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
T_{d g} & =\frac{A_{g} f_{y}}{\gamma_{m o}} \\
A_{g} & =[(110-12 / 2)+(110-12 / 2)] \times 12 \\
A_{g} & =2496 \mathrm{~mm}^{2} \\
& =\frac{2496 \times 250}{1.1}
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{dg}}=567.27 \mathrm{KN}>430 \mathrm{KN}
$$

2. Strength of section against rupture:- [cls 6.3.3 IS 800-2007]

$$
T_{d n}=\frac{0.9 \mathrm{~A}_{n c} f_{u}}{\gamma_{m l}}+\frac{\beta A_{g o} f_{y}}{\gamma_{m o}}
$$

Where,

$$
\begin{aligned}
& \begin{array}{c}
A_{g o}=\left[\begin{array}{c}
110-\frac{12}{2} \\
=1248 \mathrm{~mm}^{2}
\end{array}\right] \times 12
\end{array} \\
& \begin{aligned}
A & =\left[\begin{array}{ll}
110-22-12 / & \\
& =984 \mathrm{~mm}^{2}
\end{array}\right] \times 12
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{w}=110 \mathrm{~mm} \\
& \mathrm{w}_{1}=60 \mathrm{~mm} \\
& \mathrm{~b}_{\mathrm{s}}=\mathrm{w}+\mathrm{w}_{1}-\mathrm{t} \\
& =110+60-12 \\
& =158 \mathrm{~mm} \\
& \mathrm{~L}_{\mathrm{c}}=580 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \beta=1.28 \\
& T_{d n}=\frac{0.9 \times 984 \times 410}{1.25}+\frac{1.28 \times 1248 \times 250}{1.1} \\
& T_{d n}=653.53 \mathrm{KN} \\
& >430 \mathrm{KN}
\end{aligned}
$$

3. Strength of the section against block shear:- [cls 6.4.1 IS 800-2007]

$$
\begin{aligned}
& T=\frac{A_{v g} f_{y}}{{ }^{\prime}}+\frac{0.9 \mathrm{~A}_{t n} f_{u}}{\gamma_{m l}} \\
& T_{d b}=\frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m l}}+\frac{A_{t g} f_{y}}{\gamma_{m o}}
\end{aligned}
$$

Where,

$$
\left.\begin{array}{rl}
A_{v g} & =[40+(9 \times 60)] 12 \\
& =6960 \mathrm{~mm}^{2} \\
A_{t g} & =[50 \times 12] \\
& =600 \mathrm{~mm}^{2} \\
A_{v n} & =[580-(9.5 \times 22)] 12 \\
& =4452 \mathrm{~mm}^{2}
\end{array}\right] \begin{aligned}
A_{t n} & =\left[50-\frac{22}{2}\right] 12 \\
& \left.=468 \mathrm{~mm}^{2}\right] \\
T_{d b_{1}} & =\frac{6960 \times 250}{\sqrt{3} \times 1.1}+\frac{0.9 \times 468 \times 410}{1.25} \\
T_{d b} & =997.5 \mathrm{KN}>430 \mathrm{KN} \\
T_{d b_{2}} & =\frac{0.9 \times 4452 \times 410}{\sqrt{3 \times 1.25}}+\frac{600 \times 250}{1.1} \\
T_{d b_{2}} & =895.13 \mathrm{KN}>430 \mathrm{KN}
\end{aligned}
$$

(ii) Lug Angle is Provided:-

When lug angle is provided the member of bolts reqd for establishing the connection reduces thereby reducing the overall length of overlap.

- The connection b / w main member gusset plate is designed for $T_{u} / 2$
- The lug angle is designed for a force of $T_{u} / 2$ [Increased by 30\%]

The connection b / w the main member lug angle is designed for 40% of
$T_{u} / 2$ and connection b/w angle \& gusset plate designed for 20% of $T_{u} / 2$
Connection for Main Member:-

$$
\begin{aligned}
& T_{u} / 2 \\
& n=\frac{215}{v} \\
& \mathrm{n}=4.75 \text { ¿ } 5 \mathrm{Nos}
\end{aligned} \quad[\because v=45.26 \mathrm{KN}]
$$

\therefore Provide 5 nos of 20 mm bolts.
Lug Angles:-

$$
A=\frac{1 \cdot{ }_{g}^{1 \times T_{u} / 2 \times 1.3}}{f_{y}}=\frac{1.1 \times 215 \times 1.3 \times 10^{3}}{250}=1230 \mathrm{~mm}^{2}
$$

Try ISA 80x80x12mm

$$
\begin{aligned}
& A_{g}=1781 \mathrm{~mm}^{2} \\
& \gamma_{x x}=\gamma_{y y}=23.9 \mathrm{~mm}
\end{aligned}
$$

Connection b / w gusset plate \& lug angle:-

$$
\begin{aligned}
& \text { No. of bolts }=\frac{1.2 \times T_{u} / 2}{v} \\
&=\frac{1.2 \times 215}{45.26} \\
& \mathrm{n}=5.7 \text { ¿ } 6 \mathrm{Nos}
\end{aligned}
$$

\therefore Provide 6 nos of bolts b / w gusset plate and lug angle.
Connection b / w lug angle \& main membe:-

$$
\begin{aligned}
n= & \frac{1.4 \times T_{u} / 2}{v} \\
& =\frac{1.4 \times 215}{45.26} \\
\mathrm{n} & =6.65 ; 7 \mathrm{Nos}
\end{aligned}
$$

\therefore Provide 7 nos of bolts b / w lug angle and main member.

UNIT IV - DESIGN OF COMPRESSION MEMBER

Classes of sections:-

1. Column -> Stanchion
2. Truss -> Strut
3. Beam -> Girder
a) Class 1 [Plastic]:-

Cross sections, which can develop plastic hinges and have the rotation capacity reqd for failure of the structures by formation of plastic mechanism. The width to tks ratio of plate elements shall be less than that specified under class 1 (plastic) in table 21.
b) Class 2 [Compact]:-

Cross-sections which can develop plastic moment of resistance, but have inadequate plastic hinge rotation capacity for formation of plastic mechanism due to local buckling. The width to tks ratio of plate elements shall be less than that specified under class-2 (compact), but greater than that specified under class-1 (Plastic) in table 21.
c) Class 3 [Semi-Compact]:-

C/S in which the extreme fiber in compression can reach yield stress, but cannot develop the plastic moment of resistance, due to local buckling. The width to tks of plate element shall be less than that specified under class-3 (Semi-Compact) but greater than that specified under class-2 in table-21.
d) Class 4 [Slender]:-

C/S in which the elements buckle locally even before reaching yield stress. The width to tks ratio of plate elements shall be greater than that specified under class-3 in table 21. In such cases, the eff. Sections for design shall be calculated either by following the provisions of IS 801 to account for the Post-local-buckling strength or by deducting width of the compression plate element in excess of the semi-compact section limit.

Generally steel sections carrying axial compression fail by flexural buckling.

* The buckling strength of the compression members are affected by residual stresses, accidental eccentricities \& slenderness ratio.
* To account for these factors the strength of members is subjected to axial compression defined by the above buckling classes $1,2,3 \& 4$ [Plastic, Compact, Semi-Compact \& slender] given in table 10 IS 800-2007.

Table 6.1 Buckling class of cross-sections
[Refer Table 10 in IS 800]

Cross-Section (1)	Limits (2)	Buckling About Axis (3)	Buckling Class (4)
Rolled I-Sections	$h / b_{t}>1.2$: $t_{r} \leq 40 \mathrm{~mm}$ $40 \mathrm{~mm}<t_{r} \leq 100 \mathrm{~mm}$	$\begin{aligned} & z-z \\ & y-y \\ & z-z \\ & y-y \end{aligned}$	$\begin{aligned} & a \\ & b \\ & b \\ & c \end{aligned}$
	$\begin{aligned} & h / b_{t}>1.2 \\ & t_{t} \leq 100 \mathrm{~mm} \\ & t_{f}>100 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & z-z \\ & y-y \\ & z-z \\ & y-y \end{aligned}$	$\begin{aligned} & b \\ & c \\ & d \\ & d \end{aligned}$
Welded I-Section	$t_{r} \leq 40 \mathrm{~mm}$ $t_{r}>40 \mathrm{~mm}$	$\begin{aligned} & z-z \\ & y-y \\ & z-z \\ & y-y \end{aligned}$	$\begin{aligned} & b \\ & c \\ & c \\ & c \end{aligned}$
Hollow Section	Hot rolled	Any	a
	Cold formed	Any	b
Welded Box Section	Generally (except as below)	Any	b
	Thick welds and $\begin{aligned} & b / t_{f}<30 \\ & h / t_{w}<30 \end{aligned}$	$\begin{aligned} & z-z \\ & y-y \end{aligned}$	
Channel, Angle, T and Solid Sections		Any	c
Built-up Member		Any	c

DESIGN COMPRESSIVE STRENGTH:- [cls 7.1 IS 800-2007]

$$
P_{d}>P_{u}
$$

Where,
$\mathrm{P}_{\mathrm{d}}=$ Design compressive strength of column.
$\mathrm{P}_{\mathrm{u}}=$ External compression (or) design load.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{d}}=\text { Aexfcd } \\
& \mathrm{A}_{\mathrm{e}}=\text { Eff. Area } \\
& \mathrm{f}_{\mathrm{ed}}=\text { design compressive stress } \\
& f=\frac{f_{y} / \gamma_{m o}}{\varphi+\left[\varphi^{2}-\lambda^{2}\right]^{0.5}}=\frac{x f_{y}}{\gamma_{m o}} \leq \frac{f_{y}}{\gamma_{m o}}
\end{aligned}
$$

Where,

$$
\begin{aligned}
\varphi & =0.5\left[1+\alpha[\lambda-0.2]+\lambda^{2}\right] \\
= & \text { non-dimensional eff. Slenderness ratio. }
\end{aligned}
$$

$$
\begin{aligned}
&= \bar{y} \\
& f_{c c}= \text { Ruler buckling sfiress } \\
&\left.\frac{f_{y}\left(\overline{f^{2}}\right.}{\pi^{2}}\right)_{L^{2}} \\
&=\frac{\pi^{2} E}{(K L /)^{2}}
\end{aligned}
$$

Where,
$\mathrm{KL} / \mathrm{r}=$ eff. Slender ratio (or) eff. length, KL to appropriate radius of gyration. $\alpha=$ Imperfection factor given in table 7
$\mathrm{X}=$ Stress reduction factor [see table-8]

$$
=\frac{1}{\left[\varphi+\left(\varphi^{2}-\lambda^{2}\right)^{0.5}\right]}
$$

$\lambda_{\text {mo }}=$ Partial safety factor for material strength.
$\mathrm{KL}=$ Depends on support condition given in table -11
The only variable in finding the permissible comp. stress (fcd) is slenderness ratio (L / r) for the given section coming under any of the buckling class $\mathrm{a}, \mathrm{b}, \mathrm{c} \& \mathrm{~d}$.
\therefore Based on the slenderness ratio, design compressive stress can be taken from table 9, 9a, 9b, 9c (or) 9d IS 800-2007.

* The buckling class for various section are given in Table-10 IS 800-2007 and slenderness ratio is based on eff. length given in table-11; IS 800-2007.
Table 6.2 Effective length of prismatic compression members
Refer Table 11 in IS 800]

Boundary Conditions				Schematic Representation (5)	Effective Length (6)
At One End		At the Other End			
Translation (1)	Rotation (2)	Translation (3)	Rotation (4)		

Restrained \quad Restrained \quad Free \quad Free
Restrained Free Restrained Free

Restrained

Restrained
Restrained
Restrained
Free
1.0 L

1. Determine the design axial load capacity of the column ISHB $300 @ 577 \mathrm{~N} / \mathrm{m}$ if the length of the column is 3 m and both ends are pined.
Given:-

$$
\begin{aligned}
& \text { Section => ISHB } 300 @ 577 \text { N/m. } \\
& \text { L => 3m. }
\end{aligned}
$$

End condition => Both ends are pinned.
Sln:-
To find slenderness ration:-

$$
\lambda=\frac{K L}{r}
$$

Where,

$$
\begin{aligned}
& \mathrm{K}=1.0 \\
& \gamma_{x x}=129.5 \mathrm{~mm} \\
& \gamma_{y y}=54.1 \mathrm{~mm} \\
& \therefore r_{\min }=54.1 \mathrm{~mm} \\
&=\frac{1 \times 3000}{54.1} \\
& \lambda= 55.45
\end{aligned}
$$

To find design comp. stress:- [cls 7.1.2.1 IS 800-2007]

$$
P_{d}=A_{e} f_{e d}
$$

Where,

$$
\begin{aligned}
& f_{e d}=\frac{f_{v} / \gamma_{m o}}{\varphi+\left[\varphi^{2}-\lambda^{2}\right]^{0.5}}=\frac{x f_{y}}{\gamma_{m o}} \leq \frac{f_{y}}{\gamma_{m o}} \\
& \varphi=0.5\left[1+\alpha[\lambda-0.2]+\lambda^{2}\right]
\end{aligned}
$$

$$
=\frac{\bar{y}}{\sqrt{f_{f c c}}}=\frac{f_{y}(\overline{(})}{r^{2} L^{2}}
$$

Buckling Class:- [Table-10|S 800-2007]
Rolled steel I-section

$$
\begin{aligned}
& \frac{h}{h f}=\frac{300}{250}=1.2 \\
& \mathrm{tf}=10.6<100
\end{aligned}
$$

