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UNIT-1
PARTIAL DIFFERENTIAL EQUATIONS

This unit covers topics that explain the formation of partial differential equations
and the solutions of special types of partial differential equations.

1.1 INTRODUCTION

A partial differential equation is one which involves one or more partial
derivatives. The order of the highest derivative is called the order of the equation. A
partial differential equation contains more than one independent variable. But, here we
shall consider partial differential equations involving one dependent variable ,.zZ* and only
two independent variables x and y so that z = f(x,y). We shall denote

0z 0z 0%z 0%z 0%z
----- =p, -------=0, -=-=-= =[, meeeeeeeee =5, =—=—=- =1,
OX oy ox? oxoy oy?

A partial differential equation is linear if it is of the first degree in the dependent
variable and its partial derivatives. If each term of such an equation contains either the
dependent variable or one of its derivatives, the equation is said to be homogeneous,
otherwise it is non homogeneous.

1.2 Formation of Partial Differential Equations

Partial differential equations can be obtained by the elimination of arbitrary constants or
by the elimination of arbitrary functions.

By the elimination of arbitrary constants
Let us consider the function

O(X,y,z,8b) =0 --mmmmmmeev (1)

where a & b are arbitrary constants
Differentiating equation (1) partially w.r.tx &y, we get

A p& =0 )
[9).4 0z

ob o

— +g—— =0 ©
oy oz

Eliminating aand b from equations (1), (2) and (3), we get a partial differential
equation of the first order of the form f(x,y,z,p,q) = 0
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Example 1

Eliminate the arbitrary constants a &b from z= ax+ by +ab

Consider z = ax+bhy +ab (1)

Differentiating (1) partially w.r.t x &y, we get

0z

= a e, p=a 2
[0
0z

= b e, g =b 3)
oy

Using (2) & (3) in (1), we get

Z = pX+qy+ pq
which is the required partial differential equation.
Example 2

Form the partial differential equation by eliminating the arbitrary constantsa and b
fgoin (x*+a%) (y* + 1)

Given z= (x> +a%) (y? +b?) (1)

Differentiating (1) partially w.rt x &y , we get

p =2x (y*+b*)

q=2y (x +a)
Substituting the values of pand g in (1), we get

4xyz = pq

which is the required partial differential equation.
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Example 3

Find the partial differential equation of the family of spheres of radius one whose centre
lie in the Xy - plane.

The equation of the sphere is given by

(x-a)’+ (y-b)?+ 2 =1 1)

Differentiating (1) partially w.r.t x &y, we get

0
0

2(x-a) +22zp
2(y-b) +22zq

From these equations we obtain

X-a= -zp (2)
yb=-zq____ (3

Using (2) and (3) in (1), we get

or zZ2(p? +q* +1) =1

Example 4

Eliminate the arbitrary constants a, b & ¢ from

X2y Vi
— +— + — =1 and form the partial differential equation.

a2 P c?

The given equation is

-+ + __ =1 (1)
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Differentiating (1) partially w.r.t x &y, we get

2X  2zp

- =0
a2

2y 2zq

- =0
b2 2

Therefore we get

X zp

w e 0 @)
y Zq

—+— =0 ®3)
b? c?

Again differentiating (2) partially w.r.t ,x*, we set

(Ua2)+ (L ) (zr+p?) = 0 4)

Multiplying (4) by x, we get
X xzr o pX
— +—  +— =0
a2 2 c?
From (2) , we have
—zp  xzr  pX
__+_ + _ - 0

¢ ¢ c?

or -zp + xzr + px=0

By the elimination of arbitrary functions

Letu and vbeany two functions ofx,y, z and ®(u, v) =0, where @ is an
arbitrary function. This relation can be expressed as

u =f(v) 1)
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Differentiating (1) partially w.rt x & y and eliminating the arbitrary
functions from these relations, we get a partial differential equation of the first order
of the form

f(x,y,2z,p,q9) =0.

Example 5
Obtain the partial differential equation by eliminating ,f,,from z = (x+y) f(x%- y?)

Let us now consider the equation

z = (x+y) O y?) 1)
Differentiating (1) partially w.rtx &y , we get

O T
I
—~
xX X
+ +
< <
~ —
—h —h
—_—
X, X
)

p-f(X*-y) = (x+y)f'(¥-y*).2x ()
q-f(x*-y) = (x+y)f(xX*-y*).(-2y) ©)
Hence, we get
p-f (X*-y) X
q-f (X*-y) y

e, py -Y(X*- y?) =-ax+xf (- y?)
ie,  py +ox = (xty) FOE-y?)
Therefore, we have by(1), py +gqx =z
Example 6
Form the partial differential equation by eliminating the arbitrary function f
from
z=e"f(x+y)
Consider z = e¥f(x+y ) (1)

Differentiating (1) partially w.r.t x &Yy, we get

eVf'(x +y)
evf'(x +y) +f(x +y). &

p

q
Hence, we have

q=p+z
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Example 7
Form the PDE by eliminating f & ® from z = f(x+ay) + @ ( x —ay)

Consider z= f(x+ay) + ®( X —ay) (1)

Differentiating (1) partially w.r.t x &y , we get
p = fi(x+ay) +®'(x—ay) )

g=f'(x+ay).a+®' (x —ay) (-a) (3)

Differentiating (2) & (3) again partially w.r.t x &Yy, we get

r =f"(x+ay) +®"( x—ay)
t =f"(x+ay) .a>+ ®"( x—ay) (-a)?

e, t=a?{f(x+ay) +®"( x—ay)}

or t=a%r
Exercises:
1. Form the partial differential equation by eliminating the arbitrary constants ,a" &
b from the following equations.

(1) z=ax + by

(ii) X2+y 72

+ — =1
a’ b?

(iii)  z=ax+by+Va?+b?
(v  ax+by?+cz?=1
(v) z=a’x+b’y+ab

2. Find the PDE of the family of spheres of radius 1 having their centres lie on the
xy plane{Hint: (x —a)? + (y—b)? + z22 =1}

3. Find the PDE of all spheres whose centre lie on the (i) z axis (ii) x-axis

4. Form the partial differential equations by eliminating the arbitrary functions in the

following cases.
) z=f(x+y)
(i) z=1x-y)
iy z=f(C+y>+29)
(v)  ¢o(xyz,x+y+2)=0
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(V)  z=x+y+f(xy)
(Vi)  z=xy+f(E+y)
(viiy z=1f |xy

z
(viii) F(xy+z’, x+y+2)=0
(ix) z=fXx+iy) +f(x—1y)
() zZ=10 +2y) +g(x* - 2y)

1.3SOLUTIONS OF A PARTIAL DIFFERENTIAL EQUATION

A solution or integral of a partial differential equation is a relation connecting the
dependent and the independent variables which satisfies the given differential equation. A
partial differential equation can result both from elimination of arbitrary constants and
from elimination of arbitrary functions as explained in section 1.2. But, there is a basic
difference in the two forms of solutions. A solution containing as many arbitrary
constants as there are independent variables is called a complete integral. Here, the partial
differential equations contain only two independent variables so that the complete
integral will include two constants.A solution obtained by giving particular values to the
arbitrary constants in a complete integral is called a particular integral.

Singular Integral
Let f(Xy.zp,q) =0 ---------- (€N

be the partial differential equation whose complete integral is

d(xy,z,ab) =0  ---emeeee- )
where ,a“ and ,b* are arbitrary constants.

Differentiating (2) partially w.r.t.a and b, we obtain

o
-------- =0 e )|
oa
o
and e =0 e 4)
ob

The eliminant of ,a“ and ,b" from the equations (2), (3) and (4), when it exists, is
called the singular integral of (1).
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General Integral

In the complete integral (2), put b = F(a), we get

d(xyza F@)=0 e ©)

Differentiating (2), partially w.r.t.a, we get

The eliminant of ,a" between (5) and (6), if it exists, is called the general integral of (1).

SOLUTION OF STANDARD TYPES OF FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS.

The first order partial differential equation can be written as
f(xy.z, p.) =0,

where p = 0z/0x and q = 0z / dy. In this section, we shall solve some standard forms
of equations by special methods.

Standard I : f(p,q) =0. i.e, equations containing p and g only.

Suppose that z = ax + by +c is a solution of the equation f(p,q) = 0, where f (a,b)
=0.

Solving this for b, we get b = F (a).

Hence the complete integral isz=ax+F(@)y+c  -------m- (1)

Now, the singular integral is obtained by eliminating a & c between
z=ax+yF()+c

0=x+yF(a)
0=1

The last equation being absurd, the singular integral does not exist in this case.

To obtain the general integral, let us take ¢ = @ (a).
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Then, z=ax+F@y+od@ - (2
Differentiating (2) partially w.r.t. a, we get
0=x+F(a).y+d@ -----—--—- 3)

Eliminating ,a™ between (2) and (3), we get the general integral

Example 8

Solve pq =2
The given equation is of the form f(p,q) =0

The solution is z = ax + by +c, where ab = 2.

Solving, b=---- .

Differentiating (1) partially w.r.t ,c*, we get
0=1,
which is absurd. Hence, there is no singular integral.

To find the general integral, putc = (a) in (1), we get

Differentiating partially w.r.t ,a", we get
2

0=X—------ y + @'(a)
a2

Eliminating ,a™ between these equations gives the general integral.
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Example 9
Solve pg+p+g=0
The given equation is of the form f (p,q) = 0.
The solution is z =ax + by +c, whereab +a+b =0.

Solving, we get

a
Hence the complete Integral is z = ax — | ------- J ytc e Q)

Differentiating (1) partially w.r.t. ¢, we get

0=1
The above equation being absurd, there is no singular integral for the given partial
differential equation.
To find the general integral, put ¢ = @ (a) in (1), we have

a
Z = ax—| - y+d@ 0 e 2)
1+a
Differentiating (2) partially w.r.t a, we get
1 1
0=X— -------- y+o@ - (3)
(1+ay’

Eliminating ,a™ between (2) and (3) gives the general integral.
Example 10

Solve p? + g% = npq
The solution of this equation is z = ax + by + ¢, where a + b? = nab.

Solving, we get

MSAJCE 11



2
Hence the complete integral is

Differentiating (1) partially w.r.t c, we get 0 =1, which is absurd. Therefore, there is no
singular integral for the given equation.

To find the general Integral, put C = ® (a), we get

The eliminant of ,a" between these equations gives the general integral

Standard Il : Equations of the form f (x,p,q) =0, f (y,p,q) =0 and f (z,p,q) = 0.
i.e, one of the variables x,y,z occurs explicitly.

(1) Let us consider the equation f (x,p,q) = 0.

Since z is a function of x and y, we have

or dz = pdx + qdy
Assume that g = a.

Then the given equation takes the form f (x, p,a) =0
Solving, we get p = d(x,a).
Therefore, dz = ®(x,a) dx + a dy.

Integrating, z = | @(x,a) dx + ay + b which is a complete Integral.

MSAJCE
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(i) Let us consider the equation f(y,p,q) = 0.

Assume that p = a.

Then the equation becomes f (y,a, q) =0
Solving, we get q = @ (y,a).

Therefore, dz = adx + ®(y,a) dy.

Integrating, z = ax + [@(y,a) dy + b, which is a complete Integral.

(iii) Let us consider the equation f(z, p, q) = 0.
Assume that q = ap.

Then the equation becomes f (z, p, ap) =0

Solving, we get p = ®(z,a). Hence dz = ®(z,a) dx + a ®(z, a) dy.

dz
ie, ----------- =dx + ady.
d (z,a)
dz
Integrating, E—— =X+ ay + b, which is a complete Integral.
d (z,a)

Example 11
Solve g =xp + p?

Given q=Xp +p? -----------e- 1)
This is of the form f (x,p,q) = 0.
Putg=ain (1), we get
a =xp +p?
i.e, p?+xp—a=0.
X V(X + 4a)

Therefore, (R —
2

MSAJCE
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XX+ 4a

Integrating , A dx +ay +b
2
X2 X X
Thus, - { ------ J(4a + x?)+ asin h't [
4 4 2\a
Example 12
Solve g = yp?

This is of the form f (y,p,q) =0
Then, putp=a.
Therfore, the given equation becomes ¢ = a?y.
Since dz = pdx + qdy, we have

dz = adx + a%y dy
Integrating, we get z = ax + ------- +b
Example 13

Solve 9 (p?z+q?) =4

This is of the form f (z,p,q) =0
Then, putting q = ap, the given equation becomes

9 (p%z +a%p?) =4

2
Therefore, P=st -mmmmee-
3(z + @)
2a
and =% ----m-mmm-
3(Nz +ad)

Since dz = pdx + qdy,
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Multiplying both sides by \z + a2, we get

2 2
Nz +a? dz = ------ ax + ------ ady, which on integration gives,
3 3
(z+a®)%? 2 2
) & ay+b
3/2 3 3
or (z+a?)% =x+ay+h.
Standard 111 : fi(x,p) = f2 (y,q). ie, equations in which ¢z’ is absent and the variables
are
separable.

Let us assume as a trivial solution that

f(x,p) = g(y,q) = a (say).

Solving for p and g, we get p = F(x,a) and g = G(y,a).

But dz = ---——--- dX + ------- dy

Hence dz = pdx + qdy = F(x,a) dx + G(y,a) dy

Therefore, z = [F(x,a) dx + | G(y,a) dy + b, which is the complete integral of the given
equation containing two constants a and b. The singular and general integrals are found in
the usual way.

Example 14
Solve pq = xy
The given equation can be written as
p y
Y C-Y)
X q
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Therefore, ----- = a implies p=ax
X
y y
and - =a implies q = -----
q a

Since dz = pdx + qdy, we have

y
dz =axdx + ------ dy, which on integration gives
a
ax? y
7= ——--. oo +Db
2 2a

Example 15
Solve p? + g2 =x? + y?
The given equation can be written as
p*—x* =y’ — g’ =a’ (say)
p?—x?=a? implies p=(@+xd)
and  y*—o?=a® implies q=V(y*-ad)

But dz =pdx + qdy
ie, dz = VaFx*dx + \y*=a>dy

Integrating, we get

Z = X%+ a2+ ---- sinh 't |----- e cosh? p---- +b

Standard 1V (Clairaut’s form)

Equation of the type z = px + qy + f (p,q) ------ (1) is known as Clairaut*s form.

MSAJCE
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Differentiating (1) partially w.r.t x and y, we get
p=a and qg=h.
Therefore, the complete integral is given by

z=ax+by +f(ab).

Example 16

Solve z = px + qy +pq

The given equation is in Clairaut®s form.
Putting p=a and g = b, we have
z=zax+by+ab e Q)
which is the complete integral.
To find the singular integral, differentiating (1) partially w.r.t a and b, we get

0=x+Db
O=y+a

Therefore we have, a=-y and b= -x.

Substituting the values ofa & b in (1), we get
Z=-Xy—Xy + Xy
or z +xy =0, which is the singular integral.
To get the general integral, put b = ®(a) in (1).
Then z=ax+d@y+adld@d) - 2
Differentiating (2) partially w.r.t a, we have
0=x+d'(@y+ad'(d+d@ - (3

Eliminating ,a™ between (2) and (3), we get the general integral.

MSAJCE
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Example 17

Find the complete and singular solutions of z=px +qy + VIFp*F ¢
The complete integral is given by

T R e~ — )

To obtain the singular integral, differentiating (1) partially w.r.ta & b. Then,

Therefore,

and Y T oo e (3)
V(1 +a2+b?)

Squaring (2) & (3) and adding, we get

a’+b?
x2 + y2 e
1+a+b?
1
Now, (VY R —
1+a*+b?
1
Le, 1482+ % = ccmmmmmeeee
1-x2—y?
Therefore,
1
(R R [T — 4)
V1-x2—y?

Using (4) in (2) & (3), we get

MSAJCE
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and y= —bV1-xX2—y?
-X _y
Hence, (= —— and b= —ccmmmmmeeeee
VIS V1-x2—y?

which on simplification gives
=T R—F
or x> +y?+72=1, which is the singular integral.
Exercises

Solve the following Equations
pg =k

p+q=pq

Vp +Vg = X

p =Yg

7= p?+ (P
p+g=x+y

P22 + =1

Z = px +qy - 2Vpg
Az (px+ay)Y =c?+p*+ P
0.z =px +qy + p’¢?

BOoo~No~LODE

EQUATIONS REDUCIBLE TO THE STANDARD FORMS

Sometimes, it is possible to have non — linear partial differential equations of the
first order which do not belong to any of the four standard forms discussed earlier. By
changing the variables suitably, we will reduce them into any one of the four standard
forms.

Type (i) : Equations of the form F(x™p, y"q) =0 (or) F(z, x™p, y"q) =0.

Case(i) : If m=landn=1, then put xX™ = X and y'" =Y.

MSAJCE
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0z 0z oX 0z

Now, p =-----= : = (I-m)x ™
OX oX OX oX
0z oz
Therefore, X™p = ------ (I-m) =(1-m) P, where P = -------
oX oX
0z
Similarly, y"q = (1-n)Q, where Q = ------
oY

Hence, the given equation takes the form F(P,Q) =0 (or) F(z,P,Q)=0.
Case(ii) : Ifm=1and n=1, then put logx=Xand logy =Y.

NOW, P= === S cmmm e S eee e o
ox  oX  0x X X
0z
Therefore, xp = ------=P.
oX
Similarly, yq =Q.
Example 18

Solve x*p? + y?zq = 27
The given equation can be expressed as
(X°p)? + (y?a)z = 22°
Herem=2,n=2
PutX=x"=xtand Y =y!"=y"1

We have x™p = (1-m) P and y"q = (1-n)Q
ie, x?p =-Pand y’q =-Q.

Hence the given equation becomes

P2-Qz=2z2 W ---- 1)
This equation is of the form f (z,P,Q) = 0.

Let us take Q = aP.
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Then equation (1) reduces to

P2 —aPz =27
a+(a’+8)
Hence, = — 7
2
a+(a’+8)
and Q = a| ~---m-mmmm e z
2
Since dz =PdX + QdY, we have
a+(a®+8) a+(a?+8)
dz= |- zdX +a |-----m-meeeee- zdYy
2 2

atVal+8
log z = |------mmmmmeee (X +aY) +b
2
atV@+8) (1 a
Therefore, log z =| --------------- ---- + ----1 +b which is the complete solution.
2 X y
Example 19

Solve x%p? +y?0? =72

The given equation can be written as
(xp)? + (ya)* =2z°
Herem=1,n=1

Put X=1logx and Y =logy.

MSAJCE
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Then xp=P and yq =Q.
Hence the given equation becomes

P2+ Q% =22 —emeeee- (1)
This equation is of the form F(z,P,Q) =0.

Therefore, let us assume that Q = aP.

Now, equation (1) becomes,

P2+3.2P2:ZZ

z
Hence P =--------
V(1+a?)
az
and Q=-—-—--—
V(1+a?)
Since dz =PdX + QdY, we have
z az
dz=------ dX +------ dy
V(1+a?) V(1+a?)
dz
i.e, V(1+a?) ------ = dX +ady.
z

Integrating, we get

J(1+a?) log z= X +aY +b.

Therefore, V(1+a?) log z = logx + alogy + b, which is the complete solution.

Type (ii) : Equations of the form F(z*p, 2*q) =0 (or) F(x, Zp) = G(y,z ).

Case (i) : If k=-1, putZ =2,

oZ oZ 0z 0z
NOW ---==== = mommomm oo = (k+1)Zk. ------- = (k+1) ka-
OX 0z OX OX
1 oZ

Therefore, zp = -----  -------
ktl  ox

MSAJCE
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1 oZ
Similarly, z2%q = ------- ------

kt1 oy
Case (i) : If k=-1, putZ=log z.

oz 0Z oz 1

NOW, - === S oo = p
OX 0z  0OX z
oz 1
Similarly, S q.
oy z
Example 20

Solve z*q? - z2%p =1
The given equation can also be written as
(z%0)*— (z°p) =1

Here k = 2. Putting Z =z *** =23, we get

1 oZ 1 oZ

ZKp = --m - and Z¥q = ------ ------
k+1 o0OX k+1 oy

1 oz 1 oz

.8, Z%p = -m--mm —mmee- and  Z%q = ------ ------
3 OX 3 oy

Hence the given equation reduces to

H

ie, Q°-3P-9=0,

which is of the form F(P,Q) = 0.

Hence its solution is Z = ax + by + ¢, where b>-3a—9=0.

Solving for b, b= +(3a+9)

MSAJCE
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Hence the complete solution is

Z=ax +V(3a+9).y+c

or z8=ax +V(3a+9)y+c

Exercises

Solve the following equations.
1. Xp? +y’p? =72

2. Z2(pH+q°) =x*+Y
3. 2(eX+g?)=1
4, 2x*p?>-yzq-3z2=0
5. p2+xy’qt = X2 2
6. X%p + y’q = 7

7. X%p + ylq =z

8. 22 (p°-g)=1

9. Z2(pIX°+ gy’ =1
10. p>x + Py = z.

1.4 Lagrange’s Linear Equation

Equations of the form Pp+Qq =R (1), where P, Q and R are
functions of X, y, z, are known as Lagrange®s equations and are linear in ,p*and ,,q“.To
solve this equation, let us consider the equations u=a and v = b, where a, b are arbitrary

constants and u, v are functions of x,y, z.
Since ,u “is a constant, we have du = 0 ----------- ).

But ,u“ as a function of x,y, z,

ou ou ou
du= — dx+ — dy + — dz

Ox oy 0z
Comparing (2) and (3), we have

ou ou ou

— dx+ —dy+ —dz =0

1) oy 0z
Similarly, ov ov ov

— dx+ —dy+ —dz =0

0x oy 0z

MSAJCE
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By cross-multiplication, we have

dx dy dz
du Ov Ou ov du Ov Ou OV ou oOv Ou OV
0z 0oy oy o0z ox 0z 0z OX oy Ox Ox— 0y
(or)
dx dy dz
— = — = — )
P Q R

Equations (5) represent a pair of simultaneous equations which are of the first
order and of first degree. Therefore, the two solutions of (5)areu=a and v =b. Thus,
&(u,v) = 0 isthe required solution of (1).

Note :

To solve the Lagrange™s equation,we have to form the subsidiary or auxiliary
equations
dx dy dz

P Q R

which can be solved either by the method of grouping or by the method of
multipliers.

Example 21

Find the general solution of px +qy =z

Here, the subsidiary equations are

o _ dy _dz

X y z
Taking the first two ratios, dx_ dy
X = y

Integrating, log x =logy + log c1
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or X =Cy
e, c1= xly

From the last two ratios, dy _
y

NlO_
N

Integrating, logy = logz + log ¢,
or y = C2z
e, c2=Yylz
Hence the required general solution is
®d(xly, ylz) =0, where @ is arbitrary
Example 22
Solve ptanx +q tany =tanz

The subsidiary equations are

& dy b
tanx tany tanz
Taking the first two ratios, dx _ dy

tanx — tany
ie, cotx dx = coty dy

Integrating, log sinx = log siny +log c:

ie, sinx = czsiny
Therefore, c1 = sinx /siny
Similarly, from the last two ratios, we get
siny = C2 sinz
ie, C2 = siny / sinz

Hence the general solution is

MSAJCE
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sSinx siny
® , =0, where @ is arbitrary.
siny sinz

Example 23
Solve (y-z2)p+(z-X)q =xy

Here the subsidiary equations are

y-Z z- X X -y

Using multipliers 1,1,1,
dx + dy +dz

each ratio =
0

Therefore, dx + dy +dz =0.

Integrating, x+y +z = ¢ (1)

Again using multipliers x, y and z,

xdx + ydy + zdz

each ratio =
0

Therefore, xdx +ydy +zdz =0.

Integrating,  x%/2 + y?/2 +z%/2 = constant

or XX+ Y2+ 722 = 2)

Hence from (1) and (2), the general solution is

O(X+y+2z,xX2+y?+7)=0

Example 24

Find the general solution of (mz - ny) p +(nx-lz)q = ly - mx.
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Here the subsidiary equations are

dx dy dz
mz- ny nx - Iz ly - mx

Using the multipliers X,y and z, we get

xdx + ydy + zdz

each fraction =

0
T ooxdx +ydy +zdz = 0, which on integration gives

X?2 + y?[2 +7%/2 = constant

or XX+ y+ 2722 = (1)
Again using the multipliers I, m and n, we have

ldx + mdy + ndz

each fraction =
0

0, which on integration gives

C2 (2

© oo ldx + mdy + ndz

IXx + my +nz
Hence, the required general solution is

Ox*+ y2 + 722, IX+ my+nz )=0

Example 25
Solve (X?- y?*-z%)p + 2xy q = 2xz

The subsidiary equations are

dx dy dz
x2-y2-7? ) 2Xy ) 2XZ

Taking the last two ratios,

dx dz

2xy 2XZ
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Integrating, we get logy =logz + logc:
or y = cz
e, 1 =vyl/z (1)
Using multipliers x,y and z, we get

xdx + ydy +zdz xdx + ydy +zdz

each fraction =
X (X2-y%-z% )+2xy*+2x2z? X( X4y +27%)

Comparing with the last ratio, we get

xdx + ydy +zdz dz

X( X2+ y? +7%) ) 2;
_ 2xdx + 2ydy + 2zdz dz
ie, oy a7 = -
Integrating,  log ( x*+y? +z?) = logz + logc.

or X+y* +722 =z

X2+ y? + 72
e, C=——— _ = (2
z

From (1) and (2), the general solution is ®(c1, c2) =0.
X2+ y2 + Z2

e, ©|(z),——— | =0
Z
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Exercises

Solve the following equations

pxX* +qy* = 7°
pyz + gzx = Xy
Xp—yq =y —x°

y2Zp + X%2q = y?X

Z(x—y) =px* —qy?
@-x)p+(b-y)g=c-z
(Yzp)/x +xzq=Yy

(Y +2)p-xyq+xz=0

L XY= (x+y) z

10. p—q = log (x+y)

11. (xz +yz)p + (X2 —yz)q = x> + y?
12.(y-2)p—-(2x+y)q=2x+z

©ooNok~LNE

1.5 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH
CONSTANT COEFFICIENTS.

Homogeneous Linear Equations with constant Coefficients.

A homogeneous linear partial differential equation of the n' order is of the form

0"z "z n
Co --—---- + Cq ---------- .o + Cp -------- =F(xy) - Q)
ox" ox™toy oy"
where o, C1,--------- , Cn are constants and F is a function of ,x“ and ,y™. Itis

homogeneous because all its terms contain derivatives of the same order.
Equation (1) can be expressed as

(CoD"+ciD™ D' + ...+ ¢ D" ) Z=F (xy)
or f(DD)z=F(xy) - @),
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0 0
where, ----- =Dand ----- =D"
OX oy

As in the case of ordinary linear equations with constant coefficients the complete
solution of (1) consists of two parts, namely, the complementary function and the
particular integral.

The complementary function is the complete solution of f(D,D) z = 0------- (3),
which must contain n arbitrary functions as the degree of the polynomial f(D,D). The
particular integral is the particular solution of equation (2).

Finding the complementary function

Let us now consider the equation f(D,D) z =F (x,y)

The auxiliary equation of (3) is obtained by replacing D by m and D by 1.

e, com+cam™+ L +cn=0 - 4)

Solving equation (4) for ,m", we get ,n roots. Depending upon the nature of the roots,
the Complementary function is written as given below:

Roots of the auxiliary Nature of the Complementary function(C.F)
equation roots
my,mz,Ms ....... ,Mn distinct roots fi (y+mux)+o(y+mox) +....... +a(y+mnX).
M1 =mz=m, Mg,My,....,mn | two equal roots | fi(y+max)+xf2(y+mix) + fa(y+msx) + ...+
fa(y+mnx).
m=m;=...... =myn=m | all equal roots f1(y+mx)+xfa(y+mx) + x*f3(y+mx)+.....

+ .. Ax" A, (y+mx)

Finding the particular Integral
Consider the equation f(D,D) z=F (X,y).

Now, the P.I is given by --------- F (xy)

Replacing D by ,a“ and D by ,b", we have
e R e where f (a,b) #0.
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f (a,b)
Case (ii) : When F(x,y) =sin(ax + by) (or) cos (ax +hy)

Pl=-mmmomooeeees sin (ax+by) or cos (ax+by)
f(D2,DD',D?)

Replacing D?=-a%, DD'%2= -ab and D" =-b? we get
1

S [ sin (ax+by) or cos (ax+by) , where f(-a2 - ab, -b?) #0.
f(-a2, - ab, -b%)

Case (iii) : When F(x,y) = xM y",
1

Y [ p— X" y" = [f(D, D)]x™y"
f(D,D)

Expand [f (D,D)]* in ascending powers of D or D and operate on x™ y" term by term.

Case (iv) : When F(x,y) is any function of x and y.

1
[ e F(Xy).
f(D,D)
1
Resolve----------- into partial fractions considering f (D,D) as a function of D alone.
f (D,D)

Then operate each partial fraction on F(x,y) in such a way that
--------- F (xy) =] F(x,c-mx) dx,
D-mD
where c is replaced by y+mx after integration
Example 26
Solve(D® - 3D?D’ +4D%) z = e¥*%

The auxillary equation is m=m?® —3m? + 4 =0
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The rootsare m =-1,2,2

Therefore the C.F is fi(y-x) + f2 (y+ 2X) + xf3 (y+2x).

ex+2y

P.l= e (Replace D by 1 and D by 2)
D*-3D?D+4D?

ex+2y
27
Hence, the solutionis z = C.F. + P.1
ex+2y
ie, z=f1 (y-X) + f2(y+2X) + X f3(y+2X) + ----------
27

Example 27

Solve (D?—4DD +4 D ?) z =cos (X — 2y)
The auxiliary equation is m? —4m +4=0
Solving, we get m=2,.2.
Therefore the C.F is fi(y+2x) + xf2(y+2x).

1
SPl=eeee e een 5 €0s (x-2y)
D2 4DD + 4D
Replacing D? by —1, DD by 2 and D'? by —4, we have
1
Pl = oS (X-2y)
(-1)-4(2) +4(-4)

cos (x-2y)
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~. Solution is z = fi(y+2x) + xf2(y+2X) — --------------- _

25
Example 28
Solve (D? - 2DD) z = X3y + *
The auxiliary equation is m> — 2m = 0.
Solving, we get m=0,2.
Hence the C.F is fi (y) + f2 (y+2x).
X3y
P.|1 =TTTT-==--
D?—-2DD
1 3
=eeeeeees ()
2D
D)2y p—
D
1 2D !
= ooeee- 1o (<Cy)
D2 D
.2
1 ( 2D 4D
= - 1+ ----- + oo +..... (x%y)
D2 L D D?
1 2 4
= -=oe- (Cy) + ---=-D (y) + - D (xCy) +
D? D
1 r 2 4
= ook () + oo () e Q)+
D2 L D D2
1 2
Pl = eeeees () 4 e ()
XOy X
P.I1 = e + ------
20 60
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e5X

P.12 = oo (Replace D by 5and D' by 0)
D? - 2DD
e5x
25
X5y XG eSx
.Solution is Z = fi(y) + f2 (y+2x) + ------- S — S S—

Example 29
2
Solve (D?>+ DD -6 D”z =y cosx.

The auxiliary equation is m> + m -6 = 0.
Therefore, m=-3, 2.

Hence the C.Fis fi(y-3x) + fo(y + 2x).

(D+3D) (D - 2D)

1
= e [ (c—2x) cosx dx, wherey=c—2x
(D+3D)
1
= e [ (c—2x) d (sinx)
(D+3D)
1
= S [(c—2x) (sinx) — (-2) ( - cosx)]
(D+3D)
1
R [ ysin x—2 cos X)]
(D+3D)

= [ [(c + 3x) sinx — 2 cosx] dx , where y = ¢ + 3x
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= [ (c + 3X) d(~ cosx) — 2J cosx dx
=(c +3x) (—cosx) —(3) (- sinx) — 2 sinx
= —Yy COSX + sinx

Hence the complete solution is

z =fi(y — 3x) + f2(y + 2X) — y cOsSX + sinx
Example 30

Solve r —4s + 4t =e &%
oz 0’z 0z
Given equation is  -------- R + 4 oo =gty
ox? OXoy oy?
ie, (D?-4DD +4D'2 )z =ge>"Y
The auxiliary equation is m? — 4m + 4 = 0.
Therefore, m=22

Hence the C.F is fi(y + 2x) + X f2(y + 2x).

D?—4DD+4D' 2

Since D> - 4DD+4D2 =0 for D =2 and D = 1, we have to apply the general rule.

(D-2D) (D -2D)
1

= —-eeeoeeee [@2C-2dx | where y = ¢ - 2X,
(D - 2D)
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= emooo- [ ec dx
(D-2D)
1
- — e’ .X
(D-2D)
1
- __ NG y+2X
D-2D

= xe“®>*>dx | wherey=c—2x.

