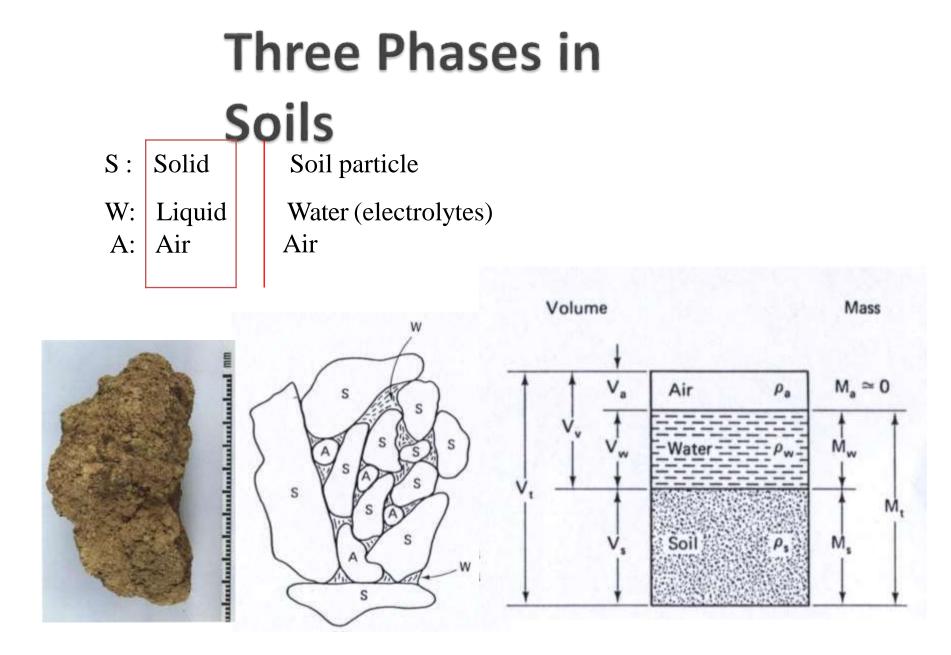
CE8491 SOIL MECHANICS

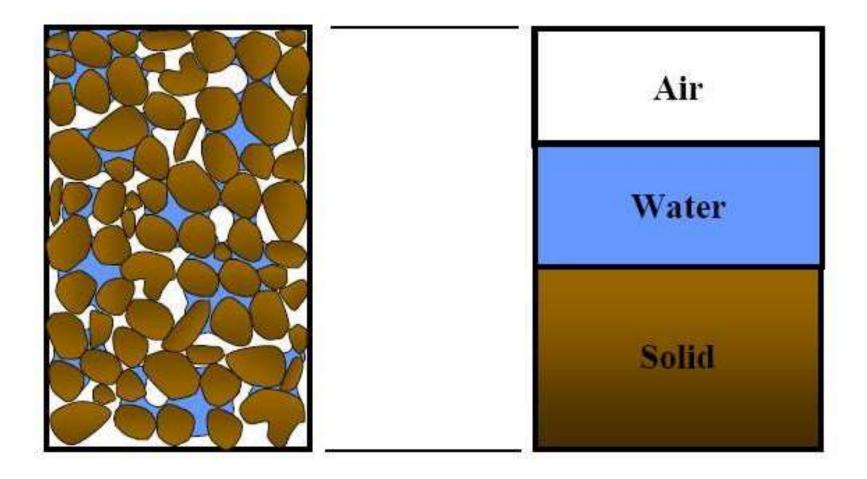
UNIT – 1 BASICS OF SOIL MECHANICS

Out line

Topics for discussion


- 1. Origin of Soils
- 2. Three Phase Diagram
- 3. Important Terms
- 4. Phase Relationships
- 5. Atterberg's limits