About z-z axis -b
About y-y axis -c
\therefore The section need to be check for buckling
Class-C

$$
\begin{aligned}
& \alpha=0.49 \text { [from table-7 IS 800-2007] } \\
& f_{c c}=\frac{\pi^{2} E}{(K L /)^{2}}=\frac{\pi^{2} \times 2 \times 10^{5}}{(55.44)^{2}} \\
& f_{c c}=641.98 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\begin{gathered}
\lambda=\sqrt{\frac{f_{y}}{f_{c c}}}=\sqrt{\frac{250}{641.98}} \\
\lambda=0.624
\end{gathered} \quad \begin{gathered}
\therefore \varphi=0.5\left[1+0.49(0.624-0.2)+(0.624)^{2}\right] \\
\varphi=0.79
\end{gathered} \begin{gathered}
\therefore \text { Design compressive stress } f=\frac{250 / 1.1}{0.79+\left[(0.79)^{2}-(0.624)^{2}\right]^{0.5}} \\
f_{c d}=178.33 \mathrm{~N} / \mathrm{mm}^{2} \\
\therefore P_{d}=7485 \times 178.33 \\
P_{d}=1334.7 \mathrm{KN}
\end{gathered}
$$

50	183
60	168

Also referring table 9c IS 800-2007 [for buckling class-c] and $\lambda=55.45$

$$
\begin{aligned}
& f_{c d}=174.8 \mathrm{~N} / \mathrm{mm}^{2} \\
& P_{d}=7485 \times 174.8 \\
& P_{d}=1308.5 \mathrm{KN}
\end{aligned}
$$

DESIGN OF COMPRESSION MEMBERS:-

Step:1 => Assume the design comp. stress of the member [Generally for rolled steel
sections assume $\mathrm{f}_{\mathrm{cd}}=135 \mathrm{~N} / \mathrm{mm}^{2}$, for angle section assume
$\mathrm{f}_{\mathrm{cd}}=90 \mathrm{~N} / \mathrm{mm}^{2}$ for builtup sections carrying
large loads assume $\mathrm{f}_{\mathrm{cd}}=200 \mathrm{~N} / \mathrm{mm}^{2}$
Step:2 $\Rightarrow>$ Reqd eff. Sectional area, $A=\frac{P_{d}}{f_{c d}}$
Step:3 $=>$ Select the section for the eff. Area and calculate. $\mathrm{r}_{\text {min }}$ [least of $\gamma_{x x} \wedge \gamma_{y y}$] Step:4 => From the end co-ordinations, [decide the type of connection] determine the eff. Length.
Step:5 => Find the slenderness ratio and hence the design comp. stress $f_{c d}$ Step:6 => Find the actual load carrying capacity of the compression member.
Step:7 => If the calculated value of differs considering from the design load [P], revise the section.

1. Design a single angle strut connected to a gusset plate to carry a factored load of 180 KN . Length of the strut is $\mathrm{b} / \mathrm{w} \mathrm{c} / \mathrm{c}$ of intersection is 3 m and the support condition is one end fixed \& other end hinge with $\mathrm{K}=0.85$
Given:-

$$
\text { Factored load, } \begin{aligned}
\mathrm{P} & =180 \mathrm{KN} \\
\mathrm{~L} & =3 \mathrm{~m} \\
\mathrm{~K} & =0.85
\end{aligned}
$$

Sln:-
To find f_{cd} :-
Assume a design comp. stress $\mathrm{f}_{\mathrm{cd}}=90 \mathrm{~N} / \mathrm{mm}^{2}$
To find A reqd:-

$$
\begin{aligned}
\text { Reqd Area } A & =\frac{P_{d}}{f_{c d}} \\
& =\frac{180 \times 10^{3}}{90} \\
\mathrm{~A} & =2000 \mathrm{~mm}^{2}
\end{aligned}
$$

Try ISA $90 \times 90 \times 12 \mathrm{~mm}$
Properties of ISA 90x90x12mm:-

$$
\begin{gathered}
A=2019 \mathrm{~mm}^{2} \\
\gamma_{x x}=\gamma_{y y}=27.1 \mathrm{~mm}
\end{gathered}
$$

$$
\gamma_{u u}=34.1 \mathrm{~mm}, \gamma_{v v}=17.4 \mathrm{~mm}
$$

Buckling Class:-
Angle come under buckling class-c

$$
\begin{aligned}
& \frac{K L}{r}=\frac{0}{17.4} .85 \times 3000 \\
& \frac{K L}{r}=146.55
\end{aligned}
$$

Refer Table 9c, IS 800-2007

140	66.2
150	59.2

$\mathrm{f}_{\mathrm{cd}}=61.615 \mathrm{~N} / \mathrm{mm}^{2}$
\therefore Strength of strut $=2019 \times 61.615$
$\mathrm{P}_{\mathrm{d}}=232.7 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{P}_{\mathrm{d}}=124.4 \mathrm{KN}<180 \mathrm{KN}$
Revise the section:- Try ISA 130x130x8mm

$$
\begin{aligned}
& A=2022 \mathrm{~mm}^{2} \\
& I_{x x}=I_{y y}=40.3 \\
& I_{u u}=51.0 \mathrm{~mm}, I_{v v}=25.5 \mathrm{~mm} \\
& \frac{K L}{r}=\frac{0}{.} \cdot \frac{85 \times 3000}{25.5} \\
& \underline{K L}=100 \\
& r \mathrm{f}_{\mathrm{cd}}=107 \mathrm{~N} \\
& \mathrm{~mm}^{2}[\text { from table } 9 \mathrm{c} \text { IS 800-2007] }
\end{aligned}
$$

\therefore Strength of strut $=2022 \times 107$ $=216.35 \mathrm{KN}>180 \mathrm{KN}$
2. Design the above member when both ends are hinged.

Given:-
$\mathrm{P}=180 \mathrm{KN}$
$\mathrm{L}=3 \mathrm{~m}$
Sln:-
To find A_{cd} :-
Assume a design comp. stress $\mathrm{f}_{\mathrm{cd}}=90 \mathrm{~N} / \mathrm{mm}^{2}$
To find Areqd:-

$$
\begin{aligned}
A & =\frac{P_{d}}{f_{c d}} \\
& =\frac{180 \times 10^{3}}{90} \\
\mathrm{~A} & =2000 \mathrm{~mm}^{2}
\end{aligned}
$$

Try ISA 130x130x8mm

$$
\begin{aligned}
\mathrm{A} & =2022 \mathrm{~mm}^{2} \\
\mathrm{r}_{\min } & =25.5 \mathrm{~mm} \\
\frac{K L}{r} & =\frac{1 \times 3000}{25.5} \\
\frac{K L}{r} & =117.65
\end{aligned}
$$

110	94.6	
120	83.7	
$\mathrm{f}_{\mathrm{cd}}=86.26 \mathrm{~N} / \mathrm{mm}^{2}$		

\therefore Strength of section $=2022 \times 86.26$

$$
=174.4 \mathrm{KN}<180 \mathrm{KN}
$$

Hence unsafe
\therefore Revise the section with $\mathrm{r}_{\text {min }}$ more than 25.5 mm

$$
\text { Try ISA } 150 \times 150 \times 10 \mathrm{~mm}
$$

$$
\mathrm{A}=2903 \mathrm{~mm}^{2}
$$

$$
\mathrm{r}_{\mathrm{min}}=29.3 \mathrm{~mm}
$$

$$
\frac{K L}{r}=\frac{1 \times 3000}{29.3}
$$

$$
\begin{gathered}
r \\
\underline{K L} \\
=\begin{array}{c}
29.3 \\
=102.39
\end{array}
\end{gathered}
$$

r

100	107
110	94.6

\therefore Strength of section $=2903 \times 104$

$$
=301.9 \mathrm{KN}>180 \mathrm{KN}
$$

Hence safe

Effective length based on connection:-

- Generally eff. Length is computed based on table-11 IS 800-2007.
- Based on connectivity, welded joints are considered to be rigid.
- For welded joints case equal to $\mathrm{K}=0.65$ to 0.7

For Bolted Connection:-
a) When single bolts are provided on both sides.
b) When double bolts are provided.

$$
K=0.85
$$

1. In a truss a strut which is IM long consists of 2 angles ISA $100 \times 100 \times 6 \mathrm{~mm}$.

Find the design strength of the member if the angles are connected on both sides of a 12 mm gusset plate using.
(i) One bolt (ii) Two bolts (iii) A rigid jt by welding

Given:-
$\mathrm{L}=3 \mathrm{~m}$
2 ISA 100x $100 \times 6 \mathrm{~mm}$
Tks of gusset plate $=12 \mathrm{~mm}$
Sln:-
Section Properties of ISA 100x100x6mm:-

$$
\begin{array}{ll}
\begin{array}{l}
A=1167 \mathrm{~mm}^{2} \\
\mathrm{r}_{\mathrm{yy}}=\mathrm{r}_{\mathrm{zz}}=30.9 \mathrm{~mm} \\
C_{x x}=C_{y y}=26.7 \mathrm{~mm}
\end{array} & \mathrm{I}_{\mathrm{yy}}=111.3 \times 10^{4} \mathrm{~mm}^{4} \\
\mathrm{I}_{\mathrm{zz}}=111.3 \times 10^{4} \mathrm{~mm}^{4}
\end{array}
$$

The local axis along the C/S is y-y \& z-z as shown in fig.
$r_{\text {min }}$ is the least of $r_{y y} \& r_{z z}$ of the composite section including 2 angles and a portion of gusset plate of size $100 \times 12 \mathrm{~mm}$.
$r_{z z}$ of the composite section is the same as $r_{z z}$ of a single angle section.
Since the $\mathrm{z}-\mathrm{z}$ axis is same for both the composite section \& single angle section.

Where,

$$
\begin{aligned}
& \therefore \mathrm{r}_{\mathrm{zz}} \text { of composite section }=\sqrt{\frac{I_{z z}}{A}} \\
&=\sqrt{\frac{111.3 \times 10^{4}}{1167}} \\
& \mathrm{r}_{\mathrm{zz}}=30.9 \mathrm{~mm} \\
& \mathrm{r}_{\mathrm{yy}} \text { of composite section }=\sqrt{\frac{I_{y y}}{A}}
\end{aligned}
$$

$$
\begin{aligned}
I_{y y} & =\text { M.O.I of composite section } \\
I_{y y} & =2\left[I_{y y} \text { of one angle section }+\mathrm{A}(\mathrm{t} / 2+\mathrm{cy})\right. \\
& =2\left[111.3 \times 10^{4}+1167\left(\frac{12}{2}+26.7\right)^{2}\right. \\
I_{y y} & =4.72 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\begin{aligned}
\therefore r_{y y} & =\sqrt{\frac{4.72 \times 10^{6}}{2(1167)}} \\
r_{y y} & =44.97 \mathrm{~mm} \\
\therefore r_{\min } & =30.9 \mathrm{~mm}
\end{aligned}
$$

(i) One Bolt :- [Bolt ends hinged]

$$
\therefore \mathrm{K}=1
$$

$$
\frac{K L}{r}=\frac{1 \times 3000}{309}
$$

$$
\underset{V I}{r} 30.9
$$

$$
\underline{K L}=97.09
$$

r

90	121
100	107

The member belongs to buckling class-c since it is a angle section.
\therefore Refer table-9 (C)
$\mathrm{f}_{\mathrm{cd}}=111.07 \mathrm{~N} / \mathrm{mm}^{2}$
Design strength of section $=f_{c d} \mathrm{x}$ A

$$
=111.07 \times 2 \times 1167
$$

$=259.24 \mathrm{KN}$
(ii) Two Bolts:-

$$
\begin{aligned}
& \therefore \mathrm{K}=0.85 \\
& \frac{K L}{r}=\frac{0.85 \times 3000}{30.9} \\
& \frac{K L}{r}=82.52
\end{aligned}
$$

80	136		
90	121	\quad	[from table 9c IS 800-2007]
:---			

\therefore Design strength of section $=\mathrm{f}_{\mathrm{cd}} \mathrm{x}$ A

$$
\begin{aligned}
& =132.22 \times 2 \times 1167 \\
& =308.6 \mathrm{KN}
\end{aligned}
$$

(iii) A rigid joint by welding:-

$$
\therefore \mathrm{K}=0.7
$$

$\underline{K L}=\underline{0 .} \underline{\underline{7 \times 3000}}$
$\stackrel{r}{K L}=30.9$
$=67.96$
r

60	168	[from table 9c IS 800-2007]
70	152	
	155.	$6 \mathrm{~N} / \mathrm{mm}^{2}$

\therefore Design strength of section $=\mathrm{f}_{\mathrm{cd}} \mathrm{x}$ A

$$
=155.26 \times 2 \times 1167
$$

$$
=362.38 \mathrm{KN}
$$

2. Determine the load carrying capacity of a column section as shown in fig. The actual length of the column is 4.5 m . One end of the column is assumed as fixed and the other end hinged. The grade of steel [E250]
Given:-
$\mathrm{L}=4.5 \mathrm{~m}$
Support condition = One end fixed \& other end hing

$$
\therefore \mathrm{K}=0.8
$$

Sln:-
The design stress ' f_{cd} ' of the composite section depends on $\frac{K L}{r_{\min }}$ ratio and the buckling class.