= [ xe® dx

= e X2
X2ey+2x

Hence the complete solution is

z = fu(y+2x) + fo(y+2x) + ----- x%2>*Y

1.6 Non — Homogeneous Linear Equations

Let us consider the partial differential equation

fOD)z=F(xy) - ®

If f(D,D) is not homogeneous, then (1) is a non-homogeneous linear partial differential
equation. Here also, the complete solution = C.F + P.I.

The methods for finding the Particular Integrals are the same as those for
homogeneous linear equations.

But for finding the C.F, we have to factorize f (D,D) into factors of the form D — mD —c.

Consider now the equation
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This equation can be expressed as

p—mg = CZ -------e- ©)

which is in Lagrangian form.

The subsidiary equations are
dx dy dz

T _______(4)

1 -m cz
The solutions of (4) arey + mx =a and z = be*.

Taking b = f(a), we get z = e™ f (y+mx) as the solution of (2).

Note:
1. If (D-mD -Ci) (D-mD-Cy)...... (D - myD-Cp) z =0 is the partial
differential equation, then its complete solution is

z = e%* fi(y +myx) + %X fo(y+mpx) +.. ... + %" f(y+mnx)

2. Inthe case of repeated factors, the equation (D-mD — C)"z = 0 has a complete

solution z =e®fi(y +mx) + x e fo(y+mx) +.. ... +x "1 e fiy(y+mx).

Example 31
Solve (D-D-1) (D-D —2)z=¢ >~V
Here mi=1, m=1,¢c1=1¢c=2

Therefore, the C.F is e* fi (y+x) + e f; (y+X).

er-y
> (P — PutD=2,D =-1.
(D-D-1)(D-D-2)

2-(-D-1)2-(-1)-2)
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Example 32
Solve (D>~ DD + D' —1) z = cos (X + 2y)
The given equation can be rewritten as

(D-D+1) (D-1) z = cos (X + 2y)
Here mi=1,mx=0,c1=-1,co=1.

Therefore, the C.F = e fi(y+x) +e* 2 (y)

e cos (x+2y) [PutD?= —1,DD
(D2—DD +D' - 1)

1
S — Cos (x+2y)
~1-(-2)+D-1
1
= -- COS (X+2y)

sin (x+2y)

sin(x+2y)
Hence the solution is z = e fi(y+x) € fo(y) + ---------------- ,

Example 33
Solve [(D + D-1) (D + 2D —3)] z = &% + 4 + 3x +6y

Here my=—-1,m=-2,c1=1,¢c,=3.
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Hence the C.Fis z =¢* fi(y — X) + e fo(y — 2X).

ex+2y

P [PutD=1,D=2]
(D+D'— 1) (D + 2D - 3)

ex+2y

P.|2: ——————————————————— (4+3X+6y)
(D+D'-1) (D + 2D -3)

1
S e (4 + 3x + 6y)
D +2D
3[1- (D+D')]{1 ------------ J
3

1 D+2D 1
Sp— [1- (D + D)]* E J (4 +3x+6y)

3 3

1 D+2D 1
=-—--[1+ (D + D)+ (D+D)?+.. ] E+ ------------- + -mne- (D+2D)%+ ..... .]J

3 3 9
. (4 + 3x +6y)
1 4 5
= |1+ - D+ ------ D+ ..... (4 +3x + 6y)
3 3 3
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1 4 5
= -] 443X + By + - (3) + ----=(6)
3 3 3

=X+2y+6

Hence the complete solution is

z= e (y-x) +e¥f2 (y—2%) + - +X +2y +6.

Exercises
(a) Solve the following homogeneous Equations.

&z 0%z &z
L e + oo —6 oo =cos (2x +y)
OX? OXoy oy*
0%z 0z
7 J— —2 e = sin x.cos 2y
ox? oXoy

3.(D?+3DD +2D?)z = x+y
4. (D?> - DD+ 2D'?) z = xy + €. coshy

ey + e exty 4+ @ Xy
Hint: e*. coshy = e*. {- ------ J
2 2
.(D®*-7DD?- 6D 3) z = sin (x+2y) + >
6. (D% + 4DD —5D?) z = 3V + sin (X — 2y)

7.(D*-DD —-30D?) z =xy + %"
8. (D? — 4D ?) z = c0s2X. CoS3y

9. (D?-DD —2D?) z=(y - 1)&¥
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10. 4r + 125 + Ot = e~ %

(b) Solve the following non — homogeneous equations.

1. (2DD + D ?-3D) z = 3 cos(3x — 2y)

2. (D?+DD +D —1)z=¢”

3. r—s+p=xt+y

4. (D?-2DD +D?-3D +3D +2)z = (6 + 22y’

5. (D?-D2-3D+3D)z=xy+7.
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UNIT-II
FOURIER SERIES

2.1 INTRODUCTION

The concept of Fourier series was first introduced by Jacques Fourier (1768-
1830), French Physicist and Mathematician. These series became a most important tool
in Mathematical physics and had deep influence on the further development of
mathematics it self.Fourier series are series of cosines and sines and arise in representing
general periodic functions that occurs in many Science and Engineering problems. Since
the periodic functions are often complicated, it is necessary to express these in terms of
the simple periodic functions of sine and cosine. They play an important role in solving
ordinary and partial differential equations.

2.2 PERIODIC FUNCTIONS

A function f (x) is called periodic if it is defined for all real ,x and if there is
some positive number ,p™ such that

f(x+p)="~(x) forall x.

This number ,pis called a period of f(x).

If a periodic function f (x) has a smallest period p (>0), this is often called the
fundamental period of f(x). For example, the functions cosx and sinx have fundamental
period 2.

DIRICHLET CONDITIONS

Any function f(x), defined in the interval ¢ < x < c + 2w, can be developed as
o o

a Fourier series of the form ------- + 2 (an cosnx + by sinnx) provided the following
n=1

conditions are satisfied.

f (x) is periodic, single— valued and finite in [c, ¢+ 2 .
f (x) has a finite number of discontinuities in [ c, ¢ + 2x].
f (x) has at the most a finite number of maxima and minima in [ ¢,c+ 2x].

These conditions are known as Dirichlet conditions. When these conditions are satisfied,
the Fourier series converges to f(x) at every point of continuity. At a point of
discontinuity x = c, the sum of the series is given by

f(x) = (1/2) [ f (c-0) + f (c+0)] ,
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where f (c-0) is the limit on the left and f (c+0) is the limit on the right.

EULER’S FORMULAE

The Fourier series for the function f(x) in the interval ¢ < x <c¢ + 2x is given by

ao o
f(x)= - + Y (an cosnx + by sinnx), where
2 n=1
1 C+2n
ap = ----- [ f(x) dx.
o C
1 C+2n
an = ----- | f(x) cosnx dx.
C
1 C+2n
b= ----- [ £ (x) sinnx dx.
C
T

These values of ag, an, bn are known as Euler*'s formulae. The coefficients ao, an, bn are
also termed as Fourier coefficients.

Example 1

Expand f(x) =x as Fourier Series (Fs) in the interval [ -m, xt]
do o0

Let fxX) = — + % [ ancosnx +bnsin nx ] ---------- (1)
2 n=1

T
Here o = _  [f(x)dx
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1 =
an =-— [f(x) cosnx dx
T -T

= 1] Ein nx J (1) [cos nXJ
T n n? -T

= 1 COS N7 COS nm
T n? n?
=0
1 =
bn = _  [f(x) sinnxdx
T =Tt
1 T -COS NX
= — [x d n
T =Tt
1 -COSNX -sinn o
= — (x) - (1) ”
T n n
-T
= _1 - ICOSNM _ TCOSNT
T n n
= -2mcosnm
nmw
bh =2 (-1)™ [ " cosnm = (-1)7

n
Substituting the values of ao, an & by in equation (1), we get

f(x) 3 2(-1)™  sin nx

n=1 n
X = 27)sinx - 1 sin2x +1 sin3x -......
1 2 3
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Example 2

Expand f(x) =x? as a Fourier Series in the interval (-n <X <) and hence deduce

that

1L 1-1+1-1+ . = 7
2 2 F g 12

2 1+1+1+ 1+ . = n?
12 22 32 42 6

30 141 +1+1+ =
12 3 5 7 8

0

Let f(x) = ao + ¥ [ ancosnx + bnsinnx ]

2 n=1

Here T
a= 1 | fx) dx

T -TC

Y
=1 [ X dx

Y -t

an= 1 | f(x) cosnx dx

= 1 | x%cosnx dx
T =TT
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J‘
- 1 d i

= 7_1t [(xz) sir:]nx (ZX{-(:(?]%] +(2) [—sizgx]] x

-1

= — [ 2z cosnk + 2w cosnm
n? n?

= — (1)

T
[ f(x) sinnx dx
T -T

o

=
1

-

— .[ 2
= ] X d - n
] [ COS XJ

[(xz) —cr?snxJ —(2x) [% ]+ (2)[ Lﬁgxn

a

1
a -

= 1 -r?cosnt  m2cosnmt 2 COSnmt  2COSNT
+ + -

T n n n3 n3

Substituting the values of ao, an & by in equation (1) we get

o0

fx)= 2r°+ X 4 (-1)"cosnx
6 n=1 n?
o0
e, x2= m+Y 4 (-1)"cosnx
3 n=1
o0
e, x*= m?+4 Y (-1)"cosnx
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3 n=1 n?

= _m?+ 4 [-coSX + C0S2X —COS3X + .....
3 12 2? 3?
2 - n? - 4 (COSX+ COSZ2X + COS3X - ..... | comomemeeee
A

Put x = 0 in equation (2) we get

0 = n2-4 1-1 +1-1+....
3 12 22 32 42

w=x® -4(-1 - 1 - 1 -.....
3 12 22 3?
ie, - =4 1+ 1+ 1+
3 12 22 3? }
ie, 1 + 1+ 1 +...... :7-52 ------------- (4)
12 22 3 6

{1 - 1_+L-.....}+{1 + 1+ 1_+....}= o+ 2

17 2 3 12 6
2 (1 +1 +1 +.. —q2
Le, = = =3
{‘I? ¥ 5 } v
ie, 1 +1+ 1 +1 = n?
1?2 ¥ 57 77 8
Example 3

Obtain the Fourier Series of periodicity 2 for f(x) = e* in [-&, «]

o 0
Let f(X)= ---- + Y(ancCoSnX + by sinnx) ~ --------mmm-- (1)
2 n=1
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[ e*cos nx dx
T

(L

e* [cosnx + n sin nx]}
n (1+n?)

:l en (_1)n _ e—n _1 n
| 1+n? 1+n?

— (_1)n (en_ e—n)

(1+n®)

an = 2(-1)" sin hn

n(14n?)

-

1 =
b = ----- | £(x) sin nx dx

T
[ e sin nx dx
T
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T

=1 {L (sinnx — N cosnx) }
T (1+n2) -t
n| 1+n? 1+n2

= _n-D)™  (e™-e ™)

n(1+n?)

br = _2n(-1)™! sin hn

n(1+n?)
o0
f(x) =1 sinhn + X 2(-1)"  sinhm cosnx + 2(-n)(-1)" sinhsm sinnx
n n=1 | n(1+n? n(1+n?)

o0
€ = 1 sinhg +2sinhx > (-1)"  (cos nx — n sin nX
T Tnzliﬁ)ﬁz_( )

o0
ie, €= sin hn[l +22  (-1)" (cosnx—nsin nx) J
n n=1 1+n?
Example 4
X in (O, n)
Letf (x) = {
2rn-x) in (m 2n)

Find the FS for f (x) and hence deduce that > ---------- = -------
=l (2n-1)? 8

ao ©
Let f(x) =------- + Tancosx tbasinmx e 1)
2 =
1 s 2n
Here ap = ------ [ f(x) dx + [ f (x) dx
n |° T
1 s 2n
= e [ x dx+ [ (27 - x) dx
T (0] T
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1 b 2n
an= =---- {Ixcosnxdx+I(Zn-x)cosnxdx}
T

1 . sin nx o sin nx
= —-d [xdfmmeee- + J@2rn-x)d |------m-
n |0 n T n
- Ein nxJ E coSNX ]
---------- e e e
2 o n n2

1 | cosnx 1 cos2nw cosnm
- e e e e et — e mm e e o
o n? n? n? n?

I
1

N
1
—~~
k)

L\,

= =)

=}

<

L"_J
—~~
[EN
N

8

= n

=}

<

- J

a
~~
N

2
an = -mmeeee [(-1)"-1]
N’
1 T 2n
bn= - {I f(x) sin nx dx + | f(x) sin nx dx}
oIS 0] i

~C0s nx —smnx ~€0S nx —sinnx Y] %"
LwE ----- m ------ ]Ew[ --------- }w ---------- ]

MSAJCE

o1



1 |[—mcosnx T COSNTC
R S, e =0
T n n
ie, bn=0
T w 2
f(X) = ----- +Y e [ (+=1)"—1] cos nx
2 ™ opp
o 4 COSX C0S3X COS5X
N P Fomee - Fom oo - + ..., L e (2)
2 o 12 32 52

T 4 1 1 1
0= --mmim oo {----+ mmm et e + }
2 T 12 3? 52
1 1 1 72
l.e, + + + ... .. = e
12 32 52 8
© 1 i
([T S
n=1 (2n71)2 8
Example 5

Find the Fourier series for f (x) = (x + X?) in (- < x < rt) of percodicity 2r and hence

deduce that Y. (1/n?) =n?/6.

n=1
do o
Let f(x) = ------- + Zl( an cosSnx + by Sinnx)
2 "~
1
Here, ap = eeeee- [ (x+x3 dx
T —T

1 (¥ XN\n
21l2 3Jo0
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3 2 3

1 2 T 01 T
e PV S
o 2 3 2 3

4 (-1)
an = —--—=—-=-=--
I,]2
1
by = ---- [ £ (x) sin nx dx
TE —T
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(I G L

T n n
2 (_ 1)n+1
bn ————————
n
w41 2(-1)™*
f(x) = emeee- + 2 |- COS NX + ==--=-=-----
3 ™ n n
2 COSX C0S2X C0S3x
S { ..................... R
3 12 22 32

Here x = -m and x = &t are the end points of the range.

average of the values of f(x) at x = w and x = -7.

f(-m)+1(n)
B 074 =R
2

-+ T+ + P

2
Putting X = &, we get
% 1 1 1
A R— + 4<—-- S — S — +
3 12 22 3
n? 1 1 1
e, ------ = - + - + - + ...
6 12 22 3?

MSAJCE
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Sin2x
-—.....}+2{inx— --------- + ...

2

.. The value of FSat x = r is the

o4



Hence, Zl mems S emeeee- :

Exercises:

Determine the Fourier expressions of the following functions in the given interval

1.f(x) = (- x)%, 0<x < 21
2f(x) =0in-t<x<0
=nin0<x<m
3.f(x) =x -2 in [-m,7]
4.f(x) = x(2n-x) in (0,27)
5.f(x) = sinh ax in [-x, 7]
6.f(x) = cosh ax in [-7t, 7]
7f(x)=1in 0<x<m
=2innt<Xx<2n
8.f(x) = -n/4 when -t <x <0
= n/dwhen0 <X <7
9.f(x) = cosax, in -t < X <1, where , o is not an integer
10.0Obtain a fourier series to represent e from x = -n to x = . Hence derive the series

for nt/sinhx

2.3 Even and Odd functions

A function f(x) is said to be even if f (-x) = f (x). For example X2, cosx, X sinx, secx are
even functions. A function f (x) is said to be odd if f (-x) = - f (x). For example, x3, sin X,
X COS X,. are odd functions.

(1) The Euler*s formula for even function is

do 0
f(X) = ------ + 2 @ consnx
2 n=1
2 . 2 .
where ap = ---- [ f(X) dx ; an = ----- [ £ (x) cosnx dx
T 0 T 0
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(2) The Eulers formula for odd function is

f (x) = 2 b sin nx

n=1

2 .
where by = ------- [ £(x) sin nx dx
0
T

Example 6

Find the Fourier Series for f (X) = xin (- &, ®)
Here, f(X) =x is an odd function.

s f(x) = § bnsinnx - Q)
n=1

2
bn = --—-- | f (X) sin nx dx
n 0
2 . ( -cosnx
=__- _[xd _________

Example 7
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Expand f (X) = |x| in (-x, ) as FS and hence deduce that

1 1 1 72
B S
12 32 52 8
Solution

Here f(x) = |x| is an even function.

do w
SF(X) = e + 2, an cos nx
2 n=1
2 T
a0 = -] f(x) dx
s
2 T
= xdx
. 0
2 X2 b
= e | mm—— =TT
o 2 0
2 T
an = -----] f(x) cos nx dx
T
2 1 sin nx
TGS
n ° n
e
2 Sin nx — COS nX T
e R R — (@) [-------
e n n 0

n [ n?
2
an = [(-1)"- 1]
n?
T - 2
~fF(X)= + 2 [(-1)" - 1] cos nx
2 n=1 nnz
T 4 {cos X C0S3X C0S5X
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e, X|= --- — + Fommoo
2 n 12 32 52

Putting x =0 in equation (2), we get

2 T 12 32 52
1 1 1 n°
Hence, + + + = eeeen
12 3? 52 8
Example 8
2X
Iff(x)=1+---- in (-m,0)
T
2X
=1—---- in(0,m)
T

Then find the FS for f(x) and hence show that X, (2n-1)?2 = n?/8
n=1

Here f (-x) in (-=,0) = f () in (0,7)
f (-x) in (0,7) =f (X) in (-x,0)

.. T(x) is a even function

do o
Let f(X) = -------- + >, an COoS nX
2 n=1
2 . 2X
o= --==-] |1 —---mme- dx
T 0 Y
2 2 =
e X — ==
T 21 0

MSAJCE

58



I [ Er— Cos Nnx dx
T 0 T .
2 . 2X N sin nx
S I [ — dl--c-o--
n ° T n
2 2X sin nx -2 — €cosnx n
4
an = = [(1~ (- 1)
n°n?
w4
SFX)= X - [1- (= 1)"]cos nx
n=1 n2n2

4 2C0S X 2c0S3x 2C0S5X

1 1 1 n°
==> + + + = -
12 32 52 )
© 1 752
or Y e = e

=l (2n-1)? 8
Example 9

Obtain the FS expansion of f(x) = x sinx in (-t < x<r) and hence deduce that
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Here f (x) = xsinx is an even function.

do w

Letf (x) = -------- + Zl L0 R — (1)
n=

2

2

T
Now, ag = ----- [ xsin x dx
0

dn

T
2
----- [ xd (- cosx)
n 0

s

2

----- {(x) (- cosx) — (1) (- sin x) }
0

= ee- [ £ (x) cos nx dx
0

2 .
S [ x sinx cosnx dx
0
T

1 »
S — [ x [sin (1+n)x + sin (1 —n)x] dx
0
T
1 . — oS (1+n)x cos (1-n)x

Lame @y

<09

T

1 —cos (1+n)x cos(1—n) X J— sin (1+n)x sin (1—n) x
{ }m

1+n 1-n

1 | -mcos(1+n)n ncos(l-n)mn
T 1+n 1-n
- [cosm cosnn - sin &t sinnmt] [cosmt cosnz - sin & sin N7t ]
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1+ (-1)"+ A-n)(-1)"

1-n?
2(-1)"
An = ---mmm--- , Provided n=1
1-n?
Whenn=1
2 .
ap = ----- [ x sinx cos x dx
p 0
1,
= - [ x sin2x dx
p 0
1 ; - C0S2X
= - _[xd ______
n ° 2

Therefore, a1 = -1/2

ao w
f (X)=------- +a1 COSX + 2 anCoS nX
2 n=2
1 o 2(-1)
=1—--- COSX + X -------m--- cosnx
2 "2 1
1 C0OS2X C0S3X c0os4x
ie, X sinx =1 — ------ COS X — 2 Grmmmmmmmmmm = moeee +
2 3 8 15

Putting X = n/2 in the above equation, we get

R
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2 1.3 35 5.7
1 1 1 -2
Hence, ------— ------ + e — . R et
1.3 15 5.7 4
Exercises:

Determine Fourier expressions of the following functions in the given interval:

i f(X) =n/2+Xx,-t<x<0
ml2-X,0<x<mx

ii. f(x)=-x+1for+ -n<x<0
x+lfor 0<x<m

iii. f(x) =[sinx|, - t< X <7
iv. f(x) =x3in-t<x<m
V. f(X) = Xcosx, -m<X<m
vi. f(X) = |cosx|, -n<x<m
2sinam| sinx  2sin2x  3sin3x

vii. Show that for -t < X < m, sin ax = --------- - + -
r QP-0? 22-02 3%-¢2

2.4 HALF RANGE SERIES

It is often necessary to obtain a Fourier expansion of a function for the range
(0, @) which is half the period of the Fourier series, the Fourier expansion of such a
function consists a cosine or sine terms only.
(i) Half Range Cosine Series

The Fourier cosine series for f(x) in the interval (0,r) is given by

do o

f(x) = ---- + > an cosnx
2 n=1
2 .
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where ag = ------- [f(x) dx  and
0

2 4
n= --mmmm- [ f(x) cosnx  dx
0
T
(ii) Half Range Sine Series

The Fourier sine series for f(x) in the interval (0,x) is given by

o0
f(x) = X bn sinnx
n=1
2 n
where bp = ------- [ f(x) sinnx ~ dx
T 0

Example 10
If cis the constant in (0 <x <z ) then show that

c= (4c/m) {sinx + (sin3x /3) +sindx /5) + ... ... ...
Given f(x) =c in (0,n).
Let f(x) = 2 by sinnx > (1)
n=1

2

S — [ (x) sin nx dx
n 0
2
R ]; C sin nx dx
P 0

bn = (2¢c/nm) [ 1 - (-1)"]

o0
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S fx)= 2 (2c/nm) (1-(-1)") sinnx

n=1

Example 11

Find the Fourier Half Range Sine Series and Cosine Series for f(x) = x in the interval
(0,m).

Sine Series
o0
Let f(x) = 2 by sinnx  ------- (1)
n=1
2 i 2 .
Here bn = ------- [ () sinnxdx = ------ [ x d (-cosnx / n)
. 0 p 0
2 - COSnX - sinnx s
= e | W) “(1) |----=--o
T n n? 0
2 -n(-1)"
T n
2(_1) n+l
bn = mmmmmmeee-
n
o0 2
fxX)=2 - (-1)™! sin nx
n=1 n
Cosine Series
O
Let f(x) = ----+ 2> an cosnx  --------- (2
2 n=1
2
Here ap= --—-- [ f(x)dx
0
T
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R [ xdx
0
TT
2 X2 T
: ------- [--- } : n
T 2 0
2 n
an = ------- [ £(x) cosnx dx
o 0
2 n
n = --m-mm- [xd (sinnx /n)
T 0
2 sinnX - cOSnx T
D | Q) [--nmmf
T n n 0
2
R — (-1)" -1
n°m
T w 2
fx) = S D VR [ (-1)"- 1] cosnx
2 n=1 nr
n 4 COSX C0S3X C0S5x
o T S [ F e $ommeee
2 . 12 32 52

Example 12

Find the sine and cosine half-range series for the function function .

f(x) =x, 0<x<m?2

=q-X, TW2X< T

Sine series
o0

Let f(x) = 2 bnsin nx.
n=1
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T
bn= (2/n)ff(x) sin nx dx

=(2/n) fx sin nx dx +I(n -x) sin nx_dx }

/2

/2 cos nx T COS NX
=(2/n){fxd I(nx)d [%}
7c/2 n
/"
-C0S nx sm nx
= (2/m) [ (l) J
N—

COS NX sm nx
+ (W'X)E J (D |-
n

(n/Z)cos n(n/2) sin n(n/2) (n/2)cosn(n/2) sin (n/2)
= (2/n)

n? J
{ ZSinn(nIZ)}
= (2/n)
n2

n n

4
= sin (nnt/2)
n’n
o sin(nm/2)
Therefore, f(x)=(4/n) X sin nx
n=l n

sin3x sin5x
ie, f(x)=(4/m)<sinx — + -
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3 52

Cosine series
o0
Let f(x) = (a0/2) +X an cosnx., where
n=1
T
a = (2/m) | f(x) dx
0

/2 T
=(2/n)] [ x dx+ [ (n-x) dx
0 /2

/2 o
=2/m)Y (X¥2) + (nx—Xx%/2) =n/2

0 /2
T
an = (2/m) | (x) cosnx dx
0

/2

/2 (sinnxX T« sinnx
:(2/n){fxd{ J+I(n-x)d{ J}
0 n /2 n
/2
sinnx -Cosnx
=(2/In x{ J -(1){ J
n n?

/2 T
=(2/In) { [x cosnx dx + [ (m-x) cosnx dx}
0

0
7T
sinnx cosnx
+ (n-x){ J-(-l) :
n n? /2
(m/2) sinn(r/2) cos n(n/2) 1

= (2/n) + - —
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cosnx  (m/2) sinn(rw/2) cos n(n/2)

+|— - +
n n n
cosn ( w/2) - {1+(-1)"}
=(2In)
n2
o 2cosn(n/2)-{1+(-1)"}
Therefore, f(X)= ( n/4)+(2/n) X CoSNX .
n=1 n?
C0S6X
:(n/4)-(2/n){C052X+ ” Fommmmoeeee- }
3
Exercises

1.Obtain cosine and sine series for f(x) = x in the interval 0< x < ©. Hence show that 1/1?
+1/32+1/5° + ... = n?/8,

2.Find the half range cosine and sine series for f(x) =x?in therange 0 <x <
3.0btain the half-range cosine series for the function f(x) = xsinx in (0,r)..
4.0btain cosine and sine series for f(x) =X (n-x) iNn0< x<x
5.Find the half-range cosine series for the function
6.f(X) = (nx) / 4, 0<x< (n/2)

= (n/4)(n-X), /2 < X < T.
7.Find half range sine series and cosine series for

f(x)

xin 0<x< (n/2)

0Oin m/2<x<m.

8.Find half range sine series and cosine series for the function f(x) == = - X in the interval
0<x<m.
9.Find the half range sine series of f(x) = x cosx in (0,7)
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10.0Obtain cosine series for
f(x) = cosx, 0<x<(n/2)

=0, n/2<Xx<m.

2.5 Parseval’s Theorem

Root Mean square value of the function f(x) over an interval (a, b) is defined as

b
[ [F)]? dx
[fF)] rms = a
b—a

The use of r.m.svalue of a periodic function is frequently made in the
theory of mechanical vibrations and in electric circuit theory. The r.m.s value is
also known as the effective value of the function.

Parseval’s Theorem

If f(x) defined in the interval (c, c+2x), then the Parseval”s Identity is given by

ct2n 202 1
2 = e N
TP o= Range) (20 1o o)
L4 2 J
_ ~ a0’ 1 3
S0P = LS et b
L4 2 J

Example 13

Obtain the Fourier series for f(x) = x?in—n <X <=n

Hence show that 1 + L +1 +. . _ =
#4243 90
2 4 (-1)"
we have a.= 3, an = n? ,  bn=0, for all n(Refer Example 2).

By Parseval“s Theorem, we have

T a02 0
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[ [fQ2 dx =2n — + %Y (a®+b?d)

- 4 n=1
T  4nt » 16(-1) 2"
ie, [ x* dx =2n| — + 12 Y
-7 36 n=1 n4
-
T ( » 1 J
e, x =2n| — +8 —
T t . 1
= _— +8>
5 9 n=1 n4
o 1 '
=> _ = —
n=1 n4 90
Hence 1+l +1+ .
4 24 3 - 90

2.6 CHANGE OF INTERVAL

In most of the Engineering applications, we require an expansion of a given
function over an interval 2/ other than 2.

Suppose f(x) is a function defined in the interval c< x < c+2£ The Fourier
expansion for f(x) in the interval c<x<c+2/( is given by

a o nmx nmx
fx) = - +2 | a CO0S---- +by sin----
2 n=1 [ [
1 c+2 [
where ap= ----- ] f(x)dx
[ c
1 ct2 [
an= - ] f(x) cos (nx / () dx &
[ c
1 ct2 [
bp= - ] f(x) sin (nmx / £ ) dx
[ c
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Even and Odd Function

If f(x) is an even function and is defined in the interval ( c, c+2 /) then

ao 00 1719,

fx) = - + 2 anCoSs---
2 n=1 [
2 [

where ag= -—--- [ f(x)dx
r 0
2 r

an= - ) f(x) cos (nnx / [ ) dx

[ 0

If f(x) is an odd function and is defined in the interval ( ¢, c+2 /) then

0 nmtX
fix) = z b sin ----
n=1 [
where
2 [
b= ----- | f(x) sin (nx / [) dx
[ 0
Half Range Series
Sine Series
o0 179,4
fix) = > bn sin ----
n=1 [
where
2 [
bh= - [ £(x) sin (nmx / £) dx
[ 0
Cosine series
ao o0 (1719,
fy = - + 2 anCos----
2 n=1 [
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where ag= ----- I f(x)dx
[ 0
2 [
P — [ f(x) cos (nmx / [) dx
[ 0
Example 14

Find the Fourier series expansion for the function

f(x) = (c/Dx in 0<x<(
= (c/0)(2€-X) In (<x<2¢L
do @ nmx nmtX
Let  f(X)=---- +3 | an cos ------ + b sin - ------
2 ™ t t
1 20
Now, a = ---- [ f(x)dx
[ 0
1 L 2L
= e (c/0) [ xdx + (c/0) | (2 -x) dx
e 0 L

1 ¢ 20
S — {(c/z) (x2/2)0+ (c/) (215x-x2/2)£ }

L
C
= - 2= ¢
EZ
1 20
N J— [ £(x) cos (nmx / € ) dx
L o0
1 L nmX 20 nmx
=—  [(c/0)x cos dx + | (c/0)(2L-X) cos dx
Lt o0 e Y L

c L sin(nmtx /¢) 20 sin(nmtx /¢)
=— < [xd)] —— [ +]@t-xd] ———
nw /0 L nm /¢
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L
O nx ) Comx Y )
sin — -C0S —
C L L
- LT ——p >
e Bil nen®
e 2 0
k \ - J (. J /
4 Conmx )  nmxX )
sin — -C0S —
£
+<L2008 T
nn e
L ?
\ - J - J
c 02 cosnrm (2 0?2 cos2nt (2 cosnrm
=— - +4— +
EZ n27.c2 nZTCZ n2n2 n2n2
c
=— — {2cosnn—-2}
02 n?m2
2C
=— {(-D)™-1}
n?m
1 2t (171934
bh= — | (x).sin dx
¢ 0 L
1 L NmX 20 nmtX
=— < J(c/0)x sin dx + [ (c/0)(2¢-x) sin dx
L 0 L L £
c L cos(nmx /¢) 20 cos(nmx /0)
=— < [ x d{—} + ] Qe-x)dg- ———
2|0 nm /¢ L nr /L

\
20

J




£
4 N
- NIX ) O nmx )
cos —— sin —
C < L L >
— | YW O ————
(2 o nz_nz
) 2
k = g J \_ Y, 0 %
- N
- nmex < nmX N |28
cos — sin —
£ £
QLR = = (R
nm nen?
) (2
. ),
g ~ )t
C 0% cosnm 0% cosnm
— - +
(2 nm nm
= 0.
C 2c » {(-1)"-1}
Therefore, f(x) = - + - X --ooommemmmm- cos (nmx /¢)
2 TEZ n=1 n2

Find the Fourier series of periodicity 3 for f(x) =2x —x?,in 0<x < 3.

Example 15
Here 20 = 3.
=372
do ®
Let f(X)=---- + 2 |an COS
2 n=1

3
where a,= (2/3) | (2x-x?)
0

dx

= (2/3){2 (x?/2) — (x3/3) dx }3
0
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= 0.

3 2nmX
an= (2/3) | (2x-x?) cos ------ dx
0 3
3 Sin(2nmx /3)
=(2/3) | 2x-x®)d
0 (2n=/3)
3
Ein(Znnx /3j cos(2nmx /3) sin(2nmtx/3)
=2/3)| 2X-¥)|——— |- 2-2x) |-——— |+ (- | - ——
(2n1t/3) (4n?n?/9) (8n°n®/27) )

= (2/3){-(9/n2n2)— (9/2n2n2)} = - 9/n’r?