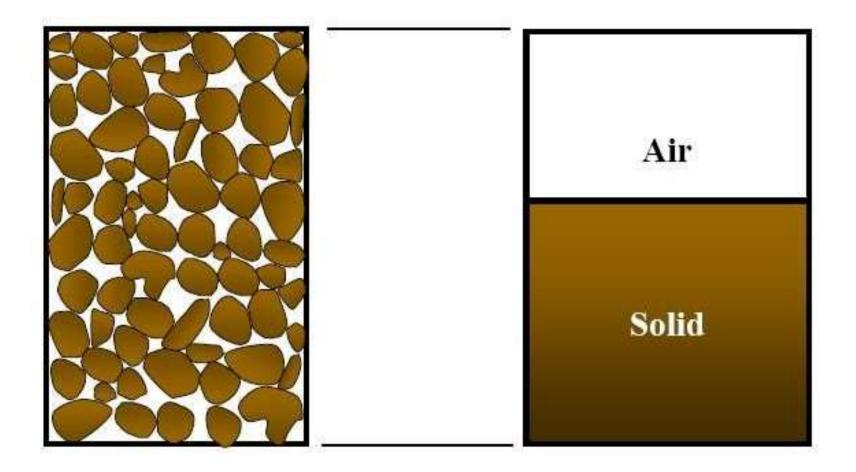
Origin of Soils


- Soils are formed by weathering of rocks due to mechanical disintegration or chemical decomposition.
- Exposed rocks are eroded and degraded by various physical and chemical processes.
- The products of erosion are picked up and transported to some other place by wind water etc.
- This shifting of material disturbs the equilibrium of forces on the earth and causes large scale movements and upheavals.

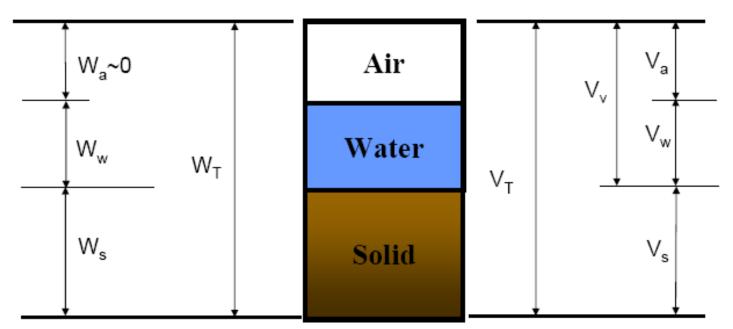
Types of Soils

- (1) Glacial soils: formed by transportation and deposition of glaciers.
- (2) Alluvial soils: transported by running water and deposited along streams.
- (3) Lacustrine soils: formed by deposition in quiet lakes (e.g. soils in Taipei basin).
- (4) Marine soils: formed by deposition in the seas (Hong Kong).
- (5) Aeolian soils: transported and deposited by the wind (e.g. soils in the loess plateau, China).
- (6) Colluvial soils: formed by movement of soil from its original place by gravity, such as during landslide (*Hong Kong*). (from Das, 1998)

Three Phase Diagram



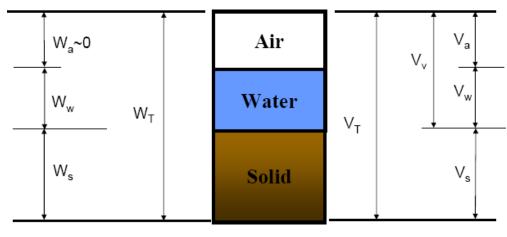
Fully Saturated Soils (Two phase)


Particiant da laterant da tra

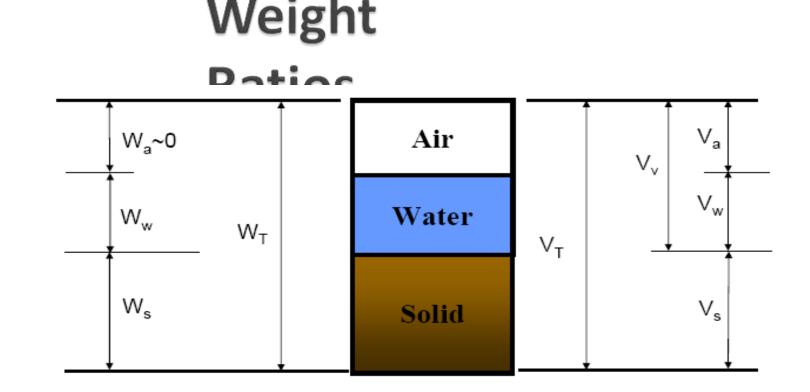
Dry Soils (Two phase) [Oven Dried]

PHASE DIAGRAM

For purpose of study and analysis, it is convenient to represent the soil by a <u>PHASE DIAGRAM</u>, with part of the diagram representing the solid particles, part representing water or liquid, and another part air or other gas.