Properties of ISMB 400:-
16 mm

$$
\mathrm{h}=400 \mathrm{~mm}, \quad \mathrm{bf}=140 \mathrm{~mm}, \quad \mathrm{tf}=
$$

161.5 mm

$$
\mathrm{tw}=8.9 \mathrm{~mm}, \quad \mathrm{r}_{\mathrm{yy}}=28.2 \mathrm{~mm}, \mathrm{r}_{\mathrm{xx}}=
$$

$$
\mathrm{I}_{z \mathrm{z}}=20458.4 \times 10^{4} \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{yy}}=
$$

$622.1 \times 10^{4} \mathrm{~mm}^{4}$

$$
r_{\min } \text { is least of } r_{z z}(o r) r_{y y}
$$ where, $r=\sqrt{\frac{I}{A}}$

$\mathrm{I}_{z z}$ of Composite section:-

$$
\begin{gathered}
I_{z z}=20458.4 \times 10^{4}+\frac{300 \times 20^{3}}{12}+\left[300 \times 20 \times(430-220)^{2}\right]+\frac{300 \times 20^{3}}{12}+\left[300 \times 20 \times(220-10)^{2}\right] \\
I_{z z}=734.18 \times 10^{6} \mathrm{~mm}^{4}
\end{gathered}
$$

I_{yy} of Composite section:-

$$
\begin{aligned}
& \begin{array}{c}
\left.I_{y y}=622.1 \times 10^{4+20 \times 300^{3}}+[20 \times 300 \times(150-150)]^{2}+\frac{20 \times 300^{3}}{12}+[20 \times 300 \times(150-150)]^{2}\right] \\
I_{y y}=96.221 \times 10^{6} \mathrm{~mm}^{4}
\end{array} \\
& \therefore r_{z z}=\sqrt{\frac{I_{1}^{z}}{A^{z}}} \\
& A=7846+(2 \times 300 \times 20) \\
& A=19846 \mathrm{~mm}^{2} \\
& 734.18 \times 10^{6} \\
& 94.152 \times 10^{6} \\
& 19846 \\
& \therefore r_{z z}=\sqrt{i} \bar{\varepsilon}_{i}
\end{aligned}
$$

$$
\begin{aligned}
r_{z z} & =192.34 \mathrm{~mm} \\
r_{y y} & =\sqrt{\frac{I_{y y}}{A}} \\
& =\sqrt{\frac{96.221 \times 10^{6}}{19846}} \\
\mathrm{r}_{\mathrm{yy}} & =69.63 \mathrm{~mm} \\
\therefore \mathrm{r}_{\mathrm{min}} & =69.63 \mathrm{~mm}
\end{aligned}
$$

To find slenderness ratio:-

$$
\begin{aligned}
& \frac{K L}{r_{\min }}=\frac{0.8 \times 4500}{69.63} \\
& \frac{K L}{r_{\min }}=51.7
\end{aligned}
$$

The buckling class of the built up section based on table-10 IS 800-2007. Tks of flange is $16+20=36 \mathrm{~mm}<40 \mathrm{~mm}$
\therefore Along buckling about $\mathrm{z}-\mathrm{z}$ axis is buckling class ' B ' and buckling about $\mathrm{y}-\mathrm{y}$ axis, therefore I_{yy} is less than I_{zz}

50	183
60	168
From table 9 (C) IS 800-2007	
$\mathrm{f}_{\mathrm{cd}}=$	

\therefore Load carrying capacity of the section $=180.45 \times 19846$

$$
\begin{aligned}
\text { Safe working load } & =\frac{3581.2}{1.5} \\
& =2387.5 \mathrm{KN}
\end{aligned}
$$

3. Design a column 4 m long to carrying a factor load of 6000 KN column is effectively held at both ends and restrain in direction at one end. Design the column using beam section ISHB 450 @ 907 N/m
Given:-
$\mathrm{L}=4 \mathrm{~m}$
Factor Load $=6000 \mathrm{KN}$
One end fixed and other end hinged

$$
\therefore \mathrm{K}=0.8
$$

Sln:-
The given section ISHB is checked for the axial load carrying capacity

$$
\therefore \mathrm{P}_{\mathrm{d}}=\mathrm{Axf}_{\mathrm{cd}}
$$

Properties of ISHB450 @ $907 \mathrm{~N} / \mathrm{m}$:-

$$
\begin{aligned}
& \mathrm{A}=11789 \mathrm{~mm}^{2} \\
& \mathrm{I}_{\mathrm{xx}}=40349.9 \mathrm{x} 10^{4} \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{yy}}=3045 \times 10^{4} \mathrm{~mm}^{4} \\
& \text { Assuming } \mathrm{f}_{\mathrm{cd}}=200 \mathrm{~N} / \mathrm{mm}^{2} \\
& \therefore \text { Areqd }=\frac{6000 \times 10^{3}}{200} \\
&=30000 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\therefore \text { Area deficit }=30000-11789
$$

$$
=18211 \mathrm{~mm}^{2}
$$

Selecting 20mm tk plate @ top 2 bottom flange portion.

$$
\begin{aligned}
2(20 \mathrm{xb}) & =18211 \\
\mathrm{~b} & =455.275 \mathrm{~mm} \text { ¿ } 500 \mathrm{~mm}
\end{aligned}
$$

\therefore Assume the size of plate @ as $500 \times 20 \mathrm{~mm} @$ top and bottom.

$$
\begin{aligned}
& I_{z z} \text { of composite sectio } 5 \dot{4} \overline{0} \times 20^{3} \\
& I_{z z}=40349.9 \times 10+\frac{2^{2}}{12}+\left[500 \times 20 \times(480-245)^{2}+\frac{500 \times 20^{3}}{12}+\left[500 \times 20(245-10)^{2}\right]^{2}\right. \\
& I_{z z}=1508.66 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

I_{yy} of composite section:-

$$
\begin{gathered}
I_{y y}=3045 \times 10^{4}+\frac{20 \times 500^{3}}{12}+\left[20 \times 500 \times(250-250)^{2}\right]^{20 \times 500^{3}}+\frac{2}{12}+[20 \times 500 \times(250-250)]^{2} \\
I_{y y}=447.12 \times 10^{6} \mathrm{~mm}^{4}
\end{gathered}
$$

Check for over hang:-
The over hang length is limited to 'lbt' over hang length $=500-250$

$$
=250 \mathrm{~mm}<16(20)=320 \mathrm{~mm}
$$

$$
\begin{aligned}
& \therefore r_{z z}=\sqrt{\frac{I^{z}}{A^{z}}} \\
& \mathrm{~A}=11789+(2 \times 500 \times 20) \\
& \mathrm{A}=31789 \mathrm{~mm}^{2} \\
& r_{z z}=\sqrt{\frac{1508.66 \times 10^{6}}{31789}} \\
& r_{z z}=\sqrt{217.85 \mathrm{~mm}} \\
& r_{y y}=\sqrt{I_{A y}} \\
&=\sqrt{\frac{447.12 \times 10^{6}}{31789}} \\
& r_{y y}=118.60 \mathrm{~mm} \\
& \therefore r_{\min }=118.60 \mathrm{~mm}
\end{aligned}
$$

To find slenderness ratio:-

$$
\begin{aligned}
& \frac{K L}{r_{\min }}=\frac{0.8 \times 4000}{118.60} \\
& \frac{K L}{r_{\min }}=26.98
\end{aligned}
$$

20	224
30	211

\therefore Design load carrying capacity of the section $=\mathrm{f}_{\mathrm{cd}} \mathrm{x}$ A

$$
\begin{gathered}
=214.926 \times 31789 \\
\mathrm{P}_{\mathrm{d}}=6832.3 \mathrm{KN}>6000 \mathrm{KN}
\end{gathered}
$$

Hence the assume section is safe.

Laced \& Battened Columns:-
[cls 7.6 IS 800-2007] [cls 7.7 IS 800-2007]

* Lacings and battens are provided to establish a built up section. [generally using channels and angles]
* They do not increase the area of the section, but increase the mini. Radius of gyration [achieve by placing the members away from principle axis]
* The commonly used lateral systems are lacings or latticings battering.

Design of Laced Columns:- ${ }^{\circ}$
The general guide lines reqd are

1. The latticing system shall be uniform throughout.
2. In single lacing system, the direction of lattices on the opposite face should be the shadow of the other and not mutually opposite.
3. In bolted construction, the mini width of lacing bars shall be 3 times the nominal dia of bolts.
4. Tks of flat lacing bars shall not be less than $1 / 140$ th of its eff. Length for single lacing \& $1 / 16^{\text {th }}$ of eff. Length for double lacings.
5. Lacing bars shall be inclined at 40° to 70° to the axis of the built up members.
6. The distance b / w the two main member should be kept, such that

$$
\mathrm{r}_{\mathrm{yy}}>\mathrm{r}_{\mathrm{zz}} \quad \text { where, }
$$

$r_{y y}=$ Radius of gyration about the weaker axis.
$\mathrm{r}_{\mathrm{zz}}=$ Radius of gyration of stronger axis [major axis] of the individual members.
7. Maxi. Spacing of lacing bars shall be such that, the maxi. Slenderness ratio of the main member b / w consecutive lacing connections is not greater than 50 (or) 0.7 times of the unfavourable slenderness ratio of the member as a hole.
8. The lacing shall be design to resist a transverse shear, ' $\mathrm{V}_{\mathrm{t}}=2.5 \% \mathrm{P}$ ' [Axial load of column] If there are two transverse parallel systems then each system has to resist a shear force of ' $\mathrm{V}_{\mathrm{t}} / 2$ '
9. If the column is subjected to bending also the shear due to bending moment has to be added with ' V_{t} '
10. The eff. Length of a single laced system is equal to the length b / w the inner faster ness. For welded joints and double lacing system, Effectively connected at the intersection, eff. Length is taken as 0.7 times the actual length.
11. The slenderness ratio KL/r for lacing shall not exceed 145. [$\because \lambda_{\max }=145$]
12. The eff. Slenderness ratio of laced columns shall be taken as 1.05 times the actual maxi. Slenderness ratio in order to account for shear deformation effects.

Design of Batten column:-

1. Similar to lacings, battens are design for transverse force $V_{t}=2.5 \% \mathrm{P}$
2. The batten plates should be symmetrical \& spaced uniformly throughout. The eff. Slenderness ratio is 1.1 times the maxi. Actual slenderness ratio of the column to account for shear deformation.
3. Spacing shall be such that slenderness ratio of the column in any part is not greater than 50 and not greater than 0.7 times the slenderness ratio of the member as a hole about $\mathrm{z}-\mathrm{z}$ axis.
4. The design shear and moment for the batten plates is given by the following relations.

$$
\begin{aligned}
& V_{b}=\frac{V_{c} C}{N_{s}} \\
& M=\frac{V_{t} C}{2 \mathrm{~N}}
\end{aligned}
$$

factored load of 1400 KN . The column may be assume to have restrain in position but not in direction at both ends. [Hinged ends]

Given:-

$P=1400 K N, L=10 m, \quad K=1$
Condition Both ends are hinged.
Sln:-
Assume f_{cd} as $135 \mathrm{~N} / \mathrm{mm}^{2}$
To find $\mathrm{A}_{\text {reqd: }}$:-
$\mathrm{A}_{\mathrm{reqd}}=f_{c d}^{\underline{P}}$

$$
\begin{aligned}
& \qquad=\frac{1400 \times 10^{3}}{135} \\
& \quad \mathrm{~A}_{\mathrm{reqd}}=10370.37 \mathrm{~mm}^{2} \\
& \therefore \text { Area of each channel reqd } \quad=\frac{10370.37}{2} \\
& \qquad=5185.2 \mathrm{~mm}^{2}
\end{aligned}
$$

Try 2-ISMC 350 @ $421 \mathrm{~N} / \mathrm{m}$

$$
A=5366 \mathrm{~mm}^{2}
$$

$\mathrm{W}=421 \mathrm{~N} / \mathrm{m} ; \mathrm{I}_{\mathrm{zz}}=10008.0 \times 10^{4} \mathrm{~mm}^{4} ; \mathrm{I}_{\mathrm{yy}}=430.6 \times 10^{4} \mathrm{~mm}^{4}$
$\mathrm{r}_{\mathrm{zz}}=136.6 \mathrm{~mm} ; \mathrm{r}_{\mathrm{yy}}=28.3 \mathrm{~mm} ; \mathrm{c}_{\mathrm{yy}}=24.4 \mathrm{~mm}$
The lacing system is provided such that $\mathrm{r}_{\mathrm{yy}}>\mathrm{r}_{\mathrm{zz}}$. This is achieve by providing sufficient spacing b / w the two channels.

$$
\therefore r_{\min }=r_{z z}
$$

$r_{z z}$ of combined section $=r_{z z}$ of individual channel section.
$\therefore \quad r_{z z}$ of combined section $=136.6 \mathrm{~mm}$
Slenderness ratio:-

$$
\begin{aligned}
\frac{K L}{r_{\min }} & =\frac{1 \times 10000}{136.6} \\
\frac{K L}{r_{\min }} & =73.206
\end{aligned}
$$

For laced columns the maxi. Slenderness ratio can be increased by 5%

$$
\begin{aligned}
& \therefore \quad \frac{K L}{r_{\text {min }}}=73.206 \times 1.05 \\
& \quad=76.86
\end{aligned}
$$

70	152
80	136

From table 9 © IS800-2007

From table 10 the builtup section comes under the buckling class ' C '

$$
\mathrm{f}_{\mathrm{cd}}=141.024 \mathrm{~N} / \mathrm{mm}^{2}
$$

\therefore Load carrying capacity of column, $\mathrm{P}_{\mathrm{d}}=\mathrm{f}_{\mathrm{cd}} \mathrm{X} \mathrm{A}$

$$
\begin{aligned}
= & 141.024 \times 5366 \times 2 \\
\mathrm{P}_{\mathrm{d}} & =1513.46 \mathrm{KN}>1400 \mathrm{KN}
\end{aligned}
$$

\therefore Assumed section 2ISMC 350 is sufficient.
Design of Lateral system:- [Lacing System]
The clear distance b / w the two channels is arrived based on the condition $r_{y y} \dot{\mathcal{L}} \mathrm{r}_{\mathrm{zz}}$ $\mathrm{I}_{\mathrm{yy}}=\mathrm{I}_{z z}$
I_{zz} of composite section is twice the I_{zz} of an individual channel section.