3
bh= (2/3) OI (2x - X?) sin ------ dx

= (2/3) I3(2x-x2)d{
0

3
cos(2nnx /3) sin(2nmx /3) cos(2nmx/3)
= @I @) 1 onzy 1@ e 169 | e
0

(21/3) {( 9 /2nm) — ( 27/ 4n®rd) + ( 27/ 4n3n3)}

cos(2nmx /3)}

(2nn/3)

3/nn

n=1

© 2nmx 2nmX
Therefore, f(X)= X | -(9/n°r?) cos------ +(3/nm) sin ------
3

Exercises

1.0btain the Fourier series for f(xX) = ntx in 0 <x < 2.
2.Find the Fourier series to represent x2 in the interval (-£ ).
3.Find a Fourier series in (-2, 2), if

f(x)=0,-2<x<0
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=1,0<x<2.
4.0btain the Fourier series for
f(x) = 1-xin 0<x</[
=0 in [<Xx<2/[ Hence deduce that
1- (13)+(1/5) - (UT)+...=7n/4 &
(1/1%)+ (1/3%) + (1/5%) + ... = (n%/8)

5.1f f(x) = nx, 0<x<1
=n(2-X),1 < x <2,

Show that in the interval (0,2),

COS X COS3mX  COS 5mx
fx) = (n/2) - (4/r) |--------- e S e— +

6.0Dbtain the Fourier series for

f(x) =xin0<x<1
=0inl<x<2

7.0btain the Fourier series for

f(xX) = (cx/[)in0<x<[
=(cl)@2r-x)Inlf<x<2/[.

8.0btain the Fourier series for

f(x) = ({[+x ),- [<x<0.
= ([-x ), 0<x< [

0 1 o
Deduce that > -------- = e
1 (2n-1)? 8

9.0btain half-range sine series for the function

cX iN0<x<(/[2)
c([—x) in(LR2)<x<[

f(x)

10.Express f(x) = x as a half — range sine seriesin 0 <x <2

11.0btain the half-range sine series for e*in 0 <x < 1.
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12.Find the half —range cosine series for the function f(x) = (x-2)? in the interval
O<x<2

o0 1 72
Deduce that ) D — = -
1 (2n-1)? 8

2.7 Harmonic Analysis

The process of finding the Fourier series for a function given by numerical values

is known as harmonic analysis.

o o
f(x)= - + ¥ (an COSNX + by sinnx), where
2 n=1
ie, f(X) = (ao/2) + (a1 cosx + by sinx) + (a2 cos2x + by sin2x) +
(a3C0OS3X + D3sin3x)+...  -m---mmmmme- 1)
2> f(x)

Here ap = 2 [mean values of f(x)] = -----------

2 Y f(x) cosnx

an =2 [mean values of f(x) cosnx] =
n

2 Y f(x) sinnx
& by =2 [mean values of f(x) sinnx] = ------------=-=----
n
In (1), the term (aicosx + by sinx) is called the fundamental or first harmonic,
the term (a,cos2x + b,sin2x) is called the second harmonic and so on.

Example 16

Compute the first three harmonics of the Fourier series of f(x) given by the

fallowing table
; /3 2n/3 T 4n/3 5n/3 2n

X:
f(x): 1.0 1.4 1.9 1.7 15 1.2 1.0

We exclude the last point x = 2.

Let f(X) = (a0/2) + (a1 cosx + by sinx) + (a2 cos2x + by sin2x) + ............

To evaluate the coefficients, we form the following table.
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X f(x) COSX sSinx C0S2X sin2x C0S3X sSin3x
0 1.0 1 0 1 0 1 0
/3 14 0.5 0.866 -0.5 0.866 -1 0
27/3 1.9 -0.5 0.866 -0.5 -0.866 1 0
T 1.7 -1 0 1 0 -1 0
47/3 15 -0.5 -0.866 -0.5 0.866 1 0
5n/3 1.2 0.5 -0.866 -0.5 -0.866 -1 0
2 Y f(x) 2(1.0+14+19+17+15+1.2)
Now, ap = = 2.9
6 6
2 > f(x) cosx
A= —-mmmm--a- =-0.37
6
2 Y f(x) cos2x
a= =-0.1
6
2 > f(x) cos3x
L =0.033
6
2 Y f(x) sinx
b= - =0.17
6
2 Y f(x) sin2x
bp= -----aeeo---=-0.06
6
2 Y f(x) sin3x
b3= - - =0
6

- f(x) =1.45-0.37cosx + 0.17 sinx — 0.1cos2x — 0.06 sin2x + 0.033 cos3x+...

Example 17

Obtain the first three coefficients in the Fourier cosine series for y, where y is

given in the following table:

X: 0 1 2 3 4 5

y: 4 8 15 7 6 2
Taking the interval as 60°, we have

0: 0° 60° 120° 180° 240° 300°

X: 0 1 2 3 4 5

y: 4 8 15 7 6 2

.. Fourier cosine series in the interval (0, 2x) is

y = (a0 /2) + a1c0s0 + a2c0s20 + azcos30 + ..

To evaluate the coefficients, we form the following table.
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0° cosO €0s20 cos30 y y cosO y C0s20 |y cos360

0° 1 1 1 4 4 4 4

60° 0.5 -0.5 -1 8 4 -4 -8

120° -0.5 -0.5 1 15 -7.5 -7.5 15

180° -1 1 -1 7 -7 7 -7

240° -0.5 -0.5 1 6 -3 -3 6

300° 0.5 -0.5 -1 2 1 -1 -2
Total 42 -8.5 -4.5 8

Now, ap=2(42/6) =14

a;=2(-85/6)=-28

a= 2 (-4.5/6)= - 15

as =2 (8/6) = 2.7

Sy=7-2.8c0s0-1.5c0s20 + 2.7 cos30 + .....

Example 18

below. Show that f(x) =0.75 + 0.37 cos6 + 1.004 sin6,where 6 = 2nx )/T

The values of x and the corresponding values of f(x) over a period T are given

X: 0 T/6 T/3 T/2 2T/3 5T/6 T
y: 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98
We omit the last value since f(x) at x = 0 is known.
Here 6 = 2nx
T

Let f(x) = F(0) = (ao/2) + a1 cosO + by sind.

When x varies from 0to T, 0 varies from 0 to 2r with an increase of 2« /6.

To evaluate the coefficients, we form the following table.

0 y coso sino y €0s0 y sino
0 1.98 1.0 0 1.98 0
/3 1.30 05 0.866 0.65 1.1258
27/3 1.05 -0.5 0.866 -0.525 0.9093
IT 1.30 -1 0 -1.3 0
47/3 -0.88 -0.5 -0.866 0.44 0.762
5m/3 -0.25 0.5 -0.866 -0.125 0.2165

4.6 1.12 3.013

Now, ag =2 (> f(x) / 6)=1.5
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a1 =2 (1.12/6) = 0.37
a, = 2 (3.013/6) = 1.004

Therefore, f(x) =0.75 + 0.37 cos6 + 1.004 sin6
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Exercises

1.The following table gives the variations of periodic current over a period.
t (seconds) : O T6 T/I3 T/2 2T/I3 5T/6 T

A (amplitude): 1.98 130 105 130 -0.88 -0.25 1.98

Show that there is a direct current part of 0.75 amp in the variable current and obtain the
amplitude of the first harmonic.

2.The turning moment T is given for a series of values of the crank angle 6° = 75°

0° : 0 30 60 90 120 150 180

T° : 0 5224 8097 7850 5499 2626 O

Obtain the first four terms in a series of sines to represent T and calculate
T for 6 = 75°

3. Obtain the constant term and the co-efficient of the first sine and cosine terms in the

Fourier expansion of ,y* as given in the following table.
X : 0 1 2 3 4 5
Y : 9 18 24 28 26 20

4. Find the first three harmonics of Fourier series of y = f(x) from the following data.
X:0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
Y:298 356 373 337 254 155 80 51 60 93 147 221

2.8 Complex Form of Fourier Series

The series for f(x) defined in the interval (c, c+2x) and satisfying

(e8] .
Dirichlet”s conditions can be given in the formof f(x) = > c,e™,

n=-o0
where , c+on
ch= 1 [ f(x) e "™dx
2n °©

In the interval (c, c+2t), the complex form of Fourier series is given by

0 inmx
fx) = Yce *
N=-co

1 20 inzx
where, Y [ f(x) e © dx
C
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Example 19

Find the complex form of the Fourier series f(x) = e * in -1<x <1.

o0 inmx
We have filx) = Ycnoe
Nn=-oc0
Jl -inmx
where = 1 e e dx
2 -1
1 -(A+inmx
ch= 1 e dx
2 -1
- 1 (e-@+imx) 1
2 |- (1+inm) |4

= 1 .
_2(1+inn){e-(l+in7t)x -e (l+inn)}

= (l-inm) [e'(cosnm—isin nm) - € (cosnm +isin nm) ]
-2 (1+n?n?)

= _(l-inm) cosnm(el-e)
-2 (1+n?n?)

(1-inm)
(NS (-1)" sinhl

(1+n°n?)

X (1-in7r) . inmx
) = Y e (-1)" sinhl e

n=-o (1+n’n?)
Example 20

Find the complex form of the Fourier series f(x) =e*in -7 <X <m.

o0
We have f(x) = Y Cne'™
N=-o0
1 =
where Cp = ---—--- j f(X) e ~imX gy
2n -1
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1 T

= - [ eX e ™qdx
2n -m
1 T
. J' e(l-in)xdx
2n -m

11
N
a

D
—~~
Bl B
- 5
AR
-
a

1 [ e(l-in)n e- (2-in) 7:]
2m(1-in)

R [e" (cosnm—isinnt)—e ™ (cosnz+isin nm)]

(1+in)  (-1)". e"—e”

Exercises

Find the complex form of the Fourier series of the following functions.
1.f(x) =e*, -[<Xx< [

2.f(x) = cosax, -t <X <.

3.f(x) =sinx, 0 <x < .

4.f(x) =e*, -1<Xx< 1L

5.f(x) = sinax, a is not an integer in (-x, ).
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2.9 SUMMARY (FOURIER SERIES)

A Fourier series of a periodic function consists of a sum of sine and cosine terms.
Sines and cosines are the most fundamental periodic functions.The Fourier series is
named after the French Mathematician and Physicist Jacques Fourier (1768 — 1830).
Fourier series has its application in problems pertaining to Heat conduction, acoustics,
etc. The subject matter may be divided into the following sub topics.

FOURIER SERIES

Y A 4 A 4 Y

Series with Half-range series Complex series Harmonic Analysis

arbitrary period

FORMULA FOR FOURIER SERIES

Consider a real-valued function f(x) which obeys the following conditions called
Dirichlet*s conditions :

1. f(x) is defined in an interval (a,a+2l), and f(x+2l) = f(x) so that f(x) is a periodic
function of period 2I.

2. f(x) is continuous or has only a finite number of discontinuities in the interval
(a,a+2l).

3. f(x) has no or only a finite number of maxima or minima in the interval (a,a+2l).

Also, let

a, = TaTIf (x)dx Q)

a

o= | 100 hax n-123... 2

a

bn=Tla+j2|f(x)sinI[”|_”)lxdx, n=12,3,.... (3)

a

Then, the infinite series 22 + ian cos(nTﬂ}X +b Sin|(nTﬂ)x 4

n=1



is called the Fourier series of f(x) in the interval (a,a+2l). Also, the real numbers ao, ai,
a, ....an, and by, b2, ....by are called the Fourier coefficients of f(x). The formulae (1),
(2) and (3) are called Euler*s formulae.

It can be proved that the sum of the series (4) is f(x) if f(x) is continuous at x. Thus we
have

f(X) = ? + Za COS( \1X + bn sm|( nlﬂ-JX ....... (5)

Suppose f(x) is discontinuous at x, then the sum of the serles (4) would be
%[f )+ £ (x)]

where f(x") and f(x") are the values of f(x) immediately to the right and to the left of f(x)
respectively.

Particular Cases

Case (i)

Suppose a=0. Then f(x) is defined over the interval (0,2l). Formulae (1), (2), (3) reduce
to

= %ZJ f (x)dx

0

j f(x)cos( )xdx n=1,2,....0 (6)
If(x)sml( jxdx

Then the right-hand side of (5) is the Fourier expansion of f(x) over the interval (0,2l).

If we set |=m, then f(x) is defined over the interval (0,27). Formulae (6) reduce to
2

a = %J.f(x)dx

0

127r
a, =— j f (x) cos nxdx
T v n=1,2,.....0 (7

1°%% )
:;Jf(x)sm nxdx  n=1,2,.....0

Also, in this case, (5) becomes

f(x) = % + Y a,cosnx +b, sinnx (8)
n=1
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Case (ii)

Suppose a=-l. Then f(x) is defined over the interval (-1, I). Formulae (1), (2) (3) reduce
to

. I} jl 000K n=12,...... oo 9)

= Tllj f (X) cosl(nTﬂjxdx I (x) sm( ]de

Then the right-hand side of (5) is the Fourier expansion of f(x) over the interval (-, I).

If we set | = &, then f(X) is defined over the interval (-r, 7). Formulae (9) reduce to
= 2o
a = ;_,, (x)dx

1 T
a, =— j f (x) cosnxdx
T , n=1,2,......c0  (10)

17 _
b, :7[_;[ f (X)sin nxdx n=1,2,.....0

Putting | == in (5), we get

a, & .
f(x) = =2+ a, cosnx+b, sinnx
n=1

Some useful results :

1. The following rule called Bernoulli“s generalized rule of integration by parts is useful
in evaluating the Fourier coefficients. )
J‘uvdx: U —Uv_+UV_+...

Here u’,u’,..... arethe successive derivatives of u and
v, = Ivdx v, = Ivldx ......

We illustrate the j_u):eSIt:Lc))(lé?(h _tr;(e (b Icor? f 2le _(5?-': nX\J . 2( Cossnxj
J.x3ezxdx =X (ezx) 3x° ( 2X\+6x(e;q (1GXJ
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2. The following integrals are also useful :

eax
a’+b?
ax

e

J. e™ cosbxdx = [acosbx + bsin bx]

J.ef"X sinbxdx = asinbx —bcosbx]

3. If ,n"is integer, then
sinnt=0, cosnrt = (-1)", sin2nwt =0, cos2nn=1

ASSIGNMENT
1. The displacement y of a part of a mechanism is tabulated with corresponding angular
movement x° of the crank. Express y as a Fourier series upto the third harmonic.

XX 0 30 60 90 120 150 180 210 240 270 300 330
y 180 110 030 016 150 130 216 125 130 152 176 200

2. Obtain the Fourier series of y upto the second harmonic using the following table :
X 45 90 135 180 225 270 315 360

y 4.0 3.8 2.4 2.0 -1.5 0 2.8 3.4

3. Obtain the constant term and the coefficients of the first sine and cosine terms in the
Fourier expansion of y as given in the following table :

X 0 1 2 3 4 5

y 9 18 24 28 26 20
4. Find the Fourier series of y upto the second harmonic from the following table :

X 0 2 4 6 8 10 12

Y 9.0 18.2 24.4 27.8 275 22.0 9.0
5. Obtain the first 3 c oefficients in the Fourier cosine series for y, where y is given bdow

X 0 1 2 3 4 5
y 4 8 15
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UNIT — 111

APPLICATIONS OF PARTIAL DIFFERENTIAL
EQUATIONS

3.1 INTRODUCTION

In Science and Engineering problems, we always seek a solution of the
differential equation which satisfies some specified conditions known as the boundary
conditions. The differential equation together with the boundary conditions constitutes a
boundary value problem. In the case of ordinary differential equations, we may first find
the general solution and then determine the arbitrary constants from the initial values. But
the same method is not applicable to partial differential equations because the general
solution contains arbitrary constants or arbitrary functions. Hence it is difficult to adjust
these constants and functions so as to satisfy the given boundary conditions. Fortunately,
most of the boundary value problems involving linear partial differential equations can be
solved by a simple method known as the method of separation of variables which
furnishes particular solutions of the given differential equation directly and then these
solutions can be suitably combined to give the solution of the physical problems.

3.2Solution of the wave equation

The wave equation is 2

aZy a y

R = a2 T mmmmmmm———— (1) .
ot? ox°

Let y = X(x) . T(t) be the solution of (1), where ,.X*is a function of ,x“ only and ,,T" is a
function of ,t* only.

0%y 0%y
Then — = XT" and — =X"T.

ot? ox?

Substituting these in (1), we get

XT" = a?X"T.
XH TH

ie, SYUEE O — @).
X a’T
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Now the left side of (2) is a function of ,x only and the right side is a function of ,£* only.
Since ,x“and ,f* are independent variables, (2) can hold good only if each side is equal to
a constant.

XH TN
Therefore, — = = k (say).
X a’T
Hence, we get X" —kX =0 and T" —a?KT =0. -----m--mm-m-- (3).

Solving equations (3), we get
(i) when ,k*is positive and k = A2, say

X=cre™ + ¢ e ™
T :C3eakt+ C4 e-akt

i) when ,k is negative and k = —\?, sa
(i) g y

X =5 COSAX + CgSinAX
T =c7cosait+ cgsinait

(il)) when ,k*is zero.

X =cCg X + Cio
T =cCuut+ c2

Thus the various possible solutions of the wave equation are

y=(Cie™ + coe ™ (cseM+ e ™) s @)
y =(C5 COSAX + Cg SINAX) (C7 COSaAt+ CgsSinait)  ----------- (5)
y = (CoX +cCw) (Cut+ ) - (6)

Of these three solutions, we have to select that particular solution which suits the
physical nature of the problem and the given boundary conditions. Since we are dealing
with problems on vibrations of strings, ,y* must be a periodic function of ,x* and ,t*.

Hence the solution must involve trigonometric terms.
Therefore, the solution given by (5),

i.e, Yy =(Cs5COSAX + CssinAX) (C7 cosait+ Cg Sin ait)
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is the only suitable solution of the wave equation.

llustrative Examples.

Example 1

If astring of length ¢ is initially at rest in equilibrium position and each of its points is

given

oy X
the velocity {—} = VoSin — , 0 <x < L. Determine the displacement y(x,t).
ot Jt=0 L

Solution

The displacement y(x,t) is given by the equation

%y oy

The boundary conditions are
i. yOt)=0,for t>0.
i y(,t) =0, for t>0.
. y(x,00=0,for0O<x < (.

oy X
iv. — = VoSin— ,for0<x< (.
ot Jt=0 L

Since the vibration of a string is periodic, therefore, the solution of (1) is of the form

y(x,t) = (Acosix + BsinAx)(CcosAat + DsinAat) ------------ 2
Using (i) in (2) , we get

0 = A(Ccoshat + DsinAat) , forall t > 0.
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Therefore, A=0
Hence equation (2) becomes

y(x,t) = B sinAx(CcosAat + DsinAat) ------------ (3)

Using (ii) in (3), we get

0 = BsinAlL (CcosAat + DsinAat), for all t> 0, which gives At = nm.

nr

Hence, A= — ,nbeing an integer.
10

nmX nrat nrat
Thus, y(x,t) = Bsin : Ccos . + Dsin P — 4)

Using (iii) in (4), we get

nmx
0=Bsin___ .C
e
which implies C=0.
nmXx nrat
y(x,t) = Bsin . Dsin
e e
nmx nrat
= Bjsin . sin , Where B1= BD.
10 e
The most general solution is
© nmX nrat
y(x,t) = X Bn sin SiN e (5)
n=1 L L

Differentiating (5) partially w.r.t t, we get

oy o0 nmX nnat nna
= 2 Bpsin .COS .
ot n=1 L L 10
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Using condition (iv) in the above equation, we get

X 0 nma nmx
VoSIn — = > Bn. .sin
L n=1 £ L
X a X 2ma 21X
ie, VosSin — = B:. . sin + B2. . sin +
£ £ L L L

Equating like coefficients on both sides, we get

mia 2na 3na
Bi— =wvw. B:. =0, B3 =0, - - e
£ £ L

Vol

ma

Substituting these values in (5), we get the required solution.

Vol X mat
sin . sin
ma L L

e, y(xt)=

Example 2
A tightly stretched string with fixed end points x =0 & x = £ is initially at

rest in its equilibrium position . If it is set vibrating by giving to each of its points a
velocity
oylot = kx(£-x) at t = 0. Find the displacement y(xt).
Solution
The displacement y(x,t) is given by the equation

%y oy

ot? ox?

The boundary conditions are
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i. y0Ot)=0,for t>0.
il.  y(tt) =0, for t>0.
iii.  y(x,00=0,for0O<x<¢.

oy
V. — = kx(£ —x), for0<x < L.

ot Jt=0

Since the vibration of a string is periodic, therefore, the solution of (1) is of the form
y(x,t) = (Acosix + BsinAx)(CcosAat + DsinAat) ------------ 2

Using (i) in (2) , we get
0 = A(Ccoshat + DsinAat) , for all t > 0.

which gives A =0.

Hence equation (2) becomes

y(x,t) = B sinAx(CcosAat + DsinAat) ------------ (3)
Using (ii) in (3), we get
0 = BsinAL(CcosAat + DsinjAat), for all t > 0.

which implies At = nm.

nm
Hence, A= —— ,nbeing an integer.
10
nmX nrat nrat
Thus, y(x,t) = Bsin {Ccos + Dsin J ------------------ 4
€ € e
Using (iii) in (4), we get
nmX
0 = Bsin -C
e
Therefore, C=0.
nmX nmat
Hence, y(x,t) = Bsin Dsin
€ 10
nmtx nrat
= Basin . Sin , Where B1= BD.
e e
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The most general solution is

0 nmx nrat
y(x,t) = 2 Bn sin sin - )
n=1 L L
Differentiating (5) partially w.r.t t, we get
oy 00 NmX nmat nna
—— = X Bnsin .COS
ot n=1 e e e
Using (iv), we get
© nma nmx
kx(£-X) =2 Bn. . sin
n=0 L L
nma 2 nmX
ie, Bn: =— | f(x). si— dx
¢ 0 )
L NnmX
ie, Bn =— [ f(x).sin— dx
nma O L
2 L nmX
= — [ kx(f-x) sin— dx
nma 0O 10
nmX
¢ —C0S —
2k e
= _— ) (x-xdd
nma O nX
¢
. C nx )
-c0s ——
2k e
= — | (tx-x®d - (£-2X)
nma nm
—
G /
\
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2k -2cosnm 2

= +
nra n3n3 n3n3
3 03
2k 203
= — . {1 - cosnn}
nna n°ns
4 k(3
i.e, Bn = {1 - (_1)n}
n*r* a
8ke3
or Bn = , if nis odd
n*n* a
0, if nis even
Substituting in (4), we get
© 8k(3 nmat nmx
y(xt) = 2 sin—— sin——
N=135....... n*n? a L £
Therefore the solution is
8ke® I (2n-1)rat (2n-1)mx
yxt) == X sin sin
n*a n=1 (2n-1)* e )
Example 3

A tightly stretched string with fixed end points x =0 & x = { is initially in a
position given by y(x,0) = yosin®(nx/L). If it is released from rest from this position, find
the displacement y at any time and at any distance from theend x =0.

Solution

The displacement y(x,t) is given by the equation
%y oy

—=a® — (1)
ot? OX?
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The boundary conditions are
M yOt=0, vt>0.
(i) y(€,t) =0, Vt>0.

(i) (" oy
S = 0, forO<x<Ut.
ot Jt=0

(iv) y(x,0) = yosin®((nx/t), for 0 <x < ¢.

The suitable solution of (1) is given by

y(x,t) = (Acosix + BsinAx)(CcosAat + DsinAat) ------------ 2)
Using (i) and (ii) in (2) , we get
nm
A=0 & A=—
L
nmx nrat nrat
y(x,t) =B sin (Ccos + Dsin ) -mmmmmmeee- (3)
L L L
oy nmX nmat  nma nmat  nma
Now, — = Bsin - Csin + Dcos _
ot L L L L L
Using (iii) in the above equation , we get
nmX nma
0 =Bsin D
L L
Here, B can not be zero . Therefore D = 0.
Hence equation (3) becomes
nmx nrat
y(x,t) = B sin . Ccos
L L
nmx nrat
= Bssin . C0S , Where B; = BC
L L
The most general solution is
o0 nmx nrat
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y(x,t) = X Bnsin——  cOs 4)

n=1 L L
Using (iv), we get
nm 0 nmX
Yosin® — = Y Bysin
L n=1 L
o0 nmx 3 X 1 3nX
ie, 2 Bsin —  =Yo sin sin
n=1 L 4 L 4 L
X 21X 3nx
i.e, Bisin— +Bzsin — +Bssin— + ...
L L L

3Yo X Yo 3nX
= sin - sin
4 L 4 L

Equating the like coefficients on both sides, we get

3Yo -Yo
Bi= — ,B3=__ ,B=Bs=...=0.
4 4
Substituting in (4), we get
3Yo X nat Yo 3nx 3mat
y(x,t) = — sin — . cos - sin .C0S —
4 e e 4 e e

Example 4

A string is stretched & fastened to two points x =0 and x = ¢ apart.
Motion is

started by displacing the string into the form y(x,0) = k(fx-x?) from which it is
released at
time t = 0. Find the displacement y(xt).

Solution
The displacement y(x,t) is given by the equation
0%y %y
— =a% — - (1)
ot? ox?

The boundary conditions are
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(i) y(Ot)=0, vt>0.
(i) y(L,t) =0, Vt>0.

(iii) ( oy
— =0, forO<x <.
ot Jt=0
(iv) y(x,0) =k(tx —x?), for0<x < ¢.
The suitable solution of (1) is given by
y(x,t) = (Acosix + Bsinix)(CcosAat + DsinAat) ------------ 2

Using (i) and (ii) in (2) , we get

nm
A=0 & rA=—.
10
nmtx nrat nmat
y(x,t) =B sin (Ccos + Dsin ) -m-mmmee- 3)
e e 10
oy nmX nmat  nma nmat  nma
Now, — = Bsin - Csin + Dco§ ——— . ———
ot 1Y Y e e e
Using (iii) in the above equation , we get
1719,4 nra
0 =Bsin D
10 10
Here, B can not be zero
D=0
Hence equation (3) becomes
nmtx nrat
y(x,t) = B sin . Ccos
e e
nmX nmat
= Basin cos , Where B1 = BC
e e
The most general solution is
0 nmx nrat
y(x,t) = X Basin COS —— -----m-m-m-mmoe- 4)
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Using (iv), we get

n=1

kx(fx —Xx?) =

L
00 nmX
z anin
n=1 L

The RHS of (5) is the half range Fourier sine series of the LHS function .

" Bn:—

i.e, Bn

2 0 nmcx
[ (x) . sin dx
¢ ) Y
0
O oex )
L -C0S—
2k [ (tx-x%) d i
) nn
£ 0 —
L
~ /
p
nmX
-cos
2k L
— iﬁx- x?) d - (£-2x)
e nn
\ - € _/
\
-~ ~
nmX
cos —
L
+(-2)
n3m®
0
N\ - )
2k | -2cosnm 2
— +
L n’r® n’n®
& B
2k 208
= — .— {l1-cosnn}
¢ nrd
4k 2
— {1-(-D"}
n’r®
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8k (2

or By =2 n*n® ifnisodd
0, if nis even
o  8ke? nrat nmx
Sy(xt) =2 cos .sin
n=odd n°r® ¢ e
8k o 1 (2n-1)rat (2n-1)mx
or y(x,t) = > cos .sin
n® n=1 (2n-1) J [y
Example 5

A uniform elastic string of length 2¢ is fastened at both ends. The
midpoint of the string is taken to the height ,b* and then released from rest in
that position . Find the displacement of the string.

Solution
The displacement y(x,t) is given by the equation

2 %y

a_y -3 —

ot? OX?

The suitable solution of (1) is given by
y(x,t) = (Acosix + BsinAx)(Ccosiat + DsinAat) ------------ 2

The boundary conditions are
(i) y(O1) =0, Vt>0.
(i) y(e,t) =0, vt>0.

(i) { oy
{—J =0, forO<x<2¢(.
ot Jt=0
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0(0,0) e B(20,0) X

(b/O)x 0<x<t

(iv) y(x,0) =
-(b/0)(x-20), £<x<2L

[Since, equation of OA is y = (b/€)x and equation of AB is (y-b)/(0-b) = (x-£)/(2£-0)]

Using conditions (i) and (ii) in (2), we get

nn
A=0 & A=""
20
nmX nrat nrat
y(x,t) =B sin (Ccos +DsinT ) mmmeeee- ?)
20 20 20
oy NmX nmat nma nmat  nma
Now, = Bsin - Csin + Dcos— .
ot 20 20 20 20 20

Using (iii) in the above equation , we get

nmx nra
0 =Bsin D
2L 20

Here B can not be zero, therefore D =0.
Hence equation (3) becomes

nmx nrmat
y(x,t) = B sin .Ccos

20 20

nmx nrat
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= Basin cos —— , where B; =BC
20 20
The most general solution is
0 nmx nrat
y(x,t) = X Busin COS ——— -=----=mmmm-eee- 4)
n=1 20 20
Using (iv), We get
00 nmx
y(x,0) = > Bn.sin (5)
n=1 2L
The RHS of equation (5) is the half range Fourier sine series of the LHS function .
2 20 nmX
" Bn= — [f(x).sin dx
20 ) 20
0
.
1 L nmx 20 nmx
=— 2 [f(x).sin dx + [ f(x).sin dx
e | J 20 J 20
L0 L
.
1 b nmX 20 -b nmx
==/ [— x si—— dx + [ —(x-20) sin dx
el J e 20 J e 20
\ 0 e E
. nmTX ™) ~ nmx N
£ | -cos— 2L -C0S —
1 b [ 20 b [ (x20)d e
=——<——Jm_____-——J — |\
L Lo no L e nn
2L 20
~ ~ N\ /
\ J
- N
( C onax ) o onmx )
—C0S — —sin —
1 < b 2L 20
=) —|x) -0l 75| | -
(I nm nr
20 407
N - . Z 0
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nr nr nr nr

-Lcos — sin — Lcos— sin—
b 2 2 2 2
= — + + +
n°m? _nn el )
—4r 20 402
= J
Therefore the solution is
00 nmat nmcx
y(x,t) = > 8bsin(nr/2) cos sin
n=1  n’g? 20 20

Example 6

A tightly stretched string with fixed end points x =0 & x = ( is
initially in
the position y(x,0) = f(x). It is set vibrating by giving to each of its points a
velocity

oy

— =g(x) att=0. Find the displacement y(x,t) in the form of Fourier series.
ot

Solution

The displacement y(x,t) is given by the equation
%y oy
— =a? — 1)
ot? ox?
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The boundary conditions are
(i) y(Ot)=0, Vt=>0.
(i) y(,t) =0, vt>0.
(i) y(x,0) =f(x) ,for0 < x < L.

(iv)[ ou
— | =9(X), for0<x< L.
ot Jt=0

The solution of equation .(1) is given by

y(X,t) = (Acosix + BsinAx)(Ccosiat + DsinAat) ------------ 2

where A, B, C, D are constants.
Applying conditions (i) and (ii) in (2), we have

nm
A=0 and 7\‘:7

Substituting in (2), we get

nmx nrat nrat
y(x,t) =B sin (Ccos + Dsin )
L L L
nmx nrat nmat
y(x,t) = sin (B1cos + D1 sin ) where B, =BCand Di1=BD.
e e e

The most general solution. is

o0 nmat nrmat nmX
y(x,t)= 2 | Bncos—— + Dp .Sin .sin ---(3)
n=1 e e ¢
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Using (iii), we get

00 nmX
f(x) = 2 BnsSin —— - (4)
n=1 L

The RHS of equation (4) is the Fourier sine series of the LHS function.

2 0 nmX
< Ban= — [f(x).sin dx

¢ ) §

0
Differentiating (3) partially w.r.t ,t*, we get

oy 00 nrat nma nmat nra nmtX
— = 2 |-Bnsin +Dn.cos—— | sin
ot n=1 L L 10 L L

Using condition (iv) , we get

0 nma nmx
gx) = X {Dn J.sin ----------- (5)
n=1 L L
The RHS of equation (5) is the Fourier sine series of the LHS function.
nma 2 0 Nnmx
s Dn. — = — (g(x).sin dx
0 ¢ ) L
0
2 L nmX
— Dn= —— [ g(x).sin dx
nra J L
0

Substituting the values of By and D in (3), we get the required solution of the
given equation.

Exercises

(1) Find the solution of the equation of a vibrating string of length ., satisfying the
conditions
y(0,t) = y(,t) =0 and y = f(x), oy/ot =0att=0.

(2) A taut string of length 20 cms. fastened at both ends is displaced from its position of
equilibrium, by imparting to each of its points an initial velocity given by
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V=X iNn0<x<10
=20-x in10<x< 20,
X being the distance from one end. Determine the displacement at any subsequent time.

(3) Find the solution of the wave e%l%atlon

=% —
ot? ox?
corresponding to the triangular initial deflection f(x ) = (2k/ ) x when 0< x< £/2
=(2k/ L) (£ —Xx) when /2< x< ¢,

and initial velocity zero.