Wt: total weight Ws: weight of solid Ww: weight of water Wa: weight of air = 0 Vt: total volume Vs: volume of solid Vw: volume of water Vv: volume of the void

Volumetric Ratios


(1) Void ratio **e**

e

$$=\frac{Volume \ of \ voids}{Volume \ of \ solids} = \frac{V_v}{V_s}$$

(2) Porosity n%

(1) Water Content **w**%

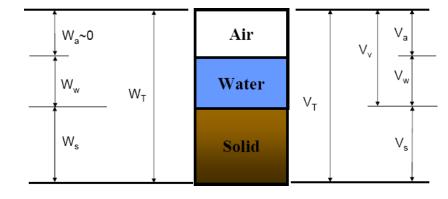
$$w = \frac{Weight \ of \ water}{Weight \ of \ soil \ solids} = \frac{W_w}{W_s} \cdot 100\%$$

(1) Weights

$$\gamma_{d} = \frac{Weight of soil solids}{Total volume of soil} = \frac{W_{s}}{V_{t}}$$

(2) Total, Wet, Bulk, or Moist unit weight

$$\gamma = \frac{Total \text{ weight } of \text{ soil}}{Total \text{ volume of soil}} = \frac{W_s + W_w}{V_t}$$


(4) Submerged unit weight

$$\gamma' = \gamma_{sat} - \gamma_w$$

(3) Saturated unit weight (considering S=100%, V_a=0)

$$\gamma_{sat} = \frac{Weight \ of \ soil \ solids + water}{Total \ volume \ of \ soil} = \frac{W_s + W_w}{V_t}$$

<u>Note:</u> The density/or unit weight are ratios which connects the volumetric side of the PHASE DIAGRAM with the mass/or weight side.

Specific gravity, G_s

The ratio of the weight of solid particles to the weight of an equal volume of distilled water at 4°C

$$G_s = \frac{w_s}{V_s \ \gamma_w}$$

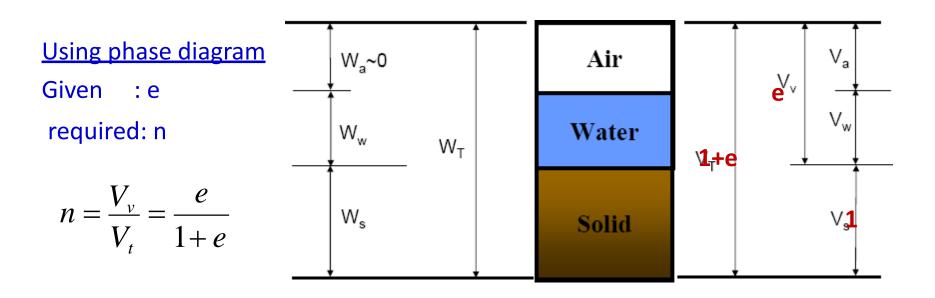
i.e., the specific gravity of a certain material is ratio of the <u>unit weight</u> of that material to the <u>unit weight</u> of water at 4°C.

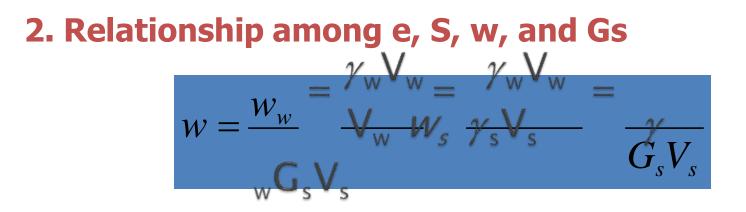
The specific gravity of soil solids is often needed for various calculations in soil mechanics.

$$G_s = rac{\gamma_s}{\gamma_w}$$

Expected Value for Gs

Type of Soil	Gs
Sand	2.65 - 2.67
Silty sand	2.67 – 2.70
Inorganic clay	2.70 – 2.80
Soils with mica or iron	2.75 – 3.00
Organic soils	< 2.00