$$
\begin{aligned}
I_{z z}(\text { comp }) & =2 \mathrm{I}_{z z}(\text { individual }) \\
& =2 \times 10008 \times 10^{4} \\
\mathrm{I}_{z z} & =2.0016 \times 10^{8} \mathrm{~mm}^{4}
\end{aligned}
$$

I_{yy} of composite section is found for the 2 channels from the centroidal Axis

$$
\left.\begin{array}{c}
I_{y y(\text { comp })}=2\left[\begin{array}{l}
{\left[I_{y y_{\text {(seff }}+A h^{2}}\right.} \\
\text { (one channe1) }
\end{array}\right. \\
=2\left[430.6 \times 10^{4}+5366 \times\left(\frac{d}{2}+24.4\right)^{2}\right] \\
\mathrm{I}_{y \mathrm{y}}=\mathrm{I}_{z z}
\end{array}\right] \begin{gathered}
2\left[430.6 \times 10^{4}+5366\left(\frac{d}{2}+24.4\right)^{2}\right]=2.0016 \times 10^{8} \\
2\left[430.6 \times 10^{4}+5366\left(d_{4}^{2}+595.36+24.4 \mathrm{~d}\right)\right]=2.0016 \times 10^{8} \\
2\left[430.6 \times 10^{4}+1341.5 \mathrm{~d}^{2}+3194701.76+130930.4 \mathrm{~d}\right]=2.0016 \times 10^{8} \\
2\left[1341.5 \mathrm{~d}^{2}+130.930 \times 10^{3} d+750.07 \times 10^{4}\right]=2.0016 \times 10^{8} \\
1341.5 \mathrm{~d}^{2}+130.93 \times 10^{3} d+750.07 \times 10^{4}=100.08 \times 10^{6} \\
1341.5 \mathrm{~d}^{2}+130.93 \times 10^{3} d=92.579 \times 10^{6} \\
\mathrm{~d}=218 \\
\therefore \mathrm{~d}=220 \mathrm{~mm}
\end{gathered}
$$

Assume the lacings to be provided at 45° to the horizontal.

$$
\begin{aligned}
& \text { Horizontal Spacing }=\mathrm{d}+24.4+24.4 \\
&=220+48.8 \\
&=268.8 \mathrm{~mm} \\
& \text { Hori spacing }=268.8 \mathrm{~mm} \\
& \begin{aligned}
\text { Vertical spacing } & =2[\text { horizontal spacing }] \\
& =2 \times 268.8 \\
& =537.6 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

The limit for slenderness ratio for each channel b / w the lacings vertically is 50
\therefore Slenderness ratio for vertical spacing

$$
\begin{aligned}
{[\text { Each Channel] }} & =\frac{K L}{r} \\
& =\frac{1 \times 537}{28.3} .6 \\
& =18.99<50
\end{aligned}
$$

Transverse shear to be resisted by each lacing system is 2.5% of axial load. [Clause 7.6.6.1 IS 800-2007]

$$
\begin{aligned}
\text { Load } & =\frac{2.5 \times 1400}{100} \\
& =35 \mathrm{KN}
\end{aligned}
$$

\therefore Transverse shear to be resisted by each lacing bar is 17.5 KN

$$
\left.\begin{array}{rl}
L=\frac{268}{\cos }: \frac{8}{45^{\circ}} \\
\mathrm{L} & =380.14 \mathrm{~mm}
\end{array}\right] \begin{aligned}
& \underline{L} \\
& \text { Mini tks of lacing bar }=40 \\
&=\frac{380}{40} . \frac{14}{}
\end{aligned}
$$

$$
=9.5 \mathrm{~mm}
$$

\therefore Provide 10 mm tk flat plates for lacing bar. Assume dia of bolt as 20 mm , width of lacing bar $=3 x d i a$

$$
\begin{aligned}
& =3 \times 20 \\
\mathrm{~b} & =60 \mathrm{~mm}
\end{aligned}
$$

\therefore The assumed lacing bar is $60 \times 10 \mathrm{~mm}$
Connection for lacing Bar:- [20mm dia]

1. Strength of bolt is single shear:- [cls 10.3.3 IS 800-2007]

$$
\begin{aligned}
V_{d s p} & =\frac{V_{n s p}}{\gamma_{m b}} \\
& =\frac{f u}{\sqrt{3}}\left[n_{n} A_{n b}+n_{s} A_{s b}\right] \\
n_{n s p}=1, & n_{s}=0 \\
& =\frac{400}{\sqrt{3}}\left[1 \times 0.78 \times \frac{\pi \times 20^{2}}{4}\right] \\
V_{n s p} & =56.59 \mathrm{KN} \\
V_{d s p} & =45.272 \mathrm{KN}
\end{aligned}
$$

2. Strength of bolt in bearing:- [cls 10.3.4 IS 800-2007]

$$
\begin{aligned}
& V_{d b p}=\frac{V_{n b p}}{\gamma_{m b}}=\frac{2.5 \mathrm{k}_{b} d_{t} f_{u}}{\gamma_{m b}} \\
& k_{b}=\frac{e}{3 \mathrm{~d}_{o}}, \frac{p}{3 \mathrm{~d}_{o}}-0.25, \frac{f_{u b}}{f_{u}}, 1 \\
& e=1.5 \mathrm{~d}_{o}=33 \mathrm{~mm} \simeq 40 \mathrm{~mm} \\
& p=25 . d=50 \mathrm{~mm} \simeq 60 \mathrm{~mm} \\
& k_{b}=0.606,0.659,0.975,1 \\
& \therefore k_{b}=0.606 \\
& \quad=-\frac{2}{2}: \frac{606 \times 20 \times 10 \times 410}{1.25} \\
& V_{d b p}=99.384 \mathrm{KN}
\end{aligned}
$$

\therefore The strength of bolt value $=45.272 \mathrm{KN}$
\therefore No. of bolts $=\frac{17}{45.27}=0.39 \mathrm{~N} / \mathrm{N}_{o}$
\therefore Provide one $20 \mathrm{~mm} \varphi$ bolt on each side of connection.
Strength of lacing bar:- [60x10mm]
Slenderness ratio of lacing bar $=\frac{K L}{r}$

$$
\begin{aligned}
&=\frac{1 \times 380.14}{\gamma_{\text {min }}} \\
& r_{\min } \\
&=\sqrt{A_{z z}^{A}} \text { (or) } \sqrt{\frac{I_{y y}}{A}}
\end{aligned}
$$

$$
\begin{aligned}
I_{z z} & =\frac{60 \times 10^{3}}{120^{3} \times 10}=5000 \mathrm{~mm}^{4} \\
I_{y y} & =\frac{{ }^{3}}{12}=180 \times 10^{4} \mathrm{~mm}^{4} \\
& =\sqrt{\frac{5000}{600}} \\
r_{\min } & =2.88 \\
& =\frac{1 \times 380.14}{2.88}
\end{aligned}
$$

$$
\text { Slenderness ratio }=131.99<145 \text { [cls 7.6.6.3 IS 800-2007] }
$$

130 74.3 140 66.2 From table 9@ IS 800-2007
$\mathrm{f}_{\mathrm{cd}}=72.68 \mathrm{~N} / \mathrm{mm}^{2}$ Load Carrying capacity of section $=72.68 \times 60 \times 10$ $\qquad$$\mathrm{p}_{\mathrm{d}}$$=43.61 \mathrm{KN}>17.5 \mathrm{KN}$

Hence the lacing system is safe.
2. Design the above built up column using battens as lateral system. The sections selected are 2 ISMC350@413N/m with clear spacing of 220 mm .
[\therefore The section is design as per the previous problem] Sln:-

C / C horizontal distance b / w the batten plate $\mathrm{S}=\mathrm{d}+24.4+24.4$
$\mathrm{S}=268.8 \mathrm{~mm}$
If ' C ' is the spacing of the battens. The value of ' C ' is found based the relation
$\mathrm{C} / \mathrm{rmin}<50$ [The slenderness ratio of each channel $\mathrm{b} / \mathrm{w} 2$ battens plates is limited to 50]

$$
\begin{aligned}
& \mathrm{C}=28.3 \times 50 \\
& \mathrm{C}=141.5 \mathrm{~mm}
\end{aligned}
$$

\therefore Assume $\mathrm{C}=\underline{2} .2001 \mathrm{mm0}$
Transverse shear $V=$

$$
\begin{gathered}
t \quad 100 \\
V_{t}=35 \mathrm{KN}
\end{gathered}
$$

As per clause 7.7.2.1 IS 800-2007, shear to be resisted by Batten plate

$$
\begin{aligned}
& V_{b}=\frac{V_{t} C}{N S} \\
& M=\frac{V_{t} C}{2 \mathrm{~N}}
\end{aligned}
$$

Where,

$$
\begin{gathered}
\mathrm{N}=2 \\
\therefore V_{b}=\frac{35 \times 1200}{2 \times 268.8} \\
V_{b}=78.125 \mathrm{KN} \\
\therefore M=\frac{35 \times 1200}{2 \times 2} \\
=105.00 \mathrm{KN} \mathrm{~mm} \\
\mathrm{M}=10.5 \mathrm{KN} . \mathrm{m}
\end{gathered}
$$

Width \& tks of Batten Plate:-
The end batten plate should have width (depth) greater than S (268.8 mm)
\therefore Provide width of batten plate as 270 mm width of intermediate batten plate should be greater than $3 / 4$ width of end batten plate.
\therefore Provide width of intermediate batten plate $=\frac{3}{4} \times 270$

$$
=202.5 \mathrm{~mm}
$$

\therefore Width as 210 mm
Tks of batten plate should be greater than $\mathrm{S} / 50$

$$
\begin{aligned}
t & =\frac{268}{50} .8 \\
\mathrm{t} & =5.376 \mathrm{~mm}
\end{aligned}
$$

\therefore Provide the tks of 6 mm
Check for stresses in Batten Plate:-

$$
\begin{aligned}
\text { Shear stress } & =\frac{V_{b}}{78} \\
& =\frac{125 \times 10^{3}}{210 \times 6} \\
& =62 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Permissible shear stress } & =\frac{f_{y}}{1.1 \sqrt{3}} \\
& =131.21 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Shear Act stress < Permissible shear stress
Actual bending stress $\sigma_{b}=\frac{M}{Z}$

$$
\begin{aligned}
& =\frac{10.5 \times 10^{6} \times 6}{t d^{2}} \\
& =\frac{10.5 \times 10^{6} \times 6}{6 \times 210^{2}}
\end{aligned}
$$

$$
=38.09 \mathrm{~N} / \mathrm{mm}^{2}
$$

Permissible bending stress $=\frac{f_{y}}{1.1}$

$$
=227.27 \mathrm{~N} / \mathrm{mm}^{2}
$$

Act bending stress < Permissible bending stress
Hence the breadth of the section has to be increased.
Providing an edge of 35 mm on both sides over all depth of section is $210+35+35=$ 280 mm
To find Actual bending stress:-

$$
\begin{aligned}
\text { Actual bending stress } & =\frac{10.5 \times 10^{6} \times 6}{(280)^{2} \times 6} \\
& =133.9 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Shear stress } & =46.5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

\therefore Provide intermediate plate of size $280 \times 6 \mathrm{~mm}$ and end batten plate of size $[270+70=340 \mathrm{~mm}] 340 \times 6 \mathrm{~mm}$
Connections for intermediate batten plate:-

- Bolts are placed along a vertical line on the batten plate.
- Force in the extreme bolt should be less than the bolt value for the connection to be safe.

Assume 20mm dia bolt
\therefore Bolt value $=45.27 \mathrm{KN}$
The transverse shear acting on a connection $=78.125 \mathrm{KN}$

$$
\therefore \text { No. of bolts }=\frac{78}{45.27}
$$

$$
=1.72 \text { ¿ } 3 \text { Nos. }
$$

Since moment also acts on the connection provide 3 Nos of bolts.
The force due to moment on extreme.

$$
\begin{aligned}
& \text { Bolt } F_{m}=\frac{M y}{\sum} \\
&=\frac{\sum .5^{2} \times 10^{6} \times 10^{5}}{\left(105^{2}+105^{2}\right)} \\
& F_{m}=50 \mathrm{KN}
\end{aligned} r_{s}=\frac{F}{n}=\frac{78.125}{3}
$$

$\therefore 3$ bolts are not sufficient we have to increase the no. of bolts.
\therefore Assume 5 Nos of bolt along the vertical line.
Force due to moment $F_{m}=\frac{M \gamma}{}$

$$
\sum \gamma^{2}
$$

$$
\begin{aligned}
& =\frac{10.5 \times 10^{6} \times 10^{5}}{2\left(105^{2}\right)+2\left(105^{2}\right)} \\
& =25 \mathrm{KN} \\
F_{s} & =\frac{78}{5} \cdot \frac{125}{5} \\
& =\underline{15.62 \mathrm{KN}} \\
\text { Resultant Force }= & \mid 25^{2}+15.62^{2} \\
= & 29.48 \mathrm{KN}<45.27 \mathrm{KN}
\end{aligned}
$$

Hence 5 Nos of 20 mm dia bolts are provided in both sides.

COLUMN SPLICE:-

* When two pieces of the section are connected together to get the reqd length of column, is called a column splice.
* In a building the section of column may be change from storey to storey (for economy) and in cases when the length reqd exceeds standard size of the section available.