(4) A tightly stretched string with fixed end points x = 0 and x = £ is initially at rest in its
equilibrium position. If it is set vibrating by giving to each of its points a velocity oy/ ot
= f(x)

att = 0. Find the displacement y(x,t).

(5) Solve the following boundary value problem of vibration of string
i. y0Ot)=0

i, y(L,t)=0
oy

iii. (x,0) =x (x—10), 0< x< L.
ot
v. y(x0)=x in O<x<(/2

=0—X in £/2<x< L.

(6) A tightly stretched string with fixed end points x = 0 and x = € is initially in a
position given by y(x,0) = k( sin(nx/ £) — sin( 2rtx/£)). If it is released from rest, find the
displacement of ,y* at any distance ,x from one end at any time ,t".

3.3 Solution of the heat equation

The heat equation is
ou u
— = o —— e @.
ot oX?

Let u=X(x) . T(t) be the solution of (1), where , X" is a function of ,x" alone and ,,T"is a
function of 1 alone.
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Substituting these in (1), we get

XT = o?X"T.
XH T’

o N — @.
X o’T

Now the left side of (2) is a function of ,x* alone and the right side is a function of ,t*
alone. Since ,x“ and ,f" are independent variables, (2) can be true only if each side is
equal to a constant.

XN TI
Therefore, = = k(say).
X a’T
Hence, we get X" —kX =0 and T’ — a?kT =0. -------------- Q).

Solving equations (3), we get

(i) when .k is positive and k = A2, say
X=cre™ + c e
22
T =cse !
(ii) when ,k*is negative and k = —\2, say
X = €4 COSAX + CsSiNAX
22
T =cee >t

(iii) when ,k*is zero.

X=c7rX +Cg
T:CQ

Thus the various possible solutions of the heat equation (1) are

22
u=@Cie™ +ce™Mee**t s (4)
22
U =(CaCOSAX + CsSiNAX)Cs€ ™ ¢ * ! —mmmmmmeee (5)
u=(rx+cgC e (6)
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Of these three solutions, we have to choose that solution which suits the physical
nature of the problem and the given boundary conditions. As we are dealing with
problems on heat flow, u(x,t) must be a transient solution such that ,u” is to decrease with
the increase of time ,.t*.

Therefore, the solution given by (5),
22

U =(Cs COSAX + CsSiNAX)Cee ~* *!

is the only suitable solution of the heat equation.

Ilustrative Examples

Example 7

Arod E cm with insulated lateral surface is initially at temperature f(x) at an
inner point of distance x cm from one end. If both the ends are kept at zero temperature,

find the temperature at any point of the rod at any subsequent time.

v

Let the equation for the conduction of heat be
ou o2

ot X2
The boundary conditions are
(i) u(0t) =0, V t>0
(ii) u(ft) =0, Vt>0
@) u(x0)=f(x),0<x<t

The solution of equation (1) is given by

2 2
uxt)=(Acoshx+Bsimx)e @ * ' s )
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Applying condition (i) in (2), we have

0=Ae %% which gives A=0

Lu(xt) = Bsinax e @A (3)
2 2
Applying condition (ii) in the above equation, we get 0= BsinAl e ** !
nm
e, AM=nm or A= --------- (n is an integer)
e
N0
nmx Tt t
Sou(xt) = Bsin --------- e 2
e
Thus the most general solution is
nznzocz
0 171 t
u(xt) = 2 Bnsin --------- e S ()
n=1
L
By condition (iii),
o nmx
u(x,0)= X Bnsin ----------- =f (X).
n=1 L

2 ¢ nmX
Bn = ------ [ f(X) sin -=------ dx

[ 0

Substituting in (4), we get the temperature function
N0

e nmx nmx ~ TTtTee t

uxt= Z_ """ [ (x) sin -------- dx | sin --------- e 2
10 e

Example 8

The equation for the conduction of heat along a bar of length € is
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neglecting radiation. Find an expression for u, if the ends of the bar are maintained at
zero temperature and if, initially, the temperature is T at the centre of the bar and
falls uniformly to

zero at its ends.

X P
A B
Let u be the temperature at P, at a distance x from the end A at time t.
ou ou
The temperature function u (x,t) is given by the equation ------ = Q2 --mmmmee- e Q)
ot ox?

The boundary conditions are

(1) u(;t) =0, vt> 0.

(i) u(t) =0, vt >0.

ux,0) ¢ A(/2,T)
T
i B(£,0)
0(0,0) L L X
2TX L
u(x,0) = ---------- , for 0<x< -----
e 2
2T e
e (€-x), for----- <x<¢(
e 2
The solution of (1) is of the form
2 2
u(xt)=(Acosix+Bsinkx)e*** (2)

Applying conditions (i) and (i) in (2), we get
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A=0&A=-------
e
-N2r2o
nmx Tt t
sou(Xt) = B sin —-----m—- e (2
L
Thus the most general solution is
n’m2a?
o0 nmx T t
Su(xt)= X Bysin --------- e S —— 3)
n=1 [}
Using condition (iii) in (3), we have
0 nmx
u(x,0)=> BnSin -—----=-  —mmemeeeeen )
n=1 I3

We now expand u (x,0) given by (iii) in a half — range sine series in (0,0)

2 e 0719,4
Here By = ------ [ u (x,0) sin -------- dx
(- §
2 v 2TX nmX ¢ 2T nmX
ie, Bn =------ | sin -------- N — (£-X) sin -------- dx
e J° Y 2 0
nmX nmx
- COS --------- - COS -----------
4T ) L 0 L
SR I I VO | I (9 1 I S ———
2\ nm/{ 02 nm/L
r 1719, 1719,
- COS =---=-=--- =SiN ==-mmeeee- €2
4T L L
SR g 104 IR -@1) |--------------- +
2 A nr/L nm?/(2
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L £
(€-%X) -----eeeeaa —(-D) | mmmmmmmm
nr/¢ n?n?/ Q2
02
4T (-2 nm 2 nm 2 nm
R (o0 [ e— R ) [ J— +oee- COS--- +-----
(2 2nn 2 n°r? 2 2nn 2
4T 2¢2 nm
N S sin ----.
(2 nm? 2
8T nm
Bh=------ SIN---mmn-.
n’m? 2
Hence the solution is
-|’127'L',20L2
w 8T nm 17 G t
uxt) =2 sin T e g2
n=1 I‘]27.1:2 2 3
or 2202
w 8T nm nmx o
. . mmeememmeee. t
ut) =2 - - Sin -------- Sin --------- e g2
n=1,3,5... n27'E2 2 [
or
-02 (2n-1)?n?
8T . (™ (2n-1)nx 2
uXt)=------ ) 1| — e
w2 ™l (2n-1)? e

Steady - state conditions and zero boundary conditions
Example 9

A rod of length ..t has its ends A and B kept at 0°C and 100°C until steady state
conditions prevails. If the temperature at B is reduced suddenly to 0°C and kept so while

that of A is maintained, find the temperature u(x,t) at a distance x from A and at time

ee
wolb -

The heat-equation is given by
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ot OX?

Prior to the temperature change at the end B, when t = 0, the heat flow was
independent of time (steady state condition).

When the temperature u depends only on X, equation(1) reduces to

2u
_____ =0
ox?
Its general solutionis u=ax+b = ----ememeeee 2)
100
Since u=0forx =0 & u =100 for x = ¢, therefore (2) givesh=0& a= ---------
¢
100
U (X0) = - X, for 0<x<¢
e

Hence the boundary conditions are

(i) u (0,t) =0, vV t>0
(i) u (L,t) =0, vV t>0
100x
(i) u (x,0) = -mmmemme ,forO<x<¢
e

The solution of (1) is of the form
U(xt) =(Acoshx+Bsinax) et ©)

Using, conditions (i) and (ii) in (3), we get

nmw
A=0& A =-----—--
L
n?r?a?
71 G t
Sou(xt)=Bsin --------- e (2

L

Thus the most general solution is
-n2n2a2
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&Y nmx
LU= X Bysin —eeeees e @
n=1
L

Applying (iii) in (4), we get

o0 nmX
u (X,O) => Bpsin ---------
n=1 1)
100x w nmX
Ie1 _______ - z Bn sin ---------
L n=1 i
2 £ 100x nmX
==>B, = [ e ] e— dx
t 0 £ L

- COS -----
200 ¢ L

= oo - I ' x dlcccoooooo_-
0 nn

Hence the solution is
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. 200 (-1)™ X JEICE
u(xt) = nZ_l -------------- e — e T
a nm L

Example 10

Arod, 30 c.m long, has its ends A and B kept at 20°C and 80°C respectively, until
steady state conditions prevail. The temperature at each end is then suddenly reduced to
0°C and kept so. Find the resulting temperature function u (x,t) taking x = 0 at A.

The one dimensional heat flow equation is given by

ou Al
_____ = Q2 e SE—
ot ox?
ou
In steady-state, ------ = 0.
ot
o2
Now, equation (1) reduces to --------- SN o J—— )
Ox?
Solving (2),weget u=ax+b = cememmeeeeee- ©)

The initial conditions, in steady — state, are

u=20,when x=0
u=280,when x=30

Therefore, (3) gives b=20,a=2.
SUu(X)=2x+20 0 e 4)

Hence the boundary conditions are

(i) u(@t=0 VvV t>0

(ii) u@Bot =0, Vvit>0

(i)  u(x,0) =2x+ 20, for0<x <30
The solution of equation (1) is given by

2 2

u (X,t) = (A cosk X + BsinAx) € * * b commmmmmeeeeeee (5)

Applying conditions (i) and (ii), we get
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A=0,A=--- , Where . is an integer
30
2N
77 CH— t
L u(xt)=Bsin --- ¢ ---- 900
______ ---(6)
30

The most general solution is

-o’n’m?
o NTX ---=-=-=--- t
SUuXt) =X Bpsin g -—--- 200 e (7)
n=1 30
Applying (iii) in (7), we get
w nmX
u(x,0) =2 Bnsin ------- =2x +20,0<x < 30.
n=1
30
2 30 nmcx
" Bn = [ (2x+20) sin - dx
30 ° 30
nmx \
-C0S------
1 2 30
R [ @x+20)d |--coooema.
15 0 nn
w 0 _J
( F nmx \ K NnmX \ ) 30
- COS ---------- - sin ------
1 30 30
= e < (2x+20) [ === === - -- —(2) |-----mm - >
15 nm n?r?
~ \ 30 J 900 /O
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1 —2400 cosnr
= - - { ___________ + -
15 nm
40
Bn =--—----- {1-4(-1D)"}
nm
Hence, the required solution is
o 40
uxt)= > ------- {1-4(-D)" } sin ---e
n=1 nrx

-a’n’m?

30

Steady-state conditions and non-zero boundary conditions

Example 11

The ends A and B of a rod 30cm. long have t

heir temperatures kept at 20°C and

80°C, until steady-state conditions prevail. The temperature of the end B is suddenly
reduced to 60°C and kept so while the end A is raised to 40°C. Find the temperature

distribution in the rod after time t.

Let the equation for the heat- flow be

ou u
_______ = az N —
ot OX?
U
In steady-state, equation (1) reduces to -------- =0.
ox?
Solving, we get u=zax+b e

The initial conditions, in steady-state, are

u=20,
u =80,

whenx= 0
when x =30

From (2), b=20 &a =2.

Thus the temperature function in steady-state is
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u(x)=2x+20 e (3)

Hence the boundary conditions in the transient—state are
(i) u@Ot)=40, Vv t>0
(ii) u(30,t)=60, Vv t>0
(i)  u(x,0) =2x+ 20, for0<x <30

we break up the required funciton u (x,t) into two parts and write
uxt)=us(X)+u(xt) e )

where us (X) is a solution of (1), involving x only and satisfying the boundary
condition (i) and (ii). ut (x,t) is then a function defined by (4) satisfying (1).

Thus us(x) is a steady state solution of (1) and ui(x,t) may therefore be regarded
as a transient solution which decreases with increase oft.

To find us(x)
u
we have to solve the equation --------- =0
X2
Solving, we get us(x) =ax+b  seemeeemeen (5)

Here us(0) = 40, us(30) = 60.

Using the above conditions, we get b = 40, a = 2/3.

2
SUs(X) = ---ee- X+40 e (6)
3
To find uy(x,t)

Ut (X,t) = u (x,t) — us (X)
Now putting x =0 and x = 30 in (4), we have
us (0,t) =u(0,t) —us(0) = 40-40=0
and ut(30,t)=u (30,t) —us (30) = 60-60=0
Also ut (x,0) =u (x,0) —us (X)

2
=2X+ 20— ------x-40
3
4
= —eeee- X —20
3
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Hence the boundary conditions relative to the transient solution u (X,t) are

uw@t) =0 s (iv)
u@B0t)=0 s (V)
and Ut (x,0) =(4/3) X =20 ------------- (vi)
We have -aA’t
u(x,t) = (AcCosAx + € Bsinix)
""""" (7)

Using condition (iv) and (v) in (7), we get

Hence equation (7) becomes

-on’m?
nmxX_ ____. t
Ut (x,t) =B sin ----€ ---- 900
30
The most general solution of (1) is
an?m?
o nmx t
ue(x,t) = 2 Bnsin ----e  --- 900
SR ®)
n=1 30
Using condition (vi) ,
o nmx
Ut (X,0) =2 Bpsin ------- = (4/3) x-20, 0 < x < 30.
n=1
30
2 3 nmx
“Bn = {(4/3) x-20} sin -------- dx
30 ° 30
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-COS-=-===--
1 3,4 30
= ____] E-- x—ZOJd ------------
15 0 \ 3 nr
N S

1 { —600 cosnn 600 }

T OTTsT TR T T TR
—40
= - {l1+cosnn}
nm
—40{1+(-1)"}
Bn =
nm
orB, =0, when nis odd
-80
------ , when n is even
nr o2n2m2
------- t
© -80 nTX 9o
U (k) =X | e sin - g ==
n=2,4,6, nm 30
SoU () = us (X) + e (X,t)
o222
2 80 w 1 )1 — t
ie, u (X,t) = ------ X+ 40— ------ > - sin--e  ----- 900
3 n=2,4,6, n 30
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Exercises

(1) Solve ou/ot = o? (6°u /0x?) subject to the boundary conditions u(0,t) = 0,
u(l,t) =0, u(x,0) =x, O< x< |.

(2) Find the solution to the equation ou/ot = a? (6%u /0x?) that satisfies the conditions

i u(0,)=0,
i,  u(l)=0,vt>0,
. u(x,0)= x for O<x<I/2.
= |-x forl/2<x< .
(3) Solve the equation du/ot = o (6%u /0x?) subject to the boundary conditions
i u(0,1)=0,
i, u(l)=0,vt>0,

. u(x,0)= kx(I-x),k>0,0<x<I.

(4) Arodof length I has its ends A and B kept at 0°C and 120° C respectively until
steady state conditions prevail. If the temperature at Bis reduced to 0° C and kept so while
that of A is maintained, find the temperature distribution in the rod.

(5) Arod of length ,I* has its ends A and B kept at 0°C and 120° C respectively until
steady state conditions prevail. If the temperature at Bis reduced to 0° C and kept so while
10° C and at the same instant that at A is suddenly raised to 50° C. Find the temperature
distribution in the rod after time ,t.

(6) A rod of length ,I has its ends A and B kept at 0°C and 100° C respectively until
steady state conditions prevail. If the temperature of A is suddenly raised to 50°C and
that of B to

150° C, find the temperature distribution at the point of the rod and at any time.

(7) Arod of length 10 cm. has the ends A and B kept at temperatures 30° C and 100° C,
respectively until the steady state conditions prevail. After some time, the temperature at
Ais lowered to 20° C and that of B to 40° C, and then these temperatures are maintained.
Find the subsequent temperature distribution.

(8) The two ends A and B of a rod of length 20 cm. have the temperature at 30°C and
80° C respectively until th steady state conditions prevail. Then the temperatures at the
ends A and B are changed to 40° C and 60° C respectively. Find u(x,t).

(9) A bar 100 cm. long, with insulated sides has its ends kept at 0° C and 100° C until

steady state condition prevail. The two ends are then suddenly insulated and kept so. Find
the temperature distribution
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(10) Solve the equation ou/ot = a2 (6°u /0x?) subject to the conditions (i) ,u™ is not
infinite
ast —oo (ii)u=0forx=0and x=m, ¥Vt (iii) u=nx-x?fort=0in (0, n).

3.4 Solution of Laplace’s equation(Two dimentional heat equation)

The Laplace equation is
o%u 0%u
— + — =0

OX2 oy?

Let u=X(x). Y(y) be the solution of (1), where , X" is a function of ,x* alone and ,.,Y* is
a function of ,y" alone.

u u
Then — =X"Y and — = . XY”

ox? oy
Substituting in (1), we have

XY + XY" =0

XH YN

Now the left side of (2) is a function of ,x alone and the right side is a function of
LA alone. Since ,x* and ,1* are independent variables, (2) can be true only if each side
is equal to a constant.

X" Y”
Therefore, — =——— = Kk(say).
X Y
Hence, we get X" —kX =0 and Y”+ KY =0. -------------- (3)

Solving equations (3), we get
(i) when ,k*is positive and k = A2, say

X=cre™ + ¢ e ™
Y =C3COSAYy + CaSINAY

(i) when ,kis negative and k = -\, say

X =5 COSAX + Cg Sin AX
Y=cre® +cg eV
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(i) when ,k“is zero.
X =Cy9 X +Cio
Y =cC11 X+ C12

Thus the various possible solutions of (1) are

u=(c1e™ + c2 e) (c3coshy + C4SiNAY) -----mn-mnn- (4)
U =(Cs COSAX +CgSiNAX) (Cre™ + cg €°Y)  =----eee- (5)
U= (Co X+ciw) (CuX+Cr2) - (6)

Of these three solutions, we have to choose that solution which suits the physical
nature of the problem and the given boundary conditions.

Example 12

An infinitely long uniform plate is bounded by two parallel edges x =0 & x = ¢
and an end at right angles to them. The breadth of this edge y =0 is £ and this edge is
maintained at a temperature f (x). All the other 3 edges are at temperature zero. Find the
steady state temperature at any interior point of the plate.

Solution
Let u (x,y) be the temperature at any point x,y of the plate.
&u u
Also u (x,y) satisfies the equation + =0 e (1)
OX? oy?
Let the solution of equation (1) be
u(x,y) = (Acos Ax + Bsinix) (Ce” +De™)  ceeemes )
YA y=o
VAVAVA\V/
x=0 X=40
O<x<¢
O<y<ow
L
0 |y=0 X
f(
The boundary conditions are
Hu(0y) =0 for 0<y <o
(i) u(L,y) =0, for0<y<o

(i) u (x, 0) =0, for 0 <x<¢
(iVv)u(x,0)=1(x), forO<x<¢
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Using condition (i), we get
0=A (Ce™ + De™)

ie, A=0

.. Equation (2) becomes,

u (x,y) = B sinAx ( Ce™ + De '7‘3’) ___________________ 3)
Using cndition (ii), we get
nm
A= oo
L
nmX (nmy/t)  (-nmy/)
Therefore,  u(xy) =B sin -------— {Ce + De b s (4)

nmX (- nmty/0)

0 nmx (- nmy/C)
u(x,y) = X Bn Sin ------- e (5)
n=1 L

Using condition (iv), we get

0 [1719,¢
f(X) =X BnSin -------=--- e (6)
n=1 L
The RHS of equation (6) is a half — range Fourier sine series of the LHS function.

2 0 nmx
=] [ — [ f(x). Sin -=------ 4 u——— 7)
t 0 L
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Using (7) in (5), we get the required solution.

Example 13
A rectangular plate with an insulated surface is 8 cm. wide and so long compared

to its width that it may be considered as an infinite plate. If the temperature along short
edge y = 0is u(x,0) =100 sin (nx/8), 0 < x < 8, while two long edges x =0 & x =8 as
well as the other short edges are kept at 0°C. Find the steady state temperature at any
point of the plate.

Solution
The two dimensional heat equation is given by

ox? oy?

The solution of equation (1) be

u(xy) = (Acosix + Bsinix) (Ce¥+De®) e )

The boundary conditions are
(Hu(0,y) =0, for 0<y<w
@i u(,y =0, for0<y<w
(i) u (x, 0) =0, for 0<x<8
(iv) u (x, 0) = 100 Sin (nx/8,) for 0 <x <8

Using conditions (i), & (i), we get

nm
A=0,A -
8
nmx (nmy / 8) (-nmty / 8)
~u(xy) = Bsin -------- [Ce + De J
8
{ (nmy / 8) (-nmy / 8? nmxX
= |Bie + Dse Sin ---------- , Where B1 =BC
8 D:=BD
The most general soln is
© (nmty / 8) (-nmy /8 nmX
u (X’y) = Z {Bne + Dne ? sin (3)
n=1 8

Using condition (iii), we get B,=0.
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0 (-nmy/8) nmX

Hence, u (x,y) =2 Dne SiN ==————==== s 4)
n=1 8

Using condition (iv), we get

TIX 0 nmX
100 sin --------- =Y D, Sin---------
8 n=1 8
L% X 21X 31X
i.e, 100sin --------- = D Sin ------- + Dy SiN —-nee + Ds SN <oemeeeee .
8 8 8 8

Comparing like coefficients on both sides, we get

D:1=100,D2=D3=.... =0

Substituting in (4), we get

(-my/ 8)
u(xy) =100e sin (ntx / 8)

Example 14

A rectangular plate with an insulated surface 10 c.m wide & so long compared to
its width that it may considered as an infinite plate. If the temperature at the short edge y
=0 is given by
u (x,0) =) 20 x, 0<x <5
20 (10-x), 5<x<10
and all the other 3 edges are kept at temperature 0°C. Find the steady state temperature at
any point of the plate.

Solution
The temperature function u (X,y) is given by the equation
o2 o
------ tooooon = el €)
ox? oy?
The solution is
u(xy) =(Acosix+Bsinkx) (Ce™ +De™)  -cemmmmmeemeeee- (2)
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The boundary conditions are

(Hu,y) =0, for 0<y<wo
(ii) u (10,y) =0, for 0<y<w
(i) u (x, ) =0, for 0< x <10
(iv) u (x, 0) =]20 x, if 0<x<5

20 (10-x), if 5<x<10
Using conditions (i), (ii), we get
nm
NP N ——
10

..Equation (2) becomes

nmx (nty / 10) (- nty/10)
u(x,y) = Bsin ------ Ce + De

(nmy / 10) (- nty/10) nmx where B1 = BC,
= |Bie + Die Sin --------- D1=BD

.. The most general solution is

0 (nmty / 10) (- nmty/10) nmx
Bne + Dne i

uxy) =2 S —— (3)
n=1 10
Using condition (iii), we get Bn=0.

.. Equation (3) becomes

© (- nmy/10) nmx

u(xy)=2 Dre T —— (4)
n=1 10
Using condition (iv), we get
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o0 nmx

ux0=Y D, SiN------- ©)
n=1 10

The RHS of equation (5) is a half range Fourier sine series of the LHS function

2 10 nmXxX
O b)) [ p— [ £(x)sin -------- dx
10 ° 10

(T 4 nnx\ K nmX \ ] 5

) - COS -1 - SiN =y
S 0 I——— ) [R—— .
10 nn n’n?

— nmx nmX 10\
/cos -------- \ K sin \
10 10
+ |[20 (10X)] }F------—---- —(-20) f----mmmmm - >
nm n2n2
L \_ 10 ) \ 100 J _5)
nm
800 sin --------
2
ie, Dpn=-ceememeeeeee
nm?
Substituting in (4) we get,
nm
800 sin --------
o 2 (-nmty / 10) nmX
ulxy) =2 e Sin ----------
n=1 n2n2 10

Example 15
A rectangular plate is bounded by the lines x=0,x=a,y=0&y=h.

The edge temperatures are u (0,y) =0, u (x,b) =0,u(ay) =0 &
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u (x,0) =5 sin (5nx / a) + 3 sin (3nx / a). Find the steady state temperature distribution at
any point of the plate.

The temperature function u (X,y) satisfies the equation

o o2
---------- +  meeeeeeee- =0 el (1)
ox? oy?
Let the solution of equation (1) be
u(x,y) = (A cosix + BsinAx) (Ce™” + De ™)  —emeememeee (2)
The boundary conditions are
(Hu(0y) =0, forO<y<b
(i) u(ay) =0, forO<y<b

(i) u (x, b) =0, for0O<x<a
(iv) u (x,0) =5sin (5nx /a) + 3sin (3nx/a), forO<x<a.

y| y=b
x=0 X=a
O] y=0 X
Using conditions (i), (ii), we get
nm
A=0, A= -
a

nmx  ( (nmy/a) (-nmy/ a)
~u(xy) =Bsin -------- Ce + De

-

nmX 4 (nmy / a) (-nmy/ a)

=sin -------- B.e + Die
a
The most general solutiorﬁs
% (ny / @) (-nmy / @) nmx
u(xy) =X |Bre + Dne ] | ©)
n=1 a
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Using condition (iii) we get

o (nmth / a) (-nrtb / a) NmX
0 = X |Be + Dne | —
n=1
a
(nmb/a) (-nrtb / &)
==> Bpe + Dpe =0
o (b /2)
DI - T s
_p (b /2)

Substituting in (3), we get

0 nmX
UXY) = |Bne /2 - Bg @b/ g (my/a) | gjn .
n=1
a
»  Bn nmx
S S — gy /a) g(nmb/a) _ g (2nnb/2) g (nmy /@) g(-nnb /@) | o _______
n=1 e(-nn-b)/a a
2B, e (yb) / 8) _ g (y-b) /) X
=2 sin
e(—nn-b/a) 2 a
2Bn nr (y—b) nmx
=) e sin h sin
e(-nnb/a) a a
o nr (y -b) nmX
e, u(xy) =2 Cy sinh ---------- SIN -===== s 4)
n=1
a a
Using condition (iv), we get
5mx 3mX o nr (-b) nmx
5sin -------- +3sin --------- =2 Cnsinh sin
a a =t a a
51X 3mX o nrth nmX
ie, 5sin -------- + 3 sin --------- =2 -Cnsin h------ sin -------
a a n=1 a a
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5rx 3nx ntb X 2nh 21X

ie, 5sin ------ + 3 sin ------- =-Cysinh ------ sin ------ - C2 sin h------ sin ------ -

a a a a a a

Comparing the like coefficients on both sides, we get

3nb
- Czsinh ------------ =3 &
a
5nb
- Cs sinh ======mmmmmm =5, Ci1=Cy=C4=Cs=...=0
a
-3 -5
==> C3= --cemmmmma- &C5= mmmmemo -
sinh (37b /a) sinh(5nth/ a)
Substituting in (4), we get
3 3 (y-b) 3nx
uxy) = - —------- sinh ------- ][ —
sinh(3rthb / a) a a
5 51 (y-b) 5mx
————————. sinh------ SN -------
sinh(5xnb / a) a a
3 3n (b-y) 3nx
e, uxy) = ------m-mm- sinh ------mm--- Sin ----------
sinh(3nb / a) a a
5 51 (b-y) 5nX
S SR sinh------- SiN -------
sinh(5ntb / a) a a
Exercises
U U
(1) Solve the Laplace equation — + — = 0, subject to the conditions
X2 oy?

. u0y=0forO<y<hb
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i. u(ay)=0forO<y<b

iii. u(xb)=0for0O<x<a

iv.  u(x,0) = sin*(nx/a) ,0< X < a.
(2) Find the steady temperature distribution at points in a rectangular plate with insulated
faces and the edges of the plate being the lines x =0, x =a, y =0 and y = b. When three
of the edges are kept at temperature zero and the fourth at a fixed temperature a® C.

o2 o
(3) Solve the Laplace equation — + —— = 0, which satisfies the conditions
ox? oy?
u(0,y) = u(l,y) =u(x,0) =0and u(x,a) = sin(nmx/I).
o2 o
(4) Solve the Laplace equation — + —— = 0, which satisfies the conditions
OX?
u(0,y) = u(a,y) =u(x,b) =0and u(x,0) = x (a—x).
o o
(5) Solve the Laplace equation — + —— = 0, subject to the conditions
ox? oy?
i u0y) =0, 0<y<l ii. u(ly)=0,0<y<

I
iii.  ux,00=0,0<x<1 iv. uxl) = f(x),0<x<I

(6) A square plate is bounded by the lines x =0,y =0, x =20 and y = 20. Its faces are
insulated.

The temperature along the upper horizontal edge is given by u(x,0) = x (20 — x), when 0 <
X <20,

while other three edges are kept at 0° C. Find the steady state temperature in the plate.

(7) An infinite long plate is bounded plate by two parallel edges and an end at right
angles to them.The breadth is x. This end is maintained at a constant temperature ,uo" at
all points and the other edges are at zero temperature. Find the steady state temperature at
any point (x,y) of the plate.

(8) An infinitely long uniform plate is bounded by two parallel edges x =0 and x = |, and
an end at right angles to them. The breadth of this edge y = 0 is ,J* and is maintained at a
temperature f(x). All the other three edges are at temperature zero. Find the steady state
temperature at any interior point of the plate.

(9) A rectangular plate with insulated surface is 8 cm. wide and so long compared to its
width that it may be considered infinite in length without introducing an appreciable
error. If the temperature along one short edge y = 0 is given by u(x,0) = 100 sin(rx/8), 0
< X < 8, while the two long edges x =0 and x = 8 as well as the other short edge are kept
at 0° C, show that the steady state temperature at any point of the plane is given by u(x,y)
=100 e™/8 sin x/8 .
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(10) A rectangular plate with insulated surface is 10 cm. wide and so long compared to
its width that it may be considered infinite length. If the temperature along short edge y =

0 is given
u(x,0) = 8 sin(mx,/10) when 0 < x < 10, while the two long edges x =0 and x = 10 as
well as the other short edge are kept at 0° C, find the steady state temperature distribution

u(x.y).
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UNIT-1V

FOURIER TRANSFORMS

4.1 Introduction

This unit starts with integral transforms and presents three well-known integral
transforms, namely, Complex Fourier transform, Fourier sine transform, Fourier cosine
transform and their inverse transforms. The concept of Fourier transforms will be
introduced after deriving the Fourier Integral Theorem. The various properties of these
transforms and many solved examples are provided in this chapter. Moreover, the
applications of Fourier Transforms in partial differential equations are many and are not
included here because it is a wide area and beyond the scope of the book.

4.2 Integral Transforms

The integral transform f(s) of a function f(x) is defined by
N
f(s) = a{ f(x) K(s,x) dx,

if the integral exists and is denoted by I{f(x)}. Here, K(s,x) is called the kernel of the
transform. The kernel is a known function of ,s“and ,x*. The function f(x) is called the

inverse transform

of f(s). By properly selecting the kernel in the definition of general integral transform,
we get various integral transforms.

The following are some of the well-known transforms:

() Laplace Transform
L{f)} = f(x) e & dx
0

(i) Fourier Transform

1 .
F{f)} = —— | f(x) e dx

2 ™

(ii)) Mellin Transform

MEOY = T f(x) x 51 dx

0
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(iv) Hankel Transform

o0

Ho{f()} = | f(X) X Jn(sX) dx,

0

where Jn(sx) is the Bessel function of the first kind and order ,,n".

4.3 FOURIER INTEGRAL THEOREM
If f(x) is defined in the interval (-£,0), and the following conditions

(1) f(x) satisfies the Dirichlet*s conditions in every interval (-£,0),

(i) | |f(x)|dx converges, i.e. f(x) is absolutely integrable in (-co0,c0)

00

are true, then f(x) =(1/ n)}o ofof(t) cosA(t-x) dt dA.
0 -

Consider a function f(x) which satisfies the Dirichlet™s conditions in every interval (-£,0)
so that, we have

do w NnmX NnmX
f(x) = ----- + | @ C0S---- + by Sin----| --meee- 1)
2 n=1 L L
1 £
where ag = ---- [ (t) dt
L -t
1 ¢
an= ----- [ (t) cos (nmt/ ¢ ) dt
L -¢
1 ¢
and  by= - [ f(t) sin (nmt/ €) dt
t -L

Substituting the values of ao, anand b, in (1), we get

1 4 1 o ¢ n(t — x)
fx) = - [f@)ydt + - X [ f(t) cos ----------- dt e )
2¢ - t n=1 -¢ ¢
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Since, 1 ¢ 1 ¢
----- [ft)ydt | < - [|f(t)dt,
2¢ -¢ 2t -¢

then by assumption (ii), the first term on the right side of (2) approaches zero as £ — .
As ¢ — oo, the second term on the right side of (2) becomes

1 o nr(t — Xx)
tm - Y | f(t) cOS--------m- dt
{—>00 ¢ n=1 -0 4
l .
=  fim - Y AL ] f(t) cos{n A\ (t—x)}dt,on taking (n/ ¢ =

AN.
AL—=>0 m n=1 ™~

By the definition of integral as the limit of sum and (nm / € ) = A as £ — o, the second
term of (2) takes the form

1 »

e |

0

T

}o f(t) cosA (t—Xx) dtdA,

Hence as ¢ — oo, (2) becomes
f(x) = l T T f(t) cosA (t—x)dtdr  --------- (3)
00
which is known as the FTéurier integral of f(x).
Note:
When f(x) satisfies the conditions stated above, equation (3) holds good at a point

of continuity. But at a point of discontinuity, the value of the integral is (1/2) [f(x+0) +
f(x-0)] as in the case of Fourier series.