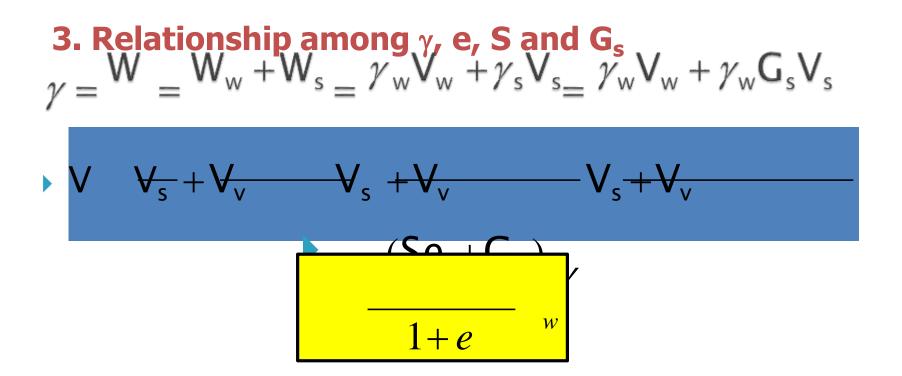

Relationships Between Various Physical Properties


All the weight- volume relationships needed in soil mechanics can be derived from appropriate combinations of <u>Six</u> fundamental definitions. They are:

- 1. Void ratio
- 2. Porosity
- 3. Degree of saturation
- 4. Water content
- 5. Unit weight
- 6. Specific gravity

1. Relationship between e and n

$$e = \frac{V_v}{V_s} = \frac{V_v}{V - V_v} = \frac{\left(\frac{V_v}{V}\right)}{1 - \left(\frac{V_v}{V}\right)} = \frac{n}{1 - n}$$
(3.6)
Also, from Eq. (3.6),
$$n = \frac{e}{1 + e}$$
(3.7)



•Dividing the denominator and numerator of the R.H.S. by V_{ν} yields:

$$Se = wG_s$$

•This is a very useful relation for solving THREE-PHASE RELATIONSHIPS.

Notes:

- Unit weights for dry, fully saturated and submerged cases can be derived from the upper equation
- Water content can be used instead of degree of saturation.

Problems

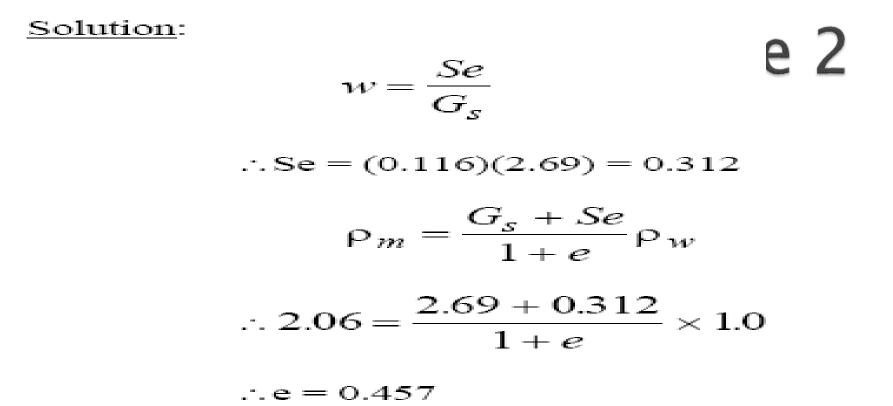
Method : Memorize relationships

$$Se = wG_s$$
 $\gamma = \frac{(Se + G_s)}{1 + e}\gamma_w$

$$n = \frac{e}{1+e} \qquad \qquad \gamma_d = \frac{\gamma}{1+w}$$

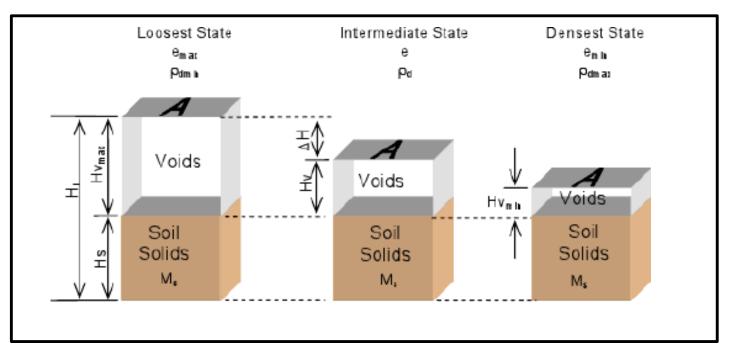
Example

The moist unit weight of a soil is 19.2 kN/m^3 . Given that $G_s 2.69$ and w = 9.8%, determine