COLUMN BASES:-
(i) Slab Base, (ii) Gussetted Base, (iii) Grillage Foundation

(i) Slab Base:-
$>$ It is used in columns carrying small loads. [Approximately upto 1000KN]
$>$ The load is transferred to the base plate through bearing, with the help of cleat angles.
(ii) Gussetted Base:-
$>$ Gussetted Base when the column carries heavy load [App. 1000-2000KN]
$>$ The column is connected to the base plate using gusset plates and cleat angles.
$>$ The load is transferred to the base party to bearing \& party to gusset.
Design of slab base (or) simple base:-

1. The bearing strength of concrete is $0.45 \mathrm{f}_{\mathrm{ck}}$
2. Area of base plate reqd is $\frac{{ }_{u}}{0.4 \mathrm{f}_{c k}}$

Assume the size of plate such that the projections of base plate from the column on both sides (a\&b) are kept more or less same.
3. Find the base intensity pressure

$$
w=\frac{P_{u}}{\text { Areaofbaseplate }}
$$

4. Min thickness of base plate reqd. is

$$
t_{s}=\left[\left.\frac{2.5 \mathrm{w}\left(a^{2}-0.3 \mathrm{~b}^{2}\right) \gamma_{m o}}{f_{y}}\right|^{0.5}>t_{f}\right.
$$

5. Connection: If bolted connection is provided 2 cleat angles of size ISA $65 \times 65 \times 6 \mathrm{~mm}$ are used which are connected with 20 mm dia of bolts.
If welded connection is used the size of weld is arrived based on the length of weld available alround the column.
6. The Base Plate is connected to the foundation concrete using 4 Nos of 20 mm dia and 300 mm long Anchor bolts.

0 . Design a slab base for a column ISHB $300 @ 577 \mathrm{~N} / \mathrm{m}$ which is subjected to factored axial load of 1000 KN use M20 concrete for the concrete pedestal.

Given:-

$$
\begin{aligned}
& \text { ISHB 300 } @ 577 \mathrm{~N} / \mathrm{m} \\
& \mathrm{P}_{\mathrm{u}}=1000 \mathrm{KN} \\
& \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Sln:-

1. Bearing stress in concrete $\sigma_{b c}=0.45 f_{c k}$

$$
=0.45 \times 20
$$

2. Area of base plate reqd, $\quad \begin{aligned} \sigma_{b c} & =9 \mathrm{~N} / \mathrm{mm}^{2} \\ A & =\frac{P_{u}}{0.45 f_{c k}} \\ & =\frac{1000 \times 10^{3}}{9}\end{aligned}$

$$
\mathrm{A}=111.11 \times 10^{3} \mathrm{~mm}^{2}
$$

Assuming equal projection on both sides with $\mathrm{a}=\mathrm{b}=30 \mathrm{~mm}$, size of base plate assumed is 310x360mm.

$$
\therefore \text { Area Provided } \quad=111.6 \times 10^{3} \mathrm{~mm}^{2}
$$

3. Pressure intensity @ base $\quad w=\frac{P_{u}}{\text { Areaofbaseplate }}$

$$
=\frac{1000 \times 10^{3}}{111.6 \times 10^{3}}
$$

$$
\mathrm{w}=8.96 \mathrm{~N} / \mathrm{mm}^{2}<9 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\begin{aligned} \text { 4. Mini. Tks of base plate } & =\left[\frac{2.5 \mathrm{w}\left(a^{2}-0.3 \mathrm{~b}^{2}\right) \gamma m_{o}}{f_{y}}\right. \\ & =\left[\frac{2.5 \times 8.96\left(30^{2}-0.3 \times 30^{2}\right) \times 1.1}{250}\right]^{0.5}\end{aligned}$

$$
\left(t_{s}\right) 7.87 \mathrm{~mm}<10.6 \mathrm{~mm}\left(t_{f}\right)
$$

\therefore Provide tks of base plate as 12 mm

5. Bolted Connection:-

Provide 2 cleat angle ISA $65 \times 65 \times 6 \mathrm{~mm}$ connected using 20 mm dia ' J ' anchor bolts for a length of 300 mm .
2) Design the above problem using welded connection Sln:-

1. Bearing stress in concrete $\sigma_{b c}=0.45 f_{c k}$

$$
=0.45 \times 20
$$

$$
\sigma_{b c}=9 \mathrm{~N} / \mathrm{mm}^{2}
$$

2. Area of base plate reqd, $\quad A=\frac{P_{u}}{0.45 f}$

$$
=\frac{1000 \times 10^{3}}{9}
$$

$\mathrm{A}=111.11 \times 10^{3} \mathrm{~mm}^{2}$
Assuming equal projection on both sides (for economy) size of plate adopted is 310x360mm.
3. Pressure intensity @ base

$$
\therefore \text { Area Provided }=111.6 \times 10^{3} \mathrm{~mm}^{2}
$$

3. Pressure intensity @ base w=

$$
\begin{aligned}
w & =\frac{P_{u}}{\text { Actualarea }} \\
& =\frac{1000 \times 10^{3}}{111.6 \times 10^{3}}
\end{aligned}
$$

$$
\mathrm{w}=8.96 \mathrm{~N} / \mathrm{mm}^{2}<9 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\begin{aligned} \text { 4. Mini. Tks of base plate } & =\left[\frac{2.5 \mathrm{w}\left(a^{2}-0.3 \mathrm{~b}^{2}\right) \gamma m_{o}}{f_{y}}\right. \\ & =\left[\frac{2.5 \times 8.96\left(30^{2}-0.3 \times 30^{2}\right) \times 1.1}{250}\right]^{0.5}\end{aligned}$
Tks of flange $=10.6 \mathrm{~mm}$
\therefore Provide tks of base plate as 12 mm .

5. Welded Connection:-

Providing fillet weld alround the I-section, length available is
Length available $=4(250)-2(7.6)+2(300)-2(10)$

$$
1 \mathrm{w}=1563.6 \mathrm{~mm}
$$

Design strength of weld:-
Providing a weld of grade $410 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{f}_{\mathrm{u}}\right)$

$$
\begin{aligned}
& \text { Stress } \times \text { Area } \\
& \text { Design strength of weld }=\frac{\downarrow \downarrow \downarrow}{f_{u} / \downarrow} \times(l w \times t) \\
& \frac{\downarrow m_{w}}{410} / \sqrt{ } 3 \\
&=\frac{/ 1563.6 \times 0.7)}{1.25} \times(563
\end{aligned}
$$

For the available length, the size of weld reqd is found.

$$
\begin{aligned}
1000 \times 10^{3} & =189.37 \times 0.73 \times 1563.6 \\
S & =\frac{1000 \times 10^{3}}{189.37 \times 0.7 \times 1563.6} \\
S & =4.82 \mathrm{~mm}
\end{aligned}
$$

Provide 6 mm fillet weld alround the column provide 20 mm dia ' J ' anchor bolts at the 4 corners of the base plate with length 300 mm .

Gusseted Base:-

- When the load on the column is higher gusset plates are provided along the flanges of the C/S.
- The load is transferred by bearing through the base plate and also partly through the gusset plate.
Design Procedure:-

1. Area of base plate, $A=\frac{P_{u}}{0.45 f_{c k}}$
2. Assume various members of gusset base
(i) Tks of gusset plate assumed as 16 mm
(ii) Size of gusset angle is assume such that the vertical leg can accomadate 2 bolts in one vertical line. The other leg is assume such that 1 bolt can be provided.
(iii) The tks of angle is kept approximately equal to the tks of gusset plate.
3. Width of gusseted base is kept suc that it will just project the outside the gusset angle and hence

$$
\text { Length }=\frac{\text { Areaofplate }}{\text { width }}
$$

4. The load is assumed to be transferred 50% by bearing and 50% by fasteners.
5. Tks of base plate is computed by flexural strength at the critical sections.
6. Design a gusseted base for a column ISHB $350 @ 710 \mathrm{~N} / \mathrm{m}$ with 2 plates $450 \times 20 \mathrm{~mm}$ carrying a factored load of 3600 KN . The column is to be supported on concrete pedestals to be built with M20 concrete.

ASSIGNMENT-I

1. Draw the various possible forces in bolted connections:-
a) Shear Plane on thread:-
b) Two planes subject to shear:-
c) Bolts in Direct Tension:-
d) Bolts resisting pure moment:-
e) Bolts subject to shear and tension:-
2. Beam ISLB 500 at $750 \mathrm{~N} / \mathrm{m}$ carries total factored ude of 300 KN . It is supported on columns ISHB 300 at $630 \mathrm{~N} / \mathrm{m}$ at each end. The connection is made using M20 bolts of grade 4.6 and steel Fe410. Design the connection.
Given:-
ISLB 500
$\mathrm{D}=500 \mathrm{~mm}, \mathrm{bf}=180 \mathrm{~mm}, \mathrm{tf}=14.1 \mathrm{~mm}, \mathrm{tw}=9.2 \mathrm{~mm}$
ISHB 300
$\mathrm{D}=300 \mathrm{~mm}, \mathrm{bf}=250 \mathrm{~mm}, \mathrm{tf}=10.6 \mathrm{~mm}$
Sln:-
Try angle $100 \times 100 \times 8 \mathrm{~mm}$ one on each side of beam.
a) Angle connecting beam web:-

The connecting bolts will be in double shear
Strength of bolts in double shear $=2 \times\left[0.462 f_{u}\left(n_{n} A_{n \sigma}\right)\right]$

$$
\begin{aligned}
& =2 \times 0 .{ }^{462 \times 400 \times 245} / 1000 \\
& =90.55 \mathrm{KN}
\end{aligned}
$$

Strength of bolts in bearing $=2 \mathrm{~d}_{t p f u}$

$$
\begin{aligned}
& =2 \times 20 \times 9.2 \times 410 \\
& =147 \mathrm{KN}
\end{aligned}
$$

Least bolt value $=90.55 \mathrm{KN}$
No. of bolts $=\frac{\text { Re } \frac{\text { action }}{\text { @ eachend }}}{\text { boltvalue }}$

$$
=\frac{\frac{300}{2}}{90.55}
$$

Nos. of bolt $=1.7$ says 2 Nos.
Provide 2 bolts @ 50 mm pitch with edge distance of 40 mm .
Mini. Length of angle reqd $=2 \times 40+50$

$$
=130 \mathrm{~mm}
$$

b) Angle connecting column flange:-

Connecting bolts will be in single shear and bearing on 8 mm tks of angle
Strength of bolts in single shear $=0.462 f_{u}\left(n_{n} A_{n b}\right)$

$$
\begin{aligned}
& =0.462 \times 400 \times 245 \\
& =45.3 \mathrm{KN}
\end{aligned}
$$

Strength of bolts in bearing $=2 d t_{p} f_{u}$

$$
\begin{aligned}
& =2 \times 20 \times 8 \times 410 \\
& =31 \mathrm{KN}
\end{aligned}
$$

Least bolt value $=45.3 \mathrm{KN}$
300/

No. of bolts $=\frac{12}{45.3}$

$$
=3.31 \text { says } 4 \mathrm{Nos} .
$$

Provide 2 bolts on each side of flange check the tks of the angle:-

$$
\begin{aligned}
\text { Factored shear resistance } & =\frac{A_{v} \cdot f_{y w}}{\sqrt{3 \gamma_{m o}}} \\
& =0.525 A_{v} f_{y w} \\
& =0.525 \times 2 \times 100 \times 8 \times 250 \\
& =209.9 \mathrm{KN}>150 \mathrm{KN}
\end{aligned}
$$

Hence safe

ASSIGNMENT-II

1. Design a tension member to carry a factored load of 340 KN use 20 mm dia of black bolt and gusset plate of 8 mm thickness.
Given:-
Factored load $=340 \mathrm{KN}$

$$
\begin{aligned}
& \mathrm{d}=20 \mathrm{~mm}, \mathrm{~d}_{\mathrm{o}}=22 \mathrm{~mm} \\
& \text { Thickness of gusset plate }=8 \mathrm{~m}
\end{aligned}
$$

Sln:-
No. of bolts $=\mathrm{Tu} / \mathrm{V}$
To find Ag_{g} :-

$$
\begin{aligned}
A_{g} & =\frac{1.1 \times T_{u}}{f_{y}} \\
& =\frac{1.1 \times 340 \times 10^{3}}{250} \\
A_{g} & =1496 \mathrm{~mm}^{2}
\end{aligned}
$$

Try ISA 100x100x8mm

$$
A_{g}=1539 \mathrm{~mm}^{2}
$$

$$
\gamma_{x x}=\gamma_{y y}=30.7 \mathrm{~mm}
$$

BOLT VALUE:-
(i) Strength of bolt in single shear:- [cls 10.3.3 IS 800-2007]

$$
\begin{aligned}
V_{d s b} & =\frac{V_{n s b}}{\gamma_{m b}} \\
& =\frac{f}{f \sqrt{3}}\left[\frac{n_{n} A_{n \phi_{m b}}+n_{s} A_{s b}}{}\right] \\
\mathrm{n}_{\mathrm{n}}= & 1, \mathrm{n}_{\mathrm{s}}=0 \\
A_{n b} & =\frac{.78 \times \pi \times 20^{2}}{4} \\
= & 245 \mathrm{~mm}^{2} \\
& =\frac{409}{5}\left[\frac{1 \times 2425.04}{V_{d s b}}=45.27 \mathrm{KN}\right.
\end{aligned}
$$

(ii) Strength of bolt in bearing:- [cls 10.3.4 IS 800-2007]

$$
V_{d b p}=\frac{V_{n b p}}{\gamma_{m b}}
$$

$$
=\frac{2.5 \mathrm{k}_{b} d_{t} f_{u}}{\gamma_{m b}}
$$

Assume,

$$
\begin{aligned}
\mathrm{e}=1.5 \mathrm{~d}_{\mathrm{o}} & =33 \mathrm{~mm}<40 \mathrm{~mm} \\
\mathrm{p}=2.5 \mathrm{~d} & =50 \mathrm{~mm} \\
k_{b} & =\frac{40}{i 0}, \frac{80}{3 \times 22}-0.25, \frac{400}{410}, 1 \\
b & =0.606,0.66,0.959,1
\end{aligned}
$$