Fourier sine and cosine Integrals
The Fourier integral of f(x) is given by

1

fx) = - [ | f(t) cosh (t—x) dtdn
T 07
1 o0 o0
= | f(t) { cosAt. cosAx + sinAt.sinAx } dt di
T 0
1 © 1 5 ©
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= - | cosix | f(t) cosrtdtdr + — sinAx | f(t) sinkt dt di ----(4)

¢ Tt 0

When f(x) is an odd function, f(t) cosAt is odd while f(t) sinAt is even. Then the first
integral of (4) vanishes and, we get

2 o0 o0
— [ sinax | f(t) sinit dtdA  ------- (5)
nt ° 'OO

f(x)

which is known as the Fourier sine integral.
Similarly, when f(x) is an even function, (4) takes the form
2 o0 oo
fix) = — [ cosax[ f(t) cositdtdr —------- (6)
0 -00

T

which is known as the Fourier cosine integral.

Complex form of Fourier Integrals

The Fourier integral of f(x) is given by

1 o0 o0
fx) = - | J f(t) cosAt—x)dtdn
T 0
1 o o
= - ] f(t)[ [ cos A(t—x) dr ]dt
T 0

Since cos A(t—Xx) is an even function of A, we have by the property of definite integrals

1 . "
fo) = — [ ) [(1/2)! c0s A(t—X) dx]dt
[ -
l o0 o0
e, f(x) = - | [ f(t) cosh(t—x)dtdr - 7)
2t ¥

Similarly, since sin A(t—x) is an odd function of A, we have
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0 = - [ ] f(t) sina(t—x)dtdr ------— 8)
2r °
Multiplying (8) by ., “and adding to (7), we get

1 o0 o0
fx) = - | ] () e*dtdn e 9)
om0

which is the complex form of the Fourier integral.

4.4 Fourier Transforms and its properties
Fourier Transform

We know that the complex form of Fourier integral is

1 o o
fix) = —— [ [ f(t) e*™ dtda.
2n 7 7
Replacing A by s, we get

1 o .
fix) = —— Je™ds [ f(t)edt.
2n o
It follows that if
1
Fs) =—— [ f(t) et dt ——-mmmmmmmmmmev 1)
\2n
1 w '
Then, fx) = —— [ F(s) €™ ds ---me-mmmmeee @)
\2n

The function F(s), defined by (1), is called the Fourier Transform of f(x). The function
f(x), as given by (2), is called the inverse Fourier Transform of F(s). The equation (2)
is also referred to as the inversion formula.

Properties of Fourier Transforms
(1) Linearity Property

If F(s) and G(s) are Fourier Transforms of f(x) and g(x) respectively, then
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F{a f(x) + bg(x)} = a F(s) + bG(s),

where a and b are constants.

1 o
We have F(s) = [ e™f(x) dx
\2n
1 0
G(s) = [ e g(x) dx
\2n -
Therefore,
1 o0
F{af(x) +bg(x)} = [ e {af(x) + bg(x)}dx
2m -0
1 o0 1 o0
= a [ e™f(x)dx + b [ e g(x) dx
21 - 27 - o0

= a F(s) + bG(s)

i.e, F{af(x) + bg(x)} = a F(s) + bG(s)

(2) Shifting Property

(1) If F(s) is the complex Fourier Transform of f(x), then

F{f(x-a)} = e F(s).

1 o0
We have Fis)= —— [e™f(x) dx ----mmeemmmme- (i)
21 -
1 oo
Now, F{f(x-a)} = [ e f(x-a) dx
2n -0
Putting x-a=t, we have
1 oo
F{f(x-a)} = —— [ f(t) dt.
2n -0
_ 1 oo
=e™ —— [ f(t)dt.
21 -
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= e F(s). (by (i) ).

(i1) If F(s) is the complex Fourier Transform of f(x), then

F{e®™ f(x) } = F(s+a).

1 o0
We have FGs)=— e f(x) dx ----------
2T -
1 0
NOW, F{eiax f(X)} - — J’eisx .eiax f(X) dx.
\2n -
1 0
=7 el f(x) dx.
21 - o0
= F(s+a) by (i) .

(3) Change of scale property

If F(s) is the complex Fourier transform of f(x), then

F{f(ax)} =1/a F(s/a), a=0.

1 o
We have Fs)= = [e™f(x) dx -------mm-
21 -
1 0
Now, F{fax)} = — Je™f(ax) dx.
21T -

Put ax =t, sothat dx =dt/a.

1 o0
SF{f(@)} = T Je™ f(t)dt/a.

21 -

1 1 o
== — [l f(t) dt.
a \2m -

1
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= — . F(sla). (by (i) ).
a

(4) Modulation theorem.

If F(s) is the complex Fourier transform of f(x),

Then F{f(x) cosax} = Y2{F(s+a) + F(s-a)}.
1 ©
We have Fis) = ——  [e™f(x) dx
2r -0
1 o0
Now, F{f(x) cosax} =——— [ .f(x) cosax. dx.
21 -0
1 o eiax + e-iax
= —— [ f(x) dx .
21 - 2
1 1 00 1 o
= —<—— [ et f(x) dx + [ e f(x) dx
2 |\2n - \21 -0
1
= —{ F(s+a) + F(s-a)}

2
(5) n"" derivative of the Fourier Transform
If F(s) is the complex Fourier Transform of f(x),
Then F{X" f(x)} = (-i)" d"/ds" .F(s).

1 ©

We have Fs) = ——  [e™f(x) dx ()

21 -0
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Differentiating (i) ,n" times w.r.t,s*, we get

d"Fis) 1 o
= —  [(@x)" e f(x) dx

ds" V21 - o0

)" o«
— [ {x" f(x)} dx
21 -0

()" FH{X" f(x)}.

1 d"F(s)
= FX"f(xX)} = .
" ds"
dn

F(s).

ie, F{x" f(x)} = (-i)"
ds"

(6) Fourier Transform of the derivatives of a function.

If F(s) is the complex Fourier Transform of f(x),

Then, F{f,(x)} =-is F(s) if f(X) = 0asx—>+ oo,

1 0
We have F(s) = [ e f(x) dx .
2T -0
1 o
Now, F{f,(x)} = [ f (x) dx.
21T -0
1 0
= [ e dff (x)}.
21 -
1 0 0
[eisx.f(x)] -is [ (x). e’ dx.
\2n -0 -0

MSAJCE 142



1 o0

= -is—— [e™f(x)dx , provided f(x) =0
21 - asxX >+ .
=-1is F(s).
TR BT a0 e —— (i)

Then the Fourier Transform of f” (x),

1 o0
ie, F{f"(x)}=——[e™f"(x) dx.
2w - o0
1 0
=——  Je™ d{f “(x)}.
21 -0
1 o0
= EiSX,f ”(X)]m - Jf (). € (is)dx.
21 -0 -00
1 o0
= -is [ f,(x)dx , provided f,(x)=0
21 -0 asxX -+ .
= - is F{f (x).}
= (-is).(-is)F(s).  by(i).
= (-is)? . F(s).
i.e, F{f“(x)} =(-is)®> .F(s), Provided f, f— 0
as X— + o,

In general, the Fourier transform of the n derivative of f(x) is given by
F{F"()} = (-is)" F(s),
provided the first ,n-1 derivatives vanish as Xx—+ « .
Property (7)
X F(s)
If F(s) is the complex Fourier Transform of f(x), then Fy/ f(x)dx = ——
(-is)
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X
Let g(x)= | f(x) dx.
a

Then, g“(x) =f(x). e (i)
Now f[g,,x)] = (-is) G(s), by property (6).

= (-is). F{g()}

X
= (-is). F{ [ f(x) dx} .
a

X
i.e, F{g“(x)} =(-is). F{ [ f(x) dx} .

a

X 1
ie, F{I f(X) dx} = F{g"(x)}.

a (-is)
1
=—Ff(} [by(i)]
(-is)
X F(s)
Thus, B | f(x) dx{ = — .
a (-1s)

Property (8)

If F(s) is the complex Fourier transform of f(x),

Then, F{f(-x)} = E(s), where bar denotes complex conjugate.

Proof
_ 1 o
F(s) = [ f(x) e™dx .
21 -0

Putting x = -t, we get

_ 1 o
F(s) = [ f(-t) e™dt.
21 -0
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= F{f(-x)} .
Note: If F{f(x)} = F(s), then
() F{0} = F(9)
(i) FLIOO} = F(s).
Example 1

Find the F.T of f(x) defined by

f(x) =0 x<a
=1 a<x<b
=0 x>h
The F.T of f(x) is given by
1 o0
F{f (X)} = [ % f (x) dx.
2T -0
1 b
= [e™ dx.
\2n a
1 eisx b
\2n is a
1 eibs _ eias
\2n is

Example 2

Find the F.T of f(x) =x for |x|<a

=0 for|x|>a.
1 0
F{f (xX)} = [ e f (x) dx.
2n -
1 a
= [ e x.dx.
\2n -a
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eisx

1 a
S
\2n -a is

a
1 Xeisx eisx
\2n is (is)?
-a
1 ( a_eisa eisa ae—isa e—isa
= < - + +
\2n is (is)? is (is)?
-
.
1 a 1
———— (eisa + e-isa ) + (eisa _ e-isa )
\2r is s2
-
1 -2ai 2i
= cossa + sinsa
\2r S s?
2 1

= .~ [sinsa - as cossa].
§? \2n
i [sinsa - as cossa]

= ~(2/n)
32
Example 3
Find the F.Tof f(x) =™, 0<x<1
= 0 otherwise
The F.T of f(x) is given by
1 0
F{f (X} = [ e (x) dx.
21 -
1 1 _
=7 e e™dx
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2 0

1 1
= [eitrax gx
2 0

1 ei(s+a)x 1

2 | i(st+a) |0

1

{ei(s+a)x _1}
iV2m.(s+a)
i
{1_ ei(s+a)}
\2m.(s+a)

Example 4

2 2 2 2
Find the F.T of e® X  a>0 and hence deduce that the F.T of e* /2js e* /2,

The F.T of f(x) is given by

1 ®©
Hf(x)} = — [els f (x) dx.
V21 -

F {e'az"z }: 1 foe a® gisc gy

V21 -0
2 2
g /4a 9
— J‘ e-[ax—(is/Za)] dx .
\2n -0

2 2

-s /4a
5] ©

= [et dt, by putting ax —(is/2a) =t

a\2n -0
2 2
e—s/4a o
= ., since [et! dt=+rn (using Gamma functions).
aV2n -00
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2
Tofind F{e*'?}
Puttinga=1/~2 in (1), we get

2 2
F{e—x /2} =psS/2

Note:

If the F.T of f(x) is f(s), the function f(x) is called self-reciprocal. In the above

2
example e * /2 s self-reciprocal under F.T.

Example 5

Find the F.T of
f(x) = 1 for |x|<1.
=0 for |x]>1.

Hence evaluate | sinx_ dx.
0

X
The F.T of f(x),
1 0
ie., F{f()} =—— [e™f(x)dx
2n -0
1 1
=—— [e™ . (1).dx.
2 -1
1 eisx
_\/? is -1
1 eis_ e -is
_E | is
sins
=\(2/r) , s#0
S
sins
Thus, F{f(x)}= F(s) =V(2/n). , s#0
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S
Now by the inversion formula , we get

1 o0
fx) = —— | f(s). e™ .ds.
\2n -
0 sins 1 for |x|<1
or = [ N@I—— . e™ ds=
-00 S 0 for [x>1.
1 oo sins 1 for |x|<1
ie, — | e ds.=
T -0 S 0 for |x>1.
Putting x =0, we get
1 oo sins
— | ds=1
T -0 S
2 o sins
e, — | ds =1, since the integrand is even.
n 0 S
o sins T
= [ ——ds= —
0 S 2
o Sinx T
Hence, | dx= —
0 X 2

Exercises

(1) Find the Fourier transform of
1 for|x<a
f(x) =
0 for |x|>a.

(2) Find the Fourier transform of
xX*  for |x<a
fx) =
0 for [x|>a.
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(3) Find the Fourier transform of

a-x*, |x<a
f(x) =
0, IX| >a>0.
Hence deduce that oo sint - tcost i
) dt = —
-0 t3 4

(4) Find the Fourier transform of e and x e®. Also deduce that

o cosxt T
J. _  dt = — e@
o B+ 29
d
{Hint . F{X. e-a\x\} = - |_|:{ e-a\x\}}
ds

4.5 Convolution Theorem and Parseval’s identity.

The convolution of two functions f(x) and g(x) is defined as
1 o
f(x) * g(x) =—— | f(t). g(x-1). di.

21 -0

Convolution Theorem for Fourier Transforms.

The Fourier Transform of the convolution of f(x) and g(x) is the product of their

Fourier Transforms,

e, F{f(x) * 90} = F{f(x).F{g(x)}-

Proof:

F{f(x) * 9(x)} = F{(f*g)x)}

1 0
= [ (f *g)(x). € . dx.
21T -0
1 0 1 0
= [{—— T f(t). g(x-t). dt\. e dx .

21 -0 | V21 -0
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1

00 1 0
= [ f(t) | g(x-t). e dx } dt.
21 -0 21 -0

(by changing the order of integration).

1 o0
= ——  [f(@t).F{g(x-t)}. dt.
2T -0
1 o0
= —— [f(t). €™ .G(s). dt. (by shifting property)
21 - o0
1 o0
= G(s). [ (t). e" dt.
\2n -
= F(s).G(s).

Hence, F{f(x) * g(X)} = F{f(x).F{g(X)}.

Parseval’s identity for Fourier Transforms

If F(s) is the F.T of f(x), then
o0 o0
[ IFOQP dx = | |F(s)? ds.
-00 -00
Proof:

By convolution theorem, we have
F{f(x) * 9(x)} = F(s).G(9).
Therefore, (f*g) (x) = F}{F(s).G(s)}.

1 o 1 o
ie, —— [f(t). g(x-t). dt= —— [F(s).G(s).™ ds. ---------- 1)
\2m -0 V27 -0

(by using the inversion formula)
Putting x =0 in (1) , we get

o0

[(1). g(-t). dt = [ F(s).G(s).s. === @)
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Since (2) is true for all g(t), take g(t) = f(_-t) and hence g(-t) =?(t) --------- 3)
Also, G(s) = F{g(t)}

= F{f(-0}

ST P —— (4) (by the property of F.T).

Using (3) & (4) in (2), we have

[H0)£(t). dt = | F(s).F(s).ds.

= [ [f®)Pdt= | |F(s)P ds.

o0 -0
o0 o0
ie, | [f)Pdx= | |F(s)Pds.
-00 -00
Example 6

Find the F.T of f (x) = 1-|x| for |x | < 1.

=0 forx>1

o0
and hence find the value | sin%t dt.
0o t
11 |
Here, F{f(x)}= [ (1- x| )e'* dx.
2 -1
1 1
= [ (1- ]) (cossx + i sinsx) dx.
\2m -1
1 1 i 1
= [ (1- |x|) cossx dx.¥—  J(1- [x]) sinsx dx.
\2r -1 \2m -1
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1 1
= 2 ] (1- x) cossx dx. by the property of definite integral.
2 0

1 Sinsx

- J(z/n)of (1-X) dH

1
sSinsx COSSX
= \(2/r) (l-x){ J-(-l) -
s §?
0
{1- coss}
= \(2/n)
SZ
Using Parseval“s identity, we get
2 o 1
[ (1-coss)?ds. = J(1- [x])? dx.
T -0 S -1
4 ' 1
=X [ (1-coss)? ds. = 2 [(1- x)? dx = 2/3.
n 0 s 0
16 o
ie, [ sin*(s/2) ds. = 2/3.
T 0 G

Setting s/2 = x , we get
16 oo sin*x

| 2.dx. = 2/3.
r 0 16x*
o sin®x
= | dx. = =/3.
o x

Example 7
Find the F.T of f(x) if
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1 for |x|<a

f(x) =
0 for |x>a>0.
o0
Using Parsevals identity, prove [(sint )2 dt. = n/2.
0| t
Here, 1 a
F{f()} = —— [ .(1).dx.

\2r -a

1 éw a
\2r { is J-a

1 éw_em

\2n is
sinas
= (N2ln) ——
S
sinas
e, F(s)=(2/n) .
S
Using Parseval“s identity
o0 o0
[1f) |2 dx = [ |F(s)|?ds,
-00 -00
we have
a 0 (sinas 2
[ 1.dx=[(@m) |— | ds.
-a -00 LS
o (sinas ) ?
2a = /)] |—— | ds.
oL S )

Setting as =t, we get
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@) | | ——| dta =

N
28
>
-
J
N

o0
Hence, [ |—] dt =
0

4.6 Fourier sine and cosine transforms:

Fourier sine Transform
We know that the Fourier sine integral is

2 o 0
f(x) = — OI sin kx.of f(t) sinit dt.dA.
s

Replacing A by s, we get
2 o0 o0
f(x) = — | sinsx J | f(t) sinst dt.\ ds.
0 0

e

It follows that if

Fs(s) V(2/ ) EO f(t) sinst dt..

o0

ie.,, Fs(S)

2a

/2.

N2/ ) OI f(x) sinsX dX.  —cccmmeeeee

then f(x) = (2/ n)OT Fo(s) sinsx ds.  —omeemmmmee )
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The function Fs(s), as defined by (1), is known as the Fourier sine transform of f(x).
Also the function f(x), as given by (2),is called the Inverse Fourier sine transform of
Fs(S) .

Fourier cosine transform

Similarly, it follows from the Fourier cosine integral

2 - w0
fx) = — [ cosix. | f(t) cosit dt.da.
P 0 0
tatit () = V@m) [gcossx ke Q)
then f(x) = V(2/n) ZOFC(S) (o0 T G T — )

The function F(s), as defined by (3), is known as the Fourier cosine transform of
f(x). Also the function f(x), as given by (4),is called the Inverse Fourier cosine
transform of F(s) .

Properties of Fourier sine and cosine Transforms

If Fs(s) and Fc(s) are the Fourier sine and cosine transforms of f(x) respectively, the
following properties and identities are true.

(1) Linearity property
Fs[af(x) +bg(X)]=aFs{f(x) }+bFs{g(x) }

and Fc[af(x) +bg(x)]=aFc{f(x) }+bF{a(X }
(2) Change of scale property

Fs[ f(ax) ] = (1/a) Fs[s/a].
and  Fo[f(ax)]=(1/a) F:[s/a]
(3) Modulation Theorem
i, Fs[f(X) sinax ] = (1/2) [ Fe (s-a) - Fe (s+a)].

ii. Fs[f(X) cosax]=(1/2) [ Fs (s+a) + Fs (5-a)].
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iii.  Fe[ f(x) cosax ] = (1/2) [ Fc (s+a) + Fc (s-a) ].

iv.  F[ f(x) sinax ] = (1/2) [ Fs (s+a) - Fs (s-a) ].

Proof
The Fourier sine transform of  f(x)sinax is given by

Fs [ f(x) sinax ] =V(2/ ) fo (f(x) sinax) sinsx dx.
0

= (1/2) N(2/ n)}0 f(x) [cos(s-a)x — cos(s+a)x] dx.
0

= (1/2) [ Fc (s-a) — Fc (st+a) ].

Similarly, we can prove the results (ii), (iii) & (iv).

(4) Parseval’s identity

0

| Fe(s) Ge(s) ds = / f(x) g(x) dx .
0 0

0

Of Fs(s) Gs(s) ds = OIOO f(x) g(x) dx .

0

f

0

F(s)|? ds = f |f(x)| 2 gx |
0

i Fs(s)|2 ds = f°|f(x)|2 dx .
0 0

Proof

o0

[ F(s) Ge(s) ds =] Fe(s) V2 ) [ g(t) cosst dt] ds

0 0 0

= g0 V2! 7) TFo(s) cosst ds] dt
0 0

= | o) ft) dit
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0

e, | Fe(s)Gus) ds = | f(x) g(x) dx .
0 0

Similarly, we can prove the second identity and the other identities follow by setting
g(x) = f(x) in the first identity.

Property (5)
If Fs(s) and Fc(s) are the Fourier sine and cosine transforms of f(x) respectively, then

d
() F{XxfX)} =- — F(s) .
ds
d
(i) F{xf(xX)} =- — F(s) .
ds

Proof
The Fourier cosine transform of f(x),

ie.  F(5) = V@) Ofo f(x) cossx dx.

Differentiating w.r.t s, we get

d «
— [F(s)] = V@I n) | f(x){-xsinsx}dx
ds 0
= -~(2/ n) i ( x f(x)) sin sx dx.
0
= - Fs{>éI )}
e, F{xf)}= - {F(5)}
ds
Similarly, we can prove
d
Fe{x )} = - — {Fs(s) }
ds

Example 8

Find the Fourier sine and cosine transforms of e and hence deduce the inversion
formula.

The Fourier sine transform of f(x) is given by

Fs{f(x)} = V(2/n) Ioof(x) sinsx dx.
0
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Now, Fs{e®} = V(@/n) [ e™sinsx dx.
0

0

e (- asinsx — S CoSsX) }

= @2/ 1) {

a? +¢?

S

= \(2/ 7)

Jif a>0

a2 + SZ
The Fourier cosine transform of f(x) is given by

FLF)Y = v@/m) | (x) cossx dx.
0

Now , Fo{e®™} = V(@2/n) | e™cossx dx
0
e® (- acossx + s sinsx)
= 2/ n)
a® +¢? 0
a
= (2/ m) Jif a0
a’+¢?
Example 9
X, for O<x<1
Find the Fourier cosine transform of f(x) = < 2 — x, for 1<x<2
0, for x>2

The Fourier cosine transform of f(x),

e, Fe{f(x) } = ~(2/ no) jl x cossx dx. +V(2/ m)1 | 2(2- X ) cossx dx.

1 Sinsx 2 sinsx

@/ n) | x d{ J +N@/n) [(2-x) d{ J
0 1

S S

Sinsx COSSX
N2/ ) { J - { J
s s
Sinsx COSSX
N2/ 1) (2x){ J —(-1){- J
S s?

MSAJCE 159

+



Sins COSS 1 N
=(2/ 1) + -
S g2 s? )
c0s2s sins COSS  ~
+ [ - +
2 2
S S S
2 COoSss C0S2s 1
=(2/ n) - .
g2 s2 s?
Example 10
» X sinmx ne™
Find the Fourier sine transform of e?* . Hence show that ) dx= ——
m>0. 0 142 2

The Fourier sine transform of f(x) is given by

Fs{f(x)} = (2/n) fwf(x) sinsx dx.
0

V@I r) | e*sinsx dx.
0

(oo}

e (- sinsx — S COSsX)
= 2/ n) { }
1+¢?
0
S
= \(2/ n) :
1+¢2

Using inversion formula for Fourier sine transforms, we get

o S
N2/ 1) g {V(z/ ) }sm sx ds. = e~

1+¢?
Replacing x by m,
o Ssinms
e™=2/n) | — ds

0 1+32

w X Sinmx
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=@n) | —— dx
0 1+X2

o X Sinmx me™
Hence, [ ————— dx = ——
0 1+x2 2
Example 11
X 1
and the Fourier cosine transform of
a2+x? a%+x?
X

To find the Fourier sine transform of ,
22+x2

Find the Fourier sine transform of

We have to find Fs{e®™}.

Consider, Fo{e®™} = J@2/n) | e™sinsx dx
0

S

= 2/ 1)

a2 + S2
Using inversion formula for Fourier sine transforms, we get

0 S
e = \(2/ n) OI {V(z/ ) }sinsx ds.

a2+
» S SINSX ne®
ie., [ —— ds = — | a0
0 S2 + a2 2
Changing x by s, we get
w X Sinsx ne®
dx = —— e (@)
0 X2 + a2 2
X o X
Now Fs =N@2/n) ] sinsx dx
X2 + 8.2 0 X2 + a2
ne-as
=(2/ n) , using (1)
2
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= (n/2) e

, we have to findF.{e®}.

Similarly,for finding the Fourier cosine transform of
2

a% +x

Consider, F{e®™} = V(2/n) [ e™cossx dx.
0
a
= \(2/ n)
a2 +¢?

Using inversion formula for Fourier cosine transforms, we get

o a
e = N@/n) | {\/(2/ ) }cossx ds.
0 a2 + SZ
w COSSX e
ie., ] —— ds =
0 242 2a
Changing x by s, we get
» COSSX ne®
[ —— dx = —— e 0
0 x4+ 2a
1 w 1
Now, Fc =@/ n) | cossx dx
X2 + a2 0 X2 + a2
e
=(2/ 7) , using (2)
2a
e—as
= V(nl2) —
a
Example 12
2 2

Find the Fourier cosine transform of e? * and hence evaluate the Fourier sine transform

2 2
of xe?*
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The Fourier cosine transform of e® * s given by

2 2 2

Fde** } = V/n)| e
0

2
X cossx dx

00 22
Real part of ~(2/ n){) e? X g™ dx

1 2 2
= Real part of es'%  (Refer example (4) of section 4.4)
a2
1 2 2
= esl4 (i)
a2
d
But, Fs{xf(xX)} = - — Fc(s)
ds
2 2 d 1 2 2
.'.Fs{xe'a"} = __{_e-s/4a } ,by(l)
ds L a2
1 2 2
= - e s/4a (-s/2a).
a2
— 3 e-52/ 4a2 )
22, a°

Fe[1/x] = 1/+s
and  Fs[1/Vx] = 1/s

This shows that 1/ Vx is self-reciprocal.

Example 13
o dx
Evaluate | using transform methods.

0 (az + XZ)(bZ + XZ)
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Letf(x) =e ® , g(x)=e™
Then F{s} = V@ n) | e™cossx dx.
0
a
= \(2/ i)
a2 +¢°
b
Similarly, G{s} =@/
b? + 52

Now using Parseval‘s identity for Fourier cosine transforms,

ie. | Fus).Gus) ds= | f(x) g(x)dx.
0 0

2 w ab

we have, — j — ds = Ie—(a+b)x dx

0 (@ +s)(b?+s?) °

2ab ., ds e (@bx
il S { }
n 0 (@2 +s%)(b? +s?) —(ath) J°

=1/(a+h)

0 dX T
Thus, ] =
O (@ +x)(? + X9 2ab(a+h)

Example 14

Using Parseval“s identity, evaluate the integrals

I w X2
of (@2 + x2)? and o] (@2 + x2)? dx
Let f(x) = e
s
Then Fs(s) = (2/ ) ,
&+
a
Fe(s) = V(2/ )
@+
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Now, Using Parseval‘s identity for sine transforms,

ie., ] |Fs(s)|2 ds = | |f(x)| 2 dx .
0 0
s? o

weget, (2/n) | ds = [ e?dx

0 (aZ + 32)2 0

SZ e-2ax 1

or (2/ TC) J. ds = - = —

0 (a2 +s?)? 2a J° 2a

) X2 T
Thus [ dx = — ifa>0

© (@ +x)? 4a

Now, Using Parseval‘s identity for cosine transforms,

ie., I Fel)|? ds = ] [100] 2 ox .
0 0
- a’ oo
weget, (2/n) | ds = | e?™dx
0 (az + S2)2 0
© ds 1
or (2a% n) | N
O (a?+¢? 2a
© dx n
Thus, ] = — ifa>0
0 (az + X2)2 4a3
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Exercises

1.

8.

9.

Find the Fourier sine transform of the function

f(x) = sinx,0<x<a
0 ,x>a

Find the Fourier cosine transform of e* and hence deduce by using the inversion
formula

© COSoax dx T

| ———— = —e™

O 1+x) 2
Find the Fourier cosine transform of e®sin ax.

Find the Fourier cosine transform of e + 3 e*
Find the Fourier cosine transform of
0) e/ X (i) (e®™- e™)/x

Find, whenn >0 o [(n)
(i) F[x™] and (i) Fe[x™] {Hint: 0fe'e‘xx“'ldx = ,n>0,a>0J

an
Find F¢[xe®] and Fs[xe™®]
Show that the Fourier sine transform of 1/ (1 + x?) is V(n/2) e*.

Show that the Fourier sine transform of x /(1 +x?) is V(n/2) e*.
2

10. Show that x e /2 is self reciprocal with respect to Fourier sine transform.

11. Using transform methods to evaluate

© dx
(1) [ and
O (x2+1)(XP+4)
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UNIT-V

Z — Transforms AND DIFFERENCE EQUATIONS

5.1 Introduction

The Z-transform plays a vital role in the field of communication Engineering and
control Engineering, especially in digital signal processing. Laplace transform and
Fourier transform are the most effective tools in the study of continuous time signals,
where as Z — transform is used in discrete time signal analysis. The application of Z —
transform in discrete analysis is similar to that of the Laplace transform in continuous
systems. Moreover, Z-transform has many properties similar to those of the Laplace
transform. But, the main difference is Z-transform operates only on sequences of the
discrete integer-valued arguments. This chapter gives concrete ideas about Z-transforms
and their properties. The last section applies Z-transforms to the solution of difference
equations.

Difference Equations

Difference equations arise naturally in all situations in which sequential relation
exists at  various discrete values of the independent variables. These equations may be
thought of as the discrete counterparts of the differential equations. Z-transform is a very
useful tool to solve these equations.

A difference equation is a relation between the independent variable, the
dependent variable and the successive differences of the dependent variable.

For example, A%+ 7Ayn+12yn =1  cceeeeeen (i)
and  A%n-3Ayn-2yn=cOSN e (ii)

are difference equations.
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The differences Ayn, A%yn, etc can also be expressed as.

AYn = Yn+1 - Y,
AZYn = Yn+2 - 2Yn+1 + Y
A3Yn = Yne3 - 3Yn+2 + 3yne1 - Yo and so on.

Substituting these in (i) and (ii), the equations take the form

yn+2 + 5yn+1 +6yn :2n """""" ("I)
and  Yne3-3Yne2 =COSN mmmmemeeeee (iv)
Note that the above equations are free of A’s.

If a difference equation is written in the form free of A's, then the order of the
difference equation is the difference between the highest and lowest subscripts of y*s
occurring in it. For example, the order of equation (iii) is 2 and equation (iv) is 1.

The highest power of the y's in a difference equation is defined as its degree when
it is written in a form free of A’s. For example, the degree of the equations
Y3+ 5Yne2+ Yo = NP+n+1is3 and  yis + 2Yne1 Yo = 5is 2.

5.2 Linear Difference Equations

A linear difference equation with constant coefficients is of the form

A0 Yn+r + A1 Yer 4+ A2 Yrer 2 + . ... Ay = O(N).
i.e., (E +aE™+ a2 E?+ ... +a)yh = o(n)  --—---- (1)
where aoas, @, . . . .. ar are constants and ¢(n) are known functions of n.

The equation (1) can be expressed in symbolic form as

(B yo=o) e @

If ¢(n) is zero, then equation (2) reduces to
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fE)Yyn=0 e (3)

which is known as the homogeneous difference equation corresponding to (2).The
solution
of (2) consists of two parts, namely, the complementary function and the particular
integral.
The solution of equation (3) which involves as many arbitrary constants as the order of
the equation is called the complementary function. The particular integral is a
particular solution of equation(1) and it is a function of ,n" without any arbitrary
constants.

Thus the complete solution of (1) is given by y, =C.F+P.l.
Example 1
Form the difference equation for the Fibonacci sequence .
The integers 0,1,1,2,3,5,8,13,21, . .. are said to form a Fibonacci sequence.
If yn be the n term of this sequence, then

Yn = Yn1 + Y2 forn>2

or Yns2-Yns1-Yn=0forn>0
5.3 Z - Transforms and its Properties
Definition
Let {fn} be a sequence defined forn=10,1,2,....... ,2then its Z-transform F(z) is defined as

F@)=z{f} =X fz ",

n=0

whenever the series converges and it depends on the sequence {fn}.
The inverse Z-transform of F(z) is given by Z*{F(2)} = {f.}.
Note: If {f.} is defined forn=0,+1,+£2,....... , then

F(z) = z{f.} =2 fnz ™", which is known as the two — sided Z- transform.

n=-ow

Properties of Z-Transforms
1. The Z-transform is linear.
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ie, if F(z) =2Z{f.} and G(z) = Z{gn}, then
Z{afy + bgn} = aF(z) + bG(z).