- a. Dry unit weight
- b. Void ratio
- c. Porosity
- d. Degree of saturation

a.
$$\gamma_d = \frac{\gamma}{1+w} = \frac{19.2}{1+\frac{9.8}{100}} = 17.5 \text{ kN} / \text{m}^3$$

b.
$$\gamma_d = 17.5 = \frac{G_s \gamma_w}{1+e} = \frac{(2.69)(9.81)}{1+e}; e = 0.51$$


c.
$$n = \frac{e}{1+e} = \frac{0.51}{1+0.51} = 0.338$$

d. $S = \frac{wG_s}{e} = \frac{(0.098)(2.69)}{0.51} \times 100 = 51.7\%$

Field density testing (e.g., sand replacement method) has shown bulk density of a compacted road base to be 2.06 g/cc with a water content of 11.6%. Specific gravity of the soil grains is 2.69. Calculate the dry density, porosity, void ratio and degree of saturation.

Relative Density

- The relative density is the parameter that compare the volume reduction achieved from compaction to the maximum possible volume reduction
- The relative density Dr, also called density index is commonly used to indicate the IN SITU denseness or looseness of granular soil.

Volume reduction from compaction of granular soil

• D_r can be expressed either in terms of void ratios or dry densities.

$$D_r = \frac{e_{\max} - e}{e_{\max} - e_{\min}}$$

where D_r = relative density, usually given as a percentage $e = in \, situ$ void ratio of the soil e_{max} = void ratio of the soil in the loosest state e_{min} = void ratio of the soil in the densest state

$$D_{r} = \frac{\left[\frac{1}{\gamma_{d(\min)}}\right] - \left[\frac{1}{\gamma_{d}}\right]}{\left[\frac{1}{\gamma_{d(\min)}}\right] - \left[\frac{1}{\gamma_{d(\max)}}\right]} = \left[\frac{\gamma_{d} - \gamma_{d(\min)}}{\gamma_{d(\max)} - \gamma_{d(\min)}}\right] \left[\frac{\gamma_{d(\max)}}{\gamma_{d}}\right]$$

where $\gamma_{d(\min)} = dry$ unit weight in the loosest condition (at a void ratio of e_{\max}) $\gamma_d = in \ situ$ dry unit weight (at a void ratio of e) $\gamma_{d(\max)} = dry$ unit weight in the densest condition (at a void ratio of e_{\min})

<u>Remarks</u>

- The range of values of D_r may vary from a minimum of zero for very LOOSE soil to a maximum of 100% for a very DENSE soil.
- Because of the irregular size and shape of granular particles, it is not possible to obtain a ZERO volume of voids.

 Granular soils are <u>qualitatively</u> described according to their relative densities as shown below

Relative Density (%)	Description of soil deposit
0-15	Very loose
15-50	Loose
50-70	Medium
70-85	Dense
85-100	Very dense

 The use of relative density has been restricted to granular soils because of the difficulty of determining e_{max} in clayey soils.
Liquidity Index in fine-grained soils is of similar use as D_r in granular soils.

ATTERBERG LIMITS

- > Liquid limit test:
- A soil is place in the grooving tool which consists of brass cup and a hard rubber base.
- A groove is cut at the center of the soil pat using a standard grooving tool.
- The cup is then repeatedly drooped from a height of 10mm until a groove closure of 12.7 mm.
- The soil is then removed and its moisture content is determined.
- The soil is said to be at its liquid limit when exactly 25 drops are required to close the groove for a distance of 12.7 mm (one half of an inch)

APPARATU

S

Plastic limit test:

A soil sample is rolled into threads until it becomes thinner and eventually breaks at 3 mm.

it is defined as the moisture content in percent at which the soil crumbles when rolled into the threads of 3.0 mm.

If it is wet, it breaks at a smaller diameter; if it is dry it breaks at a larger diameter.