Take $k_{b}=0.606$

$$
\begin{aligned}
& =-\frac{2}{2} . \frac{50}{.} . \frac{606 \times 20 \times 8 \times 410}{1.25} \\
& V_{d b p}=79.5 \mathrm{KN}
\end{aligned}
$$

\therefore Design strength of bolt value $=45.27 \mathrm{KN}$

$$
\begin{aligned}
\therefore \text { No. of bolts } & =\frac{340}{45.27} \\
& =7.51<8 \mathrm{Nos}
\end{aligned}
$$

\therefore Provide $20 \mathrm{~mm} \varphi$ bolt of 8 Nos.
Check for strength of section:-
(i) Design strength of section against yielding:- [cls 6.2 IS 800-2007]

$$
\begin{aligned}
& T_{d g}=\frac{A_{g} f_{y}}{\gamma_{m o}} \\
& A_{g}=\frac{(100-8 / 2) \times 250}{1.1} \\
& T_{d g}=349.04 \mathrm{KN}
\end{aligned}
$$

(ii) Design strength of section against rupture:- [cls 6.3.3 IS 800-2007]

$$
T_{d n}=\frac{0.9 \mathrm{~A}_{n c} f_{u}}{\gamma_{m l}}+\frac{\beta A_{g o} f_{y}}{\gamma_{m o}}
$$

Where,

$$
\begin{aligned}
& \begin{array}{c}
\beta=1.4-0.076\left(\frac{w}{t}\right)\binom{f_{f}^{y}}{f_{u}^{y}}\binom{b_{l}^{s}}{l_{c}^{s}} \leq{ }^{f_{f}^{y}}{ }_{u}^{v} \gamma_{m l}^{m o} \geq 0.7 \\
\mathrm{w}=100
\end{array} \\
& \mathrm{w}_{1}=50 \\
& \mathrm{~b}_{\mathrm{s}}=100+50-8 \\
& \mathrm{~b}_{\mathrm{s}}=142 \mathrm{~mm} \\
& \mathrm{~L}_{\mathrm{s}}=460 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \beta=1.22 \\
& A_{n c}=\left(100-22-\not \varnothing_{2}\right) 8=592 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
A_{g o} & =(100-8 / 2) 8=768 \mathrm{~mm}^{2} \\
& =\frac{0.9 \times 592 \times 410}{1.25}+\frac{1.22 \times 768 \times 250}{1.1} \\
\mathrm{~T}_{\mathrm{dn}} & =387.7 \mathrm{KN}>340 \mathrm{KN}
\end{aligned}
$$

3) Design strength of plate against block shear:- [cls 6.3.4 IS800-2007]

$$
\begin{aligned}
& T_{d b}=\frac{A_{v g} f_{u}}{\sqrt{3} m_{o}}+\frac{0.9 \mathrm{~A}_{t n} f_{u}}{\gamma_{m l}} \\
& T_{d b}=\frac{0.9 \mathrm{~A}_{v n} f_{u}}{\sqrt{3} \gamma_{m l}}+\frac{A_{t g} f_{y}}{\gamma_{m o}}
\end{aligned}
$$

Where,

$$
\begin{aligned}
A_{v g} & =[40+7(60)]^{8}=3680 \mathrm{~mm}^{2} \\
A_{v n} & =[460-7.5(22)]^{8} \\
& =2360 \mathrm{~mm}^{2} \\
A_{t g} & =50 \times 8=400 \mathrm{~mm}^{2} \\
A_{t n} & =(50-22 / 2)^{8} \\
& =312 \mathrm{~mm}^{2} \\
T_{d b 1} & =\frac{3680 \times 250}{\sqrt{3} \times 1.1}+\underline{0} . \frac{9 \times 312 \times 410}{1.25} \\
& =574.97 \mathrm{KN} \\
T_{d b 2} & =\frac{0}{2}=\frac{9 \times 2360 \times 410}{\sqrt{3} \times 1.25}+\frac{400 \times 250}{1.1} \\
& =493.13 \mathrm{KN}>340 \mathrm{KN}
\end{aligned}
$$

Design strength of section is against yielding rupture \& block shear as greater than the external load of 340 KN
\therefore The assumed section ISx100x100x8mm is safe.
2. Explain different modes of failure of tension member.

1. Cross section yielding:-

Generally a tension member without bolt holes, can resist loads upto the ultimate load without failure. But such a member will deform in the longitudinal direction considerably nears 10% to 15% of its original length before fracture. At such a large deformation a structure become in serviceable.

$$
T_{d g}=\frac{f_{y} A_{g}}{\gamma_{m o}}
$$

2. Net section Rupture:-

A tension member is after connected to the main of other members by bolts or welds, when connected using bolts tension members have holes $\&$ hence reduced cross section being referred to the net area.

$$
T_{d n}=\frac{0.9 \mathrm{f}_{y} A_{n}}{\gamma_{m l}}
$$

(iii) Block shear failure:-

Originally observed is bolted shear connection at sloped beams ends. Block shear is now reqd as potential failure of made the ends of axially load tension member also.

In this failure made the failure of member occurs along a parts including fussion on one plates $\&$ shear on $\dot{<}$ lr plane along the fasterners as shown in fig.

$$
\begin{aligned}
& T_{d b 1}=\frac{A_{v g} f_{y}}{\sqrt{3} \gamma_{m o}}+\frac{0.9 \mathrm{f}_{u} A_{v n}}{\gamma_{m l}} \\
& \text { (or) }
\end{aligned}
$$

Where,
$\mathrm{A}_{\mathrm{vg}}, \mathrm{A}_{\mathrm{vn}}=\mathrm{min}$ gross area \& net area in shear along section (1-2) \& (4-3)
$\mathrm{A}_{\mathrm{tg}}, \mathrm{A}_{\mathrm{tn}}=\min$ gross area \& net area from hole to toe of the angle section

Working stress method of steel design:-
Permissible stresses:-

1. Axial tension, $\sigma_{a t}=0.6 \mathrm{f}_{y}$
2. Axial compression, $\sigma_{a c} \leq 0.6 \mathrm{f}_{y}$ [depends upon L / R ratio]
3. Bending compression, $\sigma_{b c}=0.66 f_{y}$
4. Per shear stress, $\tau_{c}=0.45 f_{y}$ [generally taken as $0.4 \mathrm{f}_{\mathrm{y}}$]

ASSIGNMENT-III

1. Procedure for finding permissible and compressive stress of steel sections:-PROCEDURE:-

- Assume design stress of the member (generally rolled steel section assumed $\mathrm{f}_{\mathrm{cd}}=135 \mathrm{~N} / \mathrm{mm}^{2}$) for angle section $\mathrm{f}_{\mathrm{cd}}=90 \mathrm{~N} / \mathrm{mm}^{2}$, for builtup section $\mathrm{f}_{\mathrm{cd}}=200 \mathrm{~N} / \mathrm{mm}^{2}$
- Required eff. Sectional area is $A=\frac{P_{d}}{f_{c d}}$
- Select a section for the eff. Area calculate $\gamma_{\text {min }}$ (least of $\gamma_{x x} \wedge \gamma_{y y}$)
- From the end condition (decide the type of connection) determine eff. Length
- Find slenderness ratio and hence design stress $f_{c d}$
- Find actual load carrying capacity of compression member.

$$
p_{d}=f_{c d} \times A_{e}
$$

- If the calculating value of p_{d} difference consider by from design load P, revise the section.

2. Design a double angle discontinues strut to carry factored axial load 170KN. The length of the strut $b / w \mathrm{c} / \mathrm{c}$ of intersection is $3.85 \mathrm{~m}, \mathrm{f}_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$
Given:-

$$
\begin{aligned}
& \mathrm{L}=3.85 \mathrm{~m} \\
& \mathrm{f}_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{P}=170 \mathrm{KN}
\end{aligned}
$$

Sln:-
Assume $\mathrm{f}_{\mathrm{cd}}=\begin{gathered}90 \mathrm{~N} / \mathrm{mm}^{2} \\ 170 \times 10^{3}\end{gathered}$

$$
\begin{aligned}
& A_{g}=\frac{}{2 \times 90} \\
& A_{g}=944.4 \mathrm{~mm}^{2}
\end{aligned}
$$

For safe design increase 30\%

$$
\begin{aligned}
& A_{g}=944.4 \times 1.3 \\
& A_{g}=1227.2 \mathrm{~mm}^{2}
\end{aligned}
$$

\therefore Try 2ISA 90x90x8mm

$$
I_{x x}=I_{y y}=104.2 \times 10 \mathrm{~mm}
$$

$$
\gamma_{x x} \gamma_{y y}=25.1 \mathrm{~mm}
$$

$$
\gamma_{x x}=\gamma_{y y}=27.5 \mathrm{~mm}
$$

$$
r_{u u}=34.7 \mathrm{~mm}
$$

$$
r_{v v}=17.5 \mathrm{~mm}
$$

$$
\mathrm{A}^{*}=2 \times 1379=2758 \mathrm{~mm}^{2}
$$

$$
\mathrm{I}_{\mathrm{y}} *=2\left[104.2 \times 10^{4}+1379(25.1+10 / 2)^{2}\right.
$$

$$
r_{y} * i \sqrt{\frac{4.583 \times 10^{6}}{2758}}
$$

$$
r_{y} * i=40.76 \mathrm{~mm}
$$

$$
\mathrm{K} \stackrel{i}{=} 1
$$

$$
\therefore \frac{K L}{\gamma_{\min }}=\frac{1 \times 3850}{27.5}
$$

$$
\frac{K L}{\gamma_{\min }}=140
$$

$\therefore f_{c d}=66.2^{N} / \mathrm{mm}^{2}[$ from table 9 c$]$

$$
\therefore P_{d}=f_{c d} \times A
$$

$$
=66.2 \times 2758
$$

$$
=182.58 \mathrm{KN}>170 \mathrm{KN}
$$

\therefore Hence the assumed section is safe.

$$
\partial_{\text {act }}<\partial_{\text {allow }}
$$

\therefore Hence the section is safe in deflection
4. Check for web buckling:-

$$
\begin{aligned}
& F_{c d w}=\left(b_{0+}+n_{1}\right) t_{w} f_{c} \\
& n=\frac{600}{2}=300 \mathrm{~mm} \\
& 1 \\
& 2 \\
& b_{1}=100 \mathrm{~mm} \\
& \lambda w=\frac{2}{t w}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{11}: \frac{5 \times 523}{}: 4 \\
\lambda w & =116.83
\end{aligned}
$$

110	94.6
120	83.7

[from table 9 © IS800-2007]
$\therefore \mathrm{f}_{\mathrm{c}}=87.155 \mathrm{~N} / \mathrm{mm}^{2}$
$\therefore \hbar d w=(100+300) \times 11.2 \times 87.155$
$\hbar d w=390.454 \mathrm{KN}>225 \mathrm{KN}$
Hence the section is safe against web buckling.
5. Check for web crippling:-

$$
\begin{aligned}
F_{w} & =\frac{\left(\underline{b}_{1}+n_{2}\right) L_{\underline{w}} f_{\underline{w}}}{\gamma_{m o}} \\
w & =2.5\left(t_{f}+t_{1}\right) \\
n_{2} & =2.5(21.3+17)=82.5 \mathrm{~mm} \\
F_{w} & =\frac{(100+82.5) 11}{1.1}=\underline{2 \times 250} \\
F_{w} & =464.545 \mathrm{KN}>225 \mathrm{KN}
\end{aligned}
$$

Hence the section is safe against web crippling.
3. An ISMB section of depth 500 mm is used as a beam over as a span of 6 m with s.s ends. Determine the maxi. Factored udl that the beam can carry if the ends are restrained against torsion, but compression flange is laterally unsupported.
Given:-

$$
\begin{aligned}
& \text { Span }=6 \mathrm{~m} \\
& \text { Depth }=500 \mathrm{~mm} \\
& \text { Section => ISMB } 500
\end{aligned}
$$

Sln:-
Section Properties of ISMB500:-
$\mathrm{A}=11074 \mathrm{~mm}^{2}, \mathrm{~b}_{\mathrm{f}}=180 \mathrm{~mm}, \mathrm{t}_{\mathrm{f}}=17.2 \mathrm{~mm}, \mathrm{t}_{\mathrm{w}}=10.2 \mathrm{~mm}, \mathrm{I}_{\mathrm{zz}}=45218.3 \times 10^{3} \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{yy}}=$ $1369.8 \times 10^{3} \mathrm{~mm}^{4}, \mathrm{r}_{1}=17 \mathrm{~mm}, \mathrm{z}_{\mathrm{pz}}=2074.67 \times 10^{3} \mathrm{~mm}^{3}, \mathrm{Z}_{\mathrm{ez}}=1808.7 \times 10^{3} \mathrm{~mm}^{3}, \mathrm{r}_{\mathrm{yy}}=35.2 \mathrm{~mm}$, $\mathrm{r}_{\mathrm{zz}}=202.1 \mathrm{~mm}$

$$
\begin{aligned}
d & =h-2\left(t_{f}+r_{1}\right) \\
& =500-2(17.2+17) \\
\mathrm{d} & =431.6 \mathrm{~mm}
\end{aligned}
$$

To find maxi.Moment \& S.F:-
The maxi. Moment of the beam $\mathrm{M}=\frac{w l^{2}}{8}$
The design moment capacity of the section $M_{d}=\beta_{b} Z_{p} f_{b d}$
Where,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{bd}}=>\text { Taken from table-13 for } \mathrm{f}_{\mathrm{cr}}, \mathrm{~b} \text { given in table-14 [cls 8.2.2 IS800-2007] } \\
& \mathrm{f}_{\mathrm{cr},} \mathrm{~b}:-[\text { Table-14 IS 800-2007] }
\end{aligned}
$$