Proof:

Z{ afn +bgn} =% {afr + bgn} z"  (by definition)
n=0

a ZO foz"+ b_ZO OnZ"

aF(z) +b G(2)

2. If Z{f.} =F(2), then z{a"f\} =F (z/a)
Proof: By definition, we have

Z { anfn} = z a” fn Z-n
n=0

=3 £, (Zla)" = F(zla)
n=0

Corollary:
If Z{f.} =F (2), then Z{ a™f} = F(az).
dF (2)
3. Z{nfn} = -7 —mm—mm———-
dz
Proof

We have  F(z2)=X2f, 2"
n=0

Differentiating, we get

dF2) -
------ =2 fa(-n)z" 1
dz =0
1 .
==y nfy 2"
7 n=0
1
= - - Z{nfn}
Z
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dF (2)
Hence, Z{nf.} = -z ---------
dz
4. 1f Z{f.} = F(z), then

Z{fuid= 2L F@2) —fo— (F1/2) - ... - (fea /2N } (k> 0)

Proof

Z{fa} = 2T 2", by definition.
n=0

o0
= Y fk 2" 2K Z¥
n=0

0
- Zk z fn+k zZ- (n+k)
n=0

o0
=Y fnz™, wherem=n+k .
m=k

= 2 {F(@2) ~fo— (ff2) - ...~ (Fea /2" }

In Particular,
() Z{fne1} = 2 {F(2) - fo}
(it) Z{fn2}=2* { F(2) - fo— (f2/2) }
Corollary

If Z{f:} = F(2), then Z{f\} = 2% F(2).
(5) Initial value Theorem

IfZ{f} =F (), thenfo= {t F(2)

Proof -

We know that F (z) =fo + f1 z1 + fz2 + . ..

Taking limits as z — oo on both sides, we get
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it F2)="fo

Z—>

Similarly, we can find

fi= tt {z[F@2) -]}, f2=10t {2? [F(2) - fo- f1z1]} and so on.

Z—> © Z—> ©

(6) Final value Theorem
If z{f} =F(z), then £t f, = £t (z-1) F(2)
n— o z—>1

Proof
By definition, we have

Z {f1 — £} = X {fas — Fi} 2°
n=0
Z{fi} — Z{6} = 3 {fes — £} 27
n=0
ie, Z{F(z) - fo} - F(2) = § {foe1 — T} 2"
n=0

z-D)F2z2)—foz =2X{farn—TF}2z"
n=0
Taking, limits as z — 1 on both sides, we get

t{C-1)F@Q}-fo = 0t 3 {fu—f} 2"

z—>1 z—1 n=0

=3 (Frr ) = (Fo—fo) + (1) + ... + (Fous — F)
n=0

= it fu1—"1

n— o

ie, t{z-1)F@)}-f =f.-f

z—>1

Hence, » = Lt [(z-1) F(2)]
z—-1
e, it o = Lt [(z-1) F(2)]
n— o z—-l1
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SOME STANDARD RESULTS

1. Z{a"} =z /(z-a), for |z| > |al.

Proof
By definition, we have

Z{a"} =X a" "
n=0

- Y @)
n=0

= z/(z-a), for |z| > |a|

In particular, we have
Z{1} =z/(z-1), (taking a=1).

and Z{(-1)"}=2z/(z +1), (taking a = -1).

2. Z{na"} = az /(z-a)

Proof: By property, we have

dF(2)
Z{nf} =-z --------
dz
d
=2 - Z{a"}
dz
d y4 az
Z{na"} =-2 === —--- =

Similarly, we can prove

z{n%a"} = {az(z+a)}/ (z-a)°®
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3) z{n"} =-z ------ Z{n™}, where m is a positive integer.
dz
Proof "
Z{n"} =X nmz"
n=0
=z>n"-lnz) 1)
n=0

Replacing m by m-1, we get

Z{nm-1}= 7 Z nm -2 n Z-(n+1)
n=0

(oo}

e, zZ{n"}= X"tz
n=0
Differentiating with respect to z, we obtain

______ Z{nm—l} - g nm- 1 (_n) Z-(n+1) __________(2)
dz n=0

Using (2) in (1), we get

d
Z{n"} =-z ------ Z{n™}, which is the recurrence formula.
dz
In particular, we have
d
zZ{n}=-z ----- Z{1}
dz
d z z
A F .
dz | z-1| (z-1)?
Similarly,
d
Z{n*} =-z --—-- zZ{n}
dz
d z
iy AR [
dz | (z-1)?
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(z-1)°
z (z - cos0)
4. Z {cosn 0} = -------mmmmmmmmene and
7% - 27 cos0 +1
Z sind
Z{sinn O} =--ccoc--

7% - 27 cos0 +1
We know that
Z{a"} =z I(z-a), if |z| > |a|
Letting a=¢e ", we have

z z
Z{eM} = oo = e
z-e" 7—(cos 0 + isinG)

z

Z{cosnb + isinnB} =
(z—cos 6) - isind

z {(z—cos 0) + isin6}
* {(z-cos 0) - isin} {(z—cos ) + isin0}
zZ (z—cos 0) + izsino

7% - 2z cosO +1

Equating the real & imaginary parts, we get

z (z - cos0)
Z (cosn 0) = -------mm-mmememeee and
7% - 27 cos0 +1
z sino

Z (sinn 0) =

7% - 27 cos0 +1

z (z - rcoso)

5.Z{r" cosn 0} = -------mmmmmeeee and

7% — 2rz cosO +r?
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Zr sind
Z{r" sinn6} = -- if |z|>|r|
7% — 2rz cosO +r?

We know that
Z{a"} =z /(z-a), if |z|>|a|
Letting a=re"® , we have
Z{re™ } = z /(z -re® .

z
i.e, Z{r" (cosn® + isinn@) } = -------------

z — r(cos6 + isinO)

z {(z - rcosO) + i rsind}

{(z — rcosB) — i rsinb}{(z — rcosO) + i rsin6}

z (z - rcosO) + i rzsino
(z — rcos)? +r? sin%0
z (z - rcose) + i rzsino

Z% — 2rz cosO +r?

Equating the Real and Imaginary parts, we get

z (z- rcosO)
Z{r" cosnb} = and
72— 27rcos0 + r2
zrsino
Z{r" sinnb} = itz |>]r]

72-27rcos0 + r?

Table of Z - Transforms
fn F(Z)
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10.

11.

12.

13.

(-1

an

n(n-1)

n®

na"

cosno

sinn®

" cosnd

" sinn®

cos(nm/2)

z2-2zc0s0 + 1

z (z-rcoso)

7%-2rz cosO + r?

rz sin
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14.  sin(hm/2) e

22+1
Tz
15 t e
(z-1)?
T2z(z +1)
16
(z-1)°
Y4
17 eat ___________
7 eaT
z
18 e—at ___________
7 e-aT
z (z - cosmT)

19  Z{coswt} = e
7% - 2z cosmT +1

z sinoT
20 Z{sinot} 00 e
7% - 27 cosoT +1

72T (ze?™ — cos bT)
21  Z{e *cos bt} S —
7227 _ 27637 cos bT +1

2T sin bT
22 Z{eMsinbt} 0000 e
72627 _ 27e%T cos bT +1
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13
2 g(z 91)3

Example 2

Find the Z— transform of
(i) n(n-1)

(ii) n?+7n+4

(i) (1/2)(n+1)(n+2)

() Z{n(n-1)}=Z {n’} - Z {n}

(i) Z{n?+7n+4)=Z{n%} + 7 Z{n}+ 4 Z{1}

(z-1)°
22(z%-2)
ey
(n+1) (n+2) 1
() A {Z{n?} + 3Z{n}+2Z2{1}}
2 2
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Example 3

Find the Z- transforms of 1/n and 1/n(n+1)

n =l
1 1 1
S R— F e F ommcmmee +
Z 27° 3z

=-log(1-1/z)if |1/z|<1
=-log (z-1/2)

= log (z/z-1), if | z | >1.

o 1 o 1
= z _____ Z-n _ Z ______ Z n
n=1 n n=0 n+1
rZ N 1 1
= log|------ - {1+ ------- + - + }
z-1 2z 37

{ . m...}

Lz-1)
rZ N
= |og ------ -Z { - IOg (1 o l/Z)}
L Z-1)
CZ N
= log|------ — z log (2/z-1)
L z-1)

= (1- 2) log {z/(z-1)}

MSAJCE 180



Example 4

Find the Z- transforms of

(i) cos nm/2
(i) sin nw/2
» nm
(i) Z{cos nm/2} = X coS ------ z"
n=0 2
1 1
=1- ---- + —eee- TP
Vi z*
1 -1
= J1+ -—----
ZZ
ZZ +1 -1
ZZ
= e if]z]>]
22+1
» nm
(i) Z{sin nw/2} = X sin ------ z"
n=0 2
1 1 1
it + —-eee- e
z 7 2
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z  Z°+1 Z+1

Example 5

Show that Z{1/ n!} = e*? and hence find Zz{1/ (n+1)!} and Z{1/ (n+2)!}

. (@)
= z _________
n=0 nl
7 1 (2-1)2
=1+ ---—-- S S +
1! 2!
-1
= e z — el/Z

1
To find Z{}
(n+1)!

We know that Z{f\+1} =z { F(z) —fo}

Therefore,
1 1
o {3
(n+1)! n!
=z {e'?-1}
Similarly,
1
z{} =z2{e'*-1- (1/2)}.
(n+2)!
Example 6

Find the Z- transforms of the following

Mfn)=J nn>0
0,n<0

@i)f(n)=)0,ifn >0
1,if n<0
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(iif(ny=a"/n,n>0
0, otherwise

(i) Z{f0} =1 () 2"

:inz”
=(1/2)+@zH+(33)+...
=(1/2) {1+ @22) + BI2%) +.. }

=(12){1- (1/2)}?

=z/(z-1)% if |z |> |

(i) Z{f = SF()z"

n=-ow

(i) Z{fn} =Xf(n)z" =Y - 7N
n=0 =0
» (azh)"
-1
=¥ = alz
Example 7
27°+ 3z +12
If F(z) = - , find the value of £ and ,,f5".
(z-1)*
27°+ 3z +12
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Given that S R —— _

This can be expressed as
1 2+ 3zt +1277
F(z) =--- —---mmm - .
22 (1_ Z—1)4

By the initial value theorem, we have

f,= ot F(2)=0.

Z-—©
Also, fi= 0t {z[F(2) - ]} = 0.
Z-—0
Now, f,= tt {Z2[F(2) - fo — (R /2)]}
Z-—>0
2+ 3z +122°2
S S -0-0.
Z-—® (1_ Z—1)4
=2
and fi= Ut {B[F@) -fo— (fL/2) - (A DT}
2+ 3z +12z2 2
= [t 23| o ____.
Z-—>0 (l- Z-1)4 22
1123+ 8z -2
Given that = 0t 23| s =11
Z-—® ZZ (2_1)4

5.4 Inverse Z — Transforms

The inverse Z — transforms can be obtained by using any one of the following
methods.They are

l. Power series method

. Partial fraction method
[l. Inversion Integral method
V. Long division method
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l. Power series method

This is the simplest method of finding the inverse Z —transform. Here F(z) can
be expanded in a series of ascending powers of z 1 and the coefficient of z " will be the
desired inverse Z- transform.

Example 8
Find the inverse Z — transform of log {z /(z+1)} by power series method.

1 1/y
Putting z = ------- ,F (2) = log§ --------------

y (1/y)+1
1
=log 3----
1+y
= -log (1+y)
Yy
So Y b s s +.....
2 3
1 1 (-1)"
=zl 272_ ______ ZS+ lllll o 7z
2 3 n

0, forn=0
Thus, f, =
(-1)"/ n, otherwise

I1. Partial Fraction Method

Here, F(z) is resolved into partial fractions and the inverse transform can be taken
directly.

Example 9
z
Find the inverse Z — transform of -------------oeee-
722+7z+10
z
Let F (2) = emememeeeeeeeee-
22+72+10
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Then ----- e
z 22+72+ 10 (z+2) (z+5)
1 A B
Now , consider -------—--- = -——--. R
(z+2) (z+5) z+2 z+5
1 1 1

Therefore, F(2) = --mmmm mmmmemm e e

3 Z+2 3

Inverting, we get

= e (-2)”_ I (-5)"

3 3

Example 10

Find the inverse Z —transform of = cccomome
(2z-1) (4z-1)

8z?
Let F(Z) =---mmmmmmme oo = e
(2z-1) (4z-1) (%) (z—Y4)
F(2) z
Then ------ =
z (z—%2) (z—Y4)
z A B
Now,  -—---mmmmomo = e S
(z=%2) (z—Ya) - Z2—Ya
F(2) 2 1
We get, e
z - Y% Z—Ya
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Therefore, F(2)= 2 --mmmmmmmmm — emmeeeeeee

Inverting, we get

z z
fo= Z H{F(2)}=2 Z‘l{ ] — z-l{ }
z-% j Z—Ya

e, fo=2(1/2"-(1/4", n=0,1,2,......

Example 11
4- 871 + 627
Find YA R — by the method of partial fractions.
(1+2%) (1-2z71)?
4- 8z + 62
Let Fz)=------------
(1+z%) (1-2z71?
478 - 872+ 62
(z+1)(z-2y?
F(z) 472 - 82+6 A B C
Then = = - 4 e + - ,Where A=B=C=2.
z (z+1)(z-2)? z+1 z-2 (z-2)?
F(2) 2 2 2
Sothat ----. = —ceeeee F oo L IEEEE
z z+1 z-2 (z -2)?
27 27 27
Hence, F(z) = ------- + oo +ommeeeeee-
z+1 z-2 (z -2)?

Inverting, we get

fo=  2(-1)"+2(2)"+n.2"

ie, .= 2(-1)"+ (n+2)2"
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Inversion Integral Method or Residue Method

The inverse Z-transform of F (z) is given by the formula
fy= - | F(z) z™ dz
2mi ©

= Sum of residues of F(z).z"* at the poles of F(z) inside the contour C which is
drawn according to the given Region of convergence.

Example 12
Using the inversion integral method, find the inverse Z-transform of
3z
(z-1) (z-2)
3z
Let F(z) = -----------m---
(z-1) (z-2)

Its poles are z = 1,2 which are simple poles.
By inversion integral method, we have

1
fo= --mme- [F(z). 2™ dz =sum of resides of F(z). z ™" at the poles of F(z).
2mi ©
1 3z 1 3"
3 = pen— | — 2"t dz = -  JE—— dz = sum of residues
2ni © (z-1)(z-2) 2ni ¢ (z-1)(z-2)
...... ().
Now,
37"
Residue (atz =1) = €t (z-1).------------- =-3

w1 (z-1)(z-2)

3z"
£t (2'2). -------------- =32"
s (z-1)(z-2)

Residue (at z =2)

..Sum of Residues = -3 + 3.2" = 3 (2"-1).
Thus the required inverse Z-transform is

n=3(2"-1),n=0,1,2, ...
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Example 13

z(z+1)
Find the inverse z-transform of ----------- by residue method
(z-1)°
z(z+1)
Let F(z) = -----------
(z-1)°

The pole of F(z) is z =1, which is a pole of order 3.
By Residue method, we have

1
fo = ---meeev [ F(z). 2™ dz = sum of residues of F(z).z ™* at the poles of F(z)
2ni ©
1 z+1
ie., fo = -----em- |[PALNEEE dz =sum of residues .
2ni © (z-1)°
1 d Z"(z+1)
Now, Residue (atz=1) = ---- 0t ----< (Z-1)® —ccoeeme-
21 Pt odz? (z-1)
1 d?
= Qe {2 (z+1)}
21 2t dz?
1 d?
= e Bt e {z"+ 2"}
21 2 dz?
1
= 0t {n(n+1)z™ +n(n-1)z" }
2 751
1

=-— {n(n+1) +n(n-1)} =n
2
Hence, f,=n? n=0,1,2,.....

IV. Long Division Method

If F(z) is expressed as a ratio of two polynomials, namely, F(z) = g(z?) / h(z?),
which can not be factorized, then divide the numerator by the denominator and the

inverse transform can be taken term by term in the quotient.

Example 14
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142771

Find the inverse Z-transform of , by long division method
1-z*1
1+2771
LetF(z2)=---ccaoam-
1-z*1

By actual division,

143z +322+3z2°

1—2'1> 1+ 271

1-z1
+3z7*1
3713772
+ 3272
322-373
+3z2°3
323324
+3z %
Thus F(z) =1+3z'+3z2+3z%+......
Now, Comparing the quotient with
Stz =f+fizt +foz2+fz%+. ... ..
n=0
We get the sequence fras fo=1,fi=fh=fz3=...... =3.
Hence f, = 1, forn=0
3, forn>1
Example 15
Z
Find the inverse Z-transform of ~  —cccemeeeee
z2 - 3242
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By actual division

z214322+7z2 3+ ... ... ..

1-3z1 + 22'2> !
z1-322+2z2°3

3z7-2z7°
3z2-9z23%+62*

7236274
7z2% 21z *+14z°

+157z4-14z°

DF@) =z +3z22+72 3%+ ..

Now comparing the quotient with

o0
S fonz™ =fo+fizt+hz2+fHz23+.. ..
n=0

We get the sequence foas fo=0,f1 =1, =3,f:=7,.... ... ...

Hence, f,=2"1,n=0,1,2,3, ...

Exercises

1. Find Z* {4z / (z-1)3} by the long division method

2.Find Z1 |- s by using Residue theorem

K = 19To 70 (U — by using Residue theorem
_(z+2) (z%+4) J

4. Find Z* (z/z-a) by power series method

5. Find Z* (%) by power series method
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6. Find Z1 | -----mmmmmemee- by using Partial fraction method

5.5 CONVOLUTION THEOREM
If ZYF (2)} =1, and Z{G(2)} = gn, then

n
ZHF(2). G(2)} = X fm. gn-m = fa» gn, where the symbol * denotes the operation of

m=0

convolution.

Proof o w

Wehave F(z2) =2 fiz", G (2) = 2 gnZ™
n=0 n=0

JF@).G@) =(fo+fzt+fz2+ . +fz"+ ... o). (Qo + grzt + goz? + ...+ gnz ™+

...00)
= 2 (fogntfign1tfognot . . .+ fago)z"
n=0
=Z (ngn+flgn-l+f29n-2+ . fngo)
n
= Z[ 2 fm gn-m]
m=0
=Z{fn * gn}

Hence, Z'{F(2).G(@2)}=" *gn
Example 16

Use convolution theorem to evaluate

ZZ
7t .
(z-a) (z-b)
We know that Z* {F(z). G(z)} = fa*gn.
z z
Let F (z) = ---------- and G (z) -----------
z-a z-b
z z
Then fy= Z?1 |----m---- =a" & gn = Z -1 =b"
z-a z-b
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Now,
ZHF@). G(@)} =fa*gn=a"*b"

n
— z am bn-m
m=0
o a ~m
=b" > { """ J which is a G.P.
m=0 b
(afb) ™1-1
=p"
(a/b) — 1
Z2 an+1 bn+1
A R e
(z-a) (z-b) ab
Example 17
z
Find z‘l{{ ------- J by using convolution theorem
(z-1)
Vi z
Let F (z) = ---------- and G (z) -----------
(z-1)? (z-1)

Thenfo=n+tl & gn=1
By convolution Theorem, we have

ZY {F2).G@)}=fh*gn=(n+1) * 1 :an (m+1) .1
m=0

(n+1) (n+2)
2
Example 18
Use convolution theorem to find the inverse Z- transform of
1

[1- (1/2)z Y [1- (1U/4)zY
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1 z2
Given Z%' oo . =zt ____

[1-(1/2)z Y [1- (1/4)z2Y [z-(1/2)] [z — (1/4)]
z z
LetF (2) = -------m-m---- & G(2) = -m-mmm-

z-(1/2) z—(1/4)

Then f, = (1/2)" & gn = (L/4)".
We know that Z*{ F(2). G(2)} = f» * gn

= (1/2)" * (L/4)"

o)
e

4 m=0

n
o p— { 1+2+2%+ ...+ 2"} which is a G.P

Y I G
{[1 - (1/2)z ] [1- (1/4)2-1]} 2t 4"
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5.6 Application of Z - transform to Difference equations

As we know, the Laplace transforms method is quite effective in solving linear
differential equations, the Z - transform is useful tool in solving linear difference

equations.

To solve a difference equation, we have to take the Z - transform of both sides of
the difference equation using the property

Z{fu}=2{F@)-fo—(F1/z2) - ... - (fka / Z¥D) } (k> 0)
Using the initial conditions, we get an algebraic equation of the form F(z) = ¢(2).

By taking the inverse Z-transform, we get the required solution f, of the given difference
equation.

Exmaple 19

Solve the difference equation yn+1 +Yn =1, yo =0, by Z - transform method.

Given equationis yne1 +yn =1 s (1)
Let Y(z) be the Z -transform of {yn}.

Taking the Z - transforms of both sides of (1), we get
Z{yn1} + Z{yn} = Z{1}.
ie, Z{Y(z) - yo} + Y(2) = z /(z-1).
Using the given condition, it reduces to

(z+1) Y(2) = --------
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i, Y(2)=-coooooeeo -
(z-1) (z+1)

) 1 Jz V4 1
AP P

On taking inverse Z-transforms, we obtain
yn = (U2){1-(-1)%
Example 20

Solve yn2 +Yn=1,y0=Yy1 =0, using Z-transforms.

Consider Y2 FYn =1 —mmmmmmeeeee 1)

Taking Z- transforms on both sides, we get
Z{yne2}+ Z{yn} = Z{1}

Z{Y(@)-Yo- __}/_1__} +Y(2) = ---_?____

y z-1
z
(Z2+1) Y@ =---m-
z-1
z
orY(z) =
(z-1)(2*+1)
Y(2) 1 A Bz+C
Now, e e D e T oo Fooeeo -
z  (z-1)(Z%+)) z-1 7+1
1 -1 z (N
2 2
2 (L z-1 zc+1 z“+1 )
1 , z z? z S
Therefore, Y(2) = === | == - e e
2 z-1 z2+1 z2+1
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Using Inverse Z-transform, we get

Yo =(¥){1 - cos (N1 / 2) - sin (N / 2)}.

Example 21

Solve yn+2 + 6yn+1 + 9yn = 2", yo =y1 =0, using Z-transforms.

Consider Ynsz + 6Yns1 + Oyn =27 —mmmemm- (1)

Taking the Z-transform of both sides, we get

Z{yn+2} + GZ{yn+1} + QZ{yn} =Z {2”}

y1 z
ie, Z2%|Y(2)-yo------- +62 {Y(2) - Yo} + 9Y(2) = --------

z z-2
z
(Z2+62+9)Y(2) = -
z-2
z
e, Y@ = -
2
Y&)-Z) (z+3)7
Therefore, S
z (z-2)(z+3)?
Yz 1 1 1 1 1 1
I, mm e S e e e et m et e = e m e
z 25  z-2 25  z+3 5 (z+3)?
using partial fractions.
1 z z 5z
Or Y(2) = -mmemed mmmmen — e o eeeeeee
25 | z-2 7+3 (z+3)?

On taking Inverse Z-transforms, we get
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yn = (1/ 25){ 2" - (-3)" + (5/3) n (-3)"}.
Example 22
Solve the simultaneous equations
Xn+1 - Yn = 1; Yn+1 - X = L with x (0) = 0; y (0) = 0.

The given equations are

Xn+1 - Yn =1, X0=0 - (1)
Yn+1 - Xn =1, il (2
Taking Z-transforms, we get
z
z {X(z) - o} — Y(2) = --------
z-1
z
2{Y(2) - yo} ~ X() = -+~
z-1
Using the initial conditions, we have
z
zX(z) -Y(z) = --------
z-1
z
zY(2) - X(z) =--------
z-1
Solving the above equations, we get
z z
X(z) = - and  Y(z) =------ _
(z-1) (z-1)

On taking the inverse Z-transform of both sides, we have x, =n and yn=n,
which is the required solution of the simultaneous difference equations.

Example 23
Solve Xn+1 = 7Xn+ 10Yn ; Yn+1 = Xn + 4Yn, With Xo =3, yo =2

Given Xnr1 = TXn + 10y -=--meemee- (1)
Yo+l = Xn+4yn - (2)
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Taking Z- transforms of equation(1), we get
Z{X(2)-x}=7X(z) +10 Y(2)

(z-7)X(@2)-10Y(2) =3z ---------- (3)

Again taking Z- transforms of equation(2), we get
z{Y(2) - yo} = X(2) + 4Y(2)
-X(2) +(z-4)Y(2) =22 ---------- 4

Eliminating ,x from (3) & (4), we get

27% - 117 27% - 117
Y(2Z) = -ccmmmme e Seee oo
72-11z+8 (z-9) (z-2)
Y(2) 2z -11 A B
so that e D e T e + - where A=1and B=1.

Y(2) 1 1
i€, == S oo
Z z-9 z-2
z z
ie, Y(z) =------ + oo
z-9 Z—2

Taking Inverse Z-transforms, we get y, =9" + 2",

From (2), Xn = Yn+1 - 4yn = 9n+1 + 2n+1 -4 (gn + 2n)

9.9"+2.2"-49"-42"
Therfore, xp=5.9"-2.2"

Hence the solution is x,=5.9"-2.2" and y,=9"+2".

Exercises

Solve the following difference equations by Z — transform method
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1L.yn2+2Yns1+Yn=n, Yo=Yy1=0
2. Y2 —Y=2"%=0,y1=1
3. Uniz — 20080 Unia+ U0, Lo =1, L = 00801

4. Un2=Uns1 +Un, Uo=0,lp =1
5. Y2 — Syt Byh =n(+1), Yo =0,y1 =0
6. Yis —Bynz + 12y —8yh =0, Y0 =-1, Y1 =0, o =1

5.7 FORMATION OF DIFFERENCE EQUATIONS
Example

Fam the difference equation

Y, =a2 +b(-2)

Yoa=a2" +b(2)""
=2a2" —2b(-2)"

Voo =2 +b(2)""
=4a2" +4b(-2)"
Eliminating a and b weget,
y, 1 1
You 2 2
Yoo 4 4

=0

Yn (8 + 8) _1(4yn+l + 2yn+2) +1(4yn+1 - 2yn+2) =0
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16yn _4yn+2 =0
_4(yn+2 _4yn) =0
yn+2 - 4yn =0

E EFIVE the difference equation form y, = (A+Bn)(-3),
2. Derive the difference equation form U, = A2 +Bn
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UNIT I
PARTIAL DIFFERENTIAL EQUATIONS

1. Explain how PDE are formed?

PDE can be obtained

(i) By eliminating the arbitrary constants that occur in the functional relation
between the dependent and independent variables.
(i) By eliminating arbitrary functions from a given relation between the dependent

and independent variables.

2. From the PDE by eliminating the arbitrary constants a & b from z =ax+by.
Given z=ax+hy

Diff. p.w.r.to x we get,

e, g=b

Substituting in (1) we get z = px+qy.

3. From the PDE by eliminating the arbitrary constants a & b from z =(x* +a*)(y* +b?).
Given z=(¢+a%)(y? +b?) --------- (1)

p=2Z — (2x)(y? +b?)
oX
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=22 = (2y)(¢* + @)
oy

A _viad

2y

Substituting (2) & (3) in (1) we get the required p.d.e.

e 7 (i)(ﬂjzﬂ
2y \ 2x ) 4dxy

4xyz = pq.

4. Eliminate f from z = f (x* +y?).

Given z= f(x*+Yy?) (D
Diff (1) p.w.r.to x and y we get,
% = f'(x* - y")[2x]
e, p="Ff0-y)[2x] ..(2)
oz _fry2 g\
5y = 1'(x - y*)[-2y]
e, q=f0-y)[-2y] ..(3)
@, p_=x
()
py+gx =0.
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5. Obtain PDE from z = f(sin x+cosy).

Given z =f(sinx+cosy)

012

= —= =f’(sin x+cosy)| cos

p =55 = 1/(sinx+cos y)[cosx]

q = oz _ f(sin x+cos y)[-sin y]
oy

Q)j p _ co_sx
(3) q —sin y

psiny =-—qgsiny

psiny+qsiny =0.

6. Solve o1 =Sin X.
OX

Given oz =sin X
OX

Integrating w.r to x on both sides

Z=-C0SX+C
But z is a function of x and y
z =—cosx+ f(y)

Hence c = (y).

MSAJCE
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7. Mention three types of solution of a p.d.e (or) Define general and complete integrals of a

p.d.e.

(i) A solution which contains as many arbitrary constants as there are independent
variables is called a complete integral (or) complete solution.

(i) A solution obtained by giving particular values to the arbitrary constants in a
complete integral is called a particular integral (or) particular solution.

(i))A solution of a p.d.e which contains the maximum possible number of arbitrary
functions is called a general integral (or) general solution.

8. Solve \[p +./q =1
Given -JE+-JC_]=1

This is of the form F(p,q) = 0.
Hence the complete integral is z=ax+by+cz.
where, fa+. =1, /p=1-fa
b=(1-_/a)y
Therefore the complete solution is
z=ax+(1-Ja)’y+c e (1)
Diff.p.w.r. to c we get,
0=1
There is no singular integral.

Taking c= f (&) when fis arbitrary.

z=ax+(1-Va)y+ f(@) - @)
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Diff. p.w.r.to'a’

0=x+2(1 Ja')[L%W @ e @3)

Eliminating 'a’ between (2) & (3) we get the general solution.

9. Find the complete integral of z= px+qy+ p? +q?.

Given z=px+qy+ p?+q?°.
This equation is of the form  z = px+qy+ f(p,q).

By Clairaut’s type,put p=a,q=»b.

Therefore the complete integral is z =ax-+by+a?+b?.

10. Find the complete integral of gq=2px.
Given q=2px.

This equation of the form  f (x, p,q) =0.

a

Let q=a, then P~ oy .

But dz= idx+ady.
2X

Integrating on both sides,

_[dz:_[z%dx+_[ady.
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z=Elogx+ay+b.

11. Find the complete integral of pg=xy.

Given pg=xy.

Hence P_
X

o I<

It is of the form f(x, p)=&(y,q).

Let E:M:a.
X q

oo p=ax and qzi.
a

Hence dz = pdx+qdy.

dz= axdx+¥dy :
a

Integrating on both sides,

v
2a

Z=a +

D
+cC.
2

2az=a?x* +y? +b is the required complete integral.

12. Solve px+qy=z.

Given px+qy=z - (1)

This equation is of the form Pp+Qg=R
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when P=x, Q=y, R=12z

The subsidiary equations are % :ﬂ = d_Z
P Q R
d
ie., dx_dy_0z
X 'y z
dx _ dy dx _dz
Take X y Take ;X = ;
dx _ dy dx _ dz
(il by Je-[e
log x=log y +log c, log x=log z + log c,
log x=log(yc,) log x=log(zc,)
X =YC X =1C,
X X
y P
ie. u=> le., v="
y z

Therefore the solution of the given p.d.eis ¢ (?;] =0.

13. Solve (D? —4DD'+3D'?)z=0.
Given (D? -4DD'+3D"?)z=0
The auxiliary equation is m* —4m+3=0

m(m-3)-1(m-3)=0
m=3, m=1

The roots are distinct.
Hence C.F= ¢ (y+X)+¢, (y+3X).

.2=C.F.
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7= ¢ (y+X)+¢ (Y+3x).

14. Solve 2r +5s5s—-3t=0.
Given 2r+5s-3t=0.

The given differential equation can be written as,

0%z 0%z 0%z
—+5 -3—
o T oxoy oy

ie, (2D?+5DD'-3D"?)z=0.
The auxiliary equation is, 2m?+5m-3  =0.

2m? +6m-m—-3=0
2m(m+3)-1(m+3)=0
(m+3)(2m-1) =0

CF=¢(y-3x)+f (y+%xj

57 =g (Y-3%)+¢ (2y+X).

15. Find the P.1 of (D2 + DD’)z:eX‘V .

Given (D2 + DD’)z =gy
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If we replace D by 1 and D’ by -1 we get dr=0.