The critical stress $\underset{\text { cr }}{\mathrm{f}}, \mathrm{b}$ is found based on slenderness ratio $\frac{K L}{r}$ and $\frac{h}{t_{f}}$ ratio

$$
\begin{aligned}
& \text { Here } \mathrm{K}=1 \\
& \therefore \frac{K L}{\gamma_{\min }} \Rightarrow \frac{1 \times 6000}{35.2}=170.45 \\
& \underline{h}=>\frac{500}{17.2}=29.07 \\
& t_{f}
\end{aligned}
$$

KL	h / t_{f}		
	25	29.07	30
170	136.7	124.16	121.3
170.45	136.26	123.75	120.89
180	127.1	114.97	112.2

From table-14 [IS 800-2007]
\therefore Critical stress $f_{c r}, b=123.75 \mathrm{~N} / \mathrm{mm}^{2}$
f_{bd} :-
Refer [table-13 IS800-2007] $\alpha_{L T}=0.21$ (for R.S section)
\therefore Refer table - 13(a) IS 800-2007

150	106.8
100	77.3

$$
\therefore \mathrm{f}_{\mathrm{bd}}=91.31 \mathrm{~N} / \mathrm{mm}^{2}\left(\text { for } \mathrm{f}_{\mathrm{cr}}, \mathrm{~b}=123.75 \mathrm{~N} / \mathrm{mm}^{2}\right.
$$

\therefore The design bending strength of ISMB $M_{d}=\beta_{b} Z_{p} f_{b d}$
Buckling Class $5 \overline{\mathrm{~b}}$ [Table-2 IS 800-2007]

$$
\begin{gathered}
\underline{b}=\frac{0.5 \overline{\mathrm{~b}}}{t_{f}}=\frac{90}{17.2}=5.2 \sum 9.4 \sum \dot{i} \\
\underline{d}=\frac{431}{10} \underline{6}=42.31 \sum 84 \sum \dot{¿} \\
t_{w} 10.2 \\
\therefore \text { The section comes under plastic } \\
\therefore \beta_{b}=1 \quad[\mathrm{cls} 8.2 .2 \text { IS } 800-2007] \\
M_{d}=1 \times 2074.67 \times 10^{3} \times 91.31 \\
M_{d}=189.44 \mathrm{KN} . \mathrm{m} \\
M=\frac{w l^{2}}{8} \\
M_{d}=189.44 \mathrm{KN} . \mathrm{m}
\end{gathered}
$$

The safe udl the section can carry is found by equating $M \& M_{d}$

$$
\mathrm{M}=\mathrm{M}_{\mathrm{d}}
$$

$$
\begin{array}{r}
189.44 \times 10^{6}=\frac{w \times 6000^{2}}{8} \\
w=42.09 \mathrm{KN} / \mathrm{m}
\end{array}
$$

UNIT-V
ROOF +RUSES \& INDUSTRIAL STRUCTURES
The Industrial buildings are low rise Steel structures, characterised by their low height, lace of interior floors, walls and partetient. The roof in system for such buildings are,

1. Hat roofing consisting of R.C.C construction
2. Slope roofing.
i) Urus roofing.
ii) Shell roofing of $R \cdot C \cdot C$. or steel.

* Steel roof trusses are unenond
of the best cheapest is most convinient roof in System for various types of buildings, both for small as well as large span.
* The stale poo trusses are commonly used for industrial buildings, worloshop buildings, storage Godowns, warehouse \& residential building, school building and office. Where the construction work is to be completed in a Short duration of silt.
* Che of the greatest advantages of the roof truss that its midspan depth is grealest-specially to resist the max. $B M$.
* The slope is faces 8 roof truss facilitate to easy drainage of ain watir.

* A roof truss is basically a framed

sfructive formed by coornecting various members at their ends to form a system of triangles, arranged is predisided pattern olepending upon the span, type of loading is functional requirements. * The members can be Jointed through rivets, bolt or weld using gusset plate.

* The rivet or bolted joint permit some rotation of the members and hence the joints are considered as pin Joint, where BM is kero.
* The Exdunal loads are generally applied at Joints. Only, so that the member of the truss carry the direct forces either tension or compression.
* The members carrying compressive force are called strut x carrying tensile forces are called ties. Types of Roof truss: king post truss

It's basically timber. (Span $<6 m$)
Truss also be made of steel is timber.
Queen post truss:

It's made up of combination of steel \&
timber.

$$
\begin{aligned}
\text { Slope } & =\frac{\text { rage }}{\text { half of span }}=\frac{1.6}{4}=0.4 \\
& \tan \theta=0.4 \\
\therefore \theta & =\tan ^{-1}(0.4) \\
\theta & =21.8^{\circ}
\end{aligned}
$$

Weight of the roof materials $=250 \times 1.5=375 \mathrm{~N} / \mathrm{m}$ Assume dead load of putin $=65 \mathrm{~N} / \mathrm{m}$

$$
\because \text { Total dead load }=\overline{440 \mathrm{~N} / \mathrm{m}}
$$

The component of dead load normal to the

$$
\begin{aligned}
& \text { Component of dead } \\
& \text { roof }=440 \cos 21.8^{\circ}=408.53 \mathrm{~N} / \mathrm{m} . \\
& \text { wind looed }=1200 \times 1.5 \times 1=1800 \mathrm{~N} / \mathrm{m} .
\end{aligned}
$$

Total load normal to the roo $=2208.53 \mathrm{~N} / \mathrm{m}$

Step 2: BM Calculation.

$$
\begin{aligned}
& \text { 2: BM Calculation } \\
& M=\frac{\omega^{2}}{10}=\frac{2208.53 \times(8)^{2}}{10}=14.135 \mathrm{kNm} . \\
& \text { Ep) required }=\frac{M}{1.33 \mathrm{fy}}=\frac{14.135 \times 10^{6}}{1.33 \times 250}=42.51 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

Step 3 . Selection of angle section:

$$
\begin{aligned}
& \text { Depth }=\frac{1}{45} \times 8000=178 \mathrm{~mm} \\
& \text { width }=1 / 60 \times 8000=134 \mathrm{~mm}
\end{aligned}
$$

\because from steel table
let us try $200 \times 150 \times 15 \mathrm{~mm}$

Components of Roof truss:
ere 1. principal rafter (or) top chord
2. Bottom chord (or main tie
beritelo
3. Ties
4. Struts
5. sag tie errs so atlas wits 20
6. Purlin's
keritats of. Ridge hot La irtermye oof
\& Roof covering
9. Eaves sa li sailor ant so
10. Base plate (or) Anchor plate
11. panel.
column
roup:
11. panel. Ridge

The following some other tams used in sol the cor oo bripiow (o) fruss design. stores xotiodsh berolforl. I Bay: ell defined as the distance between the It is defined as the distance between two adjacent truss, milers o twosew (d) Rise: For bessel from the $0 \times 1 t_{\text {is }}$ is defined as the duran is is heignest point to the earline joining supports.

Span:
It is the distance blu the centre of the End supports.
(-x.) pitch:
for a symmetrical truss, it is define as the ratio of rise to the span.
(-x) Slope:
for a symmetrical truss, it is defined as the ratio of its rise to half of the Span.
Roof coverage:

1. Slades

2-tiles
3. lead sheet.
4. corrgated aluminium sheet.
5. Galvanised corrgated Iron steel (GCIS)
6. Abs Asbestos coment sheets (AC)

Loads on roof truss:

* Dead load:
a) weight of roof covering ferianil weight

1. Tratfored Asbestos sheets $159 \mathrm{~N} / \mathrm{m}^{2}$
2. 20 gauge CGI sheets $112 \cdot 7 \mathrm{~N} / \mathrm{m}^{2}$
b) weight of purling sport
3. blazed roof

$$
70-120 \mathrm{~N} / \mathrm{m}^{2}
$$

2. G.I sheeting
3. A.C sheeting
C) weight of bracing:

May be assumed as 12 to $15 \mathrm{~N} / \mathrm{m}^{2}$
thai thy d) Weight of trusses (ω) :

$$
\omega=\left(\frac{\text { span }}{3}+5\right) \times 10
$$

raluot eris $\omega=\left(\frac{3 p}{3}+5\right) \times 10$

* Imposed load thoí

This load taken from IS code 875
part - II.

* Snow load lo snow depends upon

The load roof and the roofing materials.
the pitch of the root, $2.5 \mathrm{Nm}^{2}$ per $m \mathrm{~m}$ depth It may be assumed as 2.5 Nm is greater than of snow when the hay be neglected. 50° the snow load may sows ere (1) * wind load:

5 from code 288% part -II)
The wind load is one of the most important loads, the magnitude of wind pressure depends on wind veloilty s the shape of the structure.
a) Basic wind speed $\left(V_{b}\right)$:

The wind spree measured in a 50 years veluen period. The basic wind spreed map of our country as applicable to 10 m height above the ground level for different. Tones. As per code 28875 part III 1987. The 6 wind zone have wind speed of $55,50,47,44,39,33 \mathrm{~m} / \mathrm{s}$ respectively.
b) Designer wind speed $\left(V_{z}\right)$:

$$
v_{2}=k_{1} k_{2} k_{3} v_{b}
$$

where, v_{z}-Design wind speed at any height in
k, Risk coefficient factor
k_{2}-Terrain, height \& structure size factor
k_{3}-Topography factor.
anocgore k

$$
V_{b} \text { basic wind speed. }
$$

In the above $k_{1} k_{2} k_{3}$ factors have been described in Is 875 part-in 1987 .
c) Design wind pressure:
$P_{z}=0.6\left(V_{z}\right)^{2} \mathrm{~N}_{\mathrm{m}} \mathrm{m}^{2}$ un
d) Design wind force (F):

$$
F=\left(C_{p e}-C_{p i}\right) A P_{z} ; \text { bowl, brice }
$$

1) where,

Cpe-Extional pressure coefficient. Epos intural pressure coefficient.
A - surface area of the clement P_{z} - design, wind pressure.
Reorg qa

Fopograplyy factor :-wogs toxics ails $L_{3}=(c+c \times s)$ bowing merles for,

$$
\begin{aligned}
& 3^{\circ}<\varphi \lesssim 17^{\circ} \\
& c=1.27 / 2 \\
& \text { he }=2
\end{aligned}
$$

for $\varphi>19^{\circ}$

$$
c=0.36 ; \quad 2=\frac{z}{0.3}
$$

where,
Q- upward slope of the ground in wind direction.

1. Actual length of the upward wind slope in the direction of wind.
z - Effective height of the crest.
Le - Effective horizontal length.
S-factor $=1.0$
He moivenemub a 3
2. A roof truss shed is to be built in Jodhpur icily area for an industrial use. The size of the shed is $18 \mathrm{~m} \times 30 \mathrm{~m}$. The height of the height of the truss is 20 m at the eaves. Determine the basie wind pressure.
sorn:
Step 1: Basic Wind speed:
from coole 15875 part - I11 1987 pogo
The basic wind speed in a Jodhpur city is $44 \mathrm{~m} / \mathrm{s}$
Step 2: Design wind spreed:
Risk e coefficient factor k_{1} :
The design life to be assumed as 50 years from code is 875 part- II.
table -1:
The risc calficiunt for $V_{b}=47 \mathrm{~m} / \mathrm{s}$

Terrain, height, structure and size factor. The site of the shed is $18 \times 30] \mathrm{m}$.
brio
Category -I height $\angle 1.5 \mathrm{~m}$
II height 1.5 to 10 m
in height $>10 \mathrm{~m}$.
Building:
Class. A f' dimension $\angle 20 \mathrm{~m}$
$B-20$ to 50 m

$$
c=>50 \mathrm{~m}
$$

The max. horizontal dimension if the building is $20-50 \mathrm{~m}$ and height of the truss in 20 m .
\because from code let choose the Category bype 3 and class ' B '.

$$
k_{2}=0.98
$$

Topography focclor

$$
\begin{aligned}
Q & =0^{\circ} ; C=0 \\
C_{3} & =1+(0)=1 \\
U_{D} & =1 \times 1 \times 0.98 \times 47 \\
& =46.06
\end{aligned}
$$

Step 3: Basic wind pressure $\left(P_{z}\right)$:

$$
\begin{aligned}
P_{z} & =0.6\left(v_{z}\right)^{2} \\
& =0.6(46.06)^{2} \\
P_{z} & =1272.91 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

$18 / 115^{2}$. A power plant structure having max. dimensions more than 60 m is proposed to built on down hill near pune. The height of the hill is 400 m with a slope of $1 \operatorname{in} 3$. If the location is 250 m from the crest of the hill on downevoud slope is at a height of 9 m . and ils eave board ind pressure. Determine the design wind pressure.
soon:
Slep-1: Basic wind speed $\left(v_{b}\right)$:
from code IS 875 part -3 . The basic wind speed in pune - $39 \mathrm{~m} / \mathrm{s}$
Step-2: Design wind speed $\left(v_{z}\right)$:
i) Risk co-efficient $\left(k_{1}\right)$:

The design life of power plant structure assumed as 100 year's
\because from code 75875 table -1 The Risk coefficient for $V_{b}=\$ 9 \mathrm{~m} / \mathrm{s}$.

$$
k_{1}=1.06
$$

ii) Terrain height of structure ss size factor $\left(k_{2}\right)$;

The size of structure more than form. $(>50 \mathrm{~m})$
\because It's belong's to class ' c '
The height at eave board $=9 \mathrm{~m} \quad(1.5 \mathrm{~m}$ to com $)$
\because It's belong's to category 2 stricture

$$
k_{2}=0.98 .
$$

hank
iii) Topography factor $\left(\mathrm{N}_{3}\right)$:

The effective height of the hill $(z)=400 \mathrm{~m}$ scrald solion Slope is 1 in 8 . mee thind ab miorts x-ahe $\quad \therefore \theta=\tan ^{-1}(1 / 3)=18.43^{\circ} \quad$ than mo go
bocklow afrod What $\quad\left[\therefore \theta>17^{\circ}\right)$ $S=1.0$ Jonvier apese bleo $k_{3}=1+(0.36 \times 1)$, ancincuedact $=1.36$ berm sonicion $\operatorname{sing} 8: 1-9208$
$\because V_{2}=k_{1} k_{2} k_{3} V_{b}$ mort

$$
\because v_{2}=k_{1} k_{2} k_{3} V_{b}
$$

$$
=1.06 \times 0.93 \times 1.36 \times 39
$$

2coobuer $18 V_{z}=52.28 \mathrm{~m} / \mathrm{s}$.
Step 3: Basir wind prossure $\left(P_{r}\right)$ ant
\Rightarrow as 200 $P_{z}=0.6\left(V_{x}\right)^{2}$ ao beronsues

$$
\begin{aligned}
& =0.6 \times(52.28)^{2} \\
& =1640 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

(ext) rabuste exis be ewilurets Do thipaers nuionerp
It is defined as the brean.
(Mos os provided over truss to support the roefing materials blw the adjafient trasses. vip \& prabod a'fe:.

$$
-8 p \cdot 0=64
$$

 Piso of These are placed in a tilted position lon power. over the principle rafter.

I-section, channel section and angle sections are commonly used as a purlin.

Kelvaburo
wide over taws thoughts

F(2) ambry ait β maxi $=3$

The wind force is assumed to act normal is 18141^{5} the roof truss and the gravity loads pass though the $C O Q$ of purlin section.

The polling may be defined as simple, continuous and cantilever beams.

The putting eve assumed to be simply supported the moments will be $\frac{w l^{2}}{8}$, if they are assumed to be continuous the moments will be $\frac{w l^{2}}{10}$.

If Is code $800: 2007$ reccomends the puelins to be designed as continuous beam Design procedure for Channel s I -section polio b) The gravity load P_{1}, due to soaking, load and the load h_{1} due to wind force are computed.
2. Resolve the factored forces parallel to and perpendicular the roof skating.
3. The max. BM MAy and Myy are calcula by $M_{z x}=\frac{H l^{2}}{10}$ \& $M_{y y}=\frac{P l^{2}}{10}$
where $P=$ factored load along $Y y$ axis.
$H=$ factored load along $2 z$ axis.
$l=$ span of the purlin $(C / C$ distance the adjacent t
a) 4.purtin subjected to biaxial bending, to required value of section modulus

$$
r_{p} \text {)required }=M_{z r} \frac{\partial_{m o}}{f_{y}}+M_{y y} \frac{\partial_{m o}}{f_{y}}
$$

5. A trial section is selected from IS hand book
6. Calculate the section classification
7. Design capacity of section.

$$
\begin{aligned}
& M_{d z}=z_{p z} \frac{f_{y}}{\gamma_{m_{0}}} \leq 1.2 z_{\text {ex }} \frac{f_{y}}{\gamma_{m_{0}}} \\
& M_{d y}=z_{p y} \frac{f_{y}}{\gamma_{m_{0}}} \leq \gamma_{f} \text { key } \frac{f_{y}}{\partial_{m_{0}}} \\
& x_{p y}=\frac{b^{2} t_{f}}{2}
\end{aligned}
$$

(a) 8. The local capacity of the section is checked using the following intraction equation.

$$
\frac{M_{z x}}{M d x}+\frac{M_{y y}}{M_{d y}} \leq 1
$$

9. The deflection of the potion is Calculated which should be less than $\% / 180$
10. Design an I-section purlin for an Deign an industrial building situated is the allahabad city to support a galvanized corrugated (GCP) Tron sheet roof for the following data i) spacing of the trass $C / R=6 \mathrm{~m}$. i ii span of the truss $=12 \mathrm{~m}$
iii) spacing of putin $C / C=1.5 \mathrm{~m}$.
iv) Intensely
of wind presime $=21 \mathrm{cN} / \mathrm{m}^{2} \mathrm{v}$) weight of Galvanized sheet $=180 \mathrm{~N} / \mathrm{m}^{2}$. The grade of ohs Fo.... then $\theta=30^{\circ}$.

goth:

Stop): load Calculation:
weight of G.I sheet $=180 \times 2.5=195 \mathrm{~N} / \mathrm{m}$
Assumed dead load $\}=100 \mathrm{~N} / \mathrm{m}$.
\because Total dead load $=295 \mathrm{~N} / \mathrm{m}$
The dead load acts vertically down ward
The dead load Ir to roof $=295 \sin 30^{\circ}$

$$
\text { periowallot }=(47.5 \mathrm{~N} / \mathrm{m} \text {. }
$$

The component of dead loosed normal to the roof $=295 \cos 30^{\circ}$

$$
=255.47 \hat{0} / \mathrm{m} .25
$$

\because The Since the wind load is act as normal to the Roof $=2 \times 10^{3} \times 1.5$

$$
\text { rots willows moitses } 1=3000 \mathrm{~N} / \mathrm{m}
$$

2nt an putin normal to the root
bes The load on purlin normal to the roc

$$
H_{3}=3000+255 \cdot 47
$$

ant

$$
=3255 \cdot म+\hat{N} / \mathrm{m}
$$

\therefore (factored load normal to the roof
i) wary (ut factored ils sud).

8 twist: (v $\mathrm{H}=1.5 \times 3255.47$ ciugots (i)

factored load Ir to the roof,

$$
P=1.5 \times 144.5=221.25 \mathrm{~N} / \mathrm{m}
$$

Step 2: Max. BM Q $z z$ \& My axis

Step 3i. properties of that section:

$$
x_{f}=100 \mathrm{~mm}
$$

$$
t_{f}=7 \mathrm{~mm}
$$

$$
I_{z z}=839.1 \times 10^{4} \mathrm{~mm}^{4}
$$

$$
\begin{aligned}
& I_{x z}=83 . \\
& I_{p z}=126.86 \times 10^{3} \mathrm{~mm}^{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Zри }=126.0 \times 10^{3} \mathrm{~mm}^{3} \\
& \text { Zez }=11.9 \times \mathrm{mm}^{3} .
\end{aligned}
$$

$$
z_{e y}=19 \times 10^{3} \mathrm{~mm}^{3}
$$

Step 4: Section classification
(from code $\mathrm{pg}: 18$ table -2)

$$
\text { blt }=50 / 7=7.14<9.4
$$

$$
\begin{aligned}
& M_{z z}=\frac{H C^{2}}{10}=\frac{4883.2 \times 10^{2}}{10}=17.58 \mathrm{kNm} \text {. } \\
& M_{y y}=\frac{p l^{2}}{10}=\frac{221.25 \times()^{2}}{10}=0.796 \mathrm{cNm} \text {. } \\
& \because x_{p} \text {)raquied }=M_{x z} \frac{\gamma_{m o}}{7 y}+M_{y y} \frac{\gamma_{m o}}{7 y} \text {. } \\
& =\frac{10.58 \times 10^{6} \times 1.1}{250}+\frac{0.796 \times 10^{6} \times 1.1}{250} \\
& z_{p}=80.85 \times 10^{3} \mathrm{~mm}^{3} \text {. }
\end{aligned}
$$

$$
\alpha_{t_{w}}=\frac{120}{5.4}=22.22<84 .
$$

Hence the section is plastic.
Step 5: Design capacity of the section.

$$
\text { i) } \begin{aligned}
M_{d z} & =z_{p z} \frac{A_{y}}{8_{m o}} \\
& =126.86 \times 10^{3} \times \frac{250}{1.1} \\
& =28.83 \mathrm{lcNm} \\
& \leq 1.2 \text { Ret } \frac{\text { fAy }}{8 m o}=1.2 \times 111.9 \times 10^{3} \times \frac{250}{1.1} \\
& =30.52 \mathrm{tcN} \cdot \mathrm{~m} .
\end{aligned}
$$

(8 A
ii) $M_{d y}=\operatorname{Tpy} \frac{f y}{\gamma_{m o}}$

$$
\text { Zpy }=\frac{b^{2} t_{f}}{2}=\frac{100^{2} \times 7 \cdot 4}{2}=35 \times 10^{3} \mathrm{~mm}^{3}
$$

$$
\begin{aligned}
\text { May } & =35 \times 10^{3} \times \frac{250}{1.1}=7.95 \mathrm{kNm} \\
& \leq \gamma_{f} \text { key } \frac{f y}{8 m 0}=1.5 \times 19 \times 10^{3} \times \frac{250}{1.1} \\
& =106 \mathrm{kNM} .
\end{aligned}
$$

$$
=6.47 \mathrm{kNM}>0.796 \mathrm{cNM} \text {. }
$$

Hence the section adequate.
Step 6: local capacity of the section

$$
\begin{aligned}
& \frac{M_{z z}}{M_{d z}}+\frac{M y y}{M d y} \leqslant 1 \\
& \frac{17.58}{28.83}+\frac{0.796}{6.47} \leqslant 1 \\
& 0.783<1
\end{aligned}
$$

Step -7: check for deflection:
from code $\mathrm{pg}: 3$, table - 6
deflection will be checked a service load only.
permissible deflection $\delta=\frac{l}{180}$

$$
=\frac{6000}{180}=33.33 \mathrm{~mm} .
$$

Max. Calculated deflection $\delta=\frac{\hbar \mathrm{wl}^{3}}{384 \mathrm{EZ}}$

$$
=\frac{5}{384} \times \frac{3255 \cdot 47 \times 10^{-3} \times(6000)^{3}}{2 \times 10^{5} \times 839.1 \times 10^{4}}
$$

(

$$
=0.005 \mathrm{~mm}
$$

sc $11^{1 / 5}$ Design procedure for Angle section puetins:
Hence the design is safe.
are determined, both the loads are ass to the normal to the roof truss.
2. Angle section can be used as a purlin, provide the slope. \& the roof tors is less than $30^{\circ} \%$
3. The max. BM computed by wil/10 (or) $\frac{W_{1}}{10}$ where, W - Intactored concentrated load at Centroid.
ω - unfactored uniformly distributed load.
L - span of the purlin.
4. The modulus of section required is
calculated by

$$
z_{p}=\frac{M}{1.33 f y}
$$

5. A trial section of angle pelion is arraived at by assuming the depth of the angle section is $1 / 45$ of span s wide of angle section is $1 / 60$ of the span.
6. The depth and width must not be less than the specified values.
7. A suitable angle section is selected from Is hand book dope:
8. Modulus of the section provided show be more than the modulus of the section calculated.
9. Design the angle for the following specif a span of i) The spacing of the truss $=8 \mathrm{mc}$ ii pitch $=1 / 5$ of the span in) spacing of purlieu $1.5 \mathrm{mc} / \mathrm{C} \quad \mathrm{V}$) load from roofing malivials $=2 A$
v) wind hoed $=1200 \mathrm{~N} / \mathrm{m}^{2}$. Scar ant. Solvarep

Sots: :
Woof suite
Step 1: Load calculation: ज्रा . \&

$$
\begin{aligned}
\text { pitch }= & \frac{\text { rise }}{\text { span }} \\
& 1 / 5=\frac{\text { rise }}{8} \Rightarrow 1 / 5 \times 8=1.6 \mathrm{~m} \\
& \because \text { rise }=1.6 \mathrm{~m} .
\end{aligned}
$$

$$
d=200 \mathrm{~mm} \quad z=145.4 \times 10^{3} \mathrm{~mm}^{3}
$$

$$
b=150 \mathrm{~mm} \quad I_{x z}=2005.6 \times 10^{4} \mathrm{~mm}^{4} .
$$

$t=15 \mathrm{~mm}$
$\therefore z$) required $<~ z$) provided
$42.51 \times 10^{3}<145.4 \times 10^{3} \mathrm{~mm}^{3}$
Hence the section is safe.
Step-4: Section classification =

$$
\begin{aligned}
& \quad l_{t}=\frac{150}{15}=10<10.5 \\
& d /_{t}=\frac{200}{15}=13.33<15.7
\end{aligned}
$$

\therefore The section is compact.
Step 5: check for deflection:
permissible detection $=\frac{1}{180}$

$$
=\frac{8000}{180}=44.44 \mathrm{~mm}
$$

Max. Calculated deflection (d) $=\frac{5}{384} \frac{w l^{9}}{\epsilon-2}$

$$
\delta=\frac{5 \times 2208^{8.53 \times 10^{-3}} \times(8800)^{3}}{384 \times 2 \times 10^{5} \times 2005.6 \times 10^{4}}
$$

$$
=0.0036 \mathrm{~mm} \text {. Nim }
$$

Troat
Hence the design is sente ...
2. Design a purlin for the following sofar.
i) spacing 8 roof truss $=6 \mathrm{~m}$
$i i)$ spacing of polio $=1.4 \mathrm{~m}$
iii) pitch $=1 / 4$
iv) wt. of GI sheet $=133 . \mathrm{N} / \mathrm{m}^{2}$
v) wind load intensity Normal it
the roof $=1500 \mathrm{~N} / \mathrm{m}^{2}$.
Use channel section.
3. Design a angle Inon purlixn for a trussed roof from the following data.
i) span of roc truss $=12 \mathrm{~m}$.
ii) spacing \& roof truss $=5 \mathrm{~m}$.
iii) spacing of purling along the slope of hoof truss $=1.2 \mathrm{~m}$.
iv) The slope of the sog truss $=1 / 2 \frac{\text { vertical }}{\text { Horizontal }}$
V) wisd load on roof truss normal to

$$
\text { the roof }=1.04 \mathrm{kN} / \mathrm{m}^{2}
$$

vi) vertical load from roof sheeting $=0.2 \mathrm{kN} / \mathrm{m}^{2}$.