X X
Pl=—" eV = _" &7/
2D + D' 2(1)-1

= Xev = xexv
1

16. Find the P.1 of [| D>~ 2DD'+ D' [z =cos(x —3y) .
Given FLD2 —-2DD'+ D" -|Jz =cos(x —3y)

1
P.I = 57 50D 1 D7 cos(x—3y)

_ cos(x—3y)

~1-2(3)-9

-1
== -3
16 cos(x—3y)

PART-B
1.Solve z=px+qy + \/Tp?+_qf
Soln:
Given: z=px+qy + m
This is of the form z=px+qy+f(p,q)
Hence, the complete integral is z=ax+ by +,/1+a% +b? ------------- >(1)

Where a & b are arbitrary constant.
To Find The Singular integral:

Diff (1) p.w.r.toa,

We get, 0=x+0+ (2a)

1
241+ a? +b?
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a=-Xxvl+a?+b? -------- 2

Diff (1) p.w.r.tob,

We get, 0=y+0+ (2b)

1
2J1+a? +b?
b=—yv1+a? +b? --weee- @3)
(1)=>z=—x? Vi+a? +b? - y? Vi+a? +b? + V1+a? + b2

z=(1-x*- yz)m ---------- 4)

1
1_X2 _y2

4)=>z=(1-x* -y*)

22 =1-x* —y?

X*+y?+z2=1
Which is the singular solution.

To Get the general integral:

Put b=ga) in (1), we get

Zz=ax+¢a)y + \/1+ a’ +[da)] -------m- %)

Diff (5) p.w.r.to a, we get

Oox+ glayy+_2r200@ (6)

21+ a? + [#a)]

Eliminate a between (5) abd (6) to get the general solution.

2.Solve y?p-xyq=x(z-2y)
Soln:
Given y?p-xyq=x(z-2y)

This equation of the form Pp+Qq=R
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Here, P=y? ,Q=-xy, R=Xx(z-2y)

The Lagrange’s subsidiary equation are dx_dy_dz
P Q R
Ve, - W &
y* -xy  x(z-2y)

Take ,

dx_ dy dy  dz
Y o-x —xy  X(z-2y)
ax_dy dy _ dz

y —X -y (z-2y)
xdx=-ydy (z-2y)dy=-ydz

J. X dx= —_[ y dy z dy-2y dy=-ydz

X2 yz c

— ==t dz+zdy=2yd

5 5 9 y y=zydy
X2+y?=cy I d(yz) = I 2y dy
U=X2+y? yz=y?+C;

V=yz-y?

Hence the general solution is f(x?+y? , yz-y?)=0.

3.Solve:(3z-4y)p+(4x-2z)q=2y-3x
Soln:

Given: (3z-4y)p+(4x-2z)q=2y-3x

This equation of the form Pp+q=R

Here, P=(3z-4y) ,Q=(4x-2z), R= 2y-3x
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The Lagrange’s subsidiary equation are % :ﬂ = %

P Q R
\i.e, o __ % A (1)
(3z - 4y) (4x-2z) 2y-3x
Use Lagrangian multipliers x,y,z,
We get the ratio in (1)
_ xdx + ydy + zdz _ Xdx + ydy + zdz
(3z - 4y)x+ (4x - 22)y + (2y - 3X)z 0

Xdx+ydy+zdz=0

Integrating we get jxdx+jydy+jzdz =0

i.e, X>+y?+z%=a,

Again use Lagrangian multipliers 2,3,4,

We get the ratio in (1)

: 2dx + 3dy + 4dz _ 2dx + 3dy + 4dz
(6z-8y-12x -6z + 8y -12x 0

2dx + 3dy + 4dz =0
Integrating, we get '[ 2dx+ j3dy + '[4dz =0

2x+3y+4z=bh.

Hence the general solution is,

F(x?+y>+z% , 2x+3y+42)=0.
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4.Find the general solution of x(y2-z%)p+y(z2-x?)q=z(x?-y?)

Soln;
Given; x(y*-z?)p+y(z°>-x*)q=z(x*-y’)

This equation of the form Pp+g=R

Here, P= x(y*-7%) ,Q=y(z>-x?), R=z(x*y?)

The Lagrange’s subsidiary equation are ax_dy_dz
P Q R
\ie, dx _ dy _ e
X(y* -2%) Y@ -x*)  z2(x -y?)
Use Lagrangian multipliers x,y,z,
We get the ratio in (1)
_ xdx + ydy + zdz _ Xdx + ydy + zdz
X(y?-z%) + Y(Z° -x?) +2(x* - y*) 0

xdx+ydy+zdz=0

Integrating we get dex+fydy+]zdz:0

i.e, X2+y*+z%=a.

Again use Lagrangian multipliers 111
Xy z
We get the ratio in (1)
1 1 1
ldx_i_ldy_i_ldz idX‘l‘idy‘l‘idZ
_ X y z _X y z
y2 —z722 47 —x* +x2 —y? 0

1dx+ldy+ldz =0
X y z
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Integrating, we get Il dx+ I 1 dy+J‘l dz=0
X y z

logx +logy+logz=log b

Hence the general solution is,
F(x>+y>+z2 , logx +logy+logz)=0.
5.S0lve:[D3-2D?D’|z=e*"?Y+4sin (x+y)
Soln:

Given: [D3-2D?D’]z=e**¥+4sin (x+y)
The auxiliary equation is m3-2m?=0
Replace D by mand D’ by 1
m?(m-2)=0

m=0,0 and m=2

C.F=¢(y) + X, () + ¢ (y + 2x)

P.Il = 1—eX+2y
D? - 2D?D
— ;ex+2y
(1° - 2(1)°(2)
Replace Dby 1and D'by 2

— _1_ ex+2y

3
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P.1, :1—|4sin(x +Y)

D* - 2D?D
SIP4— L1 it
D*® -2D?D
1

_ gitx+y)

- \P4— =
(i)° —2()* (i)
Replace Dby iand D'by i

:mp_;ifémw
—1+2i
1

=4].p Ze!t*V
i

=4 1P (—i(cos(x + y) +isin (x + y))
=-4c0s (X + Y)

Hence the general solution is

Z= 4 (5) + X4, () + 5 (Y + 2) =2 —dcos (x-+)

UNIT 1l
FOURIER SERIES

PART - A

1. Explain periodic function with examples.

A function f (x) is said to have a period T if for all x, f(x+T)=f(x), where T is a

positive constant. The least value of T >0 is called the period of f (x).
Example : f(x)=sinx ; f(x+27)=sin(x+27z) = sinx.

Here f(x)=f (x+2x). sinx is a periodic function with period 27 .
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2. State Dirichlet’s conditions for a function to be expanded as a Fourier series.

Let a function f(x) be defined in the interval c<x<c+2xz with period 27 and

satisfies the following conditions can be expanded as a Fourier series in (C, C+27).

(i)  f(x) is awell defined function.
(i)  f(x) is finite or bounded.
(iiiy  f(x) has only a finite number of discontinuous point.

(iv) T (X) has only a finite number of maxima and minima.

3. State whether y =tanx can be expressed as a Fourier series. If so how?. If not why?

tanx cannot be expanded as a Fourier series. Since tanx not satisfies Dirichlet’s

condition.

4. State the convergence condition on Fourier series.

(i) The Fourier series of f(x) converges to f(x) at all points where f(X) is

continuous.

(i) At a point of discontinuity x,, the series converges to the average of the left limit and

right limit

of f(x) at x,
f(xo):%[Liggf(x0+h)+IhiLr(1)f(x0—h)].

5. To what value does the sum of Fourier series of f(x) converge at the point of continuity

X=a?

The sum of Fourier series of f(x) converges to the value f(a) at the continuous point
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6. To what value does the sum of Fourier series of f(X) converge at the point of

discontinuity x=a?

At the discontinuous point x =a, the sum of Fourier series of f (x) converges to

f (%)= lim

h—0

{f(x0+h)+f(xo—h)}

2

7. 1f f(x)=x?+x is expressed as a Fourier series in (—2,2), to which value this series

converges at
X=27?.
f(X)=x2+X, —2<X<2

The value to which the Fourier series of f (X) converges at X =2 which is an end points

is given by

_f(2)+f(2) _(4=2)+(4+2)
2 2

=2.

The Fourier series converges at x =2 to the value 4.

it 0

g.1f (x)=1%% " USFSTand f(x)=f(x+27) for all x, find the sum of the
50 if 7<x<2r

Fourier series

of f(x) at x=7.

Sum of the Fourier series of the function f(x) at x=7r.

f(r=)+f(n+) cosz +50 —-1+50 49
L
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9. If f(x)=sinhx is defined in —z < x <7, write the value of a,,a,.
Given f (x)=sinhx
f (—x) =sinh(—x) = —sinh x

=—f ().

.. sinh x is an odd function.

10. Write the formulae for Fourier constants for f(x) inthe interval (-7, 7).

The Fourier constants for f(x) in the interval (—z, ) are given by

1% 17
a = ;J' f (x).dx a, = — j f (x) cos nx.dx

1% _
b, :E_Iﬁ f (x)sinnx.dx.

11. Find the constant ap of the Fourier series for function f(X)= Xin0<Xx<2rx.
2 2
aozi_[f(x)dxzijxdx _1x¥ 2”_1 Ar’ 0l=2
) % __?0____ -

T T 2

12. If f(x)=|x| expanded as a Fourier series in (-z, x) , find ao.
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The given function f (x) = x| is an even function.

2| x2 [

1% 1% 2%
iy - 0 0

13. Find the Fourier coefficients a, of f (x) =e in-z<x<rz.

17 Ir v+ _1,. _.N\_ 2sinh
aO:;.[[edx:;[e L —;(e —e7) = S";[”.

14. Find by in the expansion of x2 as a Fourier series in (— 7T, 7Z)

Since f(x)=x? is an even function, the value of b, =0.

15. Find the constant term ao in the Fourier series corresponding to f(x)=x-x® in

(-, 7).
Given f(x)=x-x°

()= 10 = (-1 )= ()
e, F(-x)=-f(x)

f (x) is an odd function in (-7,7)

Hence a, =0.

16. If f(x)=x%—x* is expanded as a Fourier series in (-1,1), find the value of b,.
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Given f(x)=x*-x* —l<x<I

f(=x)=(=x)*+(=x)" = X +x* = f(x)

f (x) is an even function in (-1,1).

Hence b, =0.

| 1+ ==, -#<x<0
17. In the Fourier expansion of f(x)= 2” in (—71',71'), find the value of
1- —X, O<x<m
[ =z

b, the

coefficient of sinnx.

[1—2—X, O<x<m
fex=1

1+ —, —-w<x<0

.

~. £ (x) is an even function of x in (-z,7)

The coefficient of sinnx, b, =0. Since the Fourier series of f(X) consists of cosine

terms only.

18. Find the constant ap, of the Fourier series for the function f(x): XCO0S X in

—n< X<rm.

f (X) = xcos x
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f(—x) =—xcosx =—f (x)

. T(x) is an odd function. Hence a, =0.

19. Write the Fourier sine series of k in (0,7Z).

The Fourier sine series is given by f(x)= an sin nx

n=1
1 A 2 T

where b, = — I f (x)sin nx.dx :—Iksin nxdx
ﬁ—ﬁ 7[0

. 3 4k .. .
_ A([ COS NX | _ 2k [1_(_1),1] e _%n”, if n is even

|
wLo b Nz 0, if n is odd
ssinnx = 25 —1—gin[2n 14
f)= D,
nisodd N7 T nh=1 (2n —1)

20. Obtain the sine series for unity in (0, z) .

Here f(x)=1; f(x)= Y b,sin nx

n=1

17 . 27
where b,= — _[ f (x)sin nx.dx =—j1.sin nx. dx
72-—72' 7[0

ZQ{MWF =L[1_(—1)“] - :%n—d'ﬂ,ifniseven
CA S I R " g ifnis odd
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00

f)= Y “tsinnx = 4> —L —sinf@n -1)x.

nis odd N7T 7T n=1 2n _1)

21. Find the value of a,, in the cosine series expansion of f (x)=k in theinterval (0,10).

[Sin nﬂx—\m r i

21 k 10 k|10 /..

an=—jkcos%dx =— 10 =—| —(sinnz-0)| =0.

109 10 5/ Nz 5| nz ]
w0

22.1f f (x) is defined in —3< x <3 what is the value of Fourier coefficients.

nzx

13 13 13
% =7 f (x)dx : anzé_[f(x)cosde : bnzéjf(x)sin n—;[de.
-3 -3

23. Define Root Mean Square value of a function.

The root mean square value of y = f(X) in (a, b) is denoted by y . It is defined as

RM.S., y=

24. Find the R.M.S value of y=x? in (-z,7).
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a1
<
Il
.

2 _ 1 7 2 :Lrﬁﬂ _ 1 w2 _Z
e [ 27| 5 1 = (FHT) Vs

25. Find the R.M.Svalue if f(X)=x*in-z<x<7x.

T

[[x ] o

Since R.M.S §= =\7"——
[7—(-7)]
ij“dx
= = 0 =
27
7t
- a E

26. State the Parseval’s Identity (or) theorem on Fourier series.

If f(x) is a periodic function of period 27 in (c, c+2x) with Fourier coefficients

c+21w

1 2 0
co, 3y and by tren — [ [F00T dx = T+ Y (@2 +b3)
c n=1

27. Write the complex form of Fourier series for f(x) defined in the interval (c, c+2I).

The series for f(x) defined in the interval (c, c+27) and satisfying Dirichlet’s

conditions can be given in the form of
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f(X)= D ce™, where C,

N=—00

28. What do you mean by Harmonic analysis?

The process of finding the Fourier series of the periodic function y= f(x) of period

2l (or) 2z using the numerical values of x and y is known as Harmonic analysis.

cH2rm

1 )
— f (x)e "™dx .
— j )

PART B

1) Express f(X)Z%[rr — x) as a Fourier series with period 2 to be valid in the interval 0 to 2.

1

Hence deduce the value of the series 1 — i— i

Solution:

We know that the Fourier series be

& :
flx) = ?':— HHCOSﬂx—ZbHSinﬂx...(l}
n=1 n=1
1" |
a, = —J flx)dx = —J = (m — x)dx
7 Jg Tl 2
1 [ 1 ol

= —J (m—x)dx = —|mx——
2w J, 2w 2
|:.
1
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1 {?

—J ) flx) cosnx dx
T Jg

COS5 X dx

1‘3“[1
— —(T—x
J ~(x— %)

1 27
EJ,;. [(m — x)] cosnx dx

SiFnx

%l(n—xj[ n ]_(_lj[ n?

—CGS"’J'I',?L']
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Lo -

- J E (= x)

T

ginnxdx

T
T

1

2 J.;__ [(m —x)]sinnxdx

L -

1

= —[[H—x)[

2w

—ca_c.ﬂx] — (-1 [—sinﬂ,x]

T ’ﬂ',:

- i[_iﬁ —x) [_ci—ﬁﬂ'] B [—sii:mx] -

1 1
a, = 0, a,=0, by = — fix)= E[rr—xj

e

- 1
_(JT—_')_) = |:::|_ 'D— Z_Sinﬂx
? T

n=1
L 1
_(;T—:-,_-:I = Z_Sin ’:‘11[2)
2 7

n=1
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o
[
—
o
I
ta | H

IS a point continuity

n=1
1w 1
212 3 5
3 1 1 1
—_ = l _______
4 3 5
1 1 1 T
le ., l——v=—z=7 = -
3 5 7 4
2) Obtain Fourier series for f(x) of period 21 and defined as follows
l—%x, 0=x=1 1,1 1, = 1,01 1
f[xj—{ﬂj 1< x =2l Hence deduce that 1 st 3 =3 and Tttt
Solution:

M

. l—x, 0= x=1
Given ﬂx:':{-a l<x <2l

I

We know that the Fourier series is

a, NXT . mxm
f(xj=?—znﬂnccrs ! —Z bysin— ... (1)
n=1 n=1
Where

e

@ =1 | Fdx
J

X

17 NITX 17
a, :?_J flx) cos—— e b, :TJ flx) sinTn’x
0 o

% J{[E —x)dx +0

|:.

a, =
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A
ag 3
1 \ NI
a, =7 f[!—:cj cusde—D
b
Ty T
1 .i.' S —7— ) —cos—7—
T (I—=x) T’Eﬂ (—1) 11277 2

nir nemwe

1 [ 12
zz_l(f_fj(—J sinnrt———cosnT — 0+

21 o
an:[ T, if nis odd

i
0, if niseven
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1|7 nwTx
b, = J(E—xj sinTn{x—lD

-

1= !

nm

1 l l l
b, = —[['Dj (—:I (—cosnm) ———sinnt + (I —0) [—] cosQ+ 'Dl
ni nim?

Substituting the values in equation (1) we get

I o 21 nxmr SOl nxm
flx)=—+ —cos + sin —
2X2 nem- I ni l

n=odd n=1

12l o1 nxmr IS0 1 nxw
flx)=—+— —cos—— + — } —sin—
4 - n- l TLan I

n=odd n=1

This is the required Fourier series

i) Put x = [ is a point of continuity
I 20 1 nalmr I01  nin
fll)=—+— —ﬂcos———z—sm—
4 - e [ T n l
n=pdd n=1
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1 21 ©— 1

4 - n-( :I
n=pdd
23[ 1 1 1 ]_ !
72l 12 32 52 4
23[1 1 ]_ !
72112 32 527 a4
1 1 _i'(r{: _;r:
12732 527 ala1) 8
1 1 1 _;r:
12 32 ' 52 Y
i)  Putx == is apoint of continuity
v 1 20 v 1 mlmr I 1 nim
f[—)=———,, Z — cos ——Z—sin—
2 4 g’ - 21 T i) 21
n=pdd n=1
1 ! ! - 1 N
] — _ —_ 1 __Z_Sin_
2 4 T Tt
n=1
Ism1 ar 11
—Z—sm =———
T 1 2 4
n=1
1 1 1 1 !
LA PR |-
T 3 & 4
1 1 1 l v T
A P -l@-r
3 4 M0/ 4
1 1 1 T
l __________ e
3 4
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Hence proved

ODD AND EVEN FUNCTION

3. Find the Fourier series of f(x) = x + x% in (—m,7)
Solution:
Given f(x) = x + x7 in (—m,7)
fl=x) = —x +(—x)? = —x + 2 = f(x)
Therefore f(x) is neither even nor odd function

We know that the Fourier series is

ﬂ. e a0
flx) = ?E + Z a, cosnx + Z b, sinnx ... (1)

n=1 n=1
Where
17
ap =— J flx)dx

-1

L7
a, =— J flx)cosnx dx

-
T

, 1
o, =—
]

J1 f(x) sinnx dx
T
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e () 20 (S (2R

i

() 1 2 (CE) 2 (25

ﬂ' n

_ [(—TF £ (=) (sin(_m‘?]) —(1-2m) (— c&s;f:—nﬂjJ s (—sin(g—mer]

n n

== [ﬂ 4 (1+20) (%) C0—0—(1-2m) (_:?”)_o]

a, = E([—:L_]”) [1+2m—1+ 27]

K[ ne

().

4
ay, = n—:(—l:ln
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1 )
L, =— J (x + x°)sinnx dx
n = o

e (S 1 20 (22 o)
_é[(ﬂ'—'? ) CDSHT]—(l—zr{)( Smrw]— .[Ccij:?'?]

2
b, =——(-1)"
T

Substituting the values in equation (1) we get

a8

f(:aj—?—Za cr:rsrm—Zx:l sin nx

n=1
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flx )—%—Z

n=1

——( 1)"sinnx

f[:L:I:E—cl ( 1) cosnl—EZ( 1" sin nx

n=1

This is the required Fourier series.

FOURIER SINE SERIES

3) Expand f(x) = cos xin a Fourier sine series in the interval (0, )
Solution:
Given f{x) =cosx
We know that the half range fourier sine series is

Flx) =an sin nx e (1)

Where

5 7

b, =— | f(x)sinnx dx

oom
i)

1 2 1 3

b, =— | cosxsinnx dx

T

dx

2 J [sin(ﬂ +1)x ; sin(n —1)x

1 1[—cos(n+1)x cos(n—1)x]"
b, =—
n—1 n—1 o

n+1 n—1 n+l1 n—1

_l[—cos[ﬂ—l]r{ cos(n—1)m cosQ cosO
T

n+1 n—1 n+l1 n—1

o

:gl—t—u”*_(—u"*_ 11 l
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11— (-1 L 1- (—1)" ]

| n+1 n—1

11— (-1 L 1- (—1)"*]

| n+1 n—1

=1—(—1)-“-‘1- 1 1 ]

T ln+1 n—1

1 (-1 'ﬂ—l—n—l]
B T lin+1)(n—1)

B 1-— I:—l)"'!_-1 [ 2n )
B T nt—1
( 4n
b, =4(n* -1’
L 0, if nisodd

if niseven

Substituting &,, value in equation (1) we get

- dn . _
flx) = Z msmnx

n=odd

4 n . _
f[:c)=; Z msmnx

n=pdd
This is the required half range Fourier sine series.
HALF RANGE COSINE SERIES

4) Obtain the half range cosine series for f(x) = (x —2)? in the interval (0,2).

olution:
Given f(x) = (x —2)7

We know that the Fourier half range cosine series is

FE =2+ ) agcosmt (1)

n=1
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Where

!
a =7 | Fax

|:.

—..lM

J flx) msmm dx
o

Here 1 =2

2 B (1._2_313
ty EJ(A—EJ dx = [T
(

nwx
(x — 2)° ccrs—dl

=
=
h_'l
m&__—'.l:u

2 22
8 4
['D 0o—2 sinmr—{) W —2)— ,,—{J]
nim? neme
a3
ﬂ.“: ¥ -3
o

Substituting these values in equation (1) we get

f( ) Z a NYT
= ——COS
2X3 N = 2

n=1

T

4
F) =3

T 2

This is the required Fourier series
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COMPLEX FORM OF FOURIER SERIES

6) Find the complex form of the Fourier series of f(x) = e™*in-1<x<1

Solution:
Given f(x) = e™* in-1<x<l

We know that the Fourier series is

Fled = Z c,e’ T

where

IR
C, _Ejf(lje I dx
Here =1,

1
1 - .
SO = 5 J e T e TV dx
=1
:
o = %J e T TEnTEIE ga
]
1 E—[‘l—.n.‘r].m. 1
C 2| -[1+ ]
_ -1 [.L:.—[‘l—..v!.'r].m]-'l
2[1 + inn] -1
_ —1 [E_[i—..v!.'r] E,—[‘l—.."!.‘r]]
2[1+ inm]
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1

C."! =_2[l_£ﬂﬂ-] [E,—‘IE,—:'?!.T_ —1E,.r!.'r]
1 =17 _qyn_ 17  q47yn
=—m[t’ (—1)"—et(—1)"]
_ —(=0" -1 1
_E[l—imr][e e’]
_ E_lj.ﬂ E,‘l_E,—‘l
[1+ inm] 2
C, = 1[:%3;{ [sinh 1]

&

equation(1)f(x) = Z [

n=—x

(-1

1+ inm

E,:'.v!.'r.r

ginh 1

ae

f(x)= sinh 1 Z [(—1]”(1—1'?1,7)

— — E.:Z"!.‘TJ.'
1+ n me-

M= —-

HARMONIC ANALYSIS

7)Computeupto first harmonics of the Fourier series of f(x) given by the following table

X 0 T/6 T/3 T/2 2T/3 5T/6
F(x) 1.98 1.3 1.05 1.3 -0.88 -0.25
Solution:

First and last value are same. Hence we omit the last value.
When x varies fromQ0to T
Bvaries from 0 to 2w

We know that the Fourier series is

y=21 aycos @ +bysin ... (1)

X g = I y cos 8 sin 8 veos @
T

MSAJCE
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0 0 1.98 1.0
T/6 T 1.30 0.5
3
T/3 2 1.05 -0.5
3
T2 T 1.30 -1
2T/3 4 -0.88 -0.5
)
5T/6 _ﬂ' -0.25 0.5
3
Sum 4.5
» vl 4.5
ﬂ_; =/|l—| = : I:—._:| =
T o
_ F vcos @ /2
r = & = Z |: - :| = f'_:.'j'ﬂ
i o]
(X vsing 13013 i
by =2 = [ : ] = 1.004
7

Substituting the above value in equation (1) we get

y="—"+0.37cos@ + 1.004sin 6

i

y =075+

0.37cos 8 + 1004 sin &

This is the required Fourier series

MSAJCE

0.866

0.866

-0.866

-0.866

1.98

0.65

-0.525

-1.3

0.44

-0.125

1.12

1.1258

0.9093

0.762

0.2165

3.013
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UNIT HI

APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

PART - A

1. What conditions are assumed in deriving the one dimensional wave equation?

2 2
The wave equation is TV _ 29
ot? OX?

In deriving this equation we make the following assumptions.

(1) The motion takes place entirely in one plane i.e., XY plane.

(i) We consider only transverse vibrations the horizontal displacement of the

particles of the string is negligible.

(i) The tension T is constant at all times and at all points of the deflected string.

(iv)T is considered to be so large compared with the weight of the string and hence

the force of gravity is negligible.
(v) The effect of friction is negligible.
(vi) The string is perfectly flexible.
2. State the wave equation and give the various solutions of it?
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2 2
The wave equation is TV _ 29
ot? ox?

The various possible solutions of this equation are

(l) Y(X,t) :(Alepx + Aze—px)(Asepat+ A4€_pat).

(i) y(x,t) = (As cos px + Ag sin px)(A, cos pat + Ag sin pat) .

(ii)) y(x,t) = (AgX + A)(Aut + A) .

3. Find the nature of PDE 4u,, +4u,, +u,, +2u, —U, =0.
This is of the form Au,, +Bu,, +cu,, + f (X, y,u,ux,uy)=0.

Here A=4,B=4,C =1.

B2-4AC=16-4(4)(1)=0.
Therefore the equation is Parabolic.

1. Classify the equation uxx-y*uy=2yuy.

Solution:
This is of the form Auxx+Buxy+Cuyy+f(X,y,u,ux,Uy)=0.
Here A=1, B=0, C=-1.
B2-4AC=0-4(1)(-1)=4>0.
Therefore the equation is Hyperbolic.

2. Classify: X2uxx+2xyUxy+(1+y?) Uyy-2ux=0.

Solution:

This is of the form Auxx+Buxy+Cuyy+f(X,y,u,ux,uy)=0.
Here A=x?, B=2xy, C=1+y?.

B2-4AC=4x2y?-4(x?)(1+y?)
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= 4x2y2-4 X2-4(X% yP)
=-4x%<0.

Therefore the equation is Elliptic.
A string is stretched and fastened to two point | apart. Motion is started by

displacing the string into the form y = yosin7z—|X from which it is released at time

t=0. Formulate this problem as the boundary value problem.

Solution:

The displacement y(x,t) is the solution of the wave equation.

The boundary conditions are:

i) y(O,t) =0 forall t>0 .

i) y(I,t) =0 forall t>0 .
ay
) —-2(x0)=0.

) 2 (x0)

Mymm=um=mm€?

. . . 2 0*
4. What is the constant a?in the wave equation e =a’ 8—2,
X
(or)
. 0? 0?
In the wave equation Wzy =c’ a—g what does c? stand for?
X
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Solution:

T Tension
a?orc’=—-= - -
M Mass per unit length of the string

2,
5. State the suitable solution of one dimensional heat equation % =a’ % :
X

Solution:

u(x,t) = (Acos px + Bsin px)e* b

6. State the governing equation for one dimensional heat equation and necessary

conditions to solve the problem.

Solution:

2
The one dimensional heat equation is % =a’ % where u(xt) is the
X

temperature at time t at a point distance x from the left end of the rod.
The boundary conditions are
i) u(0,t)y=kC forallt>0
i) u(l,t)=k5C forallt>0
iii) the initial condition is u(x,0) = f(x),0<x <.

7. Write all variable separable solutions of the one dimensional heat equation

au_ .0
ot ox% '’
Solution:

i) u(x,t) = (Ae™ +B,e™)C,e“ "

i) u(x,t) = (A, cosAx + B, sin Ax) C,e ***
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i) u(x,t) = (Ax+ B,)C, .

8. Write down the diffusion problem in one dimension as a boundary value problem in

two different forms.

Solution:
u LT ) )
u_ a’ ou is the one dimensional heat flow.
ot ox?

Here a2 = X is called the diffusivity.
pc

2
d“u 0.
dx?

In the steady state

9. State any two laws which are assumed to derive one dimensional heat equation.
Solution:

) Heat flows from higher to lower temperature
ii) The rate at which the heat flows across any area is proportional to the area and

to the temperature gradient normal to the curve. This constant is
proportionality is known as the thermal conductivity (k) of the material. It is

known as Fourier law of heat conduction.
10. Write any two solutions of the Laplace equation Ux+Uy=0 involving exponential

terms in xory.

Solution:

) u(x,y) = (Ale P4 Aze‘ YA Lospy + A4$in py ).
i) u(x,y) = (Al COS pX + A2 sin px)(Ase W4+ A4e‘ ).

11. In steady state conditions derive the solution of one dimensional heat flow equation.
Solution:

The PDE of unsteady one dimensional heat flow is
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ou _, 0%
at_ =a y cocee (l)

In steady state condition, the temperature u depends only
onxand notont.

Hence u_ 0
ot

2
Therefore equation (1) reduces to % =0.
X

The general solution is u=ax+b, where a, b are arbitary.

12. Write the boundary condition and initial conditions for solving the vibration of
string equation, if the string is subjected to initial displacement f(x) and initial

velocity g(x).

Solution:

2 2
The wave equation is TV _ 429
ot? OX?

The initial and boundary conditions are
i) y(O,t) =0 .

i) y(l.) =0 .
ii) %(x,o)= 909 .

iv) y(x,0) = f(x)

13. Write down the governing equation of two dimensional steady state heat equation.

Solution:

2 2
The required equation is ou +8_u =0
ox?  oy?
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14. The ends A and B of a rod of length 10cm long have their temperature distribution
kept at 20°C and 70°C. Find the steady state temperature distribution of the rod.

Solution:

The steady state equation of one dimensional heat flow is

du
dx?

-0 e (D)

The general solution of equation (1) is u(X)=ax+b ..... (2)
The boundary conditions are u(0)=20, u(1)=70.
Put x=0 in (2) we get u(0)=a(0)+b
=b=20
Put x=I in (2) we get u(l)=al+b

70=al+20

al=50
a=50/1
Therefore equation (2) = u(x)= 50x/1+20
Here 1I=10 cm
Therefore u(x)= 50x/10+20
u(x)=5x+20.

15. Write down the different solutions of Laplace equation in polar coordinates.
2 2
r28r+r or +au:0.
060> 060 06?

Solution:

i) u(r,@)=(C,r°? +C,r")(C,cospé+C,sin p6o)
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i) u(r,d) =(Cs cos(plogr) +C; sin(plogr)(C,e " + Cge W)
i) u(r,0) =(Cylogr+C,)(C,,0+C},).

16. What is the general solution of a string of length | whose end points are fixed and
which starts from rest?

Solution:

y(x,t) => B, sin nTﬂx cos n—lﬂat :
n=1

17. How many boundary conditions and initial conditions are required to solve the one

dimensional wave equation?

Solution:

Two boundary conditions and two initial conditions are required.

PART B

1.A string is stretched and fastened to two points x = 0 and x= | apart. Motion is started by
displacing the string into the form y = k (I x — x? ) from which it is released at time t=0. Find

the displacement of any point on the sting at a distance of x from one end at time t.
Solution: The ODWE vy, =c.y

Solution : y(x,t)= (Acos px +Bsin px)(Ccos pct +Dsin pct)
Boundary and initial conditions are (i) y(0,t) = 0 (ii) y(I,t) =0
(i) y, (x,0)=0 (iv) y(x,0)=f(x), O<x <.

Using Boundary and initial conditions:

)] y(0,t) =0, put x=0
A(Ccos pct +Dsin pct)=0 .. A=0
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. Suitable solution y(x,t)= Bsin px (Ccos pct +Dsin pct)

ii) y(l,t) =0, put x=I
Bsin pl (Ccos pct +Dsin pct)=0 =B = 0 Bsin pl =0

:>p| =nrx ~p= n_|72-
. Suitable solution  Y(x,t)= Bsin 12 | X (Ccos N | U +Dsin ”—I”Ct)
i)y, (x,0)=0
Bsin 2% ' (C(sin M7ty +Dcos Nt
nsc I |

Putt=0= Bsin 2 ! (Dcos0)=0 D=0
| nac

. Suitable solution y(x,t)= Bsin % Ccos n_7|zct

General solution: y(x,t)=Y_B, sin % coS n—I”Ct
n=1
V) y(x0)=f(x), 0<x<I.
Heret=0= Y B, sin ”T”X = f(x)= kifx -x?)
n=1

By Half range sine series:

2 )
Bn:T_([f(x)smnTﬂxdx
|
=T2Ik(lx—x2)sin nTﬂde
0

_ = (Ix=x*)— cosn—+(l 2x)|( jsnnn—ﬂx—z(n”xj COS%—’
| |_ I \ nz I
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2|k {L 2(-1)" ( ET +2(nLﬂjﬂh

=ZT[L ) -1y +lﬂu

4kl

- n3 e [1_(_1T]
_ %(Iik_'i, h = odd
—N°mxr

|L 0,n=even
Required Solution:

© 2 .
8k| SIn nzx CcoS nzct

y(x,t)= Z i

1,35

_ 8k, z 1 sin (2n +1)7ZX oS (2n +1) ct

* 1o (2n+1)° | |
2.A taut string of length 21 is fastened at both ends . The midpoint of the string is taken to a
height b and then released from rest in that position. Find the displacement of the string at

any time.
Solution: let L=2|

O<x< =
Equation of AC: 2

By two point formula: at (0,0) and (L ,b)
2

X =Y oy=2X
0z b

Equation of CB: L <x<L
2
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By two point formula, at (E ,b)and (L,0)
2

(S
L
[ 2—It_)x,0<x<L
S y(x,0)=
YOO 12bL=x) Loy
L L 2

The ODWE vy, =c,y

Suitable solution y(x,t)= (Acos px +Bsin px)(Ccos pct +Dsin pct)
Boundary and initial conditions are (i) y(0,t) =0 (i) y(l,t)=0
(iii) y,(x,00=0  (iv) y(x,0)=f(x), O<x <.
Using Boundary and initial conditions:

i) y(O,t) =0, put x=0

A(Ccos pct +Dsin pct)=0 .. A=0

.. Suitable solution y(x,t)= Bsin px (Ccos pct +Dsin pct)
i) y(I,t) =0, put x=l

Bsin pl (Ccos pct +Dsin pct)=0 = B = 0 Bsin pl =0

=pl=nx .‘.p:n—lﬂ

. Suitable solution y(x,t)= Bsin % (Ccos n_l7zct +Dsin n_l7zct)

V) Y(x0)=0

Bsin 12 1 (C(-sin m) +Dcos @)

nzc I |
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Putt=0= Bsin 2 ' (Dcos0)=0 -D=0
I nm

.. Suitable solution y(x,t)= Bsin DX oos N2
I

nzx COS nsct

General solution: y(x,t)= Y B, Sin | :
n=1

vi)  y(x,0)=f(x), O<x <.

[ z—bx,0<x<L

_ R ein N g L
Here t=0= nZﬂ:Bn sin = = f(x)= L0 Ly,

L L 2

Half range sine series:

B _2| . nax
n—T!;f(x)sdex

L
- onax o B2b(L-x) . nax W
‘Ehz—bxs'n—dx+j ( )sin dx |
LLO L L L L
2

=% (0] - ) L
Sl
T LT
+32Tb (|__x)|‘_ coi L _(_l)_sm '—2
nz nr {
I L (L) .

2 2 2 2
:4_b[— L cosE+(L\| sinn_”+Lcosn_”+(L\1 sin E1
L?[| 2nz 2 \nz) 2 2« 2 \nz) 2 ||
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_4b 2 L sin i
L?| n’z? 2

:ﬂsinn_”

n?s? 2
Required Solution:Put L=2I

y(x,t)= E—Sb sin 1% DX Nzt

) sin cos
n=1 nz 2 L L
— E 8b sinnZ  nm nzct
) sin cos
n=1 nz 2 2' 2'

3.If a string of length 'l" is initially at rest in its equilibrium position and each of its points

is given the velocity (%)H) =v,Sin® ”I—X 0 < x <|. Determine the displacement y(x, t).

Solution :
Let 1=20
The ODWE y, =cC,Y,
Suitable solution y(x,t)= (Acos px +Bsin px)(Ccos pct +Dsin pct)

Boundary and initial conditions are (i) y(0,t) = 0 (i) y(l,t) =0

(i) y (x,0)=0 (iv) y,(x,0)=f(x) =V, sin SﬂTX

Using Boundary and initial conditions:

i) y(0,t) =0, putx=0
A(Ccos pct +Dsin pct)=0 .. A=0

. Suitable solution y(x,t)= Bsin px (Ccos pct +Dsin pct)

i) y(l,t) =0, put x=I
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Bsin pl (Ccos pct +Dsin pct)=0 = B0 Bsin pl =

=pl=nzx .'.p:n—lﬁ

. Suitable solution y(x,t)= Bsin n;zx (Ccos D7

I
i) y(x,0)=0

BSII’]I— C=0 =c=0

. Suitable solution y(x,t)= Bsin DX i DZCt
I

nsct
|

N7ZX in

General solution: y(x,t)= Y B, Sin |

iv) v, (x,0)=f(x), 0<x <.

nzx

y, (x,t)= ZB sin

y.(x0)= 3B, sin nzx
n=1

Required Solution:

8m sin

y(x,t)= B, sin”TX sin ”C—It + B, sin

zct 3

v
127C

:P’i sin 2
47c I

sin sin

MSAJCE
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4.A rod 30 cm long has its ends A and B kept at 20°C and 80°C respectively until steady
state conditions prevail the temperature at each end is then suddenly reduced to 0° ¢
and kept so. Find the resulting temperature function u(x,t) taking x=0 at A.

Solution:
Let I=30  In steady state b« =0
In initial temperature u(x) :(b_Ta\JX +a

u(x,0)= 8% 1 20
|

After change ODHE: U, = a Uy

Suitable Solutions:

u(x,t)= (Acospx + Bsin px) e« P*

Boundary and Initial Conditions:

) u(0,)=0 i) u(l,)=0 iii) u(x,0)= 5%&20

Using Boundary and initial conditions:
i) u(0,1)=0
Here x=0 = u(0,t)= Ae «™*
~A=0

- - . - - e—asz’[
Suitable solution: u(x,t)= Bsin px

i) u(l,)=0
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Here x=1= Bsin ple ®"* =0

. n= N7
Sinpl==0 =pl=nn --P= :

2
—an’r?

Suitable solution: u(x,t)= Bsin 2 ¢ 2
I

2
—a’n’r?
12

R cin DX
General Solution: u(x,t)= 2. Bn sin | €
n=1

i) U(x,0)=f(x)= 6_?"+20

- nax
>'B, sin I e’ —6?X+20
n=1

By Half range sine series,

2I
Bn=TIf(x)sinnTﬂde
0

2% 60x
_TJ(

=+ 20)sin ”T”de

21 " _ 40 [1_ac_1y
_I_E[_SO(_D +20] = . [1-4¢-1y]
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Required Solution:

2
—an’r?

0 ny eiq NZX z
: u(x1t): - 2(1—4(—1) )sm | e |
=1
. —a?n 2’
_ 2051 aayysin DX g 900
T 3 30

5. Aninfinitely long rectangular plate with insulated surface 10 cm wide. The two long
edges and one short edge are kept at 0° temperature, while the other short edge x=0 is kept
at temperature given by u=20y, 0<y<5, u=20(10-y),5<y<10. Find the steady state

temperature in the plate.

Solution : Steady state two dimensional heat equation:

Uy +Uy, =0

Infinite plate extended in x-direction : Let I=10
I Boundary Conditions
Dux,00=0 i)uxl=0

(
iii) u(co,y) = 0 iv) u(0,y) = f(y)=

|
20y,0<y<—
yusy 5

11 Suitable Solution:
u(x,y)= (Ae‘pX + Be pX)(Ccospy+ Dsinpy)
Using boundary conditions:

) u0) = (ne 1 Ber Y=o
C=0

Suitable Solution:
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u(x,y)= (Ae*pX +Be pX)Dsinpy
i) u(x,)=0

1V/4

Dsinpl=0  sjnpl==0 =>pl=nn "-p:—l

Suitable Solution:
_nax nax n
u(x,y)= (Ae ' +Be ! j D sin T;zy

iii) u(oo,y)=0
B e*=0=BRB=0

nzax

General Solution: u(x,y)= iBne ' sin 1%

|[ 20y,0<y<
(iv) u(0y) =f(y)= 1 , C
20(I—y),§s y<I

Half range sine series:

B _2 . nax
"—T.([f(x)sdex

[t |
:@‘ fXSin %dX'FJ.(I — X)Sin ?dx—‘

S ]
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:@[ I’ cos_+( \sm
||L nr 2 \nr) 2 2n7z 2 \nz)

_400, I . nx
I Nz 2

= 80 gjpnz

n’mr? 2

Required Solution:Putl=10

B0 o 1T g, 0

MSAJCE
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UNIT IV
FOURIER TRANSFORMS

PART - A

1. State Fourier integral theorem.

If f(x) is piece-wise continuously differentiable and absolutely integrable in (- o0, )
then

f (x) :%[_[ _[ f (t)e*CVdtds  (or) equivalently

(== [ f()cosa(t-x) dtdz.

This is known as Fourier integral theorem or Fourier integral formula.

2. Define Fourier transform pair (or) Define Fourier transform and its inverse transform.

The complex (or infinite) Fourier transform of f(x) is given by

FILF ()] = F[s] = %T f (x)e™ dx

—0

Then the function f(x) is the inverse Fourier Transform of F(s) and is given by

MSAJCE
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0

f(x) = 27rJ. [s]e ™ dx.

—0

FI[f(x)]]and F[[F(s)]] its also called Fourier Transform Pairs.
3. Show that f(x) =1, 0 < X < o« cannot be represented by a Fourier integral.

]O"f (x)(dx :Tldx =[x] =0 and this value tends to o as x —oo .
0 0

ie., Il f (x)dx is not convergent. Hence f (x)=1 cannot be represented by a Fourier
0

integral.

4. State and prove the linear property of FT.

Stt:
Fllaf (x)+bg(x)]]=aF[s] + bG[s]

Proof:

FILf(x)]] = F[s] = j f (x)e™ dx

Fllaf (x)+bg(x)]|= \/:j [|af (x)+bg(x)]]e™dx
= %jﬁa f(x)e™dx + %Iob g(x) e™ dx

0 ) b ) )
f(x)e™dx + — X) e’ dx
(¥) ﬁi g(x)

a
=)

=aF[s]+ bG[s].
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5. State and prove the Shifting property of FT.

Stt:
FI f(x-a) |=e=F[s].
Proof:
FILf ()] = F[s] = j f (x)e™ dx
FILf(x-a)l| = 1 T f (x—a)e™ dx
NVZ
Put x-a=y = x=y+a when X = —o0, y=-—0
dx = dy when X =, y=00
— 1_T f (y)eis(y+a) dy — 1_T f (y)eisyeisa dy
NPz M b
\/: J f (y)e™ dy J‘ f (x)e"™ dx =e® F[s].
6. State and prove the Change of scale property of FT.
Stt:
FIf (ax)]_ [L—Sha>0.
Proof:

FILfF ()] = F[s] = j f (x)e™ dx

—0
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FI f(ax)]] = %I} f (ax)e™ dx

Putax=y = x= y when X = —o0, y=-o
a
_dy i _dy
adx=dy ie.,dx="2 when x =, y=o
a

S LI (U

:
Ll oo
:éF(%h

7.1f F{f (x)} = F[s], prove that F {f (x) & }= F[s+a].

Proof:

FILf (0] = F[s] = j f (x)e™ dx

—o0

Flie [ et (x)e"™ dx

>f ()])= F%

1 7 :
——— | f(x)eC**dx =F(s+a).

8. State and prove the Modulation property of FT. (OR) If Fourier transform of f(x) is
F(s).
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Prove that the Fourier transform of f (x)cosax is %[F(s —a)+F(s+a)].
Stt:
FIf (x)cosax |= %ﬂf (s+a)+ f (s—a)l] where f(s)=FIf(X)].

Proof:

—o0

FI f (x)cosax]| = \/:J. f (x) cosaxe™ dx
A
el 100 [
- % [\/%_EIO f(x)e™ (eiaX +ei )dx}
[ oo dcr 2L Tt (x)eto ox
"2 F 2 F

Y lf(s—a) =1ff f (s-a)l].
, (s+a)+2 (s—-a) ZL (s+a)+ f(s-a)l|

9. What is meant by self-reciprocal with respect to FT?

If the Fourier transform of f (x) is obtained just by replacing x by s, then f (x) is called

self-reciprocal with respect to FT.

Example: f(x)= ez
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F {f (x)}:F(s):e_S;.

10. Prove that Fc[f(x)cosax]:%[l:c(s+a)+ F.(s—a)] where F, denotes the Fourier

cosine

transform f (x).

. 2%
The F.C.Tis, F. [ f(X)]= \Eb[ f (X) cos sxdx
F. I f (x)cosax]|= \E T f (X) cos ax cos sxdx
= \/7 T f (X) cos sx cos axdx
-7
= \/7 T f (x)-L[cos(s + a)x + cos(s - a)x]dx
Vmd 2

\/7 W f (x) cos(s + a)xdx +( \/7 WT f (x) cos(s — a)xdxﬂ

2|L I

:%[FC (s+a)+ Fc(s—a)].
11. Prove that F,[x f (x)]= w .

Wkt F I f(X)]]= \ET f (x) sin sxdx
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%Z(Xm:% N%I f (x)sin sxdx I]

2= d . 2 | % |
:\E .([f(x) E(smsx)dx} :\EL!. f(x) cossx.x dx|J

:\/7; .([ [x f(x)]cossxdx =F[xf(x)].

12. Define Fourier cosine transform (FCT) pair.

The infinite Fourier cosine transform of f(x) is defined by
FIfF(X)]= ET f (x)cos sxdx
C T .
The inverse Fourier cosine transform F, ﬁ_f (x)—U is defined by
f(x)= ETF | f (x)]|cossxax.
Ty °

F.[f(x)] and F,*[ F,(f (x))] are called Fourier Cosine Transform Pairs.

COS X if 0O<x<a

13. Find the Fourier Cosine transform of f(x) = {0 it x> a

We know that

F. ﬁ_f (X)—U = VE T f (x)cos sxdx = \/g T COS X s sxdx
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2

_ \E - Tﬂ_cos(l+ s) x+cos(1-s) x|dx

[EEN

1 [sin(1+ s)x . sin(1- s)x —\a

~ U2zl 1ts 1-s |
1 sin(1+s)a _ sin(1-s)a ) |
_ﬁ{( e + s ) (0+0)J

= \/;.W[(Sing-]-_:-;)a + Si”gl_‘ss)aﬂ provided s=1 ; s#—1.

14. Find the Fourier Cosine transform of e ,a>0.

Given f(x)=e™
2 o0
We know that F.C.T is, F.[| f (x)]|= \E I f (x)cos sxdx
0

2 %7 < a
= /— j £~ cos sxdx But J.e’aX coshxdx = —
Ty 0 a‘+b

Here a=a,b=s

2
F°[eax]=\/;£aziszj’ a>0.

15. Find the Fourier Cosine transform of e *.

We know that
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F A f ()= \E T f (x)cos axdx

Fc[e‘x]:\EIe‘xcosaxdx = Eﬁ_ﬂ%—\l

16. Define Fourier sine transform (FST) pair.

The infinite Fourier sine transform of f(x) is defined by

Ff ()= \E T f (X)sin sxdx .

The inverse Fourier sine transform of F r|_f (x)—U is defined by

f(x)= \ET F I f ()]jsin sxdx .

F[f()]and F*[ F, (f(x))] are called Fourier Sine Transform Pairs.

17. Find the Fourier Sine transform of e

The FST is, [ f(x)]= \/;7[ f (x)sin sxdx . Here f(x)=e™.
0

Fle™]= \ETe3X sin sxdx
0

21 s ]

757537 ]
2%

Formula F, [e‘aX]=\E.[eaxsm sxdx .

MSAJCE
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18. Find the Fourier Sine transform of f(x)=e™*.

2 o]
We know that F[f (x)] :\EJ. f (x) sin sxdx
0

2@
Fle*]= \/;j e~ sin sxax
0
21 s ¢ b
= |= ¥ sin bxdx = .
\E[Hsz} [ J; I brax= +b2]}

19. Find the Fourier Sine transform of 3e7*,

Let f(x)=3e>
Wkt F[f(x)]= \/ET f (X)sinsxdx = ETSeZX sin sxdx
2%
:BVE;£e2 sin sx dx
= 3\/%[46;2;2 (—2sin sx — s cos sx)]w = SE[[O]— {4
- 3@@% - \EL%M

20. Find the Fourier Sine transform of l :
X

|JJ |

N

We know that
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AGIE \E T f (x)sin sxdx

Ll(—h \/7.[ sin sxdx

Letsx= @ Xx->0=>0->0

sdx =d@ Xx->0=>0->0

- 2 [(5 im0 f (a0 = P53

ﬁ

21. State the Convolution theorem on Fourier transform.

If F[s] and G[s] are the Fourier transform of f (x) and g(x) respectively. Then the
Fourier transforms of the convolution of f(x) and g(x) is the product of their Fourier

transforms.

FILFC)*a ()1I=F () G(5)

=F[f (%] Fllg(]].

22.State the Parseval’s formula or identity on Fourier Transform.

If F[s] is the Fourier transform of f (x), then J | f (¥)[dx = '[|F(s)|2ds.

—0

PART B

1. State and prove the convolution theorem for Fourier Transforms.

MSAJCE 270



Statement:

If F[s] and G[s] are the Fourier transform of f(x) and g(x) respectively. Then the

Fourier transforms of the convolution of f(x) and g(x) is the product of their Fourier

transforms.
FILF()*g(9]|=F(5) G(s)
=FI f ()1 Fllg(®)1)-

Where (f *g)x= %;‘;f (t)g(x —t)dt

PROOF: By convolution of two functions:

(f *@hﬁ T f(t)g(x —t)dt

The Fourier transform of f xg is

FLfg] =~ J(F »g)e

1 % 1 % 1
== ELE ;[{f (0g(x —t)dtﬁe'“dx

1 7 H )
=— | f(t)dt X —t)e¥dx
22 | 10t Jotx-0
Put u=x-t du=dx X=© = U= and X=-© y=-©

F[ f *g]:z—];z_ [ F @t [ geseau

F(hesdt—=— [ g(u)e™du
7[ —00

:LT
NvZae Nvya
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FI( f *g)(})]=F()G(s)

_ _ & —x2,infx|< a
2.Find the Fourier transform of f(x) = _
10, in|x>a

|(smt tcost\dt_

Hence evaluate
e
_ _ |a2—x2,in|x|<a
Solution: Given: f(x)= )
0, in[x>a

0

F(s):\m% [ £ (e dx

—0

— I(a2 — x2)e™dx
T —a

2 — x?)cos sxdx

1 a
=72

2 ||__( 2acosas , 2sin as)_o—|

= \/27r|_ & S

4
«/272

:
L
zzg(smas ascosasJ

3.Showthat € 2 is reciprocal with respect to Fourier transforms

(sm as—ascosas |
s J

Solution:

Fourier transform:

MSAJCE
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Ff(x)] = w% T f (x)e"dx

XZ
—Fisx
2 dx

f— 1 Te_
N2 S,
o (O ¢
1 ! 2
=——|e' 2 /e 2dx
\/27zi

y=2"2 dy=__dx X=oo=>y=o and X=-0o=Yy=-—0n

where [e™"dy = \/—2;
0

F(s)=e 2

f(x)= e 2 s self reciprocal with respect to Fourier transform.

. . f1—|x| if |x| <1

4. Find the Fourier transform of f(x) =1 . . Hence deduce that
LO if |x|>1
T|( sint' g _ 7
oLt ) 3
Solution:
Fourier transform:
MSAJCE
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FIf()] = J%_ET f (e=dx
1 ‘ isx
= TF‘L(]-_ Ix[)e dx

(1—|x]) cos sxdx

2 sin sx COS SX
=\E((1— X) -(- 1)( DO
:\/Z(—cosstri)

T s? 52

1- cossx
52

F(s) = ;(
By parseval’s identity, ﬂ F(S)|2ds _ J‘| f (X)|2 dx
fleeofecs [l of anyo =2 [-xy]

2ol 2.

1- 0SS 8 | sin* (s/2)
Foft -2 2282
|_sm (s/2) _16% sin*(s/2) |
S

Put t=s/2 2t=s 2dt=ds

s>0=>t—>0ands >wo=t—>w

S e

MSAJCE 274



{57

ty 3

2l sin* t Vs

LIS ST

[
(x for0O<x<1

5. Find the Fourier cosine transform of f(x) = | 2—xforl<x<2
0  forx>2

%

Solution: F[f(X)]= \/gz f (X) cos sxdx
217 2 1
FIf(X)]= \/;[j X COS SxdX + I(Z — X) C0S sxdxh

_ ;%

_\/5 [sins  coss 1 cos2s_sins , coss TF
B 7T|LS 2 g s s s U

\/% {||'L2 cS(zss ~ coSs2 2s é }

|
{

. 1 - 2
sin x| coszsﬂ Jeow sinsx 1) coszsx |
S SN S S J

1

6. Find the Fourier cosine transform of @ *

Solution:

5
FLf()]= \/; I f (x) cos sxdx

F.If(X)]= \/% j e * cossxdx
0
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2170 2
— = = aXeISXdX
231
:\/ZlR'Poj.eazszrisde
2 —00
f( is W Sz—’
1 & a) 2a? |
=—— _RP|e ldx
27 I
[ ( is ¥ ¢
1 WH I o Fall® ) 432}
=—— e RP|e'l ldx
N2 L
Putt=ax—-_" Is dt=adx
2a

X—> —0=>t—>—candx >0 =t —>w

[ 2 s
1 _{‘@M ? 2 dt 1 7[4 2—| 1
=——el®IRpPlet" = =———e™ IZRPJz
N2 L a

FLT ] =$e{mzh

7. Find Fourier sine transform of e ™ ,a >0 and deduce that '[—sin sxdx = % e
s‘+a

Solution:

FLf)]= \/% T f (X)sin sxdx

\/7||_s +a?

By inversion formula,

f(x)= \/%T F[ T (X)]sin sxds
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276



\/7J-\/T|Ls jsm sxds = f (x)

J‘{ . > 2]sinsxds:%f(x):%eax,a>0
s?+a

T dx
. I
8. Evaluate .([ e 5)

Solution: F [e™]= \/7|LS o |J

By Parseval’s identity

[F.(5)G(9)ds =]  (x)g(x)dx

a 2 b —ax 4 —bx
[s%az}\/i{s Y }ds fe e dx

2ab * ds B 1
j(s +a?)(2+b?) ~  —(a+b)

put s=x

j dx _ T 1
2 (X2 +a?)(x* +b?) ~ 2ab (a+b)

dx
1)(x* +4)

9. Evaluate j 5
: (x*+

Solution:

Proving I ox _ 7 1
3 (X +1)(x* +4) 2ab (a+b)

Put a=1 and b=2

T T

X
! ()¢ +4) ~ QMLEQE) 12

MSAJCE
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xQ 2
10. Using Parseval’s identity evaluate: j ( Xax )2
+a

Solution;

Consider the function f(x)=e™

Rletl= \ﬂLs +a’ |J

By parseval’s identity, j [F.(s)]Pds = j [ f (x)]?dx
0 0

[ [2[ s .Tlds=fle 1,d
b/*[s Jsra | S {{e X
2@F

—l re_zax —ro ut s=x
& +a7 1ozl

o ——38
'—»

T

0

Tr X2 1 1z =«
0L(X2+325J "2a2 4a

UNIT V

Z -TRANSFORMS AND DIFFERENCE EQUATIONS

PART - A

1. Prove that Z[ ”]= N is |Z| > |a| :

We know that Z {X(n)} = i X(n) z"

n=0
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_ [1— ET ['::(1— X) " =1+ x+x? + ]

:ﬂ?ll :L,‘zp‘a‘,

Z—a

2. Prove that Z(n)= ﬁ .
We know that Z{X(n)}: Z X(n)Z_n
n=0

Z[n]= Z‘nz“

f:n 1 2 3
o L z 7?77

1[L 112 +....1“

1 1Y? |
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(217 =1LZT .

zZ||\z ) | z G-y
2 Fing 24" }
wetoowm Z{(0)}= Y x(n)e
2{al}- Yave
= w
=Ya"z"+) az"

N=—o0 n=0

= [ ------- +a%z% +az? +az]+ z[a“]

Z—a
az Z a
= + G.P.:——’
l-az z-a [ 1-r |
_ z-a’z
- (1-az)(z-a)

4. Find Z{e_a” }
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We know that £ [a-n ]:

Z—a
Z[e_an ]: z [(ga )n ] :Z _Ze L Hee d=6€7°%
5. Find Z[a”‘l].
Z
We knowthat £ [an ]: E

Z[a”—1 ]= Z[an a™t

=a‘1Z[a”]
ol oz 1]z ]
-@ [zl “alzal

1
n(n +1)J

6. Find Z[

1 _A B
n(n+1) n n+1

1= A(n+1)+B(n)
Put n=0 we get, 1=A
Putn=-1weget, 1=-B (i) B=-1
1 1 1

nM+1) n n+l
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We know that Z[ n—h log ﬁ

Z —|—2|0 i

In+1 U

L [ 1]
Z_n(n+l)}_

Z[L%—’J_ Z |Lm | | by linearity

= log . —zlogi
z-1 z-1

VA
= (1= 2)log —=—
(1-2)log —.
7. Find Z[an cos n6’].

We know that Z[a f (n)]= F[L?IJ

z—>z/a

z[ a cosng|=[Z[cosno ]
|

2(z—cos8) T
|L22 220036?+1Jz

—z/a

Z[;—costﬂJ

z
=2 £ cos+1
a a

z[z—acos 6]
—2azcos @ +a’
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8. Find Z[a—} .
n!

Sol:
We know that z [a‘n f (n)]: F[Lé—h

1] [_[17]

Zﬂa” =Py

= [e]jzl—ﬂ/a

9. Prove that Z[nf (n)]=-z % F(2).
cive, F(2)=2[1(n)]
F2)=Y t(n)z

4 F@I S0 (e

= —inf (n)%
MSAJCE
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r S F@)=-3nf (e
= -z[nf (n)]
2[nf (9]=-2  F(2)
10. Find Z ().

We know that Z[nf (n)]: —Z % F(Z)

z[n? ]=z[mn] = -z [Z(n)]

32{@21)2}

_ Jayr@-e o))
ey

) hfl)ﬂ
o]

_(__) 2% +12
RN
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11. Find the Z-transform of {nC, }.

:1+nC12‘1+nC22‘2+ .............. +nC z™

This is the expansion of binominal theorem.

= (1+2‘1)”

12. Find Z[(a‘“t2 ]
We know that Z[e_at f (t)]= Z[f (t)] at

Z—17¢€

z[et2]=[z[t ] .-

_Tze. (zeT +1)

(ze"-1)°

13. Define Unit Sample sequence.
The unit sample sequence o (n) is defined the sequence with values

for n=0
for n=0

5(1)= {é

14. Define Unit step sequence.

The unit step sequence u(n) has values.
1 for n>0

()=
0 for n<O
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15. Find Z| 225(n-2)].

z[25(n-2) [ [ 5(n-2)]z—

L]
b (3

16. If Z[f(n)]= F(z),, then f(0)=lim F(2),

Z—>©

N | D

Z[f(n)]= Z f(n)e™

f(0)+f—(l)+ﬂ2)+
R

limF(z)= f(0).

X—>00

17. Find the Z-transform of nanu(n).

d z |
Z[na"u(n)]= 2 o r: |J by def . of u (n)

=z dd _1-azt]?

=71 (1)(1-az ! )’[-a
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_ -1 \2
=az™ (1—az 1)
az™
(1——a2‘1 2
18. Define convolution of sequences.

i) The convolution of two sequences {x(n)} and {y(n)} is defined as

a. {X(n)* Y(n) }: Z f (K)g(n— K) if the sequences are non — causal and

K =—o0

b. {X(n)* Y(n)}: Z f (K)g(n - K) if the sequences are causal.

K=0

if) The convolution of two functions f(t) and g (t) is defined as

{f (t)* g(t)}: Z f (KT )9(” - K)T’ where is T is the sampling period.

K=0
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1. Using the Z transforms, Solve ., + 3u,., + 2u, = 0 givenu, = 1,u, = 2.

Solution:

Given wu,.,+3u,,, +2u, =0

PART B

Z[ Upso] + Z[3upy44] +2[2u,]=0

[z U(z) — z* u(0) — zu(1)] + 3[zU(z) — zu(0)] + 2 U(z) =0

(z24+3z+2)U (- 2%-22-32=0 [up=1,u, =2]

_ =%45z
U (Z) T Z¥+3z+42
=(z+5)
U= 2243z 42
U(z) _ (=z#5) _ A | F
b reeresttowey L rove SRTIIS (1)

Then z+5 = A(z+2)+ B(z+1)

Put z = -1, we get

Put z =-2, we get

4 =A 3=-B
A=4 B=-3
uiz) _ 4 3
(1) z [l:z+1}]-[':z+2:':|
OO I (s I Fowrs

(=z+
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Z [u(n)] = 4[—=-]-3[ ]

=+

u(n) =4z 5182 ]
= 4(-1)" 3(-2)"

= [4-32")] (-1)"

2. Solve the difference equation y(n+ 3)—3y(n+1) +2y(n) =0

giventhat y(0) = 4,y(1) =0 and y(2) = 8

Solution:
Given y(n+3)—3y(n+1)+2y(n)=0
Z[y(n+3)] -3Z[y(n+ D]+ 2Z[y(n)] = 0

[2°Y(2)—z°y(0) — 2% y(1) — zy(2)] - 3[z¥(2) — 2y(0)] +2¥(2) = 0
[2%¥(z) —4z° — 8z] — 3[z¥(z) — 4z] + 2¥(z) =0 [v(0) =4,v(1) =0,y(2) = 8]
[2?—3z+2]¥(z)—4z®—8z+12z=0
[z —3z+2]¥(z)—42z°—4z =0

[2° —3z4+2]Y(z) = 42° — 4z

Y (Z) — 4z% -4z

z¥-3z+2

_ 4= (=z=—1)
T (z-10%(=+D)

_ (z+1i(z—1)
T (z-10%=+2)

4Z(=z+1)
T (z-1)(=z+1)
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4(z4+1)=A(z+2)+B(z—1)

Put z=1,we get

ZIy(m)] = { =42

v =227 {5+

=3 (" +3(-2)"

3. Using Z transforms, Solve u,,., — u,
Solution:

Given ., — i,y + 6u, = 4"

Z[ tpar] = Z[ipaq] + 62w, ] = Z[47]

[22 U(2) = 22 u(0) - zu(1)] - 5[zU(2) — 2u(0)] + 6U(2) = =

22524 6)U(@)z= L
2524 6)U (D) =2+l

(z—3)(z—2) U(z) = T2

(z—3)(z—2) U(z) = Z=%

z—4

U(Zj .3'.3 a

(z—3(z—2){z—4)

MSAJCE

Put z =-2, we get

-4=-3B

B =4/3

+y T6u, =4" given thatu, = 0,u; =1

[up =0, uy
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U[Z) = (z-2)(=z—4)
uiz) _ 1
=z (z-2)iz-4)
Uiz _ 1 _ 4 B
e el ac e SR 1

1 =A(z—4) + B(z—2)

Put z = 2, we get Put z = 4, we get

1=-2A 1=2B
0 2=
@ U@ = ]
Z )] =3l
u(n) =-327 [u:;::-] +327 -

= - @+

4.Using Z transforms, Solve ¥,:» + 6¥,.4 + 9y, = 2" giventhaty,=0,y, =0

Solution:
Given ¥,:p +6¥y,:, +9y, =27
Z[¥ps2] T+ 6Z[y 0]+ 9Z[y, ] = Z[27]

[22 ¥Y(z)— 2% y(0) — zy(1)] + 6[zY(2) — zy(0)] + 9¥(2) = ﬁ

(2 +62+9)Y (@)= Y6=0y,=0

(zz—I-Ez-I-?)Y(Z):zzj

z

[z+3]2Y(Z)=z
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Z

Y(z) =

Y@ _ 1
= (z—2)i=z+3)*
12 - T T e T o (1)
1=A(z+32+B((Ez-2)(z+3)+c(z—2)
Put z = 2, we get Put z = -3, we get Equating z* co-eff.
1 =25A 1=-5C on both sides, we get
A= C=-: 0=A+B
B=-AB=-_
O P hnm i
Y(z = 22 _ 1= 1 =

25z-2 25=z+3 5(=z+3)?

_ 1 .z 1 4 =z 1 __, z
Y=gt LRt Ll s !

ie,

I 1 ! 1 " 1 )
y(n) =5c @2 (3)"+ (=3

p—
5. Find Z L(z—a)(z—b)J'

Solution:
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— an *bn

iambn n i(a)

mOKb

n+1
o)
b" b—being aG.P

a_
b
_ a‘n+1 _bn+1
a-b
1 n-1 — an _1—||
Note: +a+a +..+a a—lj
6. Find Z [ —I
-9
Solution:

MSAJCE
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=3" being a G.P
1
3
n+1
_ 3 -1
2
a" —1
2 n-1 _
Note- [1+a+a +..ta = a—l]
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